
Automated Analysis of
Computer-Generated Software Usage

Protocols: An Exploratory Study

TR91-052

December, 1991

John Q. Walker, II

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27 599-317 5
919-962-1792
jbs@cs.unc.edu

A TextLab/Collaboratory Report

UNC is an Equal Opportunity/Affirmative Action Institution.

JOII'-." QULLIA'-." WALKER II. Automated Analysis of Computer-Generated Software Lsage
Protocols: An Exploratory Study (Lnd<;r the direction of John Bristow Smith.)

ABSTRACT

Ilighly-intcractive computer software can potentially help users think and work more effectively.
To realize this potential, sotiware developers should understand the cognitive processes involved
in the tasks being performed and the ways users interact with the software to accomplish the
tasks.

Gathering data about software usage-<:alled protocols-is costly in several ways, including pre­
paring representative test scenarios, fmding suitable subjects, training personnel to administer the
tests and record the protocols. and collecting and coding the protocols. Similarly, analyzing pro­
tocols can be tedious, often done manually by skilled researchers. Because of their high costs,
protocol studies frequently consist of a few subjects tested while performing synthetic tasks in an
artificial setting. The value of these studies is limited both for software developers and researchers
in human-computer interaction.

This paper describes a method used to collect and analyze the protocols of a large number of
subjects performing tasks in a naturalistic setting. An interactive computer program was devel­
oped as a testbed for this study. It contained an automatic tracker that unobtrusively collected
protocol records of users' interactions with the program. L sers' strategies in working with this
program were modeled as a formal grammar, and a parser was devised, based on the grammar, to
analyze protocol records produced by the program. C sers' behaviors and strategies of working
with the program were examined and characterized, based upon the parsed protocol data.

A graphical structure editor was created as .the testbed for this study; it assists in expository
writing, such as technical journal articles, with special emphasis on the exploratory and organiza­
tional phases of the writing process. This paper discusses lessons learned in devising the grammar
to model users' writing sessions with the editor, in building and refuring the parser, and in ana­
lyzing the protocol records for 112 sessions collected from 29 subjects.

Ill

Dissertation Thesis Statement
A practical methodology can be developed for automating the collection and analysis of large
arnounts of protocol data from users. of interactive software in their natural working en\·ironmcnt.

IV

ACKNOWLEDGEMENTS

Working full-time and writing a dissertation took a lot of help'

Jolm B. Smith was the best advisor I could ask for. lie's crcati,·e and inspiring; I continue to
learn a lot from him. I appreciate the innumerable hours he's invested in this project.

What a dissertation committee1-alphabetically: David Beard, Fred Brooks, :\farcy Lansman, and
Steve Weiss. It's the best committee I can imagine; their contributions to my education are
deeply appreciated.

:\!embers of the Textlab group were always available to exchange ideas on the topics discussed
here; we've enriched each others' projects: Jay Bolter, Gordon Ferguson, Bobby Starn, :\lark
Rooks, Irene Weber, Valerie Kierulf, Greg Berg, and Katie Clapp. I also acknowledge the
authors of the original PROSE program: :\ancy Donaldson, Tom :\!orris, Lane Price, and Jim
Shoaf. Finally, I shared an office at C:\C with some enlightened fellow students: Will Partain
and Phil Amburn.

IB:\1 and my excellent managers there allowed me the luxury to pursue this degree; I'll assume
they're starting to see the payback. Over more than ten years it's become a long list; thanks team,
you're great' :\ly direct management team has included: Otis Bradley, Herb Pelnar, :\ishan
Bouroudjian, Frank Corr, Joel Webb, Jim Staton, Jane :\lunn, Fred McGriff, Denise Kanyuh,
Bob Steen, Don Haile, John Hunter, and Rick :\lcGee.

There's a lot of other support I got from IB:\1; in particular I thank the subjects of this study for
helping me improve Prose II and for bothering to send me their interesting recordings. I used a
number of world-class IB:\1 tools; thanks to their authors-! hope I am riow returning the privi­
lege by supporting my own set. Key IB\1 software I used were V:\ET, Book:\laster, almcopy,
Personal Editor II, FileCommand, gfmd, and gsee. Thanks to :\largie Weaver and June Turner,
who administered the IB\1 Ph.D. Resident Study and Graduate Work-Study programs.

I've been in three departments here in IB:\1 RTP: E75, E64, and E42. Thanks to the terrific
friends I've had there, many of whom have moved on far from here. I can't have asked for a
better place to work. My colleagues have exhibited amazing patience with my pursuit of this
"second job."

I've had some wonderful friends who've joined me in the good days and the frustrating days of
this project. Terry Cams, Jane Troller, and Jay Whitehead put up with my habits. Thanks
always to Trileigh, Suzarme, Stephanie, and Rita. Other enduring friends know how they've been
frequent help and inspiration: Bob and Linda Gibson, Jim and Becki Beck, Bill Hogan, Jay
Kurtz, Don Andrews and Amy S\·oboda and Georgia, John and Alice Pierce, Bob and :\ancy
Donnan, :\lark and Sherrie :\ickels, Peter and Suzanne Schwaller, Steve and Julie Jovce, and
leonard and \!arlene Van Camp. -

I'm sure my wonderful sisters and their families will be glad to see this completed: Kathy and
John \\'yrwich, and Frances and Bruce Walker. \ly grandmother, Lucille \laloney, would have
been surely glad to see it done. Finally, thanks \lorn and Dad for evef)1hing-fmally'

v

TABLE OF CONTENTS

Chapter 1. An Introduction To This Project I
l.l Project Oven·iew _ 2

1.1.1 The Task: Writing 3
1.1.2 The Testbed Software System: A Tool to Help Writers Organize 3
1.!.3 The Tools for Data Collection and Analysis 4
1.1.4 The Experimental Study: Examine 100 Sessions of System Usage in Actual Settings 7

1.2 Research Issues 8
1.3 '.!ajar Results 8

1.3.1 Human Behavior and Patterns of Cse 9
!.3.2 '.lethodology for Studying Subjects and Their Software Usage 9
1.3.3 Feedback for the Software Design and Development Process II

1.4 Preview of Remaining Chapters II

Chapter 2. Related Research
2.1 Cnderstanding Reading and Writing ..

2.1.1 A Look at Human :\!emory ...
2.1.2 Organizing Concepts in \!emory
2.1.3 Reading Research
2.1.4 Writing Research

2. 1.4. I Representation and W riling
2.1.4.2 Concepts
2.1.4.3 Representation

2.1.5 The Writing Process
2.1.6 Writing '.lodes

2.2 Tools to Help Writers Organize
2.2.1 A Survey of Structure Editors and Hypertext Systems

2.2.l.l Directed-Graph Structure Editors
2.2.1.2 Hierarchical Structure Editors
2.2.!.3 Textlab's Writing Environment (WE)
2.2.1.4 Why Build a '.'ew Structure Editor? .

2.3 Protocol Collection and Analysis . . .
2.3.1 Protocol Collection

2.3.l.l Think-aloud Protocols
2.3.1.2 Video and Audio Protocols ..
2.3.1.3 Computer Protocols
2.3.1.4 Comparing Protocol Collection Techniques ·.

2.3.2 Protocol Analysis
2.3.2.1 The ICARCS Study by Card, '.loran, and :>:ewell
2.3.2.2 Formal '.lodels for Analysis

2.4 Summary

Chapter 3. System Design and Implementation
3.1 Prose II Design and Operation

3.l.l An Introduction to Prose II . . .

Vl

13
13
14
15
16
17
17
18
19
20
21
23
23
23
24
25
25
26
26
26
27
28
28
29
29
30
31

32
33
33

3.1.2 Creating and Labeling a :-\ode
3.!.3 linking :\odes
3.1.4 Editing the File Associated with a :\ode
3.1.5 \lovir{g and Copying '\odes
3.1.6 Deleting :\odes
3.1. 7 \loving through a Prose II Workspace

3.1.7.1 Zooming in the \lain Window
3.1.7.2 Working with the \lap Window
3.!.7.3 Working with the Outline Window

3.1.8 Tidying Trees
3.1. 9 Changing the Root Orientation . . .
3.1.10 Working with Workspace Files

3.1. 10.1 Creating a :\ew Workspace file
3.1. 10.2 Opening an Existing Workspace File
3.1.10.3 Workspace File Formats
3.1. 10.4 Saving and Deleting Files

3.1.11 Copying to the Clipboard
3.l.l2 Searching for a :\ode
3.1.13 Requesting Help

3.2 Prose II Implementation

Chapter 4. Protocol Collection and Analysis .
4.1 Automating Protocol Collection with a Tracker

4.1.1 Content and Format of the Protocol Record Files
4.1.2 Implementation and Operation of the Tracker

4.2 Automating Protocol Analysis with a Parser
4.2.1 Grammar S}mbols
4.2.2 Design and Operation of the Grammar

4.2.2.1 OveiView of Pass 2
4.2.2.2 OveiView of Pass 3
4.2.2.3 Oven~ew of Pass 4
4.2.2.4 OveiView Summary

4.2.3 Details of the Grammar Operation
4.2.3.1 Pass 0: Translating the Tracker File .
4.2.3.2 Pass 1: Combining Common Sequences
4.2.3.3 Pass 2: Segmenting and Characterizing Housekeeping Episodes
4.2.3.4 Pass 3: Characterizing Constructive Episod.es
4.2.3.5 Pass 4: Phases of Activity
4.2.3.6 Grammar Summary

4.2.4 Further Implementation Details of the Parser .
4.2.4.1 Pass 0 Details
4.2.4.2 Pass 2 Details
4.2.4.3 Producing the Parse Tree and Summary Information
4.2.4.4 Controlling the Parser Operation
4.2.4.5 Parser Implementation Details

Chapter 5. ObseiVations On The Task and C ser Strategies
5.1 Experimental Setup and Subjects
5.2 An Overview of the Protocol Data and Parser Results

5.2.1 Five Categories of Sessions
5.2.2 Documents and Sessions per Subject

5.3 Results and Discussion
5.3.1 How Long are the Time Periods?

5.3.1.1 Overall Tinaings for Sessions, Phases, and Episodes
5.3.1.2 How is Session Time Distributed? . .
5.3.1.3 How is Document Time Distributed? . . .

35
35
36
37
38
39
39
39
39
40
41
42
42
43
43
44
44
45
45
48

49
49
49
54
57
58
61
65
66
67
68
68
69
70
73
78
83
85
85
87
87
88
88
91

93
93
93
94
95
95
96
96
97
98

5.3.1.4 How Long are the Pauses Between Commands?
5.3.1.5 What Proportion of Session Time was Spent in Pauses?
5.3.1.6 Summary: Time Durations

5.3.2 llow are Parse Elements Distributed in Frequency of Cse and Time?
5.3.2.1 Frequency Distribution of 7 Phases
5.3.2.2 Frequency Distribution of 12 Constructive Episodes
5.3.2.3 Frequency Distribution of 7 Housekeeping Episodes
5.3.2.4 Frequency Distribution of 39 Commands . . .
5.3.2.5 Relationship between Commands, Episodes, Phases, and Sessions
5.3.2.6 :\umber of :\odes vs. Time Spent in a Session
5.3.2.7 :\umber of :\odes vs. :\umber of Commands in a Session .
5.3.2.8 Summary: Distribution of Commands, Episodes, and Phases

5.3.3 llow Were Particular Commands Csed?
5.3.3.! Creating and Deleting :\odes
5.3.3.2 Labeling "'odes
5.3.3.3 Writing Text in "'odes
5.3.3.4 Requesting Help
5.3.3.5 Opening and Saving a Workspace
5.3.3.6 Tidying
5.3.3.7 Comments Collected by the Tracker
5.3.3.8 Summary: Commands and Documents

5.3.4 What Was Learned About Writing With This System?
5.3.4.1 How Big are Trees?
5.3.4.2 How Does Order of Creation Correlate with Final Position?
5.3.4.3 Which Node is the Final Root?
5.3.4.4 Are Nodes Created Left-to-right and Top-to-bottom?
5.3.4.5 Early Planning and Late Writing vs. Alternation?
5.3.4.6 What Patterns are Seen in the Sessions?
5.3.4.7 Summary: Planning and Writing .

5.4 A Portrait of a Session

Chapter 6. Observations On Automating Protocol Collection and Analysis
6.1 Collecting and \lanaging Protocol Records

6.1.1 Protocol Data Statistics
6.1.2 \lanaging Session Recordings .

6.2 Automating Protocol Analysis
6.2.1 Devising and Testing the Parser
6.2.2 Key Decisions
6.2.3 Parser Robustness

6.3 Tools Csed in the Protocol Analysis
6.3.1 Helpful Tools and Techniques
6.3.2 Tool Limitations and Problems

6.4 Enhancements to the Tracker .
6.5 Enhancements to the Analysis Tools
6.6 Summary

Chapter 7. Observations On Software Building
7 .l General Software Engineering Lessons
7.2 L'sing the Protocol Analysis Tools to Guide System Refmement
7.3 Enhancements to the Test bed System
7.4 Summary

Chapter 8. Conclusions and Future Work
8. I C ser Behavior

8.l.l What Kinds of Activities Took Place?
8.1.2 How was Time Spent in the Sessions?

vm

98
102
l03
!OJ
103
105
!06
!07
lll8
!09
IIO
Ill
Ill
112
113
114
115
117
117
1!8
!20
120
120
122
123
124
124
125
127
127

129
129
129
131
132
132
133
134
136
137
138
139
140
142

143
143
146
149
!50

!51
lSI
!51
!52

8.1.3 What Kinds of Patterns were Observed?
8.2 Software Development Feedback

8.2.1 Frequent Refocus Episodes
8.2.2 Concatenated Function
8.2.3 Extra Function
8.2.4 Tidy, Save, and llelp Commands

8.3 Tools and \lethodology
8 . .1.1 Ad,·antages of These Tools
8.3.2 Observations on Protocol Collection
8.3.3 Observation on Csing a Parser for Protocol Analysis

8.4 Future Research
8.4.1 Conducting Longitudinal Studies
8.4.2 L'tilizing Rates, Times, Types, and Sizes
8.4.3 Csing \ledia Other Than Text
8.4.4 Developing an Integrated Suite of Tools

Appendix A. Cover Letter and Session Summary
A. I The Cover Letter
A.2 The 112 Sessions

Appendix B. Example Parser Input and Output
B: I A Sample Protocol Recording .
B.2 Output from Pass 0
B.3 Output from Pass I
B.4 Output from Pass 2
B.5 Output from Pass 3
B.6 Output from Pass 4
B. 7 Output from Pass 5

8.7.1 Parse Tree
B.7.2 Summary File forSession Sl8R0108

Appendix C. Parser Command Line Parameters

REFERE'-:CES

TRADE\IARKS

IX

153
154
154
154
155
155
155
156
156
157
158
159
159
160
161

163
163
16'

170
171
178
185
191
195
196
197
197
204

205

207

212

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
ll.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

LIST OF TABLES

Cognitive modes for writing
Prose II Help Panels
Commands recorded by the tracker in Prose II, listed alphabetically
Classification of the Prose I I commands, grouped by type of episode
Taxonomy of Prose II episodes
Taxonomy of Prose II phases
Pass l finite-state machine
Classification of Pass l output symbols, grouped by episodes
Timescale of Human Actions, from :\ewell (1988)
Pass 2 output symbols
Pass 2 fmite-state machine
Pass 3 output symbols
Pass 3 counters, listed alphabetically
Pass 3 lists, listed alphabetically
Pass 3 production rule example
Pass 3 output symbols and how they are generated
Pass 4 output symbols
Pass 4 fmite-state machine
Distribution of 45 documents among 29 subjects
Distribution of 70 non-trivial sessions among 45 documents
Overall timings for Sessions, Phases, and Episodes
Distribution of session times among 70 non-tri\ial sessions
Distribution of 45 document times among 70 non-trivial sessions
Distribution of 7370 pauses among the four pause types
:\'on-trivial sessions: Distribution of thl' 7 phases types
Trivial sessions: Distribution of the 7 phases types
Distribution of time spent among the 7 phases, among all sessions
Distribution of 12 constructive episodes among the non-trivial and trivial sessions
Distribution of 7 housekeeping episodes among the non-trivial and trivial sessions
Distribution of time spent among the 7 housekeeping episodes
Distribution of the 39 Prose II commands
Ratios of commands, episodes, and phases among 27 single-document sessions
Ratios of commands, episodes, and phases among 70 non-trivial sessions
:\'umber of nodes created in different types of documents
Distribution of help requests among all sessions
Distribution of ftle formats used for Opens and Saves, among all sessions
Distribution of maximum tree depths
Distribution of maximum tree sizes
Distribution of the ordering correlation ,·alues among the 45 documents
Subjects, Sessions, and Documents

X

22
45
53
60
6!
61
72
74
76
76
77
79
80
81
8!
82
84
84
95
95
96
97
98

101
104
!04
104
!05
106
107
!08
!09
109
!12
1!5
1!7
!21
!21
122
!64

LIST OF FIGURES

I. A protocol record generated by the tracker used in this study
2. An example parse tree .
3. An example of portion of a workspace in Prose li
4. An example of two nodes being linked
5. An example of the Edit Dialog Box in Prose If
6. An example of the :\lap Window in Prose li
7. An example of the Outline Window in Prose I I
8. An example of a tree with a root orientation to the west .
9. An example of ft!e format selection box in Prose ll

I 0. The ftrst, complete protocol record ftle returned by subject number 28
II. A portion of a protocol record ftle showing primary and secondary commands
12. A portion of a protocol record showing a canceled command
13. The C macro definition used in Prose I I to contact the tracker
14. Example C code, inserted in Prose lito implement the tracker
15. A simple, generic parse tree
16. The same parse tree, showing corresponding grammar passes for each level
17. Data flow diagram for the parser .
18. Stale machine overview for Pass 2
19. State machine. overview for Pass 3
20. State machine overview for Pass 4
21. An example protocol line and the corresponding 16-tuple generated by Pass 0
22. An example of Pass 0 input and output
23. Example parse tree drawing, for session SI6R0102
24. Example session summary information, for session Sl6R0102
25. An example :\lakeftle for controlling the parsing process
26. An example Makeftle for examining Pass 3 output
27. Frequency distribution of pauses between commands .. .
28. Frequency distribution of pauses between commands .. .
29. Frequency distribution of total session time spent in pauses
30. Frequency distribution of parse tree sizes across 112 sessions
31. :\lultiple opens of the Map Window without intervening closes
32. Categorization of the 112 sessions into 5 groups
33. 10 sessions that contained substantial writing

xi

5
6

34
36
38
40
41
42
44
50
51
52
55
55
59
62
63
65
66
67
69
70
89
90
91
91
99

100
102
130
148
168
169

A:\SI
ASCII
AT:\
B:\F
CISC
CPt:
DOS
FIT
FIFO
FS:\1
G:\IL
GO:\IS
GU
IB:\1
1/0
Kbytes
LEX
LT:YI
:\liT
ms
JlS
OS/2
PC
PIF
RA:\1
RISC
stdin
stdout
tde
DoC
VAX
VLSI
V:\1
V:\ET
WE
W:\1
YACC

LIST OF ABBREVIATIONS

.·\merican :\ational Standards Institute
American Standard Code for Information Exchange
augmented transition network
Ba'Ckus- :--:aur form
complex instruction set computer
central processing unit
disk operating system
fast Fourier transform
first -in-first-out
fmite state machine
generalized markup language
goals, operators, methods, and selection rules
graphical user interface
International Business :\!achines Corporation
input/output
kilo-bytes
lexical scanner generator
long-term memory
the Massachusetts Institute of Technology
milli-second
micro-second
Operating System/2
personal computer
program information me
random access memory
reduced instruction set computer
standard input
standard output
transition diagram editor
the CniYersity of :--:orth Carolina at Chapel Hill
Virtual Address eXtension
very large scale integration
Virtual :\lachine
VM network
Writing Environment
working memory
yet another compiler-compiler

Xl1

CHAPTER 1. AN INTRODUCTION TO THIS
PROJECT

Recent computer software is highly interactive. It promotes a continual dialogue between the
computer system and its human users. This software is often designed to help people carry out
intellectual tasks more efficiently and more effectively, that is, to help users think better with
respect to a given task.

As an example, recent interactive software for writing and planning offers users support for several
kinds of thinking:

remembering and organizing thoughts,
exploring relationships among ideas,

• developing clear and consistent organizational structures, and
deducing unexpected results.

Feedback to software designers is increasingly important if they are to match the software tools
they create to the complex mental tasks the software is designed to support. Yet as the inter­
action between human and computer becomes more tightly coupled, software designers generally
have little understanding of how their software is actually used. Why? One reason is that col­
lecting the necessary information is expensive and obtrusive, and its analysis is inconsistent and
inconclusive. To make such feedback inexpensive, consistent, and readily available, powerful
tools are needed to automate its collection and analysis.

One source of help is the techniques already employed for examining human-computer inter­
action. Card, '.loran, and :\ewell have initially surveyed the study of computer usage in their
landmark book, The Psychology of Human-Computer Interaction (1983). They summarized a
large body of low-level experimental data, presenting a model of humans as rational information
processors, much like computers. From this basis, Card, '.loran, and :"ewell developed a method
for dividing structured tasks into smaller subtasks, to form a task hierarchy. The subtasks are
small enough so that humans (with experience) can do them automatically; for example, moving
a cursor on a computer screen to a particular location. Although much of their book highlights
such low-level interaction, it discusses one extended example of how software usage in accom­
plishing a complex task might be analyzed.

In the research of Card, '.loran. and :\ewell, as in the research of others, observations of users
and analyses of protocol data are done primarily by hand. This approach is labor-intensive,
making it hard to study many subjects and obtain consistent results. Subjects in studies of
human-computer interaction are conscious of "being watched," since they are studied in con­
trolled settings. Further, testing of human-computer interaction frequently focuses on how a
system is frrst learned and how its concepts are grasped. There is little knowledge of how users'
patterns change as they become familiar with a given system in the settings where it is actually
used.

The project described in this paper builds on the work of Card, '.1oran, and :\ewell and others.
In particular, the project addresses several problems with existing techniques for understanding
software usage; the intent is to make protocol data less expensive, less obtrusive, less inconsistent,

and thus more timely, more accurate, and more useful. The project consists of a cycle of
designing and implementing a software system, developing tools to automate the collection and
analysis of software usage data, conducting a study in which a large amount of soft~'arc usage
data was collected and analyzed, and rctlecting on the lessons learned in this exercise.

o,·erall targets for the project were the following:

to clarify the issues encountered,
to provide a finncr foundation of repeatable teclmiques,
to provide insight on how to build interactive software and tools of this type,
to discuss interesting fmdings in the data. and
to give directions for future research and controlled studies.

Finally, tlus project was exploratory; it was not intended to provide a defmitive solution. It used
a novel set of tools to explore human-computer interactions in a way not otherwise practical. Its
experimental study of actual users was open-ended, with few controls. Thus, it represents a first
try at a process that could be refmed in future iterations.

1.1 Project Overview

This project was designed for one cycle of a software design and feedback process. It included the
following steps:

l. Select and understand a specific task that contained a variety of types of human-computer
interaction.

2. Build a testbed software system that helps accomplish the elements of the task.
3. Build tools to automate the collection and analysis of data that describe users' interaction

with the system. .
4. Run an experimental study of many subjects using the system in their actual settings. Collect

and analyze their software usage data.
5. Reflect on the results of the study and the analysis.

The specific task that was exanlined was writing, in particular, its early orgarlizational stages.
built a software system to assist writers in orgarlizing and writing about their ideas. This software
included an internal tracker that automatically recorded key elements of the human-computer
interaction. The analysis of these recordings was automated, using techniques developed by Card,
\loran, and :\ewell (1983) in their manual analysis of a single session. To test the feasibility of
this approach, I collected and analyzed a large amount of protocol data in a field study of 29
subjects.

The details of these five steps are further summarized in the remainder of this section. These
topics are covered in more detail in the later chapters of this paper. In particular, Chapters 5, 6,
and 7 present three sets of observations. The first set describes the results of the protocol analysis
for this writing system: what was learned about the cognitive strategies employed by writers, and
how the structure editor was used to accomplish the writing tasks. The second set of observations
centers on the meta-issues involved in doing automated protocol analysis, such as the power and
viability of specifying the strategy model as a grammar and then using the associated parser for
protocol analysis. The third set of observations concerns the feedback that the analysis provides
for the software design process.

A simple analogy is helpful in describing the complexity of this project and the types of results
obtained. Suppose you had never played the game of baseball, and you knew nothing about its
rules and statistics. Then, suppose you were given recordings of the "uncolored" play-by-play for
a baseball team for an entire season. It is your job to infer the rules of the game from these
recordings. It is also up to you to invent meaningful statistics to be used in evaluating the team
and the individual players. These tasks are roughly analogous to the steps in this project, but
they do not cover the entire project.

2

To complete the analogy ... a first set of observations inmlves statistics: given the possible baseball
statistics you can invent, which are most meaningful for comparing players, games, and overall
strategy" A second set of observations involves the process of working with baseball statistics:
what is the best way to collect, categorize, and generate these statistics" A third set of observa­
tions addresses using these statistics; what is the best way to use these results to coach individual
players, to build better bats or gloves, or to improYe the rules and regulations of the game, itself"

The following subsection introduces the components of this project. The mental task being
studied is technical writing. A testbed sotiware system was implemented to assist in dements of
the writing task, namely its exploratory and organizational phases. To see how people used this
software for writing, a recorder was built to capture user commands, and software tools were con­
structed to automate the analysis of the recordings. To test the efficacy of this approach, an
experimental study was conducted to collect usage data from users in the field. :\lajor results of
the project are summarized in the next section.

1.1.1 The Task: Writing

Writing is a fundamental activity of technical professionals. For example, a recent report esti­
mated that design engineers spend 30% of their time writing documentation, twice the time they
spend in other technical design (Business Week, 1986). They write technical reports and summa­
ries, system documentation, strategic plans, training materials, letters, and memoranda. For
many, writing is difficult and unpredictable in terms of both time and results.

Writing involves several different kinds of thinking: some are at a low level, such as spelling and
text editing, and some are at a high level, such as organizing how ideas are related. Writing also
involves strategies for moving among these levels, and tactics that can be used when problems
arise. An understanding of these kinds of thinking, along with the strategies and tactics, would be
useful for software developers who could design their systems to be cbnsistent with these patterns
of thinking.

Cognitive psycholo~sts have devoted much research to understanding how people represent the
external world internally. In studying writing, the problem is reversed. Writers must represent
their internal thoughts externally. At the initial, exploratory stage of writing a document, a writer
is likely to have in his or her head a loosely-connected set of ideas or concepts relevant to the
topic at hand. To convert these concepts into a document, a writer must organize them into a
coherent structure. Writers play with their ideas and concepts, in their head and sometimes on
paper, until the concepts are connected into a network of relationships and associations. This
network must eventually be transformed into the hierarchical form familiar in articles and manu­
scripts (that is, chapters, sections, and paragraphs), and then into a linear sequence of text, with
the desired "connecting tissue." ·

The testbed system used in this project assists these activities. It is intended to help writers repre­
sent and build a structure of concepts during the exploratory and organizational stages of pre­
paring a document.

LL2 The Testbed Software System: A Tool to Help Writers Organize

The results of a literature survey by the Textlab group at C:\C (Smith and Lansman, 1988)
suggest that a tool that allows writers to create visual images of the relationships between their
ideas can facilitate the organizational process (for example, see Shepard, 1978). In addition. they
also assert that the tool would be most effective for expository writing if it encourages a hierar­
chical representation of ideas. One reason is e\~dence from reading comprehension studies that
hierarchically -organized, expository documents are easier to understand than documents with
other structures. Other reasons have to do with current cognitive theories on the internal mental
organization of knowledge and our perception of visual images. Smith and Lansman (1988)

3

further describe the motivation for designing such a system. \!any of their ideas are embodied in
the software used in this project, as wcU as in their Writing Environment (WE) system.

The software built for this project is a graphical structure editor writers can use to help them
explore and organize their ideas. With this system, they can create and label nodes, where each
node represents a single idea. Thus, in the earliest stages of writing, writers might use the system
as an aid to memory. They can then move and rearrange ideas, clustering on the screen ideas that
they see as related conceptually to one another. '\odes can also be linked with one another in a
hierarchical manner, and the resulting tree structures can, in turn, be moved and joined with other
trees.

Any time after a node is defined, writers can write text to be associated with that node. They
may select a node and a text-input option, normally a conventional text editor. If this node
appears at an upper level of the hierarchy for the document, the text is likely to be an introduc­
tory statement or an o\·erview of a section; on the other hand, text within a leaf node is likely to
be a group of concrete paragraphs expressing the basic content of the document.

Structures of nodes often can grow too large to be seen on one screen. The software includes
tools that provide a schematic overview of the structures, along with the capability to roam and
zoom in the conceptual space. Beard and Walker (1987) describe these navigational techniques.

The target users for this software system are technical professionals. To meet their needs and
expectations, the software has fast response time and operates with a common graphical user
interface that can be found on many current desktop microcomputer systems-the \licrosoft
Windows graphical environment.

1.1.3 The Tools for Data Collection and Analysis

A protocol, in cognitive psychology, is a report of the steps performed by a subject in attempting
some task. In psychological testing, protocols are usuaUy verbal reports given by the subjects
themselves, with additional annotation consisting of observations by the tester(s). The verbal
reports are either recorded at the time of the test as the subjects speak aloud their thoughts and
intentions, or recorded retrospectively-that is, at some time after the test-based on some
prompting by the tester. Audio and video recordings are also used to capture many aspects of an
interaction with greater fidelity. \1ore recently, the interactions between a human and some com­
puter systems have been recorded and stored by the computer in its memory.

For this project, an automated tracker recorded writers' actions in a separate flle concurrently with
the operation of the structure editor. For each action, the tracker recorded the particular action,
its essential parameters, and a timestamp. Two types of trackers have appeared for commercial
interactive computer systems: I) "application-aware" trackers, such as those in spreadsheets and
word-processing software packages, that record information specific to the capabilities of the. soft­
ware, and 2) "application-independent" trackers, that capture keystrokes and mouse movement
without knowledge of their effect. The tracker created for this study was "application-aware,"
with these differences from the macro recording facilities available in some spreadsheet and word­
processing packages:

the recorded actions are at a higher level of granularity than basic keystrokes,
additional parameters, such as time and spatial location for actions, are recorded, and

• aU the actions for an entire session are recorded.

An example of a portion of a protocol record is shown in Figure I on page 5.

4

+---+
I Start Stop Jime Operator Parameters
lmin:sec min:sec sec
+---+
03:46.52 03:47.46 0.94 PAUSE
03:47.46 03:47.62 0.16 CreateNode ID (I) StartPt(436, -225)
03:47.62 03:50.09 2.47 PAUSE
03:50.09 03:50.26 0.17 Create Node ID (2) StartPt(129, -53)
03:50.26 03:52.62 2.36 PAUSE
03:52.62 03:57.67 5.05 Editlabel ID (2) NewText('xx xxxx')
03:57.67 04:00.37 2.70 PAUSE
04:.00.37 04:03.50 3.13 Edi tlabel I D (I) NewText('xxxx')
04:03.50 04:11.57 8.07 PAUSE

figure I. A protocol record generated by the tracker used in this study. This portion of a protocol
record shows two nodes being created and labeled. The nodes here have identifiers (IDs) l and
2. and the coordinates of the nodes' centers is shown. The text of the labels is x'd out bv the
tracker for anonymity. ·

A grammar was formulated to analyze the protocol data of a subject's session with the testbed
system. An analytic model, embodied in the grammar, views each session as being divided into
phases. Each phase lasts several minutes; a single kind of activity predominates in a phase. A
phase consists of a seq11ence of cognitive tasks, called episodes. A cadence of alternating work­
and-rest occurs within a phase: episodes of constructive work alternate with periods of reflection
and housekeeping. These intervening periods delimit the constructive episodes. At a lower level,
episodes are composed of sequences of individual user commands and pauses .. Each of these lasts
but a few seconds or less. Thus, these four elements-sessions, phases, episodes, and
commands-can be viewed as forming a hierarchy of user behavior. ·

The protocol elements collected by the tracker were specified as terminals in the granamar. In this
project, these elements are the basic system actions used to manipulate nodes. trees, and subtrees
in a two-dimensional display space. These include user interface commands for creating a new
node at the currently-specified coordinates, moving a node, deleting a node, linking a pair of
nodes, and editing a node.

The grammar was expressed as an augmented transition network (AT:\'). AT:\' grammars were
developed by \V oods (1970, 1980) as a framework for parsing natural language. AT:\' s augment
ftnite state machines by. maintaining a set of registers that can store information in addition to
state and stack information. Also, arbitrary computational tests and actions may be associated
with the state transitions. The actions may extend to any function, providing Turing \lachine
equivalency (i.e., Type 0 power in the Chomsky hierarchy).

The grammar was represented as a set of rules that could be executed as a computer program.
This computer program, or parser, automates the kind of analysis performed by Card, \loran,
and :\'ewell. The result of running the parser with one protocol record was a parse tree that
hierarchically organized the major sequences of human-computer interactions that occurred during
a single session. An example of a parse tree created by the parser for this project is shown in
Figure 2 on page 6. Card, \loran, and :\'ewell manually generated a similar parse tree in their
single-user study. To test that representative parse trees could be reliably produced for arbitrary
sessions, an experimental study was devised with a goal of collecting 100 recordings. This study is
described next.

5

Fri Se!) 69 69:23:14 1988, File: C: RCD071C.TMP
I Hew Works!)ace [35.87 sees, 9 ops]
I I Refocus [35.87 sees, 9 ops]
I I I !)ause [17.14 sees]
I I I Reset the Drawing [B.a5 sees]
) I I pause [EI.66 sees]
I I I Reset the Drawing [6.86 sees]
I I I pause [8.18 sees]
I I I Move the 11a!) Window [0.06 sees]
I I I pause [0.16 sees]
I I I Show the Hap Window [6.06 sees]
I I I !)ause [9.58 sees]
I Exploratio11 [86.18 sees, 4 ops]
I I Created a solo node: 1 [8.11 sees, 1 op]
I I I Create node 1 [8.11 sees]
I I Hell) Request [86.67 sees, 3 ops]
I I I pause [7.19 sees]
I I I pause [28.49 sees]
I I I Help: Editing labels & ~lodes [58.48 sees]
I Define Hierarchies [89.47 sees, 16 ops]
I I Created a new tree: (1 -> 2 3) and ...
I I Edited existing nodes [59.32 sees, 13 ops]
I I I Label nade 1 [19.39 sees]
I I I p<1use [4.66 sees]
I I I pause (2.86 sees]
I I I Create node 2 [EL22 sees]
J I I pause [4.66 sees]
I I I Create node 3 [e.u sees]
I I I label node 3 [11.81 sees]
I I I pause [2.58 sees]
J I I label node 2 [5.06 sees]
I I I pause [3.62 sees]
I I I link nodes {1 -> 2) [1.87 sees]
I I I pause [1.86 sees]
I I I Link nodes (1 -> 3) [1.82 sees]
I I Cleanup and Take Stock [36.15 sees, 3 ops]
J I I pause [9.39 sees]
I I I Tidy the workspace [8.05 sees]
I I I pause [29. 71 sees]
I Exploration [17.25 sees, 3 ops]
I I Created a solo node: 4 [9.56 sees, 2 ops]
I I I Create node 4 [8.22 sees]
I I I. Label node 4 [9.34 sees]
I I Pause [7.69 sees, 1 op]
I I I p<1use [7 .69 sees]
I Top Down Construction [24.99 sees, 4 ops]
I I Hooked existing nodes to a tree: (l -> 4} [6.71 sees, I op]
I ! I Link nodes {2 -> 4) [5.71 sees]
I I Cleanup and Take Stock (24.28 sees, 3 ops]
I I I pause [4.87 sees]
! I I Tidy the workspa£e [8.18 sees]
I I I pause [28.11 sees]

Figure 2. An example parse tree. The rightmost column shows the commands and pauses. Adjacent
pauses, as occur twice above, can occur when a user presses a key or mouse without com­
pleting any command. The 2nd column from the right shows the grouping of the commands
and pauses into episodes. The Jrd column from the right shows the phases of activity. The
leftmost column shows the session's date and time.

6

1.1.4 The Experimental Study: Examine 100 Sessions of System Usage m
Actual Settings

The idea of automated collection and analysis of software protocols needed to be tested using real
users to see whether it was feasible and provided useful information. We designed the study
carried out in this project to collect and analyze approximately 100 sessions from about 20 sub­
jects. This study had three goals:

l. To broaden the knowledge of writers and their cognitive habits,
2. To provide insight to future builders of highly-interactive software systems, and
3. To consider the apparatus and procedures used to accomplish the tirst two goals.

Automated tracking allowed me to distribute the testbed system to subjects for use in their actual
field settings. After using the software for writing tasks, the subjects returned the protocol records
of their sessions. As an 113:\-1 employee, I was able to distribute the software to Ill:\! employees
worldwide via the corporate communications network. The subje<:ts were thus adult professionals
who routinely do expository writing. This afforded a relatively homogenous group of subjects
representative of the professionals to which such a writing system would be targeted. The sub- _
jects already had the hardware and software required to use the system. I provided a user's guide
that itself served as a demo of how to use the system.

The study was exploratory in nature, with few experimental controls.

Although the testbed system generated protocol records automatically, subjects were not
compelled to return these recordings.
Subjects had no prescribed topics to write about in their documents. The documents did not
have to fit a designated format, e.g., a memo, short story, or technical article.
Subjects returned their protocol records, but not the actual documents they were writing.
There was no knowledge of the content of the actual documents being produced. There was·
not even a requirement that actual work be done in a session.
There was no restriction on the knowledge and experience of the subjects. All subjects were
adult professionals. Otherwise, the study was blind to matters of age, sex, race, and
nationality.

• There was no restriction on the computer hardware used by a subject. The speed of a sub­
ject's computer and its screen size were two of the many variables that varied among sub­
jects.
There was no control on the time duration for a session or on how the time was spent in a
session. Subje<:ts may be simultaneously working on any number of other tasks.
There was no restriction on the number of sessions per subje<:t, on the number of documents
per subject, on the number of documents per session, or on the number of sessions per docu­
ment.

At the end of the study period, I had collected 112 session protocols from 29 subjects. The focus
of the data analysis was on descriptive statistics to discover patterns. This is in contrast to rig­
orous tests to make fine distinctions, which, at this point, are premature. This project is an early
step in understanding the problems and issues outlined in this introduction. The results suggest
areas where controlled, follow-up studies would be beneficial.

7

1.2 Research Issues
The research issues that we addressed cowr the main areas of the project. What can we learn
about human behavior with this software? What can we learn about the tools and methods we
used to examine that behavior? What can we learn about improving the design of a given soft­
ware system? As an exploratory project, what topics are good candidates for future lines of
research" A list of the particular issues we pursued follows, divided into the three main areas:

Human lkha•·ior and Patterns of l:se

How do people use this kind of writing system? What patterns are revealed?

\ lcthodology for Studying Subjects and Their Software t:sage

Protocol Collection

Can machine-recorded protocols provide rich and interesting data?

What is the right level of granularity for these data?

Analysis and Categorization

Can a grammar be described to capture the essential elements of the human­
computer interaction?

What power of grammar is needed to describe the session protocols?

Can parsing tools be built so that an analyst is not buried in data?

What do the tools address that we can't get at otherwise? What kinds of questions
can be answered using these protocol analysis methods?

How.robust is the parser? How is robustness to be measured?

What can we see in the analyzed data versus the raw data? How do we know if we
fmd something interesting? ·

How can the grammar be validated?

Experimental Study

What did we learn about this kind of study and future similar studies?

Feedback for the Software Dc,·clopmcnt Process

• \Vhat did we learn about building this kind of system?

What does the data confmn about the system?

The next section highlights major results from each area of the project. Later chapters, partic­
ularly Chapters 5, 6, and 7, provide greater detail.

1.3 Major Results
As an exploratory project, we made a variety of observations on a cross-section of the topics
encountered. The following give the general flavor of these observations.

8

1.3.1 Human Behavior and Patterns of Use

l. Across all the sessions, users' work tended to fall into categories, where the categories
describe diJTerent kinds of documents and sessions.

38~'o of the 112 sessions examined were trivial or unproductive. In many sessions, sub­
jects were clearly learning and exploring this new software.

• In the remaining sessions, subjects frequently used the systems in \Vays not anticipated.

Fewer than 10% of the sessions included extensive writing within the nodes of the trees
(aside from labeling of the nodes).

2. In sessions with both planning and writing, these activities were highly intennixed. Only one
session showed all planning done before any writing.

3. There was a preponderance of top-down document construction, as opposed to bottom-up
construction. In top-down construction, the root of a tree and its children are created and
labeled early, with the rest of the document construction consisting of creating new nodes
and adding them to the bottom of the evolving tree. In bottom-up construction, nodes are
created and labeled before they are linked; small trees are linked into larger trees. The ratio
between top-down and bottom-up was about four-to-one.

4. Sessions with extensive writing lasted about an hour. Sessions without writing lasted about
25 minutes.

About half of all the time in the protocol records was spent in pauses. The median pause
time, across all sessions, was three seconds. Two-thirds of all pauses were less than five
seconds.

5. Overall, document trees had about 3 to 5 levels and 15 to 30 nodes. Documents constructed
across several sessions were smaller than documents constructed in a single session.

6. Half of the conarnands executed in all the sessions can be accounted for by just three com­
mands: creating, labeling, and linking nodes. The other 36 conarnands available in the soft­
ware accounted for the other half.

1.3.2 Methodology for Studying Subjects and Their Software Usage

Protocol Collection

I. It was easy to incorporate a tracker in a software system without degrading performance.

2. The internal tracker used a synchronous interface, which did not perceptibly slow response
time and simplified the amount of state information needed to identify each event.

3. The tracker recorded events at the command level, e.g., "Create a node." If every keystroke
and mouse movemep.t had been tracked, system performance would have been slowed and
the recording file would have been several times longer.

4. Subjects produced about 23 Kby1es or 7 pages of protocol data per hour with this system.

5. \'etworking proved a powerful tool for software development, distribution, and protocol col­
lection.

• I was a developer of this \licrosoft Windows application before there was adequate doc­
umentation. I exchanged programming questions with Microsoft Windows developers
via the GEnie network, where :\licrosoft supported a bulletin board service.

9

• The testbed software used in this project was distributed for a year via IB\I's internal
network before protocols were solicited. This allowed me to fix bugs and make
improvements based on users' feedback over the network. I was confident the system
was stable when I commenced the studv.
The study was distributed to subjects in their actual field setting via the network. The
protocols were returned to me m·er the network.

6. File management became a problem as protocol flies with arbitrary names were collected
from different user's machines.

As the tracker was implemented, it invented fllenames unique to the user's machines. These
names were no longer unique when all the flies from all the users were stored on one
machine for analysis. Also, users had occasion to change their protocol ftlcnames before
returning them to me for analysis.

Analysis and Categorization

I. '\fanaging protocols is an important part of this approach. Collecting and analyzing proto­
cols as done in this project scaled up to about 100, but cataloging and ftle management then
became a predominant problem. Easy categorization of groups of sessions, documents, and
subjects is necessary as the number of sessions increases. A database management system is
needed to manage large numbers of session protocols.

2. Sessions varied from one to another among many variables. Sessions could be grouped by
looking across any of these variables, or they could be characterized by looking across many
variables in one session.

3. Generating automatic session summaries and saving these in spreadsheet format simplified
much of the analysis.

4. A multi-pass parser allowed intellectual manageability and frequent refinement.

Experimental Study

I. This method of software distribution and protocol collection allowed a large amount of soft­
ware usage data to be collected in a short period. The costs per session were fixed, and low,
after preparing the tools.

2. Of all 210 potential subjects that were given copies of the testbed software, user's guide, and
cover letter (printed in Appendix A on page 163), 14% of them returned one or more pro­
tocol recordings. The tracker was implemented to avoid writing any binary or confidential
information; users could browse through any protocol flie with a simple ASCII text editor. I
think this gave users confidence that no secret information was being collected about them.

3. Giving users a mechanism for inserting comments into the protocol record proved valuable.
l'sers reported problems and wrote comments in the precise context where. they occurred.
This feature should be considered for all software.

4. With few experimental controls, many sessions reflect merely training and learning. \luch
like any harvest, this easy method of protocol collection requires additional methods to fliter
out the chaff.

10

The testbed software used in this project was distributed for a year via IB :VI's internal
network before protocols were solicited. This allowed me to fix bugs and make
improvements based on users' feedback m·er the network. I was confident the system
was stable when I commenced the studv.

• The study was distributed to subjects in their actual field setting via the network. The
protocols were returned to me over the network.

6. file management became a problem as protocol flies with arbitrary names were collected
from different user's machines.

As the tracker was implemented, it invented filenames unique to the user's machines. These
names were no longer unique when all the flies from all the users were stored on one
machine for analysis. Also, users had occasion to change their protocol filenames before
returning them to me for analysis.

Analysis and Categorization

1. :\1anaging protocols is an important part of this approach. Collecting and analyzing proto­
cols as done in this project scaled up to about 100, but cataloging and file management then
became a predominant problem. Easy categorization of groups of sessions, documents, and
subjects is necessary as the number of sessions increases. A database management system is
needed to manage large numbers of session protocols.

2. Sessions varied from one to another among many variables. Sessions could be grouped by
looking across any of these variables, or they could be characterized by looking across many
variables in one session.

3. Generating automatic session summaries and saving these in spreadsheet format simplified
much of the analysis.

4. A multi-pass parser allowed intellectual manageability and frequent refmement.

Experimental Study

1. This method of software distribution and protocol collection allowed a large amount of soft­
ware usage data to be collected in a short period. The costs per session were fixed, and low,
after preparing the tools.

2. Of all 210 potential subjects that were given copies of the testbed software, user's guide, and
cover letter (printed in Appendix A on page 163), 14% of them returned one or more pro­
tocol recordings. The tracker was implemented to avoid writing any binary or confidential
information; users could browse through any protocol file with a simple ASCII text editor. I
think this gave users confidence that no secret information was being collected about them.

3. Giving users a mechanism for inserting comments into the protocol r~cord proved valuable.
L'sers reported problems and wrote comments in the precise context where they occurred.
This feature should be considered for all software.

4. With few experimental controls, many sessions reflect merely training and learning. :VIuch
like any harvest, this easy method of protocol collection requires additional methods to filter
out the chaff.

10

1.3.3 Feedback for the Software Design and Development Process

I.

3.

4.

The system had elements of functional overkill: some of the features were rarely used. In
particular, functions without direct mouse. menu interface were rarely used by the subjects.
By count, half of all the commands could be accounted for by only 3 of the 39 possible
commands.

Subjects used the novel '·TidyTree" command frequently: this allowed them to place nodes
wherever was comfortable, and then later ask the system to make the layout more structured.

Subjects rarely saved their \Vork during a session; an ongoing auto-save function could avert
disasters for some users. The tracker itself had no checkpointing; if a session was lost, so was
its recording.

The protocol analysis readily identified help panels that were used frequently, and showed on
which helps the most time was spent. The context where help was needed could be easily
seen. Frequently-requested helps indicate obvious candidates for functions that need to be
simplified.

The preceding set of observations are highlights of the extended descriptions found in Chapters 5,
6, and 7. They suggest that the project was fruitful; it showed many results that were not
expected when the software and study were designed. The study met its goals: much was learned
about writers and how they used this software, much was learned about how to design and imple­
ment these types of tools to automate the study software usage, and feedback was obtained on
how to improve the specific software under study.

1.4 Preview of Remaining Chapters

Chapter 2 on page 13 is a review of the literature in the three principal research areas. It dis­
cusses the research basis behind the testbed system and the protocol collection and analysis tools.
This chapter also provides background information on structure editors and related hypertext
systems.

Chapter 3 on page 32 describes how the testbed writing system looks and feels. It introduces
each of the commands available in the software.

Chapter 4 on page 49 describes the implementation of the tracker and analysis tools.

Chapter 5 on page 93 tells what we learned about writers and their cognitive behavior by ana­
lyzing 112 protocol records.

Chapter 6 on page 129 presents lessons learned in constructing and using the automated analysis
tools.

Chapter 7 on page 143 offers some insights gained from this exercise into the development of
interactive software.

Chapter 8 on page 151 summarizes the observations and discusses directions for future research.

Appendix A on page 163 contains the cover letter I sent to each of the 210 potential subjects for
this study. Three extensive tables summarize the 112 protocol recording flles.

Appendix B on page 170 steps through each pass of the parser, starting with an example protocol
record and showing the output from each pass and the fmal parse tree and summary ftle.

Appendix C on page 205 describes each of the command-line parameters used by each of the six
passes of the parser.

II

CHAPTER 2. RELATED RESEARCH

This project spans multiple areas of research. taking a multi-disciplinary approach to accom­
plishing the five steps described in Section !.I. This chapter surveys related research in three
areas:

l. Theories and studies of reading and writing.
2. Computer systems that assist writers in organizing and structuring their ideas.
3. \lcthods for collecting and analyzing protocols of human usage of computer systems.

In its examination of reading and writing, this chapter begins by looking at human memory and
theories about its organization. Reading comprehension is seen not simply as interpreting text,
but as a process of altering the reader's existing memory organization. Writing research is then
examined, looking at basic research in the representation of ideas, the development of ideas, and
the writing process itself. A more detailed discussion is provided for one specific aspect of writing
theory-cognitive modes-that was developed in our research group and has served as a rich
source of ideas-some adopted, some not-for this project.

With this background of the mechanisms employed by writers, the next area reviewed is computer
systems designed to assist writers. Specifically examined are tools used to plan and write teclmical
documents. The features of representative systems are surveyed, along with the motivation for
designing the new system built as part of this project.

As system builders, we want to test the ideas we incorporate in our systems.. Consequently, the
final section of this chapter discusses tools and teclmiques to collect, analyze, and interpret
data-called protocols-that reveal users' interactions with computer systems. The section reviews
traditional methods of collecting protocols, mentioning their strengths and limitations. It reviews
issues of protocol analysis, looking at .several models that have been developed. This discussion
provides the background and motivation for developing the grammar and other anal)1ic tools
used in this project.

Thus, three areas of research are combined in this multi-disciplinary project: reading and writing,
writing systems, and protocol analysis. The discussion that follows in this chapter reviews rele­
vant research and concepts used in this project.

2.1 Understanding Reading and Writing
The ftrst body of work to be reviewed is that concerned with the processes of reading and writing.
It is relevant for this project because the computer program developed as a testbed system sup­
ported the task of writing expository prose.

The discussion begins by reviewing current perspectives on the function and organization of
human memory. "\ext, it shows how these properties affect reading comprehension. Finally, it
discusses writing from the perspective of processes and strategies for transforming concepts stored
in human memory into documents that .can be understood and, in turn, committed to memory by
readers.

12

2.1.1 A Look at Human Memory

Only observed behavior of human memory is considered here; the information-processing model
discussed here does not describe the physiological operations of the human neural-motor system.
Brain physiology research is presently too low-level and inconclusive to describe the cognitive
\Vorkings of a writer organizing the elements of a document. Consequently, the model of human
memory presented here is based on cognitive theories that are still undergoing development and
elaboration in psychological research.

Card, \loran, and '\ewell (1983) proposed a "human information-processing system" that can be
divided into three interacting subsystems: the perceptual system, the cognitive system. and the
motor system. They described each subsystem as if it had its own memories and processors, anal­
ogous to those in a computer:

The perceptual system consists of sensors and associated buffer memories, principally brief
sensory-image storage for the visual and auditory systems. These hold the output of the
sensory system while it is being coded into symbols.

The cognitive system receives symbolically-coded information from the sensory-image storage
and uses previously-stored information to make decisions about how to respond.

The motor system carries out the response.

A widely-held view of the cognitive system proposes two principal memories: Working \!emory,
which holds the information under current consideration, and Long-Term \!emory, which stores
knowledge for future use. Working \!emory holds the intermediate products of thinking and the
representations produced by the perceptual system. Working :vtemory is characterized by rapid
access times (in the 200 msec range), but small capacity. Long-Term \lemory is characterized by
much slower access and store times (often on the order of seconds), but essentially unlimited
capacity.

Long-Term Memory can be viewed as a structure having two components. In analogy with a
computer database system, Long-Term Memory can be said to have both a database and an
index. The information in the database, contained in the individual records, is accessed rapidly
using the pointers that comprise the index.

The elements of Long· Term Memory can also be seen as an associative structure-a system of
concepts interconnected by numerous links (Simon, 1979). Information can be retrieved from
Long· Term :\.!emory not only via the index but also by following paths of links from one concept
to another through intermediate concepts. Retrieval using the index is called recognition; retrieval
using sequences of links .is called association. The latter process is considerably slower than the
former.

Working \!emory is said to consist of elements, called chunks, which may themselves be organ­
ized into larger units. The use of chunk as the unit for Working .\!emory was proposed by \Iiller
(1956) in his ":vtagical :-.:umber Seven" paper. The relevance of this unit for measuring fixation in
Long-Term .\!emory was later affirmed by Simon (1974). Recent research reaff!fi1ls the effective
capacity of Working .\!emory as indeed "seven plus-or-minus two" chunks (Card, \loran, and
'\ewell, 1983).

A seven-chunk limit would not seem to support the complex sort of information processing per­
formed, for instance, by chess grandmasters who can play 50 games at once or by writers organ·
izing the many concepts in large documents. By chunking, sets of items are bound together
conceptually to form a unique, but abstract, item. For instance, rather than having to memorize
the geographic relationships among II football players, one can simply say, "They are in a
wishbone·T formation." The concept "wishbone T" is a chunk that summarizes a large amount
of information about the positioning of different players.

13

The crucial assumption about chunks is that the contents of Working \!emory are symbols that
give access to, or point to, corresponding concepts in Long-Term \lcmory. Thus an act of recog­
nition consists of using the index to retrieve such a symbol and to store it in Working \!emory;
an act of recall from Long-Term \!emory consists of placing in Working \!emory the symbol
designating a particular concept in Long-Term \!emory.

Card, \loran, and :\ewell observed that storing new chunks in Long-Term \!emory requires a
!air amount of time and se\·eral Long-Term \!emory retrievals. because remembering something
usually requires building links to existing items. Successful retrieval of a chunk from Long-Term
\!emory depends upon whether associations to it can be found. There are 1\m reasons the
attempt to retrieve a chunk might fail: l) elTecti\·e retrieval associations cannot be found, or 2)
similar associations to several chunks interfere with the retrieval of the target chunk. Items
cannot be added to Long-Term \!emory directly; rather, items in Working \!emory (possibly
consisting of several chunks) have a certain probability of being retrievable later from Long-Term
\!emory. The more associations the item has, the greater its probability of being retrieved. If
someone wants to remember something later, his best strategy is to associate it with items already
in Long-Term :'vlemory, especially in novel ways so there is unlikely to be interference with other
items.

On the other hand, Long-Term \!emory can be accessed on a cognitive-processing cycle of about
70 msec. Thus, the human memory system operates as a fast-read, slow-write system. This
asymmetry makes the limited capacity of Working \!emory critical for many tasks, because it is
not possible in tasks of short duration to transfer much knowledge to Long-Term :VI emory as a
working convenience.

Each concept in Long-Term :'vlemory, then, together with the links connected directly with it, is
said to constitute a chunk of information, while the symbol that designates such a concept is said
to constitute the corresponding chunk in Working :'vlemory. If Working \!emory can hold some
fixed number of such symbols, then it will have a fixed capacity measured in chunks. Learning
involves both storing new concepts and links in the database portion of Long-Term \!emory and
elaboratingthe index to increase its powers of discrimination and recognition.

An important aspect of writing is the process of retrieving or generating the relationship among
concepts in memory and presenting them in a form where they can be understood and remem­
bered by readers. The writing system used in this project was designed to assist writers with this
task by providing them with tools to externally represent their internal memory organization.

2_ L2 Organizing Concepts in Memory

How do people organize ·concepts that they have learned? Can they or do they discover inherent
relationships in the information and employ this found structure? Do they impose a standard
structure on all concepts regardless of their inherent organization? These questions are funda­
mental for understanding human memory structures and processes. They also have practical sig­
nificance for deciding how information is to be represented in so it can be well understood by
others.

Studies of human memory lead one to conclude that memory is organized so that information
can be accurately and quickly retrieved, new concepts can be easily fitted into existing structures,
and existing structures can be modified by or accommodated to new experiences (Durding,
Becker, and Gould, I 977). For example, se<·eral different organizational schemes have been pro­
posed as the basis for providing these high-le\•el capabilities.

Smith, Shoben, and Rips (1974) have proposed that a structure composed of attribute lists
can account for many of the observed phenomena of memory.

• Collins and Quillian (1969; 1972) found that a model based on hierarchical structure
accounted for most of their reaction time data.

14

Anderson (1972) was able to simulate Se\'eral aspects of human performance using a model
based on associative networks.

Additional experimental support has accrued to each of these proposed models, but there is no
consensus that a single model best describes how memory is functionally organized, The type of
memory organization people use probably depends on task conditions. Certainly, people can
mentally represent the same information in more than one way by using different memory
encodings, depending on their purposes (Posner and Warren, 1972),

The writing system designed for this project proposes to assist writers in organizing mcn1ory con­
cepts externally, The model chosen for its design incorporates a hierarchical structure. while also
accommodating some aspects of an associative network model. This meets the goal of the
system, which \l,tas to assist in writing expository prose-which necessarily has an underlying
hierarchical structure, The research cited here suggests that humans work in more flexible ways
than that of a single model; future writing systems should consider designs with the flexibility to
accommodate a range of organizational mo.dels.

An alternative view is that memory organization is a function of the retrieval strategies used in a
particular situation (Landauer, 1972), In this view, the problem solving requirements of a task are
the primary determinants of the organizational structures observed by experimenters, This leads
to a shift in research emphasis from the structure of memory to the processes that are responsible
for organizing the retrieval strategies.

Whereas writing is a process of retrieving items from Long-Term :\!emory, reorganizing them, and
translating them into words, reading is a process of receiving items from an external medium,
inserting them into \V orking :\1emory and then into Long-Term :\!emory. To increase the com­
prehension of their written material, writers should try to trigger the right organizational processes
of the reader. We next look more closely at reading, to identify principles that may be used by
writers as well as those who build computer systems to help them.

2.L3 Reading Research

Current theories of reading comprehension suggest that readers mentally encode what they read
into a form that is different from the literal text. They incrementally integrate portions of that
alternative version into their Long-Term :\!emory (see, for example, Kintsch and van Dijk, 1978;
Lachman and Lachman, 1979a; Schank and Abelson, 1977).

While opinion varies on the precise nature of the encoding, Greeno (1977) has listed three criteria
for "good comprehension" that can be applied broadly: coherent, connected representation of
content; correspondence- between the representation and the text; and connection between the
components of the message being comprehended and the reader's general knowledge. As these
criteria suggest, comprehension involves several different cognitive processes and takes place on
several different le\'els with respect to memory. For example, during comprehension, a reader
remembers units of information that include words, sentences, paragraphs, and so on-up to the
entire text-while cgnstructing the encoded version that will be integrated into Long-Term
\!emory (Voss, Tyler, and Bisanz, 1982). Thus, features that help a reader remember one point
while reading another facilitate comprehension.

The theories of propositions advanced by \!eyer and Kintsch are particularly relevant (Kintsch,
1974; \!eyer, 1975; Kiutsch and van Dijk, 1978), These researchers presume that a reader con­
structs a representation of the text content, called a text base, that is different from the sequence
of the printed words. While the semantic content of a discourse is composed of an ordered list of
propositions (\!eyer, 1975), the content structure is hierarchical. :\!eyer showed that by selecting
a major superordinate idea and then relating subordinate ideas to it, one can construct a tree­
diagram representation of the content structure of the texL She and others have also shown that
recall of a proposition by readers is significantly affected by the position of that proposition in the

15

hierarchy: propositions high in the tree structure arc recalled better than propositions lower in the
structure (\!eyer, 1975; Kintsch and Keenan, 1973; Ilritton, \!eyer, llodge, and Glynn, 1980).

The process by which a reader constructs the indiYidual links in a text base has been clarified by
Kintsch and van Dijk (1978). A coherent text base can be represented by a connected graph.
The reader synthesizes the text base using a step~by-step process in which propositions in a sen­
tence are related to one another. Referents from some propositions carry O\;er from one sentence
to the next. Because \Vorking \Iemory can retain only a fe\v propositions at a time, the reader
first attempts to connect a new proposition to one already in \Vorking -\lemory. If a link is
made, the new text being processed is perceived as coherent with the text just read. If not, an
inferential bridging process is initiated to locate a similar proposition in Long-Term \lemory and
place it in Working \!emory. Inference and Long-Term \!emory searches are costly, since they
do not easily fit in the small capacity of Working \!emory . .\s might be expected, the inferential
bridging process considerably slows comprehension (Kintsch and van Dijk, 1978).

Several features of a text can contribute to the efficient construction of the text base hierarchv.
Thematic titles presented prior to a well-structured text signilicantly increase free recall of the
content of that text (Schwarz and Flammer, 1981). Similarly, advance organizers, or passages
containing the main concepts of a text but at a higher level of abstraction, positively affect com­
prehension (Ausubel, 1963). Texts in which the hierarchical structure is signaled or cued are com­
prehended more c!Tccti,·ely than texts in which the hierarchy is not signaled (\!eyer, Ilrandt, and
Illuth, l980), At the paragraph level, inclusion of a topic- or theme-sentence in the initial posi­
tion, rather than in an internal position or not at all, results in more accurate comprehension
(Kicras, 1980; Williams, Taylor, and Ganger, 198l). Thus, clear signaling of the writer's intended
hierarchical structure of concepts through typographic and rhetorical conventions strongly influ­
ences the reader's comprehension and the associated process of constructing a hierarchical text
base,

Knowledge of the kinds of cues that help readers understand and re!l}ernber what they read can
help de,·elopers of writing systems to design their systems so that they encourage writers to
produce documents that include such cues. For example, a system intended for writers of
expository prose might encourage them to produce hierarchically-structured documents with
descriptive headings. Indeed, this was the strategy used for the testbed system described later in
this paper.

2_1.4 Writing Research

While rhetorical forms and prescribed structures for writing have been described for hundreds and
even thousands of years, most research into how writers compose expository prose dates from the
past twenty years. These studies have focused on two major areas:

how writers internally and externally represent the material they want to present, and
what mental processes writers employ in producing a completed manuscript.

2_1.4.1 Representation and Writing

In 1980, Hayes and Flower used think-aloud protocols to examine a number of writers from the
earliest stages of preparing a document through its completion, These protocols showed artic­
ulated plans and goals that never appear in the final text of the document, and in fact soon disap­
pear from the writer's recollection of composing. They found that as writers compose, they create
multiple internal and external representations of meaning. Hayes and Flower conjectured that a
variety of forms of representation were necessary because the organization of knowledge and
meaning within human Long-Term \!emory and Working \!emory differs considerably from the
eventual organization presented by a writer in expository prose,

16

An important issue raised by these researchers is how people organize concepts, both internally
and in the external representation they are constructing. Writers often organize their documents
"in their heads." Current cognitive theory on the operation of human memory, however, suggests
just two ways of accomplishing this task internally:

l. Writers create in Long-Term \!emory a separate cognitive structure for the concepts to be
conveyed. This is a slow process, prone to error and omission, and requires a great deal of
"mental effort."

2. Writers organize in Working \lemol)· the concepts to be conveyed. A major obstacle with
this approach is that writers cannot hold all their concepts in Working Memory at one time.
Willie they are organizing one set of concepts, another set slips out of consciousness.

By organizing externally, writers can potentially overcome these memory limitations and more
efficiently convey to their readers the desired set of concepts and their relationships. However,
complex ideas and relationships cannot always be represented by a short phrase or even a para­
graph. Consequently, writers often struggle to develop alternative ways to express their internal
cognitive structures externally.

2.1.4.2 Concepts

Researchers in cognitive structure describe several different types of concepts in the literature.
There is general agreement on the central defmition of each type and little agreement on the
ambiguous areas between the types. Flower and Hayes (1984) observed that writers work with
three different types of representation of meaning: verbal, procedural, and imagistic represent·
ations. White (!985) sinlilarly described these as propositions, algorithms, and images:

Propositions are representations in memory of facts or beliefs. Their prominence as the
basic unit in many models of cognitive structure is easily explained: they are the basis for
writing and sp!;!aking; they are a conveniently-sized unit; their existence can be readily
tested.

Algorithms and skills are step-by-step procedures for solving a problem or accomplishing
some task. West et a!. (1985) use the term algorithm when they refer to public knowledge
and skill when they refer to private understanding: "This is not just a matter of semantics.
Books cannot have skills. They can only outline the steps of an algorithm that can be
used to perform a particular task. A person who can perform that task, possesses that
skill, whether one follows the book algorithm or not."

Images are mental pictures. In recent years there has been debate concerning the existence
of separate storages in the brain for images and propositions. Because the ability to form
mental pictures is universal and because real pictures have long been seen as a powerful
mode of communication, images can well be considered as an independent type of concept.

Concepts must comprise both general knowledge and specific knowledge. For example, the defi­
nition of "rock" is a generic defmition. The knowledge about specific rocks we have seen is
knowledge about particular instances of the general concept. The generic definition applies gener­
ally to all rocks, but with some flexibility. Generic defmitions describe the typical characteristics
of rocks, but any particular indi,:idual rock need not follow the generic definition exactly.

Hence, the defmition of a concept must have two important properties. First, there is a need for
generic information about concepts that provides general knowledge, letting us deduce the proper­
ties of instances of the concept, even if we have not experienced those instances. Second, the
generic knowledge is prototypical: it specifies typical values, but we are not surprised if particular
instances of the concept differ from some of the generic properties. Thus, concepts are not simply
organized in relation to one another, they have internal organization as well. Some examples of a
concept are more prototypical than others, and typicality greatly affects the speed of recognition

17

and categorization. The meaning of a concept for any person is part of that person's private
understanding. Different people use the same concept labels for different internal meanings and
relationships. '\ot only can one label correspond to several concepts, but also some concepts
may have no corresponding label.

\Vriters must thus struggle \vith two goals: they must externally represent concepts with sufficient
information to be meaningful in their context, and they must provide enough information to
overcome mismatches bet\veen the understanding held by the writer and conflicting under­
standings already held by potential readers.

2.1 A.3 Representation

\!any of the insights discussed in the section above come together in the notion of representation.
A representation is an isomorphism, or mapping, between a represented world and a representing
world (Palmer, 1978). In writing tasks, the represented world is the writer's multi-dimensional
cognitive structure for the document being produced. This represented world changes as the
writer progresses from the initial phase of exploration and organization of concepts to the final
document structure. The representing world is the medium within which the writer is working,
such as pen and paper or a computer display. The goal of any representation is to preserve in the
representing world the relationships of importance in the represented world.

'\otice that the representing world necessarily reflects a subset of the possible relationships
existing in the represented world. For example, the "closeness" of concepts in a writer's associa­
tive structure is an example of an aspect that is often included in the subset. Closeness or simi­
larity can be reflected in actual, physical distance relationships in a representation of those
concepts. By contrast, the "size" of a concept is often not directly represented in most computer
writing systems, although it could be.

Similarly, not all aspects of the representing world model some aspect of the represented world.
for example, when using a graphic medium for representation, an author can use location, color,
size, shape, connections, texture, and motion to portray relationships. '\at all of these are neces­
sarily used in a single representation. \Vhen using color, for instance, we often need a key or a
legend that maps the significance of each color used in the representation to its counterpart in the
represented world.'

\lodels of human memory indicate that a writer starts with loosely-connected sets of concepts
and molds them into a fmal-form document, a sequence of text. Thus, the world represented here
has a number of forms. Human memory is commonly modeled as a multi-dimensional semantic
network; for a graphic representation, closeness must be reduced to a two-dimensional distance.
At the start of the organ.izational phase of writing, we want to represent the similarity, disparity,
and distinctions among concepts, which can be done readily with closeness and explicit con­
nections between concepts. The result of the writing organization phase should be a set of
sequences and hierarchies of concepts that can be reduced to the sequence of text expected and
well-comprehended by a reader. ·

The writing system designed for this project aims to meet writers' needs in the three areas just
discussed. It presents a place to work with ideas, instead of in their heads somewhere between
Working \!emory and Long-Term \!emory. It allows concepts of the three types discussed in
the literature to be captured: propositions, algorithms, and images. And, it pennits representation
of relationships of ideas-such as linkage, hierarchy, and closeness-in an easily-changeable
medium.

I As a counter-example, the meaning of "high-intensity" fields and items colored "red" are often readily
apparent without a legend.

18

This discussion of writing so far has surveyed the objects a writer deals with-concepts-and their
external organization and representation. The following discussion examines the process by which
writing is accomplished. It looks at the steps and thought processes a writer goes through when
bringing a piece of technical prose from inception to completion.

2.1.5 The Writing Process

\Vriting is a complex process that draws on many different cognitive skills. Among these skills
are:

Retrieving information from the writer's memory or from external sources.
Identifying associative relations among ideas.
Drawing inferences and making deductions.
Building large hierarchical structures.
Translating ideas into words.

• Reading, analyzing, and rewording during the editing process.

Hayes and Flower, in their work reported in 1980 and since, have observed a shift of attention
from product-oriented research in writing to process-oriented research. Csing think-aloud proto·
cols, they looked at the steps that writers employ in producing expository prose. Their results
indicate that Rohman's three-stage description of the writing process (1965)-consisting of pre·
writing, writing, and rewriting-was oversimplified. The process that writers use is both iterative
and recursive and, hence, more complex.

Hayes and Flower found writing to be goal directed·, with the goals often organized hierarchically.
Three types of activity are used by writers to accomplish their goals: planning, sentence gener·
ation, and revision.

Planning: Writers use pointers, word images, and goals in planning their writing. Pointers can
consist of references to complete text or just jotted notes to stir a writer's memory.
Word images are fully-written sentence fragments, sentences, paragraphs, or more.
Goals are of the form "Add an introduction." Adult planning consists of constructing
a complex goal structure:

• Goals foim a hierarchy or network.
Expert writers generate more elaborate networks of goals than novices.
Priorities are dynamic, frequently changing and evolving over the course of
writing.

Sentence generation: Hayes and Flower found this step to consist of explaining briefly-sketched
ideas produced during planning, interpreting non-verbal material, and carrying out
instructions. They noted that:

• Essays are typically eight times the size of the writer's outline.
• Sentences are generally composed in parts: these parts are 7-12 words in length,

separated by pauses.
• Experts write longer essays, with longer sentence parts.

Re,·ision: The more expert a writer, the greater the time spent in revision.

• Experts attend more to global problems than novices.
• Experts detect and diagnose problems better than novices.

Writers have diiliculty detecting faults in their own text.
ReYision can be applied to writing plans as well as written text.

Rather than progressing through distinct stages, writers accomplished their goals in arbitrary
sequences of activities; sometimes recursive and sometimes iterative. This complexity of goals was

19

recognized and was a key factor in the construction of the analysis tools used to examine writers'
protocols in this project.

2.1.6 Writing Modes

The Textlab group views the processes used by writers as constituents of a set of cognitive modes
(Smith, Weiss, and Ferguson, 1987; Smith and Lansman, 1988). This concept of mode includes
many of the elements of the writing process described by Flower and Hayes, but in a more struc­
tured form. They describe four components that comprise modes:

I. One or more cognitive processes.
2. A product produced and; or operated on by those processes.
3. Goals, representing a writer's intentions when undertaking the associated processes.
4. A set of rules or constraints that govern the kinds of products that can be produced within

the mode and the relations that can exist among the parts of the product(s).

Writers use different cognitive modes to produce different forms of information or to transform
one intermediate product into another. For an intuitive sense of modes, consider the following
examples. During early work on a document, many writers adopt a mode of thinking in which
the primary purpose is to identify ideas and data that may be included in the document and to
consider various relations among them. The writer retrieves potential concepts from Long~ Term
\femory or from external sources, considers possible relations among ideas, and, perhaps, groups
related ideas and constructs small hierarchical structures. In that mode, the underlying rules are
those associated with a network: any idea can be related to any other idea through simple associ­
ation. Thus, the intermediate product is a network or directed graph of ideas. This exploratory
thinking is often creative and unfiltered as the writer generates and considers alternative possibil­
ities for the document.

The mode of thinking used for organizing the content of the document is different. The writer
shifts from exploring to building a single integrated structure for the document. Organization is
the task of constructing an integrated structure for the document. For many documents, partic­
ularly those written by professionals, that structure is hierarchical. Thus, the product is a hierar­
chical structure and the rules are those that govern hierarchies. That is, each concept in the
hierarchy can be subordinate to at most one other concept, but it may be superordinate to many
concepts. Building such a structure requires a different set of cognitive processes from those used
during exploration. The critical one is the process of abstract construction that includes per­
ceiving subordinate/superordinate relations, comparative levels of abstraction, sequencing, propor­
tion, and balance.

Writing, per se, involves· still a different set of cognitive processes. Here, the primary task is
encoding the abstractions of content and the relations of the hierarchical structure into a sequence
of words, drawings, or other explicit forms. The structure of the encoded text is linear and repres­
ents a path through the hierarchy. Consequently, it is even more constrained than organization
mode.

Thus, the Textlab group has adopted a multimodal view of writing. Inferences regarding the
mental processes of writing are based on the changes writers make to the document they are
developing. The modal view has been embodied by their Writing Em·ironment (WE) system,
which prmides a set of windows. each of which encourages a particular modal activity. The com­
plete description of their model of cognitive modes for writing is shown in following table.

20

Table l. Cognitive modes for writing. This table is taken from figure 5 of Smith and Lansman
(1988).

Modes Processes Products Goals Constraints

Exploration . Recalling . Individual . To externalize . Flexible . Representing concepts ideas . Informal . Clustering . Clusters of . To cluster . Free . Associating concepts related ideas express!on . :'\oting subor- . :\"etworks of . To gain a
dinate and clustered con- general sense
superordinate cepts of available
relations concepts . To consider

various
relations

Situational Anal- . .-\nalyzing . f{igh-level . To clarify . flexible
ysis objectives summary rhetorical . Extrinsic per-. Selecting statement intentions spective . Prioritizing . Prioritized Jist . To identify . Analyzing of readers and rank

audiences (types) potential . List of (major) readers
actions desired . To identify

major actions . Consolidate
realization . To set high~
level strategy
for document

Organization . Analyzing . Hierarchy of . To transform . Rigorous . Synthesizing concepts a network of . Consistent . Building . Crafted labels concepts into . Hierarchical
abstract struc~ a coherent . Not sustained
ture hierarchy prose . Refining struc-
ture

Writing . Linguistic . Coherent . To trailsform . Sustained
encoding prose an abstract expresston

representation . :'\at (neces-
of concepts sadly) refined
and relations
into prose

Editing: Global . :\' oting large . Refined text . To verify and . Focus on
Organization scale relations structure revise large- large-scale . :\'oting and . Consistent scale organiza- features and

correcting structural cues tiona! components
inconsistencies components . . \fanipulating
large-scale
structural
components

Editing: Coherence . :\oting coher- . Refined para- . To verify and . Focus on
Relations ence relations graphs and revise coher- structural

between sen- sentences ence relations relations
tences and . Coherent ~ithin inter- among sen-
paragraphs logical mediate sized tences and . Restructuring relations components paragraphs
to make between sen- . Rigorous
relations tences and logical and
coherent paragraphs structural

thinking

Editing: Expression . Reading . Refined prose . To verify and . Focus on . Linguistic revise the text expression
analysis of a document . Close atten-. Linguistic tion to lin-
transformation guistic detail . Linguistic
encoding

21

While I commend the rigor of dcfmition in the Textlab view of cognitive modes, I bctieve there is
a great deal of shifting between the different modes during a writing session, Consequently, the
writing system I developed for this study includes only one planning mode and one editing mode,
The focus of my analysis of writing strategies is on the sequences of actions and the pauses
between them, rather than the shifts between a number of different modes, Inferences regarding
the mental processes involved are based on identiftable series of important actions, This is dif­
ferent from the Textlab work, which does its delimiting based on the modes being used and the
products being produced, The design and implementation of tlus new writing system is the topic
of Chapter 3,

As we exanlined the aggregate of reading and writing research-and how key principles might be
incorporated in computer writing systems--the members of the Textlab group saw many surulari­
ties with existing computer systems that come under the title of structure editors and hypertext
systems. Before building new writing systems from scratch, we surveyed existing structure editors
and hypertext systems and the techniques used by their builders,

2.2 Tools to Help Writers Organize

The key task for developers of computer writing systems is to help writers with the individual
processes, or cognitive modes, that constitute the overall process of writing in order to produce
documents that can be read, understood, and remembered, Thus, these systems should be viewed
against the background of theory and studies for both reading and writing, as discussed above,

This section reviews a family of systems-structure editors and hypertext-that attempt to help
writers, particularly with organizational tasks, It concludes by briefly discussing the rationale for
developing a new system as a testbed for this study, and its relation to earlier systems,

2.2.1 A Survey of Structure Editors and Hypertext Systems

The idea of a structure editor predates the computer and can be traced to Vannevar Bush's
seminal paper, "As We \lay Think" (Bush, 1945), Bush proposed a new form of library, called
the memex, based on microfilm teclmology, By including manual cross-references, the memex
would help the knowledge worker create a vast network of associations among texts in a private
library and to integrate new texts written by the user, While a complete memex has never been
built, Bush's vision has guided many significant research efforts and commercial products, Based
on the underlying model of text structure, these projects fall into two distinct groups: directed­
graph systems and hierarchical systems,

2.2. 1.1 Directed-Graph Structure Editors

The first serious attempts to realize Bush's memex in computer technology occurred in the 1960's,
Ted ~elson '~ewed a te>.1 as a number of independent logical, rather than physical, segments that
could be linked into a network in a variety of ways (~elson, 1967), His system, Hypertext, was
developed on Brown Cniversity's Sj360 mainframe computer, It was used in an experimental
class in literary analysis (van Dam, 1976), but has not been used extensively beyond that,
However, van Dam and others (Feiner, :\agy, and van Dam, 1982) at Brown have included many
of the features of Hypertext in a dynamic system that combines pictures and text, Implemented
on stand-alone hardware with high-resolution graphics, this experimental system was impressive in
it flexibility and its effective use of color graphics, but has not been made pubtic for reasons of
cost and response time, Another important network-based system is ZOG, developed at
Carnegie-\lcllon Cniversity (Robertson, \lcCracken, and i\ewell, 1981; ~ewell, \lcCracken, and
Robertson, 1981; Akscyn and \lcCracken, 1984), ZOG is a high-performance system designed
for accessing the massive documentation aboard a nuclear-powered aircraft carrier, While ZOG

22

can be used as a writing tool, its primary function is fast, interactive traversal of a network of text
components.

The NoteCards hypennedia2 system allows its users to build general semantic networks using rep­
resentations of 3x5 notecards and typed links (Halasz, \loran, and Trigg, 1987). "Its intended
users are authors, designers, and other intellectual laborers engaged in analyzing information,
designing artibcts, and generally processing ideas" (Halasz, 1987). Its designers reviewed its
de>ign by interviewing twenty of its users. llalasz describes seven key issues that he believes need
to be addressed to better match this tool to the needs and preferences of its users. Be describes
these issues as "an agenda for the next generation of hypermedia systems."

In 1987, Apple Computer began shipping the Hypercard system with its \1acintosh family of per­
sonal computers. Bill Atkinson extended the ideas of NoteCards somewhat with his Hypercard
design; he represented groups of similar concepts as a stack of notecards, where the appearance of
entire stacks and individual cards can be graphically tailored. Any card may be made to point to
any other card in a stack. Cards may contain any combination of text, graphics, and audio. An
interactive scripting language allows users to direct the flow among cards, in addition to auto­
mating the contents of a card.

The power and ease-of-use of Apple's Hypercard energized both academic and comL .rcial
researchers; a wider public became aware of the possibilities of structure editors and hypertext
systems. Survey articles by Conklin (1987) and Smith and Weiss (1988) appeared in prominent
computer science journals. The Hypertext '87 conference at U:-.IC brought together many of the
key researchers in hypertext systems; the conference proceedings (1987) provide a rich cross­
section of thestate-ot:the-art and the important issues involved in hypertext systems in 1987.

2.2. 1.2 Hierarchical Structure Editors

Hierarchical structure editors are, in a sense, a subS!'! of the directed-graph structure editors and
hypertext systems discussed above. Systems seeking to support hierarchical text structures follow
a similar chronology. Douglas Englehart and his colleagues at the Stanford Research Institute
developed an experimental structure editor that also drew ideas from Bush (Englehart and
English, 1968). At a landmark demonstration of the system at the 1968 Fall Joint Computer
Conference, text, graphics, and live video of Englehart in San Francisco and his colleagues 20
miles away in \1enlo Park were superimposed on multiple viewports on a screen, as they were
working together and explaining what they were doing. "Chalk-passing" protocols were demon.
strated for synchronizing multiple users. This demonstration was a forerunner of graphics· and
sound-based teleconferencing.

Seeking to augment the .mental capabilities of the emergi11g "Knowledge Worker," Englehart's
group built an extremely powerful and innovative system, variously call Augmented Knowledge
Workshop, XL5, and Augment. The structure editor portion created a hierarchy expressed in
outline notation (1.1.2, 1.1.3, etc.); by manipulating the outline values associated with blocks of
text, the writer could modify the structure of a document. NL5 introduced the notion of concep·
tual models for the editing and authoring processes, tree-structured editing, and other features in
the field of text editing and office automation. XL5 and other related systems, such as H £5,
FR£55, and Xanadu, are important because they \iew the editor as an author's tool, an interac.
tive means for organizing and browsing through information.

A more general group of experimental hierarchical systems was the X5 series developed by
Burkhart and :'\ievergelt in Zurich (Burkhart and :'\ievergelt, 1980; Stelovsky, 1984). These
editors have as their core a flexible tree editor that allows the user to manipulate the elements at

2 The term hypermedia implies that the nodes in the hypertext system may contain not only written text,
but graphics, motion video, and ·or audio.

23

the node !eYe!. The target-independent tree editor can be combined with target-dependent back­
ends to create multiple editors, such as a document editing and formatting system. Intended for a
broader range of applications, including software development, XS-1 and XS-2 provided flexible,
po\verful tree manipulation functions on a microcomputer. Innovations included verifying the
integrity of the tree after each editorial change to a document's structure and representing the
hierarchical structure with alternative forms.

fraser's s is an attempt to provide standard editing primitives that can be used to build a variety
of editors; Fraser argues that a generalized structure and a generalized text editor nucleus can be
used for editing all applications. Janet Walkers Document Editor operates on a document as a
collection of files in Scribe manuscript form; it infers the structure of a document from the tags in
the file being edited. The specialized functions for technical writing provided by the Document
Editor are extensions to the E;\IACS editor in the form of a user library. Hansen's E.\ {fl. Y
extended the concept of the structure editor and developed the syntax-directed editor, in which the
structure imposed on a program being edited was the structure of the programming language
itself.

\lore recently, commercial "outline processors" such as ThinkTank, Ready!, MaxThink, and .\lore
have brought some of the features of these more ambitious but private systems to the personal
computer. These systems help the writer create an outline, write sections of text within the
outline, and manipulate text structure by manipulating the outline.

2.2.1.3 Textlab's Writing Environment (WE)

WE employs both a network (directed graph) and a tree (hierarchical) structure editor-but for
different stages, or modes, of the writing process. Writers may work in either editor, developing
graphs and hierarchies separately, and they may also explicitly transfer these conceptual structures
from one mode to the other.

When designing the WE system, the Textlab group reasoned that writing could be viewed as a
complex process involving different cognitive processes. A key question in their system design
was how best to support these different cognitive modes and the flow of intermediate products
among them. They saw two alternatives: I) a single mode system where all system functions
would always be available, and 2) a multimodal approach where the environment was divided
into separate system modes, each including only the function appropriate for its corresponding
cognitive mode. WE follows the multimodal approach.

Consequently, WE makes four system modes available at all times, each contained in a separate
screen window. These windows are labeled network mode, tree mode, editor mode, and text
mode, corresponding to. the exploratory, organizational, writing, and editing modes of writing,
respectively. Of the modes shown in Textlab table of modes, they did not include a mode for
situational analysis, and they included only one mode for editing.

2.2.1.4 Why Build a New Structure Editor?

In the context of writing, a structure editor can cleardy separate the process of generating and
organizing concepts from the process of writing and revising an extended text. I chose to design a
new structure editor for this study for the following reasons:

• It provided me with the opportunity to design a system based on the ideas I felt were impor­
tant, rather than on other people's emphases. I chose the alternative of implementing a
system where all the organizational functions were always available, not explicitly separated
into separate modal groups.

• It provided me with the data I needed to carry out my research objectives. \fore specifically,
it let me "compile in" the "hooks" necessary for an automated tracker, and I could optimize
the tracker to be fast and unobtrusive.

24

This structure editor could be distributed worldwide without concern for the actual CPC,
screen size, or national language support being used. It is implemented as a fast, powerful
graphics-based structure editor for an Ill\! or compatible personal computer. The structure
editor runs with \licrosoft Windows, which provides independence from the hardware being
used.

It could be modified to incorporate the lessons learned in the study.

It prO\·ided a personal testbed for exploring issues of representation and graphics layout algo­
rithms.

The next chapter of this paper describes the structure editor 1 built in accord with these reasons.

2.3 Protocol Collection and Analysis

In this section I review methodological issues involved in detailed studies of human-computer
interaction, including user's strategies. The discussion begins by considering different forms of
data, called protocols, and the various concerns and issues raised in collecting them. Then, I shall
discuss our particular approach to analysis-based on the concept of a grammar-by reviewing
several projects that have used grammars to describe user behavior.

2.3.1 Protocol Collection

To study human behavior, psychologists gather data in the forin of protocols. For writing, proto­
cols have historically been verbal reports by the subjects themselves, with additional annotation
consisting of observances by the tester(s). The verbal reports were either recorded at the time of
the test as the subjects spoke aloud their thoughts and intentions, or recorded retrospectively-that
is, at some time after the test-based on prompting by the tester. Further, audio and video
recordings capture many aspects of an interaction with a great deal of fidelity. Finally, the inter­
action between a human and computer can be recorded and stored by the computer. In this
subsection, I describe the strengths and limitations of these different means of collecting protocols.

2.3.Ll Think-aloud Protocols

Think-aloud protocols, where subjects narrate their thought process while perfonning some task,
have been used by researchers in examining the cognitive processes that take place in many
complex mental tasks. However, there has been considerable debate about these data, which has
been summarized by Smith, et a!. (1985).

To summarize the issues briefly, ;\"isbett and Wilson (1977) raised three objections to think-aloud
protocols: their validity or accuracy, their completeness, and their possible interference with the
task being performed. Ericsson and Simon (1984) have responded to that criticism by identifying
three levels of verbalization:

LeYel 1: Verbalization of concepts already stored in human Working \!emory in verbal form,

Le>·el 2: Verbalization of data that would not be heeded as part of the cognitive process, and

Level 3: Verbalization of data that is not part of the cognitive process and must be generated.

They argue that concurrent think-aloud protocols constitute valid data for Level I verbalization.
They found no evidence that concurrent think-aloud protocols affect this type of cognitive proc­
essing or that such data are incomplete or distorted. However, for Level 2 and Level 3 condi­
tions, think-aloud protocols did significantly change the cognitive process, especially recognizing
complex patterns and relationships presented visually (Ericsson and Simon, 1984; Henry, 1934).

25

This is precisely the situation that highly-interactive software presents-the manipulation of
complex structural relations and patterns of associations represented visually. Phrased another
way, think-aloud protocols are well-suited (or indispensable) for reflective tasks such as reading,
but may interfere with or distort generative tasks such as writing-particularly during planning.

Think-aloud protocols are also expensive to use because their coding is labor-intensive. Personnel
must be trained to administer the tests and record the protocols. Test subjects must be found
who are appropriate users for the target system and who are trained at verbalizing their thoughts
\dille using it. Since_ such persons are sometimes hard to tind, new subjects must generally be
trained at the verbalization techniques. Some subjects may need quite a bit of practice. Consist­
ency of verbalization for a given subject and among subjects is difficult to guarantee. An hour of
think-aloud protocol typically requires about !5 pages of transcription (Hayes and Flower, 1980).

Test personnel or researchers must usually code the verbalization into some regular fom1at in
order for it to be analyzed across sessions and subjects. This coding is often subj.ccti,·e, and can
vary with the experience of the coders or even with their mood at the time.

Despite these reservations, think-aloud protocols are used frequently to "get at" users' thoughts
and observations while interacting with a software system. Atkinson (1985), for example, used
think-aloud protocols to guide rcfmements in the development of the Macintosh :vtacPaint
program. Tools, such as the Mini-Protocol Analysis System (MPAS) of Ericsson and Sinlon
(1984), have been developed to aid those collecting these protocols, by prompting for the next
utterance and tinlestamping the entry. The Playback methodology (1'\eal and Sinlons, !984) also
prompts for observer input, and also carries out logging of keyboard activity for later statistical
analysis and measurement on a mainframe computer.

2.3,1.2 Video and Audio Protocols

Video equipment has become a powerful tool for recording user interaction with computers. It
captures users' reactions (including subtle elements such as eye movement and body language)
along with the computer display and users' input actions.

Card, :\loran, and :\ewell (1983) used videotape equipment and tracking programs together to
record users' keystrokes and the contents of the screen. These were later combined to obtain the
full record of the session, which could be replayed readily by the researcher. However, this
method requires special equipment (the video-recorder), possibly an equipment operator, and pos­
sibly a special room for testing. This makes the protocol collection process particularly obtrusive,
and limits the number of subjects and length of tests that can be administered within a given tinle
period. It also results in a large volume of fmc-grained data.

Tater (:1-lackay, 1988) states that the analysis of videotaped records "is a tinle-consuming, pains­
taking affair, requiring perhaps an hour for e\'ery minute of tape." Hoping to overcome some of
this tedious post-analysis, researchers at MIT (:1-!ackay, 1988) are developing a visual workstation
that digitizes moving video and presents it in an X-Window on a high-resolution display. A
researcher can create software "buttons" to tag particular events for later analysis. During the
session, the output from the video camera is channeled through the X-Window; the researcher
can take online notes and tag events as they occur by pressing the appropriate button. After the
session, the researcher can watch the complete session at any speed or view just the tagged events.
As with the coding of think-aloud protocols, this process requires consistency and coordination
among the researchers; for example, identical events must be identically tagged among a group of
sessions, if they are to be compared.

Thus, while theoretical issues persist for think-aloud protocols, think-aloud, audio, and video pro­
tocols still cause practical problems with respect to effort and consistency of interpretation. An
alternati,·e is machine-recorded protocols.

26

2.3.1.3 Computer Protocols

Software developers ha\'e devised a variety of hardware and software facilities to encode and
record the input to a computer. However, these have not been designed for protocol collection,
but to aid in debugging or to allow a user to review and re-execute previous actions. Among the
most familiar is the C'\IX history mechanism (Greenberg and Witten, 1988), which records each
command line entered by a user. \!aero facilities (such as those in WordPerfect and \licrosoft
L~cel) simplify the re-use of frequently-executed input sequences specific to these products.
Standalone keystroke-capturing programs (e.g., Cocoon) allow replay of keyboard input inde­
pendent of the software being run.

The !C:t RCS VLSI circuit-layout system, studied by Card, \loran, and '\ewell (1983), collected
the key name, clock time, and mouse coordinates as part of the protocol. '\ate that keystroke
recording facilities are not usually sufficient to determine the actual command performed in an
interactive system. For example, when analyzing session protocols from the ICARUS system,
Card, \loran, and :'\ewell reconstructed the actual commands that were executed from the key­
stroke recording using "heuristic programs and hand editing."

Such ambiguities were avoided in this project by recording actions at the command level. Each
time an action is selected (say, moving nodes), the start of the action is recorded. When the
action is completed (the nodes are released), the end of the action is recorded, along v.-ith its
parameters (where the nodes were moved to).

2.3.1 A Comparing Protocol Collection Techniques

Each of the three means of protocol collection discussed above is best suited to different research
objectives. Concurrent verbal reports are good for capturing users' short-term view of their
strategy and ongoing instances of frustration and delight. Audio and video recordings capture
minutiae of the interaction that must still be painstakingly categorized and interpreted. Both of
these means have ~he disadvantage of requiring special equipment and/or personnel at a user's
setting.

Verbal reports and audio or video recordings also introduce problems of reliability. For any
study, they must be transformed from their raw form into some set of categories in which the
model being examined is defmed (Swarts, Flower, and Hayes, 1984). Training and practice can
increase the reliability and consistency of the transformations, but the encoding is still subjective.
Hayes and Flower (1980) report encoding errors on the order of 25%.

To investigate software interactions in volume, what is needed is a means of collection that is:

adequate-it captures the essential aspects of the interaction,
• consistent-it captures similar interactions similarly,
• unobtrusive-it does not influence the interaction, and
• cost-effective-it reduces the human processing required to use the protocols.

Although automated trackers miss most of the extraneous non-\'erbal (and verbal) reactions of
their users, they appear to meet these requirements reasonably. An automated· tracker that meets
these requirements was implemented as the primary means of collecting protocols of writers' soft­
ware usage in this project.

27

2.3.2 Protocol Analysis

Collecting the protocols and preparing them in a consistent format is the prelude to the more
extensive task of understanding the behavior of test subjects. For many years, efforts by psychol­
ogists to analyze protocols have focused on specific techniques for deriving condensed, but ,·alid,
data from verbal reports. Frequently the skill of the investigator detennined the accuracy, consist­
ency. and completeness of their personal interpretations of the verbal reports.

"Reliability is a problem with any method of research, and particularly so with protocol
analysis. People who look at protocols ha,·e the same problem as people looking at
clouds: every·one might see something different." (Swarts, Flower, and Hayes, 1984)

Ericsson and Simon summarized the assumptions, techniques, and limitations of verbal reports as
data in their 1984 book, Protocol Analysis. They noted that a few programs have appeared that
systematize protocol analysis on a rudimentary basis. PAS-I and PAS-II (Waterman and '\ewell,
1971 and 1973) produce a problem behavior graph. SAPA (Bhaskar and Simon, 1977) predicts
the information addressed and decisions reached in solving thermodynamics problems. The
context is greatly constrained because the solutions are all built around the use of the equation for
the conservation of energy.

A more specific problem is the analysis of protocols collected in the study of human-computer
interactions. The following discussion of one analysis by Card, :\loran, and '\ewell of a human­
computer interaction serves to provide specific details about their method of protocol collection
and analysis. Their analysis techniques provided the basis for the automated analysis techniques
applied in this project. Other models for analysis follow this detailed discussion.

2.3.2.1 The ICARUS Study by Card, Moran, and Newell

In Chapter 10 of their 1983 book, Card, :\loran, and '\ewell discussed their hand-analysis of the
protocol of one subject doing a VLSI circuit layout. :\lost of their book focuses on carefully­
controlled text-editing tasks, which Card, Moran, and '\ewell analyzed at the keystroke level.
They presented this single chapter as an extension of their study to "a more creative task domain"
where the subject was not given specific instructions to follow, but used the system to soh·e a
problem.

The subject for their experiment was an experienced user. He talked aloud during the session; his
hands and the screen were recorded with two videotape machines. His keystrokes was also cap­
tured in a file with timestamps. The session lasted about 40 minutes.

When beginning their protocol analysis, Card, :\loran, and '\ewell noted difficulty in coordinating
the keystroke recording and the two videotapes. The keystrokes were assembled into commands
using hand editing and some heuristic programs. Because of difficulty in aligning the coordinate
systems across the three recordings, they were unable to tell exactly what circuit element was
being worked on.

Their protocol analysis noted that the user frequently paused during the experimental session to
check the work he had done and to think about what to do next. A threshold of 5 seconds was
chosen to identify the pauses from the inter-event intervals (which varied from 0.3 seconds to 80
seconds). This divided the session into about 100 episodes, each with an average time of 25
seconds. Each episode consisted of a pause of at least 5 seconds followed by a vary·ing number of
ICARUS commands. The episodes were manually identified by the researchers as one of four
different types of tasks: Draw, Alter, Dimension, and Check.

They observed that the experimental session could be partitioned into phases lasting several
minutes each. In each phase, episodes are organized around one of the major subproblems of the
VLSI circuit-layout problem. They identified three phases, each of which occurred only once.
The phases lasted 14 minutes, 7 minutes, and 15 minutes, respectively.

28

Their analysis of this session fits within a hierarchical model: sequences of individual commands
form episodes, and groups of episodes partition a session into phases. Similar models ha,·e been
used in other research efforts that examined human-computer interaction. These formal models
were used to guide the protocol analysis efforts of these researchers.

2.3.2.2 formal Models for Analysis

Three notable research efforts have employed hierarchical models in understanding the semantics
of sessions between humans and computers.

Reisner (!98!, !982) used a formal grammar specification to describe the user conunands of a
graphics drawing system, as a means of comparing alternative interface designs. ller grammar
describes tasks such as "how to draw a green line'' in terms of its constituent user commands.
The grammar is context-free (Type 2 power in the Chomsky hierarchy) and is described in
Backus-:'\aur form (81\F).

Reisner's formal grammar gives a precise definition of the syntax of the action language she
describes. She showed that using a B:--/F specification can highlight the irregularities in the syntax
of the language; similar actions should have similar syntax. She used the grammar to describe the
system after it was implemented. She did not discuss broadening the grammar to encompass
higher-level strategies.

Card, \loran, and :\ewell (!983) studied performance of structured tasks at the keystroke level to
infer time predictions for the subtasks. An example subtask would be to edit a word in a manu­
script; its operations include fmding the marked-up word on the page, scrolling through the man­
uscript to locate the word, moving the cursor to the word on the screen, and making the
necessary changes. They introduce the GO\fS method for formally representing their language; it
consists of goals, operators, methods, and selection rules. GO\!S expresses structured tasks as a
hierarchy of goals. At the lowest level in the analysis (the leaf level), a user selects a method of
fulfilling a goal by executing specific operations. The grammar represented by GO\!S is context­
free.

The GO\!S model is well-suited to the study Of time predictions and operator sequence pred­
ictions for small subtasks. However, its fme grain of analysis seems too low a starting point for
examining overall strategies. Its syntax resembles that of a recursive programming language; in
their examples, it frequently becomes verbose and awkward to read for any but the simplest deci­
sions. In their own ICARUS study, Card, :\loran, and 1\ewell invented new terminology when
working with the strategies of an entire session.

Kieras and Polson (!985) presented two formal descriptions: one for the user's knowledge of how
to use a device, and a second for representing interactive devices. Their goal was to quantify the
complexity of a computer's user interface. By representing the device behav-ior formally as well· as
the user's knowledge of it, they could simulate the user-device interaction to obtain rigorous
measures of user complexity.

The focus of Kieras and Polson was the separation of device-independent knowledge from de,·ice­
dependent knowledge. For their job-task representation (the device-independent knowledge), they
used a production system, which they described as equivalent in power to GO\IS. For their
device representation (the device-dependent knowledge), they used a generalized form of aug­
mented transition network (AT:'\), presented in a graphical form in their paper. An AT:'\ gener­
ally has Type 0 power (Woods, !970; Bates, !978).

Some common threads recur in these research approaches. First, all three groups were looking at
low-level interactions between the human and computer, essentially at the keystroke level.
Because of the fine grain of analysis and the work involved in analyzing the d"' :t by hand. each of
these efforts reported on the human-computer interaction of only one subject i one task.

29

Secondly, these researchers used grammars of Type 2 power to represent the interaction. Foun­
tain and :\orman (1985) observe the following in their review of Reisner's grammar and GO\!S;
it also applies to the job-task knowledge of Kieras and Polson.

"All grammars above Type 0 impose restrictions upon the languages which arc capable of
being spccilied. This has important bearing upon the field of human-computer interaction,
because the manner in which the language is specified is saying something about human
cognition. Type 2 grammars allow only one non-terminal symbol to the left of a rule so
that I) we are implicitly assuming that the human cognitiYe process is strictly serial and
monotonic: only one goal or task at a time may be attempted 2) the ability of a human to
solve goals is contcxt·free and history insensitive: the current task is not affected in any
way by either previously completed tasks or future unstartcd tasks. Only the current task
environment is to ha,·e any bearing on the goal at hand. It is not clear that either of these
conditions are necessarily true of the human cognitive process." (Fountain and :'\orman,
1985)

Recognizing these deficiencies, the Textlab group at U:'\C has taken a broader and more powerful
approach to automating the analysis of their users' protocols. Smith, Rooks, and Ferguson
(1989) describe a cognitive grammar for modeling users of their hypertext Writing Environment
(WE) system. They describe their cognitive grammar as "a computer program that interprets the
actions of a user working with an interactive application system in order to infer the cognitive
activities taking place in the mind of that user." This grammar, implemented as an OPS-83
program, can be considered as five separate grammars that work in conjunction with one another.
These five levels incorporate their theory of cognitive modes (Smith and Lansman, 1988); the
principal nonterminal symbols represent the cognitive products developed by writers, the cognitive
processes used in their creation or transformation, and the cognitive modes engaged by writers
during a session.

I believe that these more powerful-and more complex-approaches are a promising direction for
research into protocol analysis and the underlying cognitive processes. The approach taken in this
project (described in Chapter 4) was built upon the same fundamentals as the grammar-based
approach of the Textlab group.

· 2.4 Summary

Thus, three themes guide the research described in this paper. An .understanding of human
memory and how ideas are manipulated was motivated by the central tasks of reading and
\.\'Titing. \Vriting research, in particular, was reviewed in two areas: the structure and represen­
tation of ideas, and the· processes and stages a writer goes through in order to produce prose.
\V riling systems for computers, specifically some hypertext systems, attempt to aid writers by
making concrete the structure of the prose as it evolves. Finally, techniques for collecting and
analyzing writers' sessions assist researchers trying to understand writers mental processes-in
order to build better writing systems.

Chapter 3 describes the design and implementation of the specific writing system developed for
this project. Its description is thorough, since it introduces the operation of each command avail­
able to a user. These commands form the terminals for the grammar-based parser that is
described in Chapter 4 of this paper.

30

CHAPTER 3. SYSTEM DESIGN AND
IMPLEMENTATION

In addition to reviewing existing structure editors and hypertext systems, the preceding chapter
revie1.ved many cognitive factors to be considered in the design of a computer writing system.
\!embers of the Textlab group have implemented several computer writing systems to explore
how these factors might drive design decisions: PROSE (a U:\C class project from 1984),
Storyspace (Bolter and Joyce, 1987), Writing Environment (Smith, Weiss, and Ferguson, 1987),
and Prose /[(the testbed for this project). These systems share some common goals, addressing
the three interacting human subsystems proposed by Card, \loran, and :\ewell:

To lessen the load on a writer's cognitive system,
To lessen unnecessary motor activity, and
To effectively use of the human perceptual system and human •patial abilities.

These researchers applied a common set of techniques to the design of the four systems. An
important technique was to assist writers in the external representation of their evolving cognitive
structure. Single conceptual items are explicitly represented. These items can reference an unlim­
ited amount of detail and associations. Items can be bound together to form new items, can be
associated with one.another, and can be hierarchically organized; the hierarchies can be moved as
a single item.

Further, the power of spatial perception and imagery was utilized in these systems. Conceptual
items can be graphically represented as \isual entities. Links between items can be explicitly
drawn. Hierarchies can be represented by trees and other two-dimensional '~sua! forms. The
conceptual nearness of items can be represented by arranging them so that there are short physical
distances between them.

These systems include the ability to zoom in, allowing a user to focus on a small set of individual
items-much like the human mind focuses attention on particular items by moving them from
Long-Term into Working \!emory. By zooming out, large chunks and overall relationships can
be seen in the total spatial layout of the set of items being considered. The ability to visually
roam within the layout allows yet a different view of active items under consideration.

Direct manipulation of the visual concepts (Schneiderman, 1983) further reduces the cognitive
load of the writer. Using a mouse, a writer can grab the edge of a region to be zoomed and
accurately predict the results of the action. Thus, visually-represented items can be directly acted
upon.

Prose lf, the testbed system for this project, was designed to make these techniques accessible on
personal computers. Section 2.2.1.4 on page 25 gives a detailed list of the motivations for the
creation of Prose f!. A thorough discussion of its design and operation follow.

31

3.1 Prose II Design and Operation
Prose II was designed !rom the outset as a \licrosoft Windows application. Windows is a
graphics environment for IB\f or compatible personal computers running the PC-DOSE> or
\IS-DOSE> operating system. It uses a 2- or 3-button mouse for input, in addition to a key­
board. The look and feel of the Prose II user interface is consistent with the graphics techniques
described in the \licrosoft Windows style guidelines (Jlicrosoft Windows Cser' s Guide, 1987).

~Vindmn provides a system designer with independence from the hardware and. software used in a
personal computer. A variety of CPCs, screen sizes, printers, international character sets. and
memory configurations arc supported by Windows. This allowed me to distribute Prose II world­
wide with few prerequisites.

Particular attention was paid to reducing the amount of cognitive overhead required to operate
the system. A common characteristic of many text editing systems is their use of multiple editing
modes,3 where the operation of the system differs according to context. Prose l! has just three
editing modes: a normal editing mode, and two excepiional modes-Delete \lode and Tidy
\lode-where the system operates differently. The active editing mode is identified in the action
bar of the main window. In Delete \lode (see 3.!.6 on page 38), the cursor image also changes.
and deleting nodes is the only valid operation. In Tidy Mode (see Section 3.1.8 on page 40),
operations work as in normal mode, except that every tree operation causes all the trees in the
workspace to be neatly re-drawn. I devised no reasonable design alternatives to having these two
additional editing modes, so made their operation unmistakable. They rnust be explicitly acti­
vated and deacti\·ated by a ·user with a mouse selection. They are clearly described with separate
help panels.

This section has two goals: to describe how Prose II looks and operates, and to describe the
format and operation of each of its 39 commands. A hypothesis of this project is that commands
and sequences of commands build up into larger, hierarchically-organized pieces. This review of
the commands and formats is thus detailed, because these commands and ftle formats are dis­
cussed frequently throughout the remainder of this paper. The commands form the terminals for
the grammar used for the protocol analysis; this chapter is the place where their operation is
described.

3.1.1 An Introduction to Prose II

With Prose II, a user can create and label nodes, where each node represents a single idea that
will later be expanded into text-such as a paragraph in a technical paper. :'\odes, and thus ideas,
can be easily mm•ed, copied, and rearranged, for example, to cluster related ideas. :'\odes can be
linked with one another in a hierarchical manner, and the resulting iree structures can, in tum, be
moved and joined with other trees.

:\odes and the links among them were designed to visually approximate the concepts and inter­
connections in human Long-Term :\!emory. Trees are used to facilitate chunking; progressively
lower levels of detail can be seen or hidden using the appropriate tree manipulation commands.

The term editing mode used in this context differs from the term cogniti\·e mode introduced by Smith,
\Veiss, and Ferguson (1987) and Smith and Lansman (1988). See Chapter 2 on page 13 for more
details on cognitive modes. The names of editing modes will be capitalized in the remainder of this
paper, e.g., Delete .\1ode.

32

PrOSf II - ALLEH1.SCR

Figure 3. An example of portion of a workspace in Prose I I

Figure 3 on page 34 shows an example Prose II screen, illustrating many of these features.
'\odes are shown as rounded rectangles with identifying text labels. Some nodes are linked to
other nodes with directed arrows. Parts of se,·eral trees are visible in this screen.

Additionally, a file can be associated with each node, and any program in the computer can be
run against such a file. C sually a text file is associated with a node, and the program run against
that file is a text editor-but users are not restricted to this combination.

When starting a new session, Prose I I shows an empty workspace. The empty workspace repres·
ents a clean place to represent ideas, which are represented by labeled nodes.

33

3.1.2 Creating and Labeling a Node

Csers can create a node in the main Prose II window by moving the mouse cursor to where they
want the node located, and clicking the lett mouse button. Prose II centers the newly-created
node at the tip of the mouse cursor. The node can then be labeled.

A node label can consist of any text string; it is usually used to hold brief ideas (up to 250 charac­
ters) or to capture section headings in a document or article. Operationally, double-clicking inside
a node with the lcti mouse button brings up a dialog box window for editing a label: the Edit
dialog box. A user can then type the characters or words for the label. If a label already exists
for a node, it may be modified, appended to, or deleted. Choosing the Save button ends the Edit
dialog box and causes the label to be displayed inside the selected node. Alternatively, choosing
the Cancel button ends the Edit dialog box without replacing the node's current label.

To reduce cognitive and motor effort, a new node may be created and labeled in a single step by
moving the mouse cursor to the desired location and double-clicking the left mouse button.

3.1.3 Linking Nodes

Almost any two nodes in the main Prose II 'l'<indow may be linked.4 All links in Prose II are
hierarchical links. To link two nodes together in a parent-child relationship, a user moves the
mouse cursor inside the node to be the "parent," holds down the left mouse button, and drags the
mouse cursor to within the node to be the "child." The link follows the mouse cursor, and when
the mouse button is released, a link is drawn between the pair of nodes.

Figure 4 on page 36 shows a link while it is being drawn. One end of the link is drawn in the
parent node; the other end of the link follows the tip of the mouse cursor.

4 :\o node may have more than one parent; nodes may not be linked in a_circular relationship.

34

Pros• II - (untitl~~)

(.J._;d!cial 1

Figure 4. An example of two nodes being linked. Links already exist between the root of the tree, the
node labeled "Branches of CS Government," and two of its children: "Executive" and
"Judicial.''

A link between a pair of nodes can be broken by repeating the above procedure. Alternatively,
giving a child node a new parent automatically breaks the link to its pre\'ious parent.

All the links in a workspace may be broken at once by choosing the "Break All Links"
command. A user can also break all the links in a workspace and randomly reposition all the
nodes by choosing the "Scramble" command. This affords an alternate method of brainstorming,
by seeing nodes in different spatial relationships with one another.

3.1.4 Editing the File Associated with a Node

Aside from each node's label, a user can associate an arbitrary ftle \\ith each node. Any program
may be run against such a file. This gives the ability both to sketch out the structure of a paper
(using nodes and labels), for example, and to write out detailed portions as they are thought of
(by running a text editor against a node's file). Prose II thus supports the three types of concepts
described by White (1985): propositions, algorithms, and images.

Prose II shows nodes that have ftles associated with them by drawing thicker frames than nodes

35

without underlying files. A program can be run against the node's file any time the Edit dialog
box is displayed. First, a user gets the Edit dialog box as before, by double-clicking the left
mouse button in the node whose contents are to be edited. :\'ext, choosing the Editor button
invokes the program whose file extension is highlighted.'

Figure 5 on page 38 shows an example of the Edit dialog box, which is used to both write a label
and to tie a node and a file together.

The Edit dialog box contains a list of file extensions. One of these flle extensions is alwa\·s him­
lighted in the list box-the last one used. Double-clicking with the left mouse button ~n a file
extension in the list box saves the node's label and filename, then starts the corresponding
program, using the current node's name as the first command-line parameter passed to the
program.'

As a third alternative, pressing Enter when the Edit dialog box is showing either saves the label (if
any is present) or starts the selected program (which is the first one in the list box, if one has not
been selected yet). Csers can thus operate with a single click if they are just entering labels or just
editing ftles. When doing both, a double-click on a file extension or click on the Editor button is
required.

The new program (such as a text editor) starts its own window or takes· over the screen,
depending upon its Windows setup. The mouse cursor is located in the new window so that
Prose II no longer has control (this is known as the focus in Windows terminology).

3.1.5 Moving and Copying Nodes

:\loving and copying nodes requires the same type of mouse movements as linking nodes, but
these three operations-linking, moving, and copying-look and feel different from one another.
All three require starting with the cursor inside a node. Linking uses the left mouse button,
moving: the right mouse button, and copying uses the Ctrl key plus the right mouse button.

:\loving or copying nodes is done by positioning the mouse cursor anywhere inside the node that
is to be moved, holding down the right button, moving the mouse, and releasing the button.
\Vhile a node is being moved, links to the node stretch with a "rubber-band" effect; all its off­
spring ·nodes "snap" back into place when the move is complete. A node's position in a tree
relative to its siblings is determined by its horizontal placement. Hence, moving a node to a dif­
ferent position among its siblings changes its place in the underlying tree structure. By addi­
tionally holding down the Ctrl key, these same steps are used to copy a node. There is no
rubber-banding effect when copying.

Changeable defaults determine whether single nodes or whole trees are moved and copied. The
initial default is to move and copy whole trees. Choosing the "Move node only" option causes
subsequent moves to change only a single node (breaking any links it had to children nodes).
Similarly, choosing "Copy node only" causes subsequent copy commands to copy only one node,
rather than copying that node and all of its descendants. Additionally, the Defaults menu allows
the choice for moving a node while maintaining its link with its parent, or not. The initial default
is to maintain the link ("Keep Parent Link").

s In DOS, a file extension is a I- to 3-character string that follows the filename and a period. \\'hen
choosing to have a file associated with a node, Prose II forms a unique, default filename by appending a
3-digit node I D to the first five characters of the workspace filename. A user can choose to override this
name and extension.

6 In Windows, the association between a file extension and the related program to start with such a file is
made by users in their internal run-time file, WIN. INI.

36

Prosp II - ALLEH1.SCR

in Hauigating in Jt~o-dimensional lnfot'mation Sp<~ce

Double-click a
file extension
frolll ~(]UI"
WI H. IHI file.

Hode filenaM: I AllEHIJOA. SCR

Saue I ~ancot J
notepad.exe

!!Hp

figure 5. An example of the Edit Dialog Box in Prose II. The entire label is shown for the node at
the tip of the mouse cursor.

3.1.6 Deleting Nodes

Three types of node deletion are available in Prose ll: deleting a selected group of nodes, ddeting
the last node created, or deleting all the nodes in the workspace.

Deleting selected nodes is designed so that it is not done accidentally. To delete selected nodes,
the Delete Mode must be explicitly activated. When activated, a special cursor is shown. The
node is deleted by moving the mouse cursor inside a node that is to be deleted and clicking with
the left mouse button. Delete :\lode must then be turned off to return to normal operation.

Deleting the last node created is done by choosing the menu option "Delete the Last '\ode." As
a shortcut, simultaneously pressing the Ctrl key and D deletes the last node created. This deletion
shortcut is included because we observed that users occasionally created a node accidentally, then
wanted to quickly delet~ it.

By choosing "'\ew" from the File menu, a user can delete all the nodes in a workspace and reset
the ftlename to (untitled) (as shown in the top of Figure 4 on page 36). Users can alternatively
keep the current ft!ename, but delete all the nodes, by choosing "Clear Drawing."

37

3.1.7 Moving through a Prose II Workspace

An important design tenet is to allow users a large workspace within which to lay out nodes.
clusters of nodes, trees, and forest. As the workspace grows large, navigational techniques are
needed to allow easy access to all regions. Three different navigational methods facilitated mo\e­
ment within the workspace: zooming in the current viewport, working \Vith a map of the current
workspace, and working with a text outline of the nodes' labels.

3.1.7.1 Zooming in the Main Window

C sers can zoom in the main Prose II window to enlarge or deform an:thing in the \"iewport.
Clicking the right mouse button in a blank region causes a dotted rectangle to be drawn. indi­
cating the zoomed region. This rectangle follows the mouse cursor. When the button is released,
the window is redrawn, with items in the rectangle now ftlling the main window. This option can
also be used to change the shape and size of the nodes. For example, long labels can sometimes
be viewed in their entirety by making nodes appear to be long and flat.

3.1.7.2 Working with the Mao Window

A map of the entire workspace can be brought to the forefront when desired. This map shows all
the nodes and links in the workspace, as well as their spatial relationship. It allows a user to
move to any other area of the workspace and also to zoom in or out. Commands executed in the
main Prose II window also cause the :\lap Window to be updated. Showing and hiding the :VIap
Window is done by selecting a menu item. An example of the :Vtap Window is shown in
Figure 6 on page 40.

A wire-frame rectangle in the Map Window indicates what portion of the current workspace is
presently visible in the main Prose II window. The shape of this wire-frame rectangle may not be
proportional to the main window; by changing the shape of this rectangle, the nodes in the main
Prose ll window change their proportion !lCCordingly. Their original shape and position can be
reset by choosing the "Reset-Drawing" menu item (or by pressing the Home key).

Two dilferent actions can be used to update the main Prose II window. To pan, a user makes a
single click of the left mouse button anywhere inside the wire-frame rectangle and drags the wire­
frame rectangle. To zoom, a user makes a single click of the right mouse button anywhere inside
the i\lap Window and drags the new wire-frame rectangle. A blank screen beyond the extent of
the furthest node can always be reached in any of the four directions.

Finally, the size, shape, .and position of the :\lap Window itself can be changed using standard
Windows techniques.

3.1.7.3 Working with the Outline Window

A.n Outline Window sh~ws an outline view of the node hierarchy. Each level of tree depth is
shown by indenting the labels three spaces. Urdabeled nodes are shown as --unlabeled--. Indi­
\~dual trees are distinguished by a line of dashes. As with the :VIap Window, commands in the
main Prose II window cause the Outline Window to be updated. Also, showing and hiding the
Outline Window is done by selecting a menu item, or by using the middle mouse button. An
example of the Outline Window is shown in Figure 7 on page 41.

38

Figure 6. An example of the :\lap Window in Prose li

3.1.8 Tidying Trees

By default, Prose [[shows a node in the position where it was originally placed. A tidy-tree
operation allows a user to create nodes anywhere and later clean up the node arrangement. Prose
[[employs a new tree-tidying algorithm to reposition the nodes of a tree (Walker, 1990, 1991).

Tidy \lode must be explicitly activated as a separate editing state, which causes Prose [[to tidy
the entire workspace. In Tidy Mode, the workspace is then re-tidied after each command that
a!Tects the tree structure. Choosing "Turn Tidy Trees Off'' from the Options menu returns a user
to normal operation.

While in Tidy Mode, the gray minus ("-") and plus ("+") keys can be used to shrink and grow
the tree drawings. Pressing "-" hides the lowest level of the trees; repeatedly pressing this key
can hide all levels up to the root of the trees. Pressing "+" shows the last level that was hidden.
Alternatively, by turning Tidy Mode off again, the full trees are restored. When doing a Save of
the workspace flle while the tree is shrunk, the nodes in the lower levels of the tree that have been
hidden by the shrinking process are not saved. This allows displaying cross-sections of a
document-just looking at everything in the document down to the second level, for example,
without the detail.

39

Tin• hto H<1uigational
Objectiues
lfap llindo\t
2oon Ha~igational T~chniqu~
Roan Hauigational Technique

Experinent
Results of Task On~

Obser~ations fr·on Task One
Results of Tasl< Ttto

Observations fron Task Too
Discussion
~cknowledgenents
R~ferences

B rr•v'>DIJS Wo.-k
Infornation Systens Using l"'o-di••

Hypertext
Other Spatial Infornation

Ha~igating in a large , .. -o,. .. ns1o
Hanipulating the Display

--unJabPlPd-­
Other Issues in Havigating

--unlabeled--
--unlabeled--

Figure 7. An example of the Outline \\<1ndow in Prose II

A user can tidy up the workspace with one quick command by choosing the "Tidy the Drawing"
command from the Options menu; this does not tum on Tidy Mode. As a shortcut, simultane­
ously pressing the Ctrl key and T tidies the drawing.

As an arbitrary design restriction, Prose II does not handle trees with more than 99 levels. It
handles nodes until it runs out of memory (within the DOS 640 Kbyte memory boundary). I
have had more than 1000 nodes concurrently.

3.1.9 Changing the Root Orientation

The default positioning for trees in Prose II is to draw the root of each tree at the top of the
drawing, with its offspring below it. Dialog box options allow other orientations, such as placing
the root on the left and the siblings to its right. Four such orientations of the root are available:

'\'orth
South
East
West

Root is at the top, its siblings are shown below it.
Root is at the bottom, its siblings are above it.
Root is at the right, its siblings are to its left.
Root is at the left, its siblings are to its right. An example of a tree with the West orien­
tation is shown in Figure 8 on page 42,

40

•
~--:l'~'l9¥1"13 rn.; L~-;e
Tv..o·dm'i<'>:>toroor S~:;o,;.;o

O•t-e• I$S•.Jes in
N~·Jt9"<t'.i--..., 0
T r~:.-dr~n~icn~l
1.-torm~(ion ;p;,c.JO

Figure 8. An example of a tree with a root orientation to the west

3.1.10 Working with Workspace Files

Prose II workspace files· can be ·created, saved, cleared, and listed using commands in the File
:VIenu of the Prose II window. Commands from the File :Vlenu in Window's .Executive window
are used to delete Prose II ft.les.

3.1.10.1 Creating a New Workspace File

To create a new, untitled workspace ftle from the Prose II window, users select the File menu and
choose the ":'\ew" command. To create a new, named file, they use the Open dialog box by
selecting the File menu and choosing the "Open" command. The name of a new ftle is typed
into the text box at the top of the Open dialog box. If the workspace file is not found, Windows
displays a message inquiring whether a new ftle should be created or whether the ftle can be found
on a diskette.

41

3.1.1 0.2 Opening an Existing Workspace file

To open an existing workspace file from the Prose If window, a user selects the Open dialog box.
In the displayed list box, they can select the name of the file to open (by double-clicking on it
with the left mouse button), or typing a pathname and filename in the text box at the top of the
dialog box.

3.1.10.3 Workspace File Formats

The only workspace files Prose !I can open are those with ftle formats it understands. Opening
or sa,·ing a workspace in Prose ll commits it to a ftle format. The six supported file formats are
indicated by their DOS file extensions. The dialog box used in Prose ll to select ftle formats is
shown in Figure 9 on page 44.

Extension

• PR2

. ROY

.SCR

. !NO

.CRD

.LST

Description of this file format

This is the default file format for Prose fl. It allows saving and opening ftles con­
taining any mix of isolated nodes and multiple trees. This format also saves the x
and y coordinates of each node and the date and time of their creation and last mod­
ification. This format also allows text, graphics, or any file to be associated with
each node. •
This ftle format is compatible with the Readyf''1 outline processor. Any file created
by Ready! can be read by Prose fl. There can be only one tree and no isolated
nodes.

This ftle format is compatible with the IB:\1 Script, G:\IL, and Book:\laster docu­
ment processors. Reading a .SCR file as input causes each appropriately-placed
heading tag (such as, ":h2. ") to become a node label in a tree. Files written by Prose
ll in this format contain a heading tag of the correct level of each node in the tree(s).

This file format is for reading and writing indented ASC!I text. On input, each line
becomes a node label (up to 250 by1es). Prose ll correctly handles the tree con­
struction for any consistent indenting method. On output, the labels are indented 3
blanks for each tree level.

This is compatible with the Microsoft Windows Cardftle format. CAROFILE.EXE is
one of the set ·of desktop applications that is shipped with :\licrosoft Windows. On
output, the maximum Cardfile index line is 40 characters, so labels can get truncated.
The maximum card text is 450 characters.

This ftle format is for input of a sorted list of words or phrases. The structure is
automatically formatted into a single, left-to-right balanced, tidy tree by Prose fl.
This format served as my testbed for a new fanout algorithm to position the nodes in
a left-to-right balanced tree.

A user can change the workspace file format at any time, using a dialog box. Prose ll internally
saves the current ftle format each time a workspace file is saved. This format is used as the
default file format the next time a workspace ftle is opened or saved.'

Preview of results: among the 112 sessions studied here, none of the subjects opened or saved saved any
workspace using the .ROY or .LST formats.

42

ProsP JJ - ALLEH1.SCR

Choose- a fil~ fot·rnat

0 Prose II
()Read!}!(till)

(.PR2)

(.RDY)

:~: ~i·~::!::!~:~:~---·~-~~~ -~·-~·i~~~
() Cardfile (.CRD)

()Sorted list (.lST)

QK

,!;,.:tncel

Help

\

\
L1

Figure 9. An example of file format selection box in Prose II. The .SCR file format is being selected
at the mouse cursor.

3.1.1 0.4 Saving and Deleting Files

The "S<ive As" command names and saves a new ftle, or saves the current flle under a new
ftlename or ftle format. Selecting the File menu and choosing the "Save" command causes Prose
II to replace the flle on disk with the current workspace ftle.

3.1.11 Copying to the Clipboard

The Windows Clipboard application holds information cut or copied from other Windows appli­
cations. After sending an image from Prose II to the Clipboasd, a user can paste the contents of
the Clipboasd onto another Windows application. Images copied from Prose II to the Clipboard
ase sent as a bitmap. Prose II does not have a facility for pasting images from the Clipboasd8

s Preview of results: among the 112 sessions studied here. information was copied to the clipboard only
once.

43

3.1.12 Searching for a Node

Users can search throu!!h the labels of all their nodes for a !riven search string. When a match is
found, that node is ceii'tered in the main· window. A user~ enters the search string in a popup
dialog box. By repeating the search, other nodes with the same search string in their labels can be
found.

3.1.13 Requesting Help

Prose If only operates as a Windows application: that is, it performs its graphics functions when
started from within \Iicrosoft Windows. However. if a user starts it at a DOS command prompt,
Prose If displays 125 lines of information describing its purpose and usage.

Ten different help panels are available within Prose II. The menu of help panels can be raised by
pressing the "Fl" key at any time, as well as by selecting the proper help button with a mouse.
\!any of the helps are also available in appropriate context-sensitive situations. For example, the
dialog box for editing a node's label contains a help button that immediately displays the help for
editing nodes.

As a way to summarize the operation of Prose II, the text for all of the help panels is shown in
Table 2 on page 45.

Table 2 (Page 1 of 3). Prose II Help Panels
Introduction Prose II Structure Editor

Version 2.89

Copyright 1986, 1989 John Q. Walker II
All rights reserved.

IBM VNET: JOHNQ at RALVM6
IBM Internal Use Only

The First Time? Prose II is a structure editor you use to explore and
organize ideas. You can use Prose II to create and
label nodes-each node representing a single idea to
be included in a larger_ structure, such as a paragraph
in a technical report. Nodes can be visually linked
into trees, and the trees can be linked to other trees

. or simply kept as a forest or as clusters of nodes.

Prose II gives you the functions of an outline processor
in a large, 2-dimensional windowed workspace. With an
outline processor, you are forced to commit your ideas
to a hierarchical position. Now you can pOsition or
cluster them anywhere and organize whenever you wish.

44

Table 2 (Page I of 3). Prose lll!clp Panels
The \louse
Buttons

The \lap
\Vindow

Delete and Tidy
\lodes

File Formats

Use the LEFT mouse button to Create, Edit, or Link nodes
CREATE: single click outside of any node.
EDIT Label and Contents: double click inside a node.
LINK: single click and drag starting inside one node

and releasing the button in the target node.
BREAK LINK: re-draw an existing link bet'.•:een nodes.

Use the RIGHT mouse button to t<1ove and Copy nodes and to
Zoom In for a closer view:

MOVE: single click and drag inside a node.
COPY: same as MOVE, except also hold down Ctrl key
ZOOM IN: single click outside a node and drag.

Items in the rectangle will fill the window.

Show the Map ~Iindow to easily Move to other areas of
the workspace and to Zoom In and Zoom Out.
- The rectangle shown in the Map Window indicates

what is presently visible in the Main ~lindow.
A single click and drag of the LEFT mouse button
will move this rectangle, updating both the Main
~!indow and the scroll bars.

- A single click and drag of the RIGHT mouse button
draws a new rectangle indicating what will show in
the Main Window. This allows easy zooming.

- The t<1ap Window can be moved, sized, and hidden
using the standard Windows techniques.

Select "Turn Delete On" from the Options menu to
delete undesired nodes.
-A special cursor will be shown. With DELETE ON,

use a single click with the left mouse button to
delete the selected node.

- Shortcut: Ctrl+D deletes the last node you created.

Select "Turn Tidy Trees On" to tidy up the entire
workspace. If you leave TIDY ON, the workspace will
be re-tidied after each tree operation.·
Use '-' and '+' to shrink and grow the tree drawings.
- Shortcut: Ctrl+T tidies the drawing quickly.

Choose a format for storing the file for future use .
. PR2 the default format. Allows any mix of isolated

nodes and multiple trees. Saves ~.y coordinates
and file references. The best for general use •

. ROY compatible with the Ready!(tm) outline processor.
Ready! allows only- one tree and no isolated nodes.
No coordinates or file references are saved •

• SCR compatible with IBM Script/GML, except for titles.
Reads and writes • :hx. • tags for each node label .

. IND indented ASCII text. No coordinates are saved •

. CRO Windows Cardfile, but reads the index line only.
On output, labels are truncated to 40 characters .

• LST input only; reads a sorted ASCII list and creates
a complete left-to-right filled tree.

45

Table 2 (Page 2 of 3). Prose llllelp Panels
Editing 'odes

Changing The
Trees

Your Wl:>'-1:\1
File

Help :VIe

Double-click in a node to enter a label and double-click
on a file extension to edit a file tied to this node.
- Use the label for brief ideas (up to 250 characters)

or section headings in a document or article.
-Type as normal the first time you enter a label.

After the first time, the label will be in reverse­
image. Just type to replace the old label. Cursor
keys append to or position within it; End moves to
the end; Backspace erases single characters.

-Then: Save the label, click an extension, or Cancel.
- Double-clicking an extension saves the node's label

and filename, then starts the program named in the
[extensions] part of your WIN.INI file.

By choosing the Change Nodes or Change Links items from
the Options menu, you can change the way the tree
looks.

Among the interesting choices in the Change Links box is
the ability to change the way the root of the trees
are pointed.
- The default is North, where the root of each tree

is at the top of the tree.
-Another common choice is West, where the root of

each tree is at the left side of the tree.
You may need to Tidy the Drawing after changing one
of these options, depending on your file format.

When tying a file to a node, Prose II fonms its filename
by appending a 3-digit ID to the first 5 characters of
your workspace filename. You choose from the list for a
file extension, based on your WIN.INI file.

\~hen Prose II automatically starts this program, it ITIJSt
tell lilndows if this is a native Windows application or
not. In the [extensions] part of WIN.INI, make the
program's file extension lowercase for native Windows
applications and uppercase for standard applications.

Example entries, under
wri=write.exe A.wri
pr2=prose2.exe A.pr2
scr"pe2.PIF '.scr

[extensions]:
a native Windows application
a native Windows application
a standard application

Please help me improve PROSE II.
- Bugs: Let me know what bugs you stumble across.
- Improvements: What features would you like me to add?

Since I don't like manuals, what else should I add to
the Helps? Where should I work on performance?
What additional I/0 formats should I support?

-Recordings: Please e-mail me the automatic session
recordings, which I will analyze and parse as part of
my study of user interfaces. Press F2 to leave your
comments; press F3 when you take a lengthy break.

46

3.2 Prose II Implementation
Before beginning the design of Prose fl, I began by understanding the design of an existing struc­
ture editor. PROS£, A Tree-Structured Writing Support System. was developed as a class project
for the Soliware Engineering course at l:C\C-Chapel Hill in Spring 1984. It was implemented in
the C programming language and ran on the l::"IX operating system for the departmental
VAX, 11-780. PROSE was character-based: that is, it used characters on the terminal for drawing
lines. The displayed information was limited to 80x24 characters.

In 1985, I ported PROS£ to the IB\1 PC, including writing my own Curses package for the PC
to simplify the port. Given this background understanding, I built a new structure editor, Prose
II, in 1986 and 1987. It was designed and implemented from scratch to run in the \licrosoftlli
Windows graphical environment. Prose II is based on many of the ideas embodied in PROSE,
although it shares no source code with it. I felt the bond was strong enough that it shares its
name with its progenitor.

Another ancestor of Prose II is tde, a transition diagram editor available on the U:\'IX operating
system running on the Sun Workstation"" (\!ills, 1984). While primarily designed to illustrate
ftnite state machines and state diagrams, tde can also be used as a general-purpose graph-drawing
editor. The primary objects it manipulates are nodes and the arcs among them, which are also
the principal components manipulated by Prose I I. I spent the time to understand the visual
operation of tde before I began implementing Prose II.

The version of Prose II used in this project consists of a single executable ftle, PROSE2. EXE. This
ftle's size is 120,448 b}1es when the tracker was compiled in, and 106,192 b}1es without the
tracker. Thus, the tracker increases the total size by about 13%.

The implementation of Prose II with the tracker is broken into 41 files of source code written in
the C language and 2 files written in assembler. In these ftles are a total of 17,825 lines, which
includes comments and blank lines.

Prose I I source code file sizes, 43 files

range: 39 1 i nes to 910 1 ines
median: 414 1 i nes

mean: 415 lines
std dev: 231

47

CHAPTER 4. PROTOCOL COLLECTION AND
ANALYSIS

The Prose ll structure editor introduced in the previous chapter contains an additional capability
not highlighted there: it can record the commands executed by its users. This recorder thus gener­
ates one complete protocol record for each session. For this study, I built a set of software tools
to analyze these protocol records. This chapter, describing these tools, consists of two large
sections: the first section discusses the protocol record files and how they were collected; the
second section discusses the grammar and parser used to analyze the protocol records.

4.1 Automating Protocol Collection with a Tracker

As described in the first chapter, many of the methods and tools for collecting data about software
usage have been expensive to use and obtrusive to the humans being observed. An automatic
tracker was incorporated into the testbed software system to alleviate these problems. The design
of this tracker is derived from the research of Card, :\loran, and /\ewell (1983). During a session,
all commands performed by a user of Prose ll are automatically written to a new file in the user's
file system. This section describes these data, along with the design and operation of the Prose I I
tracker. Because of the exploratory nature of this study, the rationale for the design decisions is
discussed, as well as alternative approaches.

4.1.1 Content and Format of the Protocol Record Files.

When designing this tracker, I attempted to strike a balance between too fme a granularity (and,
thus, excessive data in each protocol record file) and too general a record. As the tracker captures
each Prose [{command (e.g., "Create a node"), it associates it with the corresponding parameters
and a timestamp. The· tracker fllters out a moderate amount of low-level information; for
example, if a user doodles with the mouse (i.e.; moves the cursor around the window without
making any explicit selection), the tracker records this simply as a pause.

In contrast, the tracker for the WE system (Smith, Rooks, and Ferguson, 1989) records informa·
lion at a fmer level than the Prose ll tracker. The WE tracker records each separate user action;
for example, the "create node" command entails the separate actions of opening a menu, high­
lighting the appropriate menu item, and giving the node a new name. The WE analysis tools
then combine these actions in the first level of protocol analysis; thus, their "Operation Level"
corresponds to the commands recorded directly by the tracker in Prose II.

Prose II is designed for worldwide use, on personal computers running :\licrosoft Windows.
Other details of the actual hardware and software being used are unkno'Wn. As a result, the pro­
tocol record ftles do not contain sufficient detail for a high-fidelity playback of the session on an
arbitrary computer. The reason for insufficient detail is that among sessions and subjects, any of
the following system variables can differ:

48

hardware cm·ironmcnt
Examples are the CPC speed, the screen size and density, the amount of memory, and
the type of disk access (RA\1 disk, hard disk, or floppy disk).

operating system characteristics
Examples are the number of butTers and ftle handles set aside, and other programs that
may be active.

rt-'indmvs parameters
Examples are the size and placement of the windows, the international character set
being used, and the frequency of internal messages.

Prose [[defaults
Examples are the current file format being used, whether a node's children are deleted
if it is deleted, and the size and placement of the \lap and Outline windows.

In contrast, high-fidelity playback is provided in the WE system, since the range of computers it
runs on is small. Researchers analyzing WE recordings have built playback software that
reproduces the details of a user's interaction directly on the display screen. A researcher can step
through a session recording one action at a time, or can pia)· back a session at a variety of speeds
without intervention.

Figure 10 on page 50 shows an example of an entire protocol record ftle generated by the Prose
[[tracker during a session. The session was short (less than a minute), and the user's actions can
be considered trivial, since no text was written in the nodes and the nodes were not saved.

+---+
I Prose II Session Recording (v2.09)
I File B:'RCD1300. THP

~led Feb 08 28:_31:23 1989 1

I
+---+
I Start Stop
]min:sec min:sec

Time Operator
sec

Parameters

+---+
31:23.52 31:29.61 6.09 PAUSE
31:29.61 31:29.78 0.17 CreateNode ID (1) StartPt(14, -18)
31:29.78 31:34.23 4.45 PAUSE
31:34.23 31:34.45 0.22 CreateNode ID (2) StartPt(115, -41)
31:34.45 31:35.44 0.99 PAUSE
31:35.44 31:35.66. 0.22 Create Node ID (3) StartPt(273, -109)
31:35.66 31:44.66 9.00 PAUSE
31:44.66 31:47.96 3.30 New~lorks pace

+ DeleteNode ID (1)
+ DeleteNode ID (2)
+ DeleteNode I D (3)

31:47.96 31:59.49 11.53 PAUSE

Figure 10. The first, complete protocol record tile returned by subject number 28. In this trivial
session. the subject created three nodes, then deleted them by starting a new Prose II work­
space-

The format of a protocol record file, such as this one, closely follows the format designed by
Card, \loran, and ~ewell (1983). This format includes the start time, the stop time, and the
elapsed time for each command, followed by the command name and its parameters. The
timestamp is accurate to within one one-hundredth of second. For bte\~ty, the timestamps
contain only minutes, seconds, and hundredths of seconds. In retrospect, a minor weakness of

49

using Card, :\loran, and :--:ewell's exact format is that it does not handle indcfmitely long periods
of time well. Because there is nothing longer than minutes recorded (that is, hours, days, or
months are not recorded), the tracker (and, therefore, the parser) assumed that no more than one
hour would elapse between consecutive entries. This could be a limitation in systems intended for
actual-use studies: work was often continued across multiple sessions and Prose II windows could
have easily been left running overnight.'

When a Prose II session is started, the tracker devises a unique ftle name for the protocol record,
opens that new tile, and writes a header in the file describing its contents. This seven-line header
contains a date and timestamp for the beginning of the session. In retrospect, some of the envi­
ronment and state variables that may have permitted replay might have been captured in the
header of each protocol record file. For example, by using internal ~Vindows' calls, the tracker
could have recorded the screen size in pixels, and written that information in the header.

:\!any of the individual commands have side-effects: for example, opening a new workspace tile
will cause any existing nodes to be deleted, as shown in Figure !0. Similarly, opening an existing
workspace ftle can cause many nodes to be created and linked together. The tracker records these
side-effects, called secondary commands in this study-in contrast to the primary commands exe­
cuted by the user. :\lost commands can be either primary or secondary, depending on the context
in which they are used. The tracker places secondary commands in a protocol record ftle below
their primary counterpart, indented with a plus sign but with no timestamp.

Another example of a protocol record file, with primary and secondary commands, is shown in
Figure II on page 5!.

+---+
I Start Stop
lmin:sec min:sec

Time Operator
sec

Parameters

+------------~--+
23:45.29 23:48_75
23:48.75 23:50.18
23:50.18 23:50.62

3. 46 Li nkNodes
!. 43 PAUSE
0.44 Linkflodes

+ Breakli nk

Parent!D(7) Child!D(19)

Parent!D(19) Child!D(13)
Parent!D(7) Child!D(13)

Figure I I. A portion of a protocol record file showing primary and secondary commands. This
example shows two Link:-.lodes commands. Linking node 7 to node 19, and then linking node
19 to node 13 caused Prose 1/ to break the existing link between nodes 7 and 13. This sec·
ondary comm~nd, Breaklink, is shoY..n beneath its primary Link:\' odes command.

One result of tracking secondary commands is that the overall size of a protocol record may be
disproportionate to the number of primary commands executed by a subject. A simple operation,
such as moving the root of a tree, may cause many secondary commands to be tracked. In this
example, when the root of a tree is moved, there is one secondary command recorded for each of
its descendants, tracking the change in position of each descendant.

The tracker can also show that a command is invalid or canceled. For example, Prose II does
not allow a linked cycle of nodes to be drawn; when attempting to link the last nodes, the
Link'-' odes command fails since it is invalid with respect to the Prose II data model of a forest of

9 The collecting of elapsed hours would be a simple modification. \Vithout changing Card, \loran, and
~ewell's compact format, a tracker alarm could cause a line to be written to mark the passing of each
elapsed hour.

50

trees. This would be shown in the protocol record as the parameter"-- invalid --."Similarly,
commands corresponding to dialog boxes can be canceled.

An example of a protocol record containing a canceled command is shown in Figure l2 on
page 52.

+---+
I Start Stop
lmin:sec min:sec

Time Operator
sec

Parameters

+---+
40:01.67 40:10.84 9.17 Editlabel !0(3) -- canceled --

Figure 12. A portion of a protocol record showing a canceled command. The subject brought up the
Edit dialog box for editing node J's label, but canceled the command after 9.17 seconds.

To increase runtime speed and decrease storage space, templates for all the command and param­
eter title strings written by the Prose II tracker were compiled internally, as opposed to being
dynamically allocated. Care was taken to reduce their overhead in the Prose II executable module
and in each of the lines written to a protocol record. For example, whenever a string of eight
blanks is to be written, a one-byte tab character is written instead. Careful attention to these
details kept the protocol records small, which improved performance for the user.

I designed the tracker to produce protocol records that are human-readable-in plain English.
The tracker could have produced its output in a more compact, computer-oriented
format-possibly in a straight binary format-but the plain English form accomplishes three
things. First, the protocol records are portable; they can be printed or hand-analyzed without
additional processing. For example, this let me analyze printed protocol records by hand until I
knew enough about users' behavior to construct a parser to produce similar results automatically.

Second, the human-readable format gave subjects the assurance that nothing "underhanded" was
going on in the protocol records. Evel)1hing in a protocol record is immediately readable and
ob,·ious to any subject; they could see that the tracker was not capturing secret data. Secret data
might conceivably consist of any information a user considered private to their own computer,
such as the names and contents of other ftles on their computer. Further, the tracker x'd out all
the letters in the labels and search strings in the protocol records. This preserved the anonymity
of the subjects and their topics, and allowed them to use the system for business purposes without
compromising IB\f confidentiality. Since Prose II and its protocol records were distributed via a
global computer network in a time of heightened concern for computer viruses. For this type of
study to be successful, 'researchers and subjects must be assured that free software and free
recordings were adequately controlled against security problems.

Finally, many commercial products are capable of writing trace records or recording sequences of
user commands. The protocol format used in this project is "application-aware," but is straight­
forward with little additional context information. I designed the techniques described here so
that they could be adopted by future researchers to construct parsers for commercial products that
produce traces or macros.

As seen in the examples, the tracker generates simple characters in the header (e.g., plus signs,
dashes, and bars), rather than "prettier" graphics symbols. I had four reasons for using simple
characters:

• to assure that a user could view the ftle with even the simplest of text editors,
• to assure that it could be uploaded to a host system and sent across a network without char­

acter translation anomalies,

51

• to reduce the overall size of the protocol record files. Subjects were more likely to upload
and return their protocol recordings if their size was relatively small. For example, tab char­
acters were used wherever possible to reduce 8 blanks to a single character.
to simplify its later handling as input to the parser. For example, the parsing software gener­
ated by the C'\IX tools LEX and YACC recognize only 7-bit ASCII characters.

Table 3 on page 53 is an alphabetical list of the 39 Prose lf commands and their possible param­
eters. It also shows precisely when the time value associated with each action is recorded. These
commands are the terminal symbols for the grammar used to analyze Prose II protocol records.

Table 3 (Page I of 2). Commands recorded by the tracker in Prose II, listed alphabetically
Command Same When was the start When was the stop Parameters: " "

time recorded for this time recorded for this indicates no parame-
command? command? ters

Break Link mouse down in a mouse up in a linked Parent!D(),
linked node node ChildiD()

CA~CELED

BreakA.IlLinks menu selection instantaneous -

CANCELED

Change Default menu selection instantaneous ID()

Clear Drawing menu selection instantaneous

CANCELED

ClipboardCopy menu selection instantaneous -

Comment press F2 function key select save or cancel Text()

CANCELED

Copy:\'ode mouse down mouse up StartPt(,)

INVALID

Create:\' ode mouse up instantaneous Node!D() StartPt(,)

CANCELED

INVALID

Delete:'\'ode mouse up in node to instantaneous ID()
be deleted

EditLabel mouse up select any dialog ID() :-.;:ewText()
button l D() CANCELED

Edit!\ ode menu selection return from me ID() Editor() File()

CANCELED

Go To menu selection select OK or cancel Text()

CANCELED

HelpRequest help requested exit ID()

CANCELED

Leave Prose I I lose focus from a regain focus ID(O!l)
Prose II "indow 0: went to a different

window

1: pressed the F2 key

Link:\odes mouse down in a mouse up Parent!D() Chtld!D()
node

CA~CELED

\fain Window Reset menu selection instantaneous -

\tainWindowZoom mouse down mouse up StartRect(,,.)
EndRect(,,)

INVALID

\1ap~ove mouse down mouse up StartRect(,,)
EndRect(,,)

52

Table 3 (Page I of 2). Commands recorded by the tracker in Prose II, listed alphabetically
Command .\'ame When was the start When was the stop Parameters:" -"

time recorded for this time recorded for this indicates no parame-
command? command! ters

\lapSize mouse down mouse up StartRect(,,)
EndRect(.,)

\lap Window mouse down mouse up OPE~ CLOSE

\lap\\"indowRoam mouse dmvn mouse up StartRect(,,)
EndRect(,,)

\lap\\'indowZoom mouse down mouse up StartRect(,,)
EndRect(,,)

\love:\ ode mouse down in a mouse up ID() StartPt(,)
node EndPt(,)

1:-iVALID

:\cwWorkspace menu selection instantaneous ~

CA:--/CELED

Open Workspace menu selection select any dialog File() Format()
button

CA:-iCELED

OutlineWindow\love mouse down mouse up StartRect(,,)
EndRect(,.,)

Out!ineWindowSize mouse down mouse up StartRect(,,)
EndRect(,,)

Outline Window mouse down mouse up OPE!'; CLOSE

Pause end of previous start of next -
command command

Save WorksPace menu selection select any dialog File{) Format{)
button CANCELED

Scramble menu selection instantaneous

CANCELED

SetDelete~ode menu selection instantaneous 0:-iOFF

SetTidy:\fode menu selection instantaneous ON OFF

System leon mouse down mouse up

System~o\te mouse down mouse up StartRect(,,)
EndRect(,,)

SystemSize mouse down mouse up StartRect(,)
EndRect(,,)

SystemZoom menu selection instantaneous

TidyWorkspace menu selection instantaneous ~

TreeGrow press the gray"+" instantaneous ~

key while in Tidy
mode

TreeShrink press the gray"-" instantaneous ~

key while in Tidy
mode

4.1.2 Implementation and Operation of the Tracker

The tracker was implemented by adding a one-line C macro at appropriate places in the Prose li
source code. This line of code was placed at places where it would· capture the appropriate
elapsed time for each command.

53

#define P2mlnformTracker(cmd,ps,lp) if(fRecordPlayStatus==IDDRECORD)\
(void) Sendl~essage (h\·lnd Tracker, (unsigned) (cmd) , (\·lORD) (ps) , (LONG) (1 p))

Figure 13. The C macro definition used in Prose II to contact the tracker

Figure 13 on page 55 shows the source code for this C macro, P2mlnformTracker. A sample
invocation is shown in Figure 14 on page 55. This macro \Vas inserted at the appropriate places
in the Prose II source code for each of the 39 commands. This macro takes three parameters: a
constant containing a command identifier and whether this is its start or finish, a Boolean \'alue
indicating whether this is a primary or secondary command, and a pointer to any parameter infor­
mation needed for the protocol record.

BOOL P2Postordet·Hove (LPNODE lp Thi sNode,
BOOl bFirstTime, /* 1·1arks the first call of this recursive proc t<j
POINT ptDistanceHoved)

{

if (TpThistlode) {
/* update the time that this node was last touched */
P2mGetTime(l pThi sflode-> 1 LastUpdateTime) i

#ifdef BUILDTRACKER

#endif

/* only mark the start if this is a secondary command */
if (!{bPrimaryCmd && bFirstTime))

P2minfonnTracker(PZ HOVE NODE START,
FALSE, 7• this is a secondary command */
(LPHODE)P2mPoint2Long(TpThisHode->pt));

/* update the ne\'f' location of this node */
lpThisNode->pt.x +: ptDistanceHoved.x;
lpThisNode->pt.y += ptDistanceHoved.y;

#ifdef BUILDTRACKER

#endif

)
else

)

PZIIlnfonaTracker(P2_MOVE_NDOE_END, (bPrimaryCntd. & bfirstTime), lpThisHod.e);

/* this implements the post-order walk */
if (P2HasChild(lpThist<ode))

P2Postorder~love{P2FirstChi 1 d{lpThi sNode); FALSE, ptDi stancef.loved);
if ((!bFirstTime) && (P2HasRightSibling(lpThisUode)))

P2PostorderHove(P2Ri ghtSib 1 ing(lp ThisNode), FALSE, ptDistanceHoved);

return(TRUE); /*this node has been moved*/

return(FALSE); /*no further to go; this was not a ·node*/

Figure 14. Example C code, inserted in Prose II to implement the tracker

Figure 14 on page 55 shows the source code, in ·c, inserted in the procedure used to implement
the :\1ove:'\ode command. The tracker is contacted by the statements surrounded by the pairs of
C preprocessor statements

#ifdef BUILDTRACKER

#endif

54

This allowed the tracker to be compiled into Prose I I or omitted by setting compiler flags. Thus,
the decision of whether to include the tracker is made at compile time, not at runtime.

In my frrst design for the tracker, the code that writes the commands and parameters to the
recording ftle was to be an asynchronous Windows process. Prose II would send a message to
that tracking process each time a command was started or completed. '!be tracking process could
have a low priority so that the ftle 1.0 for the tracking would not interrupt a user. Since
Windows uses a message-passing process model, such a design would be clean and straightforward
to implement.

I rejected this asynchronous design after much work because of two reasons:

l. Timing problems were difficult to overcome.

The design required a great deal of state information to be saved in some messages because of
possible race conditions. A simple example of this problem occurs when a node is deleted
before its creation is recorded by the tracker process. \lore complex problems involved
primary commands that had many potential secondary commands; for example, a single
delete command may delete a large tree.

:'\ote that this could be eliminated if the tracker has the highest, preemptive priority in the
system, but this defeats the intention· of operating the tracker at the lowest priority.

2. A synchronous tracker did not appear to affect users' perceived performance of the system.

To solve the timing problem, I implemented the tracker as a synchronous interface, using the
same message passing interface." :"\o perceptible slowdown induced by the tracker was seen,
nor did any subject complain or comment on the performance (except that they thought the
overall system was fast).

Thus, the tracker, as fmally implemented, uses a synchronous interface. This reaffirmed a favorite
software engineering principle: if you can afford the luxury, try alternate designs and see what
happens.

There was a problem with the minimal elapsed time between consecutive commands being less
than the operating system's clock resolution, which is 0.06 seconds in DOS. Whenever this
occurred, the tracker originally showed the elapsed time as 0.00 seconds, which was difficult to
handle in the parser. Therefore, I revised the tracker to force a minimal elapsed time of 0.01
seconds for each primary command. This could have caused a problem if more than six primary
commands were accomplished in less than 0.06 seconds, but this never occurred.

I did not provide a means of saving or checkpointing a protocol record ftle with the Prose II
tracker. In DOS, a ftle .is not committed to disk until it is explicitly closed. So, while a user
could save a workspace ftle at any time (forcing it to be written to disk and closed), there was no
mechanism for writing the protocol record ftle to disk until the session was ended. If a user's
computer crashes or is re-booted for any reason during a session, the protocol record is lost.
Some good times to do checkpointing would have been: 1). whenever the user saves the work­
space file, or 2) during long pauses (a suitable length for a long pause is discussed in later
sections). I did not consider automatic checkpointing of protocol files until after the study was
completed; no subjects reported lost sessions.

Among the drawbacks of distributing this tracker without other forms of concurrent protocol col­
lection (e.g., think-aloud or videotape) is that there is no knowledge of what users are doing or
thinking when they are not using the system. Also, users cannot readily contact those doing the

IO In the top of Figure 13~ I replaced the ~Vindows function PostMessage (which is asynchronous) with
SendMessage (which is synchronous), as shown.

55

study to comment or complain. I built a couple of extra "hooks" into the tracker to give users a
way to step outside the system and leave additional information in the protocol record.

Commentary
By pressing the "F2" function key while using Prose II, subjects could leave com­
ments in the protocol record at any time. This allows subjects to record their
reactions to using this software when they occur. Something an automatic recorder
cannot easily capture is a user's ';attitude" and "intentions"; this function key made
such a capability available, although its use was entirely voluntary.

Section 5.3.3.7 on page 118 lists all the comments left by the subjects during the
study. It is interesting to see that this command was used for many different purposes
by the subjects.

Focus of Attention
By pressing the "F3" function key while using Prose II, subjects could indicate that
they were taking a lengthy mental or physical break during a session. Examples of
this are answering the telephone or going to lunch. When this key is pressed, a
message box appears in the main Prose II window indicating a lengthy pause; selecting
OK in the message box returns the subject to normal operation.

With these function keys, Prose ll provides subjects with commands for interacting with the auto­
mated tracker, and thus with the eventual analyst (and presumably the software developer).

This section has described the operation of the tracker, the handling of each user action, and the
generation of formatted recordings. These protocol records capture user actions at the command
level in a consistent format, easily readable by both humans and computer programs. The next
section describes a grammar, and subsequent computer program, for automatically analyzing and
summarizing a protocol record.

4.2 Automating Protocol Analysis with a Parser
Having the protocol records captured in a regular form-readable by humans and
computers-made their analysis much more tractable than the handcoded methods discussed in
the second chapter. This section describes the grammar developed to describe users' interaction
with the system. It also describes a parser based on that grammar; the parser was the principal
tool for automating the analysis of session protocols.

The grammar and parser described here are designed to categorize portions of an input string.
The input string consists. of symbols that correspond to each line of a protocol record ftle. These
categorizations are represented by the names associated with the intermediate nodes in the
resulting parse trees.

The model of user behavior defmed by the grammar is based on the work of Card, Moran, and
:-<ewell (1983), primarily their ICARUS study (which was described in Section 2.3.2.1 on
page 29). The remainder of this chapter describes how the grammar and parser works. A
summary of the key decisions made in producing these rules and symbols can be found in Section
6.2.2 on page 133.

The grammar is presented below in stages; the description follows a breadth-ftrst strategy of ftrst
providing an overview and then providing successively fmer layers of detail. An important
concept for understanding the grammar is that it is written in terms of levels. Separate sets of
rules are responsible for identifying sequences of symbols in one level and outputting more general
symbols representing that sequence in another higher level. Thus, the output of one level is the
input for another level.

56

First, the grammar symbols, both terminals and non-terminals, are introduced. A general over­
view describes the relationships among the levels and the symbols seen at each level. Each of the
svmbols is listed in table form. :-iext, the overall structure of the grammar is introduced, with an
e~phasis on how the various levels relate. Each level is generated with a separate state machine
(and accompanying logic); these machines are tied together by an Augmented Transition '\ctwork
(AT'-.') structure. Third, a detailed specification of each state machine is presented, along with the
tests and internal structures that further specify the AT'-.'. Finally, a parser is described that
implements this granunar. In this study, the parser serves as the fmal authoritative definition of
the grammar.

4.2.1 Grammar Symbols

The grammar is described in terms of four principal components: sessions, phases, episodes, and
commands.

•

A protocol record for one session is partitioned into phases.

Each phase lasts several minutes.

A single type of activity predominates in each phase.

A phase consists of a sequence of cognitive tasks, called episodes .

There is an underlying pulse in the sequence of episodes in a phase, in which episodes of
tree construction and writing alternate with periods of inaction and housekeeping. ·

These periods of housekeeping and inaction (here called housekeeping episodes) delimit
the periods of tree construction, writing, and editing (called constructive episodes).

• The constructive episodes and housekeeping episodes are composed "of sequences of indi­
vidual user commands and intervening pauses.

Each command lasts a few seconds or less.

Commands are the atomic elements of the protocol record.

Figure 15 on page 59 illustrates a generic parse tree. It shows a session composed of two phases,
three episodes, and eight total commands. The S)mbols for the pauses between each pair of com­
mands are not shown in this figure. An actual parse tree, showing actual commands, pauses,
episodes, phases, and a session is shown in Figure 2 on page 6.

57

.{B
!Episode I

I command I

Figure 15. A simple, generic parse tree

The tenninal symbols in this grammar correspond to individual user commands. A sequence of
commands (and their parameters) is classified as an episode, the first level of non·tenninal
symbols. Table 4 on page 60 classifies the 39 different Prose II commands, indicating whether a
particular command is pin-sed as part of a housekeeping episode or a constructive episode. These
39 commands, plus Pause, comprise the tenninal symbols for the Prose II grammar.

58

Table 4. Classification of the Prose II commands,
grouped by type of episode. Each of these com*
mands was introduced in Table 3 on page 53 .

Commands in Housekeeping Epi- Comnumds in Constructh·e Epi-
sodes so des

Pause Breaklink
Change Default BreakAHUnks
ClipboardCopy Copy:"\ ode
Go To Create~ ode
\lain Windo\vReset Delete:"\ ode
:\lain Window Zoom Edit Label
\fap\.love Edit:\ ode
\fapSize Link:'\odes
\lap Window ~IoveN" ode
:\lap\\'indowRoam Scramble
\lapWindowZoom
Outline\Vindow\tfove
0 utline \VindmvSize
Outline Window
Save Workspace
SetDelete\lode
SetTidyl\lode
System\1ove
SystemSize
System Window
SystemZoom
TidyWorkspace
TreeGrow
TreeShrink
Long Pause
Clear Drawing
Comment
Help Request
Leave Prose II
:NewWorkspace
Open Workspace
System leon

These two classes of episodes are divided into individual types of episodes that further classify the
sequence of commands. For example, some housekeeping episodes consist solely of session
maintenance, such as saving the workspace and closing unneeded windows, while others involve a
change in the focus of operations, such as moving to other regions of the workspace and zooming
in on a specific region.

Table 5 on page 61 classifies the episodes identified by the grammar from sequences of Prose II
commands. These 20 different episodes comprise the first level of non-terminal symbols for the
grammar. The names of the episodes describe the types of activity being done in that episode.
We devised the names by successive cycles of listing the representative kinds of activity we
expected to see during sessions, and then observing sequences of commands that indicated each
particular kind of episode.

59

Table 5. Taxonomy of Prose ff episodes
Housekeeping Episodes ConstructA·e Episodes

Cleanup Assembled trees
Cleanup and Take Stock Broke existing links
Help Request Created new trees
Long Pause Created solo nodes
\tedium Pause Deleted nodes
Refocus Edited existing nodes
Take Stock Grew existing trees
Tracker Comment Hooked existing nodes to trees

\loved existing nodes
Start over
Unproductive work

Phases of work span one or more constructive episodes, including any intervening housekeeping
episodes. They represent the broad categories of work executed by users of Prose II. For
example, when creating a document from scratch, users often begin with several episodes of
exploration, where they are laying out their initial ideas, labeling them, and rearranging them
before connecting them into larger structures.

The idea of phases of work was introduced by Card, Moran, and :\"ewell (!983). Table .6 on
page 61 classifies the phases identified by the grammar from sequences of episodes. These 7 dif­
ferent phases comprise the third level of non-terminal symbols for this grammar. Their names
and descriptions were based on writing research and on the specific operations and capabilities of
Prose II.

Table 6. Taxonomy of
Prose II phases
Phases identified in Prose ll ses-
sions

Bottom Up Construction
Oefme Hierarchies
Document Revision
Exploration
:'\ew Workspace
Top Down Construction
Tree Structure Revision

Finally, the grammar describes a session as consisting of one or more phases. A single session is
the highest non-terminal symbol in the grammar. A session could be viewed as the start symbol
for a top-down parse. ·

4_2_2 Design and Operation of the Grammar

This subsection contains the general description of the rules that map sequences in one level of
the grammar to individual symbols in the next higher level. At this degree of detail, the architec­
ture of the grammar is influenced by the architecture of the parsing program that implements it.
Thus, the grammar rules are described for a particular level in terms of a pass for the parsing
program that carries out that part of the overall analysis.

The granamar rules are described in their relationship to five passes. Passes 0 and l are actually
preprocessing steps, and thus their operation and effect are not discussed in this overview. Passes
2 and 3 map commands to episodes. Pass 4 maps episodes to phases which, in tum, are gathered
to form the session.

The same generic parse tree shown in Figure 15 on page 59 is shown below, but associating each
level of the parse tree with the grammar passes that handle its categorization.

60

Pass 4 Passes
2 and 3

!Episode!

Passes
a and 1

{
B
JcommandJ

Figure 16. The same parse tree, showing corresponding grammar passes for each level. lmplemen·
tation details of the parse have been omitted. For example, commands are sttown as single
symbols; they actually begin as text strings in a file that are reduced to. single symbols by Pass
0. Also, the pauses between commands are not shown.

:\o portion of the overall grarrunar needs power greater than that of a context-sensitive grammar
to describe its operation. Each pass, with its corresponding grammar, is introduced below.

Pass 0

Pass I

Translates a human-readable protocol record into 16-tuples, one for each primary and
secondary command. (n-tuples are explained, with an example, in Figure 21 on
page 69.)

Type 2 power: a context-free grarrunar can describe this pass. The strings of English
that it reads have a context-free syntax: for example, parentheses must be properly
nested for label parameters.

Gathers selected subsequences into a single 16-tuple.

'rvpe I power: a context-sensitive grammar can describe this pass. Pass I reads in an
arbitrarily long sequence of S)mbols and decides whether to output that string or a
single replacement symbol. If the original string is to be output, it must be in FIFO
order, which precludes using a push-down automaton.

61

Pass 2

Pass 3

Pass 4

Segments the constructive episodes by determining and characterizing the house­
keeping episodes.

Tvpe 3 power: a fmite-state machine can describe this pass. Pass 2 reads in a string of
input symbols, and generates a single output symbol corresponding to its current state
at the end of a housekeeping episode.

Characterizes the constructive episodes.

Tvpe I power: a context-sensitive grammar can describe this pass. Pass 3 builds a
great deal of context information (for example, the current tree hierarchy) as it reads
each new symbol. It generates one or more output symbols at the start of the next
housekeeping episode or at the end of the input string. The amount of context infor­
mation it keeps is proportional to the length of the entire input string.

Distinguishes phases in the sequence of constructive episodes.

Tvpe 3 power: a fmite-state machine can describe this pass. Pass 4 reads in a string of
input symbols, and outputs a single symbol whenever the state machine indicates a
reset.

The overall relation of these passes can be seen in Figure 17 on page 63.

Figure 17. Data flow diagram for the parser

The input to Pass 0 is an actual protocol record file for one user's session. The summary and
parse tree are constructed using the intermediate results of passes 0, I, 3, and 4. Otherwise, pass I
uses, as its input, the output of Pass 0, and so on through each of the other passes.

A lot of context information is carried along in these passes, but at any point in the input
sequence, the current state of each pass is always valid and can be determined. Hence, every state
of every pass can be considered one step away from a stop state, because a user could have been
interrupted or the session could have been ended at any time.

Three passes do most of the important granamatical analyses: passes 2, 3, and 4. To describe the
details of these passes, additional terminology will be introduced here to make the diagrams that
follow more succinct.

p designates a pause
Ch designates a housekeeping command
Cc designates a constructive command
Eh designates a housekeeping episode
Ec designates a constructive episode
Ph designates a phase S}mbol

For these three important passes, the parser can be illustrated by the following example diagram.
As a black box, these three passes reduce an arbitrary sequence of command symbols to a
sequence of phase symbols.

62

Ch, p, Cc, p,Cc, p, Cc, p, Ch, p, Ch, p, Ch, p, Cc, p, Cc, p, Cc, p, Cc, p, Ch,p, Ch,... Passes Ph, Ph, ...
--------------------~-------------------------· 2, 3,

and 4

In more detail, these three passes perform discrete transformations on their respective input
streams.

Pass 2: compresses sequences of housekeeping commands in1o one or more housekeeping epi­
sodes. For example, an input sequence like the following:

Cn,p,Cc,p,Cc,p,Cc,p,Cn,p,Cn,p,Cn,p,Cc,p,Cc,p,Cc,p,Cc,p,Cn,p,Cn, ••• ~

would produce an output sequence where strings of housekeeping commands (Ch) are reduced to
housekeeping episodes (Eh).

[""""i
jPass i Eh,Cc,p,Cc,p,Cc,Eh,Eh,Cc,p,Cc,p,Cc,p,Cc,Eh, .•.

___.~

Pass 3: compresses sequences of constructive commands into constructive episodes. For example,
an input sequence like the following:

£h,Cc,p,Cc,p,Cc,£n, £h,Cc,p,Cc,p,Cc,p,Cc, En, ••• ~

would produce an output sequence where strings of constructive commands (Cc) are reduced to
constructive episodes (Ec). Since Eh symbols are passed through unchanged, the output of pass 3
is a stream of interspersed Eh and Ec symbols.

Because they operate on different input symbols, passes 2 and 3 could have been combined into a
single pass. Separating them made their description and implementation more modular. It also
clearly separated the Type 3 grammar used for Pass 2 from the Type l grammar used for Pass 3.

Pass 4: compresses sequences of related constructive and housekeeping episodes into phases. For
example, an input sequence like the following:

ii
Eh,~.~.~.~.Eh, ..• !hSS :

-----------------------------1 4 r--+
L.___j

would produce an output sequence where strings of episodes (Eh and Ec) are reduced to phases
(Ph).

63

~ .Pass 1 Ph,Ph, ... --·! 4 'f-' _____________ .,.

Each of these three passes are previewed in more detail below. Rudimentary state diagrams are
used to show the overall handling of classes of symbols; the actual details of the handling of spe­
cific symbols and their parameters are described later in this chapter, as are the implementation
details .

... 2.2. I Overview of Pass 2

Pass 2 categorizes sequences of housekeeping commands as housekeeping episodes. Sequences of
housekeeping commands (Ch) are delimited by sequences of constructive commands (Cc). After
a sequence of housekeeping commands, any constructive command causes a symbol corre­
sponding to a housekeeping episode (Eh) to be output. Constructive commands pass unchanged
through Pass 2. Thus, the effect of Pass 2 is to consolidate Ch's into Eh's, leaving the Cc
symbols alone.

An overview of Pass 2 is shov.n in the following state diagram.

Cc, output Cc some Ch

Ch

I +

EJ states
1- 10 .

t some Ch, output Eh I
Cc, output EhCc

F1gure IS. State machme overnew for Pass 2

States I through 10 of this state machine operate sinailarly, and are thus represented as a single
node in Figure 18 on page 65. For each of.these states, an input symbol causes the machine to
either stay in the same state, make a transition to state 0, or make a transition to some other
state. Depending on their value and the current state, some members of Ch cause a transition to
state 0 and generate an output symbol. The remaining members of Ch may or may not cause a
state transition, but they generate no output symbol. Only when a transition is made to state 0 is
a..-1 output s}mbol generated.

Constructive commands (Cc) that follow housekeeping commands (Ch) always cause a transition
to state 0 and cause an output symbol to be generated. Constructive commands in state 0 cause
no state transition, although they are directly output as output symbols.

The rules that describe the different actions are described in Section 4.2.3.3 on page 73.

64

4.2.2.2 Overview of Pass 3

Pass 3 categorizes sequences of constructive commands as constructive episodes. Sequences of
constructive commands (Cc) arc delimited by the housekeeping episodes (Eh) from pass 2. Afier
a sequence of constructive commands, any housekeeping episode causes one or more constructive
episodes (Ec) to be output. Although they cause Ec output symbols to be generated, Eh symbols
themselves are passed through unchanged.

An overview of this pass is shown in the following state diagram.

Eh, output Eh Cc, store info

Cc, store info

I
. u EJ

t Eh, output EcEh I
F1gure 19. State machme overv1ew for Pass 3

Pass 3 is strongly context dependent. Its operation is unconventional, as are many Type I
parsers. Its overall state operation appears simple; Cc symbols are accumulated by Pass 3 until an
Eh symbol is encountered. Each Eh symbol causes at least one output symbol to be generated.
Determining which output symbol(s) to generate, characterizing the constructi,·e episode, is the
complex part of Pass 3' s operation.

store info and output Ec are extensive operations that involve building and resetting contextual
information about the order of operations and the ongoing structures being built in this pass.

store info consists of the following operations:

!. Look at the exact contents of Cc, including what command this is, its timestamp, and the
value of its parameters. In some cases, increment counters, counting such things as the
number of new nodes created in this constructive episode.

2. Add the command to a history list. This is a list of the Cc symbols seen since the last Eh.
3. Update the global data objects. Since the user was using the system to build nodes and trees,

the global data objects here consist of an internal representation of all the nodes built so far
and their position in trees.

output Ec consists of the following operations:

!. Decide the primary (and any secondlll)·) Ec symbols to be output, based on
• counter values
• the history list for the episode
• the state of the global data objects
• a set of production system rules, which are conditional statements evaluated in a pre­

defmed order.
2. C pdate the global data objects, if necessary.
3. Reset the history list and all the counters.

65

Each time a constructive episode is identified, at least one output symbol is generated. I lowever,
because of the complexity of the sequence of operations in an episode, secondary descriptions of
the episode may also be generated. For example, in a single episode a user might both construct
a tree and delete a set of standalone nodes. A primary Ec symbol is output, along with a sec­
ondary symbol. Pass .J uses these primary and secondary constructive episode symbols (which
carry the same timestamp) to further classify the phase. These two different types of symbols are
described as Ecp and Ecs in the discussion of Pass 4 that follows.

The detailed operation of Pass 3 is described in Section 4.2.3.4 on page 78.

4.2.2.3 Overview of Pass 4

Pass 4 categorizes sequences of constructive episodes as phases. Groups of similar input symbols
map onto a single symbol. Of the input symbols, Pass 4 looks only at the primary constructive
episodes. Housekeeping episodes, which were used to delimit the constructive episodes in Pass 3,
do not affect the phase symbol output by Pass 4, since they do not describe constructive work on
a document.

An overview of this pass is shown in the following state diagram.

Eh Eh, Ecs, & some Ecp

'--'---+EJ-Ec-,.[J_--'

some Ecp,
output Ph

Figure 20. State machme o.-emew for Pass 4

I - 7

some Ecp,
output Ph

, ,

0
Eh, Ecs, & some Ecp

Pass 4 consists of 8 distinct states, here reduced to 3. A full state diagram for pass 4 is a mesh,
with its 29 inputs causing different transitions in the 8 states. After seeing a constructi\·e episode,
Pass 4 never returns to state 0. Housekeeping episodes (Eh) never cause a state transition.

There are two types of constructive episodes, Ecp (primary constructive episodes) and Ecs (sec­
ondary constructive episodes). Depending on their value and the current state, some members of
Ecp cause a state transition; the remaining members of Ecp cause no state transition. If a transi-

66

tion to a new state is made because of an Ecp symbol, a phase symbol (Ph) is output; the phase
describes the state that was just left.

Depending on their value and the current state, members of Ecs may or may not cause a state
transition. As a secondary constructive episode, these symbols never directly cause an output
symbol to be generated, but may change the current state, and thus influence what the next
output symbol will be.

The detailed operation of Pass 4 is described in Section 4.2.3.5 on page 83.

4.2.2.4 Overview Summary

Passes 2, 3, and 4 form the core of the grammar. They specify the transformation from individual
command symbols into a sequence of phase symbols that defme a session. The subsection that
follows contains more detail on the construction of these passes, as well as the preliminary passes
that read and transform the text in actual protocol records. Pass 0 does the translation from text
into grammar symbols. Pass I clarifies the association between certain command and their
parameters, as well as reorganizing a few specific sequences of commands. Pass 1 is necessary
because of sequencing anomalies in the tracker. For these passes, as well as passes 2 through 4,
the meaning and usage of each input and output symbol is described. The extended logic for
processing these symbols is then presented, showing the transitions for each symbol in each state.

4.2.3 Details of the Grammar Operation

This subsection provides the detailed state machines and granunar elements introduced in the pre­
ceding section. Appendix B on page 170 contains a full example of a parse, showing the original
input ftle and each of the intermediate files for one of the protocol tec~rds in the study.

In passes 2, 3, and 4 of the grammar, a sequence of commands is collapsed into an episode, and
these episodes are similarly collapsed into a phase. To preserve sufficient status of what was seen,
the grammar carries some contextual information forward from one pass to another. For
example, a user might have saved a workspace during an episode where the predominant activity
was creating and editing nodes. The fact that a save occurred must be carried forward.

To carry this information between passes, one of the fields carried between the passes is a col­
lection of Boolean flags. For example, a Boolean flag indicates whether a workspace was saved
during that episode. As another example, Pass 0 sets a Boolean flag whenever the current
command is invalid or canceled. Similarly, Pass 3 of the granunar looks at how many of the
commands in an episode were invalid. When it sees commands with the "invalid command" flag
set, it increments its counter of invalid commands. These thirteen flags are listed below.

1. Is the \lain Window showing?
2. Is the \lap Window showing?
3. Is the Outline Window showing?
4. Is Delete \lode on?
5. Is Tidy :vfode on?
6. Was the workspace tidied?
7. Is this the first editing of this label?
8. Is this the first editing of this node's contents?
9. Was this command canceled?
10. Was this command invalid?
11. Was this constructive episode a complex one?
12. Was a file saved in this episode?
13. Did the subject start over in the workspace?

67

The flags are first assembled in Pass 0, which translates the protocol record text into grammar
symbols. One example of this translation is the"-- invalid --,"discussed in Section 4.1.1 on
page 49. A grammar symbol for an invalid command would consist of the command and its
timestamp, yet that flag indicating it is invalid would be set by Pass 0.

4.2.3.1 Pass 0: Translating the Tracker file

This pass of the grammar carries out the first step in analyzing a user's session: it translates a text
tile, i.e., a protocol record, into distinct grammar symbols used in the later passes. Each line of
the input file is translated into a single output symbol, consisting of up to 16 numbers; this is
known as a 16-tuple. This group of numbers captures all the relevant information about one
single command. Thus, each line in a protocol record is translated into a single 16-tuple, whether
it is a primary command, a secondary command, or a pause. An example of one of these
16-tuples is shown in figure 21 on page 69.

An example line from a protocol record, indicating a pause:

39:52.00 39:59.91 7.91 PAUSE

The corresponding 16-tuple output generated by Pass 0:

0257, 0239200, 0239991, 0000791, 0001, 0000, 0, 0, 0, 0, 0, 0, 0, e, e, 0

Figure 21. An example protocol line and the corresponding 16-tuple generated by Pass 0

Reading across the 16-tuple line in Figure 21 on page 69: "0257" is. the internal identifier used by
the parser for Pause; "0239200" and "0239991" are the start and stop times of this pause in hun­
dredths of seconds; "0000791" is the elapsed time of this pause in hundredths of seconds; "000 l"
indicates that this 16-tuple represents one command (this field is not important until later passes,
where it counts the number of commands in an episode); "OOoo·: indicates the thirteen bit­
significant Boolean flags carried between passes. The remaining ten fields are specific to the
parameters used in each command (they would contain such fields as node ID and coordinates).

One concern was that users might alter a protocol record ftle in such a way that it could not be
parsed. If this occurred in a simple manner, I expected to be able to correct the problem on an
individual basis. "o protocol records were altered by any of the subjects, but, as mentioned in
Section 4.2 on page 57, one subject did attach a paragraph of text to the bottom of a protocol
record. The syntactic analyzer of Pass 0 terminated when it encountered the beginning of this
paragraph. I moved the paragraph to a separate ftle with a text editor, which corrected the
problem.

Figure 22 on page 70 shows an example of the input to Pass 0, and the corresponding output.

68

+---+
I Prose II Session Recording
I File: c:-RCD3AlA.THP

Sat flov 26 09:39:52 1988 I
I

+---+
I Start Stop Time Operator Pa1·ameters
lmin:sec min:sec sec
+---+

1 39,52.00 39:59.91 7.91 PAUSE
2 39, 59.91 40:00.07 0.16 Openl-.lorkspace Fi I e (' !BI!SC.SCR') Format('.PR2')
3 + Createtlode !0(1)
4 + Createllode 10(21
5 40,00.07 40:02.87 2.80 leaveProseii 10(0)
6 40:02.87 40:03.15 0.28 PAUSE
7 40:03.15 40:16.83 13.68 PAUSE
8 40d6. 83 40:35.61 18.78 Open\olorkspace Fi I e (' 181-!SC. PR2') Format('.PR2')
9 + C1·ea tetlode 10(11

10 40:35.61 40:58.84 23.23 PAUSE
ll 40:58.84 41:15.60 16.76 PAUSE
12 41:15.60 41:18.62 3.02 PAUSE
13 41:18.62 41:19.50 0.88 Ed itt/ode 10(1) Edftor('notepad. exe ') Flle{-'1Bf·1SC001. PRr)
14 41:19.50 41:39.98 20.48 leave Prose!! 10(01
15 41d9.98 41:53.11 13.13 PAUSE

1 0257, 0239200, 0239991, oooo791, ooo1, oooo o o o o o o o a o o
2 0286, 0239991, 0240007, 8000016, 0001, 0000 0 0 0 0 0 0 0 0 0 0
3 0264, -0000001, -0000001, -0000001, 0001, 0000 1 0 0 0 0 0 0 0 0 0
4 0264, -oooooo1, -oooooo1, -oooooo1, ooo1, oooo 2 o o o o o o a o o
5 0275, 0240007, 0240287, 0000280, 0001, 0000 0 0 0 0 0 0 0 0 0 0
6 0257, 0240287, 0240315, 0000028, 0001, 0000 0 0 0 0 0 0 0 0 0 0
7 0257, 0240315, 0241683, 0001368, 0001, 0000 0 0 0 0 0 0 0 0 0 0
8 0286, 0241683, 0243561, 0001878, 0001, 0000 0 0 0 0 0 0 0 0 0 0
9 0264, -0000001, -0000001, -0000001, 0001, 0000 1 0 0 8 8 0 0 0 0 0

10 0257, 0243561, 0245884, 0002323, 0001, 0000 0 0 0 0 0 0 0 0 0 0
11 0257, 0245884, 024756o, 8001676, oao1, oooo o o o o o o o o o a
12 0257, 0247560, 0247862, 0008302, 0001, 0000 0 0 0 0 0 0 0 0 0 0
13 0271, 0247862, 024795a, 0000088, 0001, 0000 1 0 0 0 0 0 0 0 0 0
14 021s, 0247950, 0249998, ooo2048, ooo1, oooo o o o o o o o eo o
1s 0257, 0249998, 0251311, ooo1313, ooo1, oooo o o o o o o o a o o

Figure 22. An example of Pass 0 input and output. The bottom half of this figure illustrates the
results of running Pass 0 against the protocol record show in the top half. The fifteen lines are
numbered to show the one·to·one correspondence.

An extensive example of the output from Pass 0 is shown in appendix B.2 on page 178.

4.2.3.2 Pass 1: Combining Common Sequences

This pass of the grammar carries out some minor corrective surgery on the sequence of granunar
symbols representing the commands. The granunar described here is dependent on the sequence
of the input symbols it received. Pass 1 serves to correct some minor anomalies in the sequence
of input symbols. It also widens the set of symbols considered by later passes; for example it
changes the symbol SetTidy:'vlode with parameter Off into a new symbol: SetTidy\lodeOff.

Pass 1 is the simplest of the granunar passes. It was added late in the process of developing the
granunar-long after the protocol collection had been completed. In this pass, sequences of com­
mands that could have been represented with a single symbol are combined into that single
symbol. For example, setting Tidy\lode on and then off is equivalent to executing the
Tidy\Vorkspace command. This pass handles side-effects of the command structure of Prose II
such as this example. The conversions done in Pass 1 cannot easily be done in later passes
because the symbols involved deal with both housekeeping and constructive commands (these are
discussed in Section 4.2.3.3 on page 73).

69

Pass l handles only three cases:

!. When the Edit:\ode and LeaveProsell commands are adjacent, they signal that the subject
has started an editing program to edit the contents of a node. Pass l maps either of the
following sequences onto the single symbol Edit :'-lode.

or

Edit:'\ode
LeavcProsell

Leave Prose II
Edit:'\ode

2. The sequence SetDelete\lodeOn, Delete:\'ode, and SetDelete\lodeOff signals the deletion of
a single node. Prose II also has a single command for deleting one node, so this longer
sequence is mapped onto the single symbol Deletel\ode. ('"" represents a Kleene star, indi­
cating this symbol could occur zero or more times.)

SctDelete\lodeOn
pause*

• Delete!'\ode
pause*

• SetDelete\lodeOff

3. The sequence of SetTidy\lodeOn followed by SetTidy\lodeOff serves to tidy the workspace.
Prose II also has a single command for tidying the workspace, so this longer sequence is
replaced by this symbol Tidy\V orkspace.

• SetTidyModeOn
• pause"'
• SetTidyModeOff

A custom lexical analyzer reads the output from Pass 0, combining the commands with their
parameters to form unique symbols. It converts the 40 Pass 0 output symbols (39 commands
plus Pause) into 50 different symbols; for example, the SetTidY:I<Iode command with the param­
eter "0:-<': is converted to the internal symbol SetTidy\lodeOn.

The syntactic analysis of Pass I is implemented with a finite-state machine and a FIFO stack. At
any time in the parse, many commands can be on the stack. Pass I handles the generation of an
output symbol in one of two ways: either a single symbol is output and the stack is flushed, or
all of the symbols on the stack are output, in FIFO order. Thus, if the state machine so indi­
cates, the symbol from the lexical analyzer is pushed on the stack and another symbol is read.
When the state machine indicates the stack should be flushed, either the contents of the stacked
are replaced by a single symbol, or each of the symbols on the stack is output.

:-.:o processing is done by Pass I if the input command is a secondary command, or if the
command is canceled or invalid. The output symbol is identical to the input symbol, with no
changes to the current state.

Pass I Finite-State Machine: The following table describes the states defined for the Pass I
finite-state machine.

70

Pass I State Description of the state

0 Start state.

l Saw Edit:'\ ode, waiting for LoscFocusShort or LoscfocusLong

2 Saw LosefocusShort or Losefocuslong

3 Saw SetDelete\lodeOn, waiting for Delete:\ ode

-1 Saw IJclcte"ode, waiting for SetDelete\lodeOff

5 Saw SetDelctc.\lodcOff

6 Saw SetTidy\IodcOn. waiting for SetTidy\lodeOff

7 Saw Seifidy\lodeOtf

8 Saw L.oseFocusShort or LoseFocusLong. waiting for Edit~ode

9 Saw Edit:\ode

Table 7 (Page I of 2). Pass I finite-state machine
State Same:r > Sturt Saw Saw Saw Saw Saw Saw Saw Suw Suw

State Edit· Lose- Set Delete De let Set- Set· Lose- Edit-
A ode Focus- Delete Sode Mode- Tidy- Tidy- Focus- Node

.rrr.r Jfode- Off .\lode- .'tlode- .r:.r.r:.r
On o. Off

Inputs State Numbers-> 0 I 2 J 4 5 6 7 8 9

BreakA .. HLmks -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
Break Link -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
ChangeDefault -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
C!earDra\.\<ing -(B) O(B) O(C) O(B) O(B) 0(0) IX B) O(E) O(B) O(C)
ClipboardCopy -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B)· O(C)
Copy Node -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
CreateS ode -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
Delete Node -(B) O(B) O(C) 4(A) O(B) 0(0) O(B) O(E) O(B) O(C)
EditLabel -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
Edit;\ode l(A) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) 9(A) O(C)
Go To -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
HelpRequest -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
Link:"\odes -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
LoseFocusLong S(A) 2(A) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
LoseFocusShort S(A) 2(A) O(C) -(A) -(A) 0(0) -(A) O(E) . O(B) O(C)
.\fain\VindowReset -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
.\lain Window Zoom -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
.\·fap~tove -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
.\tapSize -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
.\lapWindo\..close -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
.\lapWindowOpen -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
.\fapWindowRoam -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
\IapWindowZoom -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
\tove:-.;ode -(B) O(B) O(C) O(B) O(B) 0(0)" O(B) O(E) O(B) O(C)
:\ewW orkspace -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
Open Workspace -(B) O(B) O(C) O(B) !l:B) 0(0) !l:B) O(E) O(B) O(C)
OutlineWindowCiose -(B) O(B) O(C) O(B) O(B) !l:O) O(B) O(E) O(B) O(C)
OutlmeWindow.\1ove -(B) O(B) O(C) O(B) O(B) 0(0) !l:B) O(E) O(B) O(C)
OuthneWindowOpen -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
OutltneWindowSize -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
PauseTypeO -(B) -(A) O(C) -(A) -(A) 0(0) -(A) O(E) O(B) O(C)
PauseTYJ>el -(B) -(A) O(C) -(A) -(A) 0(0) -(A) O(E) O(B) O(C)
PauseType2 -(B) -(A) O(C) -(A) -(A) 0(0) -{A) O(E) O(B) O(C)
PauseType3 -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
Save Workspace -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
Scramble -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
SetDetete~lodeOff -(B) O(B) O(C) O(B) ;cA) 0(0) O(B) O(E) O(B) O(C)
SetDelete:-.todeOn J(A) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(Bl O(C)
SetTidy~lodeOIT -(B) O(B)- O(C) 0(8) O(B) 0(0) ;(A) O(E) O(B) O(C)
SetTidy\lodeOn 6(A) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
Systemlcon -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
System\.fove -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
SystemSize -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
SystemWindowCose -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
SystemWindowOpen -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
SystemZoom -(B) O(B) O(C) O(B) O(B) 0(0) O(B) O(E) O(B) O(C)
Tidy Tree -(B) O(B) O(C) O(B) O(B) 0(0) -(A) O(E) O(B) O(C)
Tid]Workspace -(B) O(B) O(C) O(B) O(B) 0(0) -{A) O(E) O(B) O(C)
TrackerComment ~~~ ~~~ ~g ~~~ 0(~~ ~g~ ~~l ~~~ ~~~ ~g Treelrrow OIB

71

Table 7 (Page I of 2). Pass I finite-state machine
State .Y11mes > Start Saw Saw Saw SIIW StiW Saw Saw Saw Saw

State Edit- Lose- Set Delete Delete Set- Set- Lose- Edlt-
Sode Focus- Delete Sode .\lode- Tidy- Tidy- Focus- ,Yode

x:n:x Mode- Off J!ode- .\lode- .rxx.r
On On Off

Inputs St11te .\"umbers--> 0 1 2 3 4 5 6 7 8 9

TreeShnnk -(B) O(B) O(C) O(B) OtB) O(D) O(B) O(E) O(B) O(C)
secondary, cam:eJed, or mvahd ·(B) O(B) O(C) O(B) O(B) O(D) O(B) O(E) O(B) O(C)
cummand

end of input -(B) O(B) O(C) O(B) O(B) O(D) O(B) O(E) O(B) O(C)

Pass 1 Function
Output Code

A Add this input symbol to the fiFO stack.

B Add this input symbol to the Fl FO stack, generate one output symbol for each
symbol currently on the stack, in FIFO order, then clear all symbols in the FIFO
stack.

c Generate the output symbol Edit:\ode, and clear all symbols in the FIFO stack.

D Generate the output symbol Delete, ode, and clear all symbols in the FIFO stack.

E Generate the output symbol Tidy\Vorkspace, and dear all symbols in the FIFO
stack.

An extensive example of the output from Pass l is shown in appendix B.3 on page 185.

4.2.3.3 Pass 2: Segmenting and Characterizing Housekeeping Episodes

At this stage in the parsing process, the goal is to find the beginning and end of episodes, and to
characterize each episode. Between consecutive constructive episodes are periods of housekeeping
activities; intervening housekeeping episodes may be as simple as a six-second pause. Pass 2
determines each of the episodes of housekeeping activity; what is left are the constructive episodes,
which are characterized by Pass 3.

Pass 2 reduces selected sequences of 16-tuples into a single 16-tuple. The output symbols repre­
sent delimiters between sequences of productive work. Pass 2 operates using a finite-state
machine for the symbols in the housekeeping episodes. C pan reading each new housekeeping
symbol, it looks up the next state, and goes to that state. Cpon encountering a constructive­
episode symbol, Pass 2 outputs a new symbol that characterizes the state it was in, but without
characterizing where it has wandered through the state table.

Some special housekeeping symbols also cause a symbol to be output. These s)mbols are treated
differently because they indicate a "meta-housekeeping" command by the user, not directly related
to working with the housekeeping itself. The user has jumped out of the current working envi­
ronment.

time spent in external windows,
a physical or mental break, signalled to the tracker,
a long pause (more than lOO seconds),
asking for help, or
leaving a comment in the tracker.

Table 8 on page 74 classifies the SO output symbols generated by Pass l, indicating whether a
particular command is parsed as part of a housekeeping episode, a meta-housekeeping episode, or
a constructive episode. Pass 2 determines and characterizes these first two categories of episodes.

72

Table 8. Classification of Pass I output symbols, grouped by episodes
Housekeeping Cof7UTfllnds (handled J-feta~housekeeping Commands Constructive Commands (handled
by Pass 2) (handled by Pass 1) by Pasr 3}

Pause Long Pause Break Link
ChangcDcfiult Clear Drawing BreakAIILinks
ClipboardCopy Comment Copy:'\ode
Go To HclpRequest Create:\ode
\fain \Vindo,.,.·Reset LeaveProsell Delete~ode
\1 ain\\"indo\vZoom :\"ew\\'orkspace Edit Label
\fap\fove Open Workspace Edit:"l'ode
\lapSize System leon Link~odes
\lap Window \1ove:--\ode
\lapWindowRoam Scramble
\lap\VindO\vZoom
Outline\Vindow\fove
Outline\VindowSize
Outline Window
Save Workspace
Set0elete\1ode
SetTidyMode
System\1ove
SystemSize
System Window
SystemZoom
TidyWorkspace
TreeGrow
TreeShrink

A grammar with type 3 power, a fmite-state automaton, was used for Pass 2 to characterize the
housekeeping episodes. I experimented with whether more power was needed for Pass 2. To
correctly characterize a housekeeping episode, Pass 2 needs to say .what was happening in the
context of a string of symbols. Because it must make a distinct decision on every input symbol in
every state, a fmite-state machine generally does not handle singular events well. Perhaps the
power of a context'free or context-sensitive grammar was required, I wondered. At one point, I
generated all the symbol sequences that are reduced by Pass 2, and, surprisingly, the fmite-state
machine (FS\1) turned out to be adequate. Each time I have re-examined this question, the Pass
2 FS\t has turned out to be robust.

Pauses: Pauses are central to the operation of Pass 2. The fact that a writer pauses during
writing does not tell us much about what mental processes were taking place during the pause.
The writer may have been plarming the next sentence, daydreaming, or answering the telephone.
The tracker described here records pauses without knowledge of their nature, but uses them as
separators between episodes of productive work.

One of the first research efforts I pursued was to categorize the different durations of pauses I saw
in some of my test protocol records. Finding the right decision points in pause durations was a
balancing act; the values were found through about 2 years of trial and error. A value too low
resulted in many, short episodes, which gave insufficient data reduction. A value too high
resulted in a few, composite episodes, which were too complex to provide much insight. I ulti­
mately divided all possible pause durations into 4 groups for the sessions studied in this project: 0
to 6 seconds, 6 to 8.5 seconds, 8.5 to 100 seconds, and greater than 100 seconds. These were
designated as "PauseTypeO" through "PauseType3," respectively.

l'auseTypeO
A short pause. In this analysis, this type of pause is indicated by times less than 6.0
seconds. If a pause for 6.0 seconds or longer occurs between two consecutive con­
structive commands, they are considered in separate episodes.

Card, \loran, and :-.:ewell used 5.0 seconds in their ICARUS study of one session. In
the early stages of the project, I observed a natural break in Prose II sessions at about

73

PauseTypel

5.5 seconds. After about a year of parsing pilot protocol records, it appeared that the
break was more naturally at 6.0 seconds.

A medium pause, frequently seen between constructive episodes. In this analysis, I
implemented a medium pause as the narrow range from 6.0 seconds to 8.5 seconds.
Pause Type I was used in this project to distinguish among the housekeeping episodes
named "Cleanup," "Take Stock," and "Cleanup and Take Stock." It played no role
in distinguishing constructive episodes. A pause of 6.0 seconds or greater always dic­
tated a break between 2 constructive episodes, even if they are similar in class.

PauseType2
A long pause, indicating some deliberation or interruption between constructive epi­
sodes. In this analysis, I implemented this as the range from 8.5 to I 00 seconds.
Pause Type2 was used in this grarrunar to determine participation in the housekeeping
episodes that included ''Take Stock." Pauses in this range were considered part of the
process of taking stock by the human user; longer pauses were considered to be situ­
ations where a user had stepped out of the task in some way.

PauseType3
A very long pause, indicating the user has been interrupted, has pursued other tasks,
or has stepped away from the system .. This was indicated by a pause of 100 seconds
or greater. In their ICARUS study, Card, :\loran, and ~ewell noted that the longest
pause they obseiVed (while the subject was still working on the assigned task) was 80
seconds. The threshold of 100 seconds was picked somewhat arbitrarily, but held up
as a reasonable reference point throughout the project.

Pauses of this duration were characterized in their own episode, one whose time dura­
tions were so long that they were not included in many parts of the protocol analysis
that focused on time durations.

The cap on the duration of PauseTypeO was the value that most affected the output symbols
generated by the parser. If this value is too short, the ·number of constructive episodes increases-­
with these episodes containing fewer commands, and occurring together in sequence. If this value
is too long, the number of constructive episodes decreases, and they are characterized by more
composite constructive episodes. The fixed values used in this parser are admittedly inflexible to
individual differences, but proved robust enough to give useful results for the study.

In this project, the grarrunar handled the following situations as two different conditions:

• A long pause (e.g., an hour)
Exiting the software·(closing the workspace) and entering it again in the same time period.

It could be argued that there are only a few keystrokes difference between these two kinds of situ­
ations. Perhaps a future preprocessor pass of the parser might review sets of protocol records
from a subject and determine if they should be concatenated. Similarly, if a pause is significantly
longer than 100 seconds (e.g., a day), a single session might be divided into multiple sessions,
because significantly different cognitive activities may have taken place between the times the
subject used the system.

~ewell's "Timescale of Human Actions" (~ewell, 1988), reproduced in Table 9 on page 76, gen·
erally concurs with the different orders of magnitude for my framework of categorizing pause
durations. The individual commands and pauses studied in this project fall within the "Cognitive
Band"; sessions had durations within the "Rational Band." Episodes and phases were in the range
of several seconds to several minutes, spanning these two bands. This concurrence is reasonable,
since the grarrunar in this project was based upon earlier work of Card, .\loran, and ~ewell,
which segmented a task into similar phases and episodes.

74

Table 9. Timescale of Human Actions, from \"ewell (1988). This table is copied from figure
7-2, page 257.

Scale (in seconds) Time L'nits System World (theory)

107 months Social Band
IQ6 weeks
105 days

to+ hours Task Rational Band
103 lO minutes Task
102 minutes Task
!01 lO seconds Lnit Task Cognitive Band
100 l second Operations
10-1 100 ms Deliberate Act

I0-2 10 ms :\eural :\et Biological Band
10-3 l ms ~euron
10-4 100 ~· Organelle

Section 5.3.1.4 on page 98 discusses the actual results of the study, in terms of the distribution of
the duration of the pauses in the 112 protocol records.

Pass 2 Output Symbols: Pass 2 generates eight different output symbols: five of these con­
stitute housekeeping episodes; the other three constitute meta-housekeeping episodes. These
symbols are shown in Table 10 on page 76. We chose the names for these output symbols to
characterize, in a few words, the underlying sequence of activities. Card, \loran, and :"\'ewell did
not name these types of sequences in their ICARUS study. For the set of input sequences we
saw in our study, these eight symbols proved sufficient. However, we can conjecture odd
sequences (not seen in this study) where additional symbols might be necessary.

Table 10. Pass 2 output symbols
Pass 2 output symboiiUURf! Description of the conditions that cause this output symbol to be Internal

generated Parser
Symbol

Housekeeping Episodes

Cleanup . Set Delete ~lode on or off 2002 . Tidy trees . Close windows . Turn modes off

Take Stock . Look at a Prose II Outline Window 2004 . Save a \Vorkspace file . .\fake Prose II an Icon . Encounter a PauseType2 (8.5 to 100 seconds)

Cleanup and Take Stock . Cleanup plus Take Stock, in either order or interleaved 2003
Refocus . Zoom or size using the map or main ,, .. indow 2005 . Search for a node (GoTo)

:\tedium Pause . Encounter PauseTypel (6 to 8.5 seconds) 2008 . Leave Prose II for another application in Windows for a
brief period

'leta·housekeepinr: Episodes

Long Pause . EncOunter a PauseType3 (greater than 100 seconds) 2008 . Leave Prose II for another application in Windows

Help Request . View one or more help panels 2009
Tracker Comment . Leave one or more comments in the protocol record 2010

Pass 2 Finite-State Machine: The following table describes the states defmed for the Pass 2
fmite-state machine.

75

Pass 2 State Description of the state

0 Start state.

I Long pause. A long pause was encountered, or the user lefl Prose I I for another
Windo\.vs application.

2 Cleanup. Set Delete \·lode on or off, or tidy trees

3 Cleanup and take stock. Cleanup plus look at outline window, save tile. icon

4 Short pause. This is a holding state, on the path to other states.

5 Refocus. Zoom or size using the map or main window, or search for a node.

6 Help request. Click on one of the help buttons.

7 Cleanup. \Ve get here by setting Delete \1ode or Tidy \-lode.

8 Take stock. Look at outline window, save file, icon.

9 Start over. Open a workspace file, clear drawing, or start a new workspace.

10 Tracker comment. Leave a comment in the tracker.

Table II. Pass 2 fmite-state machine
State ,\'ames--:> Start Long Clean- Clean- Sh011 R<- Help Ck~ T.U Start Trnck

State Pause up up& Pause focus R~ up Stock Over " Take quest Com-
Stock ment

Inputs State Numbers-:> 0 I 1 J 4 5 6 7 • 9 10

PauseTypeO 4 - - -
PauseT;tpel I - I - - -
PauseType2 I - 3 - I - - 3 - -
PauseType3 I - O(A) O(A) O(A) O(A) O(A) O(A) O(A)
Change Default ; 5 - 5 O(A) - - O(A)
ClipboardCopy 8 8 3 8 O(A) 3 - -· O(A)
Go To 5 5 5 O(A) 5 O(A) 5 5 O(A) O(A)
Help Request 6 6 O(A) O(A) 6 O(A) - O(A) O(A) O(A) O(A)
LoseFocuslong ' O(A) O(A) I O(A) O(A) O(A) O(A) O(A) O(A)
LoseFocusShort 4 - - - - - -
~-fainWindowReset 5 5 - 5 - - - - O(A)
~-lainWindowZoom 5 5 5 5 5 O(A) 5 5 - O(A)
:Vfap\love 5 5 - 5 O(A) - O(A)
~tapSize 5 5 - 5 O(A) - O(A)
.\tapWindowOose 2 2 - 2 - O(A) - - O(A)
~1apWindow0pen 5 5 5 5 O(A) 5 - - O(A)
.\tapWindowRoam 5 5 5 5 5 O(A) 5 5 ·- O(A)
.\lapWindowZoom 5 5 5 5 5 O(A) 5 5 - O(A)
\1enta.!Pause ' - O(A) O(A) I O(A) O(A) O(A) O(A) O(A)
OutlineWindowOpen 8 8 - 8 O(A) 3 - O(A)
OuthneWindowC!ose 2 2 - 2 - O(A) - - O(A)
OuthneWindow~iove 8 8 3 8 - O(A) - O(A)
OutlineWindowSize . 8 8 3 8 O(A) - O(A)
Save Workspace 8 8 3 - 8 O(A) 3 O(A)
SetDe!eteModeOn 7 7 7 - 7 7 O(A) - 3 O(A) O(A)
SetDeleteModeOff 2 2 2 - O(A)
SetTidy~lodeOn 7 7 7 - 7 O(A) 3 O(A) O(A)
SetTidy\lodeOff 2 2 - 2 - - O(A)
Systemlcon I - O(A) O(A) O(A) O(A) O(A) O(A) O(A) O(A) O(A)
System.\love 5 5 5 5 - 3 - - O(A)
SystemSize 5 5 5 - 5 3 - O(A)
SystemWindowOpen 9 O(A) O(A) O(A) O(A) O(A) O(A) O(A) O(A) O(A)
SystemWindowClose 9 O(A) O(A) O(A) O(A) O(A) O(A) O(A) O(A) O(A)
SystemZoom 5 5 5 O(A) - O(A)
T tdyW orkspace 7 7 7 7 - O(A) 3 O(A)
TrackerComment 10 O(A) O(A) O(A) O(A) O(A) O(A) O(A) O(A) O(A)
TreeGrow 8 8 3 8 O(A) 8 - O(A)
TreeShrink 8 & 3 - 8 O(A) 8 - O(A)
CnproduCnve I - O(A) - -
end of input O(A) O(A) O(A) O(A) O(A) O(A) O(A) O(A) O(A) O(A)

76

Pass 2 Function
Output Code

A Generate an output symbol corresponding to the current state, go to state 0, then
handle the current input symbol.

An extensive example of the output from Pass 2 is shown in appendix B.4 on page 191.

~.2.3.4 Pass 3: Characterizing Constructive Episodes

The design assumption for Pass 3 is that a human is pursuing purposeful work during each of the
periods labeled as a constructive episode. This work is carried out in a sequence of small actions
with little elapsed time between them. Several goals may guide a user's actions during a single
constructive episode: for example, a user might move some nodes, delete some nodes that are no
longer needed, and then create, label and link a new set of nodes.

The Pass 3 output symbols characterize a constructive episode. The input to Pass 3 are the
grammar symbols that were output by Pass 0 and Pass I, separated in the input string by the new
symbols written by Pass 2. Pass 3 reduces selected sequences of 16-tuples into one or more
n-tuples. Passes 0, I, and 2 each generated 16-tuple records, as illustrated in Section 4.2.3.1 on
page 69. Pass 3, however, can generate tuples with unlimited size, since a single output symbol
might need to contain a list of all the nodes in a newly-created tree. Output symbols generated by
Pass 2 exit from Pass 3 unscathed; the resulting output string is thus an intermixing of Pass 2 and
Pass 3 output symbols.

The lexical analysis of Pass 3 is simple; the syntactic analysis is complex. In its lexical analysis,
Pass 3 reads input symbols, where each input symbol is a 16-tuple in the same format as the
output s)mbols generated by Passes 0, I, and 2. Thus, the lexical analysis should never fail unless
an intermediate fde, containing the output symbols, is tampered with. ·

The syntactic analysis for Pass 3 understands two characteristics of the node currently being oper­
ated upon: the node's structural place in the current workspace and whether it was created within
the current constructive episode. The syntactic analysis is implemented using:

• A set of counters, reset whenever a new constructive episode starts. These counters record
such information as the number of nodes created so far in this constructive episode, the
number of existing nodes that had their labels changed, and the number of invalid commands
attempted during this constructive episode. A complete description of these counters is
shown in Table 13 on page 80.

• A set of lists of nodes, also reset whenever a new constructive episode starts. These lists
record the information that is later written as elements of the output symbols. For example,
one of the output symbols might say that 10 new nodes were created. The IDs of these 10
nodes are listed as parameters of the output symbol. Thus, a list of the newly-created nodes
during the constructive episode is maintained, to be used when Pass 3 generates the output
symbol. A complete description of these lists is shmm in Table 14 on page 81.

• A history list of the commands done so far in this constructive episode, to determine whether
later commands in this episode act upon new or old nodes, new or old trees, and so on.

• The complete underlying node/forest structure. For example, each time a pair of nodes are
linked, they are linked in the internal data structure kept by Pass 3. This lets Pass 3 query
the internal structure during later analysis-for example, "Is this node that is being deleted a
part of a tree?"

In this internal data structure, Pass 3 captures the information supplied by both primary and
secondary -commands.

77

For example, linking two nodes may cause an existing link to be _broken. This
appears as a primary command, Link:'\odes, followed by a secondary command,
BreakLink. Pass 3 executes both actions upon its· internal data structure.

The decision of what output symbols for Pass 3 to generate raised a group of questions with the
following flavor: "Did such-and-such occur in this constructive episode?" There is little concept of
sequencing among the events in an episode-rather, it is simply, "did X and Y occur during this
time period"" To correctly characterize each constructive episode, many clements had to be stored
by the grammar during each episode.

This allows more than one goal to be occurring concurrently, but says little about them
qualitatively-such as, how long they lasted, how much they overlapped, or the percentage of time
spent on each goal. As with Pass 2, I generated all the symbol sequences that are reduced by
Pass 3, and the approach I have taken turned out to be adequate. Each time I have re-examined
this question, Pass 3 has turned out to be robust.

Pass 3 Output Symbols: Pass 3 generates twelve different output symbols. Y!ost of these
symbols carry an additional list of parameters; for example, the output symbol "Created !! solo
nodes" carries a list of the solo nodes created in this constructive episode, along with a count (!!)
of these nodes.

Table 12 on page 79 describes each of these output symbols.

Table 12. Pass 3 output symbols
Pass 3 output symbol Description of the conditions tluzt cauuthis output SJ·mbolto be Internal

generated Parser
.Symbol

Created !! solo nodes Created new nodes, but did not link them to other nodes. The 3001
node's labels and contents may have been edited.

Created !! new trees Created a new tree, using new nodes, or copied a tree, creating a 3002
complete tree with new nodes.

Grew n existing trees Linked n_ew nodes to one or more existing trees. 3003
Assembled !!. trees Took existing nodes and linked them together into a tree. The 300J

root of the tree may be newly-created in this episode.

Broke existing links Broke the link between nodes that had been created and linked in 3005
previous episodes.

Deleted n nodes Deleted nodes that had been created in a previous episode. 3006
Edited existing nodes Edited the label and; or file contents of nodes created in a pre- 3007

vious episode. This is the first time these nodes had been edited.

Revised existing nodes Edited the label and.' or me contents of nodes that had been previ- 3008
ously edited.

:\loved existing nodes Moved nodes created in a previous episode. 3009
Hooked existing nodes to n trees Linked existing nodes to one o-r more trees. 3010

lJ nproductive work Canceled one of more commands, or attempted an invalid 3011
command.

Start over Started over with a fresh workspace. The commands that corre- 3012
spond with this either open a workspace ftle, clear the drawing,
or start a new workspace. Any nodes already in the workspace
when the command was executed are deletC!f.

The episodes titled "Edited existing nodes" and "Revised existing nodes" both comprise editing of
a node's label or its associated file. While these might be considered different types of activities,
Prose !I encouraged an easy flow between editing of a node's label and its contents. The addi­
tional creation of 2 more constructive episodes to draw a distinction was tried, but did not show
much value in the results of the study.

78

Pass 3 Counters and Lists: The counters and lists maintained by Pass 3 were dictated by
the output symbols. For example, to see if any new trees have been created in a constructive
episode, each time a new tree is created, a counter for "new trees created in this episode" is incre­
mented. Each time the count is incremented, the identifier of the node at the root of the new tree
is added to the list of new trees. When the output symbol "Created !! new trees" is generated, the
corresponding counter is used to fill in the value for !), and the list is used to generate the parame­
ters for this symbol, which are an enumeration of the names of the roots of the new trees.

Table 13 on page 80 describes the counters accumulated by Pass 3 during each constructive
episode. At the end of a constructive episode, Pass 3 uses the values in these counters to deter­
mine which output symbols to generate. The counters are all reset to zero at the end of each
constructive episode; nothing is carried between episodes, except the ongoing structure of nodes
and trees.

Table 13 (Page 1 of 2). Pass 3 counters, listed alphabetically
Pass 3 counter name Description of the Counter

Break~ewLinksCounter Counts how often a link was broken, '"'·here the link was made in this con-
structive episode.

BreakOldLinksCounter Counts how often a link was broken, where the link was made in a pre-
vious constructive episode.

Cance\ledCommandsCounter Counts how often a command was canceled in this constructive episode.

HooklnNodesCounter Counts how many pairs of nodes were linked together, where both nodes
were created in a previous constructive episodes, and the parent node is
already a member of a tree. Literally, the child node is hooked into an
existing tree.

lnvalidCommandsCounter Counts how often an invalid command was attempted in this constructive
episode.

:\ ew LabelsEdi tedCounter Counts ho.w often a node, newly created in this constructive episode, was
labeled for the first time.

;\ewLabelsRevisedCounter Counts how often a node, newly created in this constructive episode, was
labeled more than once.

;..; e\\-':\ odesCopiedCounter Counts how often a node, newly created in this constructive episode, was
copied.

:\ ew;..; odesDeletedCounter Counts how often a node, newly created in this constructive episode, was
deleted.

:\ ew~ odesEditedCounter Counts how often a node, newly created in this constructive episode, was
edited for the first time using an editing program.

:\ewi':odes~ovedCounter Counts how often a node, newly created in this constructive episode, was
moved.

:\ew:\'odesRevisedCounter Counts how often a node, newly created in this constructive episode, was
edited more than once using an editing program.

:\ e\v RootsC reatedCo unter Counts how often a pair of nodes are linked, where both nodes were solo
nodes before this linking operation.

:\ewTreesAssembledCounter Counts how often a new tree was assembled from parts. This is indicated
by one of two situations: I) the parent node is a solo node and the child is
the member of a tree-and at least one of these was created in a previous
episode, or 2) the parent tree is new and the child node was created in a
previous episode-and at least one of these is a member of a tree.

:\ odesCreatedCounter Counts how often a Create!'\ ode command is successfully executed in this
constructive episode.

O!dLabelsEditedCounter Counts how often a node, created in a previous constructive episode, was
!abe!ed for the first time.

O!dLabe!sRevisedCounter Counts how often a node, created in a previous constructive episode, was
labeled more than once.

0 !d~ odesCopiedCounter Counts how often a node, created in a previous constructive episode, was
copied.

Oid;..;odesDeletedCounter Counts how often a node, created in a previous constructive episode, was
deleted.

79

Table 13 (Page I of 2). Pass 3 counters, listed alphabetically
Pass J .counter name Description of the Counter

0 !d:'\' odesEditedCounter Counts how often a node, created in a previous constructive episode, was
edited for the first time using an editing program.

0 !d): odcs.\1 ovedCounter Counts how often a node, created in a previous constructive episode, was
moved.

0 ld:\" odesRevisedCounter Counts how often a node, created in a previous constructive episode, was
edited more than once using an editing program.

OldTreesGrownCounter Counts how often a new node is linked as a child into an existing tree

Solo:\ odesCreatcdCounter Counts how often new solo nodes are created in this constructive episode.
This can occur because of Create:'\ode command, or because an existing
link between a pair of no9e is broken.

StartOverCounter Counts how often the- workspace was started afresh in this constructive
episode.

Table 14 on page 81 describes the singly-linked lists that Pass 3 constructs as part of character­
izing each constructive episode. After it sees the last symbol of"a constructive episode, Pass 3 uses
these lists of nodes and trees to determine the parameters for some of its output symbols. These
five empty lists are created when Pass 3 is first called. The contents of a list have a lifetime of one
constructive episode; the lists are all flushed at the end of each constructive episode.

Table 14. Pass 3 lists, listed alphabetically
Pass J list name Description. of the list

Hookln:--JodesList Lists the nodes that have been hooked into existing trees. If the newly-
linked node is the root of a tree, it is added to this list as a new rooL Oth-
erwise, it is added to the list as the descendant of a node which is already
on the list.

:Sew RootsCreatedList Lists the nodes that are new roots of trees. "fhese nodes became the new
roots during this constructive episode.

:--.; ewT reesAssembledList Lists the trees that have been assembled in this constructive episode. If the
newly-linked node is the root of a tree, it is added to this list as a new root.
Other\\-ise, it is added to this list as the descendant of a node ''lhich is
already on the lisL

Old~ odes Deleted List Lists the nodes, deleted in this constructive episode, that were created
during previous constructive episodes.

OldTreesGrownList Lists the existing trees that have been added to during the current construe-
tive episode.

Pass 3 Logic: At the end of a constructive episode, Pass 3 generates one or more of the
output symbols listed in Table 12 on page 79, It makes this decision based on the values of the
counters. Table 16 on page 82 provides the logic used in generating these output symbols. This
table is given as an alternative notation for what are essentially production rules. The evaluation
order of the rules is from top to bottom as shown in the table. For each true condition on the
righthand side, one of the symbols on the lefthand side is generated. The symbols in the right­
hand side of each table entry should be interpreted as being A:\Ded together.

The following is an example of an entry in Table 16 on page 82.

Table 15. Pass 3 production rule example
Pass J output symbol Logic

Created!! new trees ~ewRootsCreatedCounter > 0
:\"odesCreatedCounter > 0
Solo:\odesCreatedCounter = 0

In more traditional, production rule notation, this logic might alternatively be shown as:

80

If the NewRootsCreatedCounter is greater than 0, and
the NodesCreatedCounter is greater than 0, and
the SoloNodesCreatedCounter is O,

then generate the output symbol "Created N new trees,"
1·1here N is the va 1 ue of the NewRootsCreatedCounter.

'Ia more than one instance of any output symbol is generated in a constructive episode. The ftrst
of the output symbols generated serves as the primarv constructive episode symbols. Later
symbols serve as secondary constructive episode symbols. This distinction between primary and
secondary constructive episodes is used in Pass 4 when characterizing phases of constructive.

Table 16 (Page 1 of 2). Pass 3 output symbols and how they are generated
Pass J output symbol What combination of counter wzlues causes this output umbo/

to be generated?

Start over StartOverCounter > 0

Created .!! new trees :'\ewRootsCreatedCounter > 0
i\ odesCreatedCounter > 0
Solo~odesCreatedCounter = 0

Created n new trees :\ewRootsCreatedCounter > 0
l'\odesCreatedCounter = 0

Created!! new trees :'\e\vRootsCreatedCounter > 0
N odesCreatedCounter > 0
Solo:-.JodesCreatedCounter > 0

Grew!! existing trees OldTreesGrownCounter > 0
N odesCreatedCounter > 0
Solo~odesCreatedCounter = 0

Grew n existing trees OldTreesGrownCounter > 0
NewRootsCreatedCounter = 0
:'\ewTreesAssembledCounter = 0

Assembled!! trees NewTreesAssembledCounter > 0
N odesCreatedCounter > 0
Solo:'\lodesCreatedCounter = 0

Assembled !! trees NewTreesAssembledCounter > 0
NodesCreatedCounter = 0

Hooked existing nodes to!! trees HooklnNodesCounter > 0

Created !! solo nodes So!oNodesCreatedCounter > 0
SoloNodesCreatedCounter = I'\ odesCreatedCounter
OldTreesGrownCounter = 0
NewTreesAssembledCounter = 0
1"\ewRootsCreatedCounter = 0

Created !! solo nodes 1'\ewRootsCreatedCounter > 0
NodesCreatedCounter > 0
SoloNodesCreatedCounter > 0

Broke existing links BreakOidLinksCounter > 0
Hookln:'\/odesCounter = 0

Deleted !! nodes StartOverCounter - 0
Old:"-iodesDeletedCounter > 0

Edited existing nodes OldLabelsEditedCounter > 0

Edited existing nodes Old:'\odesEditedCounter > 0

Revised existing nodes OldLabelsRevisedCounter > 0

Revised existing nodes Old:'\odesRevisedCounter > 0

81

Table 16 (Page I of 2). Pass 3 output symbols and how they are generated
Pass 3 output symbol What combination of counter ~·atues causes this output symbol

to be g~nerated?

\loved existing nodes O!d:'\odes.\tovedCounter > 0
OldTreesGrownCounter = 0
:'\ewRootsCreatedCounter = 0
:'\ev.:TreesAsscmbledCounter = 0
Hookln:'\odcsCounter = 0
O!dLabelsEditedCounter = 0
0\d:'\odesEditedCounter = 0
Solo:\"odesCreatedCounter = 0 or

no solo nodes left -remaining

L"nproductive work no solo nodes remaining (nodes created then deleted)

Lnproductive work no output symbol so far
CanceHedCommandsCounter > 0

Unproductive work no output symbol so far
InvalidCommandsCounter > 0

An extensive example of the output from Pass 3 is shown in appendix B.S on page 195.

4.2.3.5 Pass 4: Phases of Activity

Pass 4 characterizes sequences of similar activity ai1long the constructive episodes. Its input is the
grammar symbols generated by Pass 2 (for the housekeeping and meta-housekeeping episodes)
and Pass 3 (for the constructive episodes). Pass 2 and Pass 3 output symbols are interleaved in
the output sequence of Pass 3; Pass 2 output symbols move unscathed. through Pass 3. As with
previous passes, Pass 4 reduces selected sequences of n-tuples into a single n-tuple. The size of
the input n·tuples varies, depending upon the information generated by Pass 3; for example, a
single n·tuple may contain the number of nodes created in an episode and the identifier numbers
of each of the nodes.

The output symbols represent phases of work activity. Pass 4 operates using a ftnite·state
machine for the input symbols. Cpon reading the ftrst input symbol in a phase, it moves to the
indicated non-zero state. \Vhenever an input symbol causes the state to change, the current
output symbol is generated and the state of Pass 4 is reset. Otherwise, no state change is made,
and the next input symbol is read.

Since Pass 3 can generate multiple symbols for a single constructive episode, the Pass 4 ftnite-state
machine is divided into two parts. The ftrst part is used to handle the ftrst of multiple symbols;
the second part handles any subsequent symbols for the same constructive episode. The decision
on what output symbol to generate is heavily biased by the ftrst of the Pass 3 symbols, since Pass
3 can generate multiple symbols to characterize each constructive episode.

Pass 4 Output Symbols: · Pass 4 generates seven different output symbols; these are the
highest level symbols generated by the grammar described here. These symbols are shown in
Table 17 on page 84.

82

Table 17. Pass 4 output symbols
Pass 4 output symbol Description of the conditions tluu cause this output SJ:mhol to be Internal

generated Parser
.Symbol

Exploration Created solo nodes. Edited new or existing nodes. 4001

Define Hierarchies Created new trees. 4002

fop Down Construction Grew old trees or hooked nodes to them. In top-down con- 4003
struction, the root of a tree and its children are created and
labeled early, with the rest of the document construction con-
sisting of creating new nodes and adding them to the leaves of
the evolving tree.

Bottom l:p Construction Assembled trees from existing nodes. The root of the tree may 4004
be a newly-created node. In bottom-up construction, nodes are
created and labeled before they are linked; small trees are linked
into larger trees.

Tree Structure Revision Broke old links, deleted old nodes, moved old nodes 4005

Document Revision Revised the label and contents of nodes that had been created or 4006
edited in previous episodes.

.'\ew Workspace Started over: opened files or cleared the workspace . 4007

Pass 4 finite-State Machine: The following table describes the states defmed for the Pass 4
linite-state machine.

Pass 4 State Description of the state

0 Start state

I Exploration: create solo nodes

2 Define hierarchy

3 Top-down construction .

4 Bottom-up construction

5 Revise structure: break old links, delete nodes

6 Revise document: edit and revise node labels and contents

7 'ew workspace

In the following state table, the housekeeping episodes are listed first, followed by the primary
constructive episodes, and concluding with the secondary constructive episodes.

Table 18 (Page I of 2). Pass 4 finite-state machine
Star~ Namu- > Stm Ez- D<- Top- Bot- R<- Re- ,Vew

Stat~ ,.,... fine dow11 ~~ vis~ vis~ H;oric-
tltiott bier- Coos. up Struc Doc space

""'"' Cons.

Inputs Sttlk Numbers-> 0 I 1 3 4 5 6 7

START_OVER 7 7(A) 7(A) 7(A) 7(A) 7(A) 7(A)
LO:"G_PAUSE . - -
CLEAlWP - .
i~~1~t.toc!;KE_STOCK . - - . -

- . - . -
REFOCUS . . -
HELP_REQUEST . . -
CREATE SOLO ~ODES l . l(A) l(A) l(A) l(A) l(A) l(A)
CREATE-:-:EW TREES 2 2(A) - 2(A) 2(A) 2(A) 2(A) 2(A)
GROW OlD TREES 3 J(A) - J(A) J(A) J(A) J(A)
ASSE\IBLE fREES 4 4(A) 4(A) 4(A) - 4(A) 4(A)
BREAK_OLD_Ll:"KS ; . - >;A) >;A) ;(A)
DELETE_OLD_:"ODES ; . - - - . ;(A)
EDlT OLD :"ODES 6 . - - 6(A) 6(A)

REV~~EO~~D -t'o~~'f 6 6(A) - 6(A) ~~~ \IOV "\ ; - '

83

Table 18 (Page I of 2). Pass 4 finite-state machine
State StUTtes-> Start Ex- D•- Top- Bat- R•- R•- .Vew

State plor- fine down , ... ftise vise ll·odc-
at ion /rier- Cons. up Sr.-uc D<>< :space

archy Cons.

Itt puts State ;\"umbers-> - 0 1 2 3 4 5 6 7

HOOK I'" ~ODES 3 3(A) J(A) J(A) J(A) J(A) J(A)
L:'\PR6DCCTI\'E \\'ORK
CREA TF._SOLO _;-.,:()DES {secondary) l l l l l
CRE:\TE_'\EWJREES (secondary) 2 2 - 2 2 2 2 ' GROW_OLD_TREES (secondary) 3 3 - 3 3 3 J
ASSE.YIBLE_ TREES (secondary) 4 4 4 4 4
BREAK_OLD_U'\KS (secondary) j - j
DELETE_OLD _'\ODES (secondary) j - j
EDIT_OLD_SODES {secondary) 6 - - 6 6
REVISE_OLD _'\ODES (secondary) 6 6 6
\10\'E_ OLD _,ODES {secondary) - - l
HOOK_IS_I\ODES (secondary} 3 3 3 3 3
C:\PRODCCTIVE_WORK (secondary) - -

Pass 4 Function
Output Code

A Generate an output symbol corresponding to the current state. lhen go to the new
state.

An extensive example of the output from Pass 4 is shown in appendix 8.6 on page 196.

4.2.3.6 Grammar Sununarv

The grammar has been described in progressive levels of detail. First, the levels in the abstract
model of user interaction that correspond with levels in the parse tree were introduced: session,
phases, episodes, and commands. ?\ext, the grammar rules for each of these levels were intro­
duced; key categorizations in the grammar occur where sequences of commands are identified as
episodes, and where sequences of episodes are characterized as phases. Finally, the particular state
machines that implement each level were shown. Further implementation details of the parser are
described in the following subsection. These are included because of the methodological emphasis
of this project: what difficulties were encountered in implementing such a parser?

4.2.4 Further Implementation Details of the Parser

Aho and Ullman (1977, p. 146) defme a parser for a grammar Gas "a program that takes as input
a string w and produces as output either a parse tree for w, if w is a sentence of G, or an error
message indicating that w is not a sentence of G:"

In all cases except one, the input strings (that is, the protocol records) in this study were ,·alid,
that is, they were recognized by the parser without error.11 So, more important for this study is a
parser's ability to create parse trees.

The parser used six standalone programs to convert a protocol record into a parse tree and
summary file. Operating system pipes and ftlters were used to connect the six passes of the
parser. "The pipes and filters technology packages re-usable code into small, standalone pro-

ll In the single exception, a subject used a text editor to append a paragraph to the bottom of a protocol
record. The parser stopped and indicated an error when it tried to read the beginning of this block of
text.

84

grams, in which each program is a tool (a filter) that does a single job well. The filters can be
connected by pipes, a communication channel through which the output of one ftlter can be
received as the input of the next." (Cox, 1986)

All but the last pass of the parser read their input from the byte-stream known as standard input
(stdin) and write to standard output (stdout). stdin and stdout are generic files that are easily
bound to a ftlename by the operating system. for the first pass, an actual protocol record is
supplied as the standard input. By using the operating systems' redirection capability, the output
of any parser pass can be sent to a single ftle or concatenated to a larger ftle. For example, by
running the parser (with the necessary command line parameters) against all the protocol records,
the list of all the commands issued in all the sessions can easily be written in a single ftle.

To construct a parse tree at the end of the parsing process, the fmal pass opens and reads from
the intermediate files produced in the preceding passes. If these intermediate passes are not other­
wise required, the passes can be piped together in such a way that a given pass is reading directly
from the output of its preceding pass.

Reading from stdin and writing to stdout have another advantage. Although it was not done this
way in this study, this parser could be used to parse protocol records in real time. The parser
accommodates one of the facts of human behavior: at any point the telephone might ring and a
session would be abruptly ended. Thus, at all times during the parsing, the state of each pass is
known. A future enhancement to the testbed system can be conceived where a user could see the
current parse tree for a session at all times during the session. The tracker itself could write its
output to stdout, instead of to the unique ftle that it creates, and that output could then be piped
into the parser. The memory constraints and operating system restrictions of DOS and Windows
made such an arrangement impractical for the current system.

Using pipes and ftlters is efficient in programmer time, but because of their buffering character­
istics, they are not always efficient in terms of computer performance. For this study, this was a
reasonable trade-otT. Performance of the parser was not a consideration (unless it had taken days
or hours). Another disadvantage of using pipes and ftlters is that they pass b;tes, not the highly­
structured data that is frequently seen in complex programs. You carmot pass a pointer or a
linked list across a pipe without great difficulty. Again, this did not pose a problem here.

The parser writes its intermediate output ftles in a generic spreadsheet format-the Lotus
spreadsheet ASCII format-which has become a standard among personal computer programs.
This makes it easy to run a spreadsheet, database, word processing, or statistical analysis program
against such an output file at any intermediate pass of the parsing process. Further, the entire
parsing process can be driven by a single .\Jake input file, making it easy to run a consistent anal­
ysis against any selected group of sessions. This is discussed further in Section 4.2.4.4 on page 88.

The parser is designed to operate on a protocol record for a single session. One of my first
lessons from this study is that a document is frequently not written in one sitting. \1any subjects
submitted a £r.QJ!J1 of protocol records that defmed their work on a single document. I considered
modifying the parser to handle this entire group as a single piece, rather than as a group of indi­
vidual ftles. The individual ftles defme sessions; the conglomerate defmes extended work on a
document over several days. I decided this was a problem I did not understand well, and should
be a topic for future study. L sing the parser and its command line parameters as described here
allowed looking at a number of the features of the sessions for a single document; in addition,
sessions could be concatenated by hand-but, this solution would not be tenable for thousands of
sessions.12 The parser described here operates on one protocol record at a time.

12 Some of the ambiguities that can occur when concatenating sessions, as well as ways. to resolve them, are
discussed as possible future enhancements in Section 6.5 on page 140.

85

The conversion of the grammar AT:\ into a sequence of connected parser passes made the imple­
mentation task manageable. lndi,·idual passes could be reworked without compromising other
portions of the parser. \lost of the passes were simple to implement, with the state machines as
large compiled arrays. Some of the key implementation decisions made in Passes 0, 2, and the
summary pass arc highlighted below .

... 2.4.1 Pass 0 Details

For Pass 0, the C:'\IX tool LEX (Lesk, 1975) was used to generate the lexical analyzer. and
YACC (Johnson. 1975) was used to generate the syntactic analyzer. The lexical analyzer gener­
ated for Pass 0 reads the stream of b:tes which comprise a protocol record file. The lexical ana­
lyzer is designed to recognize the format of the header lines, the timestamps, the English keyword
for each command, and the parameter sequences. The syntactic analyzer for Pass 0 recognizes the
sequences of these on a line; for example, the YACC input is designed to recognize a well-formed
Create:'\ode command as having start, stop, and elapsed times, the keyword Create:'\ode, and
parameters consisting of a node 10 and starting coordinates (or keywords like"-- invalid -·").
For secondary commands, the syntactic analyzer additionally constructs distinctive values for the
timestamps.

The individual records produced by the tracker were designed in conjunction with the Pass 0
lexical and syntactic analyzers. One concern was producing unambiguous information in the pro­
tocol record; for example, the parser should not be confused if a command ke}word is included in
the label for a node.

39:59.91 40:00.07 0.16 Openworkspace Fi 1 e ('I BI·ISC. SCR') Format ('. PR2 ')

I solved this by delimiting strings in the protocol record by the symbols ('and'). To avoid any
ambiguity, the Prose ll tracker converts any grave quote (') character in a user's string to an
acute quote ('). As an additional piece of pre-processing, the tracker converts any alphanumeric
characters in the node labels or search strings to the letter x, for confidentiality.

All subjects worldwide spoke English, at least as a second language, so none of them commented
about the fact that the entire Prose ll system uses English phrases and keywords. A problem
with international character sets did occur, however. The version of LEX used to generate the
scanner dealt only with the seYen-bit ASCII characters represented numerically by 0 to 127. I did
not anticipate that characters outside this range would be entered in node labels or search strings,
since Windows filters these symbols as part of its operation. But, I was using a L'S English
version of Windows! Subjects in Firdand and Greece submitted protocol records that contained
characters that were not x'd out by Prose II and that were in the ASCII numeric range of 128 to
255. The lexical analyzer of Pass 0 terminated when it tried to read these characters. I had to
modify these characters by hand in order for them to be parsed; fortunately, this occurred in only
4 of the 112 protocol records .

... 2.4.2 Pass 2 Details

I ftrst implemented the syntactic analysis portion of Pass 2 as a simple state look-up table, with a
custom lexical analyzer (similar to the lexical analyzer portion of Pass l). The table was large and
not sparse, making it hard to maintain. After several months, it became difficult for me to com­
prehend the paths through the FS:VI. I later converted to a syntactic analyzer generated by
YACC. The YACC description, with its B:'\F-like syntax, made the operation of this pass easier
to comprehend. Working \Vith the Y ACC source, I made several changes in the FS:\1 for correct­
ness and uniformity-these were paths through the FS:VI that had been difficult to see before.

Fortunately, no users demonstrated trul)' strange or bizarre behavior among the protocol records
studied here. For example, there was no clear-cut playing with the system, such as going back
and forth between commands repeatedly, or creating nodes to fill the entire screen.

86

4.2.4.3 Producing the Parse Tree and Summary Information

A final pass of the parser does not read from a standard input stream. Instead it uses the output
from each of the previous passes to construct the parse tree and summary information about the
parse.

Its operation consists of opening the original protocol record (from which it reads the header
information). md the intermediate output files of Passes 0, I, 3, and 4. (The output information
from Pass 2 is entirely contained in the Pass 3 output.) Starting with the Pass 4 output, it reads
the frrst line of information, which is the frrst n-tuple generated by Pass 4. This line of informa­
tion includes a timestamp with its start and stop time. It then reads lines from the Pass 3 file
until one of the starting times exceeds the stop time of the current Pass 4 line. Similarly, for each
Pass 3 record, it recursively reads Pass I records, and for each Pass I record it recursively read
Pass 0 records. An example parse tree diagram is shown in Figure 23 on page 89.

The parse tree is written to a file in text representation in one of the formats described in Section
3.1. 10.3 on page 43. Since these are all tree formats, Prose fl itself ca.Il be used to view and
manipulate the resulting parse tree. The large size of some of the parse trees exceeded the original
memory capabilities of Prose II, and led me to a re-write of the memory management routines in
Prose II to allow thousands of nodes to be active in memory and viewed in a single window.

This summary pass maintains a set of counters during the process of summarizing the parse for
one session. At the end of this pass, this counter information is written to stdout. This informa­
tion provides a summary of what happened during the parse. An example of the summary
output is shown in figure 24 on page 90.

Using these counters, many variables can be examined and compared in aggregate across the
entire sample of subjects-or by selected groups. For values that vary within a task or among
subjects (such as the time spent on the task) standard measures such a~ range, mean, and variance
are easily computed.

An extensive example of the output from this summary pass is shown in appendix B. 7 on
page 197.

4.2.4.4 Controlling the Parser Operation

I developed the parser a pass at a time. A "run" of the parser was controlled with a DOS batch
ftle, which handled the input to each pass and the sequencing of passes. A DOS batch ftle was
adequate for parsing a single input ftle, but it lacks flexibility. It had no knowledge of whether the
parse was already comple.te and it was difficult to use it to parse larger groups of protocol records.
I later switched to using the Make utility program to control the parsing .

. II ake is a program shipped with many current operating systems and compilers. Jl ake operates
by examining the temporal relationship among a set of files. A given file is said to have one or
more ftles that it is dependent on; if the dependent ftles are younger than the given file, Jfake runs
the prescribed programs, which presumably update the given ftle. For this parser, the given file is
frequently the parse tree ftle and the dependent ftle is the original protocol record file. When
:\fake is run, the protocol record is parsed if a parse tree file currently exists, or if the protocol
record ftle is younger than the current parse tree file.

Jf ake examines these dependencies for groups of ftles and runs the same programs against these
files, using wildcard characters to substitute the changing file names. Further, ,\I ake stops its
operation if one of the programs it is rurining ends with an unexpected ERRORLEVEL value. This
allows me to run .Hake against a large group of files while the parser was still being developed; if
the parser failed for any reason, Make also stopped its operation.

Figure 25 on page 91 shows the cUake input file (called a ":vJakefile") used for running a com­
plete parse, in this case, against the list of non-trivial sessions. An abbreviated Makefile, shown in

87

= Prose If Hap Window

Figure 23. Example parse tree drawing, for session SI6ROI02. In the first row is the non-terminal
symbol representing the session. The second row indicates the non-terminal symbols for the
13 phases of the session. The third row indicates the non-terminal symbols for 46 different
episodes. On the bottom row are terminal symbols for the indhidual commands and pauses.

Figure 26 on page 91, illustrates how to generate a specific set of Pass 3 output, without the cre­
ation of any intermediate files.

88

"516R0102"
302, Number of nodes in the parse tree
118, Number of commands

10, Number of creates
4, Number of deletes
8, Humber of copies

12, Number of links
0, Number of break links
3, Number of moves
7, Number of tidies
8, Number of canceled operations

0, Number of opens
3, Number of saves
6, Number of nodes in last saved tree
0, Number of nodes with no offspring
5, l·laximum depth of saved tree ·

-1, Cumulative X vector of creates
0, Cumulative Y vector of creates

0.00, Stage Index

0, Number of edit node operations
4, Number of help requests
2, Number of l eng pauses
0, Number of user comments
0, Number of times subject left Prose II

25, Number of constructive episodes
21, Number of housekeeping episodes
13, Number of phases

208.8, Longest constructive episode, in seconds
148.5, Longest meta-housekeeping episode, in seconds
202.3, Longest housekeeping episode, in seconds

0.0, Total secqnds spent editing nodes
85.4, Total seconds spent in help

252.3, Total seconds spent in long pauses
1480.8, Total seconds in a 11 pauses

0.0, Total seconds spent in comments
0.0, Total seconds spent outside Prose II

475.6, Total seconds in constructive episodes
44g.3, Total seconds in meta-housekeeping episodes

1181.3' Total seconds in housekeeping episodes

2106.2, Total seconds in this session

figure 24. Example session summary information, for session SI6ROI02

89

. RCD.XXX:
PASS0
PASS!
PASS2
PASS4
PASSS

<$*.Pl I PASS3

-I

S01R010l.XXX: S01R010l.RCD

S01R020l.XXX: S01R020l.RCD

<$*.RCD >$*.P0
<$*.P0 >$*.Pl

>$*.P3
<$*.P3 >$*.P4
$* >>NTR!V.SUM

Figure 25. An cxamJ>IC :\lakefile for controlling the J>arsing J>rOCCSS. The programs are explained
below; Lhe command line parameters are discussed in Appendix C on page 205.

In the example \fakeft!e shown in Figure 25 on page 91. ft!es with the extension .XXX must be
younger than ft!es with the extension .RCD to avoid having the programs run. So, starting with
the first ft!e, Make compares ft!e SOlROlOl.XXX to ft!e SOlROlOI.RCD. Since the first file does
not exist (and hence is not younger), Make carries out the operations shown at the top. The
symbol "$•" serves as a wildcard to replace the current ft!ename.

Program PASSO reads ft!e SOlROlOI.RCD as its standard input, and writes its standard output to
ft!e SOlROlOI.PO. When this is complete, program PASS! reads from SOlROlOl.PO and writes to
SOlROlOl.Pl. Program PASS2 reads from SOlROlOl.Pl and writes its standard output directly
to program PASS3, which is waiting on it for input. In this way, the parsing continues through
pass 4 and the summary pass. Program PASSS (the summary pass) appends its summary output
to ft!e :\TRIV.SU:Vl, which, in this case, is a summary ft!e for all of the non-trivial sessions.

When the parsing of ft!e SOlROlOI.RCD is complete, Make begins the parsing for ft!e
S01R020l.RCD .

. RCD.XXX:
PASS0 <$*.RCD I PASS! I PASS2 I PASS3 »EPISODN.SUM

S01R010l.XXX: S01R0101.RCO

S01R0201.XXX: S01R0201.RCD

Figure 26. An examJ>Ie :\fakefile for examining Pass 3 outJ>Ut. A protocol record is read from stdin
by Pass 0, then piped through Pass 1 and Pass 2 into Pass 3. Its output is appended to file
EPISODi\.SUM. The symbol"$*" serves as a \Vildcard to replace the current filename.

4.2.4.5 Parser Implementation Details

The parser consists of ten executable modules: PASS0. EXE through PASSS. EXE plus four supple­
mental modules. These were constructed from 26 source flles, in addition to sharing about ten
flles with the Prose II source code. The parser source code flles were coded with LEX, YACC,
and C language source.

In these 26 flles are a total of 7,845 lines, which includes comments and blank lines. In source
lines of code, the parser is about 44% of the size of Prose II itself.

90

Parser source code file sizes, 26 files

range: 18 lines to 1160 lines
median: 214 lines

mean: 302 lines
std dev: 281

The mean line length, including blank lines, in these flies was 40.5 b)1es. The 26 source fLies
totaled 318,048 b)1es in size.

Appendix C on page 205 list the command line parameter options available for each pass of the
parser.

91

CHAPTER 5. OBSERVATIONS ON THE TASK
AND USER STRATEGIES

I conducted a study of users in their field locations to test the ideas proposed in Prose I I and its
parser. Observations on the results of this study are described in this chapter. The chapter begins
with an introduction to the subjects and the experimental setup. An overview of the sessions,
protocols, and user documents follows. 1be bulk of the chapter is an examination of detailed
questions about how users spent their time with the software. A portrait of a typical session,
built from the analysis results, closes this chapter.

5.1 Experimental Setup and Subjects

As mentioned earlier in this paper, a protocol, in cognitive psychology, is a report of the steps
performed by a subject in attempting some task. The Prose II software, used by subjects in this
study to design and write structured documents, included a tracker that automatically made a pro·
tocol recording of each subject's sessions with the software. When we designed this study in June
1988, our goal was to collect about 100 protocol records from 20 subjects using Prose II.

I made Prose II freely available over the IB:\1 corporate network worldwide. The potential sub­
jects were adult professionals who do expository writing as part of their daily jobs. They already
had the hardware and software required to use Prose II. Between January 1988 and January
1989, 210 different people requested copies of Prose II.

In the middle of January 1989, I sent a cover letter to each of these individuals describing the
motivation for my planned study and the procedure for returning session recordings to me over
the network (see Appendix A on page 163 for the text of the letter). I also sent the latest version
of the Prose II software with the tracker activated, and its user's guide. At the end of the data
collection period (the ei)d of February 1989), I had received a total of 112 session protocol
recordings from 29 of the 210 potential subjects. This is a response rate of about 14%.

The cover letter explained the exploratory nature of this study, which assumed few experimental
controls. These are discussed further in Section 1.1.4 on page 7.

5.2 An Overview of the Protocol Data and Parser Results

In this section, the I 12 protocol records are categorized and itemized. For example, was a given
document constructed in one or multiple sessions? Did it contain extensive writing in the files
associated with the nodes? Overall statistics describe how many flies were returned by the sub­
jects, how many documents were constructed, and how many sessions were used to complete a
document. The 112 session protocols are exhaustively listed in Table 40 on page 164, grouped in
chronological order by the person who submitted them.

92

5.2.1 Five Categories of Sessions

One of the uncontrolled aspects of the study was not anticipated and became an early problem.
There was no restriction on the number of sessions per subject, on the number of documents per
subject, on the number of documents per session, or on the number of sessions per document.
Further, there was no requirement that any meaningful work be done in a session. The tracker
and analysis tools were designed to automate an analysis like Card, '\loran, and '-.;ewell described
in their !CARL'S study; I had assumed one standalone session per document, with the work on a
single document done from beginning to end in a session. Of course, humans use tools as they
wish, despite the presumed intentions of their d~signers 1

We categorized the 112 sessions many ways, but eventually the key separation was the nature of
the work done in a session and how pieces of work spanned sessions. Figure 32 on page 168
shows the categorization of the 112 sessions into five groups.

42 sessions are considered trivial
38% of the sessions contained little or no substantive work. A subject would start a
session, create a node or two, try some of the features, then end the session abruptly
with no save of the workspace. Such trivial sessions are usually readily apparent on
visual examination; more rigorously, a trivial session consists of one of the following
situations:

The subject never saved the workspace.
• The subject opened a file, but never used it.

The session was short (several minutes or less), with little work done and no
follow-up session.

The parse trees for these sessions were not of primary interest for this study. An
example of a protocol record for a trivial session is shown in Figure 10 on page 50.

27 sessions are standalone work on one document
These sessions showed a one-to-one correspondence between a session and a complete
document. AU subjects saved the workspace at least once. The bottom 5 of these 27
sessions in Figure 32 on page 168 contained substantial writing in most or aU of the
nodes in the document.

37 sessions constitute •.-ork on documents spanning multiple sessions
\!any of these sessions have no saves of the workspace, but in aU of those sessions, at
least one node was edited. This implies the underlying node(s) file was changed and
saved. In aU but three of these 37 sessions, nodes were edited.

5 sessions are editing of existing dOcuments
These five sessions were distinguished by one open of an existing document; most
nodes were not created in sessions submitted by subjects. The document may or may
not have been originally created using Prose II. Four of these five sessions were
somewhat similar to one another; they included one or two creates and one link
command. Session Sl4ROI05 had 12 creates, 12 links, and 5 moves.

3 sessions constitute work on multiple documents in one session
Three sessions consisted of work on two documents during each of those sessions.

This adds up to ll4 sessions. Two sessions (S08R0201 and S29ROI03) are counted t'kice since
they included follow-up editing of an existing document plus "·ork on a new document with mul­
tiple opens and saves.

Figure 33 on page 169 shows yet a different subset of these ll2 sessions. These 10 sessions were
non-trivial sessions where the subjects used Prose II as more than just an outline processor; they
wrote substantial text in the flies behind the nodes.

93

5.2.2 Documents and Sessions per Subject

Given an uncontrolled nature study of this nature, how many documents might researchers expect
subjects to work on? Although several subjects returned 10 or more recordings, no subject
worked on more than 4 documents. Table 19 on page 95 shows the distribution of the 45 total
documents among the 29 subjects. \'ote that for four subjects, all of the protocol records they
submitted were trivial.

Table 19. Distribution of 45 docu·
xnents among 29 subjects

.\.umber of docu- Number of subj€cts
ments

0 4
I 12
2 5
3 5
4 2

How were subjects' documents constructed: over one session or over many sessions? How many
sessions might researchers expect a writer to use to construct a document with this system?
Table 20 on page 95 shows how the 70 non-trivial sessions were distributed among the 45 docu­
ments. About three-quarters of the documents were operated upon with Prose II in only a single
session. No more than six protocol files were returned for any document.

Table 20. Distribution of 70 non-
trivial sessions among 45 documents

Number of sessions Sumber of docu-
ments

I 34
2 3
3 4
4 2
5 I
6 I

5.3 Results and Discussion
This section is the core of the protocol analysis results. It consists of four large subsections:

!. Time Distribution: looks at the range of time durations for documents, sessions, phases, epi·
sodes, and pauses.

2. Frequency Distribution: looks at the range of frequency distributions for the types of phases,
constructive episodes, housekeeping episodes, and commands. Also examines the relation­
ships among these: commands per episode, episodes per phase, commands per session, and
so on.

3. Command Usage: looks at the details of commands important in understanding user
behavior. For example, how many nodes were created, how were nodes labeled and edited,
how was help used, how was file liO done, and so on.

4. Overall Patterns: looks at questions that span the sessions. For example, how big are trees,
which node is the fmal root, how does planning precede writing, and so on.

94

5.3.1 How Long are the Time Periods?

Designers of computer software rarely have a quantitative measure of the time scale of users' ses·
sions with their software. How long did sessions with Prose I I last? How long did subjects work
on a document, even if it spanned multiple sessions? How long were the phases that the parser
identified, how long were the constructive episodes, and how long were the housekeeping episodes
that separated them? How long did subjects pause between commands, and how much of the
total session time did these pauses consume?

This kind of information was readily extracted from the protocol records. These questions are
answered in this subsection. In general, there was a wide difference between the median and
mean values for any measurements of time, as well as a large standard deviation. Almost all fre·
quency distributions of timing measurements were positively skewed, showing a curve with an
early peak and a long trailing tail.

5.3.1.1 Overall Timings for Sessions, Phases, and Episodes

Table 21 on page 96 presents overall timing distributions for the sessions, phases, constructive
episodes, and housekeeping episodes. The median time, along with the mean time and its
standard deviation are presented. The median and mean often differ widely, and the standard
deviation is sometimes many times the value of the mean. This shows how widely overall times
varied.

Table 21. Overall timings for Sessions, Phases, and Episodes
All liZ Sessions 70 Non-trivial 42 Tril·ial Ses- 10 Sessions with

Sessions sions fVriting

Session Times, in seconds

median 743 (12 mins.) 1364 (23 mins.) 172 (3 mins.) 3168 (53 mins.)
mean 1447 (24 mins.) 2074 (35 mins.) 402 (7 mins.) 4789 (80 mins.)
std dev 2071 (35 mins.) 2370 (40 mins.) 571 (10 mins.) 3013 (50 mins.)

Phase Times, in seconds

median ll2 112 103 163
mean 322 330 264 541
std dev 589 608 430 939

Constructive Episodes Times, in seconds

median ll 12 6 14
mean 49 51 19 101
std dev !52 !57 36 236

Housekeeping Episode Times, in seconds

median 21 20 29 21
mean 60 55 122 62
std dev 177 !59 311 192

Discussion:

• The wide variation in times can be accounted for by some arbitrarily long factors inherent in
the uncontrolled nature of the study:

Sessions can be any length; trees can be any size.
Housekeeping episodes can be arbitrarily long because they include long pauses.
Constructive episodes can be arbitrarily long because of writing time in a text editor.

• Comparing trivial and non-trivial sessions:

95

\'on-trivial sessions were much longer in duration than trivial sessions.
The phase times were surprisingly close in value for non-trivial and trivial sessions.
They differed in how the time was allocated between constructive and housekeeping epi­
sodes.
~on-trivial sessions had longer constructive episodes than trivial sessions; trivial sessions
had longer housekeeping episodes than non-trivial sessions.

The similar median phase times (about 5 minutes) across the different groups of sessions
suggest consistent human behavior for periods lasting several minutes.

In their ICARUS study, Card, :\loran, and \'ewell noted three phases, of duration 7, 14, and
15 minutes. Thus, their mean phase time of 12 minutes can be compared against the mean
of 9 minutes among the 10 sessions with writing in this study.

5.3.1.2 How is Session Time Distributed?

Table 22 on page 97 provides more detail on the ftrst row of the preceding table. It shows the
distribution of time durations among the 70 non-trivial sessions. This information might be used
to answer the question of how long a session normally lasts.

Table 22. Distribution of session
times among 70 non-trivial sessions

Session Ttme Number of sessions
(miiUites)

14 or less 24 ..
15 to 29 14
30 to 44 14
45 to 59 7
60 to 74 7

75 or more 4

Session times, 70 non-trivial sessions

range: 0.8 minutes (Sl6R0103) to 218.3 minutes (S!7R01G!)
median: 22.7 minutes

mean: 34.6 minutes
std dev: 39.5

A subset of these 70 sessions are the I 0 sessions where a substantial amount of writing was done
in the nodes (these session IDs are listed in Figure 33 on page 169). Their duration was more
than twice as long as the median and mean duration for all 70 non-trivial sessions.

Session times, 10 sessions with substantial writing

Discussion:

range: 32.5 minutes (S26RG!G!) to 196.9 minutes (S25R6361)
median: 52.8 minutes

mean: 79.8 minutes
std dev: 50.2

• :\lost sessions without writing were less than twenty-ftve minutes in duration. :\lost sessions
with writing lasted less than an hour. No session lasted more than four hours; the longest
sessions included extensive pauses.

96

This suggests that controlled tests that study such software systems should consider having
session times on the order of thirty minutes to an hour, as opposed to four hours.

In their ICARUS study, Card, 'vloran, and :\ewell analyzed one session of a circuit layout
task that lasted 40 minutes. This data suggests their session time was of typical length.

The many short sessions might be explained because work on some documents was divided
over several se·ssions.

5.3.1.3 How is Document Time Distributed?

The following table shows the dist-ribution of total time durations among the 45 non-trivial docu­
ments. Document times are different from the session times; a document may be composed of
more than one session, or many documents may be worked on in a single session.

Table 23. Distribution of 45 docu·
ment times among 70 non~trivial

sessions
Document Time [\lumber of sessions

(minates)

14 or less 7
15 to 29 8
30 to 44 13
45 to 59 6
60 to 74 5

75 or more 6

Document times, 45 documents

range: 2.4 minutes (S18R0102) to 218 minutes (S17R0101)
median: 39.4 minutes

mean: 53.7 minutes
std dev: 52.9

Discussion:

• Most documents constructed with Prose II were completed in less than forty-five minutes of
total session time.

5.3.1.4 How Long are the Pauses Between Commands?

One of the hypotheses built into this parser is that pauses of moderate length occur between
bursts of similar work. The two graphs that follow chart the duration of the pauses between
consecutive commands. The parser identified 7370 pauses across all sessions.

Figure 27 on page 99 shows a "close-up" view of the pause durations; it looks at the frequency
distribution of pauses lasting 16 seconds or less, where the distribution has been computed at 0.2
second intervals. Figure 28 on page 100 shows pause durations up to 100 seconds, in this case,
distributed using 1.0 second intervals.

97

················,

14
Seconds, from 0 to 16.0

Figure 27. Frequency distribution of pauses between commands. This figure shows the distribution
by 0.2 second intervals, from 0 to 16.0 seconds. The first peak in this graph is in the interval
from 0 to 0.2 seconds. The next two peaks are in the intervals 0.8 to 1.0 and 1.2 to 1.4
seconds.

98

1600,----------------------------------,

400+1··· .. ··1

1

1 ,.,
" <::
"' = ;;;;;

"' .1:

Seconds, from o to 1 oo

Figure 28. Frequency distribution of pauses between commands. This figure shows the distribution
by 1.0 second intervals, from 0 to 100 seconds. The peak in the graph is between 1 and 2
seconds, where 20~-0 of all pauses occur.

99

Table 24. Distribution of 7370
pauses among the four pause types

Type of pause Frequency

< 6.0 sees 72.6%
6.0 to 8.5 sees 7.7%

8.5 to 100 sees 18.8%
100 sees or more 0.7%

Duration of a single pause, among all 7370 pauses

range: 0.05 seconds to 2820 seconds
median: 3.0 seconds

mean: 10.0 seconds
std dev: 69.6

Duration of a single pause, excluding the 65 pauses greater than I 00 seconds

range: 0.05 seconds to 99.6 seconds
median: 3.0 seconds

mean: 6.4 seconds
std dev: 10.4

Discussion:

• The median pause duration was 3 seconds. Two-thirds of a!l pauses were less than 5
seconds.

• Card, \loran, and Newell used 5 seconds as their inter-command cutoff value in their single
ICARUS protocol.

• In its version of freewriting, Addison Wesley's Wordbench puts a timer at the top of the
screen. and exhorts you to "KEEP WRITI:>iG" if you stop for more than 5 seconds. These
results corroborate their desigo.

When building the parser, my experience with pilot studies showed that there was a natural
break in the frequency of pause durations after 6.0 seconds and after 8.5 seconds. This data
shows I was close, but suggests 9.5 seconds might have been a better selection point. The
handling of pauses by the parser is discussed in "Pauses" on page 74.

• The clock resolution of DOS, and thus the tracker, was 0.055 seconds. 2.6% of the pauses
were 0.06 seconds or less, which is at about the resolution of the human cognitive processor
that Card, :\loran, and :>iewell describe (they specified the human processor cycle time as
0.07 seconds, "ith a range from 0.03 to 0.10 seconds).

:\fore sophisticated parsers can be envisioned where the meaning assigoed to pauses of dif­
ferent durations could be adjusted on a sliding scale-as opposed to making decisions based
on fixed points as was done here. To determine the classification of each pause, this sliding
scale could use information it maintains about the subject, their experience, and the elapsed
time so far in a session. · This technique might also be used to identify individual differences
in attention spans.

100

5.3.1.5 Wltat Proportion of Session Time was Spent in Pauses?

Of the total time in a session, how much time was spent not actively executing commands with
this software? Figure 29 on page 102 shows the frequency distribution of the proportion of total
session time spent in pauses.

1

1

1

,.. 1
(;)
~

;;;

" 1

"' ~
u..

0 20 40 60 80 100
Percentage of lime in pauses

Figure 29. Frequenry distribution of total session time spent in pauses. This chart shows how total
pause time \\'ithin a session was distributed among the 112 sessions. For example, in 20 ses­
sions the total pause time was between 40% and 49~··0 of the total session duration.

The proportion of total session time spent in pauses has the following size characteristics:

Proportion of total session time in pauses

Discussion:

range: 1% (Sl0R0181) to 99% (S27R0108)
median: 56%

mean: ·sa%·
std dev: 25

10 I

• About half of the total session time is spent in pauses, not actually executing commands.
Long periods spent in a text editor are not included in the total pause time.

5.3.1.6 Summary: Time Durations

The frequency distribution of most time durations showed large differences between the
median and mean times, as well as large standard deviation mlues. Graphs of these distrib­
utions are positively skewed, showing curves with an early peak and a long trailing tail.

Sessions were short, about a half hour or less, when no writing was inmlved.

• Sessions with writing lasted about an hour.

Overall document times were about an hour.

About half the total session time was spent in pauses.

• Half of all pauses were less than 3 seconds; two-thirds were less than 5 seconds. The
measure of pause duration did not include the times spent for the execution of any com­
mands. The testbed system was fast, with only two commands that did not appear to be
instantaneous: opening and saving ftles. For all commands, the entire command completed
before measuring the beginning of the pause.

• \lean and median phase times were close in value when comparing non-trivial and trivial
sessions. This could imply that spans of human behavior are of similar length, whether the
underlying activity is learning or doing productive work.

5.3.2 How are Parse Elements Distributed in Frequency of Use and Time?

Having looked at the distribution of the parse elements in time duration, this subsection examines
how frequently the different types of phases, episodes, and commands occurred within these ses­
sions.

5.3.2.1 Frequency Distribution of 7 Phases

Phases were the highest grouping applied by Card, \loran, and :'\ewell. The parser divided ses­
sions into one or more phases, each lasting several minutes. A single type of activity predomi­
nates in each phase. A phase consists of a sequence of cognitive tasks, known as episodes.
Within a phase, episodes of constructive work alternate with periods of thought and house­
keeping. Willie phases contain both types of episodes, only constructive episodes are used to
characterize the phases.

What were the broad types of activity that writers engaged in? Of the seven types of phases
defmed by the grammar in this project, which were seen most often? How long did the phases
last?

The seven different types of phases were described in detail in Table 17 on page 84. Table 25 on
page 104 and Table 26 on page 104 shows the distribution of phase types and their durations.

102

Table 25. :-;on-trivial sessiOns: Distribution of the 7 phases types. This is sorted in order of
frequency of the phases observed in the non-trivial sessions

Phase Same Distribution Percentage Median Phase Percentage
among 70 .\'on· count among time, Son- time among
trMal sessions t\'on-trMal ses- trivial sessions .\'on-trivial ses-

sions (seconds) sions
Exploration 145 33.0% 106.5 27.2%

Define Hierarchies \OJ 23.4% 121.7 28.3%
Top 00\vn Construction 101 23.0"/o 172.2 24..2%

:'\ew Workspace 37 8.4% 34.7 2.0°/o
Document Revision 31 7.0% 330.8 16.5''/o

Bottom Cp Construction \8 4.1 °/o 49.0 !.7%
Tree Structure Revision 5 1.1% 26.4 0.1%

Total 440 100.0% 111.9 100.0%

Table 26. Trivial sessions: Distribution of the 7 phases types. This is- sorted in order of fre-
quency of the phases observed in the non-trivial sessions

Phase Atzme Distribution Percentage ,lt/edian Phase
among42 among Trivial time, Tri~·iat

TriviRI sessions sessions sessions
(seconds)

Exploration 23 35.9%. 165.3
Define Hierarchies 24 37.5%. \00.2

Top Down Construction I 1.6% 1316.9
Kew Workspace 15 23.4% 123.4

Document Revision 0 0% 0
Bottom Up Construction I 1.6% 12.4

Tree Structure Revision 0 0°/o 0

Total 64 100.0% 103.4

Table 27 on page I 04 shows the percentage of time spent in each of the types of phases.

Table 27. Distribution of time spent among
the 7 phases, among all sessions

Type of phase Duration, among
total session

time

Exploration 27.3%
Defme Hierarchies 30.0%

Top Down ConstrUction 22.5%
:"\ew Workspace 3.8%

Document Revision 14.8%.
Bottom Up Construction 1.5%
Tree Structure Revision 0.1%

Total 100.0%

Discussion:

• A third of the phases were involved with exploration.

Exploration includes any initial writing done in a node.

• There was much more top-down construction than bottom-up construction.

The number of bottom-up episodes is 18% the number of top-down episodes. By time
duration, 15 times more time was spent in phases of top-down construction than in
phases of bottom-up construction.

103

Although common, this may not be the most desirable strategy. Lansman, Smith, and
Weber (1990) noted in their experiments a significant negative correlation between top­
down score and the quality of subjects' documents. "Those subjects who tended to gen­
erate lower level ideas first wrote higher quality reports."

These results indicate that Prose ll was rarely used to revise a document's hierarchical struc­
ture.

About one-sixth of the total time was spent in phases of document textual revision. These
were the longest phases (in median time duration).

Pianka (1979) reported that college freshman devote less that 9% of their composing time to
reading and revising. By count, the results of this study show that 8.1% of the phases were
used for document and structure revision. By time, 16.7% of the total session time was
spent in revision, a result somewhat higher than Pianko's report. This may be accounted for
by the difference in strategy between college freshman and technical professionals.

5.3.2.2 Frequency Distribution of 12 Constructive Episodes

The parser characterized the types of constructive episodes in a session. A constructive episode
consists of series of distinct user commands with short elapsed time between them. Multiple
overlapping goals may be attempted by a subject during a single constructive episode: for
example, they might move some nodes and delete some nodes that are no longer needed, so that
they might then create, label and link a new set of nodes. Section 4.2.3.4 on page 78 discusses
how Pass 3 of the parser produces the characterizations of constructive episodes from the
sequence of primary and secondary commands. The twelve different types of constructive epi­
sodes are described in Table 12 on page 79. Table 28 on page 105 show the distribution of con­
structive episode types and their duration.

Table 28. Distribution of 12 constructive episodes among the non-trivial and trivial
sessions. This is sorted in order of frequency of the episodes observed in the non-trivial
sessions

Constructive Episode Name Distrib- Per- ,Hedian Distrib- Per- Median
ution cent age Episode ution cent age Episode

among among time, R11Wfft. among time,
70 Non- .\'on- Son- 42 TriviRI Trb,ial

trMtzl trivial trivial Trh·Uzl sessions sessions
sessions sessions sessions sessions (seconds)

(seconds)

Created solo nodes 226 17.6% 13.4 14 14.1% 6.9
Edited existing nodes 2!9 17.0% 37.4 4 4.0% 14.8

Grew existing trees 183 14.3% 25.5 2 2.0% 22.7
Hooked existing nodes 147 11.4% 7.8 I \.0% 2.8

\·loved existing nodes 131 10.2°/o 3.9 3 3.0"/o 8.0
Created new trees 82 6.4% 15.4 14 14.1% 9.4

Revised existing nodes 82 6.4% 2!.4 4 4.0% 25.7
Deleted nodes 74 5.8% 2.3 5 5.1% 0.1

Unproductive work 64 5.0% 7.8 19 19.2% 14.3
Start over 36 2.8% 3.2 32 32.3% 4.8

Assembled trees 20 1.6% 8.2 I 1.0% 3.2
Broke existing links 20 1.6% 5.8 0 - -

Total 1284 100.0% 11.6 99 100.0% 6.1

Discussion:

The median time duration for all constructive episodes was about twice as long in non-trivial
sessions as in trivial sessions.

!04

• \1uch of the time in constructive episodes was spent in iterative refmement: growing existing
trees and hooking nodes into them.

The median times for episodes of creating and editing nodes were longer for non-trivial ses­
sions than for trivial sessions. This is reasonable, since productive words were presumably
being written during the non-trivial sessions.

By count, 5'% of the constructive episodes in the non-tri\'ial session was unproductive work,
as opposed to 19~'0 in the trivial sessions. The unproductive work episodes were of longer
duration in trivial sessions than in non-trivial sessions.

In their ICARUS study, Card, \loran, and :'>ewell found their mean episode time was 25
seconds. Their defmition of an episode did not make the distinction between types of
episodes-housekeeping and constructive-shown in this study. To get to a comparable
measure, the median duration for both types of episodes can be summed. This combination
of one housekeeping episode and one constructive episode could be said to last about 32.0
seconds, for non-trivial sessions. A typical episode time for trivial sessions was surprisingly
close in duration: about 34.6 seconds.

5.3.2.3 Frequency Distribution of 7 Housekeeping Episodes

Between consecutive constructive episodes are periods of syst,em operations, including pauses to
think and housekeeping operations. The parser determined each of these episodes of system
activity. Seven different types of housekeeping episodes were described in detail in Table 10 on
page 76. Table 29 on page !06 shows the distribution of housekeeping episodes and their dura­
tion.

Table 29. Distribution of 7 housekeeping episodes among the non-trivial and trivial
sessions. This is sorted in order of frequency of the episodes observed in the non-trivial
sessions

Housekeeping flnd t'ttteta- Distrib- Per- J1edian Distrib- Per- Median
housekeeping Episode Name uti on cent age Episode ution cent age EPisode

among among time, among among time,
70 Non- .:\'on- .Von- 41 Tril:ial TrMal

trivial trivial trivitzl Trivitll ses.siom sessions
sessions sessiom sessions sessions (seconds)

(seconds)

:vtedium & Long Pause 756 51.7% 16.5 66 53.7% 23.1

Refocus 361 24.7% 30.0 21 17.1% 48.0
Cleanup & Take St~k 93 6.4t/o 30.2 2 1.6~/e 33.8

Cleanup 88 6.0% 9.6 s 4.1% 7.1
Help Request 72 4.9% 45.0 15 12.2% 74.9

Take Stock 72 4.9% 37.2 7 5.7% 2-1.6
Tracker Comment 20 1.4% 59.5 7 5.7% 132.4

Total 1462 100.0% 20.4 123 100.0% 28.5

Table 30 on page 107 shows the percentage of time spent in each of the types of episodes. It
shows the percentage of time among the total housekeeping episode time, as well as the per­
centage of time among the total session time.

105

Table 30. Distribution of time spent among the 7 house-
keeping episodes

Type of housekeeping episode Duration, among Duration, among
total house- total session

keeping episode time (includes
time constructive epi-

sodes)

\-tedium & Long_ Pause 60.8 ~.'0 35.6'%
Refocus 18.9% ll.l ~/o

Cleanup & Take Stock 4.1% 2.4%
Cleanup 1.4% 0.8%

Help Request 7.2% 4.2%
Take Stock 4.5%t 2.6°/o

Tracker Comment 3.0% 1.8%

Total \00.0% 100.0%

.

Discussion:

• As dcfmed in this study, about half of the housekeeping episodes consist of long pauses.

• There were many housekeeping episodes involving roaming and zooming in the workspace.
This suggests that the screen is probably too small. As a software developer, ·r believe I
should be building systems with fewer occurrences of Refocus, and with less time per occur­
rence. For example, in this study, I !.I% of the total elapsed time among all the session was
spent in Refocus episodes (see Table 30).

An area for a follow-on study is a controlled experiment, where two different screen sizes are
used. If the amount of time spent doing Refocus activities decreased with larger screens, one
could build a case for doing a cost analysis, comparing the cost in employee time for using a
small screen as opposed to using a large one.

Episodes of Cleanup only were relatively short in duration; their mean duration was about I 0
seconds, as opposed to about 20 seconds for the housekeeping episodes as a group.

• Trivial sessions contained a higher proportion of help requests and tracker comments, and
the time for these was longer than for non-trivial sessions.

5.3.2.4 Frequency Distribution of 39 Commands

One of the most valuable tools to a software engineer for tuning a system is a code profller.
What code was executed·, and with what frequency? Similarly, designers of user interfaces need
feedback on which features of the interface are used most frequently. What are the most­
frequently-used commands-they should probably be the easiest to use? Are there common sub­
sequences that might be grouped together? Are there commands that are never used? Are there
commands used by experts, but not by novices?

The tracker in Prose II recorded 39 different commands, in addition to the Pause. Across the !!2
sessions, all of the commands were used at least once. Tabie 3! on page !08 shows how the
commands were distributed among the non-trivial and trivial sessions. The table is sorted in
order of frequency of the commands used in the non-trivial sessions. A total of 6225 commands
wer~ performed among the non-tri,·ial sessions; 447 commands were performed among the trivial
sesstons.

!06

Table 31. Distribution of the 39 Prose II commands
Command Xame Distribution: 70 Percentage: Son· Distribull'on: 42 Percentuge:

,Yon-tril'iul ses- tri1·ial sessions Trivial sessions Trivial sessions
siuns

Link~odes 1079 1'7.3% 38 8.5'%
EdltLabel 1075 17.3% 34 7.6°/n

Create::\ode 974 15.6% 47 10.5%
~1ove!'\ode 515 8.3% 7 ! .6qu

\lapWindowRoam 359 5.8% 12 2.7%
Edit:\ ode 287 4.6% 24 5.4°/o

TidyWorkspace 238 3.8% 6 \. 3 °/o
;.-tap Window Zoom 2lJ 3.7% 6 1.3%

LoseFocus 204 3.3% 5I I 1.4%
HelpRequest 166 2.7% 47 10.5%
~lap Window !54 2.5% 16 3.6%

Delete!\ode 142 2.3% 17 3.8%
Sa ve\V orkspace 122 2.0% 6 1.3'%
Outlme\Vmdow 63 1.0% 15 3.4'\·;,

~ap\tove 60 1.0% 9 2.0'%
\lain Window Zoom 59 0.9% j 1.1 '%

SetTidy\lode 56 0.9% 2 0.4'%
Open Workspace 53 0.9% 36 8.1%

Break: Link 48 0.8% 2 0.4%
~ainWindowReset 48 0.8% 16 3.6'%

SetDelete.\lode 38 0.6% 4 0.9%
Systemlcon 31 0.5% 4 0.9%

OutlineWindowSize]I 0.5% 12 2.7%
TrackerComment 28 0.4% 10 2.2%

OutlineWmdow\tove 27 0.4% 8 1.8%
Copyl\ode 26 0.4% 0 0.0%

SystemZoom 20 0.3% 5 l.l%
Go To 19 0.3% I 0.2%

l\ewWorkspace 16 0.3% 3 0.7%
ChangeDefau1t 16 0.3% 3 0.7%

Scramble 12 0.2% I 0.2%
System\love 5 0.1% 0 0.0%

TreeShnnk 4 0.1% 0 0.0%
TreeGrow 4 0.1% 0 0.0%

\lapSize 4 0.1% 0 0.0%
BreakAIILinks 3 0.0% 0 0.0%

SystemSize 3 0.0% 0 0.0%
ClearOrawing 2 0.0% 0 0.0%

ClipboardCopy I 0.0% 0 0.0%
Total 622:5 100.0% 447 100.0%

Discussion:

• Among the non-trivial sessions, more than 50% of the commands performed were either cre­
ating, linking, or labeling of a node, with the other 36 commands occurring far less fre­
quently.

• Among the trivial sessions, the three most frequent commands were l) leaving Prose II for
another application, 2) requesting help, and 3) creating a node.

The botton:t eight commands in Table 31 are good candidates for removal, or. placement on
an "Advanced" menu. They were rarely used in the non-tri\~al sessions and never even tried
in the trivial sessions.

5.3.2.5 Relationship between Commands, Episodes, Phases, and Sessions

What is the relationship among the parse elements? How m~y commands were there per
episode, how many episodes in a phase, and how many phases in a session? I looked at these
relationships in two ways: among the group of 27 single-document sessions, and among all 70
non-trivial sessions. These results are unusual among those in this chapter; their standard devi­
ations are small compared to their means and medians!

107

Table 32. Ratios of commands, episodes, and phases among 27 single-
document sessions

Conunands per Episodes per Phases per session
episode phase

range: 2.0 to 8.0 2.0 to 11.0 2.0 to 36.0
median: 4.0 4.3 6.0

mean: 4.0 4.8 9.4
std dev: l.3 2.2 7.6

Table 33. Ratios of commands, episodes, and phases among 70 non-trivial
sessions

Commands per Episodes per Phases per session
episode phase

range: 1.2 to 8.0 !.5 to 13.0 2.0 to 36.0
median: 2.9 4.0 4.0

mean: 3.1 4.4 6.3
std dev: l.3 2.2 6.3

Discussion:

Subjects worked in longer bursts in the 27 single-document sessions than in the 70 non-trivial
sess!ons. There were more. commands per episode and more episodes per phase in these 27
sesstons.

• The standard deviation values are small in the commands per episode and episodes per phase.
Also, the median and means are relatively close together. This suggests a consistency in the
definition of these terms and in how they are parsed. It may further suggest that humans are
consistent in short time periods.

As a topic for follow-up research, it would be interesting to see how these values changed as
the time duration values were changed in the parser (e.g., PauseTypeO-see Section "Pauses"
on page 74).

These chunks (that is, the commands per episode and episodes per phase) are about the size
of human Working :-.!emory chunks: in the range of 3 to 5 elements.

• The number of episodes per phase is fairly consistent, even among the different types of ses­
sions. Table 21 on page 96 shows that the timings for phases was consistent among all
types of sessions.

This suggests that the definition of phases, in both time and number of episodes, was con­
sistent among all types of sessions.

• There is large variation in phases per session, since session lengths and document sizes vary
considerably.

5.3.2.6 Number of Nodes vs. Time Spent in a Session

What's the cost, in time, of adding new nodes to a document? Is the cost per node higher for
large documents or for small documents? What's the time difference between sessions where sub­
jects only labeled nodes, as opposed to sessions where they wrote substantial text for the nodes?

In an effort to understand the "cost" of creating a node, I looked at the number of nodes saved in
the single-session documents, compared to their total session time.

!08

Time per node, 22 single-session documents without substantial writing

range: 22 seconds/node (Sl7R0201) to 631 seconds/node (S10R0104)
median: 76 seconds/node

mean: 113 seconds/node
std dev: 124

These 22 sessions are listed in the second column of Figure 32 on page 168.

Time per node, lO sessions with writing

Discussion:

range: 94 seconds/node (S18R0108) to 692 seconds/node (Sl5R0102)
median: 386 seconds/node

mean: 427 seconds/node
std dev: 206

These lO sessions are listed in the two columns of Figure 33 on page 169.

The data analysis showed that the time per node decreases as the number of nodes increases.
The decrease in the time per node as the number of nodes increases may be explained by the
fixed startup and takedo"'n costs in a session.

When writing in the nodes, the time per node increases by a factor of about 4 to 6 times.

In the sessions of labeling without writing, subjects devoted about a minute to each no.de. A
recent report supports this finding:

Psychology students using a new computer program were able to generate 86-ideas in
78 minutes (i.e., 54 seconds/idea), while students who tried brainstorming at random
produced 55 ideas in 55 minutes (i.e., 60 seconds/idea). The program, called
/deaFisher (from Fisher Idea Systems in Irvine, California) allows creative
"navigation" through 370 broad topics, 65,000 words and phrases, and 675,000 cross
references. (Roberts, 1989)

A minute per idea can serve as a predictor of overall session time.

• Slow sessions can be identified. For example, S23ROIOI was a relatively long session for the
number of nodes, yet there were no exceptionally long pauses and no writing in the nodes.
However, the labels were long (a mean of 49.4 charactersjlabel).

SIOROI04, which showed the long rate of 421 seconds per node, consisted simply of building
a tree with 6 nodes and labeling them. This points out a deficiency in the parser: inadequate
handling for one of the Edit Label commands that lasted 48 minutes.

5.3.2.7 Number of Nodes vs. Number of Commands in a Session

Subjects executed commands in a session for many different reasons, as we have seen: both for
housekeeping and for constructive work. What's the relationship between the number of nodes
and the number of commands in a session? The next set of statistics compares the number of
nodes created in a session with the total number of commands in a session. Counted among the
commands are all "non-pauses" recorded by the tracker; this includes LeaveProseli, Help Request,
and TrackerComment. :'\odes were created in 56 non-trivial sessions (in the other 14 sessions,
existing nodes were edited, but none were created).

109

Commands per node

Discussion:

range: 3.6 commands/node (S06R030l) to 48.0 commands/node (S27R0104)
median: 6.2 commands/node

mean: 8.8 commands/node
std dev: 7.8

• During a session, subjects performed about 4 to 8 commands per node.

Since an expected command sequence is Create:--:ode, Editlabel, and Link:\ode for each
node, three commands per node would be the reasonable minimum. Thus, session
S06R030 l (at the low end of the range) appears straightforward. Examination of this session
indeed shows an extended sequence of creating, labeling, and linking node, with little
Revision or Refocus activity.

• The commands per node decreases slightly as the number of nodes increases. The decrease
in the number of commands per node as the number of nodes increases may be explained by
the fixed startup and takedown costs in a session.

5.3.2.8 Summary: Distribution of Commands, Episodes, and Phases

• Almost 80% of the phases involved exploring, defming hierarchies, or constructing trees in a
top-down manner. Subjects rarely used Prose II for textual revision or structural changes.

There was a preponderance of top-down construction, as opposed to bottom-up con­
struction. Much of the top-down construction took place as iterative refmement.

• A quarter of the housekeeping episodes were concerned with refocus operations, perhaps
because of the small screens used by the subjects.

• Half of the commands can be accounted for with creating, labeling, and linking nodes.

• The counts of commands per episode and episodes per phase were surprisingly consistent,
with small variation.

• As a rule of thumb, subjects spent a minute or two per node if writing was not involved in
the session; if writing was involved, they spent about 5 to lO minutes per node.

5.3.3 How Were Particular Commands Used?

Some specific Prose II commands are examined here in greater detail. These include the com­
mands for creating, deleting, labeling, and writing text in nodes, as well as requesting lielp,
opening and saving a workspace, and tidying trees. Finally, all of the comments that subjects left
in the protocol records are listed.

110

5.3.3.1 Creating and Deleting Nodes

Counting nodes in a session is an ambiguous problem. At various points in the analysis,
encountered four different ways of counting the nodes created in a session or document:

I. Count the number of create commands in a session.

This misses the copy command, but Copy:'iode was only used in 3 of the 112 sessions. This
also omits nodes created in a previous session and present in the current session because the
subject used the Open Workspace command.

2. Count the number of nodes saved in the last save of a session.

This misses substantial work on nodes that were deleted before the save, and it includes
nodes from existing documents created in other sessions.

3. Count the total nodes for a given document, since they are uniquely numbered.

This counts all deleted nodes (which can be many) and can also include nodes from existing
documents created in other sessions.

4. Count the nodes actually touched by any explicit command in a session.

for example, in one session .(Sl4R0!03) a flie with 45 existing nodes was opened; the con·
structive work in that session consisted of writing text in 8 of the nodes.

There was not a straightforward solution to this ambiguity. I have used the first defmition con·
sistently in this section, unless it is identified otherwise.

Table 34. ;-\umber of nodes created in different types of documents
Non-trivial Docu· Single-session ~l-lultiple-session

ments documents documents
median: 17.0 19.0 14.0

mean: 22.4 26.3 14.2
std dev: 17.1 19.4 4.8

Discussion:

In the multi-session documents, the median and mean value for the number of nodes in the
documents is similar (about 14 nodes) and the standard deviation is comparatively small. I
cannot directly acco\lnt for this; I would like to look at a larger sample size.

In one unusual session (Sl7RO!Ol), 36 nodes were deleted. Otherwise, in the remaining Ill
sessions, the most nodes deleted in a single session was 9; the mean was 1.0 nodes deleted in
a session. 70 sessions had no deletes. Of the sessions with deletes, the mean was 3.0 nodes
deleted.

• The effectiveness of having a separate Delete :'vtode would be seen if no nodes were acci·
dentally deleted-this allows Prose l/ to get by without an Vndo command. The protocols
could be examined for evidence of accidental deletion-but this is hard to determine, since
nodes were frequently created soon after a delete. On the contrary, two-thirds of the deleted
nodes were the last node created.

A total of 945 nodes were created using the Create~ode command in all sessions, and 119
nodes were deleted. In aggregate, about 12.6% of the nodes created were deleted. This
count of deleted nodes does not include those deleted because of the l\'ewWorkspace,
ClearWorkspace, or Open Workspace commands; these three commands delete all existing
nodes in a workspace. Similarly, this count of created nodes does not include nodes created
by opening existing documents using the Open Workspace command.

Ill

Subjects used the Copy:"ode command to create nodes in only 3 of the 112 sessions. It was
used in session S l7RO lO l 22 times; in the two other sessions, it was used twice.

5.3.3.2 Labeling Nodes

As a software designer, how should I plan for the labeling of nodes in an outline? How much
time is spent labeling a node (i.e., can other background actiYity be occurring during this period)?
I low big can node labels become: if my' software is allocating internal memory blocks, how big
might these labels grow?

Subjects labeled nodes in all but two of the 70 non-trivial sessions.

S25R0101: There was writing in all eight nodes, but none of the nodes were labeled.

S25R0301: The subject built a substantial tree with 21 nodes, wrote text in the ftles associated
with all of them, but labeled only one of them.

!low much time was spent labeling a node? Across the 112 sessions, node labels were edited 954
times. The durations for these periods in the EditLabel dialog box are shown below.

Time spent labeling a node

range: 0.3 seconds to 2841 seconds
median: 11.9 seconds

mean: 17.8 seconds
std dev: 34.5

How long are the labels used for the nodes? Across the 112 sessions, the statistics are shown
below:

Label length, in characters

range: 2 characters to 189 characters
median: 18 characters

mean: 24.7 characters
std dev: 21.2

Running a word-counting program against a file of all the labels showed that the 112 sessions had
a total of 3482 words.

Label length, in words

mean: 3.6 words/label
6.8 characters/>JOrd

Discussion:

These subjects expressed their concepts with a few choice, long words. Compare 6.8
characters/word with the standard measure mentioned by Card, :\loran, and l\ewel!: 4.8
characters per word (for telegraphic data, from 1898).

There was wide variation in the time spent labeling, but narrower variation in the number of
characters in the labels. This suggests some consistency in the size of the character strings
used for labels, which may be a side-effect of the displayed size of the nodes and the font

112

shown in the system. Subjects rarely entered labels that were significantly longer than the
size of a node, which would have caused the label to be truncated during normal viewing.

One session, S22RO 10 I, was interesting in that it had somewhat long labels, yet was efficient
in the number of nodes created and labeled during the elapsed session time. A fast typist.

5.3.3.3 Writing Text in Nodes

While most subjects labeled their nodes, few used a text editor to write extensive text to be associ·
atcd with their nodes. \Vhen writing did occur, how much time was spent doing this writing?
Hayes and Flower (1986, p. 1109) noted that "Even for the most extensive outliners, the ideas
noted in the outline were expanded on the average by a factor of eight in the fmal essay." Were
similar results seen in this study of writers?

In 54 of the 70 non-trivial sessions, subjects edited at least one node; 16 sessions contained no
writing at all. However, only 9 documents involved sessions with substantial text editing. 3 of
these 9 were additional work on existing documents; 6 were newly-created documents.

I low much time was spent in one trip to an editor? For the 54 non-trivial sessions with periods
of writing:

Time spent writing with a text editor, per node

range: 0.1 seconds to 2136 seconds
median: 37.3 seconds

mean: 119.6 seconds
std dev: 235.1

What amount of total session time was spent writing?

Proportion of session time spent writing, 54 sessions with any writing

range: 0.1% (S22R0101) to 84.7% (S15RB192)
median: 16.7%

mean: 25.5%
std dev: 26.5

Proportion of session time spent writing, 10 sessions with substantial writing

range: 7.8% (S13R0101) to 84.7% (S15R0192)
median: 44.7%

mean: 50.8%
std dev: 24.9

Total writing time in a session, 54 sessions with any writing

Discussion:

range: 0.1 minutes (S22R0101) to 113.3 minutes (S15R0102)
median: 1.1 minutes

mean: 10.6 minutes
std dev: 22.4

ll3

• :VIost subjects experimented with using a text editor, but few used it for actual document
writing.

In the I 0 session with writing, about half the total session time was spent doing that writing.

There was wide variation in the time spent writing with a text editor.

Although Prose [[could invoke any editor (e.g., a paint program), no subjects used an)1hing
other than a text editor for work on an actual document. One reason: Prose [[is not well
suited to embedding graphics in final output. :VIore extensive commercial programs, such as
Page,~faker, extend the idea of mixing text with graphics. Prose [[was used principally as a
2-dimensional outline processor.

Hayes and Flower's observation of an expansion by a factor of eight cannot be directly sub­
stantiated with the results of this study, because the number of words in the edited text was
not collected by the tracker. However, the times for labeling and writing can be roughly
compared. For the 54 sessions, both sets of time distributions have early peaks and long
trailing tails:

Time spent labeling, per node

median: 11.9 seconds
mean: 17.8 seconds

std dev: 34.5

Tioe spent writing, per node

median: 37.3 seconds
mean: 119.6 seconds

std dev: 235.1

These mean values are consonant with the 8-to-1 ratio reported by Hayes and Flower.

• Subject 25 had two unusual sessions, where writing was done in large trees but with little
labeling.

53.3-4 Requesting Help

Significant effort is invested in modem interactive software to provide online help. How often are
these helps used? How long do people spend looking at the helps? Are they actually helpful?

Ten different help panels were available in Prose II. The full text fa. each of these panels is
shown in Table 2 on page 45. Table 35 on page 115 shows how many times each of these helps
was requested and how much time was spent viewing them. Help was requested in only 27 of the
70 non-trivial sessions.

Table 35. Distribution' of help requests among all ses-
sions

1\'ame of the help TotaiiUimher of ,'Uedian time spent
panel requests ~·iewing this help

panel (seconds)

Introduction 24 6.0
First Time 22 9.2

:\1ouse 31 11.6
Map Window 18 17.6

Delete/Tidy 30 20.1
File Formats 14 24.4

Editing 32 18.0
Changing 14 15.7
\VIN.Il'\1 15 32.4
Help)Ae 4 21.0

114

Time per help panel, 112 sessions

range: 2.1 seconds to 205.9 seconds
median: 12.9 seconds

mean: 19.2 seconds
std dev: 21.7

Requesting help was the tenth most frequently-used command among the 70 non-trivial sessions.

Time per help panel, 70 non-trh·ial sessions

range: 2.2 seconds to 87.7 seconds
median: 12.8 seconds

mean: 16.8 seconds
std dev: 14.9

Requesting help was the second most frequently-used command among the 42 trivial sessions.

Time per help panel, 42 trivial sessions

Discussion:

range: 2.1 seconds to 205.9 seconds
median: 14.2 seconds

mean: 25.2 seconds
std dev: 34.0

Subjects ,;ewed help panels for about 15 to 30 seconds.

Time spent in helps was longer in tri\'ial sessions than in non-trivial sessions.

There was wide variation in the amount of time spent viewing help panels. This variation
was widest among the trivial sessions.

• Help for frequent commands (e.g., using the mouse, labeling and editing) was requested more
frequently than for less-frequently-used commands (e.g., changing how the nodes are drawn).

Help for complex operations (e.g., updating the \v!N. IN! ftle, or dealing with the six ftle
formats) took about twice as long as for others (e.g., using the mouse).

I can suggest two conflicting reasons why a user spends a long time reading a help panel:

The help panel contains lots of valuable information, worth reading to understand the
particular problem it addresses, or

The help panel is hard to understand. It should be re-written and,or re-organized in a
future release of the software.

The Prose /1 tracker did not contain a mechanism to distinguish these conditions. It could
only observe that some helps took longer than others. A simple addition might provide
some additional insight:

Since the user must push an "OK" button already to exit a help, two buttons could
be displayed instead. One could read "This was helpful," while the other could read
"This was not helpful." Either selection would exit the help. The tracker could record

115

the choice, which could be accumulated across many sessions during the protocol
analysis.

5.3.3.5 Opening and Saving a Workspace

A variety of file formats were available to users of this system. Each format has a software devel­
opment cost, in its design, coding, and maintenance, as well as its size in the fmal product.
\Vhich formats were used most and least? Could some of the formats reasonably be omitted from
the software, and yet satisfy the target users?

Across the 112 sessions, there were 87 Open Workspace and 125 Save\Vorkspace commands per­
formed. Table 36 on page 117 shows which file formats were used in these Opens and Saves.
The . SCR format is used inside IB\1 as the basic fonnat for document processing, so most of the
existing files that were opened were in that format. The percentage of files saved in the . I NO and
• PRZ formats was larger than the percentage of flies opened in those formats, implying that Prose
li was sometimes used to translate from one format (particularly the .SCR fotnljlt) to another.

~o subjects used the . LST and . ROY formats, two file formats that I found useful in developing
Prose fl. The . CRO format, compatible with the Microsoft Cardflie application, was also rarely
used.

For a review of these file fonnats, see Section 3.1.10.3 on page 43.

Table 36. Distribution of ftle formats used for Opens
and Saves, among all sessions

File format Percentage of Percentage of
Opens Sa11es

.SCR 57% 42%

.PR2 27~-'0 39%

.!NO 5% 171?'0

.CRO 20' • 0 20.' • 0

.ROY 0% QO/
•0

.LST QO/ .o QO-·' 0

5.3.3.6 Tidying

The TidyTrees function was new to most users of this software. It offered a new working
paradigm for some users, one of working in a rather "sloppy" marmer, then choosing a time to
ask the system to tidy up the workspace. Was this paradigm a useful one?

Tidying of trees was performed in 48 of the 70 non-trivial sessions. In these 48 sessions, tidying
was done with the following frequency:

:'\'umber of lidyTree commands in a session

range: 1 command to 41 commands (Session S17Re1e1)
median: 4 commands

mean: 5.7 commands
std dev: 7.2

The Tidy Tree function proved popular among those who used it. Evidence was both anecdotal
and in the parser summaries.

116

On the other hand, the TreeShrink and TreeGrow commands, which I considered powerful func­
tions of Prose l l, were used in only two sessions, for a total of four times each across all the
sessions. TrecShrink and TreeGrow were among the few functions available through the key­
board interface only; they did not have a mouse or menu selection. Thus, to find out about
them, users had to read the appropriate help panel or the manual. This may have limited their
usage frequency. However, the converse was not true: the five commands that were used even
less frequently than these all had mousc;"mcnu interfaces.

5-3.3. 7 Comments Collected by the Tracker

How often did subjects use the two "hot keys" to communicate directly with the tracker? In
Prose l {, the f2 function key could be pressed at any time to record a comment in the protocol
record; pressing the f3 function key indicated that the subject was taking a break in the session.

I 0 of the 29 subjects used the "F2" key in Prose l { to leave comments in their protocol records.
A total of 32 comments were left among the 112 sessions. The comments arc listed verbatim
below, ordered by session 10.

Session · \" erbatim comments entered in the tracker

S06RO 107 "This looks like a terrific tool once l get to know it better. One thing is that
Windows messes up with the PC Char Set and the A:VS! Set doing National Charac­
ters. Keep on going John!"

S06RO 110 "This would be a wonderful tool for keeping minutes of a meeting etc. Especially
when a videobeam system were available. Then from a script file a written document
would be output."

S08R0201 "There doesn't seem to be a way to disassociate filename.from node."

S08R0301 "May have said this before, would like quick create "button" that would both make a
node and open the label text window"

SIOR0104 "This is the first time lam using Prose fl."

S12ROIOI "trying to find how to preserve ordering of trees after "tidy"'

"stopping work to send message to author on tidying of trees"

S15R0105

S15ROI06

S15R0202

S17ROIOI

S18R0103

S25ROIOI

"[guess i screwed things up by changing file names of text to get my data back ... "

"System keeps hanging or requires rebooting."

"!seem to have lost all the text from my previous session ... "

"Strange things are happening... l added a node and found text from another node
in it."

"Just returned from lunch (I hour 45 minutes!)"

"Undo would have. been nice here"

"Will continue later"

"particularly like using the map window as a way to move around the document"

'for brainstorming this reminds of an idea wheel, where you just write the ideas down
and W011J' about the relationships later, very naturaf'

117

S26R020l "After leaving PROS£2 and restarting, file extension for a node changed."

"Why are two files created for each node? One without .ext one with."

S27ROJ04 "When I go select 'Editor', I'd like to see the node label as a comment in the top
line."

"When I click outside a put/down menu, I don't want to create a node in the work­
space. The workspace should then be inactive."

'"Save' and 'Save as' should confirm the action."

"Outline window should be editable"

"Items in map window should be selectable. If I select the 3rd outside the workspace,
that node should be centered in the updated workspace."

"Does not redraw workspace after viewing and sizing map."

"I now have File and Defaults highlighted in the Action Bar! Something odd has
happened to the workspace. The arrows are HUGE. Redrawing takes an awful long
time.n

"Windows messages 'Not enough memory'. Windows falling apart. Will probably
have to end session. Colors and borders screwy. Sluggish. Lockouts."

S27RO I 05 "Have restarted, with more free RA.\1 (about /.5}.;{ B extra). I have about 6.5Jf B,
but use enormous cache and some !.liB RA.\1 disks under DOS3.3, normally. Dif­
ferent setup for DOS2.01 and OS/2."

"Closing down for a while to finish shopping, take a break, and a dump."

S27ROl06 "The outline window needs a scroll bar at the bottom, so I can see text that's off the
right of the screen."

S27ROI07 "Now have to stop for the day."

"Not obvious how to gather the text, which f entered 'behind' each node, into a single
document."

S27ROJ09 "Something odd: None of the text I enter is sm·ed. Files exist, but length= 0. Giving
up and returning to word processor."

Subjects used the "F3" key to signal explicit pauses in their sessions a total of 17 times across all
the sessions.

Time spent in explicit breaks

Discussion:

range: 2.3 seconds to 256 seconds
median: 27.9 seconds

mean: 60.8 seconds
std dev: 74.2

• Subjects' comments appear to fall into five general classes:

I.· Descriptions of what happened during some elapsed time.
2. Observations on how they were using the system, or good ways it could be used.
3. Praise for functions of the system they liked.
4. Software bugs or lack of understanding of how to accomplish some function; also,

requests for additional functions.

!18

5. System or hardware problems.

Subjects rarely signaled explicit pauses in the tracker using the designated function key.
When they did use this mechanism, none of the explicit breaks were longer than 5 minutes;
most were less than half a minute.

Since the Comment function was sometimes used to indicate pauses of a couple of hours,
these functions should probably be combined. They should also have a menu interface to be
readily accessible.

5.3.3.8 Summary: Commands and Documents

Documents that were constructed across several sessions were smaller than documents con­
structed in a single session.

\lost documents had between 15 and 30 nodes. In documents constructed across multiple
sessions, the median and mean value for the number of nodes in the documents is close
(about 14 nodes), with small variation.

About 1/Sth of all nodes that were created were later deleted. Two-thirds of the deleted
nodes were the last node created.

Subjects spent about 10 to 20 seconds labeling a node. Labels consisted of a few choice
words.

Subjects spent about 1 or 2 minutes writing in a node.

\lost subjects tried running a text editor within Prose II, but few used it for extensive writing
of a document.

Help screens were typically viewed for 15 to 30 seconds. Help times were longer in trivial
session than in non-trivial sessions.

Subjects used the TidyTree function frequently.

Subjects left comments in the tracker for a variety of reasons, which generally fell into fi,·e
general classes.

5.3.4 What Was Learned About Writing With This System?

This subsection presents·a variety of results on some specific aspects of the writing process. For
example, how large are the structures that writers construct? When is the main point of a docu­
ment created? How are nodes laid out spatially when organizing in two dimensions? How do
sessions differ, depending on the number of nodes under consideration?

5.3.4.1 How Big are Trees?

Prose II allows users to build immense trees. In actual use, how big did trees grow? As a soft­
ware designer, what are reasonable data structures to use, based on the expected size of the trees?
In studying writers, how many ideas are generated, and to what depth of elaboration are they
taken?

One of the previous sets of statistics looked at the number of nodes created in the sessions. Dif·
ferent from that is the number of nodes in the saved trees. For example, a workspace with 40
nodes might be saved, yet the largest tree in the saved workspace has only 5 nodes.

119

Three different measures of tree size are presented here. The first measure looks at the maximum
depth of the saved trees. The second measure looks at the number of nodes in the saved trees.
Finally, l looked at the sizes of the trees created in one of the single "Create:'\ewTrees" episodes.

-16 distinct trees were saved among the 7(} non-trivial sessions. A tree is defmed as having at least
two linked nodes. The following table shows the maximum number of levels in these trees.

Table 37. Distribution of maximum
tree depths

/Haximum numbttr frequency
of rree levels

2 4
3 II
4 10
s 8
6 6
7 2
8 3
9 1

10 1

:\laximum number of tree levels

range: 2 to 10 levels (Session S27R0103)
median: 4 levels

mean: 4.7 levels
std dev: 1.9

How many nodes were in a single tree? This value is often smaller than the number of nodes in a
document, since some nodes created in a session may not be linked to others.

Table 38. Distribution of maximum
tree sizes

,l/aximam number Frequency
of nodes in a tree

2 to 5 4
6 to 10 II

11 to 15 IS
16 to 20 9
21 to 25 2
26 to 30 2
31 to 35 1
36 to 40 I

more than 40 5

:\'odes in a single tree .

range: 2 to 122 nodes (Session S17R0101)
median: 14 nodes

mean: 18.3 nodes
std dev: 18.3

One of the constructive episodes, Create:'\ewTrees, characterized a sequence of commands where
a subject built a tree from scratch-by creating nodes and linking them. How big were the trees
created in the 96 "CreateNewTrees" episodes?

12(}

:'\odes created in a Create:'\cwTrccs constructive episode

Discussion:

range: 2 nodes to 12 nodes
median: 3.0 nodes

mean: 3.4 nodes
std dev: 2.0

The distributions of tree depths and tree sizes is similar.

Small trees differ from large trees in their degree of fanout. There was small variation in the
tree depths; there was wide variation in tre-e sizes.

The maximum tree depth was 10. Prose II was designed to support up to 99 tree levels; this
was clearly more than enough. This is a case where the protocol data might be used to solve
a design issue: for example, how many internal memory blocks should be set aside to handle
tree levels?

In the constructive episodes where a new tree was created, those trees tended to be small:
about 3 to 5 nodes.

5.3.4.2 How Does Order of Creation Correlate with Final Position?

Writer's using this software laid out nodes in two-dimensional trees. How much brainstorming
actually took place with this system; were nodes generated in the order they were used, or were
they moved and re-ordered ~until a desired positioning was found?

To determine the relationship between when a node was created and its fmal tree position, I gen­
erated a pre-order walk of each document's fmal tree structure. The nodes in a session's fmal tree
were numbered according to the order in which they were created. A Pearson correlation was
then calculated between the two sets of numbers.

Table 39. Distribution of the
ordering correlation values among
the 45 documents

Pearson coefficient Frequency

·1.0 to -0.8 0
-0.79 to ·0.6 0
-0.59 to -0.4 2
-0.39 to -0.2 2
-0.19 to 0.0 2
0.01 to 0.2 5
0.21 to 0.4 7
0.41 to 0.6 II
0.61 to 0.8 8
0.81 to 1.0 7

Correlation between final position and order of creation

range:
median:

mean:
std dev:

-0.53 to 1.0
0.53
0.42
0.39

121

Discussion:

The results showed strong correlation between the order of node creation and the sequence of
nodes found in a pre-order walk of the document tree.

In 1989, Lansman working in a study with the Textlab group, found correlations among her
17 sessions that ranged from -0.16 to 0.99, with a mean of 0.48. \ly values, for 45 docu­
ments, ranged from -0.53 to !.0, with a mean of about 0.42. These mean coefficient values
are similar; my range may be larger because it had more subjects in less controlled condi­
tions.

Do longer sessions imply more or less correlation?

The analysis showed a mild negati,·e correlation between the session times and the preceding
coefficient: r = -0.27. This suggests that more experience and longer sessions imply more
exploration of a tree's structure.

Sessions with high correlation:

S25R0301: The subject constructed a tree with 20 nodes and 0.999 correlation between the
order of node creation and. the tree position. These nodes were not labeled. This
is even more unusual, since there were many l\1ove~ode commands.

S I ORO 104: In this one case of perfect correlation, the subject left the comment "This is the
first time I am using Prose II." Only six nodes were created in this session.

Pre-ordering was used in this analysis because it is the familiar ordering in Western culture
for unraveling a hierarchical document into a linearly sequenced text. A future study might
considering examining other orderings, seeing where there are high correlations, and what
other factors they may correlate with.

5.3.4.3 Which Node is the Final Root?

When is the main point in a document created? This discussion is motivated by a paper
(Bcreiter, Burtis, and Scardemelia, 1989) that reported a bimodal distribution of "time until the
main point." They found one mode at about 1 minute and the other mode at about 6 minutes.

In 35 documents, complete trees were saved (although 45 documents were saved by the subjects,
ten of these involved work on previous documents whose structure was not known by the
tracker). For 25 of these, the root of the tree was node number I. There was no particular
pattern among the other 10 documents: 2, 5, 8, 9, 17, 17, 17, 25, 32, 48. For the 10 documents
whose root was not the·flrst node, the mean time to creation was 16.8 minutes, with a standard
deviation of 10.5 minutes.

Discussion:

• :\lost subjects knew their main topic before they started.

• Like many other results in this study, the frequency distribution shows an early peak and a
long trailing tail.

• The results do not directly support the bimodal distribution reported by Bereiter, Burtis, and
Scardemelia. However, they reported on the time until the main point, whereas I looked at
which node was the eventual main point. Measuring the time until the fust node is created is
another test that could readily be added to the parser and examined in a future study.

122

5.3.4.4 Are Nodes Created Left-to-right and Top-to-bottom?

When subjects create new nodes, where do they tend to position them? After watching my own
behavior, my guess was that a new node is generally created below, and to the right of, the last
node created. To test this, I considered a simple vector addition scheme of summing the total x
and y coordinate values, but realized it would not work, since one oddly-placed node can sway
the resulting sum.

I devised a scheme where the parser compared a new node's x andy coordinates with those of the
last node created. If the new node's x coordinate exceeded the last node's value, a count was
incremented; if it was lower, the count was decremented. A similar count was maintained for the
y coordinate. If my conjecture was true, the x-count would be positive and they-count would be
negative, corresponding to moving to the right and down in the Cartesian coordinate system.

For the 27 single-document sessions, the statistics are shown below:

x coordinate count

range: -3 (S20R0101) to 25 (S17R020l)
median: 3

mean: 4.0
std dev: 5.2

y coordinate count

range: -18 (S22R0101) to 7 (Sl7R020l)
median: -3

mean: -4.3
std dev: 5.9

Discussion:

There·i.s a wide variation in node layout patterns (the standard deviation is larger than the
mean), but the results still suggest a classic left-to-right and top-to-bottom creation of nodes.

The X and Y coordinate counts (median, mean, and standard deviation) match up well.

Sl7R0201 was unusual; in this session the subject moved strongly up and to the right.

5.3.4.5 Early Planning and Late Writing vs. Alternation?

What proportion of planning preceded writing? Did subjects' writing tend to conform to a two­
stage model of writing (i.e., planning first, followed by writing or revising)?

To test this conformance, Lansman (!991) developed an index called the Stage Index. This index
was designed to quantify the extent to which planning time preceded the time for writing and
revising. In order to understand this index, imagine computing-for every minute of writing
time-the proportion of total planning time that preceded that minute of writing. The Stage
Index takes an average of these proportions across all the minutes of writing. For example, if a
subject completed all planning before beginning to write, then for each minute of writing the pro­
portion of planning that preceded it would be !.0 and the average, the Stage Index, would be 1.0.
The index can vary between close to 0 and 1.0. In practicality, 0.0 and !.0 are hard to reach,
since at least one node must be created before writing occurs, and since pauses can separate the
writing periods at the end of a session.

123

Among the ten sessions with substantial writing (see Figure 33 on page 169), the Stage Index
values are shown below:

Stage Index, among 10 sessions

Discussion:

range: 0.40 (S15R0202) to 0.81 (S18R0108)
median: 0.55

mean: 0.56
std dev: 0.14

The mean and median Stage Index values tended toward the low value in the range, indi·
eating that planning and writing were generally intermixed in these l 0 sessions.

• The standard deviation was relati,·ely low. However, the sample size of ten was small, since
few sessions had substantial amounts of writing.

Lansman, Smith, and Weber (1991) describe Stage Index values for a study with 17 subjects;
the values ranged from a minimum of 0.58 to a maximum of 0.98, with a mean of 0.78. In
the sessions they observed on the WE system, planning appears to precede writing to a much
greater extent. This might be explained by the different design of the two systems, where
planning is encouraged in distinct windows. These windows lead a user to create and struc­
ture their document trees before a text editor becomes readily available.

In the two sessions at the extremes:

S 15R0202: which had a Stage Index value of 0.40, got that value because several nodes were
created and edited early in the session, followed by a pause of 26 minutes before
work on the session was completed. Long pauses are not accounted-for well by
the Stage Index. Like many other aspects of this study, this index seemed to
operate well in controlled, continuous-work environments, but was not robust in
some actual settings.

SI8ROI08: which had a Stage Index value of 0.81, was unusual in that all the creation,
labeling, linking, and movement of the nodes was done before any writing in the
nodes. This Stage Index of 0.81 might be as high as can be practically reached
using these analysis tools and this software.

5.3.4.6 What Patterns are Seen in the Sessions?

Finally, stepping back and looking at all the productive sessions, were there a set of o\·erall
writing schemes that appeared? With the large amount of data available, there were many ways
to look for answers to this question. The best answer correlates different patterns with the
number of nodes being worked with.

Besides the four categories of non-trivial sessions described in Figure 32 on page 168, the sub­
stantial sessions can be grouped by the number of nodes created in that session. Our first conjec­
ture was to divide the sessions by groups of 10 nodes, that is, sessions with 1 to 10 nodes, sessions
with 11 to 20 nodes, sessions with 21 to 30 nodes, and so on. Examining all of these sessions, we
instead found three natural groupings: those sessions with 10 or fewer nodes, those sessions with
11 to 21 nodes, and those sessions with 22 or more nodes.

Among the features evident in these groupings are some concepts I borrow from the game of
chess: the idea of an "opening move," a "middle game," and an "end game." These concepts are
discussed below.

124

Sessions with I 0 of Fewer Nodes: There were 13 sessions in this group. l'or the most
part, these sessions look like learning or experimentation by their subjects. For example, in 4 of
the sessions, there were no labels or onh one label on the nodes. 5 of these sessions involwd at
least some \.Hiting in the nodes. -

This was little pattern to the opening moves in these sessions. These sessions were not time~
efficient. probably because of I) the fixed startup and takcdown costs, and 2) the ongoing explora­
tion of the Prose I l features by the subjects.

These sessions were clearly different from the trivial sessions, however. For example, comments
were left in the tracker only twice among all these sessions, as opposed to many comments left in
the trivial sessions.

Sessions with II to 21 Nodes: There were 22 sessions where 11 to 21 nodes were created.
c\s a group, three different patterns can be seen in these sessions.

Brainstorm ideas, then link
Brainstorming was evident in 4 of these sessions. The subjects created and labeled all
or most nodes, then linked them together into trees.

Incremental dnclopment
In 9 of these sessions, the subjects created and labeled a "critical mass" of nodes, then
linked them into a tree. The rest of the session consisted of creating new nodes and
incrementally linking them into the existing tree. The tree was frequently tidied
(almost compulsively) after each set of new nodes was linked into the tree.

L'nstructured exploration
9 of these sessions evinced undirected exploration of the problem: many Roam,
Zoom, :\love, and BreakLinks commands were interspersed among brief constructive
episodes.

An opening move was apparent in many of these sessions: usually 3 to 6 nodes were created in
the first constructive episode. Only 2 of these 22 sessions could be considered efficient in the
number of commands performed or the elapsed time, given the number of nodes they created.

Sessions with 22 or More Nodes: In 9 of the sessions, 22 or more nodes were created.
:\lost of these sessions start with an opening episode where 6, 7, 8, or 9 nodes are created and
labeled. After that, the general pattern was incremental development.

Subjects appeared to be experienced with Prose II before tackling these larger documents. This
was indicated, for example, by the fact that little help was requested among these sessions; sub­
jects did not tend to tacKle large documents without experience with the system. Also, 4 of these
9 sessions were efficient in the number of commands performed or the elapsed time, given the
number of nodes they created.

There were a pair of unusual sessions in this group.

S 18RO 108: In this session, 27 nodes were created, labeled, and linked, then all of them were
written in. The document was all laid out and organized before any writing occurred.

S02ROIOI: In this session, 28 nodes were created and labeled, then all of them were linked into a
tree. All the ideas were laid out onto the workspace before they were hierarchically
organized.

125

5.3.4.7 Summary: Planning and Writing

• T rccs generally had 3 to 5 levels, consistent with the conventional structuring of documents
into chapters, sections, subsections, and paragraphs. '\o tree had more than I 0 levels.

\lost trees had between 15 and 30 nodes. \lost saved documents consisted of a single, com­
plete tree.

A node's order of creation generally correlated with its fmal pre-order tree position. '\odes
created early in a session ended up high in the structure trees: nodes created late were low in
the trees. Two-thirds of the time, the ftrst node created was the root of the eventual tree.

In terms of spatial positioning, a node is generally created below and to the rigl1t of the node
created before it.

Planning and writing were generally intennixed. Only one session had all the exploration and
planning before any of the writing.

Sessions showed natural groupings according to how many nodes were operated upon during
the sessions. The groupings appeared to rel1ect the subjects' experience with Prose fl. Ses­
sions with 22 or more nodes looked similar: a critical mass of nodes were created and linked
into a tree, which was incrementally developed. Sessions with II to 21 nodes showed three
kinds of behavior, possibly because the number of nodes was manageable enough to be
manipulated in several ways. As \Vith the sessions with 22 or more nodes, trees were incre­
mentally developed in some of these sessions. In other sessions, all the nodes were created
and labeled before any were hierarchically linked. And in the third group, subjects' behavior
looked almost turbulent, as they searched for the right ideas and relationships among them.
Sessions with 10 or fewer nodes showed little overall patterns.

5.4 A Portrait of a Session
With the information learned in this analysis, we can construct the story of a typical user and
session (although there was no session exactly like the one portrayed here).

The user starts work on a document by launching Prose !l, opening a new workspace.
The session lasts about 35 minutes. About half of the total time is spent in pauses
between commands; the pauses are around three seconds or less in duration, although at
some point in the session, a long pause of about two minutes is taken.

The session is spent ·creating a document tree, that is, an outline of the elements of the
document being constructed. \lost of the commands that are executed are creating,
labeling, and linking nodes, although the user writes some extended text in a few of the
nodes. The labels are short and to the point; they average four words with seven letters
per word. It takes about 15 seconds to type and save each label.

The document tree has about 20 nodes, in a tree four levels deep. The tree is laid out in a
top-down marmer; the title of the document is the frrst node created, followed by the nodes
in the frrst chapter, then the nodes in the second chapter, and so on. A few of the nodes
are moved, but nodes are generally put in the right place to begin with. The user operates
in a marmer where they are creating and labeling nodes quickly, then linking them into the
growing tree. Several times in the session, the user tidies up the tree. Since it is hard to
see all ·20 nodes on the screen along with their labels, the user must roam to different
comers of the workspace to fmd more room. This is done about five times before the
document tree is complete.

An analysis of the session shows about 120 commands were executed by the user during
the session. These fell into natural groupings, with about four commands in each episode.

126

\lost of these episodes consisted of creating solo nodes, editing existing nodes, and linking
nodes into existing trees. Over the course of the session, these episodes formed into phases
of similar aetiv·ity. There were about six phases in the session, with about five episodes per
phase. Two of these phases were exploration: creating and labeling new nodes and moving
them into position. The other phases involved constructing the document tree and
touching up its structure. i\t the end of the session, the tree is saved once, in the Script
format favored by the IB\1 employees who were the users in th.is study.

127

CHAPTER 6. OBSERVATIONS ON AUTOMATING
PROTOCOL COLLECTION AND ANALYSIS

This project was designed to examine the feasibility of automating both the collection and anal­
ysis of protocols. A goal in automating these steps is to allow naturalistic studies of the inter­
actions between humans and computers. Reports of naturalistic studies are important if systems
developers and researchers in human-computer interaction are to draw- informed conclusions on
tasks, strategies, and software usage.

This chapter reports on the costs, problems, and suggested improvements related to automating
protocol collection and analysis. In the ftrst section in this chapter, I discuss the issues I encount­
ered collecting and managing the protocol record ftles in this study. The second section discusses
my observations on building and using the parser and protocol analysis tools. The next two
sections list the enhancements to the tracker and parser that I recommend for future research
efforts.

6.1 Collecting and Managing Protocol Records
How big were the ftles that were collected? How big were the parse trees generated by the parser?
How much data can be expected for this type of a study? These statistics are presented below.
The second subsection examines the significant problem of managing the session recordings and
analysis data.

6.1.1 Protocol Data Statistics

112 protocol record ftles were collected in this study. The 112 flies together took 1,053,000 by1es,
small enough to ftt on one high-density personal-computer diskette.

Protocol record file sizes

range: 736 bytes (S21R0101) to 102,428 bytes (S17R0!01)
median: 6,476 bytes

mean: 9, 405 bytes
std dev: 12,889

A ftle about the size of the mean contained 150 lines, including the seven-line header in each ftle.

Because the tracker captures the secondary commands, I did not assume the size of a protocol
record ftle would correlate with the amount of work done in a session. For example, small moves
of the root of a large tree cause many secondary commands to be recorded, making the size of the
protocol ftle out of proportion to the number of commands done. However, the ftle size and
number of commands were smprisingly well correlated: r = 0. 967.

128

With a mean session time of 1447 seconds, the tracker produced an average of about 6.5 by1cs of
protocol data per second, which is 23,400 b)1cs per hour. This is about 373 lines of protocol data
per hour, or between 6 and 7 pages of protocol record per hour.

The parser produced parse tree ftJes that were about JO~o smaller than the protocol record ftlcs.
The total size of all 112 parse tree ft!es was 704.820 by1es. Including the intermediate files
produced by passes 0, 1, 3, and 4, the parser produced 560 flies, with a total size of 3,290, !54
b)1es-about three times the size of the protocol records. The range of parse tree sizes is shown
in Figure 30 on page 130.

5

Number of parse tree nodes

Figure 30. Frequency distribution of parse tree sizes across 112 sessions. lbis chart shows the
number of no4es in the parse trees generated by the parser.

The automated parse generated 112 parse trees, with the following size characteristics:

Parse tree sizes

range: 7 nodes (S21R0101) to 1398 nodes (S17R0101)
median: 112 nodes

mean: 166 nodes
std dev: 212

129

On a 16:VIhz 80386 personal computer, it took 35 minutes to run the parser against the 112 pro­
tocol record files. Thus, it took about 20 seconds to parse a single protocol record.

6.1 .2 Managing Session Recordings

Soon after I sent the Prose If package to the potential subjects, I began receiving their protocol
fiks on the network. The first unanticipated problem was the naming conwntion for the files. I
implemented Prose II to use a ~Vindows·speciiic call to generate a unique name for each recording
file on the machine it was being run on. These names look like -RCD1300. HlP in DOS. I did
not anticipate the name conflict among files from different subjects. When uploaded to an Ill\!
V\1 host, the initial tilde was not accepted as a valid character. Subjects took this as an opportu­
nity to rename their files or to combine them into larger packages. When I received the files. I
had to carefully account for each file by each subject; the ftlenames I received differed from the
lilename strings the tracker had recorded in the header of each protocol record.

I quickly settled on a naming convention that identified each subject, document by that subject,
and session for that document. For example, the session entitled S08R020 I indicates subject
number 08, document number 02, session number 0 I. This narriing convention was inaplemcnted
by looking inside each protocol flle. I determined not only the chronological sequence of ftles
received from a subject (by looking at the date and tinaestarnp), but whether this session con­
tained work on a new workspace or on an existing workspace. .\lly quick evaluations were some­
tinaes later proven wrong; also, they did not account for trivial sessions and sessions consisting of
work on multiple documents. :-<onethcless, this naming convention proved stable. I kept the
filenames throughout the study, as shown in Table 40 on page 164.

This hand-assignment of names was part of a major issue uncovered in this study: the manage­
ment of session recordings. Because a single session could be efficiontly analyzed, I did not antic­
ipate a new class of problems: management of the massive amounts of raw and processed data.
All this data needed unique names and some type of attributes to identify it. The 112 sessions in
this study were managed by hand. Thus, the groupings of attributes such as subjects, documents,
and sessions, had to be done by hand. Scaling up to thousands of sessions will require more
sophisticated tools.

For example, I produced Table 40 on page 164 and Figure 32 on page 168 by hand. Over the
months of analysis, I found numerous transcription errors in these despite the care I took.
Finding a bookkeeping error (such as missing a session) involved the painstaking itemization of
all 112 sessions. '

The sequencing of the parser passes was automated using the software utility Make. I constructed
each ,Uake input file by 'hand. The :11ake ftles were rarely touched once I felt they were right,
ina plying a loss of flexibility.

Another unanticipated problem was the interweaving of subjects, documents, and sessions.

Subjects worked on documents that spanned one or more sessions.

• Subjects worked in sessions that included several documents.

Some subjects worked on a single document during se,·eral sessions in a day. Other
subjects left their Prose ll window actiYe 'but unused for long periods of tinae. Could
the analysis account better for the difference between a ,·ery long pause (e.g., an hour),
and exiting the system and entering it again within a short tinae period?

Some subjects worked with Prose ll for a while, exited it, worked on the document with
a real text editor for a few davs, then carne back and used Prose ll for a session with the
updated document. How should the analysis account for the discontinuity in the work
on a document?

130

Some subjects revised documents that had already been written using a different text editor.
Prose II proved amenable to this sort of work. !!ow should the nodes in such a document
be accounted for?

It did not appear that multiple people shared work on a session or a document, but that
situation could occur often in many environments. The current collection techniques were
not prepared for multiple sequential or concurrent authors.

6.2 Automating Protocol Analysis

The parser and associated analysis tools developed in this project proved suitable for generating
answers to the many questions discussed in Chapter 5. The questions, answers, and statistics
presented in the previous chapter explored a wide range of areas, providing a composite view of
this group of subjects, how they spent their time with this software, and what kinds structures
they worked with. At the outset of the project, a key research question was "What kinds of
questions is the protocol analysis designed to ans\ver"?

The parse output provides researchers with the same kind of information that it provided Card,
\loran, and :'\ewell in their ICARUS study: a guide to how time was spent in a session with a
software system. Besides segmenting a session and characterizing the sequences of commands, the
parser also produced a set of statistics, summarizing many aspects of the session. An example of
a session summary is shown in Figure 24 on page 90.

6.2.1 DeYising and Testing the Parser

The parser described in Chapter 4 evoked from the protocol analysis .described by Card, \loran,
and :'\ewell in their ICARUS study. We designed each pass of the parser by first taking protocol
records and analyzing them by hand. How should a given sequence of commands be parsed? \V e
came up with consistent answers in our manual analysis, then had to fmd a way to generate the
same answers with the parser.

I first completed Pass 0 (converting from the protocol record text to computer-oriented
16-tuples), since its success involved a close marriage between the syntax analyzer and the tracker.
I worked next on Pass 2 (characterization of housekeeping episodes), since its success was neces­
sary to defme the constructive episodes, which are the crux of the analysis. Pass 3 (characteriza­
tion of constructi,·e episodes) evolved over a year. It requires a great deal of context information,
and a lot of experimentation was required to detemaine just what that information was and how it
should be carried. Pass 4 (characterization of phases) also had a long gestation period, since I was
trying to understand exactly what the output symbols should be and what sequences of episodes
detemaine each phase. The collection of session statistics in Pass 5 is a process that continued
tbrougbout the project. Finally, several inconsistencies caused problems that had to be solved
somewhere; Pass I resulted, late in the project.

The parser describes how time was spent in a session, in addition to looking at the products
produced over time. A helpful enhancement would be a fool-proof way to identify the different
groups of session types (as shown in Figure 32 on page 16&), particularly trivial sessions. Card,
\loran, and Newell did not have to deal with these groupings in their single analysis. With about
I 00 sessions, the categorization could be accomplished by hand. With more session data,
however, the categorization should be automated.

The way that this parser was developed and refmed depends on a human analyst examining the
input and deciding how well each of the ,·arious output sequences describe the input. People
must do the learning and convert the learning into changes in the parser. It may be that refining
the parser is a job well suited for technologies such as neural networks or expert systems. These
technologies were not used in this study because they generally provide little information about

131

their internal operation. However, in future automated protocol analysis software, I would con­
sider using a technology that decreases the amount of human time needed to construct the parser.

6.2.2 Key Decisions

What key decisions were made in formulating the grammar and parser? What hypotheses about
cognitive processes are built into the parser?

To use pauses to separate identifiable episodes.
I chose to depart from the Textlab version of "modes" in famr of more detailed anal­
ysis in terms of episodes. Thus, the use of pauses in this parser contrasts with the WE
system, where modes are associated with specific windows in the workspace. In WE,
changes in modes are distinguished by changes in which window a subject is working.

Ilaving chosen to use pauses to separate periods of activity, I proposed that the
periods of activity between these pauses could be identified and reasonably character­
ized.

To separate subjects' acth·ities into two groups: housekeeping episodes and constructh·e episodes.
In this grammar I proposed two types of episodes. The episodes occur sequentially,
not sinaultaneously.

To assume that cohesive periods of cognitive work are ended when a person pauses or does a house­
keeping operation.
I chose to delimit each constructive episode by the periods of housekeeping or long
pauses that precede and follow it. This software system is designed to allow a human
to perform useful work, not necessarily to spend their tinae doing housekeeping.
Stated another way, in the periods between this housekeeping and long pauses, con-
structive work is accomplished. ·

To allow housekeeping episodes to occur in sequences.
The long pauses and periods of housekeeping can be of indefinite length. Identifiably
different types of activity can occur during those periods.

To form composite descriptions for some constructive episodes.
During the periods of work, a human might pursue multiple, sinaultaneous goals.
These can be complexly interwoven, yet executed in rapid succession. The character­
izations of the constructive episodes reflect this complexity, \vith their multi-part
descriptions.

To characterize episodes and phases with a small group of names.
I proposed that the set of identifiable episodes and phases could be small enough that
they can be easily explained to other humans, that they correspond to known type of
cognitive tasks, and that they can be recognized and characterized by an automated
parser.

To rewrite the internal representation for dense state machines.
Dense state machine are difficult to maintain and comprehend. The state matrices I
originally developed for the parser passes were easy to understand when they were
sparse (i.e., when, for a given state or input, there were few transitions to other states).
They soon developed paths through them that were difficult to anticipate and visu­
alize. Re-writing them using Y ACC source was helpful in clarifying the sequences. In
doing this, many parallel sequences were found and described as such; several
sequences clearly in error were found.

To •·ary the grammar powers among the passes of the parser.
For any task, you generally want ~o use the sinaplest tool with sufficient power to
complete the task and not waste the resources of the human user. For each pass of

132

the parser, I used what I considered the simplest technique with sufficient power to
characterize the sequence under consideration-all within the framework of an AT\".
Breaking down the parser into smaller components made its design, implementation,
and incremental refinement more modular and intcllcctuallv manageable. Section
4.2.2 on page 61 describes the power of each pass and how th~ passes~were used.

6.2.3 Parser Robustness

Ilow robust is the parser" Did the parser converge? Ilow is this measured?

The parser is constructed to handle any syntactically-valid input string. Therefore, the question of
robustness became more a question of looking for weak and \\Tong characterizations of command
sequences. In contrast, anyone can create a syntactically invalid input ftle by deleting a line or
sorting the lines in a protocol record file. The parser does not make any attempt to handle an
invalid ftle. One of the 112 files from the study was invalid, since the subject had attached a
paragraph of text to the bottom of the ASCII file. Pass 0 of the parser failed, and l fixed the file
by hand.

When this study was originally designed, our plan was to parse 20% of the recordings, fix any
problems, then try on the next 20% of the recordings. Presumably, fewer problems would be
found if the parser was converging. How many of the session protocols could not be parsed with
the initial grammar? Could we characterize the problem in terms of what changes had to be made
in order to parse all the protocol records?

That approach works only if all the recordings are homogenous in character, however. For
example, only a few of the recordings include the Scramble command; problems 'With that
command would only be evident in the recordings that contained it. Also, by automating the
parser operation using J/ ake it was as easy to process ALL the ftles as a group as it was to parse
just one.

I had the parser tested and operating for more than a year before I began this study. For
example, I showed its operation at the Hypertext '87 conference in :\'m·ember 1987. I assumed
that no further changes would be made to the parser by \larch 1989 when all the ll2 protocol
records had been collected. I was wrong!

The following list describes the bugs and modifications made to the parser since the end of the
protocol collection period.

Date Description

3/7/89 Added missing Format parameter for Save Workspace in the Pass 0 YACC input file.

3/7/89 Corrected the state transition for Outline Window when in state l of Pass 2.

3/7/89 Added handling for the BreakAIILinks and Scramble commands, missing from Passes
2 and 3 altogether.

3/7/89 Added handling for the Change Default command, missing from the Pass 0 Y ACC
input file.

3/9/89 Added handling for the BreakAIILinks command, missing from Pass 0 Y ACC input
file.

3/9/89 Corrected the state transition for Outline Window when in state 5 of Pass 2.

3/13/89 Corrected the parameters for the Copy:\'ode command. Copy'.'ode was expecting a
?\odeiD and a set of coordinates in the Pass 0 Y ACC input file. Instead, the ID of
the source node and the newly-created node ID are the parameters.

133

3/13/89

3/13/89

3/1-4/89

3/14/89

3/14/89

3/14/89

3/16/89

3/17/89

3/17/89

3/18/89

3/18/89

3/19/89

5/13/89

5/14/89

5/14/89

5/14/89

5/14/89

5/16/89

5/16/89

6/19/89

6/26/89

Corrected the parameters for the Copy'.;ode command. Copy'.;ode lists ParentlD(OJ
in the recording. This was changed aticr the system was first shipped. because of a
bug. !loth forms are now accepted.

\lodified input symbols by hand, changing them to an uppercase X (so they could
later be distinguished from the lowercase x used in all labels). LEX rules did not
handle symbols above ASCII 127, which includes characters from foreign languages,
such as Greek and Finnish.

l.J pdated a few older recordings to match the latest command names and parameters.

Generated the end of the text parameter by hand in some protocol records that I pre­
maturely clipped. lbis occurred for three labels in S 19RO 10 I. and for 2 comments.
The IB\1 Personal Editor II text editor clips text strings longer than 255 characters.

Removed the note left by Subject 20 in the bottom of the ASCII recording tile.

Updated the Pass 0 Y ACC input ftle. It had always converted \1apWindowZoom to
\lap Window Roam.

Added missing TreeGrow and TreeShrink commands to from the Pass 2 state table.

Corrected the handling of Canceled and Invalid commands in Pass 3.

Added the missing input symbol 'VIETA_COM\IE-.:T to Pass 4.

Separated Outline\Vindow into OutlineWindowOpen and OutlineWindowClose (anal­
ogous to the :\lap Window commands) in Pass 2.

Corrected an invalid state transition in Pass 2. \lainWindowReset went to state 2
from state 4 (should go to state 5).

Integrated the handling of very long pauses into Pass 2.

Converted Pass 2 from a hand-tailored state machine coded in C to a YACC input file
with a lexical analyzer.

Corrected the handling in Pass 3 that occurred when nodes were deleted because of
starting over.

'VIodified the output of all passes to allow it to be directly imported into any DOS
spreadsheet.

Added trackillg for the accumulation of the "number of commands" to the output of
all passes. ·

Fixed the Pass 4 FS\f to correct the output for Document Revision (was being
bundled under "Top Down Construction").

Modified Pass 3 and Pass 4 output to produce single characters-to simplify
spreadsheet graphs.

Modified Pass 5 to produce IB\1 Book\ laster-compatible output. This made it easier
to print all of the parse trees on a mainframe laser printer.

:VIodified the Pass 3 to output the workspace tree each time a SaveWorkspace
command is done.

Added Pass I to handle its unique cases:

I. \laps the follov.ing into the single symbol: Edit-.:ode. The subject has actually
brought up an editor, which caused an exit from Prose II proper.

134

Edit:'\ode
LcaveProscll

2. \lap the following into the single symbol: Tidy Workspace.

• SctTidy\lodeOn
pause
Set Tidy \lodcOff

J. \laps the following into the single symbol: Delcte:'\ode.

Set Delete\ lodeOn
pause

• Dclcte:'\ode
pause
Set Delete \lodeOff

These sequences were by-products of using modes and how the system interacted with
other windows. Cpdated Pass 5 to read symbols from Pass I.

6/26/89 \lodified the Pass J output of workspace trees-to output them in a standard
spreadsheet format. This allowed easy running of the Pearson correlation, to correlate
the order of node creation to the node's position in the fmal tree.

7/9/89 Fixed bugs in the summary pass caused by looking at the flags of Pass 3 output
symbols. Rebuilt the sununary output to be much more extensive: it now has 30
summary fields. There are still some fields that will need to be added by hand, such
as average label length.

7/26/89 Added an additional check to Pass I. Some editors caused the ordering of the com­
mands to be reversed. Pass I now correctly maps the following commands into the
single symbol: Edit:'\ode.

• leaveProsell
• Edit:'\ode

8/7/89 Cleaned up the ftle names and J4ake flies to clearly identify the passes to the uniniti­
ated.

8/18/89 Fixed Pass I to reco,·er correctly from concatenated sequences.

8/18/89 Adjusted Pass 3, so Create:\ode and Delete:\ode in a constructive episode maps to
the Cnproductive Work symboL

11/12/89 Added a field to the Pass 5 summary information: total pause time.

12/23/89 Added a field to the Pass 5 summary information: Stage Index.

6.3 Tools Used in the Protocol Analysis
Besides the basic six parser passes, several other tools and techniques were used to further auto­
mate the analysis and to make it faster and simpler. These are discussed in this section.

I used the following software as the base environment for the parser development and protocol
analysis:

DOS 3.3 operating system
FileCommand 3 DOS shell
Personal Editor II l.Olb text editor

135

GSEE general filename searcher

I used the following software tools to develop the parser:

\licrosoft C compiler 5.1
\licrosoft .\lake 4.07 program maintenance utility
LEX
Y,\CC

I used the following software tools for the protocol analysis:

Quattro 1.0 spreadsheet
\IYSTAT statistical analysis package
Ready' 1.0 outline processor
GFI~D general string searcher

6.3.1 Helpful Tools and Techniques

The following tools and techniques were particularly helpful for developing the parser and doing
the protocol analysis:

Cse ERRORLEVEL to control program interaction.
DOS (and other operating systems) allow programs to return an integer value to their
callers upon exit. In DOS, this is known as the ERRORLEVEL. I defmed unique
ERRORLEVEL values for each of the fatal errors in each of the passes of the parser.
These allowed for easy identification of an error during parser development.

Csc stdin and stdout for file input and output.
The generic flle streams available in DOS (and other operating systems) made the con­
nection of the parser passes simple and easy to test. The output of one pass was
easily piped into the input of the next. For testing and collection of statistics, the
output could be sent to a flle and examined later. These proved good object-oriented
tools, as espoused by Cox (1986).

The liabilities of using stdin and stdout are two: no simple cheekpointing and no
passing of complex data structures between programs. These did not pose any
problem in this study. Checkpointing might be a necessity in a future system that
does online parsing. Complex data structures were accommodated by using a single
template to read the input and write the output for Passes 1 through 4.

SaYe Intermediate files in· spreadsheet format.
I initially invented a unique format for the intermediate parse flies, but later realized
the many benefits of being able to look at the output of any pass or any session
summary using a standard DOS spreadsheet:

• Easy to examine proportions, for example, the proportion of total session time
spent in pauses.
Easy to do frequency analysis.

• Easy to calculate mean, standard deviation, median.
Easy to replicate complex equations.
Easy to break data into groups, for example, all sessions with a non-zero Stage
Index.

• Easy to sort large body of data with several keys simultaneously.
Easy to produce and tailor graphs.

I used the Quattro spreadsheet, which is compatible with the popular Lotus 1-2-3.

136

Csc .\lake to automate parsing
The parsing process for all the passes and all the sessions is driven by a single .\fake
input ftle. This completely automated the job of analyzing a large number of sessions.
Some advantages of using Jfake to automate the task of parsing are:

Error checking is simplified. The parser stopped if any error is found in any
parsing pass. The returned ERRORLEVEL value is displayed when Make completes.

[t is easy to run a parse against a subset of sessions. For example, a certain factor
could be generated in all of the "trivial" sessions. Once the set of trivial sessions
was determined. they could all be put in one :\lakefJ.!e. and ordy the programs run
against them need be changed.

Consistency is guaranteed across all sessions being analyzed: "Apply this opera­
tion to all recordings." The same set of programs and options was run identically
against all sessions in a :\lakefJ.!e. Out-of-date analyses were overwritten. When­
ever a modification is made to one of the parser passes, it is easy to test it.

• It was simple to start it up and Jet it run to completion.

It was simple to stop a parse at any time, and then to later resume right where it
~~ .

The liability of using .tf ake was that the MakefJ.!es had to be created and maintained
by hand. As always, any time I worked with such files, I introduced human errors.
For example, I would accidentally duplicate a filename in one place, but not in
another. These errors often took a long time to track down.

6.3.2 Tool Limitations and Problems

I encountered the following limitations with the tools I was using:

• · The DOS version of Make shipped with the \licrosoft C compiler could not handle more
than 70 files. With 112 recording fUss, this implied breaking the protocol record flies into
two groups in order to parse all of them. Since \lakefJ.!es were constructed by hand, this was
another possible source for errors.

The Ready! outline processor would not handle outlines or trees with more than 700 records
or 77 characters per line. This limited its useful for looking at parse trees-although ordy two
of the parse trees had more than 700 nodes, many labels were longer than 77 characters.

A parse of all 112 sessions produced about 800 ftles. While the DOS shell I was using,
FileCommand 3, could hold all 800 ftle directives in its memory simultaneously, it did not
have enough memory left to run the Quattro spreadsheet.

• The SORT command in DOS can ordy sort files whose size is less than 64 Kby1es. This was
not a significant problem whenever. the data was in a format that could be used as input to a
spreadsheet, since spreadsheets can sort ftles larger than 64 Kby1es.

• The Quattro spreadsheet sorts spreadsheet data with a maximum of 5 sort keys.

• The Quattro spreadsheet accommodates 8192 rows. The study included 7370 pauses, which
were sorted for analysis and looked at in mrious ways. So, although this was not a limita­
tion encountered in this study, a study that was slightly larger would have needed other tools
to look at a list of this approximate size.

Quattro spreadsheet graphs are limited to a maximum of 175 items on the x-axis. I used
Quattro to look at the time duration of episodes in a session; this restriction caused a
problem when there were more than 175 episodes in a session.

137

Scanners generated by LEX restrict their input character set to be the seven-bit ASCII
symbols, numbered in decimal from 0 to 127. The scanner used for Pass 0 of the parser
balked "·ith labels entered by subjects in Greece and rinland.

The IB\1 Personal Editor II text editor could only edit lines with 255 or fewer characters.
truncated a few long labels and comments unexpectedly.

6.4 Enhancements to the Tracker

While using the tracker and its generated protocol recordings, I compiled this list of future
enhancements that could improve its generality and usefulness.

l. Add checkpointing of protocol record files.

If a session is ended abruptly by re-booting or powering-off the machine, the entire protocol
record for that session is lost. By adding periodic chcckpointing, a significant portion of the
protocol record could be saved.

I did not plan for this in the design of the tracker, but did not receive any reports of whether
it would have been helpful to any of the subjects. I did encounter this situation myself
during a power failure, and realized the value of preserving as much as possible of each pro­
tocol record.

The checkpointing could be done periodically, or it could be done during a long pause-the
range of which has been suggested in this study (e.g., see Section 5.3.lA on page 98).

2. Have the tracker ship sessions and protocol records directly to the researchers, where desir­
able and possible.

In some network environments, users of' this kind of protocol collection system could elimi­
nate the step of uploading and sending the protocol records over the network. Starting a
session could open a communications link directly with the computer collecting the proto­
cols, and the records could be written directly to the target (collecting) computer. Entire
screen images could also be sent over communications lines.

There are some problems with this kind of approach, however. This raises again the issue of
user confidence: if the protocol is not visible, the user does not know what kinds of secret
data might be being collect. The softwa,re also needs to handle the occurrence of line outages
and communications failures; if the network or protocol collection fails, the primary software
should continue uninterrupted.

3. Handle indefinitely long pauses better.

The current tracker records nothing longer than one hour, since there is no hour (or day,
week, or month) field in the recordings. Pauses could conceivably last for many hours or
days. In actual use studies such as these, machines might often be left on ovennight. Card,
\loran, and :\'ewell showed only minutes and seconds in their protocol records; significantly
longer periods should also be unambiguously recorded ·

4. Capture additional system information in the header of each protocol record (e.g., screen size,
CPU speed).

With the state of personal computer technology at the time of this study, I guess that most
users had display screens with resolutions of 640x350 or 6-10x480 pixels. \Vhile Prose II will
work with any screen resolution, it cries out for a largeridenser screen. I personally used a
display of 1280x800 pixels, which felt about right. :'vlost subjects were somewhat crippled by
smaller screens, I suspect, indicated by the fact that 25% of the housekeeping episodes were
Refocus.

138

For example, the tracker could have found the screen size in pixels; this would have been
helpful in determining how many nodes were present on the screen and how much cost was
involved in roaming and zooming. It would also help in targeting GCI software to com­
puters with screen real estate of the most prevalent size. If an overwhelming number of
target users have screens that are 500x500, writing software that works best on a IOOOxiOOO
pixel screen may be counterproductive.

Additional strategy questions, such as. "Is tree size correlated with screen size?" could have
also been answered.

5. Add feedback options when exiting help panels.

When viewing a help panel, a user is at an "interrupt"; they have stepped out of the context
of their work to understand more about the tool at hand. With a simple modification to the
tracker, we could could identify help panels that are not sufficiently helpful. Currently, users
press an "OK" button when they have tinished reading a help panel. Instead, they could
press one of two buttons to exit: "This was helpful," or "This was not helpful." The tracker
could collect these responses, allowing the parser to fmd the degree of usefulness for all the
help panels in a system.

This could obviously be extended with various degrees of obtrusiveness: instead of two
buttons, there could be a sliding scale. Also, whenever "not helpful" is selected, the tracker
could request additional information from the user.

6. Add a word count to the parameters recorded by the Edit:'\ode command.

When tracking the information for the Edit:'\ode command-which records the time spent
writing with a text editor-the tracker should also record a word count for the file that was
edited. This would allow comparison between the number of words in labels and the
number of words in the associated text.

6.5 Enhancements to the Analysis Tools

I compiled my longest list of enhancements in the area of improving and simplifying the analysis
of protocols. Willie this study advanced the state-of-the-art in this area, it is still not clear how to
answer best questions like "Tell me what user X did with this software," and so on. :\!any sug­
gestions are offered here, collected with the help of many researchers who saw or used these anal­
ysis tools.

l. Add additional visualization and graphical aids to analysis.

For example,. the visual playback ability of WE lets a human analyst get a better feel for what
occurred in a session by actually seeing each step executed by a user.

2. Do parsing in real-time, so it is available as a tool to the user.

3. Allow human intervention to guide or alter the parse.

The parser works without intervention, making assumptions about what occurred during a
sessions. An enhancement would allow a human analvst to mark landmarks in a session, to
be accommodated by the parser. One set of landm~ks would help in resolving the ambi­
guity among multi-document sessions and multi-session documents.

Gordon Ferguson of the Textlab suggested the idea of a parse-tree editor. It provides a form
of guided parsing: here is the string, now what kind of parse tree do I want to see for this'
Given that, now go about defming the rules.

In addition to comments by analysts, techniques are needed to armotate the machine­
recorded protocols and the parse trees: what do people say that they are doing? This helps

139

get at the issue of verification. The subject can help verify and adjust the correctness of the
resulting analysis.

4. Consider formulating a standard protocol record format.

Is there some base format that would allow protocols to be traded among
"application-aware" tracking systems" If possible, we could convert these protocols to a
format usable by the Textlab group, to be analyzed by their cognitive grammar.

5. Redesign the parser to recognize the four different categories of sessions, in addition to trivial
sessiOns.

Culling the many tri,·ial sessions was unexpected and labor-intensive. Especially with trivial
sessions, it is important that when this is automated, there are no false positive or false nega­
tives.

6. \ loJify the parser to avoid skewing of results because of varying time durations.

The parser should fmd something interesting to do with command durations that fall out of
the bounds of reason. For example, S IOROI04 contained an EditLabel command that lasted
48 minutes. Although the subject clearly stopped the task they were involved in, this lengthy
period was not accounted for as a long pause or writing in the node. This skewed the overall
times in this session for c<Jnstructive episodes, phases, time per node, and so on. The same
thing could happen with Help, for example.

7. Handle the parser's key decisions about pause durations with a sliding scale.

A more sophisticated parser can be envisioned where the meaning assigned to pauses of dif­
ferent durations could be adjusted on a sliding scale-as opposed to making decisions based
on fixed points as was done here (see Section "Pauses" on page 74). To determine the clas­
sification of each pause, this sliding scale could use as its input history about the subject,
their experience, and the elapsed time so far in a session. This technique might also be used
to identify individual differences in attention spans.

As a topic for follow-up research, it would be interesting to see how the mean, median, and
standard deviation values for "commands per episode" and "episodes per phase" changed as
the pause duration values were changed in the parser (see Table 32 on page 109).

8. A mid ambiguity in distinguishing among long pauses and consecutive sessions.

The parser and overall analysis needs to handle better the issue of the difference between a
long pause (e.g., an hour), and a subject who simply ends a session and then comes back in
an hour and continues where they left off. Perhaps a future preprocessor pass of the parse
might review sets of protocol records from a subject and determine if they should be concat­
enated. Similarly, if a pause is sufficiently long (e.g., a day), a single session should be
divided into multiple pieces, because significantly different cognitive activities may have taken
place between the use of the system. Finally, it may be reasonable to divide sessions where a
subject works on several different documents sequentially (i.e., multi-document sessions).

9. 'vlodify the Stage Index definition to handle some typical session-duration situations.

The Stage Index, as devised by Lansman, was designed to quantiJY the extent to which plan­
ning time preceded the time for \\'riling and revising. (The Stage Index is described in detail
in Section 5.3.4.5 on page 124.) It gave a suitable indication of the intermixing between
planning and writing in controlled studies. However, in the varied behaviors seen in the pro­
tocols associated with this study, it needs modification to better handle indefmitely long
pauses, multiple-session documents, multiple-document sessions, and so on.

10. Account for the Power Law of Practice.

Prominent in the second chapter of Card, \loran, and :'\ewell (1983) is the Power Law of
Practice: "The time to do a task decreases with practice." With a well-designed user interface,

140

this behavior should be observable over time, with practice. With the tracker implemented
here, this could be obseiYed with longitudinal studies, with users who submit many protocol
records over time. This bchm·ior could not he observed in this study, because the numbers
were too small; few subjects submitted multiple protocols, with little elapsed time.

6.6 Summary
The richness of results documented in Chapter 5 speaks for the feasibility of automating protocol
collection and analysis. The parser was costly to develop, and many iterative refmemcnts to it arc
indicated. llowe,·er, once it was debugged, it provided useful and reliable analyses of the proto­
cols. This analysis was truly automated, including construction of parse trees, summaries, and
direct input into spreadsheets. In fact, the amount of data handled by the parser led to con­
straints in the accompanying software utilities.

When we designed this project, I assumed that the only required tools to automate protocol anal­
ysis would be the new parser. The task of protocol collection and analysis evolved into a much
richer process. Database management, spreadsheets, statistical analysis software, tree editors,
make, and file comparison utilities also figured prominently in constructing an overall picture of
the users and sessions. Tho diversity of these tools, combined with the yaJue of their inter­
operation, leads to the need for a protocol analvsts' workbench. Such a suite of tools is discussed
in the "Future Research" section of Chapter 8.

141

CHAPTER 7. OBSERVATIONS ON SOFT\VARE
BUILDING

We had two intentions for the parser and analysis tools constructed for the project. first, they
should help illuminate how the sotiware is used in actual field settings. These tools should pre­
sumably offer an e!Tective way to do such studies. Second, the analysis should provide feedback
on the design of the software system itself, as a way to guide in its further refmement. This
chapter is devoted to the second point.

The following pages first discuss general lessons ·teamed in this software engineering exercise. Spe­
cilic feedback, in terms of change orders to the testbed software, are discussed next; these changes
were indicated by the protocol analysis. This chapter closes with a list of additional modilications
to the testbed system that were collected during its implementation and usage.

7.1 General Software Engineering Lessons

This section could be viewed as a general overview of some classic gems of sound software engi­
neering. They are stated in the context of the issues that arose in designing and implementing the
25,000 lines of code that comprise the software used in this project.

Develop complex software incrementally.
Throughout the design and development of Prose II, its tracker, and the parsing tools,
l always had a running system. This afforded me the following advantages:

• Problem determination and debugging was simpler, since the system was grown
from the original PROSE system and a working demo shipped with the :1-licrosoft
Windows toolkit. Bugs I found were almost always in code that had been
recently added, and I could go back to the last version and see my changes.

I always had a system in a condition where I could give a demonstration. People
who saw the system, even in its earliest stages, could easily give me feedback on
the tangible system they had seen and manipulated, not on a document of specili­
cations. For example, early in its development it was stable enough to run exper­
iments on to study navigation techniques (Beard and Walker, 1989).

• :\lodilications to the system were easily staged. These were normally isolated to
the addition of new function, although a full re-write of the internal memory
management was done once.

It was easy to prototype new functions inside the framework of a system that was
already running. I invented several new tree-positioning algorithms because I
always had a testbed system within which to test them (Walker 1989).

• This was an experimental system. I did not know ahead of time exactly what the
result would look like. It continues to evolve, with new features I never foresaw
when the project started.

142

Cse the tools you are dc,·cloping.
The parse trees that were generated by the parser were in a format that could be used
by Prose fl. This let me read in parse trees and manipulate them. The large size of
some of the trees turned out to be a good driYing problem: could Prose ll display and
manipulate the thousands of nodes in the parse trees with reasonable response time?

As another example. whenever I \Vas using Prose II myself as an editor. I generally
kept a second Prose If session active, to keep track of bugs I was finding or other
gripes I had. Prose [[is \\-ell-suited as a place to just stick unrelated ideas. The ideas
can later be grouped and organized-in this case, fixes to the system could be staged.

Plan for international character translation.
I did not explicitly plan for national language support as I was building the system,
and hence made some assumptions about the characters and character sets being used.
This was not a problem with the Windows portion of the system, but did cause a
problem in the tracker and analysis tools when Prose II was distributed worldwide.
The lexical analyzer I used dealt with the one-byte ASCII characters represented
numerically by 0 to 127. I did not anticipate that characters out of this range would
be entered in node labels or search strings, since the CS English version of \!icrosoft
Windows I was using filters these symbols as part of its function. However, subjects
in Finland and Greece submitted protocol records that contained characters that were
out of this range, causing the lexical analyzer to fail.

Plan to throw one away.
This is a favorite suggestion from The kfythical ,V/an-Jfonth (Brooks, 1968). Prose If
was a second system. Every line of the original, character-based PROSE was touched
in my original port from the VAX to the PC. This let me know all the good and bad
points in its implementation. Then I started over from scratch with Prose fl.

In The Mythical Man-Month. Brooks notes problems with second systems, particularly
with system architects attempting to exceed their design constraints. I encountered a
few problems with Prose II as a second system: it included some commands that
were fun to implement, but clearly not of value its users. However, Prose II was
implemented from a strong research base, and it was complimentary with a pair of
concurrent development efforts, Storyspace and WE, which somewhat limited the
unusual inYentions that were incorporated.

:'\onetheless, the protocol analysis showed several commands that were rarely used.
Architectural fluff?

Cse the power of computer networking.
:'\etworking played a key role in this study, in much the way it did for \lead and
Conway in the development of their VLSI book (1980).

I was an early developer of a \licrosoft Windows application, before there were
adequate published examples or books on the topic. \luch interaction with
\licrosoft and the Windows developers themselves took place over the GEnie
network, where 'vlicrosoft supported a bulletin board service. This helped me a
great deal in learning how to solve many problems in Windows prograrnrning.

• Prose II was distributed for a year via IB\I's internal network before protocols
were solicited. This allowed me to fix bugs and make improvements based on
users' feedback over the network. I was confident the system was stable when I
commenced the study.

• The study was distributed to subjects in their actual field setting via the network.
The protocols were returned to me over the network.

143

Automate testcascs for ,-isual cm·ironmcnts.
When developing non-interacti\'e applications, it is easy to amass a large set of
regression tcstcascs, to be run whenever fixes or changes are made. This is much
harder when programming in a graphical, interactive environment. where the correct­
ness of the program must be painstakingly \'erified by a human entering sequences and
watching the display.

l did not build any automated testcases to test the visual emironment. l wish l had.
To provide any kind of a regression test, l had to manually execute all commands in
the visual language, including invalid and canceled commands. l did not explicitly do
this with every version. One problem this caused is that some items in the list of
recorded actions were overlooked by the tracker, and were not captured.

Performance counts.
\luch of the acceptance of Prose II may be attributed to it~ fast performance m a
graphical environment. Many users commented positively on its speed. Early in its
de\·elopment, l identified the key sections of code that were performance-critical, and
prominently labeled them in the source code. I spent much continued effort on
making those sections as fast as possible.

The tracker implementation was simpler because it was able to operate synchronously.
This was possible only because of the fast performance; having the tracker always
active did not cause a perceptible slowdown in users' conunands.

Buy, rather than build.
This is another favorite maxim, from Brooks' "l\'o Silver Bullet" article (1987). Large
savings on this project resulted from the use of a spreadsheet in the protocol analysis.
Once l had modified the parser to produce spreadsheet-compatible output, any
questions concerning frequency and correlation could be reasonably asked and easily
answered. A separate statistical analysis package, which read input in the same
format, assisted in the more-complex queries. Customized programs did not have to
be written to analyze the parser output.

Other significant savings was provided by the Make utility, which was used to auto­
mate the operation of the individual parser passes and to manage the groups of pro­
tocol records.

Ha,·e an early scout blaze the traiL
The interchange between me and the Textlab group was a good one. l came up with
ideas that they implemented and vice versa. By allowing diverse teams to explore the
same set of problems, we found interesting solutions that could be quickly included in
the current running systems. .

For example, WE and Storyspace both employ the tree-positioning algorithm I first
developed for Prose II. The researchers on the WE project have taken a lead in devel­
oping tools to help manage large numbers of protocol records.

Assure conceptual integrity with a single designer.
I think the conceptual integrity of Prose II was enhanced by having a single designer
and implementer. I conjecture that this accounted for high productivity and fast, reli­
able code.

144

7.2 Using the Protocol Analysis Tools to Guide System
Refinement

A six -pass parser served as the p1imary tool for examining the 112 protocol records. The parser
automated and extended the work laid out bv Card, \loran, and '\ewell in their ICARCS study.
What did Card, \loran. and '\ewell use their -parse for?

To identify three broad phases, lasting 5- 15 minutes.
• To classify unit tasks, lasting 10 - 30 seconds.

To identify command frequency; they found that six different commands accounted for 85%
of the command executions.
To see that their user processed elements in small groups; for example, he transcribed about
three circuit elements at a time.

• To look at the nature of user errors in the session.
• To predict the overall execution time, using their Keystroke \lode!.

Because of the higher-le,·el and unstructured nature of the task reported in this current project,
the last item could not be examined with the current study. The tracker used in this project did
not count individual keystrokes, since they would have greatly increased the size of the protocol
record fries. Aho, they were not considered essential to the higher-level user strategies we were
trying to ascertain.

Similarly, errors, in an exploratory task such as writing, are not readily identifiable in an execution
sequence without knowing a user's intentions. However, the analysis did reveal situations where a
node was deleted, and then a new node was created soon after that. This could be considered a
user error.

In their study, Card, \loran, and :-.:ewell observed one subject who subject completed one session
of consistent, structured work. Automating that approach directly showed some problems not
experienced by these original researchers:

Handling of multiple documents in one session
Handling of multiple sessions for one or more documents
Handling of long, unaccounted-for pauses

• Handling for undirected work, or users inexperienced with the software

The value of the parser in this project can be seen to have a wider scope than simply automating
the analysis done by Card, \loran, and '\ewell, since its use was extended across many S\lbjects
and sessions:

1. It provides a consistent classification of sequences of commands and episodes.
2. It reduces large volumes of protocol data to a manageable size.
3. It avoids many human data-handling errors during collection and analysis.
4. It simplifies frequency analysis of all kinds; an analyst can tell which activities were per­

formed most frequently and where the most time was spent.
5. It focuses on activities by types and sequence. In particular, this parser was not particularly

useful for making judgement about time allocations. It was also not sensitive to fast versus
slow work and to long pauses

The parser indicated the following items as areas for further refinement of the software used in
this project.

Identify the frequency of use for the commands within specific types of sessions.
The automated parse analysis made it straightforward to see how often each of the
conunands was used. Among the non-trivial sessions, more than 50~1o of the com­
mands were Create'\ode, EditLabel, or Link'\odes. This kind of information is a
clear indication to developers of which commands to make easiest to use, which com-

1-15

mands to have dedicated mouse buttons or accelerator kevs for. and which commands
should have the fastest performance. '

[had recei,·ed early user feedback that suggested that the Link:\odes commands
should be easier to use. I changed its mouse interface so that a single mouse clink
creates a node, while a double click both creates a node and positions the cursor to
begin labeling it.

At the other extreme of frequency distribution, there were several conunands that were
used rarely. As a developer, [must question whether the added complexity invoh·ed
to implement and document these commands is worth the cost to the eventual users.
For example, there were functions that [found interesting that were not used by many
subjects: ClipboardCopy, ClearDrawing, BreakAl!Links, TrceGrow, and TreeShrink.

Further, would this frequency distribution have been different if the subjects had more
experience or were working in a different environment? It can reasonably be argued
that most subjects were new users of the system, and therefore tended to use those
commands central to its operation. \lore powerful and complex commands are used
by more experienced users, it is often claimed. (This approach begins to mirror the
lUSC versus CISC discussion among computer architects.)

Identify the fn-quency of use for the file formats.
The protocol analysis showed that two of the six workspace file formats were not used
by any subjects. The formats never used were . ROY and . LST. Several hundred lines
of the internal code of Prose ll are incorporated to handle these two formats; this
code could have been removed without affecting this set of subjects. This is one
example where the tracker served to "proftle" the subjects and how they used the soft­
ware, identifying sections of code that were never executed-and are thus overhead to
the system, its user interface, and its documentation.

The analysis also showed that Prose II was frequently used as a file format translator;
workspace files were opened in one format and saved with a different format.

Determine appropriate system defaults.
For example, the tracker can easily record the size and position that users specify for
their map and outline windows. Should the initial default be changed? Should the
current position be remembered across sessions?

Unfortunately for this particular question, the tracker information was incomplete,
because of a bug in my implementation. I lowever, this kind of information should be
available v."ith this type of tracker, and could provide helpful information for software
developers who are designing default values into their systems.

Determine which Helps need attention.
The automated analysis provides straightforward direction on which Helps are most
frequently used and in which the most time is spent. In some of the Help panels,
users spent more than twice as much time as in others. For example, help for
complex operations (e.g., updating the '!IN. IN! file, or dealing with the six tile
formats) took about twice as long as for others (e.g., using the mouse). This may
show that these panels pro,·ide too much information, or are not clear in the informa­
tion they present. These Helps should be made easily available; the information they
provide should be also explained clearly in the user's manual.

Also, some of the Helps were requested much more than others. Help for frequent
commands (e.g., using the mouse, labeling and editing) was requested more frequently
than for less-frequently-used command (e.g., changing how the nodes are drawn).

Determine how often a Save is necessary.
When we started this study, we did not have a good feel for how often users save their
work. Should Prose II do saves automatically" The protocol records showed that the

146

maximum number of saves in a session was 5. but the median number of saves was I.
Subjects tended to save once at the end of a session: until then, they were not ready to
save their work. They did not appear to fear system crashes or power failures
(although such records would never be seen, since the tracker did no checkpointing.)

Determine the size of nodes and their labels.
I designed the size of the nodes with orily an intuitive feel about how large they
should be. With a 6-point font. a node of the default size held three lines of text with
about 20 character per line. Cp to 250 characters of text could be written in the node
labels: long labels could be seen in the Edit dialog box or if the size of the node is
zoomed. Analysis of the protocol records showed that most node labels consisted of a
few choice words--exactly what they were intended for.

Determine the size of displayed trees.
:\lost trees contained fewer than 20 nodes, although a few trees had about 40 to 50
nodes. The tree size, combined with the size of the nodes, determined how much a
subject could see in a normal Prose lf window at a time.

Determine the necessary tree depth.
When I designed Prose !I, I arbitrarily chose a maximum number of levels in dis­
played trees since one of the internal data structures was a compiled array. I decided
that a maximum tree depth of 99 ie\·eis was a reasonable limit, based on my own use
and on my observation of some pilot users. The protocol analysis showed that no
tree in the study was deeper than 10 levels. This is an example of how usability tests
can assist developers in making implementation decisions.

\linimize the number of Refocus episodes.
About 25 percent of all housekeeping episodes were spent playing with navigation:
roaming and zooming to new areas of focus within a workspace. This suggests that
the screen was often too small for the trees being displayed. Prose lf users could
probably be more productive if they spent less total time in Refocus episodes.

It would be interesting to study this with a controlled experiment, where two different
screen sizes are used. If the amount of time spent doing Refocus activities. decreased
with larger screens, one could build a case for doing a cost analysis, comparing the
cost in employee time for using a small screen as opposed to using a large one.

Expt.>ct the tracker to find unexpected sequences.
The tracker showed sequences of commands that I do not know how to manually
reproduce. An example of this is the following:

50:55.50 50:55.55 0.05 Mapolindow OPEN

52:17.39 52:17.45 0.06 MapWindow OPEN

55:44.96 55:45.01 0.05 1-lapt•lindow OPEN

Figure 31. \lultiple opens of the \lap Window without intervening closes. When I tried to
reproduce this, closing of the :\lap \Vindow was shovm. How did this occur?

In this example actual users performed a sequence that I never saw during develop­
ment and testing, and could not reproduce. Additional pilot testing might have deter-

147

mined what this unexpected code path was and whether it was causing problems for
users.

Offer a means of !caring comments in the recording.
As implemented in this project, the tracker captures one primary aspect of the human­
computer interaction: its command interface. The tracker in Prose II also added a
way for humans to record their comments in context. This \Vas a wav to o!fer the
unstructured feedback available with think-aloud protocols. \!any subje~ts found this
to be a useful way to correspond with the protocol analyst(s) and software
developer(s). Subjects used this mechanism to describe what was occurring during
long elapsed time periods, to comment on ho\v they were using the software now or
would use it in the future, to praise functions they liked, to complain about functions
they did not like or were missing. and to report bugs.

As both the software developer and protocol analyst, I found the feedback helpful,
and encourage incorporating such a mechanism in similar software.

7.3 Enhancements to the Testbed System

I had a strong desire to continue modifying the software used in this study, especially when anal­
ysis results showed areas of immediate interest. Ever the programmer!

Since the testbed system, Prose ll, was stabilized and used in this study, many hypertext writing
systems for personal computers have appeared on the market. These systems are becoming quite
sophisticated in their use of graphics and multimedia, and are proving useful in many professions.
Fersko-Weiss (!991) gives a comprehensive overview of these current systems.

Certainly Prose ll can be updated with the functions and features contained in the latest hypertext
systems. I compiled the following list of enhancements to Prose ll during the study; these arc in
addition to enhancements driven by competition in the marketplace.

1. Allow multiple, concurrent workspaces.

:\lultiple copies of Prose ll can be active at any time on a machine. However, you cannot
drag nodes and trees among Prose ll windows. This would allow parts of documents to
reside in separate workspace f!les. As a user of Prose II, I found that I frequently created
many more nodes than I needed during a session of brainstorming and exploration. As I
developed a document further, I found that I wanted to drag the nodes I chose not use into
another document for safekeeping. Tills was a tedious process with the current implementa­
tion.

2. Allow collaboration on work, as groupware, over networks.

As readily as I can create, link, and write in nodes in my own workstation, I would like to
have the ability to do this same thing cooperatively among two or more users in a network.
:\!any users could view the same \vorkspace. adding and writing in nodes which could be
viewed in real-time by other members of the group.

148

3. Port the Prose !! source code from Windows to run in the OS!2 Presentation \tanager envi­
ronment.

The OS/2 operating system for personal computers did not exist when Prose II was first
designed and implemented. Although not yet as widely installed as DOS and Windows. OS 2
proves to be a more suitable environment for a system of this type on personal computers.

Automated trackers are well-suited to 0Si2's background thtead structure.
Online parsing is well-suited to OS•2's background thtead structure. The tracker could
feed its output directly to the parser, which could display the current parser tree for a
session in real time.
Chcckpointing and quick ftle saves are well-suited to OS;2's background thtead struc­
ture.
Having programmed extensively in both environments, OS/2 is a more productive and
robust environment in which to develop and run programs.

4. Provide handling for general directed graphs (i.e., nodes that have more than one parent)

Prose II allowed a node to have no more than one parent, since this was algorithmically
"safe" and explainable within the original target usage. Given an outline as input, a two­
dimensional tree could be drawn; given a tree drawing, an outline could be generated.

Allowing general directed graphs is a more difficult problem, but one that could fmd many
uses. Suitable algorithms might be invented thtough iterative refmement: initially work
within some arbitrary restrictions, such as no more than two parents per node.

5. Indicate additional visual information about the ftle underlying a node.

The nodes in Prose li showed, by their shading, whether a ftle was attached to them. An
additional indicator to show the size of the associated files would have been useful.

7.4 Summary

Chapter I noted that feedback to software designers is increasingly important if they are to match
the software tools they create to the complex mental tasks the software is designed to support.
\!any types of feedback were available at each stage of this project; this paper attempts to capture
the flavor and detail of that feedback. Feedback to the software refmement process was outlined
in this chapter. In particular, it described specific "change-orders"-modifications to the applica­
tion program directly indicated by the analysis results-as well as steps to make the ongoing soft­
ware development and refmement process more efficient. It also described some enhancements
that became apparent thtough long experience in developing, testing, and using the application
program myself.

I played several roles in this project, roles often divided among several people: software designer,
soliware implementer, protocel analyst, and human-computer-interaction researcher. In all of
these roles, I gained insight into how this type of software-the testbed application program and
the protocol collection and analysis tools-might be improved, both in their functional content
and in their development process. The fmal chapter summarizes the highlights of this feedback,
and discusses important areas for future researchers to focus.

149

CHAPTER 8. CONCLUSIONS AND FUTURE
WORK

This project was a first step in automating the process of analyzing and describing usage of com­
puter software. As such, it probably raised more questions than were answered-often the result
of an exploratory project. This ·chapter summarizes what was learned about the behavior of users
of this particular testbed system. One of the goals of the analysis was to point to elements of the
testbed system that could be improved; these are discussed next. This is followed by conclusions
on the methodology used in obtaining and analyzing the data for the study.

Finally. as an exploratory project, many follow-up items were tracked. The chapter closes with
an agenda for use by future researchers in the area of human-computer interaction.

8.1 User Behavior

The backdrop for this project was an examination of subjects in their actual field setting, using a
new software system to assist them in writing. Chapter 5 provides extensive detail on the results
of the analysis of the 112 session recordings received from the 29 subjects. It also contrasts the
results obtained in this study with those of previous researchers. Some of the interesting fmdings
of this study are summarized below in three broad categories: what types of activities took place
across the sessions, how users spent their time and how long events lasted, and what kinds of
groupings and sequences were observed.

8,1.1 What Kinds of Activities Took Place?

:VIuch use of the system, 38% of the sessions, was trivial or unproductive. I did not anticipate
this, and hence did not generate specific information about why this occurred. Reasonable con­
jectures on the high number of trivial sessions are:

This an artifact of using a new system.
These were the type of sessions returned by subjects who return recordings.
This is how people work.

Determining why so many trivial sessions were received is an interesting topic for future explora­
tion. What variables in the setup of the study or in the system itself would reduce or increase the
number of trivial sessions?

The observations that follow provide insight on phases, episodes, and commands in the non­
trivial sessions.

By count, about 80% of the phases involved exploration, defming hierarchies, or top-down
construction. There were frequent alternations among these types of phases.

150

Although 9 different types of housekeeping episodes were identified by the parser, about a
quarter of the housekeeping episodes were concerned with refocus operations. This was
probably because of the small screen sizes available to most subjects.

39 commands were available in Prose fl. Ilalf of the commands in the non-trivial sessions
can be accounted for with just three of these commands: creating, labeling, and linking
nodes.

About I 8th of all nodes that were created were explicitly deleted. This was unexpected,
since nodes could hav·e been easily moved or re-labeled.

\lost subjects tried running a text editor within Prose II, but few used it for extensive writin~
of a document. ~

Subjects frequently used the Prose ll function that tidied their drawings of trees. This nov·cl
function prov·ed popular. Other novel functions (for example, Scramble) were rarely used.

Some subjects found the novel ability to leave comments in the tracker appealing. They left
comments in the tracker for a variety of reasons that generally fell into five general classes:

Descriptions of what happened during some elapsed time
Obsen:ations on using the svstem
Praise for functions of the system
Software bugs, requests for ~dditional functions, queries
System or hardware problems.

8.1.2 How was Time Spent in the Sessions?

The frequency distribution of the time duration for most command•; episodes, phases, and ses­
sions showed large differences between the median and mean times, as well as large standard devi­
ation values. Graphs of these distributions show curves with an early peak and a long trailing tail.
Out of this, some generalizations were identified.

Sessions were generally short, about a half hour or less, when no extensive writing in the
nodes was involved. Sessions with extensive writing lasted about an hour.

Previous studies of users doing writing typically lasted two to four hours. \Vhen working on
their own, it appears subjects write for much briefer periods.

Overall document times, for documents composed over one or more sessions, were about an
hour.

Dividing total document time by the number of nodes, subjects spent about one minute per
node if nodes were merely labeled; if extensive writing in the nodes was involved, they spent
about 5 to 10 minutes per node.

Subjects spent about 10 to 20 seconds each time they labeled a node. Labels consisted of a
few choice words, averaging 4 words of 7 characters each.

Help screens were typically viewed for 15 to 30 seconds.

The time duration of phases was consistent between non-trivial and trivial sessions: about
two minutes. However, the sequences and distributions of episodes within the phases were
quite different between triv·ial and non-trivial sessions.

One-sixth of the session work time was spent in phases of revision of the document text.

About half the total session time is spent in pauses. \lost pauses were less than 3 seconds.
Two-thirds of all pauses were less than 5 seconds.

!51

8.1.3 What Kinds of Patterns were Observed?

Throughout the analysis, we found that work tended to fall into classes. The ftrst distinction was
between trivial and non-trivial sessions: the trivial sessions \Vere later isolated from most of the
protocol analysis. :\on·trivial sessions fell into groups of single-document sessions, multi­
document sessions, and multi-session documents. Some sessions also showed work on docu­
ments that already existed.

DitTcrcnces in strategy became most apparent in the differences among small, medium, and large
documents. Sessions showed natural groupings according to how many nodes were operated on
Juring the sessions. The woupings appeared to reflect the subjects' experience with Prose II.

Sessions with 22 or more nodes looked similar: a critical mass of nodes were created and
linked into a tree, which was incrementally developed.

Sessions with II to 21 nodes showed three kinds of behavior, possibly because the number of
nodes was manageable enough to be manipulated in several ways. As with the sessions with
22 or more nodes, trees were incrementally developed in some of these sessions. In other
sessions, all the nodes were created and labeled before any were hierarchically linked. And in
the third group. subjects' behavior looked almost turbulent as they searched for the right
ideas and relationships among them.

Sessions with I 0 or less nodes showed little overall patterns.

Some other observations involved the size of documents, sessions, phases, and episodes, where the
meaning of size depends on the topic being discussed.

Documents that were constructed across several sessions were smaller (i.e., had fewer nodes)
than documents constructed in a single session.

The counts of commands per episode and episodes per phase were nearly the same, with
small variation. These counts are consistent with the size of human Working \!emory
chunks: about 3 to 5 commands! episode qnd episodes/phase.

Trees generally had 3 to 5 leYels, consistent with the conventional structuring of documents
into chapters, sections, subsections, and paragraphs.

\lost trees had between 15 and 30 nodes. Subjects generally saved their work when it was at
some state of completeness: most saYed documents consisted of a single, complete tree, as
opposed to a forest of trees or unlinked nodes.

There was a preponderance of top-down construction, as opposed to bottom-up con­
struction. The top-down construction took place in the form of iterative refinement.

• A node's order of creation generally correlated "ith its ftnal, pre-order tree position. :\odes
created early in a session finished high in the structure trees; nodes created late were low in
the tree. Two-thirds of the time, the first node created was the root of the eventual tree.

In terms of spatial positioning, a node is generally created below and to the right of the node
created before it.

Planning and writing were generally intermixed. Only one session had all the exploration and
planning before any of the writing.

Cltimately, sessions ,·aried from one to another among many variables. Sessions could be
grouped by looking across any of these Yariables, or they could be characterized by looking across
many Yariables in one session. For example', all the sessions where "trees with more than 30
nodes were created" could be readily compared.

!52

8.2 Software Development Feedback

One of the important goals of this study was to understand the type of feedback available to soft­
\varc designers and dcn:lopcrs using these types of analysis tools. This section lists modifications
to the Prose {[testbed sofiware indicated by the protocol analysis.

8_2.1 Frequent Refocus Episodes

The analysis showed that 25% of the housekeeping episodes were Refocus. Csers spent much
c!fort navigating to other areas of the workspace and zooming for better focus on what they were
\vorking on.

With the state of personal computer technology at the time of this project, I assume that most
users had display screens with resolutions of 640x350 or 640x480 pixels. While Prose II will work
with any screen resolution, it cries out for a largeridenser screen. I personally used a display of
1280x800 pixels, which felt about right. :v!ost subjects were somewhat constrained by smaller
screens, resulting in frequent refocusing.

A tracker of this type can show software designers how many nodes are present on the screen at a
time. Similarly, it could show software buyers how much cost is involved in roaming and
zooming. It could help in targeting GCI software to computers with screen real estate of the
most prevalent size. If an overwhelming number of target users have screens that are 500x500,
writing software that works best on a !OOOx!OOO pixel screen may be counterproductive.

By also collecting extra information with the tracker, additional strategy questions could have also
been answered, such as, "[s tree size correlated with screen size"?

8.2.2 Concatenated Function

The protocol analysis showed that half of the more than 6000 commands executed by subjects
during the study were creating nodes, labeling nodes, and linking nodes. These three commands
therefore needed the closest attention:

they should perform well,
they should be easy to execute, and
they frequently occur together in sequences.

In early feedback, the focus on these three commands became obvious from studying protocol
records and from direct comments from users. The mouse buttons were designed so that these
commands were readily available with single click, double click, and click and drag, respectively.
The Edit dialog box was re-designed so it was easy to enter the text for a node's label. Editing of
a node's text was also simplified.

The large number of times these three commands were executed suggests further improvements
may be warranted. Some ideas to be studied further: pre-built templates of common tree struc­
tures, and full-time icons for sequences of create, label, and write.

!53

8.2.3 Extra Function

The protocol analysis readily identified commands were used with several orders of magnitude less
frequency than others. Thus. the system may have had elements of functional overkill: some of
the features were rarely used.

Because it appeared there were many trial and initial sessions with Prose II, I am initially reluc­
tant to remove the rarely-used functions without some further longitudinal studies of experienced
users. Clearly some functions were not used by novices \Vith this system; are the functions,
however, helpful to experts"

In particular. functions without a direct mouse.'menu interface (that is, they could done only with
the keyboard) were rarely used by the subjects in this study. If these functions were now given
mouse interfaces, would their frequency of use increase (assuming they had the same utility as
before)" Or, would the additional menu size and complexity change the overall comfort with the
systern?

8.2.4 Tidy, Save, and Help Commands

Subjects used the novel TidyTree command frequently: this allowed them to work cluttered and
then ask the system to clean up. This appears a good paradigm for user beha,·ior with such soft·
ware, where complex structures are being created and modified.

Subjects rarely saved their work during a session; an ongoing automatic save function could avert
disasters for some users. The analysis showed mean and standard deviations for inter-command
pauses; to reduce disruption to users, a suitable (and possibly self-adjusting) interval for automatic
saves could be implemented.

The protocol analysis readily identified help panels that were used frequently, and showed on
which helps the most time was spent. The context where help was needed could also be easily
seen. Frequently-requested helps ppint to obvious candidates for functions that need to be sim­
plified.

The observations in this section were higl:ilights of the extended descriptions found in Chapter 7.
They indicate that the project was fruitful; it showed areas for improvement that were not
expected when the software was designed. The project met this goal: useful feedback was
obtained on how to improve the specific software under study.

8.3 Tools and Methodology
Aside from learning lessons about peoples' strategies with this particular software, this project was
a platform to describe how we examined a group of software users and what we learned from
doing that.

The automated techniques explored in this project are intended to supplement, not supplant,
other techniques for acquiring and analyzing protocols, such as think-aloud verbalization and vid­
eotaping. These methods still offer unique advantages of their own: namely the ability to capture
users' attitudes and emotions. :\laments of delight, frustration, or bewilderment, as well as inter­
ruptions and distractions cannot be effectively captured with an automated tracker. Perhaps most
importantly, it has proved difficult to capture users' intentions with automated techniques.

!54

8.3.1 Advantages of These Tools

By contrast, the tools and methods presented here are intended to address issues of users' styles
ami strategies across a large sample of sessions and subjects. They otTers several advantages o\·er
previous protocol collection and analysis methods.

First. it allows unobtrusiYe collection of protocols from actual users in the field. The protocol
collection is not done in an experimental setting. C scrs can perform tasks they consider represen­
tative and usc the system as they wish \vithout the intrusion of monitoring personnel or equip­
ment.

Second, because the protocol collection can occur "in parallel" among many users in their
naturalistic settings, a great deal of protocol data can be collected in a short period. The short­
ened period potentially allows quicker software design feedback. The large volume of data offers
a broad look at the use of the system and the variety of strategies employed in its use. The auto­
mated analysis makes the volume of data manageable.

Third. after protocol records have been collected, the grammar and parser can be modified as
understanding of system usage increases. The protocol records can then be rerun with the modi­
fied parser to see if the new decisions reflected in the parser still hold for the large cross-section of
existing protocol records.

Fourth, it allows researchers to see how peoples' software usage changes over time. Introspection
says that the ways we use a piece of software changes as we gain more experience with it. How is
that change manifested in users' usage records? The internal tracker and consistent analysis tools
make such longitudinal studies possible.

In general, automating the tracker and protocol analysis was a convenient way to observe many
users. This method of software distribution and protocol collection allowed a large volume of
data to be collected in a short period. The cost of collecting and analyzing each session is rela­
tively low, after preparing the tools.

8.3.2 Obserrations on Protocol Collection

Chapter 6 contains an extensive discussion on constructing the automated tracker and collecting
the protocol record flles it generates. A summary of the protocol collection aspects of the study
follows.

14% of the users that were contacted returned their recordings. Anecdotal data says this was
a reasonable reply rate for a voluntary experiment.

The tracker was designed to avoid writing any secret or hidden information; users could
browse through any protocol flle with a simple text editor. This gave users conlldence that
private information was not being collected about them.

With few experimental controls, many sessions reflect merely learning and exploration of the
software itself. :Much like any harvest. the ease of this method of protocol collection requires
additional methods to fllter out the chaff.

• It would have been helpful to have some supplement to the protocols, indicating users
intentions. The amount of experience each user had with the system would have also been
helpful, to discern novice sessions from expert sessions, and to watch a progression of ses­
sions as a user moves from novice to expert.

Gi,·ing users a mechanism for inserting comments into the protocol record proved valuable.
It allowed users to report problems and comments in the exact context where they occurred.

!55

This feature could be expanded upon considerably (up to the point of obtrusiveness) and
should be considered for addition in similar software.

Subjects produced about 23 Kb)1es or about 7 pages of protocol data per hour with this
system.

The automated tracker proved to be a simple, but powerful addition to the existing software
system. It \\·as easy to incorporate a tracker in a software system without degrading performance.

The internal tracker used a synchronous interface, which did not perceptibly slow response
time and simplified the amount of state information needed to identify each event.

The tracker recorded events at the command level. e.g., "Create a node.'' If every keystroke
and mouse movement had been tracked. system performance may have been slowed and
recording tiles could have become needlessly long.

Communications networks proved a powerful tool for software development, distribution.
and protocol collection.

I was a developer of this \licrosoft Windows application before there was adequate doc­
umentation. I exchanged programming questions with \licrosoft Windows experts via
the Genie network, where :VIicrosoft supported a bulletin board service.
The testbed software used in this project was distributed for a year \'ia IB:VI's internal
network before protocols were solicited. This allowed me to fix bugs and make improve­
ments based on users' feedback over the network. I was confident the system was stable
when I started the study.
The study was distributed to subjects in their actual field setting via the network. The
protocols were returned to me over the network.

While it was simple to collect many protocol record flies, their management became time con­
suming. For example, file management became a problem as protocol files with arbitrary names
were collected from different user's machines. As the tracker was implemented, it invented
filenames unique to the user's machines. These names were no longer unique when all the files
from all the users were stored on one machine for analysis. Also, users had occasion to change
their protocol filenames before returning them to me for analysis.

In summary, many users were comfortable with generating protocol records of their sessions, and
returning them for analysis. It is easy to collect a large volume of actual-use protocol data 1 Col­
lecting and analyzing protocols as done in this project scaled up to about 100 sessions, but cata­
loging and file management was becoming a predominant problem. Easy categorization of groups
of sessions, documents, and subjects is necessary as the number of sessions increases. A database
management system is needed to manage large numbers of session protocols.

8.3.3 Observation on Using a Parser for Protocol Analysis

The multi-pass parser used to analyze the protocol records allowed intellectual manageability and
programming refinement that was bounded in scope. For example, difficulties in the analysis
were eased late in the project by adding an additional pass to the parser. Also of value was the
parser's ability to write its intermediate files in spreadsheet format. Complex analyses and
graphing could readily be performed on any factor or variable discovered in the analysis. This
ease of analysis led, in tum, to the addition of more variables to the parser output, to satisfy
requests for specific views of the sessions.

The parser was labor-intensive to build. but straightforward to use once it was stabilized. Having
a large number of valid "testcases" (in the form of actual protocol record flies) made regression
testing of parser changes easy to automate.

156

Playback of user sessions was not incorporated into the analysis. Playback is a difficult problem
across platforms: it requires a great deal of contextual information. \!any other activities, besides
the one being studied, are possible in a multi-windowed environment, which compounds the
understanding of what the user is actually doing when not directly using the target soft\vare.

Several innovations in the collection and analysis helped me to uncover useful information from
the subjects and to work more efficiently:

The tracker captured commands. not just the keystrokes. This makes the recordings shorter
and saves the step (and possible ambiguity) of recombination during the analysis. Both
Card. \loran, and :'\ewell and Smith et a/. have captured all the keystrokes, and then ha\·e
had to go to the efiort of encoding groups of these as commands.

I distributed the system over the network and getting the recordings back the same way. The
recordings could stand alone, and were compact enough that they did not need to be
compressed-to avoid network performance issues.

• This project introduced a group of statistics that can be used to examine a similar task or
software system. These are described in detail throughout Chapter 5.

Prose ll contained hot keys, allowing users to communicate directly with the tracker. {) sers
could relay their thoughts to the analysts and presumably the software developers in the exact
context where the comment occurs. Subjects used this for several purposes in this study,
including _describing bugs at the place where they occurred.

With these innovations and those of others, this project progressed confidently in its quest to
understand how we use computer software and how it can be improved. The initial ICARUS
study of Card, \loran, and :'\ewell provided an excellent basis for automating the tracker and
parser. Additional input from the concurrent Textlab research supplied a rich environment in
which to experiment with implementation ideas. The resulting tools and techniques succeeded in
shedding light on user behavior, on methods for studying user behavior, and on ways to improve
human-computer software interfaces.

8.4 Future Research
In this exploratory project, ideas for future research and modifications were frequent throughout
all stages of design, implementation, testing, analysis, and summarization. Specific suggestions for
changes and extensions to the analysis tools and the testbed system are described in the fmal
sections of Chapters 6 and 7, respectively.

This section identifies four areas where additional studies and overall changes seem warranted.
first, with these software tools in place, numerous ideas for fruitful longitudinal studies are
described. :'\ext, many of the analysis summaries involve rates, types, and sizes; ways this know­
ledge could be used to build better human-computer interfaces are discussed. Third, media other
than text were rarely used in this study; how would the results change with advanced hypermedia
systems? Finally, using the analysis tools constructed for this project suggested yet more tools
that a designer or analyst would like to ha,·e. Issues involved with building an integrated suite of
analysis tools are described.

157

8.4.1 Conducting Longitudinal Studies

This project laid the groundwork for observing users with a particular software system over an
extended period of time. The tools and techniques demonstrated here make those types of studies
tractable.

Studying individual users oYer time: effects of learning

The tools introduced in this project make it simple to watch an extended sequence of user
sessions over time, as individual users move from being novices with the software to being
experts. llov .. · many sessions or how much elapsed time docs it take to become an expert?
\Vhat identifies an expert (e.g.r fewer errors, longer pauses, larger documents, shorter ses­
sions)" What is the mix and sequence of commands an expert uses, as opposed to a novice"
(We have an introduction to this answer in this study, with the mix of trivial versus non­
trivial sessions.)

For software designers, can alternate implementations be objectively compared with two
scales: how fast users can moye from novice to expert, and how efficiently experts can
perform given tasks?

Studying experienced users: how do expert writers work?

I conjecture that most of the subjects in this study were neither experienced users of this
software, nor were they experienced writers. What would the data analysis have shown about
writing behavior if all the subjects had been skilled writers, experienced with this software
system? Future studies with such a focused group of users will likely change the protocol
analysis results summarized in Chapter 5.

Characterizing users by what they were trying to do

The protocol data that was collected contained no background information on what goals its
users were attempting to accomplish. Thus, the major categorizations that were made in
Chapter 5 were made by the kind of session: single-document sessions, multi-session docu­
ments, and so on. Without becoming too obtrusive, a better categorization might take into
account verbal feedback and summaries from users. L' sers could guide how analysts deter­
mine highlights of sessions and categories for them.

• L"nderstanding the short, unproductive sessions

"early 40% of the sessions were tri\~al or unproductive. A follow-up study could examine
further why this occurred, and how much semblance this bears to normal behavior. · For·
example, I know of no similar data with respect to the use of text editors or word processors.
Are unproductive sessions in fact helpful, part of the exploration and learning process? Do
certain software systems encourage unproductive sessions? Is similar behavior manifest in
other, non-computer-related activities?

8.4.2 Utilizing Rates, Times, Types, and Sizes

One way to improve the overall performance of a computer system is to take steps that bridge the
speed mismatch between processor memory and disk memory. \1uch computer science research
has focused on ways to use caches and similar teclmology to optimize a computer's throughput.

A similar mismatch exists between the speed of human operations and underlying computer
speeds. Certainly. human speed seems so much slower than raw CPL' speed that this shouldn't
be a concern, but advanced software functions and current GCis have a tendency to consume
computing resources. To bridge this gap, we need to understand the rates, types. and sizes of
human input operations. With this knowledge, future systems might be tuned to adjust to the
performance characteristics of their human users.

158

Card, :'v!oran, and '\ewell (1983) organized a large body of diverse data on how the general
"human information processor" operates. For specific tasks such as writing, additional data is
needed to adjust software to its users. The protocol analysis tools used in this project illuminated
many attributes of how users worked with the testbed software. For example. they showed

the distribution of the duration of pauses,
the distribution of writing times in nodes,
the distribution of time spent reading helps,
the frequency of lile saves, and
the distribution of label lengths.

Future software designers should consider capitalizing on the rh)1hms of their human users,
making their software appear more responsive. For example. highly-interactive computer software
can usc the rh)1hms and sizes found through protocol analysis to fmd opportune times for I. 0,
backup, checkpointing, and garbage collection.

Similarly, resource allocation can be optimized to utilize practical human sizes, instead of large,
fixed sizes. Items far outside the expected range of sizes can be treated on an exception basis; the
protocol analysis gives a basis for understanding the frequency of the exceptions.

8.4.3 Using Media Other Than Text

White (1985) proposed that we work with three types of concepts in our human cogrutrve
systems; propositions, algorithms, and images. All subjects in this study used propositions
(represented as labeled nodes) almost exclusively, even though Prose If nominally supports all
three types of concepts. A current challenge for computer scientists is the utilization of algo­
rithms, video and audio images, and their mix: how do we make them more inviting to express in
a hypermedia system, and how do we integrate them into "hypermedia documents"?

I assume that the rarity of algorithms and images as types of nodes was a by-product of their
inadequate support in Prose If (and computer systems, in general). Recent hypertext systems,
however, are beginning to offer broad, integrated support for multimedia.

Strongly-integrated hypermedia systems introduce new questions for this kind of study. With dif­
ferent types of nodes (instead, or in addition to, labeled nodes), how do many of the behavior
results obtained in this study change? What is a common mix among the types of nodes? A
follow-on study could look at such things as the time spent per node, the duration of pauses, the
type and duration of episodes and phases, and the size of the resulting multimedia documents in
an attempt to better understand how humans behave in ;heir interaction with these new systems.

In Prose II, a node consists of only a single type; its label is always text. This restriction was an
implementation decision which reduced its underlying complexity. However, a full hypermedia
system should allow, for example, nodes composed of text, with audio armotation and imbedded
graphics. Although the current tracker design is sound, extensions are required to accommodate
this richness of media. One feature of text-only systems is that the data storage of text is rela­
tively compact compared to audio and video. It was easy to capture node labels in a text system;
it would be more costly to capture a graphic icon or audio message and store it in a protocol
record. Hypermedia systems potentially offer a rich de,·elopment environment for multimedia
documents. The challenge presented to their developers is to make them so easy to use that they
actually get used. The tools introduced in this project offer designers and developers a means to
get consistent feedback on their systems' usage.

159

8.4.4 Developing an Integrated Suite of Tools

The parsing tools developed for this project were designed to make protocol analysis less expen­
si\'e and more consistent. Csing them over an extended period suggested, in tum, other software
tools that could help make protocol analysis more accurate, more useful, and faster.

To improve accuracy, analysis tools could better match protocol analysis to users' intentions and
experience. 'l'his can be done by allowing user input to guide or influence the parse. !'"or
example, the parser built for tllis project could be adapted to operate concurrently with actual
user tasks; it could be shown in an adjacent window. Future enhancements could be cnvisiom:d
that allow a vic\1/CT to gi\·e a running audio conunentary and to modify an ongoing parse. This
ability could be exercised by users concurrently during a task, as a think-aloud protocol, or by
analysts later v.:llile viewing a recorded session.

Another way to imprm·e accuracy is to provide analysts with tools to help visualize one or more
sessions. Visualization of sessions through playback has proved a powerful tool for researchers
using the WE analysis tools. As mentioned, playback can be technically challenging in an arbi­
trary, multi-tasking machine.environment. Additionally, the nodes in this project and the Textlab
studies consisted almost exClusively of text". With a richer nlix of hypermedia components, play­
back of complex sessions will need new algorithms for representation and retrieval.

A parse tree can provide visual results for a single protocol analysis, as shown in this project, but
additional tools would strengthen the capabilities of this tooL For example, the parse trees illus­
trated by Prose II do nothing to illustrate the passage of time. Parse tree illustrators and editors
can be imagined that picture different factors of a session with different colors and icons. Addi­
tional tools are also necessary for looking across a groups of session analyses for various features.

Visualization tools to look across groups of sessions point to a general class of protocol analysis
tools to manage and query session analysis results. In this study, the number and size of the
sessions allowed me to manage them by hand. This should be automated with a database man­
agement system; we should be able to put the protocol records in a standard database with search
keys and relations. Currently, the Textlab group is looking at constructing extensive headers for
protocol records. They have given the protocols attributes, which become an abstract description
of the protocol.

Analysis tool-s are needed to look across the landmarks and features of vast amounts of protocol
data. "Show me the prominent portions of a single session, of multiple sessions, or of all the
session \Vith a certain category. Or, show me all the sessions containing some factor, and show
me other features the they have in common."

The scale of the problems allowed by analysis tools needs to increase, as well. Working in DOS
would bound many questions had my sample size been much larger, because of its constraint of
only 6-10 Kb;1es of main memory. '..lodem workstations could have increased the practical study
size by an order of magnitude.

Finally, if parsing of protocol records is to be used more widely, tools are needed to build better
parsers faster. To be used across different kinds of software systems, skeletons of operating
parsers should be readily available and modifiable. Simple modifications to an existing parser
should be simple to make. In this project, they require knowledge of C programming, plus exten­
sive testing to assure they have not changed the results of pre,·ious protocol records that were
parsed "correctly." Alternate parser implementations nlight make them easier to develop and
modify. For example, technologies such as neural networks or expert systems nlight be used to
create parsers that learn how to parse by being guided by a human through a series of represen­
tative parses.

I assumed that an automated tracker and parser would be a panacea for studying user behavior
with software. What it allowed was to scale up the types of questions I could ask about broad
behavior patterns. To obtain answers to the new spectrum of questions suggested by this study,

160

additional tools are needed to coordinate the resulting analysis data. Integrating these tools into a
workbench for protocol analysis would make working with large sets of protocol data much more
tractable. and hence more timely and useful.

161

APPENDIX A. COVER LETTER AND SESSION
SUMMARY

This appendix has two sections. The first is a copy of the coYer letter sent to potential subjects.
The second section contains the exhaustive itemization of each of the 112 sessions. It also shows,
by session name, the five categories of sessions, and the 10 sessions that contained extensive
writing.

A.l The Co,•er Letter

I sent a copy of the following coYer letter to each of the 210 potential subjects on January 19,
1989.

Cover Letter ------------------------------,

I'd like your help for a study I'm conducting on human-computer interaction, part of my
Ph.D. dissertation. I recently sent you the current version of my •tructure editor, Prose II.
You probably noticed that it makes recordings (ASCII ftles) describing the actions you took
while using it. I'm building some sophisticated tools to analyze these recordings, and need a
number of good recordings to analyze.

Please use Prose II to ·design and write a paper, an article, a set of class notes, or some similar
document of between 2 and 15 pages, and then send me the recording (I don't need the actual
document). In fact, I'd really like two different recordings from you, if possible--maybe two
different kinds of documents? The recordings will be most useful if you use the system from
beginning to end in the process of writing the document.

You will not be judged in this study. There will be no public association made between your
name and any recording. The recordings contain no confidential information.

I'm hoping to appeal to your desire to adYance the state-of-the-art, but I can sweeten the deal
a bit with the following:

• I will acknowledge you in any papers or articles that arise from this research (let me
know if you don't want me to).
I can send you a copy of your analyzed recording.
I can send you a copy of my research proposal.

• I can send you a copy of any papers that arise from this research.
I can send you a copy of Prose II with the recorder ·'compiled out" (thus, a bit smaller
and faster).

\ly target date to get your recordings is February 25th. Do what you can (sorry--! know you
really don't need another schedule').

Thanks in advance, -John Q. Walker

162

A.2 The 112 Sessions

The 112 session protocols are summarized below in Table 40 on page 164, grouped in chrono­
logical order by the person who submitted them. I assigned each of these protocol records a
unique name, which is the session ID shown as the ftrst column in the table. The column enti­
tkd .. ~umber of Commands'" is a count of the primary cominands executed in a session. The
rightmost four columns identify, for a given subject, which document a given session applies to.
This is because two subjects returned sessions showing work on four documents; the other sub­
jects showed evidence of work on three or fewer documents. Other symbols in the table arc
described by the following legend.

Legend of Symbols:

Symbol Dcst·ription of this symbol

E Existing file: the subject opened and w'orked with an existing file. The file was not
necessarily created using Prose I I.

-,- '\o save: the subject created several nodes and worked with them, but did not save
the file.

R Revision session: the subject edited the labels and content of existing nodes, but did
not structurally change the document.

T Trivial session: the subject was learning the system or just playing around with the
features. :\a constructive v..-ork was observed. Trivial sessions are discussed further
in Section 5.2.1 on page 94 .

Table 40 (Page . 1 of 4). Subjects, Sessions, and Documents.
Session I D (file Total Session Sumberof ,\'odes in .Vodes in .Vades in ·\"odes in

name) Time (seconds) Commands Doc 1 Doc2 Doc J Doc -1

Subject 1

S01R0101 1973 226 56

SO! R0201 1128 82 17

S01R030! 2293 !53 29

Subject 2

S02R010! I t4o7 1 11s 1 28 I
S02R020! I s75 1 721 19 I

Subject 3

SOJROIOl 2446 uo I 21 I
Subject 4

S04R010! 3245 230 60 I I I
Subject 5

SOSR0\01 1016 24 T I
S05R020! 999 45 14-E I I I

Subject 6

S06ROI01 2863 84 6

S06ROI02 121 4 1-E

S06R0103 169 6 2-E

S06R0104 1 2 T

S06ROJ05 452 18 6

S06R0!06 557 10 3-E

163

Table 40 (Page I of 4). Subjects, Sessions, and Documents.
Session I D (ji/e Total Session Sumber of Sodes in ;\odes in Sodes in .\odes in

name) Time (seconds) Commands Doc I Doc 1 Doc3 Doc 4

S06R0\07 33! 9 2-E

S06R0108 !ISO 21 4

S06R0109 1 !\9 m 18

S06ROIIO 283 10 T

S06R0201 902 67 12

S06R0301 359 ~() II

Subject 7 -
SOtROIOI 365 !6 I T I

Subject 8

SOSROIOI 1454. !OJ 19

S08R0201 2210 140 23 14

S08R0301 13 II 112 17

Subject 9

S09ROIOI I 1516 27 T I I
S09R0!02 I 369 17 T I I

Subject 10

SIOROlOI 793 3 T

SIOR0\02 5 2 T

SIOR0\03 780 2 T

S10R0104 3789 58 9

SIOROIOS 1178 123 I< II

Subject 1 t

SIIROIOI 460 35 T

SIIROI02 286 18 T

SIIROI03 831 35 T

SIIROIO~ 119 12 2

Subject t 2

S!2ROIOI I 2219 1 79 17 I I I
Subject 13

SIJRO!OI I 3803 68 1 7 I
Subject 14

$14ROIOI 18 2 T

SI4ROI02 24 2 T

S14ROID3 1241 21 45-E

S 14R0104 630 5 T

SI4ROI05 4124 83 46

SI4ROI06 289 .14 48

SI4R0107 5 2 T

SI4ROI08 34 3 T

SI4ROI09 4 2 T

Subject IS

SI5ROIOI 1320 36 8

S 15ROI02 8023 52 17

SI5R0!03 282 10 5-E

S!SR0\04 90 7 3-E

S!5R0!05 100 4 T

164

Table 40 (Page 2 of 4). Subjects, Sessions, and Documents.
St!ssion I D (jile Total Session Sumber of :\'odes in Sodes in .\'odes in .\od11s in

name) Time (seconds) Commands Doc 1 Doc 1 Doc 3 Doc 4

S!5R0106 58 3 T

S 1 JRO 107 25 2 T

SDROJOS 39 5 T

Sl5R02Ul 27 !0 2" 6

S\)R0202 6567 70 17

S 15R0203 2562 22 18

S !5R020-l. 100 6 T

S15R0205 223 13 19

Subject 16

S\6ROIO! 222 21 T

S16ROI02 2106 118 9

SI6ROIOJ 47 8 1-E

S!6R0104 337 7 1-E

S\6R0105 221 9 2-E

S16R0106 233 17 2-E

Si6ROI07 12l7 68 T

SI6R0108 1773 30 T

S16R0109 363 17 T

S16RO!IO 211 IS 7-'>

SI6RO!ll 306S 101 IS

SI6ROII2 203 9 T

SI6ROIIJ 56 3 T

SI6R0114 219 IS T

Subject 17

SI7ROIOI I 13096 J 522 176 I
517R0201 I 1846 1 33s 1 I 89 I

Subject 18

SI8RO!Ol 23 3 T

S!SR0\02 146 II 4

SISR0103 1296 66 II

Sl8R0104 19 2 T

SISROIOS 54 4 1-E

SI8ROI06 379 33 24

S!8R0107 705 29 6

SISROIOS 2356 153 27

Subject 19 -

SI9R0101 2sss 1 265 47 I I
Subject 20

S20ROI01 I 6s3 1 66 1 16 I I
Subject 21

S21ROIOI I 42 1 I I T I I
Subject 22

S22RO!Ol 2038 248 41

S22R0201 1124 102 13

S22R0301 2543 303 19

Subject 23

165

Table 40 (Page 3 of 4). Subjects, Sessions, and Documents.
Session IV (file Total Session Sum.ber of Sodes in Sodcs in ,\-odes in ,\odt?s in

name) Time (seconds) Commands Doc 1 Doc 2 Doc 3 Doc 4

S23R0l0! 4.308 138 20

Subject 24

S24R0101 2188 121 1 17 I I
Subjrct 25

S25ROIO! 2974 43 8

S2)RU201 55 3 T

S2)R0JO! 11811 198 21

Subject 26

S26R0101 I 1953 1 1os L 20

S2oR0201 350 21 1 2-E

Subject 27 .

S27RO!O! 68 3 T

S27R0102 325 5 T

S2tR010J 3815 143 2!

S27R0104 2750 48 5-E

S27ROIOS 700 6 T

S27R0106 4140 71 25

S2tR0107 !42 4 T

S27R0!08 2825 2 T

S27R0!09 !40 4 T

Subject 28

S28R0!01 35 4 T

S28R0!02 3362 164 3!

S28ROI03 8 2 T

Subject 29

S29RO!O! 1204 27 6

S29R0!02 44! 14 8

S29RO!OJ 4440 91 12

166

Trivial 1 session/ tl sessions/ Hot'k on an t-lu 1 tip 1 e
sessions doc doc existing doc docs/session

----------- ----------- ----------- ------------ ------------
SOSRO!Ol SO!RO!Ol S08RO!Ol SOSR0201 S08R0201
S06R010~ SO!R0201 S08R0201 S14R0103 SlOROlOS (2 docs)
S06R0110 S01R0301 Sl6R0102 Sl4R0105 S29R0103
S07R0101 S02R0101 Sl6R0103 Sl4R0106
S09R0101 S02R0201 Sl6R0104 Sl8R0102
S09R0102 S03R0101 Sl6RO!OS
S!ORO!Ol S04R0101 Sl6R0106
S!OR0102 S06R0201 Sl6ROlll
SlOR0103 S06R0301 Sl6R0113
Sl!RO!Ol S08R0301 Sl8R0103
Sl!R0102 S!OR0104 Sl8R0105
SllR0103 Sl2R0101 Sl8R0106
SllR0104 Sl7R0101 S29R0101
Sl4R0101 Sl7R0201 S29R0102
Sl4R0102 Sl8R0107 S29R0103
Sl4R0104 Sl9R0101
Sl4R0107 S20R0101
Sl4R01G8 S22R0101 S OliRO!Ol
Sl4R01G9 S22R0201 S06R0102
Sl5R0105 S22R0301 S06R0103
Sl5R0106 S23R0101 S06R0105
Sl5R0107 S24R0101 S06R0106
Sl5R0108 S06R0107
Sl6R0101 S06R0108
Sl6R0107 Sl3R0101 S06R0109
Sl6R0108 Sl8R0108 Sl5R0101
Sl6R0109 S25R0101 Sl5RO!e2
Sl6R0110 S25R0301 Sl5R0103
Sl6R0112 S28R0102 Sl5R0104
S 16R0114 Sl5R0201
Sl8R0101 Sl5R0202
Sl8R0104 Sl5R0203
S21R0101 Sl5R0204
S25R0201 Sl5R0205
S27RO!Ol S26R0101
S27R0102 S26R0201
S27R0105 S27R0103
S27R0107 S27R0104
S27R0108 S27R0106
S27R0109
S28R0101
S28R0103
42 sessions 21 sessions 37 sessions 5 sessions 3 sessions
0 documents 27 documents 11 doclUllents 3 documents 4 documents

Figure 32. Categorization of the 112 sessions into 5 groups. Among the 112 sessions, a total of 45
different, substantial documents were constructed or edited. Sessions in the righthand four
categories are considered "non-tri\'ial." The columns in this table are explained further below.

167

S06R0101
Sl3R0101
Sl5R0102
Sl5RG201
Sl5'R0202

Sl8R0108
S25R0101
S25R0301
S27R0106
S28R0102

Figure 33. 10 sessions that contained substantial writing. Among the 112 sessions, these J,Q sessions
were significant in that the subjects wrote substantial text in the file behind the nodes.

168

APPENDIX B. EXAMPLE PARSER INPUT AND
OUTPUT

Session S !8ROI08 was a classic among stand-alone sessions. All the nodes were labeled and
linked together, the structure of the tree was touched up, then the contents of the nodes were
edited. This session dealt with 27 nodes during 2356 seconds (39.3 minutes), and it consisted of
175 commands. The mean length of the labels was 11.5 characters.

The following is my summary of the session.

(create and label) 4 nodes
link into a tree
tidy
create."label, create1label, 2 link
create/delete
creatdabel, create/label, 2 link
tidy
create, label, link, tidy
(create, label, and link) 2 nodes, tidy
((create and label) 2 nodes, links, tidy) 5 times
(create, label, link, and tidy) 3 nodes
breaks and links
Edit: 5, 6, 5, 8, 9, 12, !3, 10, 14, 15, 16, 17, 22, 23, 19, 20, 21, 25, 26, 27

169

B.l A Sample Protocol Recording

Including the header, the protocol record file is 456 lines in length.

+-- --------------------------+
I Prose [[Session Recording (v2.09) Hon Feb 13 22:52:46 1989 I
I File C: RCD3BG6.TMP I

4 +------------------ -------------------
5 I Stut Stop Time Oper~tor PJrameters

6 lmin:sec min:sec sec
7 +--- ---------+
8 52:1!6.04 52: 113.85 2.81 P.~USE
9 52:48.85 52:49.62

10 52:49.52 52:50.85
11 52:50.05 52:52.58
12 52:52.58 5}:135.71
l3
14
15
16
17
18
19
20
21
22
Z3
24
25
26
27
28
29
JO
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

" 50
51
52
53
54
55
56
57
58
59
60 53:85.71 53:12.41
61 53:12.41 53:2a.7e
62 53:2\L70 53:20.76
63 53:28.76 53:21.89
64 53:21.09 53:21.14
65 53:21.14 53:24.05
66 53:24.95 53:25.78
67 53:25.76 53:47.67
68 53:q7.67 53:47.12
69

6.77 LeaveProsell
8.43 PAUSE
2.53 PAUSE

13.13 0!)enHorkspace
+ Crea teNode
+ Crcatetlode
+ Linkllodes
+ Createtlode
+ Link/lodes
+ Crea tetlode
+ linkUodes
+ Create/lode
+ L i nkliodes
+ Crea tell ode
+ l i nkllodes
+ Createtlode
+ L inkUodes
+ Createflode
+ L i nktlodes
+ Createtlode
+ L inkflodes
+ CreateNode
+ l i nkNodes
+ Createtlode
+ l i nkNodes
+ Createtlode
+ l i nkNodes
+ Create/lode
+ l i nktlodes
+ Create/lode
+ l i nkflodes
+ Createtlode
+ l i nkNodes
+ CreateNode
+ l i nkNodes
+ CreateNode
+ linldlodes
+ CreateNode
+ l i nkNodes
+ Createtlode
+ linkNodes
+ CreateNode
+ l i nktlodes
+ CreateNode
+ linkNodes
+ CreateHode
+ li nkNodes
+ CreateNode
+ l i nktlodes
+ Createtlode
+ l i nkllodes

6. 79 PAUSE
8.29 P!\USE
9.66 HapMove
8. 33 P.4USE
9.85 HapWindow
2. 91 PAUSE
1.65 MapWindowZoom

21.37 PAUSE
a. as flewWorkspace

+ De 1 eteNode

10(0)

Fi le('QUEUHIGR.PR2') Format(' PR2')
10(1)
10(2)
Parent!D(l) Child!D(2)
10(3)
Pareflt!D(2) Child!D(J)
10 (4)
Parentl0(2) Childl0(4)
10(5)
Parent!0{2) Child!O{S)
I 0(6)
Parentl0(2) Childi0(6)
10(7)
Parent!D(2) Child10(7)
10(8)
Parent!D(2) Childl0(8)
10(9)
Parent!O(i) Childl0(9)
10(18)
Parent!D(2) Child!D(l9)
10(11)
Parentl0(2} Child!O(ll)
10(12)
Parentl0(2) Child!D(12)
ID(13)
Parentl0(2) Childl0(13)
10(14)
Parent!D(2) Childl0(14)
10(15)
Parent!0(2) Chi 1 d!O(lS)
10(16)
Parentl0(2) ChildiO(l6)
10(17)
Parent!O(l) ChildiD(17)
10{18)
P.;rent!O(l) Child!O(l8)
10(19)
ParentJO(l) Child!O(l9)
10(20)
Parent!0(19) Child10(24)
l0(25)
ParentJO(l9) Childl0(28)
10(26)
Parent!0(19) Chi 1 d!D(21)
I0(27)
Parent!O(l9) Child!D(22)
10(28)
Parentl0{19) Child!D(23)

StartRect(El, a, SSG, -216) EndRect(la, 36, 218, 136)

OPEH

StartRect(El, a, SSEI, -216) EndRect(-49, 494, 768, -488)

I 0(1)

l70

70 + De 1 eteHode ID(2)

71 + DeleteUode ID(3)

"
+ Oeleteflode 10(4)

7J + Deletellode 10(5)

74 + De 1 etetlode 10(6)

75 + De 1 etetlode 10(7)

76 + Oe 1 eterlode 10(8)

77 + De 1 etellode 10(9)

78 + Delete/lode l O(l&)

79 + Deleteflode 10{11)

80 + Deletellode 10(12)

81 + De 1 etetlode 10(13)

82 + Oeletellode 10(14)

83 + DeleteUode 10(15)

84 + Del etetlode 11)(16)

85 + Breakl ink Parent!D{2) Chi ld!D(l6)

86 + Breakli nk Parentl0(2) ChildiD(lS)

87 + Breakl ink Parentl0(2) Chi ldiD(l4)

88 _+ Breakl ink Parent10(2) Chi ldiO(l3)

89 + Breakl ink Parent 10(2) ChildJO(l2)

90 + Breakl ink Parent!0(2) ChildiO(ll)

91 + Breakli nk Parentl0{2) ChildiO(l6)

92 + Breakli nk Parent10(2) Child10(9)

93 + Breakli nk Parentl0(2) Childl0(8)

94 + Breakli nk Parentl0(2) Child10{7)

95 + Breakl ink Parentl0(2) Chi ldl0(6)

96 + Breakl ink Parentl0(2) Chi ld10(5)

97 + Breakl ink Parent!D(2) ChildtD(4)

98 + Breakl ink ParentlD(2) ChildlD(J)

99 + De 1 ete!'lode 10(17)

100 + Oeleterlode !0(18)

101 + Deletel'lode 10(19)

102 + DeleteNode 10(24)

103 + DeleteNode ID(28)

104 + Deleterlode 10(21)

105 + De 1 etetlode ID(22)

106 + Del eteNode 10(23)

107 + Breakli nk Parenti0(19) Childi0(23)

108 + Breakli nk ParentiD(l9) Childi0(22)

109 + Breaklink Parentl0(19) Childl0{21)

llO + Breakli nk Parentl0(19) Child!D(29)

lll + BreakLink ParentiD(19) Childl0(24)

112 + BreakLink Parent!O(l) Child!D{19)

llJ + Breakl ink ParentfO(l} Child!D(IS)

ll4 + Breakl ink ParentJD(l) Chi ld!D(l7}

115 + BreakLink ParentiO(l) Chi ldiD(2)

116 + Ma i nWi ndowReset

117 53:47.12 54:97.33 29.21 PAUSE

ll8 54:67.33· 54:97.44 9.11 CreateNode IO(l) StartPt(293, -29)

ll9 54:97.44 54:13.43 5.99 Edi tlabe 1 ID(l) HewText('xxxxx xxxxxxx~}

120 54:13.43 54:19.29 5.77 PAUSE

121 54:19.29 54:19.36 9.16 CreateNode ID(2) StartPt(99, -84)

122 54:19.36 54:26.78 7~42 Edi tlahe 1 !0(2) NewText('xxxxxxxxxxxxxx xxxxxxxxx~)

123 54:26.78 54:29.25 2.47 PAUSE

124 54:29.25 54:29.36 e. i.I CreateHode 10(3) StartPt(257, -88)

125 54:29.36 54:46.83 17.47 Edi tlahe 1 10(3) NewT ext(~xxxxxxx xxxxxxxxxxx xxxxxxxxx~)

126 54:46.83 54:49.92 2.19 PAUSE

127 54:49.82 54:49.13 9.11 Createllode 10(4) StartPt(396, -81)

128 54:49.13 54:59.92 9.89 Editlabel 10(4) NewT ext(' xxxxxxx xxxxxxxxxxxx xxxxxxxxx~)

129 54:59.82 55:18.92 19.99 PAUSE
130 55:18.92 55:18.79 9.77 Link Nodes Parent!D(l) Childl0(2}

lll 55:18.79 55:19.67 9.88 PAUSE

132 55:19.67 55:29.22 9.55 l i nkModes Parenti DO) ChildiO(J)

lJl 55:28.22 55:29.93 8.71 PAUSE
134 55:28.93 55:21.65 9.72 li nkHodes ParentiD(l) Childi0{4)

135 55:21.65 55:24.29 2.64 PAUSE

136 55:24.29 55:24.34- 8.95 Ti dyWorkspace

137 55:24.34 55:28.46 4.96 PAUSE

138 55:28.49 55:28.57 6.17 Crea teNode 10(5) StartPt(24, -179)

139 55:28.57 55:34.66 5.49 Editlahel 10(5) Newt ext(' x _ xxxx')

140 55:34.86 55:36.59 2. 53 P~USE

141 55:36.59 55:42.47 5.88 PAUSE

142 55:42.47 55:42.63 6.16 CreateNode 10(6) StartPt(152, -176)

143 55:42.63 55:51.86 9.23 Editlabel 10(6) MewText('x_xxxx_xxx'}

144 55:51.86 55:53.18 1.32 PAUSE

!7!

145 55:53.18 55:53.78 8.69 L i nkllodes Parent10(2) Child!D(S}

146 55:53.78 55:54.69 8.82 PAUSE

147 55:54.68 55:55.37 a. 77 Linl:.t!odes Parentl0(2) Child!D(6)

148 55:55.37 55:56.75 1.38 PAUSE

149 55:56.75 55:56.86 e.ll Createtlode !0(7) StartPt(279; ~181)

150 55:56.86 56:86.38 9.44 Edi tldbe 1 l 0(7) --cancelled--

151 56:86.38 56:16.15 3.85 PAUSE

152 56:18.15 56:18.28 e.as De 1 etetlode !0(7)

153 56:HI.28 56:12.29 2.89 PAUSE
154 56:12.29 56:12.48 8.11 Create/lode !0(8) StartPt(279, -18!1)

155 56:12.46 56:23.88 10.60 EditLabel I 0(8) l!e~1f ext{' X_ XXX')

15& 56:23.86 56:24.54 1-54 PAUSE
157 56:24.54 56:24.65 e.n Createt!ode !0(9) StartPt(399, -175)

158 56:24.65 56:32.72 s.e? Edi tLabel !0(9) lle1·1T ext ('x_ xxxxxx')

159 56:32.72 56:38.71 s. 99 PAUSE
160 56:38.71 56:39.42 8.71 li nk~odes Parent1D(3) Chi1d!D(8)

161 56:39.42 56:4€1.14 e. 12 PAUSE

162 56:48.14 56:4EI.69 e. ss L i nldJodes Parent!D(3) Chi1d!D(9)

163 56:48.69 56:43.16 2.47 PAUSE

164 56:43.16 56:43.21 e.es Ti dyWorkspace

165 56:43.21 56:49.64 5.83 PAUSE

166 56:49.94 56:49.e9 e.e5 Createllode !0(18) StartPt(557, ~187)

167 56:49.89 57:11.72 22.63 EditLabe1 IO(le) HewText(~x_xxxx')

168 57:11.72 57:13.64 1. 92 PAUSE

169 57:13.64 57:14.58 9.94 Li nkNodes Parent10(3) Child!O(le)

170 57:14.58 57:17.66 3.02 PAUSE

171 57:17.68 57:17.65 e.a5 Ti dyworkspace

172 57:17.65 57:21.66 3.41 PAUSE

173 57:21.06 57:21.11 8.e5 MapWi ndow OPEN

174 57:21.11 57:23.31 2.28 PAUSE
175 57:23.31 57:24.13 a.82 MapWi ndowZoom StartRect(B, 6, 668, ~258) EndRect(148, -9, 692, -238)

176 57:24.13 57:34.84 19.71 PAUSE

177 57:34.84 57:36.11 1. 27 MapWindowZoom StartRect(148, -47, 692, -276) EndRect (-92, 64, 876, -311)

178 57:36.11 57:41.66 5.49 PAUSE

179 57:41.66 57:41.65 8.85 CreateNode 10(11) StartPt(717, -182)

180 57:41.65 57:47.59 5.94 Edi tlabel ID(ll) NewText(~x_xxxx_xxx')

181 57:47.59 57:49.46 1.81 PAUSE
182 57:49.48 57:58.28 8.88 LinkNodes Parenti0(3) ChildiO(ll}

183 57:56.28 57:51.87 1.59 PAUSE

184 57:51.87 57:51.98 8.11 Createtfode !0(12) StartPt(839, -177)

185 57:51.98 58:85.11 13.13 Edi tLabe 1 ID(l2) NewText('x_xxxx')

186 58:65.11 58:86.59 1.48 PAUSE
187 58:e6.59 58:67.52 9.93 li nkNodes Parent1D(3) Chlldl0(12)

188 58:87.52 58:18.54 3.92 PAUSE

189 58:16.54 58:19.66 8.86 Ti dyWorkspace

190 58:10.68 58:13.73 3.13 PAUSE

191 58:13.73 58:15.85 1.32 MapWindowZoom StartRect(-92, 64, 876, -311) EndRect(5, 128, 1196, -311)

192 58:15.65 58:18.67 3.€12 PAUSE

193 58:18.67 58:18.12 6.65 CreateNode 10(13) StartPt(926, -173)

194 58:18.12 58:25.95 6.93 Edi tLabel !0(!3) NewText(~x_xxxxxxxx')

195 58:25.65 58:26.53 1.48 PAUSE

196 58:26.53 58:26.64 6.11 Create Node !0(14) StartPt(l663, -186)

197 58:26.64 58:43.45 Ui.81 Edi tLabe 1 !0(14) NewText(~x_xxxxx')

198 58:43.45 58:45.42 1. 97 PAUSE

199 58:45.42 58:46.52 1.18 li nkNodes Parent10{4) Child1D(14)

200 58:46.52 53:47.51 6.99 PAUSE

201 58:47.51 58:48.28 6.77 li nkNodes ParentiD(3} Childl0{13}

202 58:48.28 58:51.35 3.67 PAUSE

203 58:51.35 58:51.41 9.96 Ti dyWorkspace

204 58:51.41 58:54.81 3.46 PAUSE

205 58:54.81 58:54.92 8.11 CreateHBde l 0(15) StartPt(lB16, -182)

206 58:54.92 58:58.49 3.57 Edi tlabe 1 !0(15) NewText('x_xxxx')

207 58:58.49 59:66.26 1. 71 PAUSE

208 59:69.26 59:96.31 6.11 Createffode !0(!6) StartPt(ll22, -178)

209 59:66.31 59:63.88 3.57 Edi tLabel !0(!6) NewText('x_xxxx')

210 59:63.88 59:65.36 1.48 PAUSE

211 59:65.36 59:86.62 9.66 LinkNodes Parent!D(4) Chi ldiD(l5)

212 59:66.82 59:66_99 6.88 PAUSE
213 59:86.96 59:97.89 6.99 Linktfodes Parenti0{4) Chlldl0(16)

214 59:67.89 59: 19.68 2.19 PAUSE

215 59:16.68 59:19.14 6.66 Tidyworkspace

216 59:19.14 59:18-65 8.51 PAUSE

217 59:18.65 59 18.82 9.17 Createtfode !0(!7) StartPt(l223, -186)

218 59:18.82 59 22.44 3.62 Edi tlabe 1 l 0(17) NewText('x_xxxx')

219 59:22.44 59 24.42 1. 98 PAUSE

172

220 59:24.42 59:24.53 e.u Createllude 10(18) StartPt(l364, -18G)

221 59:24.53 59:52.93 28.48 Editlabel 10(18) UewText(~xxxxx xxxxxxxxxxx xxxxxxxxx')

"' 59:52.93 S9:55.ee 3.87 PAUSE

m 59:56.06 59:56.94 0.94 MapWi ndowZoo• Sta rtRect (380, 128, 1491, -311) EndRect(-39, 46, 1665, -302)

224 59:56.94 139:04.62 7.08 PAUSE

2Z5 00:84.02 00:05.45 1.43 l i nH!odes Parent!D(l) Child!D(lS)

226 013:05.45 00:08.83 2.58 PAU-SE

227 00:88.03 80:08.69 9.06 Ti dyWorkspace
228 00:68.89 00:11.88 3.79 PAUSE
229 00:11.88 oe: 12.s1 8.93 L i nkttodes Parent!D(4) Childl0(17)

2l0 00:12.81 00:14.79 1. 98 PAUSE
231 00:14.79 00:14.84 0.05 Ti dy!~orkspace

232 08:14.84 tl0:20.94 6.10 PAUSE

2Jl 00:20.94 80:21.65 0.11 Createtlode 10(19) StartPt(l329, -187)

234 00:21.05 00:36.71 9.66 Edi tlahel 10(19) NewT ext (' x _ xxxxx')

235 00:38.71 00:32.31 1.66 PAUSE
ZJ6 66:32.31 66:32.112 6.11 CreateHade 10(26) StartPt (1467, -183)

237 06:32.42 60:37.58 5.16 Edi tla~el 10(20) NewText (' x _ xxxx')

238 06:37.58 60:46.44 2.86 PAUSE
239 00:40.44 00:41.15 0.71 LinkHodes Parentl0{18) Child!D(l9)

240 00:41.15 00:42.03 8.88 PAUSE
241 00:42.63 60:43.07 1.04 l i nkNodes ParentiD(18) Child10(26)

242 60:43.67 136:45.76 2.69 PAUSE
243 00:45.76 60:45.82 6.06 Ti dyWorkspace
244 60:45.82 01:01.64 15.82 PAUSE
245 01:01.64 01:02.96 1.26 Maf)WlndawZoo• StartRect(79, 46, 1723, -382) (ildRect(597, -55, 1677, -329}

246 61:02.90 61:33.06 30.16 PAUSE
247 01:33.06 61:33.16 8.10 CreateNode 10(21) StartPt(l422, -179)

248 fH:33.16 61:35.86 2.70 Edii:Lahel ID{21) !lewText('x_xxxx')

249 61:35.86 61:37.23 1.37 PAUSE
250 01:37.23 01:37.89 0.66 Li nkNodes Parent!O(l8) Child!D(21)

251 01:37.89 02:01.51 23.62 PAUSE
252 02:61.51 02:01.62 0.11 CreateNode 10(22) StartPt{1033, -137)

253 02:01.62 02:06.28 4.66 Edi tlabe 1 10{22) NewText('x_xxxx_xxx')

254 62:06.28 02:07.66 1.38 PAUSE
255 62:87.66 62:68.37 e. 71 L i nkNodes Parent!0(4) Child!0{22)

256 82:08.37 62:11.17 2.88 PAUSE
257 82: 11.17 62: 11.23 8.06 Tl dyWorlc.space
258 82:11.23 82:14.69 3.46 PAUSE
259 62:14.69 82:14.88 8.11 CreateNode 10(23) StartPt(1877, -145)

260 02:14.80 62:18.81 4.81 Edi tlahel 10(23) NewText('x_xxxx_xxx')

261 02:18.81 G2:26.18 1.37 PAUSE
262 62:20.18 G2:20.95 0.77 l inkNodes Parentf0(4) Childl0(23)

263 02:28.95 G2:23.97 3.02 PAUSE
264 G2:23.97 02:24.63 0.06 Ti dyWorkspace
265 02:24.83 92:32.76 8.73 PAUSE
266 02:32.76 92:33.31 6.55 HapWindowZoo• StartRect(420, -55, 1590, -320) EndRect(773, 128, 1887, -247)

267 62:33.31 92:37.37 4.06 PAUSE
268 02:37.37 62:37.43 9.66 CreateHode 10(24) StartPt(1724, -97)

269 92:37.43 (}2:44.29 6.86 Editlabel 10(24) NewText('xxxxx xxxxxxxxxxxxx xxxxxxxxx')

270 82:44.29 02:48.68 3.79 PAUSE
271 02:48.68 62:48.96 6.88 MapWi ndowZoo• StartRect(773, 128, 1887, -247) EndRect(-18, 119, 1967. -347)

272 02:48.96 92:51.82 ~.86 PAUSE
273 02:51.82 62:53.19 1.37 l inkNodes Parentl0(1) ChildlD(24)

274 62:53.19 92:56.98 3.79 PAUSE
275 62:56.98 82:57.64 0.06 Ti dyWorkspace
276 02:57.84 63:01.59 4.55 PAUSE
277 03:81.59 03:61.65 8.86 CreateNode 10(25) StartPt(1657, -179)

278 83:81.65 63:86.79 s.as Editlabel ID(25) NewText('x_xxxx')

279 83:06.70 93:87.97 1.27 PAUSE
280 83:87.97 63:88.68 e. 71 li nkNodes Parentl0(24) Child10(2S)

281 83:08.68 03:89.34 0.66 PAUSE
282 83:89.34 63:89.45 8.11 CreateNode 10(26) Sta rtPt (1817, -181}

283 83:09.45 03:16.53 7.88 Edltla.bel 10(26) NewText('x_xxxxx')

284 63:16.53 83:18.46 1.93 PAUSE
265 93:18.46 83:18.62 8.16 CreateNode 10(27) StartPt(1885, -!18)

266 93:18.62 83:26.31 7.69 Edi tlahel 10(27) NewT ext(' x _ xxxxxx')

287 03:26.31 83:27.63 1.32 PAUSE
288 03:27.63 63:28.56 0.93 li nkNodes Parentl0(24) Childl0{26)_

269 03:28.56 93:29.55 9.99 PAUSE
290 03:29.55 83:30.54 0.99 li nkHodes Parent!D(24) Chi 1 d !0(27)

291 83:38.54 03:33.95 3.41 PAUSE
292 03:33.SS 93:34.98 8.85 Ti dyWork.space
293 03:34.88 03:48.98 6.98 PAUSE
294 03:48.98 93:41.97 8.99 HapWi ndowZoo• StartRect(-18, 119, 1967, -347) EndRect(-1423, -46, 1932, -265)

173

295 (}3:41.97 04:27.94
296 134:27.94 8'1:28.98
297 64:28.98 64:33.43
298 94:33.43 84:34.89
299 94:34.89 €14:45.73
300 04:45.73 04:46.56
301 94:46.56 95:84.63
302 85:84.63 05:84.63
303 85:84.68 85:66.11
304 05:86.11 05:86.77
305 05:66.77 85:11.82
306 05:11.82 05:11.93
307 95:11.93 85:12.76
308 05:12.79 05:12.76
309 05:12.76 05:18.47
310 as: 18.47 as: 18.52
311 95:13.52 65:21.65
Jl2 05:21.65 05:22.81
JlJ 05:22.81 05:26.65
314 85:26.65 65:27.26
315 65:27.26 65:36.96
316 65:36.96 85:39.11
317 95:39.11 66:64.66
318 96:94.66 66:13.23
319 86:13.23 96:24.43
320 06:~.43 66:27.13
321 86:27.13 66:39.21
322 66:39.21 96:39.32
323 66:39.32 66:44.32
JZ4 B6:44.32 66:44.37
325 B6:44.37 86:56.84
326 66:56.84 96:59.26
327 66:59.26 67:61.89
328 97:61.89 67:96.45
329 97:66.45 &7:11.56
330 97:11.56 97:11.62
331 97:11.62 98:19.12
332 68:19.12 08:19.83
333 88:19.83 68:24.56
334 (}8:24.56 68:28.18
335 68:28.18 68:32.96
336 68:32.96 16:32.92
337 16:32.92 16:33.85
338 16:33.85 16:37.92
339 16:37.92 16:46.61
348 16:46.61 10:45.28
341 19:45.28 19:45.33
342 18:45.33 11:47.91
343 11:47.61 11:47.89
344 11:47.89 12:63.69
345 12:93.96 12:97.44
346 12:97.44 12:12.28
347 12:12.28 12:12.33
348 12:12.33 12:46.29
349 12:48.29 12:41.88
358 12:41.68 12:45.51
351 12:45.51 12:49.57
352 12:49.57 12:54.41
353 12:54.41 13:47.96
354 13:47.96 13:48.73
355 13:48.73 13:54.22
356 U:~.n U:57.57
357 13:57.57 14:62.13
358 14~92.13 15:26.16
359 15:26.16 15:26.88
368 15:26.88 15:35.12
361 15:35.12 15:48.12
36Z 15:49.12 15:45.33
363 15:45.33 16:19.86
364 16:19.88 16:19.72
365 16:19.72 16:24.22
366 16:24.22 16:27.96
367 16:27.96 16:33.23
368 16:33.n 17:29.31
369 17:29.31 17:38.62

45.97 PAUSE
1.64 MapWindowZoom
4.45 PAUSE
1. 37 MapWi ndowZ0011

18.93 PAUSE
0.83 HapwindowZoora

18.87 PAUSE
9.85 Breaklink
1.43 PAUSE
0.66 Breaklink
5. 05 P;l.USE
9.11 SetOeleteMode
8. 77 PAUSE
0.86 OeleteNode
5. 71 PAUSE
9.65 SetOeleteMode
3.13 PAUSE
1. 16 MapWi ndowZoo•
3.84 PAUSE
8.61 Linkllodes
2.86 PAUSE
0.05 TidyWorkspace

34.55 PAUSE
8.57 SdveWorkspace

11.28 PAUSE
2. 70 r·1dpWi ndowZao•

12.08 PAUSE
0.11 Createllode
5.68 PAUSE
a.es Oeletellode

12.47 PAUSE
2.42 MainWindowZoo•
2.63 PAUSE
4.56 PAUSE
5.11 PAUSE
6.86 PAUSE

67.58 LeaveProseii
8.71 EditNode
4.73 PAUSE
3.62 P.A.USE
4.78 PAUSE

119.96 LeaveProseii
9.93 EditNode
4.67 PAUSE
2.69 PAUSE
4.67 PAUSE
9.65 PAUSE

61.68 LeaveProseii
8.88 Edi t1iode

15.11 PAUSE
4.44 PAUSE
4.84 PAUSE
8..95 PAUSE

27.96 leaveProsei I
8.71 EditNode
4.51 PAUSE
4.96 PAUSE
4.84 PAUSE

53.49 leaveProseii
8.83 EditNode
5.49 PAUSE
3.35 PAUSE
4.56 PAUSE

84.93 leaveProseii
a. 72 Edi t11ode
8.24 PAUSE
5.68 PAUSE
5.21 PAUSE

33.67 leaveProseil
a. 72 Edi tNode
4.56 PAUSE
3.74 PAUSE
5.27 PAUSE

56.88 leaveProseii
a. 71 Edi tHode

StartRect{~l423, -46, 1932, -265) EndRect{-1314, -46, 244, -311)

StartRect(-1314, -46, 244, -311) EndRect{-1379, 275, 281, -311)

StartRect{-1379, 275, 201, -311) EndRect(-18l1, -27, 389, -256)

Parent10(3) Child!D(l8)

ParentlD{3) ChildfD(ll)

Ofl

ID(ll)

OFF

StartRect(-1611, -27, 389, -256) EndRect(-860, 8, 1131, -293)

Parent10{4) Childl0(18)

File('QMGR') Format(' .PR2')

StartRect(-868, 6, 1131, -293) EndRect(-1318, 211, -87, -366)

10(28) StartPt(-le63, -321)

10(28)

StartRect(-1318, 211, -87, -366) EndRect{-1146. -18, -779, -259}

ID(9)
I D(5) E.di tor(' c: \windows\ pi f\ t. pi f') Fi 1 e (' QMGR865. SCR')

ID(9)
IO(6) Editor(' c: \windows\ pi f\ t. pi f') File (' QMGR896. SCR')

10(9)
I 0(5) Editor(' c: \windows\ pi f\ t. pi f') fi 1 e {' OMGR885. SCR')

!0(9}
I 0{8) Ed 'r tor(' c~ \windows\ p'r f\ t. p'r f') F"il e(' QMGR688. SCR')

ID(e)
I 0{9) E.di tor('c: \windows \pi f\ t, pi f') Fi 1 e (' QMGR899. SCR')

IO(e)
I 0(12) Editor(' c: \windows\ pi f\ t, pi f') Fi 1 e (' QMGR99C. SCR')

10(9)
I 0{13) Edi tor('c: \windows\ pi f\ t. pi f') Fi 1 e (' QHGR990. SCR')

10(9)
I 0(18) Edi tor('c: \windows\ pi f\ t. pi f') Fi 1 e (' QMGR89A. SCR')

174

370 17:38.£12 17:34.64 4. 62 PAUSE

371 17:34.64 17:39.47 4.83 PA.USE

372 17:39.47 17:44.47 s.aa PAUSE

373 17:44.47 18:12.59 28.12 LeaveProseJI 10(0)

374 18:12.59 18:13.63 1.£14 Edl ttl ode 10(14) Edi tor(' c: \ \1i ndows \ ~i f\ t. J) i f') Fi 1 e (' QMGRB0E. SCR')

375 18:13.63 18:22.42 8.79 PAUSE

376 18:22.42 18:23.9£1 6.48 PAUSE

m 18:28.98 18:34.23 5.33 P.-'.USE

378 18:34.23 19:29.16 54.93 LeaveProsell 10(0)

"' 19:29.15 19:29.92 €1.76 Edi tUode ro(lsJ Editor(' c: \v1i ndm~s\pi f\ t.pi f') Fi J e(' QHGRB£iF. SCR')

380 19:29.92 19:36.13 6.21 PAUSE

381 19:36.13 19:39.92 3. 79 Save!•lorkspace Fi 1 e (' Q~1GR. PR2') Format (' , PR2')

38Z 19:39.92 19:42.34 2.42 PAUSE

383 19:42.34 19:43.22 6.88 PAUSE

384 19:43.22 19:46.73 3. 51 PAUSE
385 19:46.73 19:51.78 s.as PAUSE

386 19:51.78 29:14.96 23.18 LeavePrase II 10(6)

387 20:14.96 28:16.17 1.21 Edi triode 10(16) Ed i tor (' c: \ 1·1i ndows \pi f\ t. pi f') File (' Q~1GR610. SCR')

388 29:16.17 28:23.99 6.92 Pi\USE

389 20:23.09 29:26.11 3.02 PAUSE

390 29:26.11 26:31.22 5.11 PAUSE

391 26:31.22 21:22.14 5(1.92 LeaveProse I I 10(0)

J9Z 21:22.14 21:23.92 8.88 Edi t~ode 10(17) Ed i tor(' c: \·~1i ndows \pi f\ t. pi f') fi 1 e (' QMGR811. SCR')

393 21:23.82 21:27.74 4.72 PAUSE

394 21:27.74 21:39.49 2. 75 PAUSE

395 21:30.49 21:35.81 5.32 PAUSE

396 21:35.81 22:16.24 46.43 Leave Prose II 10(0)

397 22:16.24 22:17.61 9.77 Edi tllode 10{22) Edi tor(' c: \ ~~i nd llWS\ pi f\ t. pi P) fi 1 e(' QMGR616, SCR')

398 22:17.81 22:22.66 5.65 PAUSE

399 22:22.06 22:25.52 3.46 PAUSE

400 22:25.52 22:39.85 5.33 PAUSE

401 22:38.85 23:32.69 61.84 LeaveProse I I 10(0)

40Z 23:32.69 23:33.52 6.83 Edi til ode 10(23) Ed i tor (' c: \wi ndows\pi f\ t .pi f') Fi 1 e{' QMGR617, SCR')

403 23:33.52 23:38.35 4.83 PAUSE

404 23:38.35 23:56.22 11.87 P.A.USE

405 23:59.22 23:55.43 5.21 PAUSE

406 23:55.43 24:41.99 46.47 Leave Prose I I 10(8)

407 24:41.96 24:42.62 9.72 Edi tHode ID{l9) Editor{' c: \wi ndows\pi f\ ~.pi f') fi 1 e (' QMGRfH3. SCR')

408 24:42.62 24:46.62 4.96 PAUSE

409 24:46.62 24:49.65 3.63 PAUSE

410 24:49.65 24:54.64 4.99 PAUSE

411 24:54.64 24:54.79 9.96 PAUSE

4lZ 24:54.76 26:85.17 76.47 LeaveProseiJ 10(8)

413 26:B5.17 26:B6.32 1.15 Edi ttlode 10(20) Edi tor('c: \windows\ pi f\ t. pi f') fi 1 e (' QMGR914. SCR')

414 26:66.32 26:12.88 6.48 PAUSE

415 26:12.88 26:16.18 3.39 PAUSE

416 26:16:1a 26:21.59 5.49 PAUSE
417 25:21.59 27:45.35 83.76 LeaveProse I I 10(9)

418 27:45.35 27:46.67 6.72 Edi tHode 10(21) Edi tor{' c: \wi ndows\pi f\ t .pi f'} fi 1 e{' QMGRe IS. SCR')

419 27:46.67 27: sa. 79 4. 72 PAUSE ., 27:58.79 27:53.43 Z.64 PAUSE

4Z1 27:53.43 27:58.64 5.21 PAUSE

4ZZ 27:58.64 28:26.82 28.18 Leave Prose H 10(9)

4ZJ 28:26.82 28:27.75 6.93 Edi tHode IO(ZS) Edi tor{' c: \wi ndows\pi f\ t. pi f'} fi 1 e(' QMGR819. SCR')

4Z4 28:27.75 28:32.26 4.45 PAUSE

4Z5 28:32.29 28:35.66 3.46 PAUSE

4Z6 28:35.66 28:49.77 5.11 PAUSE

4Z7 28:46.77 29:19.33 38.56 LeaveProse I I 10(0)

4Z8 29:19.33 29:26.26 6.93 Edi tHode 10(26) Edi tor{ 'c: \windows \pi f\ t. pi f') fi 1 e (' QMGREIIA. SCR')

4Z9 29:29.26 29:24 .sa 3.74 PAUSE

438 29:24.BB 29:26.74 2.74 PAUSE
431 29:26.74 29:32.62 5.28 PAUSE

4JZ 29:32.62 29:32.97 6.65 PAUSE

433 29:32.97 29:32.13 9.1l6 PAUSE

434 29:32.13 36:27.16 55.83 LeaveProse II 10(8)

435 3(1:27 .16 38:27.99 9.83 Edi tllode IO(Zl) Ed i tor(' c: \ wi ndows\pi f\ t.pif') Fi 1 e(' QHGR01B. SCR')

436 36:27.99 39:33.42 5.43 PAUSE

437 39:33.42 36:33.48 a.96 HapHove Sta rtRect (-1318, 211, -87, -366) EndRect{418, 48, 618, 140)

438 38:33.48 36:33.81 6.33 PAUSE

439 39:33.81 36:33.86 a.as HapWi ndow OPEt4

440 39:33.86 39:36.12 2.26 PAUSE

441 39:36.12 36:38.26 2.14 MapWindowZoom Sta rtRec t (1482, -19, 1849, -259) EndRect{-1276, 183, 1832, -329)

44Z 36:38.26 36:44.68 5.82 PAUSE

443 38:44.08. 36:45.34 1.26 HapWi ndowZoom StartRect (-1276, 183, 1832, -329) EndRect(-1276, -116, 1936, -256)

444 38:45.34 36:49.38 3.96 PAUSE

175

a45 38:49.313 38:58.12 6.82 Map~lindowZoom Sta rtRec t (-1275, -118, 1936, -256) EndRect(-656, 19, -171' -293)

'" 38:58.12 3€!:57.98 7.86 PAUSE

"' 30:57.98 31:02.18 4. 12 SaveWorkspace Fi 1 e ('Qf1GIL PR2') Format('.PR2')

'48 31:82.18 31:88.74 6.64 PAUSE
449 31:88.74 31:08.88 8.06 Outl i ne~!i ndm·tHove Sta otRec t (-1276, -118, 1936, -256) EndRect(le, 36, 245, 236)

450 31:88.88 31:89.24 e .44 PAUSE
451 31:09.24 31:09.29 e.as Out 1 i ne~~i ndm'l OPEti

"' 31:09.29 31:28.88 11.59 PAUSE
4SJ 31:29.88 31:37.89 16.92 Sa.ve\1orkspace File('QMGR') Format(' .SCR')
454 Jr :37 .sa 31:41.92 4.12 P.~USE

m 31:41.92 31:59.11 17. 19 Save\>!orkspace File{'Q11GR') Format('.PR2')
456 31:59.11 32:02.79 3. 68 PAUSE

176

B.2 Output from Pass 0
Pass 0 does not generate the header, so the output from Pass 0 is 449 lines in length.

8 0257. 0316604, 8316885, 0006281, 0001, eeeeaaaaaaaaee
9 0275, 0316885, 8316962, 0080077, 0081, aaaaaaaaaaeeaa

10 8257. 9316962, 0317005, 8000043. 8001, fji3088BBB868888

11 0257. 0317005, 0317258, 0000253, 0081, aaae a a a a a a a a a a
12 0236, 8317258, 8318571, 00iH313, 00!:11, oeaaeeaaaaaaea
13 0264, -00080Gl, -0000001' -0800001, 0001, aeaataaaeaaaaa
14 0264, -8000001; -8008001. -0000fl01, 8081, 88082088890880

15 0274, -8008001, -0000001, -0€100081, 0001, eaeatzeeaaaaea
16 8264, -0000001, -eaaeoat, -0008081, 0081, aaaa 3 a a a a a a a a a
17 0274, -0008801. -00808€11, -0800081, 00tll, 80862388880898

18 8264, -0tH:itl881, -0008001, -0000081, 0001, aeaa4aaaaa8888

19 0274, -0000001, -0000001, -00000131, 0001, 89862466866688

20 0264, -13808661, -80608131, -00000131, 0001, B08B5888B606BB

21 0274, -80006iH, -0000001, -00(:)0001, 8081, eo68258B6ee86B

22 0264, -e8eee81, -08813681, -61300661, Eli3Bl, 136866686666866

23 G274, -660f!B61, -0000001, -0000001, 0081, 0066268888a686

24 0264, -01368881, -0000801, -8060061, 0081, 8886 7 a 8 8 8 6 e a a a

25 8274, -6006801, -01308081, -0688881, 0081, 8aBB27Ba688688

26 0264, -eeeoee1. -0060801. -0008681, 0001. el3eea88aa666BB

27 0274, -eaa8ae1. -13000801, -0000001, B08l, 8BBB2aeeaaeaa8

28 6264, -0B080a1, -0008801, -0000081, (:1001, ee8e9ee6aeeeae

29 0274, -8666061, -0008001, -0000061, 0001, 96662966698666

30 0264, -6668661. -0900061, -0B6GBe1, 06e1, eeee 1a a e a e e 6 a a a

l1 8274, -90G80al, -9006061, -0080601, 0801, 813662166ae9a9ea

32 0264, -6688861, -6608661, -0808991, 8001, 9aae 11 a a a a a 9 a a e

33 0274, -eeae061, -6006061, -6060061, 13661, B08azue6eaa8ee

34 6264, -6000661, -8eG6661, -06613081, 0861, 806812a8896BBa6

35 6274, -6e0eaa1. -0000601, -8oeee91, 8661, 898a212899aaeee

J6 6264, -eeeeee1, -eeeeea1, -0080001, 0661, eeaeu6eeeeeeee

37 6274, -8eee661, -6066661, -0880661, 8001, eeaa_z 13 e a e 8 a 8 a a

38 8264, -6668081, -6608861, -0666881, 6661, e6aa 14 8 e a e a 8 a a a

39 e274, -eeea9e1, -06060EH, -0eee0a1, 0881, eeee 2 14 8 a a a a 6 a 8

40 6264, -e6eGI381, -8600601, -eeeee61, 0661, 9a86158Ba886aaa

41 0274, -6866ae1, -eeeeea1, -13000601, 0661, eaaa 2 1s e a a 8 8 8 a a

42 6264, -9ea6eB1, -8aaee61, -ae0B661, 8661, 8eea 16 a 8 a a· a a a a a

4J 0274, -aa9a0e1, -a0eaee1, -0006Ga1, aea1, B866216aS8Be8a8

44 8264, -eae8ee1, -0808001, -eeae6a1, 6861, 666617a8696a9a6

45 0274, -60G08al, -0068081, -eaeee01, 01361, eaea 1 17 a a a a a a a a

46 6264, -eaeeaet. -eea6G81, -800EJa01, ee61, aea81888aaeae8e

47 6274, -0668881, -8868881, -0000081, 8001, e66a 1 18 a a a a e a a a

48 8264, -6eeeae1, -ee0e8a1, -00a6661, 8861, eaaa 19 a 8 a a a a a a a

49 0274, -ee86661, -0000061, -eeeaa01, 8861, 6886 1 19 a a a 8 a a a a

50 6264, -eeeeee1, -0aee6e1, -6eeeee1, 6081, 66662868aaeea86

51 8274, -aeaeee1, -66B88al, -8080661, eae1, 0eea 19 24 a a a a a a a a

52 8264, -6689061, -eeaeeet,. -8000861, 8861, 6eea25aaaae8e6a

5J 8274, -ee9aea1, -eeaaee1, -e0aeea1, 8681, 6B6a 19 2e a a a a a a e a

54 6264, -ea606a1. -6e066a1, -6666661, 913a1, 6aa62668a8eaeea

55 0274, -eeeeae1, -0eaeee1, -6888681, 9661, eaaa 19 21 6 a e e 6 a 6 8

56 6264, -6eeeee1, -eaeaae1, -8086601, ea61, 668a2766aaa6aaa

57 0274, -6688001, -8066661, -0068661, 8ea1, 6e8a 19 22 e e 8 8 a e e e

58 13264, -eaeeee1, -aae8ee1, -0eeeee1, 8081, 66662Saeeaa666a

59 0274, -B668atn. -8666aa1. -6eeeee1, 8601, e6aa 19 23 a a e e a a a 8

•• 6257, 6318571, 6319241, 0Ga867a, 8861, 6a8eaa66eaa6B9

61 8257, 6319241, 8328878,. 00!38829, 88a1, 886Ba9a9aaeeea

62 8279, 632a678, 8328a76, 00£!6aa6, 8881, 6a6a 6 a 9 a sse -216 18 36 21a 136

63 8257, 6328676, 8326169. 8eee633, 8861, 88aeae6aaaaeaa

64 6281. 8326189, 8329114, eel3a065, 8a61, e9a2 a a a a a a a a a a
65 6257, 8326114. 6328485, 8868291, 8661, eee6 e a e a a 9 e a 8 6

66 a283, 83284a5, E!328578, 8680165, ee81, 6688 9 a 6 a 558 -216 -4a 494 768 -488

67 8257, 8326578, €!322787, 0082137, 00BI, ease a a e a a a a a a a

68 8285, IB22767, 6322712, 8ee8685, 8861, 86ee a 9 9 6 6 a 8 9 9 9

" 8265, ·0066661, -0868881, -68613881, 9801, 6eaa 1 a a 6 a a a a a a
70 8265, -aaesatn, -8668661, -a6aeee1, 0681, aaea 2 a 6 a a e a a a a
71 0265, -6eeeee1, -8000081, -66a8661, 6881. ee8a 3 a a e 9 8 a a a a
72 0265, -a6aaee1, -0ee0a61, ·0088661, 86a1, eaae 4 a a a a a a a 8 8
7J 8265, -806eaa1, -6666661, -6e13eea1. 8081, 9868 5 a a 6 a a a a 8 8
74 8265, -6aeaae1, -6886881, -e0eeee1. 8661, ease 6 a a a 9 a a a a a
75 8265, -Be666a1, -6eaeeet, -89a8661, 8861, aaea 7 8 e e a a a 8 a a
76 8265, -6eaaea1. -6688681, -8068081, 6901, 6968 a a a a a a a a 9 a

177

77 0265, -6890891, -8888881, -eeeaeei. 8Bfll_, 89889868088886

78 8265, -eeeeaet, -eeeeaat, -eeeeeet, 0881, eeea 10 a e a a a a a a a
79 0255, -8088081, -0688881, -fl800061' 9001, eeea 11 e a o e e a o a a
80 0265, -000801H, -8060081, -0880001, 0001, aaea 12 a s o a e a t1 a a
81 0265, -fH.l66861,, -680GG61, -0BGGG81, 0081, aaaa 13 a e a a a a e a a
82 0265, -•3008801, -8808081, -0080091, 8001, aeae 14 a a a e a a a a a
83 0265, -BBEH:JG!Jl, -8B88G81, -00008tH I ()8tH, aaas IS a a a a a a e a a
64 0265, -eeaaaet, -9000001, -0080001, 0061, eeea 16 a a a a a a a a a
85 0258, -aaeeeat, -eaaeaat, -6668801, 0001, &88021608808886

86 0258, -8000081, -8008001, -0009001, 0001, eeaa 2 ts a a a a a a e a
87 0258, -0000001, -0886001, -08E!0091, OBlH, aeea 2 14 a a a a a a a a
88 0258, -D000t!IH, -iJ800001, -0e8e8e1, 00G1, 88B8213aaeaaa68
89 8258, -B00eae1, -8808861, -8860081, 0801, 069021290868aee
90 8258, -&0080!31, -00013001, -080B8a1, 8081, 8Bea 2 11 0 0 a 0 0 a e e
91 0258, -8096€101, -B660a61, -000eae1, 00a1, 0000 2 10 a a a a a a 0 a
92 0258, -8000001, -0880001, -eeeaeti1, aeet, aeee 2 9 a a a a a a a a
93 0253, -aeae0tn, -Ba08001, -eeaea01, 0001, aeee 2 8 a a e e a e a a
94 0258, -0008001, -6fH3001H, -0000061, 0001, aeea 2 7 a e a 0 a 0 a e
95 a258, -00B8081, -0800001, -000eeat. aatn, 000a 2 6 e a a 0 0 a a a
96 a258, -0000001, -IJ000B01, -aea0001. 0081, aeee 2 5 0 a 0 a a a a a
97 0258, -eaaaaa1, -8000aa1, -a000001, e0a1, 06ea 2 4 a a a a a a a a
98 a258, -0606a61, -eoeae01, -8000aa1. e0e1. aea6 2 3 a a a a a a a a .. a265, -aeaaa01, -a0a9ea1, -aaa0aa1, eee1, 99ea 17 a a a a 9 9 a a 9

100 0265, -aeee9al, -eaeeatn, -aaaeaa1. aae1, aeee 18 a a a a a a a a a
101 a265, -El806861, -eaeeaat, -6ee0ea1, eetn, aea0 19 a a 0 a a a a a 0
102 6265, -66989al, -eaa9aat, -0006aa1, 0aa1, eeea 24 a a a 0 a a a a a
103 0265, -aeeeea1, -eeeaaa1, -aeaeaa1, aa01, ae0a 2a a a a a a a a 0 a
104 El265, -aeaaa01, -ae9aaat, -eaaaaa1. aaa1. ease 21 a a a a a a a a a
105 8265, -aeaaaa1, -eaeeae1, -eaeeae1, a001, aeae 22 a a a a a a a a a
106 a265, -ea0eaa1. -aeeeee1. -eaeeaa1, e0e1, aee6 23 a a a a a a a a a
107 8258, -aeeaa61, -aee9a81, -aea89al, aaa1, ae0a 19 23 a a a a a a a a
108 6258, -aaa0ea1, -a6aaaat. -6aaa0e1, 6ee1. aeee 19 22 a a a a a a 9 0
109 a258, -aa06ae1, -e60aae1, -aeaeee1. aaa1. aaae 19 21 a a a a a a a a
l19 8258, -eaaaeet, -aaaaae1, -aaaeeat, aaa1, aaea 19 2a a a a a a a a a
lll 0258, -8a8aaa1, -aa8a981, -aaa8aal, 8981, aea9 19 24 9 8 a 9 a a a a
llZ 0258, -aeea0Bl, -aae9aa1. -aeeaaa1, 6ae1, 9eaa 1" 19 a 8 a a a a a a
l13 0258, -eaaae01, -696aaei, -8aaa5e1, a&a1, 9aaa 1 18 e a a a e e a e
l14 a258, -eae8aat, -eeaae6t, -0aaee91, 96&1, aaea 1 17 a a a a a e a a
us 9258, -9eeaaet, -aeaaae1, -aaeeaa1, aae1, aeea 1 2 a a 0 a a a a 0
l16 6276, -eaaa0a1, -e9&88at, -a8a6eal, 9aa1, aaea a a a a 6 9 a a a a
117 6257, 9322712. 6324733, 6662a21. 9691, 0eaa a 0 a 0 a a a a a a
l18 0264, 6324733, 8324744, aaaea11, 6&81, 9&aa 1 a 293 -29 a a 9 a a a
l19 827a, a324744, a325343, 8aea599, 8aat, aaae 1 a 8 a 0 a a a a a
120 a257, 6325343, 6325920, aa6e577, 8661, eaaa a a a a a a e a a 0
lZl 8264, 832592a, 6325936, a9aae16, 9ae1, aaea 2 a 99 -84 a a a 9 a a
lZZ 8276, 0325936, 6326678, a8aB742, 6661, a8ae 2 a 9 a a a a a a a
123 0257. 6326678, 8326925, aaa6247, aaat, 8Sea a a 9 a a 8 a a a a
124 8264, a326925, 8326936, aa8e8U, 8681, aeae 3 a 257 -86 8 a a 8 a a
125 827a, a326936, a328683, 0991747, aafn, aeae 3 a a a a a a a a a
126 a257, a328683, 63289a2, aee&219, ea91, ae6a a a a a a a a a a a
127 0264, 83289a2, a328913, a8a88ll, 8091, aaaa 4 a 396 -81 a a a a. a 6
128 827a, 9328913, a3299a2, eaa6989, a091, aeaa 4 6 0 a a a a a a er
129 a257. a3299a2, a3318i2, aaa1966, aaa1, aeea a a a a a e a a a a
llO 6274, 6331892, a331879, aaaea77, aea1, aeea 1 2 a a a a a 9 9 a
Ill 6257' 6331879, a331967. 9&aaaa8, 9aa1, a0aa a a a a a a a a a a
ll2 El274, 6331967, 6332922, 6aae055, aa61, aaae 1 3 0 a a a a a a a
l3J 6257, a332a22, 6332a93, aaaean. aea1, aeae a 9 8 a a 9 6 6 a a
ll4 8274, a332693, a332165, aaaaan. 8861, aeaa 1 4 a a a a a e a a
135 a257, 6332165, a332429, eaaa264, eae1, aeaa a a a a a a a a a a
ll6 0297, a332429, 0332434, aaea0a5, a&61, aa6a a 0 a a a a a a e a
ll7 a257, a332434, a33284a, 6aa94&6, 8061, aeaa a a a a a a a a a a
ll8 6264, 633284a, a332857. aaaee17. ea61, 9eaa 5 a 24 -179 a a e a a a
139 a27a, 0332857. a3334a6, eeaa549, 9aa1, aaee 5 a a a a a a a a a
140 a257, 9333496, a333659, 06a8253, 0ae1. eaaa a a a a a a a a a a
141 em. e333659, a334247. aaae588, 06a1, eaee a a a 9 a a a a a a
142 9264, a334247. a334263, aaeea16, 8881, aa6a 6 a 152 -176 a a a a a a
143 827a, 6334263, 6335186, aaae923, eatn. aea6 6 a 0 a a a a a a a
144 8257, a335186, a335318, aaae132, eee1, 08ea a a a a a a a a a a
145 a274, a335318, a335378, aaeea6a, eaa1, a866 2 5 a a a a a a a 0
146 0257. 9335378, a335466, 69aea82. 6991, aee0 a a a a a a a a a a
147 6274, 633546a, 9335537. aaaean. eaa1. eeaa 2 6 a e a a e a a a
148 6257, a335537. 6335675, 0aaa138, aea1, ea6a a a a e a e a a a a
149 a264, a335675, a335686, aaeeeu. 9ee1, e0ea 7 a 279 -181 a 0 a a a a
159 627a, a335686, 633663a, a6aa944, aaat, a256 7 a a a a a a a s a
151 a257. a33663a, 9337a15, a668385, aaa1, aeea a a a a a a a a a s

178

l5Z 0265, 8337815, 8337626, aaaaees, aaet, 88887886€186688

153 0257 I 83378213, 8337229, 0009289, 0081, eeea a a B·B a a a a a a
154 0264, 0337229, 8337248, aeaeen, eaat, oeee sa 279 -tsa e a a a e a
155 0270, 0337248, 8338308, 08910613, 8001, eeeeseaeeaeeae
156 0257. 8338388, 8338454, ooeet54, eaet, eeae a a a a a a a a a a
157 0264, 8338454, 6338465, 6000011, 00131, E!eee 9 a 399 -175 8 a a a a e
158 8270, 6338465, 8339272, 0€100897, 60tH, 88889880888888

159 13257, 8339272, 8339871, 8000599, 8081, eeeeeeaeeeeaee
160 0274, 8339871, 6339942, 8600871, 9001, eeea 3 s a e e a a a e a
16! 0257' 0339942, 6340014, 0000072, 0001, eeao a a a e e a o a a a
162 0274, 0340014, 6340869, 0000055, 0001, eeea 3 9 a a a a a a a a
163 0257. 0340069, 9340316, 0080247. 0001, eaaeeaeeeeeeea
164 0297. 8348316, 6349321. eeeoee5, 8081, ee9ee9eeee9aea

165 0257, 8348321, 6349904. 0966583. 0681, eaae a a a a a a a a a a

166 02M, 0340964, 634a969, 0006695, eael, aeee 1e a 557 -187 a a a a a a

167 0270, 6340909. 8343172, 0682263, 0881, 68991999a9999a9

168 6257. 9343172, 8343364, 99!36192, 9961, ee9a9ee96G9999

169 0274, 0343364, tB43458, eoooe94, 00GI, e8ee 3 1a a a a a a a 9 a

170 0257. 9343458, 8343769, 9800302, o0e1, G099 a a a 9 a 9 9 a e 9

171 0297, 0343766, 8343765, ooeotl(J5, 0081, B9ee a a 9 a a a a a a a

172 9257, 9343765, 9344la6, 966a341. 0991, 9999 a e a a a a a a a a

173 0281, 8344186, 8344111, e0e9695, 8681, 9962 a e a a a e a a a a

174 6257, 9344111, 9344331. e69622a, oe81, G89a a a a 9 a 9 a 9 a a

175 0283, 9344331, 6344413, oe0a982, 9981, 9e9a a s a a 698 -258 149 -9 692 -238

176 0257, 9344413. !3345484, e691871, 9991, aaaa a a a a a a a a a a

177 0283, 0345484, I'J345611, e000121, 8681, aaaa a a 146 ~47 692 -276 -92 64 876 -311

178 a257, 6345611, 0346166, 6606549, 8691, aa0a a a 9 9 e a a a 9 a

179 0264, 6346169; 6346165, e0a6ae5, 86_81, 8899 11 a 111 -182 a a a a a a

180 8278, 8346165, 6346759, 608a594, 8961, e6aa 11 a a a a e a a a a

181 9257, 8346759, 934694a, 906a181, 8961, 9a6aaee9ee8aea

182 0274, 934694a, 8347828, eeaeas8, 9etn, 8998311689aeeea

183 9257. 9347928, 6347187. 9098159, 96a1, 8aaa a a 9 a a a a a 9 9

184 0264, 9347187. 8347198, 8aaeen, a881, 8968 12 e 839 -177 a a a a 9 a

185 0279, 6347198, 6348511, 0891313, 9681, a89912888aa-aea9

186 8257, a348511, 8348659, 88a9148, a881, 6aaa a e 9 a a a a a a a

187 0274, 8348659, 8348752, 0989893, 0001, a869312a8a9a9ae

188 0257, 8348752, 6349854, 66983a2, a9a1, eaaaaaaaeaaaaa

189 0297, 9349654, 834906a, ee9ea96, oae1, a9e9a6aae99aee

190 6257. 9349869, 8349373, 0080313, 88a1, aa9aaaeeeeeeae

191 8283, 6349373, 93495a5, 099al32, 9891, 96a6 a a -92 64 876 -311 5 128 1196 -311

192 9257. 63495a5, 8349897. 9899362, aa61, aaee a a a a e 9 a a a a

193 0264, 8349897. 9349812, 6908095, o8a1, aa9a 13 a 926 -173 a 9 a a 9 a

194 0276, 8349812, 8350585, 9998693, eae1, eaee 13 a a a 9 a a a a a

195 0257, 9358505, 6358653, 6889148, a6a1, 9aaa a a a a a a a 9 9 a

196 0264, 0356653, a350664, eaaaau, 9ae1, aeaa 14 a 1a53 -tsa a a a a a a

197 a27a, a356664, 9352345, ea81681, eae1, ease 14 e a a e a a a a a

198 8257, 9352345, 9352542, 9099197, aae1, e8ee 9 a 9 a a a e 9 a a

199 6274, 0352542, 9352652, 9eeaue, 8661, e9a8 4 14 e a a 9 a a a a

200 El257, £1352652, 9352751, 9aea899, eeen. a9ae 9 a a 9 et a 9 a a e

201 8274, 6352751, 9352828, e6aean, aa81, e9ae 3 13 a a a a e 9 a e

202 8257. 9352828, 9353135, 9aaaJe7, a981, aaaa 9 a a 9 a 9 a e a a

203 0297, 8353135, a353141,- a89a8a5, 9991, 9aee a a a a a a a a 8 a

204 0257. 9353141, a35348J., eeaa349, aea1, a8aa a a a 8 a e a a a a

205 6264, 9353481, 9353492, 9aaaan, aea1, ease 15 a 1816 -182 a a a a a e

206 627a. 9353492, 9353849, e8a8357, 0961, 8899 15 a e a a e 9 9 9 9

207 0257, 9353849, 835482a, 9eaa111. eee1. eaaa a a a e a e a a a a

208 0264, 9354a2a, 9354831, 99aa911, 9961, 9eae 16 e 1122 -178 a a a a 9 e

209 827a, 9354831. 6354388, a6aa357, a9a1, aea9 16 a a a e 9 a a e a

210 8257, 9354388, 9354536, 9&9a148, 6ea1, 9aee 9 a a a 9 a 9 a a a

211 a274, 6354536, 8354692, e8a9e66, a991, aaaa 4 15 a e a e a a 6 a

212 9257, a3546a2, 8354698, aa96a88, a6a1, eaaa a a a e e a a a e a

213 0274, a35469a, 8354789, 6808899, e9Bl, ea6a 4 16 a a a a a a a a

214 9257, 9354789, 8355888, ae99219, 0661, e9ea a 9 8 e a 9 9 a a a

215 8297. 9355888, 8355a14, 9eaeaa6, eeen, aeaa a a a a 9 a a a a a

216 9257, a355€!14, 8355865, a9a9B51, 8991, aeaa 9 9 e e a -a a a a 9

217 8264, a355865, a355882, e9eea11, 9ae1, eaee 17 a 1223 -189 e 6 a a a 9

218 a276, a355882, 9356244, 9eae362, 9991, eaea 11 a a a a a e a a 9

219 &257, 8356244, 8356442, 6888198, aee1, eaee· a a a a a a a 9 a a

220 8264, 8356442, 8356453, 8aa9an, 6a91, 9aae 18 a 1364 -188 a e e a a a

221 0278, 9356453, 8359293, a9a2849, aaa1, eaae ts 9 a a a 6 a a e 9

222 8257, 6359293, 83596aa. aaae3e7, 6a91, a99a a a a a a a a a a a

223 0283, 935968a, 9359694, aaaaa94, aae1, 9896 a a 386 128 1491 -311 -39 46 1685 -382

224 9257, a359694, 8366492, 9eaa7a8, 99t!l, ease a 9 e a a a a a a e

225 0274, 83694a2. 835a545, ae8a143, 9981, 8a88 1 18 9 a a a a a 9 9

226 8257, 9368545, 9369893, ae89258, aea1, aa9a a 9 a a a a a 9 a 9

179

127 0297. 13360803, 9360809, 0668806, 8tifil, eaoo e e e e a a e e-0 &
228 0257. 0360889, 8361188, 88Bf!379, 0fl61, aeea a a a o a o a a o a
229 0274. 0361183, 0361281, 6800093, 00&1, eeea 4 17 El e e a a o e o
230 0257' 0361281, &361479, 6098198, 0081, eaee a a e a a o a a a e
231 8297' 8361479, 8361484, eaeeet~s, 0081, ease & e a a e a e a a a
232 0257. 1)361484, 0362094' 0.880610, 0BtH, aoea e a a a a a o a a a
233 0264, 0362094. 0362105, 0008811, 0981, ;;.eee t9 e 1329 -187 s a 0 e e
234 0278, 0362105, 0363871, BGB0966, 0801, aeee 19 e a e a a a e e a
2l5 8257. 63631371, 8363231, 8880160, eeet, eeea e e a a e ,3 a a a e
2J6 0264, 0363231, 0363242. eeoeeu. eaet, oeaa ze e 1467 -taJ a o a e e a
237 0278, 1)363242, 0363758, 8088516, eee1, eaBa ze e a o e o a a a a
238 0257' 0363753, 8364044, 0068286, aeat, oaae e a a e e e a a o o
239 9274. 0364044, 6364115, eaeee71, B981, eeee 18 19 a a 0 a a 0 0 e

240 0257, 8364115, 8364263, eeeeess. e8e1, aaee a e a a e a o 0 a e

241 0274, i:J364283, 0364387. eea8164. 8061, ease 18 2e a e 0 0 0 a e e

242 0257. fl364307. 0364576, 0668269, eeet, ee66 e a a e e e 0 0 e e

243 0297. 0364576, 0364582, aeeeee6, 9ee1, eeee e e e a e 8 8 a a e

244 0257. 0364582, 0366164, 0061582, ee61, 6ea0 a a a 6 o 0 0 a 0 0

245 0283, 6366164, 0366296, eeee126, oee1, ee0a a a 79 46 1723 -302 597 -55 1677 -32a

246 0257. 0366290, 0369306, ee03016, eee1, eeee a a a a o o 0 o a a

247 0264. 8369366, 8369316, eaeee1e, 6961, eeea 21 e 1422 -179 e e 8 a 0 0

248 0270, 0369316, El369586, eaea27a, 0061, 9ee0 21 a a a 0 6 a a a 0

249 0257, 8369586, 0369723, eaee137, ea61, aeea a a a e a a a a a a

250 0274, 0369723, 6369789, e6eee66, 6661, eeea 18 21 6 e a o a a 0 a

251 0257. 6369789, 8372151, ae62362, eaai, aaaa a a a a a 0 0 0 a a

252· 0264, a372151, El372162, eaaaau, aaa1, aeaa 22 a 1633 -137 a a a a 0 0

253 8270, 8372162, 0372528, e9aB466, 9ee1. a5ea 22 a a a 0 a e e a a

254 6257' 0372628, 8372766, eeaa138, 6081, aoae a a a a a 0 e a a a

255 0274, 8372766, 8372837. 6BBB671, 0ee1, aeea 4 22 6 a a a a 0 a 0

256 0257, 0372837' 9373117. a0eB28e, aaat, aeee a a 0 a a 0 6 a 0 a

257 0297. 0373117. 6373123, eeeea06, aea1, aaea e a a 6 a 0 a a a a

258 0257' a373123, 6373469, eaee346, 6681, e0ea a a a a 6 0 a a 6 a

259 a264, 8373469, El373486, aee6e11, eae1, aaee 23 a 1977 -145 0 a a a a 0

260 9276, 8373486, 6373881, aeaa4a1, eee1, e9ea 23 a 6 a 0 a a a a 0

261 8257, 6373881, 8374618, eaee137, e0a1, eeee e a a e a o a a a a

262 6274, 0374018, 6374095, 66Bean, 6661, aeee 4 23 a a a a a 0 0 a

2&3 6257, 0374695' 8374397, eeae3e2, eaa1, eaee e a a a a 0 6 o a a

264 6297, 0374397' 83744a3, 6eeaee5, eea1, eeee e a e a a a 0 0 0 a

265 0257, a3744a3, 9375275, e9a6873, aae1, aea8 a a a a 6 a a a a a

266 6283, 8375276, 6375331, aeaea55, aae1, aeae a a 428 -ss 1sea -328 773 128 1887 -247

267 8257. 8375331, 8375737. aaaa4e5, eetn, eaea a a a a a e a a 0 a

268 0264' 0375737. 0375743, eeaeaa6, a6B1, eaaa 24 a 1724 -97 a a a a a a

269 027a, 0375743, 6376429, aeae686, eea1, e8aa 24 a a a a a a a 0 a

270 8257, 0376429, 63768a3, eaae379, eaa1. 6686 a a a a e a a 6 a a

271 0283, 6376868, El376896, 8aeaa88, eea1. eeae e a 773 128 1887 -247 -18 119 1967 -347

272 0257' 0376896, 0377182; aeee286, eee1, 88ae a a a a a a a a a 8

273 8274, 0377182, 8377319, 5aae137, 9ea1, eeae 1 24 a a a a a e a e

274 0257' 8377319, €1377698, aaee379, 68a1, aeaa a a a a a a a a a 0

275 a297. 9377698, 8377784, aeeeea6, ae81, eaea a a a a e a a a 6 a

276 0257, 03777134, 6378159, aaee455, e8a1, eaee a a a a a a a a 6 a
277 0254, 0378159, 8378165, eaeeee6, aatn. ae0e 25 8 1657 -179 a a e e e e
278 a278, a378165, a378678, eaee5as, ae81, eeea 25 a a a a a a a a 0

"' 8257' 637867a, a378797, 8aee127, aaa1. eeea a a a a a a a a a 8
280 6274' !!378797, a378868, eaeee71, 9ae1, eeae 24 25 a a 8 a a e a 0

281 0257' iJ373868, €1378934, 8886866, eetn, eaae a a a e a a a a a a

282 02611, 8378934, 9378945, eeaean, eee1, eeae 26 a 1817 -181 a a a a a a

283 6279, 8378945, El379653, aaee788·, eae1, aeaa 26 a a a a 0 a 0 a 8

284 8257. 0379653, a379846, aaaet93, eaa1. aaea a a a a a 6 a a a a

285 9264, 9379846, 6379862, aaaea16, a8e1, aaae 27 8 1885 -ll8 a a a a a a

286 8278, G379862, 8386631, eeae769, 9881, e0ae 27 a a a a a 6 a a a

287 a257. a388631, 8388763,. 8880132, aea1. aeea a a a a a a 6 a a e

288 a274, 638a763, 8388856, eaaae93, 8881, 6eaa24268B80a60S

289 8257' 6380856, 6388955, aaeaa99, aetn, eaae a a a a e 8 a e a a

290 8274, a38a955, 6381a54, aaeea99, eatn, eaae 24 27 a a a a o a a a

291 6257. a38I654, a381395, a8BB341, eetn, aaae a a a a a a a 0 a e

292 8297, 8381395, a381488, aaaeee5, 8601, eeea a a a o 6 a a a a a

293 a257' a381486, 8382698, aaaa698, aae1, e6aa a a a a 0 a a a a a
294 6283, 8382698, 6382197. e8aee99, eee1, eeae a a -18 119 1967 -347 -1423 -46 1932 -265

295 6257. 8382197' 6386794, aa84597, 8881, aaaa a a 8 a a a 6 a 0 a

296 0283, 0386794, 6386898, aeeeHl4, 0ae1, aeee a a -1423 -46 1932 -265 -1314 -45 244 -311

297 6257. 0386898, 9387343, ea6a445, eeet, aeee a a e a a 0 e a 6 a

298 0283, 0387343, 6387486, aa66137, 8881, 6eae a a -1314 -46 244 -311 -1379 275 201 -311

299 6257, 8387486, 0388573, a8B1693, aee1. aeaa a a a a a a a a a a

300 0283, €1388573, a388656, aaa6e83, aea1, aaae a a -1379 275 291 -311 -1a11 -27 389 -256

301 0257, 6388656, 639€463, aa818B7, 0aa1, aeee a a a e e 6 a a a 0

180

302 0258, 0398463, 8398468, 80881305, 0081, eeea 3 10 a a a a a a a a
JOJ 8257. 0390468, 8390611, 001::•0143, 0001. eeeeeaaeeeeeea
304 6258, 0390611, 0390677. sooeo66, aeet. eeee 3 11 a e a a 11 e a a
lOS 8257. 0396677. 8391182, 0880505, 0001, £16999900860000

306 9289, 8391182, 9391193, 1)8888 11, 0861, aeesaeaae&eeaa
307 0257. 9391193, 0391270, 0000077. 0001, eaeeaeseaaeaae
308 0265, 0391279, 0391276, OElEl€1006, 0061, eeaanaaaea9eaa
309 0257. 8391276, 0391847' 8"000571, 0061, aeaaaeaaeeaaaa
310 0289, 0391847. 8391852, 080000:~5. 0001, eaaaeeaeeeaaaa
lll 0257' 0391852, 8392165, 0000313, 0001' aeaeeeeoeeaeaa
312 (1283. 8392165, 8392281, 0000116, 00'01, f!£106 e a -tan -27 Jag -256 -s6e a 1131 -293

J1l 0257. 0392281, 8392665, 0000384, 0081, eaeeeaaaaeeaae
314 0274. 8392665, 8392726, Gi:ii30061, 0001, 8808416669699a8

315 0257' 8392726, 0393006, 0000289, 0001, eea60a9eae0eee

316 0297' 8393806, 8393011, 0000085, 0091, aeea a a a a a a a a a a

Jl7 0257. 9393811, 9396466, 0803455, 0001. eeaeaaaeaeaeaa

ll8 0287. 9396466, 8397323, 0009857' 0081, eaeaaaaaaeeaaa

319 9257' 0397323, 0398443, 0901120, 0801, eaeaaeaeaaaaea

320 9283, 0398443, 0.398713, 0000270, 0081, e0ea a a -869 a 1131 -293 -1318 211 -87 -366

lZl 13257' 0398713, 0399921, 0091158, Ofl91, 88eaaeaaaaeaaa

322 8264, 8399921, 8399932. 0000911, oo'tn. oeae 28 a -1863 -321 a a a a a a

m 9257. 9399932, 0406432, 0098508, 90tH, 88aaeeaeaeaaaa

JZ4 8265, 6408432, 8488437. 0088005, 0081, aea9286988888aa

325 0257. 8480437. 9401684, 0081247. 9091, eaeeeaee6aaaea

326 0278, 8401684, 0481926, 0009242, 98f:il, eaaa e a -1318 211 -87 -366 -1146 -16 -779 -259

327 0257. 9401926, 0402189, OOG0263, 0001, 6eaaaaa6aae6aa

328 9257. 6462189, 9482645, 6006456, 0001, eee8aaaae6eaaa

329 8257. 6462645, 13483156, 0068511, 6001, 0aeaeaeeeea6ee

JJO 0257, 6483156, 94a3162, 8080006, 8001, eeaeaeeeaaaaaa

331 8275, 84a3162, 0469912, 0006756, 8691. a0eeaa6aeaaa6e

332 8271, 6469912, 8469983, 0008671, 8681, eaea5eeeeaaaae

JJJ 8257, 9469983, 8416456, I 0000473, 9001, 0aaea6eaaaaeee

334 B257, 6410456, 0410818, 6006362, e001, 9660 e a e e 6 e e a a a

JJ5 0257. 8418818, 8411296, 9000478, 8081, 8866 a a 6 a a 0 a 6 a e

JJ6 8275, a4ll296, 0423292, 0911996, 8061, B6ae a e a a a a 0 e a a

JJ7 6271, 6423292, 9423385, 6000993, 6801, 0aae 6 a a a a 6 a a a e.

338 6257. 6423385, 6423792, 9900467, 6061, e0aa e a a a a a a a a e

m 6257. 9423792, 6424961, 0688269, ee01, 00a6 0 0 a 0 a a a a a a
340 0257. 8424061, 9424528, 0600467, e0e1, e0e6 a a a a e 0 a a 0 6

341 6257. 0424528, . 0424533, eaeeee5, a0a1, 0668 e a 0 a a a a a 0 a

342 0275, 6424533, 6430761, ae86168, 8001, B66a 6 a 6 a 6 a 6 a a a

343 0271, 043(}761, 8438789, aaeee88, 0001, 0eae 5 a a e a a 6 a a a

344 8257, 9436789, 0432306, ea61511, 0001. 6eae a e a 6 e a a a 6 e

345 0257, 8!132386, e432744, 0609444, eaa1, 6eee a a a a a a e a e e

346 B257, 6432744, 8433228, 0008484, e0a1, aeee a a e a e e a a 6 a

347 6257. 8433228, 6433233, 0000685, 8061, 0eae a e e e a e 8 e 9 8

348 8275, 6433233, 0436029, 0062796, 9681, 6608 a a 8 6 a a a a a a

349 8271, 0436829, 0436106, 6006a71, 8661, 6868 8 a 6 a a e a 6 6 a

350 8257. 643618a, 6436551, 9696451, 8861. ea6a 6 6 a 6 a a a a 9 a
351 G257, 8436551, 8436957. 0a60466, aetn, 8898 a 8 6 8 a 6 a 8 a e

352 6257. 8436957. 9437441, o0aa484, eqa1, 8a6a a a a a a a a e a a

J5J 6275, 6437441, 6442796, oee5349, 9661, eaaa a a a e a a 8 a a e
354 6271, 944279a, 8442873, aeeaa83, 8661, ea66 9 a 6 a a 9 6 9 a a

355 0257, 6442873, 8443422, aaaa549, 6661, aeaa a a a a 8 a a a a a

356 0257. 6443422. 8443757. eeaa335, a691, aaea a a a a a a a a a 6

357 0257. 6443757. 6444213, 8688456, 0681, 9906 a e a a e a e a 9 a

358 0275, 8444213, 6452616, aa68493, a681, aeaa a a a a a a a 6 6 6

359 8271, 6452616, 6452688, 6086a72, aaa1. aeea 12 e a e a a a a 9 6

360 8257. a452688, 6453512, a0GS824, 9691, aaae a a 6 8 6 a a a 8 a

361 8257, 9453512, 6454a12, 9606560, aa01, 6aaa a a 6 a a e a a e a

362 8257, 8454812, 8454533, a0ea521, 9061, eaaa 6 a 6 a a a e e 8 a
J6J 8275, 8454533, G4579ae, 9963367, 0001, e6ae a a 8 6 6 a e 6 6 a

364 0271, 64579aa, 8457972, 0000072, 8661, aeee 13 a a 8 6 6 e a e 6

365 8257. 8457972, 0458422, 6060456, 9961, eaa0 6 a a a e-6 a a a a

366 0257, 9458422. 6458796, 6066374, 8atn, 6eae 0 6 a a a a 6 a e a

367 0257, 8458796, 8459323, 6689527, 0881, ea8e a a a a 0 a a a a a
368 a275, 8459323, 9464931, 6665668, eein, eaaa a a a a a a 8 a 9 a

369 9271, 9464931. 0465992, eaeae71, eaa1, 8666 10 6 a a a a a a a 6

370 6257. 9465892, 9465464, aaaa462, aa81, eaaa a a a a 8 a a a a a

l7l 0257. 6465464, 6465947. 6888483, aetn, aaaa a a 9 0 a a a 8 9 a

372 9257. 6465947. 6466447. 8668586, aa01, aaaa a a e a e 8 6 a a a

J7l 6275, 6466447, 6469259, 60€12812, 6061, aeea a a a a a a a a a a

374 9271, 8469259, 8469363. 66Ga1e4, 6061, a8ae 14 a a 6 a 6 e a a a

375 8257. 6469363, 6478242, aee0879, 6081, 6eaa a a 8 e a 6 8 a a a

376 6257, 6478242, 847889a, 8a00648, aea1, ae8a a a e 6 a a a a a 9

181

B.3 Output from Pass 1

Pass l reduces the Pass 0 input stream from 449 lines to 425 lines.

a e257, eJI6694, S316885, eeeezat, eee1. ease a a a a e a a e a a
9 0275, eJI6aas, 8316962, eeoeen. eee1. eeee a a a a a a a a a a

10 azs7, 6316962, 0317005, eoaee43, aeet, Geee a a a e a a e a e a
11 ezs7, eJI?eos. E!317258, aoeezsJ, twet, eoee a a a a a 0 a a e a
12 ezs6, eJ17258, eJ1SS71, oae1313, eae1. oeee a a a e a o a a e a
13 0264, -0E!aeeei, -oeeetH:H, -aeeeetn, aeEn. eaea 1 a a a a a a a a a
14 8264, -eeaoe!n, -•Jeeeeet, -Beoaael, eaat, eeee 2 a a a a e e a a a
15 8274, -80089tH, -NJ08001, -ooeaoet, aa~n. eeae 1 2 a a a e e a a a
16 6264, -eeaaeet, -eaeeeat, -eeoeaat, aaet, aaaa 3 a a a a a a a a a
11 6274, -eeeeeet, -i:!a00961, -oeeeeat, eea1. aaea 2 3 a a a a a a a a
18 9264, -oeeeeiH, -8aaeaet, -aeoaeet, aeat, BfHla 4 a e a a a a a a a
19 0274, -aeeeem, -0006001, -0000001, eee1. aaea 2 4 a a a a a a a a
20 8264, -ee0e6tH, -eeoeea1, -G0000iH, ae01, aeee s a a a a a a a a a
21 a274, -a8a8aa1, -eea0ee1, -eea00B1, aa01, aaee 2 s a a a a a a a a
22 6264, -aaaeea1, -eea06a1. -6aaaaa1. e8al. eeaa 6 a a a a a a a a a
23 a274, -eaaaa61, -oaaeao1, -oe0aea1, aaa1, eaea 2 6 a a a a a a a a
24 6264 • -eaaaaa1, -eaeaaa1. -eaea0a1, aaa 1. eaea 7 a a a a a a a a a
2s G274, -aaa0661, -e9aaea1, -0aaa01H, 9aa1. aaaa 2 7 a a a a a a a a
26 6264, -e6aaae1, -aaeeaa1, -a9B6B61, 9a91. aa6e 8 e a a a a a e a a
21 a274, -9aae9a1, -e0ooo01, -oo00001, 00a1. saea 2 a a o a e a a a a
2s 6264, -aaaa0a1, -Oe6e9a1, -00800a1, eotn, aeaa 9 a a a a a a a a a
29 9274, -eeaaaat, -eaeaoa1, -80000el, 6661. aeea 2 9 a 6 a a a a 6 a
30 a264, -eaaa6al, -eaeaea1, -a0eaea1, 0aa1. aaaa 1e e a a a a a a a a
J1 a274, -aee8ea1, -oe0eee1, -9eae6a1, 6991. 9eea 2 1e a a a a a a a a
32 0264, -aea€H1at, -eeaaee1. -6eaoaa1, aaa1. 66aa 11 a a a a a a a a a
JJ e274, -eaaaaa1, -8666601, -eeaaaa1, aae1. eeea 2 11 a a a a a a a a
34 a2M, -aeeee61, -aeeaaat. -aeae0a1, aatn. eaaa 12 a a a a a a a a a
35 9274, -eoaeae1, -eaaaaat, -00eeaa1, aaat, eeee 2 12 a a a a a a a e
36 a264, ~aeaeea1, -aaoaaa1, -eeeaae1, 6661, aaa6 13 e a e a a a a a a
37 a274, -a8aeaat, -eaaaoat, -8ea0ae1, aeat. 8aee 2 13 a a a a a a 6 a
JS 6264, -6a6eaa1, -6BB6Ba1, -6eeaae1, 8ae1. eaea 14 a e a a a a a a a
n a274. -oae0a61, -B66eaa1, -a8eaaa1, aaa1. eaaa 2 14 a e e a a a a a
40 8264, -eaeaa81, -eeeaaa1, -e0aeaa1, 08a1, aaea 15 e a a a a a e a a
41 a274, -aaaa881, -aaaaaa1, -a8aoa61, ae8t, eaea 2 15 a a a a a a a a
42 a264, -a6aeaa1, -6a0aea1, -6eaaeat, aa1:n, eaae 16 a a a a a 8 e a a
u a274, -eeaeaat, -eeaaea1, -8eeaaa1, aa61, aaaa 2 16 e e a 6 a a a a
44 a264, -eaaeaa1, -eea89a1, -aee6681, aae1, aaaa 11 a a 8 a a a a a e
45 a274, -8B8a8e1. -eaeaee1, -aaaeaa1, a8a1. aa6a 1 17 a a e a 6 a a a
46 a264, -eeaaaa1. -eeaae61, -oeaeae1, aaa1. aae6 1a a a a a 8 a a 6 a
47 6274,. -eeaaaat, -ea8eeat. -eoa8aat, aaa1, eeaa 1 18 a a a a a a a a
48 6264, -eaeaaat. -eeeaa81, -eaaaa61, a6a1, ea8a 19 a a a a a a a a a
49 a274, -eaaaaa1, -a8aaaat. -aaeaeat, eae1. aaaa 1 19 a a a a a 6 a a
so 8264, -eea9ea1, -tt99Baa1, -aaoeaa1, eea1, ease 2a a e a a a e a a a
51 a274, -eaeeaa1, -eaaaaa1. -aaeeaa1, aaat. aaee 19 24 a a a a a a a e
sz 8264, -aaaeaat, -a8aae61, -aaaa6a1, eaa1, aaaa 25 a a a a a a a a a
53 9274, -eae6BB1, -aaaaaa1, -aeaeae1, aea1, ee9e 19 29 a 9 e a 9 a 6 a
54 az64, -eaeaaat. -eeaaaa1, -eaaeaa1, aea1. eee.a 26 a a a a a 8 8 a a
55 a274, -eaeaeat, -aeaaaa1, -8eeae61, a9a1, aaee 19 21 a a a a e a 6 8
56 9264, -eaea6al, -e6aa9el, -a9aeee1, 9991, a8ee 27 e a a a a a a a a
57 9274, -aaaeaat, -eaeeea1. -a6eaa·a1, eaa1, aaae 19 22 a a a a a a a a
ss 8264, -a6eeaa1, -eaeeea1, -aeaaae1, 9aa1. a5aa 28 a e a a a a a a a
59 0274, -aaeaee1, -ae8aaa1, -eaa6ae1, 8eat. aaea 19 23 a a a e 6 a a a
60 8257, 9318571, a319241, aaaa67a·. aaat, 8eea a a a 6 a a e a a a
61 a257, aJ19241, B32aa7e, aaae829, a8al. aeaa a a a a a a a a a a
6Z 9279, a32a97a, aj2aa16, eeaaa86, aa8I. ea8e 6 e a a sse -216 1a 36 21e 136
63 a257. e32aa76, B329169, aa0aa33, eaa1. aaaa a a a a a a a a a a
64 9281, 8326199, 9326114, a9aeaas, 5aa1. aaa2 6 a a 6 e a a a a a
65 8257, e32a114, a32B4B5, aaea291, a8a1, ea6e a e a a·6 a a a a a
66 a2a3, 8329495, &329576, 9aaa16s, 6861. e6ae a a a a sse -216 -4a 494 768 -488
67 6257, a32857e, 0322767, eoe2137, eetn, aeaa a a a a a a a a a a
68 a285, 6322787, 8322712, a9eeaes, 8aet. aaea 6 a e a a a 8 a a a
69 a265, -e8aaea1. -eaeaea1, -aaeaaa1, aaa1. eaaa 1 a a a a 6 e e a a
70 6265, -ee8eaet, -oeaeee1. -eaaaaa1, a9a1, 66a6 2 a a a e a a a a a
11 8265, -aaaeaa1, -8aaee81, -aeaaaet. aae1. aaaa J a a a a a a a a a
72 a265, -eeaeeat, -eee6aa1, -eaaaea1, 6661. eaaa 4 a e a a a e a a e
73 8265, -aeee6e1. -e8aaae1. -aoeaaa1, eea1. aaaa s a a a a a a a a a
74 a265, -eaaaaa1, -aeaaea1, -aeeaaa1, aa61, eaea 6 6 a a e a a e a a
75 8265, -eaa8B81, -aaaaa81, -eeee681, aae1. ease 7 a a a e a a a a a
76 a265·, -eaaaaat, -eeaaaa1, -aeaea61, eaa1. eaa6 8 a a a a a a a a a

184

77 0265, -6868881, -8868861, -88813681, aaat. eeoe 9 a e a a a a a a a
78 0265, -8086881. -8660881, -081}8881' eeei, eeee 10 a a e e a e a a a
79 0265, -9806881, -8686881, -0888081, eeat. eaee 11 o e e e a e a e e
80 0265, -0808861, -8608881, -88f:J096l, aoet, eaoa 12 e a a a a a e a a
81 13265, -eeeeeet, -0009081, -0868081, aoet. oaee 13 a e e e e e a a a
82 0265, -88fl0001, ~8880661, -eaeoaet, eeBI, 8000 t4 e e e a a e a a 9

83 0265, -0808661, -8680681, -eeeeeGI, aeet, eeae 15 a a a a a a a a e
84 0265, -868€i86l, -8686881, -aeseaet, aeet. eeee Hi a a a e e e a a e
85 6258, -8686681, -eaeeaet, -eeaeeiH, eeet, eetHI 2 16 e a a a a a a a
86 0258, -0000001. -8EH1008l, -eeeeaEJt, eaiJt, eeoa z IS e e a e a a e e
87 0258, -€•800061, -60800!11, -eeeGeet, ae81, eeee 2 14 a a o e a a e a
88 0253, -860•3081, -eeeeee1, -eatleDG1, eae1. e000 2 13 a a e a a 0 a a
89 0258, -eaaea01, -066ii661, -aeaeGe1, eae1. eae6 2 12 0 0 a 0 0 a a 6
90 0258, -0800881, -888~801, -6860661, 6661, eaa9 2 11 a a a a e e a a
91 6258, -800G601, -6668661, -0666661, 6661, aaea 2 10 a 0 a a 6 a a a
92 6258, -886€1661, -6666661, -a666661, 0661, 900£1 2 9 a 6 a a a a a a
93 0258, -aeee0a1. -a0096at, -0eeaaa1. aea1, 8666 2 8 a a a a 6 a 6 a
94 0258, -8600001, -6600001, -aeee661, aee1. 0000 2 7 a a a a a a a 0
95 0258, -eeeeaa1, -6000001, -eea0061, a0a1, GGB6 2 5 a a a a a a a a
96 6258. -6aeaaet, -eaaea61, -6068061. 6061, 6eea 2 5 a 0 9 a a a a a
97 8258, -eaeaaat, -aaeaaa1. -e6eGa61, ae61, a0ea 2 4 a a 6 a a 8 a a
98 6258, -60666a1, -e686eat, -aa9eae1, aee1, eae6 2 3 6 a a a a a a a

" a265, -6aaaaat, -6686801, -eaeeaat, a9et, aa0e 17 a a a a a a a a a
100 0265, -6aeeaat. -ea6e6at, -eeaeao1, aea1, aeae 18 a a a a a a a a a
101 8265, -e0aaeat, -eeaaea1, -aaaaaat. e6Bl, 6eee 19 a a a a a a a a a
102 8265, -eeeeeat, -eeeeaet, -6eeae61, ae6I, ease 24 0 a a 6 a a a a a
103 El265, -eeaeafH, -660BGa1, -a6eaeat. seat, e600 20 a a 8 a e a e a a
104 0265, ~6e0a8at, -9996901, -eaa6861, ea01, ae66 21 a a a a a a a a a
105 0265, -ee60aa1, -eeaaaet, -aee6061, 6091, eeae 22 a a a a a a a a a
106 6265, -eeaaaa1. -ea0aaat, -a00a6a1. 6eet, 6eee 23 a a a a a a a e a
107 0258, -99896at, -eaae9a1, -e6ee9el, 9981, 900& 19 23 a a a a a a a e
108 9258, -aeaaeat. -eea6eet, -aaeaeat. aee1, eaa0 19 22 a a a a a e a a
109 9258, -eeae0at, -eaaaaat, -ae6aeet. e9a1, eaee 19 21 a a a a a a a a
l16 0258, -aeeaae1, -eaa9ae1, ~eaaaatn. aea1, 6988 19 26 a a a a a a a a
lll 0258, ~6a0aa1n, -a6a66a1, -6aeaeat, eae1, aaae 19 24 a a a a a a a a
llZ a258, -aaa9ee1, -eaaeaet, -6eea6at, aa61, aeaa 1 19 a a a a a a a a
113 6258, -eaaaaa1. -eaaeae1. -068aaa1, aea1, ease 1 18 a a a a a a a a
l14 az58, -aaaeaa1. -aaaeea1, -aeea661, aae1, ease 1 17 a a a a a a a a
115 1'1258, -aeaaea1, -6aa0661, -aeeeea1, seat, aaaa 1 2 a a a a a a a a
l16 8276, -ee8aee1,. -aeaaeat, -aaeea61, aae1, aaaa a a a a a a a a a a
117 0257, 6322712, 632<1733, aa62821, aae1, 6aaa a a a a a a a a a a
l18 8264, 6324733, 9324744, eeeaan. aae1, 68ea 1 a 293 -29 a a a e a a
l19 627a, a324744, 0325343, aeea599, aae1, aeea 1 a a a a a 8 a a a
120 6257, 6325343, a325928, 88Sa577. aaa1. 6aaa a a a a e a a a a a
121 0264, a325926, 6325936, aa8aa16, 8981, aaaa 2 a 99 -84 0 a a a a a
122 8278, . 6325936, 6326678, aeea742, aea1, aeaa 2 a e a 8 a a a a a
123 6257, 6326678, 6326925, eaaa247, aaa1, aeaa a a a 8 a a a a a 9
124 6264, 6326925. a326936, ea9aan, 9aa1, ease 3 a 257 -sa a a a a e a
125 6278, 6326936, a328683, aael747, eaa1, a0ea 3 a a a a a a a a a
126 6257, 6328683, 6328962, aeea219, eae1, aaaa a a a a a a a a a a
127 0264·, 63289a2, 6328913, aaaaan, aa81, eeaa 4 a 396 -81 a a a a a a
128 6278, 6328913, 8329982, a896989, aaat. aaae 4 a a a 9 a a a a a
129 62~7. 6329962, a3318&2, eaa19aa, aae1. aeee a a a a a a 9 a a a
130 6274, 83318a2, 8331879, aaaaan. aae1, aaaa 1 2 a a a a a a a a
131 0257. 8331879, a331967. 8aaaa8a, ea61, eaaa a a a a a a a a a 9
132 8274, 8331967. 6332622, 1!6aea55, aae1, aaaa 1 3 a a a a a a 6 a
133 0257, 6332622, 6332993, aa8a871, a8Sl, aaea a a a a a a a 8 a a
134 0274, 6332693, 6332165, aaaaan. aeat. aaae 1 4 a a a a a a a a
135 8257, a332165, 9332429, ea6a264, aaat, 0aee a a a a a a a a a a
136 a297, a332429, a332434, ea6aaes, aaa1, 9eaa a a a a a a a e a 9
137 6257, 8332434, a332848, aaee4a6, a881, eaaa a a a a a a a a a 8
138 9264, a33284a, a332857. aeaa8t7, &861, ease 5 a 24 -179 a 9 a a a a
139 a27a, 6332857. a333466, aa6a549, 9ea1, aaaa 5 a 9 8 a a a a a 9
140 a257, 9333496, a333659, a86a253, eaat, 0eaa a a a a a a a a 9 a
141 a257, 6333659, 6334247. ea6a588, 9891, 8aaa e a a a a a a a a a
142 8264, a334247. 8334263, aaaae16, eee1, eee0 6 a 152 -176 a a a a e a
143 6279, a334263, a335186, eaea923, 6&61, aaa6 6 a a a a a a a a 9
144 6257. 9335186, 8335318, eaea132, aa61, 8eaa a a a a a a a a a a
145 8274, 6335318. 9335378, 6a6aa6a, aee1, aaaa 2 5 a 8 a a a a a e
146 6257. a335378, a33546a, aaaae82, aeet, eaaa a a a a a a a a a 6
147 6274, 9335469, a335537. aaaaan. a9a1, ae0a 2 6 a 6 a a a 9 a a
148 a257, 8335537, 8335675, 6aaal38, 6861, aeaa e a a a a a a a a a
149 a264, 9335675, 8335686, aaea011, a661, aaaa 1 a 279 -181 a a a a e e
156 0276, 6335686, a336636, aaa8944, aa61, 0256 7 a a e a a a a a a
151 6257, 9336638, a337a15, 8086385, eaa1, eaaa a a a a a a a a a a

185

!52 0265, 6337015, tl337029, 6880005, 0881' aaea 7 a a a a a a a o a
!53 8257' 0337028, 0337229, 0000209, OOlH, eeaaaeaaaE!aaaa
!54 0264, 0337229, 0337248, 80t)(l0ll, 0091, aeoa a a 279 -tao a a a a a o
155 0270, 0337240, 0338308, aaal96a, aeat, aaoa a a a a a a a a a a
!56 0257' 0333300, ()338454. eeDal54, east. aaes a a a a a e a a a a
!57 0264, 0338454, 0338465, oaaea11, aae1, eaaa 9 a 399 -175 a a a a a a
!58 0270, 0333465, 0339272, aoeasa7, aoEn, eeoa 9 a a a as a a a a
!59 0257, 0339272' 0339871' eeaas99, eeo1. aeae a a a a a a e a a a
!60 8274, 0339871, 9339942, aaaea?l, 0001, aaaa J a a a a a a a a o
161 0257. 0339942, 034001'1, 0800072, 0001, aoae a a a a o a a a a a
162 0274, 034•J014, <)340069, 0000055, 00tll, aaaa J 9 a a e e a a a a
163 0257. 0340069, 0340316, 9008247' 0091, eaeaaaeaeaaaaa
164 0297. 0348316, 8348321, 8008005, 0001, eeee a a a a a a a a a a
165 0257. 034\1321, 834 f)904 • 0080583, 0001, aaeaeeoaeeeae0

166 0264, 03409a4, 0340909, 0000005, _0061, ee0a 10 a 557 ·-187 a a a a a a

167 0270, 03409a9, 0343172, 0002263' 0061, eeee 10 a a 0 a a 8 e 0 a

168 0257. 0343172, 6343364, 8068192, 0091, eeeaaeaeeaee0e

169 0274' 0343364, 0343458, 0008094, eee1. aeee 3 10 a a 0 a 0 0 a 0

170 0257. 0343458, 0343760, 0BBB302, 0001, eeaa a a a a a a a a a e
171 0297. 0343760, 8343765, a000005, 0001, ae0e a 0 a 0 0 0 0 a 0 a

172 0257. 0343765, 0344106, El0B0341, 00a1, eaae a a a a a a a 0 a a

173 G281, 8344106, 0344111, ea08005, a0a1. 6002 6 a 0 0 a a 0 a 0 0

174 6257' 0344111, 8344331, ee6B22a, 0001, e00a a a 0 a a a a a a a

175 0283, 0344331, 0344413, a0aa082, 0001, a0aa a a a 0 608 -258 148 -9 692 -238

176 0257' 0344413, 13345484, 01301971, 9061, ea88 a a a a 0 a a a a a

177 0283, 03451\84' 0345611, 9808127, 0061, 98GB a 0 140 -47 592 -276 -92 64 876 -311

178 8257. IB45611, 0346160, 8008549, 9ee1, 8eea a a 0 a a a a a a 0

179 tl264, 0346168, 0346165, 0008085, ea•n. eeaa 11 a 717 -182 0 a a 0 0 e
180 8270, a346165, 6346759, aae8594, 0ee1, eaea 11 8 a 0 a e a a a a

181 0257. 0345759, a346946, eea0181, 00e1, aa0a e a a 0 a a a a a a
18Z 0274, 6346940, 0347828, 8aa8688, a0a1, a0ea 3 11 0 a 0 a a a a a
183 tl257. 8347828, 0347187' a0aa159, 00a1. aaaa a a a a a a 8 a 0 a
!84 8264, 0347187, 0347198, ea0aau, e0a1. aeae 12 a 839 -177 a a a a a a
185 a278, 0347198, 8348511, 8001313, 8881, eaae 12 0 8 a a 8 a 0 e a

186 8257' a348511, IB48659, aeaat48, a0a1, aaaa a a a a a 0 a a a a
187 8274, 0348659, a348752, ae00693, 0aa1, eaea 3 12 a a 0 a a a a a

188 0257. 0348752, 0349054, 8808302. 00a1. aaae 0 8 e a a e a a e e
!89 0297. 0349054, a34906a, eeeaae6, 8081, aaaa a a a a a a a 0 a a
190 0257, 834906a, 0349373, aeae313, 8881, eaaa a a 0 a a 8 a a a a

191 8283, 8349373, 8349585, a888132, 8881, ea0a a a -92 64 876 -311 5 128 1196 -311

19Z 0257' 0349505, B3498a7, a0ae3a2~ 0001. eaae e a a a a a a e a a
193 0264, a3498G7, a349812, aeeaea5, 0aa1, eeea 13 a 926 -173 a a a 0 a a

!94 827a, 0349812. 835B505, 08a0693, 00a1, aeae 13 a 0 a a a a a a a
195 0257, a350585, 0350653, 8088148, a8a1, aaaa a a a a e a 0 a a a

196 0264, 6350653, 0_350664, e0aaeu. 0ea1. e6aa 14 a 1063 -18a a a a a a a

197 8278, 0356664, 6352345, 00a1681, e0et. a6aa 14 a a 0 0 a a a 8 a
198 6257. 0352345, 8352542, 0aa8197, 8081, aaaa a a a a a a a 0 a a

199 i:l274, 8352542. 6352652. 0aaaue. aa01, 0aaa 4 14 a a 8 a 0 a a a
200 0257. 0352652. a352751, 8eae699, aae1, aaaa a a a a a e 0 a a a
201 8274, 8352751, 8352828, aa0aen, 0aa1, aaaa 3 13 a a a 6 a a a a
202 a257, a352828, a353135, aaaa3a7, aea1, aeee a a 8 e a a a a a e

203 8297. 8353135, a353141, eaaaee6, eea1, eeaa a a a a a a a a a a
204 8257' 0353141, 8353481, 0a08348, a001, ae09 a e a a 0 e 0 e a a
Z05 0264, a353481, 8353492, 0eaaau. 0001, e0aa 15 a 1816 -182 8 a 8 a a a

206 027a, 8353492, B353849, eaa6357, a8a1, eaaa 15 a a a a a a a a a
207 0257, 6353849, 8354626, eeaat71, 0aa1, aeaa a a a a a a a a a e
208 8264, 0354a2a, 0354a31, 8aaa6n, aaa1, 6aee 16 a 1122 -178 a a a a a a
209 827a, 0354a31, a354388, e0aa357, 60a1, 8088 16 a a a 8 a a 8 a a

210 B257, 0354388, a354536, a686148, aaa1, aeaa a a a a a a a a a 8
211 a274, 0354536, 83546a2, a0aaa66, aaa1, eaaa 4 15 a a a a a a a a

212 8257, 63546a2. 6354696, 8aa0G88, 0801, aa0e a a a a a a a a a a

213 a274, 835469a, £1354789, 808aa99, 0ea1, eaae 4 16 0 a 8 a a a a a
214 0257, a354789, 0355088, aaa6219, earn, eaaa a a a a e a a a a a

215 a297, 63558a8, 8355614, eeeaae6, 8681, aeaa a a a a a a a a a a

216 a257, 8355a14, a355865, aeaes51, aee1. aeea a ·a a a a a e a e a

217 a264, 8355865, 6355882, 6800017, ea01, eaaa 17 a 1223 -18a 0 a a a a a
218 827a, 6355882, 8356244, 0aaa352, aaa1, aa0a 17,6 a a a a a a a a

219 0257, 0356244, a356442, aea8198, 0891, 0aae a a a a a a a a a a
220 0264, a356442, a356453, a8aaen. 8681, aeaa 18 a 1364 -186 a a a 8 a a

221 027€1, 8356453, 0359293, 0aa284B, 6ae1, 6668 18 a a a e a a a a a

222 0257' 0359293, 6359608, ea88387, a8a1. aaaa a a a a a a a a a a

223 0283, 0359688, a359694, 6008694, ea61, aaaa a 0 306 128 1491 -311 -39 46 1605 -3a2

Z24 a257, a359694, 9369462, aeaa7es, aee1, eeee e 8 0 a 8 a a e 8 e

225 0274, 6366402, 0369545, aeoe143, 8aa1. a8ee 1 18 a 8 e a a e a a

226 0257, 8368545, 036f!8a3, eeae258, e0a1, a6ea a a a e a a a a a a

186

227 0297, 8368383, 6360809, 81300006, 00til, eeae a a a a a a a a a a
216 0257, 8368889, 1)361188, 1)880379, 0081, !leeaeeaeaeaeae
229 0274, 6361188, 8361281, 0868093, 06f!l, aaae 4 17 a a a a a a a a
ZJO 0257. 8361281, 0361479, 0000198, aoe1, aaea a a a a a a a a e a
231 0297' 0361479, 0361484, 0008085, 8601, aeae a a a a a a a a a a
2l2 6257. 0361484, 0362094, 0000610' 0081, aeeeaaeaaeaaaa
2J3 8264, 6362694' 9362165, 6060011, 0081, aaaa 19 a 1329 -187 a a a a 0 '
234 0276, 6362105, 6363•371' 0000966, 6081, aeae 19 a a ·a B a a a a a
235 0257. 8363871, 0363231, 0068160, 0081, (;8886866866886

236 0264' 8363231, 0363242, 8000011, 0001, eeae za a 1467 -183 a a a a a a
237 0278, 0363242, 0363758, 0000516, aeot, BGaa ze a a a a a a a a e
Zl6 0257, 0363758, 9364844, 0006286, ooet, eaaa a a a a a a a a a a
239 9274, 9364944. 9364115, eeeee71, eotn, aeee 18 19 a a a e a 9 a a

240 9257' a364115, 0364293. 9E:tfl9688, ae61, eeea a a a a a a a a e a

"' 9274. 0364293, 9364397. 0006194, 0091, aeee 18 2e a a a e a a a e

242 6257. 6364397. 6364576, 6999269, 9601, 66ae a a a a a a a 0 a a

243 6297, a364576, 6364582, eaaeee6, eea1. auea e a a e a a e e e a

244 0257, 0364582, 6366164, 9601582, ea91, eae9 a a a a a 9 9 a e 9

245 a283, 6366164, 036629a, 0609126, a091, eeee a a 79 46 1723 -362 597 -55 1677 -329

246 0257, 9366296, a369306, 0063616, 9061, 66aeaeaaeaaaaa

247 a264, a369366, 9369316, aa99610, ·e061, 0a6e 21 a 1422 -179 a a a a a a

246 027a, a369316, 0369586, 0009270, 8091, e6aa 21 a a a e a 0 a e 9

249 9257. a369586, 6~69723, 0000137. 9661, eaeeaa86aaaaaa

250 6274, 0369723, a369789, a0eee66, 9681, eaee 18 21 a a a a a a a a

251 6257, a369789, 9372151, 8682362, a9a r, aeeaa8aeaaaaee

252 9264, a372151, 0372162, 0eaaa11, 90fH, eeea 22 e 1633 -137 a 6 a a a a

253 927a, a372162, 9372628, 6096466, 9861, 6eea 22 E a a a a a a a a

254 9257, 6372628, 8372766, 6aeel38, eaa1, 9aae a a a a a e a a e a

255 9274, 9372766. 8372837, aa8een, aee1, 6aee 4 22 a e a a a a a a
25, 0257, a372837. 6373117. 0eee286, eee1, eeaa a a a a a a 6 a 6 8

257 6297. 6373117. 6373123, eeeaea6, aae1, aaea a a e a a a a a a a

258 6257, a373123, 9373469, 8S96346, 9961, 66aa a 6 a a a 6 a a a a

Z59 8264, 6373469, 8373486, 9aeeau. ee61, eeee 23 8 1677 -145 6 a a 6 a a
26B 9276, 8373486, 6373881, eaee461, eaa1, aaae 23 a e a a a a a 6 6

261 6257. a373881, 8374918, aaeal37, 6aa1. 6e8a 6 6 a a a e a a a a

262 9274, 6374a18, a374a95, aeeea77, aae1, 6aae 4 23 a a 6 a a a a a

263 9257. 9374995, a374397. 8668392, ae61, 6a66 a a a a a e a 6 a 6

264 8297. 9374397. a374483, aeaeaa6, a6al, aa6a a a a 6 6 a a a a a

265 9257, a3744a3, El375276, aee8873, e0a1, aaae a 8 a e a a a a 6 6

266 8283, a375276, 6375~31, eaeeess, eee1, 6668 a 6 42a -55 1586 -32a 773 128 1887 -247

267 9257, 8375331, a375737. 0aee4a6, 6061, 6eee a e a a 6 e a a a a

266 9264, 6375737. a375743, aee66a6, aea1, 8aB6 24 a 1724 -97 a a a a a a

269 8278, 6375743, 6376429, ea6B686, aae1. 9686 24 8 a a 6 a a a 8 a

270 9257. 6376429, 9376898, aa8B379, eae1, eaea 6 a a a 6 a a a 6 a

271 9283, a376Sa8, 9376896, aeea688, a6a1, aae6 6 a 773 128 1887 -247 -18 119 1967 -347

272 a257. 6376896, 9377182, aeee286, a6e1. 6aea a e e a 6 a a a a a

273 6274, a377182, 6377319, 98a6137, 9691, a66a 1 24 a a e a e 6 6 8

274 6257, a377319·, 6377698, 9666379, 9961, ae6e a 6 6 6 a a a a a a

275 9297, 6377698, a3777a4, aee6ee6, aa61, eea6 a a e a a a a a a a

276 a257. 93777a4, 8378159, aaea455, eaa1. 6986 6 a a a 9 9 6 9 a a

277 8264, 9378159, a378165, 9eeea66, 6aa1. 6aae 25 6 1657 -179 a 8 e a a 6

276 6279, a378165, 6378676, 6aea5e5, 6661, a6ea 25 a a e a a 6 e a a

279 6257. a378676, 6378791, ee89127, 9991, aea6 a a 6 6 a a a a e e

260 a274, a378797. a378868, aaeeen, 09a1, aeaa 24 25 a 6 a a a a a a

261 6-257, a378868, 6378934, aa66a66, eea1, eea6 a a 6 6 e a a a a 6

282 9264, 9378934, a378945, eaaean, 9661, aa6e 26 a 1817 -181 a a a a a a

263 9279, 6378945, a379653, aae6768, aa61, aae6 26 a a a 6 a a 6 6 a

284 8257, a379653, a379846, eeaa193, 6Sal, eaaa 6 e 6 a 6 6 a 6 a 6

265 a264, a379846, a379862, aaaaa16, aae1, aa6a 27 e 1885 -118 6 a e 6 6 a

286 a279, 9379862, 6388631, 8899769, aea1, 6aae 27 a a e 8 a 8 6 a a

287 a257, 6386631, 8388763, aaa8132, aaa1. aaea 8 a 6 a 6 a a a a 6

266 6274, 8388763, 8386856, aaeea93, 8981, eaea 24 26 a 6 a 8 a e 6 6

269 8257, 6386856, a38a955, eaa6a99, ae61, aa6a a a a a 6 a a a a a

290 a274, 6388955, 6381854, 9aeee99, aa61, eeae 24 27 a a a a a a 6 a

291 a257, a381854, a381395, 8aaa341, aaa1. aeae a e 6 a 8 6 a a a a

292 8297, 6381395, a3814aa, aaaa8a5, aaet, aaae a a a a a a a 6 a a

293 a257, a38146a, 8382898, eaaa698, aaa1, ee6e a 6 a a a e e a a a

294 8283, 6382998, a382197, ae6&899, aea1, aaee a a -18 119 1967 -347 -1423 -46 1932 -265

295 6257, 9382197. a386794, a6a4597, eea1, eaaa e a a a 6 a a e a e

296 9283, 9386794, 6386898, aea61a4, 88a1, aee6 a 6 -1423 -46 1932 -265 -1314 -46 244 -311

297 9257, a386898, 8387343, a6B6445, ae61, eaae e a a a e a a 6 a 8

296 8283, a387343, 8387486, aa88137, aaa1, 9668 a a -1314 -46 244 -311 -1379 275 2a1 -311

299 a257. 938748a, a388573, 8881993, aae1, ea6e a a a a a a 6 6 a a

JOB 9283, 6388573, 8388656, aaaees3, eea1. ea6a a a -1379 275 261 -311 -1611 -27 389 -256

301 8257, a388656, 9396463, eaa1897, 8aa1, aaea a a a a 6 a a a a 6

187

302 8258, 6398463, 8399468, 69613865, eaat. eeae 3 re e e a a a a a a
303 8257, 9398468, 63913611, 6l:lfl0143, aeat, aaaa a a a a a a a a a a
304 0258, 9390611, 6398677. 6860866, eee1. eeaa 3 11 a a a a a a a a
305 0257. 0390677. 9391182, 0000505, eaat. aeaa o a a a o a a a e a
306 6265, 0391182. 9391852. f!BG0679, aees. aaaa 11 a o a a a a a e a
Jll 0257, 9391852, l:l392165, oooa313, aaet, aaea e a a e a s o a a a
Jl2 0283, 0392165, 9392281, aoeau6, eae1. aeea a a -tau -27 309 -256 -869 a 1131 -293

313 0257. 0392281, (!392665, 1:!988384, eoet. aeaa a a e o a e a a 0 a
314 0274, f.l392665, 13392726, 9889661, eaet. aeea 4 10 a e a e a a a a
315 0257. 9392726, 0393006, 6800289, eeat. eooe e a a e o a o a a e
316 !1297' 8393006, 8393911, eeeaees, eeet. eaee o a e a a a a a a a
317 0257. 0393011, 8396466, 0893455, aoet. eaae a a B a e a e a a a
318 0287' 9396466, 9397323, 6980857' e9al, aaaa a a a a a a a a a a
319 0257. 0397323, a398443, a9Eill28, aoa1. eaaa a a a e a a e e a a

320 a283, a398443, 9398713, 8006276, 6601, aaee a a -s6a a 1131 -293 -1318 211 -87 -366

321 a257. 0398713, 9399921. ae01158, 0aa1. eaea a a a a a 9 9 a a 9

322 8264. 039-9921, 9399932, 6980911, a661. oaee 28 6 -1663 -321 a a a a a a

323 0257. 0399932, a408432, 6a00509, a8a1, aa0a a a a a a a a a a a

324 0265, 8409432, f!4aB437. aaea9a5, aa01, aaao 28 a a G a a a a a a

325 0257. 6480437. 9401684, aeB1247' aea1. aeaa a a a a a a a a a a

326 9278, 9461684, 8461926, ae66242, aea1. a6a6 6 a -1318 211 -87 -366 -1146 -1a -779 -259

327 9257. 8401926, t1462189, B088263, 0691. a0aa e a a a a a a 6 a a

328 9257, a4a2189, 04a2645, 80a8456, 0aa1, aa0a 6 6 a a 6 a 6 a 6 a

329 a257, a482645, 6463156, 6eaa5u, 9661. a666 a 6 a a a·e a a a a

330 6257. 94133156, 64a3162, B8889a6, aea1. aaa6 a a 0 a a a a a a a

331 9271, a-183162, 9489983, 8aaoa21, BB62, eeee s a a a a a a a a a

333 6257, 6469983, B41a456, eaae473, eaa1. aaea 6 a a 0 a 8 0 a a a

334 0257. 0418456, 94la818,· aaee362, eaa1, aaaa a a a a a a a a a a

335 0257, 0418818, a411296, 8969478, 6881. ee0a a a a a a a a a a a

336 8271, 6411296, 0423385, eal2889, 0eez. aeea 6 a a a 0 a a a a a
338 0257. 9423385, . 9423792, aaaa4e7, eaar. aaaa a a e a a 6 e 9 a a

339 0257, 8423792, a424961, eaae269, -eeel. a6ea a a a 0 a a a a a a

340 a257, 8424861, 9424528, aeea467, 6aat. eaae a a a a a a a a a a
341 a257. £1424528, 6424533, aaeaaes, aaet, eaea e a a a a a 0 a a a

342 0271, a424533, 843B789, 8896256, aaez. aeae 5 a a 0 a a a a a a
344 6257, 04313789, 843239a, eae1sn, aee1, aeea a a a a a a a a a a

345 0257, a432369, 9432744. aa66444, aea1. aee0 a a a a a e a a a a
346 a257, 0432744, 6433228, eeea484, aea1. 8aea a a a a a e a a a a
347 8257, 8433228, a433233, aeeaaes, aeat. 6aea a a a a a a a a a a

348 6271, 9433233, 8436199, 9062867, eaez. e9ee a a e a a a a a a a
350 9257, 9436169, 8436551, eeaa451, eaa1, aeaa a a a 6 a a a a a a
351 8257, 8436551, 6436957. ae6B466, aeat, aeea 6 a a a a a a a a a

352 0257, 6436957. 8437441, ee6a4S4, aaa1, ea0a a a a 8 a a a a a a
353 9271, 8437441, a442873, aae5432, aea2. aeee 9 a a a a a a a a a
355 8257. 9442873, 9443422, eeaas49, a6ai. 6eea a a a a a G a a a a

356 0257, 13443422, 9443757. eeee335, 9891, eeea a e a a a a a a a a
357 0257, 13443757. 6444213, eaee456, a8a1, eaaa a a a a a a a a a a
358 9271, 9444213, a452688, aea8475, aaa2. aaae 12 a e a a a a a a a
360 0257. 9452688, 6453512, 9099824, eaa1. aeee a a a a a a a a a a
361 a257, 8453512, 9454a12, eaeesaa, aea1, aeee a a a a a a a a e a
362 a257, B454a12, 6454533, aaaas21, aeat. eaaa a 9 a a a a a e a a

363 8271, 0454533, 8457972, 13993439, aea2, aeaa 13 a a a a a a 8 a e
365 9257. 9457972; 6458422. 9aaa4se. 9aa1, aae9 a a a a a a a a a a
366 a257, 8458422, 9458796, 9aaa374, a9a1, eaaa a a a a a a a a a a

367 9257, 6458796, 9459323, aeea527, 0891. aaaa a a a a a a a a a a
368 6271, 9459323, 6465662, aaa5679, aea2, aaaa 1a a a a a a 8 a a e

370 0257' 6465892, 8465464, 8989462, aaa1, 8aea a a a a a a a a a a

371 6257, 6465464, a465947. aaea483, eaa1, aaeaaaaaaaeaea

372 9257, 9465947. 6466447, aaaa5ee, aee1, aeaeeeaaeaaeaa

373 a271, 8466447. 9469363, a6a2916, a6a2, a8aa 14 a a 6 a a a a a a
375 a257, 13469363, 6479242, 8aaa879, aaa1. aaea a a a a a a a a a 6
376 a257. a47a242, €1476899, e6Ba548, aa61, aaaa 0 a a a a a a a a 9

377 a257, B47a899, 6471423, 8899533, 8ea1. 96a9 9 a a a a a a a e a
378 a271, a471423, 6476992. 6BB5569, 9BB2, aeae 15 a a a a a a a e a
380 9257, a476992, 6477613, eaaa621, aeat, e9ae a a a 6 a 6 6 a a 6
381 a287, 9477613, 6477992, 9aea379, eea1. aaea 0 a a a a 6 a a 8 a
382 6257, 6477992, 6478234, aaaB242, 6961, eaa0e9aaeaeaee

383 6257, 9478234, a478322, aaaaa88, aaa1. aeae a a a a a a a a a e
384 8257. 8478322. 9478673, 9666351, aaa1. aeea a 0 a a a a a a a a
385 0257, 8478673, 6479178, eaaa565, 13a~n. a6ea 6 a e e e a 6 a a a

386 a27l, 6479178, 6481617. 8aa2439, aea2, aeae 16 a 9 a a a a 6 a a

388 6257. 8481617, 9482369, ea6B692, 66a1, aaa6 a 6 6 a a 6 a a a a
389 a257, 9482369, 8482611, 6eee3a2, 0ae1. aaae a e a a a 6 a a a a
390 825~. 0482611, 6483122, eeaasu, a9at, 66ea a a a 6 a e a a e a

391 8271, 8483122, 64883a2. 80a518e, e6a2, 88a6 17 a 6 a a 6 a 8 e a

188

393 8257, 8433302, 0488774, 6668472, 8001, eeeeaaaeoiJBOBB
394 0257, 0488774·, 0489849, oeea275, eoei, eeoe a a a o a o e e a a
395 0257. 0489049, 0489581, oeeasJz, eeat, eeaa a e a a a a a a a a
396 0271, 0439581, 04937!31, e004120, aaez. aeee 22 a o o a o o a o a
398 0257, 0493701, 0494206, eeeeses, eeet, eeae a a e a a a a a a e
399 0257, 0494206, 0494552, aoooJ46, ee81, eeee a a e o o o a a a a
400 0257. 0494552, 0495685, aeoasJJ. aae1, eeee e a e o a e e a o o
401 0271, 0495085, 0501352, eae6267, aeez. aeaa 23 a a e a a a e a s
403 6257, 0561352, 8561835, aeee483, 6661, eaea a e e e e e o a o a
404 8257' 0501835, 0503B22, eofnta7, eo1H, aeee a a 13 o a o o o e o
405 0257. 0503022, 0503543, aoaes21, eeat, aaee a a e a o o a a a e
406 0271, 0503543, 0508262, eoe4719, oee2. aeee 19 o a e a a o o e a
408 0257' 0508262, 0588662, 6660468, eee1. aeea a 8 a 8 0 8 8 8 a 8
409 0257, 0588662, OSEI8965, G6ee3a3, 0001. aeae a a 0 0 a o 0 0 0 a
410 0257, 0508965, 0509464, 8098499, 9ae1, 6888 a a a a a a o a a 0
411 0257. 0509464. 050947a, 8088866, aae1, ease 8 a a a a a a a a a

412 8271, 0509470, 6516632, 8687162, 6882, 688a 2a 0 8 0 e 0 a a a a

414 0257, 0516632, 0517288, B08a648, ee01, 66Be a 0 0 0 0 0 0 0 a 0

415 0257. 0517288, 0517610, a060338, ae61, aeae a a 8 0 a a 0 0 0 a

416 0257, 6517618, 0518159, 00Ba549, a861, 8888 a 8 a a o a 0 0 0 a

417 0271, 0518159, 6526687. 8688448, 6082, eeee 21 a a a a a a a 8 8

419 8257. 0526607. 0527679, 66aa472, 8aa1, 6668 a a a 0 a 0 a a a a

4ZO 0257, 0527a79, 8527343, 00a8264, ee61, aa6e a a a a a 8 a a a 0

4Zl 0257, 0527343, 0527864, 86a6521, aae1, eaaa a 0 0 0 a a 0 a a a

4Z2 0271, 0527864, 0538775, eea2911, a6a2, a8ae 25 a a a a a a a a a

4Z4 0257, 0536775, 0531220, a6ea445, ae61, ease a a a e a a a a 0 e

425 0257. 0531220, 0531566, 6808346, 6aBl, ease a a e a e 0 a a a a

426 6257. fl531566, 0532677. eaaasu, 8661, 6686 0 a a 0 0 0 a a a a

4Z7 6271, 0532077. 0536826, eea3949, a9a2, aaaa 26 a a a a a a o a a

429 0257, 0536026, 0536408, 0eaa374, ee81, e6ae a 0 a a a a a a 0 a

430 0257, 6536460, 0536674, eeaa274, aaa1. eaaa a a a a a a 0 0 a a

431 0257. 6536674, 6537202, 868a528, 6661, aaea a a a a a a a a a a

43Z 6257, a5372a2. 6537267. eeaaa65, a6al, a8a8 a a a a 0 0 a a a 8

4Jl 6257. 0537207. 6537213, ee6aee6, 6691, eeaa a a a a a a a a a 6

434 0271. 0537213, 0542799, 66a5586, ea62, ease 27 a a a a a a a a a

436 0257, 8542799, 0543342. eeaa543, 9aa1, aeea a a a a a a a a a a

437 0279, 0543342. 8543348, 80aeea6, east, aeea a a -1318 211 -87 -366 418 40 618 "'
438 6257, 0543348, 6543381, ae6a633, aa61, eaaa a a a a a a a a e a

439 6281, a543381, 0543386, 66aaaa5. 6661, eaa2 a a a a a a a a a a

448 6257. 0543386, 6543612, 6aa8226, 9aa1, eaaa a 0 a a a a 8 a a a

441 8283, a543612, 0543826, ee0a214, eaa1, aaea a a 1482 -18 1849 -259 -1276 183 1832 -329

44Z 8257. 0543826, 05444a8, eaaa582, eae1, ae66 a a a a e a a a 0 a

443 0283, 6544408, a544534, 6aaal26·, 9ae1, eeea a a -1276 183 1832 -329 -1276 -na 1936 -256

444 a257, 9544534, 654493a, 6006396, 99a1, eaea 8 a a a a a a a a a

445 0283, 8544936, 6545812, aa8B682. aa61, aeea a a -1276 -116 1936 -256 -65a 19 -171 -293

446 6257, 0545612. 6545798, e6aB786, 6681, aeea a a a a a a a a a a

447 6287, 0545798, a54621a, 66aa4I2, eaa1, aa6a a a a a a a a a a a

448 0257, 0546216, 0546874, aeaa664, 5ea1. aaaa a a a a a a a a a a
449 0266, 8546874, 0546886, eaeaee6, aa61, aeee a a -1276 -lla 1936 -256 1a 36 245 236

458 0257, 6546888, a546924, aaeee44, eae1, eeea a a a a a a a a 8 a

451 a268, 6546924, 6546929, aaaa6a5, aaa1. 6664 a a a a a 6 a a a a

45Z 8257, 0546929, 8548a88, aa61289, e9a1, aeaa a a a a a a a a a a

453 0287, 0548688, 0549786, aael692, 6061, 6866 a 6 6 a a a 6 8 8 8

454 0257, 8549788, 0558192. a6e6412, 8661, ae9a a 6 a a e a a a a a

455 a287, G558192, 8551911, aaa1719. aae1, eeaa a a 6 6 a a 8 a a a
456 6257. a551911, 6552279, eeea368, a8al, eaa8 e a a a a 6 a a a a

!89

B.4 Output from Pass 2

Pass 2 reduces the Pass l input stream from 425 lines to 284 lines.

0257' G315604, 0317258, 0006654, ase4, eot~e e a e a a a e e a e
•J285, 8317258, 0318571, 8881313, eotn, ease e a a a o a a a a a
in64, -eeaeeal, -8089981. -0868801. 08131, aaaataaeeeeaeE!
0264' -0806001, -8GIJ8081, -0000001. 0001. aeoe 2 a o a a e e e a a
0274, -H8•J0001, -0000001, -0008091, 0001. eoe~ 1 2 a e a a a a a e
0264, -0089801. -0006881, -0000091, oee1. eeee 3 e a a a a e a a a
0274, -0888091, -0060091. -0000091, 0001. eeee 2 3 a a a a a a a a
0264. -0£190681, -0089EHH, -0000081, 0001. 0809 4 a a a a a a a a a
0274' -eeeeae1, -06+39091, -0000901, eaet, aeee 2 4 a a a a a a a a
0264, -8006081. -9009081, -8000001, eatn, oeee s a a a e a a a a a
0274, -eeeaeet, -0086991. -0089EHH, eea1. eeae 2 s a a a a a a a a
0264' -eeoeeel. -B08i30tH, -0000001, 00131. 00006661]00aa0a
0274, -e0ee001. -008BB01, -0000001, 0001, 80062666891]66&
0264, -eeee001, -0000601, -009€1081 .• 00131. 09087a888a0a6a
0274, -a08eael, -0090091, -o0eEJ661, 00fll, 6600270600S60a
0264, -0aae01H, -0006001, -00fl0001. 0001. aeaaaee0eaa0ea
0274. -0000601, -0000001, -00fl0001, 0901. 0G0a28a0a0a000
9264, -0806001, -e8oe0a1, -aae0ea1, 0081, 006a9B000aa006

0274' -08Sa0el. -8080001, -eoaeaa1, 0601, 060029aa0aaaee

0264' -0600Ba1, -0fi89901, -0000001, 0081. 0aaa 1a a a a a a 0 0 a a
0274. -069Bfia1, -Be06091, -8060081, a0a1. at~oa 2 1e a a 6 a 6 .a a a
0264, -eoeeaa1. -aeeeaa1, -8890001, oaol. aaeaneaa0aa00B
0274, -B606a61, -8699991, -aa96flB1, 0001. 6998 2 u a a a a a a a a
0264, -eeeeae1, -60013691, -0060a81, ae01, eaae 12 a a a a a e a a a
0274, -eeaaa01, -8086961, -0880001, 6601. aeaa 2 12 a a 0 a e e a a
0264, -eaa0091. -aeaee61, -080a081, a001, 0eaa 13 a a a 0 a a a a a
a274, -aea9661, -aae0a01, -6eeaaa1, seat. ease 2 13 a a a a a a a a
0264, -eeaeae1. -0B9BB81, -e8a0ee1, a9al. eaee 14 a 0 a a a a a 9 0
0274, -Ba0f.la61, -eeaeee1, -eeoeeel, 0991, ease 2 14 a a a 8 8 a a 8
8264, -eeaaee1, -0000081, -o0eeee1, 00e1, eaee 15 a a a a a a a a a
8274, -eea8661. -0698891, -0880881, 9091, e9ae 2 15 a a a a a a a a
0264, -eea8601, -o0eeee1, -9666681, eea1, a9ee 16 a a a a 0 a 0 a a
0274, -0eaaaa1, -6996061, -6600661, 6681, eeae 2 16 a a a a a 0 a 6
6264, -a0aeee1. -eaaae1n, -aeee0a1, eee1, ee90 17 a 6 a e a a e a a
0274, -8868881, -aeeeea1, -6668801, aa!H, B6BB 1 17 a a a a 9 0 a a
0264, -0eeaae1, -888a0al, -eaae061, 0681, eeaa 18 a e 0 0 a a a a 6
8274' -0860861, -B66Bae1, -e0ee0a1, eee1, eeea 1 18 6 a 0 e 0 a a a
8264, -6eeeae1. -eaeee01, -0006861, 0081. eeee 19 0 a a a a e a a a
0274' -eaeeae1, -60aa9e1. -eeee6a1, aee1. eeea 1 19 a a a a a a a a
a264, -8€168001, -eaeeee1, -eeeeee1, 0aa1, 0eaa 2a a a a 0 a a a a a
0274, -eeae061, -0866081, -eeaaee1. aea1. aaee 19 24 a a a a a a a 6
8264, -eeeee01, -eaa9e01, -eeeaea1, aae1, eaae 25 e 0 a a a a a a 0
0274, -8aG6061, -666B6a1, -aeeeea1, ae61. eea6 19 26 6 a a a a a a a
0264, -6660661, -0S966a1, -aee0ea1, 6061, eaea2660aa6a0a6
6274, -eea6e61, -eee0061, -eaeeea1, 6081, a6ea 19 21 a a a a a a 0 a
8264, -a0eaa91, -a0aeae1, -e6e6ea1, e6a1, a9ea 27 a a a a 6 6 a a a
6274, -eaeae61, -eee0061, -ae6eea1. ae01. 6696 19 22 a 6 6 a 6 a a 9
8264, -0868091, -08Ba661, -eaaeae1, 0061. aeee 28 6 a a a 0 6 6 a a
8274, -aaee6e1, -eeeaae1, -0eaee01, 0961, aaa0 19 23 a a a a 0 a a a
2005, 8318571, 6322707. eea4136, eee8, 0ee2 a a a 6 a a a a a a
0285, a322707. 6322712, 0eaaee5, eea1. 0eaa a a a a a 0 a 6 a a
0265, -eeeaae1, -eeee6al. -0096661, eea1. aeaa 1 a a a 0 a a a e 6
0265, -6606001, -6a66661, -eeae0e1, eea1. 6aaa 2 a 6 a a 0 0 a 6 a
0265, -aaB66a1. -aee6a01. -eeaaeet, eee1, eea6 3 a 0 0 a a a a a a
0265, -aaea0tn, -6eeaaa1, -66aB0a1, eaa1. a6ee 4 a a a a a a a 6 a
0265, -eaeaea1, -eaeeaa1, -eaee0a1, aae1, eeae 5 a a 0 a a a a a a
0265, -aa0eae1. -aeaaea1, -ae0eaa1. e9Bl. eeaa 6 e a a 9 6 a a a 9
8265, -00aBa61. -0690091, -aaaeea1, aae1, eeae 7 a 9 a a a a a e a
9265, -e0eaae1. -eeee6a1, -ea96601, a661. ae9e 8 0 a 6 a 6 a a a a
8265, -e0aaael', -eaee0!H, -0eaeea1. 00a1, eeee 9 a a a a a a a 6 a
0265, -aaeaae1, -aaeea01. -eeeaeat, 6Btn. ease 1e a 6 0 a 6 a a a a
0265, -eeaaaa1, -666Baa1, -0090001, e6aL eeaa n 0 a a a a a 9 6 0
0265, -aaae06l, -eaeaea1, -eeeaaa1, 0681. sea& 12 a a a a a a a a 6
0265, -aeaeae1, -aae6a61, -6B60aa1, 6601. ease 13 a a 0 a a 9 a 9 a
8265, -ee6eaa1, -eeae0e1. -aaa0ae1, eaet. eaee 14 a 0 a fl a a a a 6
13265, -eaee0e1, -aaa6aa1, -G60SBB1, eee1. 6eee 15 a a a a a a e a a
8265, -6eae0e1, -6666061, -aa6eea1, eae1, eaee 16 6 a a a a 6 a a a
9258, -06BBaa1. -66aeee1, -eaaeetn, 6881, aeea 2 16 a a a 0 a a 9 9
0258, -aeea6a1, -eeae0e1, -eee6661, e0a1, ease 2 15 a a a a 6 a a a

190

0258, -8686&81, -86&8881, -BG€18861, 0881, tr080 2 14 a e a a a B e a

0258, -0B88B01, -G!!EH~ea1, -1}008001, 0001, ao00 2 13 e a a a a a 0 a

0258. -00800a1, -Beaatl!H, -980a86l, 0801, 08692120BOI3BaGG

0258, -EI0098al, -OOBB6a1, -08089fH, 8081, 000821100000068

r::JZ58 0 -<3068661' -86896!11. -8668061, 0001, 0000 2 10 e 0 8 8 a a 0 6

0258. -8886081, -oe8e9tH, -fHl08061, 8001, ae00 2 9 0 0 e o 0 a a 0

0258, -0066061' -8aeeee1. -8606tla1, 6001, Ei061J28600800ae

0258, -00(!0081, -8096091, -806Ba91, a0a1, eeaa27G8688686
0258, -eeeeeet, -08686t!l, -8880061, 0061, 086826000a86ea
8258, -0008081, -88086El1, -0800081, 6081, ooea2500888808
0258. -08800E11, -0086981, -0008061, EJ€181, 06862460800808
0258, -0000091, -9080981, -0860691, fl081, 00662398006988
0265, -01~06081, -eeeaetn. -60E!00EI1, 0001, 6066 17 6 a a 6 e a e a a

0255, -0060881, -6eeeeat, -008€1681, ea01, 0006 18 e 0 a 0 6 e a 6 6
0265, -0000001, -6666881, -6808681, 0681, aeaa 19 0 0 e a 0 a o 8 a

0265, -E100a001, -09a8691, -6980901, (:1061, 806a2408008066a
i.'J265, -0006891, -e~e6ee1. -6006881, 0891, 8068 2e a a 9 a e a a a a

0265, -0800601, -a8988!H, -6000081, El001, 000e 21 a a 0 0 9 a e a a

0265, -0600881, -El0888a1, -0068661, 0001, eeea 22 e 8 a a e a e a a

0265, -00000a1, -0089861, -8899001, 8081, 80662300a00066a

8258, -0088681, -6e6a6el, -a6a6eat, ea61, aa6a 19 23 e a a 6 8 a a 6

0258, -f!Gflfl861, -6f!a6€161, -8008Ga1, 8081, eeaa 19 22 e 6 e 6 a a 6 a

0258, -eee6ea1, -6666881, -0089681, a081, o6ae 19 21 6 a a 6 a 6 6 a

0258, -088aea1, -88a8661, -6666a61, 9061, 8886 19 28 6 a 8 a a a a a

0258, -08098al, -6866681. -BOa0aal, 0a01, 6Ba6 19 24 a 6 6 6 0 a 6 6

0258, -8808081, -GBaBfHH, -OfiOaBB1, 0fla1, oeaa 1 19 a a 0 a a a a a

0258, -OG66BOI, -60666i:H, -a0a8aa1, 8aal, 66861186668a6a6

0258. -0000681, -6686691. -68aetJ8 1, 0861, ea6e 1 17 a 0 a a a 0 a a

0258, -eeeea61, -fl666th31, -a6aa66I, e001, 0Ga812668808aa

2808, 9322712, 0324733, 86a2821, 0001, 6a6a 6 6 a 8 a 0 a a a a

0264. 8324733, 8324744, fl6aaau, 8661, oa9e 1 6 293 -29 6 6 a 0 a a

0270, 0324744, a325343, ae6e599, 6881, eeaa1a06aea8aa

0257. a325343, 6325928, 86613577. 88a1, eaeea6a6a6ea6e

0264, 632592a, 6325936, aa60ai6, aa01, aeae 2 6 99 -84 a 6 a a a a

8278, 0325936, 0326678, ae66742, 86a1, 68862Gaaa666B6

0257. 8326678, 6326925, 96a8247. aea1, e8aaa6a6aaaaaa

0264. 0326925, 8326936, aaaaeu. 8661, 6aae 3 a 257 -8a e a 6 a a a

0270, 8326936, 6328683, aaal747, 6061, 6668 3 a 6 a a 6 6 a a 6

0257. 0328683, a328962, "6886219, 6Ba1, 86a8 a a a a a 6 a a a a
8264, 6328982, a328913, a0e6au, 6aet, a06a 4 6 396 -81 a 6 6 a a a

0276, a328913, 6329962, 66aa989, 6aa1, eaaa486aa8aaa6
2008, a329982, 83318a2, aaa196a, 6881, 88eeaaa0a9aaaa
0274, 8331882, 633IB79, 86a6a77, 00a1, 0eae126aaaaaea

8257. a331879, a331967. 6a66688, 6861, eea0 a a a a a a a a a a
8274, a331967, 6332a22, 6aaaa55, ae81, a6aa 1 3 8 6 6 6 a a 6 a
0257. a332022. a332a93. aeaea71, a6a1, 8866 a 6 6 6 6 a a a a a
0274, a332693, 6332165, a6a6a72, 66a1, aeee 1 4 a a a a 6 6 a 6
2002, 6332165, 6332846, 6aaa575, 6663, 6632 a 6 a a 6 a a a a a
8264, 633284a, 6332857. 6666617, 6aa1, eeaa 5 6 24 -179 a a a a a e
0276, 8332857. 6333466, 6668549, 6681, 6aea 5 6 a 6 6 a 6 6 6 a
0257. 8333466, 83.34247. aaea841, eaa2, ea6a a 6 6 a 6 6 a 6 a a
G264, 8334247. 6334263, 6€166916, eaa1, aea6 5 6 152 -176 a a a a a a
0276, 6334263, 6335186, e6a9923, aa61, 66ae 6 a 6 a e 6 a a a a
8257. 8335186, a335318, a68a132, a0e1, eaae 6 a a a a a a a 6 a

8274. a335318, a335378, 6aeaa6a. a681, aae6 2 5 a 6 6 a a 6 6 6
13257, 13335378, a33546a, aa9aes2, 9ae1, e8a8 a a a a a a a a a a
0274, 8335466, 8335537. aaaee77, 8661, 6686 2 6 a 6 6 e a 6 6 a
0257. 8335537. 6335675, B88al38, aaa1, aaaa a a a a a 6 a a 6 a
0264, 6335675, 6335686, 6aaae11, a68I, 8686 7 6 279 -181 a a a a e a
827a, 6335686, a33663a, a6ee944, aaat, a256 7 a a a a a 8 a e a

9257. a336638, a337915, eaee385, ea61, 6a6e a a a a a a e 6 a a
0265, a337615, 8337626, 68666a5, 6a61, 9a6e 7 a a a a a a a a 6
a257, a337a2a. 6337229, aa6e2a9, aaa1, a6aa a a a a a a a a a a
0264, 6337229, 6337246, 66aeeu, a6Bl, 6666 8 6 279 -188 a e a a 6 a
a27a, a33724a, a3383a6, aeete56, aee1, e8aa 8 a a 0 a a a a a a
0257, 83383€16, 6338454, ae8a154, e0e1, 6eae a a 0 a 6 e a 6 a a
0264, a338454, 6338465, 6666611, a6at, 6a6a 9 e 399 -175 a 6 6 a 6 a

0278, 8338465, 8339272, a6aa867, aaet. aeae 9 a a a a a a a a a

0257. 8339272, 6339871, aaea599, aea1, o6ea a a 6 6 e 6 a a a a
0274, 0339871, a339942, a66een. 8661, 6666 3 8 6 6 a a a a a a

0257. 8339942, a346a14, aeaa672, a6at, S66a 6 6 a a a a a a a a
8274, 6340014, 6346669, a6a6955, 6aat, aeaa 3 9 a 8 a a a a a a
2882, 8348659, 6348964, 6eaa835, aae3, a632 a a a 6 8 a a a a a
0264, 8348984, a346969. aaae8a5, a6Bl, a8aa 1a a 557 -187 a 6 a a 6 a

a27EI, 03469139, a343172, a6a2263, a061, 8aae 1a 8 6 6 e 6 6 a a a

191

0257. 0343172, 0343364. 8069192. 0001, 0608~6EJaeeaeae

0274, 03113364, 0343458, 0E!00094, 0001, 088•3319900!}600El

2085, 0343458, 03116168, 6882702, 08fl9, flli348688808G08

0264, 0346160, 0346165, 0008005, 0061, oeee n 0 717 -1a2 0 0 e e o a

0270, 0346165, 0346759, 8608594, 0001, eee8 11 e e a e e a 8 a a

0257. 0346759, 0346940, 0000181, 0001, eeeaaaa0aeeeee

0274' 0346948, 0347028, 0000088, 0801, eaea 3 11 a a a a a a 0 a

0257. 13347828, 8347187. 0088159, 6681, aeeeaeeeaeea0e

0264, 8347187. 0347198, e0aae11, 0001, IJ088 12 e 339 -177 0 0 a e 0
0270, 0347198, 03118511, 0D01313, 0081, 088012860080800

0257. 0348511, 0348659, 0000148, 8001, eeeesea0o0aae0
9274, 0348559, 0348752, 0000093, 0001, 0aae 3 12 a e 0 a a 0 0 0
zoos. 0348752. 0349887. 6081855, eea5, 68329889809888
0264. 0349807. 03119812, 0000005, 0001, ae0e 13 a 926 -173 s 0 e a a o
0270, (:1349812, 9358585, 0000693, 0081, ea88130aaaaeaae
0257. 8350585, 0350653, 0009148, 8001, 0eaeaea00s8eea
0264, 0350653, 0350664, 8088911, 8001, eaee 14 a 1963 -189 8 a 0 a a a

0270, 0350664. 0352345, 0881681, 00al. a8ee 14 a a 0 a 5 a a a o

0257. 6352345, 0352542. 8000197. 0001, 088aaaaaa0a00e
0274, 8352542, 0352652. 0800110, 0001, o009 4 14 a o 0 o 8 a a a

0257. El352652, 8352751, 0808699, 0801, 0aeaeaea889aaa
0274, 0352751, 0352828, 8000977, 0901. 86863139866989a

2002, 0352828. 9353481, 0066653, 0003, 9032a9a980aeea
0264, 0353481, 0353492, a906a11, 8a81, aeea 15 a 1a16 -182 a a a a a a

a27a. 0353492. 8353849. aa8a357. a091, 0899150a8a08a88

13257. 0353849, 03511a2a, 0000171, 0801, aeae5aee8aaaea

0264, 8354628, 8354831, 0068au, 81J01, 0e0a 16 a 1122 ~178 a a a a a a

0279, 0354931, a354388, 988a357, 00al, aaaa 16 a a 0 a e a o a a

0257. 0354388, 0354536, 890a148, 8681, aeeaa8aeeaeaee

0274. 8354536. 0354602, B6eea56, 00a1. 0eaa 4 15 a a a e a a a a

8257. 03546a2, 035469a, ae0a088, 0801, 880eeaea0aaeea
0274, 0354690, 8354789, 0000099, Oa01. 08ea 4 16 a 0 a 0 a a a a
2083, a354789, a355865, 9001676. 88a3, ea32aaaaa0aeaa

8264, a355865, a355882, 908Bal7, 80a1, eaae 17 a 1223 -188 e a a a a a

0278, 8355882, 0356244, 8686362. 0aei. a5ae 17 a a 0 a e a a a a

0257. a356244, 0356442. a908198, 0061, aeeaeaaaaaaa9a

a264, a356442, 0355453, 0888all, aaa1, 0580 18 a 1364 -186 a 9 a a 9 a
6270, 9356453, 8359293, 0a0284a, 0801, 806a18aaa998699
2005, 13359293, 93684a2, a06lla9, 0083, e0a9aeaaaa999a
a274, 0368482, a36a545, a888143, aee1, aaa8118Baaaaaee
2082, 0369545. 0361188, ea8a643, 8863, 8632aeaaeaaeee
0274, 0361188, 0361281, ee0ee93. 0881, 0808 4 17 a a a e a a a a

2002, 8361281, 8362a94, a09a813, !}893, a5329098a8888a
8264, 8362094. a362Hl5, aaaaen, aea1, a0ea 19 a 1329 -187 a a a a e e
9278, 83621a5, 8363871, ae08966, 9881, aeaa 19 a 5 a a a a a a a
9257. 9363871, a363231, B8BB169, eae1. eea0aeeeaaaa0a
0264, 8363231, a363242. 6898811, 8081, aaaa 28 a 1467 -183 a a 0 a a a

827a. 0363242. 8363758, 600a516. a8al, 898a2aaaeaa8aaa
6257. 0363758, 6364644, 0aaa286, a8al. 8aeaeaa8aeea66
0274, 6364844. a364115, 0000a71, a681, aaea 18 19 0 a a a a a a a
6257, 6364115, 63642a3, eeaaa8s, 0a91, eae6 a e a 8 a a a a a a
0274, 03642133, a3643a7, eea8HI4, e0e1,_ 0aaa 18 2a a a a a a a a a
2flt35, 8364387. a369396, 9a84999, aa85, aa32 a e a a a 8 8 6 a a
a264, 8369306, 8369316, aea8a1a, ae81, 0eea 21 6 1422 ~179 a 6 a a 6 e
a27a, a369316, 6369586, 0aa6278, ae61, 85aa 21 a a a a a 0 a a 8
92571 8369586, 8369723, a9aal37, 8661, a6ee e a a 0 a e a a 8 e
6274, 8369723, a369789, 688Ba66, 6881, aeee 18 21 0 a a a a a a a
2838, 0369789, a372151, 0a&2362, 9ae1, 06ae a a a a a a a a a a
0264, 0372151. 9372162, 6068all, aaa1. 0aaa 22 a 1a33 ~137 a a a a 0 a
0278, 9372162, a372628, 6868466, 0601, aea8 22 8 a 8 a a 8 a a a
8257. 6372628, a372766, aaaa138, eeai. a5aa a 6 8 a a a a a 6 a
0274, a372766, 6372837. a000a71, 8061, 0669 4 22 a a a a a 9 9 8
28a2, 9372837. a373469, a9a8632, 6083, ae32 a 9 a a a a a a 6 6
8264, 8373469, a373486, 9eeaa11. 0ee1. eaaa 23 a ta77 ~145 a a 6 a a a
827a, 6373488, 6373881, e6aS481, aa61, aaaa 23 a a 6 a e a a 6 8
0257. a373881, a374818, aaeet37, 9801, eeae a a a 0 8 e e a a a
0274, a374ats. a374a9S, aaaaa77, a081, aeaa 4 23 a a a a a a a 9
2005, fl374895, 6375737, a6a1542, 0865, 6832 a a a f! 0 a a 5 a a
9264, a375737. 8375743, aaeaae6, 5881, 0aaa 24 a 1724 -97 a a a a a a
027fl, 0375743, a376"429, 8eaa586, 9a01. aa6a 24 a 5 9 a a a a a a
2005, 8376429, fl377182, ea88753, eaa3, 08ea a a 9 a a a a a a a
a274. a377182, 6377319, 0aa6137, 6a01, 0aa9 1 24 a e a a a Baa
2602, 6377319, 8378159, 9aa8846, 6863, aa32 e a a e a a a a a a
6264, 8378159, 8378165, aae8aa6, a861, 00aa 25 a 1657 ·179 a a a 8 8 a
8278, 8378165, 0378676, 6aea5e5, 6681, 0eaa 25 a a a 6 5 a a a 0

192

0257. 0373670, 0378797. 0880127. 8001, 080988a9880081J

0274. 1}378797. 0378868, 00a807l, 0001, eaea 24 2S a e e e- a e 0 a

0257. G378868, 8378934. 0068066. 0001, a0aa e a a a a a a 0 0 0

0264, 0378934, 0378945, 0088€ill, 9001, 0aae 26 a 1817 -131 a 0 0 0 a 0

0278, 0378945, 0379653, 0880788, 0001, 8888 26 e e a 0 a 0 a a a

0257. 0379653, 0379846, 0000193, 0901, 0000 0 0 0 a e 0 0 0 a 0

0264' 0379346, 0379362, 0000016, OB!:H, eee0 27 a 1835 -118 a e 0 o 0 0

0278, 8379862, 8380631, 0080769, 0001, 0000 27 a e e e 0 a a 0 e

0257. 0380631, 0380763, 0889132, 0001, 0888908aa0888a

0274' 0330763, 0330856, 00001393, 0001, 0008242688000008

£1257' 0330856, 0330955, 0000099, 0001, ee0eeeee0eaea0
027!), 0330955, 0331054' 0000099, 80G1, a0ae 24 27 a a a a 0 0 a 0
2005, 0381054, 0390463, 0089499, 0011, ee32 a a a a a a e e 0 e
0258, 0390463, 0390468, 0000005, 8081, 00ee 3- 10 a a a 0 e 0 e e

0257' 03901168, 0390611, 0000143, 0601, 0686906880Beoo
0258, 8390611, 13390677. 00a0066, 6881, 00a8 3 11 a a 0 0 0 0 o a

0257. 0390677' 6391132, 0080505, 0881, aa08aeeeeeeeea
0265, 0391182, 0391852. 00fJB676, 0005, 0068 11 a a a a a a a a 0

2605. a391852, 0392665, 0880813. aae3, 00899066a88606

0274. 0392665. 0392726. eoao061, 0001, 0000 4 10 e a a a a a 0 a

2805. 0392726, 0399921, 0867195, 0007, 208eaa6eaao0aa

0264, 0399921, 0399932, 8eaeell, 9001, aeae 28 e -ta63 -321 o a o 0 o a

6257, 6399932, 04a0432, 0096509, 0001, o0aa a e a a a a a e a a

0265, 0400432, 0400437. e0aeea5, aoel, eeee2seaaee0oee

2005, a400437. 0483162, 8002725, 9906, oa8e a a e a a a a 0 o a

0271. 0483162, 0409983, 0006821, 0902, ease 5 a a a a a a a a o

0257. 0409983, 0411296, 8001313,. eae3, eeeaaeaaaeaaee

0271. 0411296, 0423335, a012089, 6a82, ease 6 e a a a 0 a a a a

8257. 0423385, 0424533, 0801148, 8864, eeeeaaeaae0ea8

0271. 0424533, 043a789, 0886256, 0802, 0BGe5aeae0seae
2088, 01\30789, 0433233, 0682444, ae04, eo00 a a a a 0 0 a a a a

0271. 0433233, 0436100, 0002867. 0902, saaeseaaaaa0a0

6257. 0436180, 6437441, oaal341, 0983, 8080869988Baee

0271, 04371141, 8442873, 00a5432, a882, eeaa966aae0e0a

6257. 8442873, 0444213. oa81348, 8093, 800aaaaaeeae80

8271, 8444213, 0452688, eaS8475, oae2, eaa912888888aae

2088, 8452688, 0454533. aea1845. 08a3, aeeaeaeeeeeaa8

0271. 0454533, 0457972, eaa3439, 0002, 80801389088aaee

0257, 0457972, 9459323, 8001351, 0a83, 8Beaaaeeaaaaea

8271. 0459323, 6465082, 0885679, 8002, a0a9 19 a e a a e 9 a a 9

0257. 0465982, 0466447. 0881445, 8883, eaaeassaa0aaae

8271. 0466447. 0469363, eae2916, 0092, eeae 14 a a a a a e e a o
2008, a469363, 0471423, 0682868, 8883, aeaa a a a a a e a e a 0

0271, 0471423, 0476992, 0885569, 8892, aeea 15 a a a a 0 a a a a

2084, 0476992, a479178, 8882186, a896, 2848 a a a a a a a a 8 a
0271, 0479178, 6481617. 00a2439, aee2. 8888168999089a8

2008, 0481617. 0483122, 08015a5, 8083, eeaaaeaaeee8a8
0271, •J433122, 0488362, 0aB5188, 88a2, ease 17 e a a e a e a a e
8257, 0488382, 0489581, 8881279, ea83, 8Beaeae08Saeae

0271. 0489581, 0493701, 8004120, 8962, 80692299Baeaaae

0257. 0493791, 0495985, 6B01384, 9893, 6ae6aa0aaaaeaa

9271, 0495085, 05al352, aaa6267. 90a2, 80862Ja998a9a06
2008, 6581352, 0503543, 9Ga2191, eea3, eeaaeeaaeeeaaa
0271, 0583543, 0588262, 8884719, 6892, eaea 19 e e a a a e a 0 0

0257, 85t!8262, a509479, aea1268, ea04, eaa0 9 a a a a a e e e e
6271, 0589479, 0516632, 6887162, oa82, eeaa2ea9eeaeeee

2008, 0516632, 8518159, ea91527. a993, aee6eaaeea9e9a

0271. 8518159, 0526687. 99a8448, ae82, ease 21 a a a a e a 0 e a

8257, a526687. 6527864. 9a91257. 8893, eaa99a6aaeae8a

8271, 6527864, 0530775, 0aS2911, eae2, eeee25ea08889ae

0257, 0538775. 8532977. aael382. 8803, eaeaeaeeeeeeee

13271, 8532977, 0536(;26, 9983949, 9892, ee0e 26 e a e e a e a 9 a

9257. 9536a26, 9537213, 0881187. 9865, e0eeeeeeaeeaea

0271, 0537213, 8542799, aaa5586, 8092, 0aa9 27 a e a e e e e a a

20a5. 9542799, 0552279, eea9486, 6621, 2854aaeaaaee0e

193

B.S Output from Pass 3

Pass 3 reduces the Pass 2 input stream from 284 lines to 64 lines.

3012' 0316604' •3318571, 0001967' 01305,

3002. 03166Ei4, 9318571, 0991967, 0005, 1 1 23 2 3 4 5 6 7 8 9 19 11 12 13 14 15 16 17 18 19 24 20 21 22 23

3001, 0316684, !3318571, 0001967, 0005, 24 1 2 3 4 5 6 7 8 9 19 11 12 13 14 15 16 17 18 19 29 25 26 27 28

ZOf:.\5, 0318571, 0322707. 0004136, 000::18, 000211808691!660

3012, 0322707. 0322712, 0000005, 0801,

2008, 0322712' 0324733, E!002921, o•Jel. eeoa a e e a e a e e a e
3001, 8324733, 6329992. 0£•85169, 0011 .. 4 1 2 3 4

2008, 03299•32. (1331882' 0001900, eDet, eeee e e 6 a e a e a e a
3002, 0331802, 9332Hi5, 09130363, 8005, 113234

2002, 0332165, 8332840, 0800675, 8003, 09326696066996

30-83' 0332348, 9346969, 00€17229, 0025, 1145689

2002, 0348069, 9340904, 0000835, 0003, 08328099069996

3003, 0348904' 9343458, 0002554, 0004, 1 1 1 16

2005, 0343458, 0346160, 0002702, 0809, 06349090009060

3083, 9346166, 0348752, 0002592, 0809, 1121112

2005, 0348752. 0349867' 0001055, 0005. 08328660000969

3El03, 0349867' 6352828, 0003021, 0069, 1121413

2002, 0352828, 0353481., 0080653, 0063, BG326'000a0a000

3El03, 0353481, 8354739' 6061308' 0009, 1121516

2003, 6354789, ()355865, 0061676, 0863, 00326000006'000

31:101, 0355865, 9359293. 6003428, 6605, 2 17 18

2005, 0359293, 6366402. 6001109, 0003, ao9e9a0aaeee06

3016, 0360402. 8360545, 0600143, 8961. 1 (1 18

2002, iB56545, 0351188, 0000643, 0963, 69320000090000

301(!, 9361188, 0361281, 0000093, 0991, 1 1 1 17

2002, 0361281. 0362694, 0000813, 0603, 603296aa000660

36l'J3, 6362094. 0364367. 0082213. 0609, 112192a

2005, 0364307, 6369366, 8604999, Baas, 9B3266i3a00aa80

3003, 6369386, 6359789, 80l'JB483, 0064, 1 1 1 21

2808, l'J369789, 6372151, 8082362, 0a61, B06Ba0e0ea0aae

3803, 0372151, 0372837. 6666686; 6684, 1 1 1 22
2002, 6372837, 6373469, 0086632, 60&3, 6632a8B6860880

3(l03, 0373469, 0374895, 06813626, 8664, 1 1 1 23

2005, 6374695, 6375737. 0661642, sees, a832988686806a

3001, 0375737. 8376429, 0666692, 6602, 1 24
2005, 0376429, 8377182, 0660753, 8063, aoaaeeaea8ae0a

3016, 8377182, 6377319, 6a60137. fl861, 1 1 1 24

2002, 6377319, El378159, 0tl6084EI, 0663, 6032a6a0806606

3003. 0378159, 8381654, 8662895, 6014, 113252527

2085, 8381a54, 0398463, 06094l'J9, 0611, 663266a6006a6a

3005, 8398463, 9391852, 8881389, 0009,
3066, 6398463, 8391852, 0801389, 0609, 1 11 0

2005, 8391852. 0392665, 8668813, 6983, aeaaaeaa06aaae

3616, 0392665, 6392726, 6660661, 8aa1. 1 1 1 19

2085, l'J392726, 0399921, 8067195, 8687, 2B80666aaaaa8a

3611, 6399921, 6460437. 6866516, 0663,
2005, 6480437. 6463162, ooa2725. 0666, 8eaa a a a a a a a a a a

3007. 6463162. 0436789, 0827627, 8813,
3068, 0403162, a43a789. 8627527, 6613,
2008, 6430789, 0433233, 0602444, 0004, aa0a a a a a a a a a a 9

3067. 0433233, 6452688, 8819455. 8012,
2808, 8452688, 8454533, 88a1845, 0803, ao8a8aa0aaaaa8

3887. 6454533, 0469363, 0614836, 8012,
2008, 8469363, 8471423, 06a2a6B, 8003, aaaaaaaa0aaaa8

3007. 6471423, 6476992. 0Ba5569, 00a2,
2004, 8476992, 0479178, 0892186, 0886, 2fl4Sae6a0aaaaa

30l'J7, 8479178, 0481617. 0602439, 0aa2.
2088, 8481617. 9483122, 6061565, 6683, ee6a0ae00Ba0aa

3097, a483122, 85il1352, aa18239, 0912.
20!38, 8591352. 0563543, 90a2191, 0EHB, 60689a!JB860998

3897. 8563543, a516632, ae13689, e5as.
2008, 0516632, a518159, a6B1527. 9063, aeaea80aeaeeaa

3887. a518159, a542799, 6B2464a, 0819,
2005, 65112799, 8552279, 890948a, B021. 2B54aaa0aeaaa6

194

B.6 Output from Pass 4
Pass 4 reduces the Pass 3 input stream from 64 lines to I 0 lines.

11002, 831660.:1, 8322797. 8•:186183, 0013, 1826 a a a a a a '3 e a a
4007, 8322707' El324733, 8882826. 0002, aaezeaeeaasaee
4001, 0324733, 8331892, GG67d69, 8012, aeeeeeaeaaoeea
1\<302, 0331302, 0355865, 0824863, 0087' 00348000000008
41')01, 0355865, 0360462, GJ$84537, !'!008, eeJz a a e e 0 a a o a a
4003, 0360402, 0375737. 8815335, 8843, 803280908El0G60
4001, 0375737. 8377182, 8081445, 0005, aaJz e a a a a e a a a a
4003, 0377182, 0399463, £1813281, 0029, 0032 a a a e e e e a e a
4005, 0390463, 0392665, 8662262, 0012. 1056 a a e a a a a a a a
4086, 0392665, 0552279, 6159614. 8143, Jlla a a a a a a a 8 a a

195

B.7 Output from Pass 5

This fmal pass of the parser combined the results of the previous passes to produce a parse tree
and a summary of the session.

B.7.l Parse Tree

!'ass 5 combines elements of passes 0, !, 3, and 4, producing a parse tree with -150 nodes.

l-1on Feb 13 22:52:46 1989, File C: RCD3B06. THP
1 Define Hierarchies [61.03 sees, 13 ops]

1 Start Over in the \·!orkspace and •••
I Created a new tree: (1 -> 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 20 21 22 23) and ...
1 Ct·eated 24 solo nodes: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 26 27 28 [19.67 sees, 5 ops]
I I pause [2.81 sees)

I I I Leave Prose II for another Application [0.77 sees]
I I I P'"" [0.43 sees)
I I I pause [2.53 sees]
I I I Open a ~"orkspace fi 1 e [13.13 sees]
I I Refocus [41.36 sees, 8 ops]
I I I pause [6. 70 sees]
I I I pause [8.29 sees]
I I I nove the Hap \·Iindow [0.06 sees]
I I I pause [0.33 sees]
I I I Show the ~1ap Hindow [0.05 sees]
I I I pause [2.91 sees]
I 1 I Zoom in the t~ap Hindow [1.65 sees]
I I I pause [21.37 sees]
1 tlew \o/orkspace [20. 26 sees, 2 ops]
I I Start Over in the Horkspace [0.05 sees, 1 op]
I I I Start a new workspace [0.05 sees]
I I Pause [20.21 sees, 1 op]
I I I pause [20.21 sees]
I Exploration [70.69 sees, 12 ops]
I 1 C1·eated 4 so~ a nodes: 1 2 3 4 [51.69 sees, 11 ops]
I I I Create node 1 [0.11 sees]
I I I Label node 1 [5.99 sees]
I I I pause [5. 77 sees]
I I I Create node 2 [0.16 sees]
I I I La be 1 node 2 [7. 42 sees]
I I I pause [2.47 sees]
I I I Create node 3 (0.11 sees]
I I I Label node 3 [17.47 sees]
I I I pause [2.19 sees]
I I I Create node 4 [0.11 sees]
I I I La be 1 node 4 [9. 89 sees]
I I Pause [19.00 sees, 1 op]
I I I pause [19.00 sees]
1 Define Hierarchies [240.63 sees, 87 ops]
1 I Created a new tree: (1 -> 2 3 4) [3.63 sees, 5 ops]
I I I Link nodes (1 -> 2) [0. 77 sees]
I I I pause [0.88 sees]
I I I Link nodes (1 -> 3) [0.55 sees]
I I I pause [0. 71 sees]
I I I link nodes (1 -> 4} [0.72 sees]
I I Cleanup [6. 75 sees, 3 ops]
I I I pause [2.64 sees]
I I I Tidy the workspace [0.05 sees]
I I I pause [4.06 sees]
1 1 Gre\~ an existing tree: (1 ->56 8 9) [72.29 sees, 25 ops]
I I I Create node 5 [0.17 sees]
I I I label node 5 [5.49 sees]
I I I pause [2.53 sees]
I I I pause [5. 88 sees]

196

I I I Create node 6 [0.16 sees]
I I I label node 5 [9.23 sees]

I I I pause [1.32 sees]

I I I Link nodes (2 -> 5) [0.60 sees]

I I I pause [0.82 sees]
I I I link nodes (2 -> 6) [0. 77 sees)

I I I pause [1.38 sees]
I I I Create node 7 [0.11 sees]
I I I Label node 7 --cancelled-- [9.44 sees]

I I I pause [3. 85 sees]

I I I Delete _node 7 [0.05 sees]

I I I pause [2.09 sees]
I I I Create node 8 [0.11 sees]
I I I label node 8 [10.60 sees]
I I I pause [1. 54 sees]

I I I Create node 9 [0.11 sees]
I I I label node 9 [8.07 sees]
I I I pause [5.99 sees]
I I I link nodes (3 -> 8) [0. 71 sees]

I I I pause [0.72 sees]
I I I link nodes (3 -> 9) [0.55 sees]

I I Cleanup [8.35 sees, 3 ops]

I I I pause [2.47 sees]

I I I Tidy the workspace [0.05 sees]
I I I pause (5.83 sees]
I I Grew an ex.istinq tree: (1 -> 10) [25.54 sees, 4 ops)

I I I Create node 10 [0.05 sees]
I I I label node 10 [22.63 sees]
I I I pause [1.92 sees]
I I I link nodes (3 -> 10) [0.94 sees]
I I Refocus [27.02 sees, 9 ops]
I I I pause [3.02 sees]
I I I Tidy the workspace [0.05 sees]
I I I pause [3.41 sees]
I I I Show the Hap Window [0.05 sees]
I I I pause [2.20 sees]
I I I Zoom in the Hap Window [0. 82 sees]
I I I pause [10.71 sees]
I I I Zoom in the Hap \·Iindow [1.27 sees]
I I I pause [5.49 sees]
I I Grew an existing tree: (1 -> 11 12) [25. 92 sees, 9 ops]

I I I Create node 11 [0.05 sees]
I I I Labe 1 node 11 [5. 94 sees]
I I pause [1.81 sees]
I I link nodes (3 -> 11) [0.88 sees]
I I pause [1.59 sees]
I I Create node 12 [0.11 sees]
I I labe 1 node 12 {B.l3 sees]
I I pause [1.48 sees]
I I Link. nodes (3 -> 12) [0.93 sees]
I Refocus [10.55 sees, 5 ops]
I I pause [3.02 sees]
I I Tidy the workspace [0.06 sees]
I I pause [3.13 sees]
I I Zoam in the Hap Window [1.32 sees]
I I pause [3.02 sees]
I Grew an existing tree! (1 -> 14 13) [39.21 sees, 9 ops]

I I Create node 13 [0.05 sees]
I I label node 13 [6.93 sees]
I I pause [1.48 sees]
I I Create node 14 (0.11 sees}
I I label node 14 [16.81 sees]
I I pause [1.97 sees]
I I Link nodes {4 -> 14) [1.10 sees]
I I pause [0. 99 sees]
I I lfnk. nodes (3 -> 13) [0. 77 sees]
I Cleanup [6.53 sees, 3 ops]
I I pause [3.07 sees]

197

I Tidy the workspace [0.06 sees]

I pause [3.40 sees]
Grew an existing tree: (1 -> 15 15) [13.08 sees, 9 ops)

I Create node 15 [0.11 sees]
I Label node 15 [3.57 sees]

I pause [1. 71 sees]
I Create node 16 [0.11 sees]

I I label node 16 [3.57 sees]
I I pause [1.48 sees]
I I Link nodes (-t -> 15) [0.66 sees]

I I pause [0.88 sees]

I I Link nodes (4 -> 16) [0.99 sees]
I Cleanup and Take Stock [10.76 sees, 3 ops]

I I pause [2.19 sees]
I I Tidy the workspace [0.06 sees]

I I I pause [8.51 sees]

I Exploration [45.37 sees, 8 ops)

I I Created 2 solo nodes: 17 18 [3-1.28 sees, 5 ops]

I I I Create node 17 [0.17 sees]
I I I label node 17 (3.62 sees]
I I I pause [1. 98 sees]

I I I Create node 18 [0.11 sees]

I I I Label node 18 [28.40 sees]
I I Refocus [11. 09 sees, 3 ops]

I I I pause [3.07 sees]
I I I Zoom in the Map Hind ow [0. 94 sees]

I I I pause [7.08 sees]

I Top Down Construction [153.35 sees, 43 ops]

I I Hooked existing nodes to a tree: (1 -> 18) [1. 43 sees, 1 op]

I I I Link nodes (1 -> 18) [1.43 sees)

I I Cleanup [6.43 sees, 3 ops]

I I I pause [2. 58 sees]

I I I Tidy the workspace [0.06 sees]

I I I pause [3. 79 sees]

I I Hooked existing nodes to a tree: (1 -> 17) [0. 93 sees, 1 op]

I I I Link nodes. (4 -> 17) [0. 93 sees]

I I Cleanup [8.13 sees, 3 ops]

I I I pause [1.98 sees]

I I I Tidy the workspace [0. 05 sees]

I I I pause [6.10 sees]

I I Grew an existing tree: (1 -> 19 20) (22.13 sees, 9 ops]

I I I Create node 19 [0.11 sees]

I I I Label node 19 [9.66 sees]

I I I pause [1. 60 sees]

I I I Create node 20 [0.11 sees]

I I I Label node 20 [5.16 sees]

I I I pause [2. 86 sees]

I I I Link nodes {18 _,. 19) [0.71 sees]

I I I pause [0.88 sees]

I I I Link nodes (18 -> 20) [1.04 sees]

I I Refocus [49.99 sees, 5 ops]

I I I pause [2.69 sees]

I I I Tidy the workspace [0.06 sees]

I I I pause [15.82 sees]

I I I Zoom in the ~lap Window [1.26 sees]

I I I pause [30.16 sees]

I I Grew an existing tree: (1 -> 21) [4. 83 sees, 4 ops]

I I I Create node 21 [0.10 sees]

I I I Label node 21 [2.70 sees]

I I I pause [1.37 sees]

I I I Link nodes (18 -> 21) [0.66 sees]

I I Pause [23.62 sees, 1 op]

I I I pause [23.62 sees]

I I Grew an existing tree: (1 -> 22) [6.86 sees, 4 ops]

I I I Create node 22 [0.11 sees]

I I I Label node 22 (4.66 sees]

I I I pause [1.38 sees]

I I I Link nodes (4 -> 22) [0. 71 sees]

198

I Cleanup [6.32 sees, 3 ops)
I I pause [2.80 sees]
I I Tidy the 11orkspace [0.06 sees]
I I pause [3.-16 sees]
1 Grew an existing tree: (1 -> 23) [6.26 sees, 4 ops]
I I Create node 23 [0.11 sees]
I I Label node 23 [-+.01 sees]
I I pause [1.37 sees]
I I Link nodes (4 -> 23) [0. 77 sees]
I Refocus (16.-12 sees, 5 ops]
j I pause [3.02 sees]
I I Tidy the wor·kspace [0. 06 sees]
I I pause [8. 73 sees]
I I Zoom in the Hap \<Iindow [0.55 sees]
I I I pause [-1.06 sees]
1 Explot·ation [1-1.-15 sees, 5 ops]
I I Created a solo node: 24 [6.92 sees, 2 ops]
I I I Create node 24 [0.06 sees]
I I I Label node 24 [6.86 sees]
I I Refocus [7.53 sees, 3 cps]
I I I pause [3. 79 sees]
I I I Zoom in the /-lap Hindow [0.88 sees]
I I I pause [2. 86 sees]
I Top Down Construction (132.81 sees, 29 ops]
I I Hooked existing nodes to a tree: (1 -> 24) [1.37 sees, 1 op]
I I I Link nodes (1 -> 24) [1.37 sees]
I I Cleanup [8.-10 sees, 3 ops]
I I I pause [3. 79 sees]
I I I Tidy the workspace [0.06 sees]
I I I pause [4.55 sees]
I I Grew an existing tree: (1 -> 25 26 27) [28.95 sees, 14 cps]
I I I Create node 25 [0.06 sees]
I I I label node 25 [5.05 sees]
I I I pause [1. 27 sees]
I I I Link nodes (24 -> 25) [0. 71 sees]
I I I pause [0. 66 sees]
I I I Create node 26 [0.11 sees]
I I I Label node 26 [7.08 sees]
I I I pause [1. 93 sees]
I I I Create node 27 [0.16 sees]
I I I labe 1 node 27 [7. 69 sees]
I I I pause [1.32 sees]
I I link nodes (24 -> 26) [0.93 sees]
I I pause [0. 99 sees]
I I Link nodes (24 -> 27) [0.99 sees]
I Refocus [94. 09 sees, 11 opS]
I I pause [3.41 sees]
I I Tidy the workspace [0. 05 sees]
I I pause [6. 98 sees]
I r Zoom in the Map Hindow [0.99 sees]
I I pause [45.97 sees]
I I Zoom in the ~1ap Window (1.04 sees]
I I pause [4.45 sees]
I I Zoom 1 n the ~lap Hi ndow [1. 3 7 sees]
I I pause [10.93 sees]
! I Zoom in the Nap ~Iindow [0.83 sees]
I I pause [18. 07 sees]
I Tree Structure Revision [22.02 sees, .12 ops]
I I Broke existing 1 inks and ... ·
I I Deleted a node: 11 [13.89 sees, 9 ops]
I I I Break link (l -> 10) [0.05 sees]
I I I pause [1.43 sees]
I I I Break link (l -> 11) [0.66 sees]
I I I pause [5. 05 sees]
I I I Delete node 11 [6. 70 sees]
I I I I Set Delete !-lode On [0.11 sees, 1 op]
I I I I pause [0.77 sees, 1 op]
I I I I Delete node 11 [0.06 sees, 1 op]

!99

I I pause [5. 71 sees, 1 op]
I I I Set Delete Hade Off [0.05 sees, 1 op]
I Refocus [8.13 sees, 3 ops]
I I pause [3.13 sees]
I I Zoom in the Hap ~Iindow [1.16 sees]
I I I pause [3 .84 sees]
I Document Revision [1596.14 sees, 143 ops]
I I Hooked existing nodes to a tr·ee: {1 -> 10} [0.61 sees, 1 op]
I I I Link nodes (~ -> 10} [0.61 sees]
I I Refocus [71. 95 sees, 7 ops]
I I J pause [2.80 sees]
I I J Tidy the workspace [0.05 sees]
I I I pause [34.55 sees]
I I I Save the workspace [8.57 sees]
I I I pause [11.20 sees]
I I I Zoom in the Hap Hindow [2. 78 sees]
I I I pause (12.08 secsl
I I Unproductive work [5.16 sees, 3 ops]
I I I Create node 28 (0.11 sees]
I I I pause [5.00 sees]
I I I Delete node 28 [0.05 sees]
I I Refocus [27.25 sees, 6 ops]
I I I pause [12.47 sees]
I I I Zoom in the main windo\t [2.42 sees]
I I I pause [2.63 sees]
I I I pause [4.56 sees]
I I I pause [5.11 sees]
I I I pause [0.06 sees]
I I Edited existing nodes and
I I Revised existing nodes [276.27 sees, 13 ops]
I I I Edit node 5's contents [68.21 sees]
I I I I Leave Prose II for another Application [67.58 sees, 1 op]
I I I I Edit node 5 's contents [8. 71 sees, 1 op]
I I I pause [4. 73 sees]
I I I pause [3.62 sees]
I I I pause [4. 78 sees]
I I I Edit node 6's contents [120.89 sees]
I I I I Leave Prose II for another Application [119.96 sees, 1 op]
I I I I Edit node 6's contents [8.93 sees, 1 op]
I I ! pause [4.07 sees]
I I I pause [2.69 sees]
I I I pause [4. 67 sees]
I I I pause [0.05 sees]
I I I Edit node 5's contents [62.56 sees]
I I I I Leave Prose II for another Application [61.68 sees, 1 op]
I I I Edit node 5's contents [0.88 sees, 1 op]
I Pause [24.44 sees, 4 ops]
I I pause (15.11 sees·]
I I pause (4.44 sees]
I I pause [4.84 sees]
I I pause [0.05 sees]
I Edited existing nodes [194.55 sees, 12 ops]
I I Edit node S's contents [28.67 sees]
I I I Leave Prose II for another Application [27.96 sees, 1 op]
I I J Edit node S's contents [8. 71 sees, 1 op]
I I pause [4.51 sees]
I I pause [4. 86 sees]
! I pause [4.84 sees]
! I Edit node 9's contents [54.32 sees]
I I I Leave Prose II for another Application [53.49 sees, 1 op]
I I I Edit node 9's contents [0.83 sees, 1 op]
I J pause [5.49 sees]
I I pause [3.35 sees]
I I pause [4.56 sees]
I ! Edit node 12's contents [84.75 sees]
I I I Leave Prose II for another Application [84.83 sees, 1 op]
I I I Edit node 12's contents (8. 72 sees, 1 op]
I Pause (18.45 sees, 3 ops]

200

I I pause [8.24 sees]
I I pause [5.00 sees]
I I pause [5.21 sees]

I I Edited existing nodes [148.30 sees, 12 ops]

I I I Edit node 13's contents [34.39 sees]

I I I I Leave Prose II for another Application [33.67 sees, 1 op]

I I I I Edit node 13's contents [0.72 sees, 1 op]

I I I pause [4.50 sees]

I I I pauSe [3.7-1 sees}

I I I pause [5. 27 sees]

I I I Edit node lO's contents [56.79 sees]

I I I I Leave Prose II for another Application [56.08 sees, 1 op]

I I I I Edit node lO's contents [0.71 sees, 1 op)

I I I pause [·L 62 sees]

I I I pause [~.83 sees]
I I I pause [5.00 sees]

I I I Edit node 14's contents [29.16 sees)

I I I I Leave Prose It for another Application [28.12 sees, 1 op)

I I I I Edit node 14's contents [1.04 sees, 1 op]

I I Pause [20.60 sees, 3 ops]
I I I pause [8.79 sees]
I I I pause [6.48 sees]

I I I pause [5. 33 sees]

I I Edited existing nodes [55.69 sees, 2 ops]

I I I Edit node 15's contents [55.69 sees]
I I I I ·Leave Prose II for another Application [54.93 sees, 1 op]

I I I I Edit node IS's contents [8.76 sees, 1 op]

I I Take Stock [21.86 sees, 6 ops]
I I I pause [6.21 sees]
I I I Save the workspace [J. 79 sees]
I I I pause [2.42 sees]
I I I pause [0.88 sees]
I I I pause [3.51 sees]
I I I pause [5.85 sees]
I I Edited existing nodes [24.39 sees, 2 ops]
I I I Edit node 16's contents [24.39 sees]
I I I I Leave Prose II for another Application [23.18 sees, 1 op]

I I I I Edit node 16's contents [1.21 sees, 1 op]

I I Pause [15.05 sees, 3 ops]
I I I pause [6. 92 sees]
I I I pause [3.02 sees]
I I I pause [5.11 sees]
I I Edited existing nodes [182.38 sees, 12 ops]
I I I Edit node 17's contents [51.80 sees]
I I I I Leave Prose II for another Application [50.92 sees, 1 op]

I I I I Edit node 17's contents [0.88 sees, 1 op]

I I I pause [4. 72 sees]
I I I pause [2.75 sees]
I I I pause [5.32 sees]
I I I Edit node 22's contents [..l1.20 sees]
I I I I Leave Prose II for another Application [40.43 sees, 1 op]

I I I I Edit node 22's contents [0. 77 sees, 1 op]

I I I pause [5.05 sees]
I I I pause [3.46 sees]
I I I pause [5.33 sees]
I I I Edit node 23's contents [62.67 sees]
I I I I Leave Prose II for another Application [61.84 sees, 1 op]

I I I I Edit node 23's contents [0.83 sees, 1 op]

I I Pause [21.91 sees, 3 ops]
I I I pause [4.83 sees]
I I I pause· [11. 87 sees]
I I I pause [5.21 sees]
I I Edited existing nodes [130.89 sees, 8 ops]
I I I Edit node 19's contents (47.19 sees]

I I I I leave Prose II for another Application [46.47 sees, I op]

I I I I Edit node 19's contents [8.72 sees, 1 op]

I I I pause [4.00 sees]
I I I pause [3. 03 sees]

201

I I pause [4.99 sees]
I I pause [0.06 sees]
I I Edit node 20's contents [7!.62 sees]

I I I Leave Prose II for another Application [70.47 sees, 1 op]

I I I I Edit node 20's contents [1.15 sees, 1 op]

I I Pause [15.27 sees, 3 ops]
I I I pause [6.48 sees]

I I I pause [3.38 sees]
I I I pause [5.49 sees]
I I Edited existing nodes (246.-+0 sees, 19 cps]

I I I Edit node 21's contents [84.48 sees]
I I I I Leave Prose II for another Application [83. 76 sees, 1 op]

I I I I Edit node 21's contents [0. 72 sees, 1 op]

I I I pause [4. 72 sees]
I I I pause [2.6-1 sees]
I I I pause [5.21 sees]
I I I Edit node 25's contents [29.11 sees]

I I I I Leave Prose II for another Application [28.18 sees, 1 op]

I I I I Edit node 25's contents [0.93 sees, 1 op]

I I I pause [4.45 sees]

I I I pause [3.46 sees]
I I I pause [5.11 sees]
I I I Edit node 26's contents [39.49 sees]
I I I I Leave Prose II for another Application [38.56 sees, 1 op)

I I I I Edit node 26's contents [0.93 sees, 1 op]

I I I pause [3. 74 sees]
I I I pause [2. 74 sees]
I I I pause [5.28 sees]
I I I pause [0.05 sees]
I I I pause [0.06 sees]
I I I Edit node 27's contents [55.86 sees]

I I I I Leave Prose II for another Application [55.03 sees, 1 op]

I I I I Edit node 27's contents [0.83 sees, 1 op]

I I Refocus [94.80 sees, 21 ops]
I I I pause [5.43 sees]
I I I 1·1ove the flap Hindow [0.06 sees]

I I I pause [0.33 sees]
I I I Show the !·lap Window [0.05 sees]
I I I pause [2.26 sees]
I I I Zoom in the Hap \·Iindow [2.14 sees]

I I I pause [5.82 sees]
I I I loom in the 1·1ap ~Iindow [1.26 sees]

I I I pause [3. 96 sees]
I I I Zoom in the Hap Window [0.82 sees]
I I I pause [7.86 sees]
I I I Save the workspace [4.12 sees]

I I I pause [6.64 sees]
I I I 1·1ove the Outline·Window [0. 06 sees]

I I I pause [0.44 sees]
I I I Show the Outline \Hndow [0.05 sees]
I I I pause [11.59 sees]
I I I Save the workspace [16.92 sees]
I I I pause [4.12 sees]
I I I Save the workspace [17.19 sees]
I I I pause [3.68 sees]

202

8.7.2 s·ummary File for Session S18R0108

"S18R0188.P4'
450, Number of nodes in the parse tree
153, Number of commands

28, Number of creates
3, Number of deletes
0 • Number of copies

26, Number of links
2, Number of break links
0 • Number of moves

14, Number of tidies
1, Number of cancelled operations

1, Number of opens
5, Number. of saves
0, Number of nodes in 1 as t saved ·tree
0, Number of nodes with no offspring
0, ~laximum depth of saved tree

10, Cumulative X vector of creates
0, Cumulative Y vector of creates

0.81, Stage Index

20, Number of edit node operations
0, Number of help requests
0, Number.of long pauses
0, Number of user comments
1, Number of times s~bject left Prose II

30, Number of constructive episodes
21, Number of housekeeping episodes
10, Number of phases

276.3, Longest constructive episode, in seconds
24.4, Longest meta-housekeeping episode, in seconds
94.8, Longest housekeeping episode, in seconds

1103.2, Total seconds spent editing nodes
0.0, Total seconds spent in help
0.0, Total seconds spent in long pauses

891.0, Total seconds in all pauses
0.0, Total seconds spent in comments
0.8, Total seconds spent outside Prose II

1634.5, Total seconds in constructive episodes
178.6, Total seconds in meta-housekeeping episodes
543.7, Total seconds in housekeeping episodes

2356.8, Total seconds in this session

203

APPENDIX C. PARSER COMMAND LINE
PARAMETERS

Each of the passes in the parser uses one or more command line parameters to control the work
done in that pass.

Pass 0 Command Line Parameters: Pass 0 uses only one command line parameter, to
control whether debugging information is to be generated in its output f!le.

Option
-d

Description
Tum on tracing and generate the output information used for debugging this pass. A
previous try at parsing a given input f!le failed on this pass; the debugging information
should help a human in fmding problems in this pass.

Pass 1 Command Line Parameters: Pass l uses two command line parameters to control
its operation.

Option
-c

-d

Description
Send only the ID of the command to the output f!le, rather than the entire 16-tuple of
information. This can be used to generate a condensed f!le containing all the com­
mands issued.
Turn on tracing and generate the output information used for debugging this pass. A
previous try at parsing a given input f!le failed on this pass; the debugging information
should help a human in fmding problems ·in this pass.

Pass 2 Command Line Parameters: As with Pass 0, Pass 2 allows one optional command
line parameter: to control whether debugging information should be generated because a parsing
bug was found.

Option
-d

Description .
Tum on tracing and gener;tte the output information used for debugging this pass. A
previous try at parsing a given input ftle failed on this pass; the debugging information
should help a human in fmding problems in this pass.

Pass 3 Command Line Parameters: Pass 3 of the parser accepts eight optional command­
line flags.

Option
-d
-f

-I

Description
Tum on the extra tracing and information used for debugging this pass.
Create a new f!le and write the current workspace to it in indented format every time a
successful Save Workspace command is encountered. If multiple saves are done, these
f!les are numbered with DOS file extensions of .1, .2, etc. This allows seeing such
things as how the trees were evolving during the trace, whether trees were deep or
wide or both, and how a node's position in a tree correlated with when it was created.
Write a unique letter, instead of the four-digit internal parser symbol, when producing
each record in the output f!le. This helps when reading this file as input to a
spreadsheet and graphing the distribution of the types of phases.

204

-m Save the ftle structure in spreadsheet format. This format was used to compare the
order of node creation against the node's position in a pre-order tree trm·ersal. In the
following example, the frrst node in the tree (the root) was the seventeenth node
created.

pre-order
position node ID

--------- -------
1 17
2 1
3 2
4 3
5 6
6 4
7 7
8 15
9 16

10 12

-s Output the sequence of commands that compose each episode.
-t Output only the operators and times, rather than the full n-tuples.
-2 Output Pass 2 symbols only.
-3 Output Pass 3 symbols only.

Pass 4 Command Line Parameters: Pass 4 of the parser accepts two optional command­
line flags.

Option
-d
-I

Description
Tum on the ex'tra tracing and information used for debug__lling this pass.
When producing each record in the output ftle, output a unique letter, instead of the
four-digit internal parser symbol. This helps when reading this ftle as input to a
spreadsheet and graphing the distribution of the types of phases.

Summary Pass Command Line Parameters: The command line parameters for the
summary pass generally controlled the format of the output. Prose l l itself allowed tree structures
to be input in several different formats; the summary pass could generate the parse tree in these
same formats.

Option
filename

-d
-i
-r

-s

-t

Description
This summary pass reads from the preceding intermediate fries. not from stdin. This
specifies the ftlenarne used by each of the intermediate ftles. It assumes the interme­
diate ftles have DOS ftle extensions of . P0, . P1, ... , • P4.
Turn on the extra tracing and information used for debugging this pass.
Produce an indented parse tree; that is, write the parse tree using the . !NO frie format.
Produce a Ready!-compatible parse tree; that is, write the parse tree using the . ROY ftle
format.
Produce a Script-compatible indented parse tree, with Script "&lbrk." tags and vertical
bars, 1. to illustrate indentation.
Write text headers in the summary ftle. This makes the summary information for a
single protocol record easily readable by a human. If this option is not specified, the
output is written to stdout in ASCII spreadsheet format.

205

REFERENCES

Aho, A.V. and J.D. Ulman. Principles of Compiler Design. Addison-Wesley, Reading, '.lA,
1977.

Ausubel, D.P. The Psychology of.>leaningful Verbal Learning. Grune and Stratton, :'>ew York,
:--IY, 1963.

Bates, '.I. The theory and practice of augmented transition network grammars. In Natural Lan­
guage Communication with Computers, L. Bole, Ed., Springer Verlag, :'>ew York, :\Y, 1978,
191-260.

Beard, D.V. and J.Q. Walker II. l\avigational Techniques to Improve the Display of Large Two­
Dimensional Spaces. Behaviour & Information Technology 9, 6 (!990), 451-466. Also available as
Technical Report TR89-042, Department of Computer Science, t:niversity of Korth Carolina at
Chapel Hill, October 1989.

Bhaskar, R. and H.A. Simon. Problem solving in semantically rich domains: An example from
engineering thermodynamics. Cognitive Science I (1977), 193-215.

Bolter,J.D. and :vt. Joyce. Hypertext and Creative Writing. Hypertext '87 Papers. Technical
Report TR88-0 13, ·Department of Computer Science,. t:niversity of Korth Carolina at Chapel
Hill, ('.larch 1988), 41-50.

Britton, B.K., B.J.F. '.!eyer, '.I. H. Hodge, and S.\,1. Glynn. Effects of the organization of text
on memory: tests of retrieval and response criterion hypotheses. Journal of Experimental Psy­
chology: Human Learning and Memory 6 (1980), 620-629.

Brooks, Jr., F.P. The ;Hythical Man-Month: Essays on Software Engineering. Addison-Wesley,
Reading, MA, 1975.

Brooks, Jr., F.P. l'\o Silver Bullet-Essence and Accidents of Software Engineering. Computer
20,4 (Aprill987), 10-19.

Bryan, W.L. and N. Harter. Studies in the physiology and psychology of the telegraphic lan­
guage. Psychological Review 4 (1898), 27-53.

Burkhart, H. and J. :\ievergelt. Structure-oriented editors. Technical Report 38, Eidgenossische
Technische Hochschule Zurich, Institute fur Informatik, Zurich, Switzerland ('.lay 1980).

Business Week. Giving Design Engineers '.lore Time to Design. (February 3, 1986), 63.

Card, S.K., T.P. '.loran, and A. :\ewell. The Psychology of Human-Computer Interaction.
Lawrence Erlbaum Associates, Hillsdale, :\J, 1983.

Chomsky, :\. Aspects of the Theory of Syntax. '.liT Press, Cambridge, '.lA, 1975.

Collins, A.'.!. and E.F. Loftus. A spreading-activation theory of semantic processing. Psycholog­
ical Review 82 (!975), 407-428.

206

Collins, A.:VI. and \I.R. Quillian. Ilow to make a language user. In Organization ofJfemory, E.
Tulving and W. Donaldson, [ds., Academic Press, :\ew York, :\Y, 1972.

Cox, B.J. Object-oriented programming. Addison-Wesley, Reading, \lA, 1986.

Durding, B.\1., C.A. Becker, and J.D. Gould. Data organization. lluman Factors 19, l (1977),
l-14.

Ericsson. K.A and IL-\. Simon. Verbal reports as data. Psyclwlogical Raiew 81, 3 (\lay 1980),
215-250.

Ericsson, K.A. and H.A. Simon. Protocol Analysis. \llT Press, Cambridge, \lA, 1984.

Fersko-Weiss, llenry. 3-D Reading with the Hypertext Edge. PC .lfagazine 10, 10 (\lay 28,
1991), 241-282.

Flower, L.S. and J.R. llayes. Images, plans, and prose: The representation of meaning in writing.
Written Communication I, I (January 1984), 120-160.

Foley, J.D., V.L. Wallace, and P. Chan. The Human Factors of Computer Graphics Interaction
Techniques. IEEE Computer Graphics and Applications, (;\ovember 1984), 13-48.

Fountain, A.J. and \LA. :\orman. \fodelling user behaviour with formal grammar. In People
and Computers: Designing the Interface, P. Johnson and S. Cook, Eds., British Computer Society,
(Cambridge, September 17-20, 1985), 3-12.

Greenberg, S. and !.H. Witten. How Csers Repeat Their Actions on Computers: Principles for
Design of History \fechanisms. In Proceedings of the /988 Conference on Computer-Human
Interaction, (Washington, DC, 1988), 171-178.

Greeno, J.G. Process of understanding in problem-solving. In Cognitive Theory (vol. 2), :\.Jc
Castellan, D.B. Pisani, andP G.R. Potts, Eds., Lawrence Erlbaum Associates, Hillsdale, ?\J, 1977.

Halasz, F.G., T.P. \loran, and R.H. Trigg. :\oteCards in a ;\utshell. In Proceedings of the 1987
ACM Conference of Human Factors in Computer Systems, (Toronto, Ontario, April 5-9, 1987),
45-52.

Halasz, F.G. Reflections on :\oteCards: Seven Issues for the ;\ext Generation of Hypermedia
Systems. Hypertext '87 Papers. Technical Report TR88-013, Department of Computer Science,
Cniversity of ;\orth Carolina at Chapel Hill, (\larch 1988), 345-365.

Hayes, J.R. and L.S. Flower. Identifying the organization of the writing process. In Cognitive
Processes in Writing, L.W. Gregg and E.R. Steinberg, Eds., Lawrence Erlbaum Associates,
Hillsdale, ?\J, 1980, 3-30.

Hayes, J.R. and L.S. Flower. Writing research and the writer. American Psychologist 41, 10
(October 1986), 1106-1113.

Henry, L.K. The Role of Insight in The Analy1ic Thinking of Adolescents. Studies in Education,
University of Iowa Studies 9 (1934), 65-102.

Johnson, S.C. YACC-yet another compiler compiler. Computing Science Technical Report :\o.
32, Bell Laboratories, Murray Hill, :\J, 1975.

Kieras, D. E. Initial mention as a signal to thematic content in technical passages. Memory and
Cognition 8, 4 (1980), 345-353.

Kieras, D. and P.G. Polson. An Approach to the Formal Analysis of Cser Complexity. Interna­
tional Journal of Man-Machine Studies 22 (1985), 365-394.

207

Kintsch, W. The Representation of Jieaning in Jfemory. Lawrence Erlbaum Associates.
Hillsdale, :\J, 1974.

Kintsch, W. & Keenan, J.:\1. Reading rate and retention as a function of the number of prop­
ositions in base structure of sentences. Cognitive Psychology 5 (1973), 257-274.

Kintsch, W. and T.A. van Dijk. Toward a model of text comprehension and production. Psy­
chological Reriew 85 (1978), 363-394.

Lachman, J.L. and R. Lachman. Comprehension and cognition: a state of the art of inquiry. In
Levels of Processing in Human Hemory, L.S. Cermak and F.l.:\1. Cnaik, Eds., Lawrence
Erlbaum Associates, Hillsdale, :\J: 1979a, 183-210.

Landauer, T.K. :\ternary without organization: Some properties of a model with random storage
and undirected retrieval. Paper presented at the 13th Meeting of the Psychometric Society, St.
Louis, :1.10, :\ovember, 1972.

Lansman, :VL, J.B. Smith and I. Weber. Using Computer-Generated Protocols to Study Writers'
Planning Strategies. Technical Report TR90-033, Department of Computer Science, Cniversity
of :\orth Carolina at Chapel I !ill, September 1990.

Lcsk, :1-LE. LEX-a lexical analyzer generator. Computing Science Technical Report :\o. 39,
Bell Laboratories, :VIurray Hill, :\J, 1975.

:1-lackay, W.E. Video: Data for Studying Human-Computer Interaction. Proceedings of the 1988
Conference on Computer-Human Interaction, (Washington, DC, 1988), 133-137.

:1-landler, J.:l.f. Categorical and schematic organization in memory. In Memory Organization and
Structure, C.R. Puff, Ed., Academic Press, :\ew York, :\Y, 1979.

:Vfatsuhashi, A. Pausing and Planning: The tempo of ''lritten discourse production. Research in
the Teaching of English 15, 2 (1981), 113-134.

:1-fead, C. and L. Conway. Introduction to VLSI Sjmems. Addison-Wesley, Reading, :VIA, 1980.

:\!eyer, B.J.F. The Organization of Prose and its Effects on Memory. l\'orth Holland Publishing,
Amsterdam, 1975.

:\!eyer, B.J.F., D.:\1. Brandt, and G.J. Bluth. Cse of top-level structure in text: key for reading
comprehension of ninth grade students. Reading Research Quarterly I (1980), 72-l 03 .

. \.ficrosoft Windows Users Guide. :VIicrosoft Press: Redmond, Washington, 1987, document
number 050050051-200-ROl-0887.

:\Iiller, G.A, The magical number seven plus or minus two: Some limits on our capacity for
processing information. Psychological Review 63 (1956), 81-97.

:VIills, C.C. Drawing USE Transition Diagrams using TDE, Computing Science Division, Univer­
sity of California, Berkeley, CA, 1984.

'-'eal, A.S. and R.M. Simons. Playback: A method for evaluating the usability of software and its
documentation. IBM Systems Journal23, I (1984), 82-96.

'-'isbett, R.E. and T.D. Wilson. Telling \lore than We Can Know: Verbal Reports on \!ental
Processes. Psychological Review 84, 3 (:\fay 1977), 231-259.

Palmer, S.E. Hierarchical structure in perceptual representation. Cognitive Psychology 9 (1977),
441-475.

208

Palmer, S.E.
Categorizalion,
1978.

Fundamental Aspects of Cognitive ·Representation. In Cognition and
E. Rosch and B.B. Lloyd, Eds., Lawrence Erlbaum Associates, Ili!lsdaie, '\J,

Posner, :\!.1. and R.E. Warren. Traces, concepts, and conscious constructions. In Coding Proc­
esses in Eluman .\/emory, A.W. '.felton and E. '.lartin, Eds., Winston, Washington, DC, 1972.

Quillian, '.!.R. Semantic memory. In Semantic /nformmion Processing, '.!. \Iinsky, Ed., \liT
Press, Cambridge, \lA, 1968.

Reisner, P. Formal Grammar and Human Factors Design of an Interactive Graphics System.
/tEE Transactions on Software Engineering SE-7, 2 (\Iasch 1981), 229-240.

Reisner, P. Further Developments Towasd Csing Formal Grammas as a Design Tool. In Pro­
ceedings of the Gaithersburg conference on Eluman Factors in Compwer Systems, :\'ational Bureau
of Standasds, (Gaithersburg, \ID, \larch 15-17, 1982), 304-308.

Roberts, M. Brainstorming by computer. Psychology Today (JulyiAugust 1989), 51.

Schank, R.C. and R.P. Abelson. Scripls, Plans, Goals, and Underslanding. Lawrence Erlbaum
Associates, Hillsdale, l'\J, 1977.

Schneiderman, B. Direct \lanipulation: A Step Beyond Programming Languages. IEEE Com­
puter [6, 8 (August 1983), 57-69.

Schwarz, \1.'\.K. and A. Flasnmer. Text structure and title effects on comprehension and recall.
Journal of Verbal Learning and Verbal Behavior 20 (1981), 61-66.

Shepasd, R.N. The Mental Image. American Psychologist 33 (February 1978), 125-137.

Shepard, R.N. Extemalization of :Vlental Images and The Act of Creation. In Visual Learning,
Thinking, and Communication, B.S. Randhawa and W.E. Coffman, Eds., Academic Press, '\ew
York, J\Y, 1978, 133-!89.

Simon, H.A. Models of Thought. Yale Gniversity Press, C\ew Haven, CT, 1979.

Smith, J.B. and M. Lansman. A Cognitive Basis for a Computer Writing Environment. Technical
Report TR87-032, Department of Computer Science, Cniversity of '\orth Casolina at Chapel
Hill, June 1988.

Smith, J.D., M.C. Rooks, and G.J. Ferguson. A Cognitive Grammar for Writing: Version 1.0.
Technical Report TR89-0ll, Department of Computer Science, Cniversity of Korth Casolina at
Chapel Hill, April 1989 ..

Smith, J.D. and C.F. Smith. A Strategic Method for Writing. Technical Report TR87-024,
Department of Computer Science, Cniversity of J\orth Casolina at Chapel Hill, August 1987.

Smith, J.B., S.F. Weiss, and G.J. Ferguson. A Hypertext Writing Environment and Its Cognitive
Basis. Technical Report TR87-033, Department of Computer Science, Cniversity of ;-..·orth
Casolina at Chapel Hill, October 1987. Also printed in Hypertext '87 Papers, Technical Report
TR88-013, Department of Computer Science, Cniversity of '\orth Casolina at Chapel Hill,
(:vlasch 1988), 195-214.

Smith, J.D., S.F. Weiss, M. Lansman, J.D. Bolter, and D.V. Beasd. An Experimental Study of
Writers' Cognitive Strategies Using Advanced Computer Tools. Project description submitted to
the U.S. Army Reseasch Institute for the Behavioral and Social Sciences. Department of Com·
puter Science, Cniversity of ~orth Casolina at Chapel Hill, September 1985.

Swarts, H., L.S. Flower, and J.R. Hayes. Designing protocol studies of the writing process: An
Introduction. In New Directions in Composition Research, R. Beach and L.S. Bridwell, Eds.,
Guilford Press, :'\ew York, NY, 1984, 53-71.

209

Tulving, E. Episodic and semantic memory. In Organization of Jfemory, E. Tulving and W.
Donaldson, Eds., Academic Press, :->cw York, :->Y, 1972.

Voss, J.f'., S.\V. Tyler, and G.L. Bisanz. Prose comprehension and memory. In Handbook of
Research Methods in Human .vfemory and Cognition, C.R. Puff, Ed., Academic Press, :->ew York,
:->Y, 1982.

Walker II, J.Q. A '\ode-Positioning Algorithm for General Trees. Software-Practice and Expe­
rience 211, 7 (July 1990), 685-705.

Walker II, J.Q. Positioning '\odes For General Trees. The C Users Journal 9, 2 (February
1991), 47-62.

Waterman, D.A. and A. '\ewell. Protocol analysis as a task for artificial intelligence. Artificial
[ntelligence 2 (1971), 285-318.

Waterman, D.A. and A. "<ewell. PAS-II: An interactive task-free version of an automatic pro­
tocol analysis system. In Proceedings of the Third JJCAJ, Stanford Research Institute, :\lenlo
Park, CA, 1973,431-445.

West, L.II.T., P.J. Fensham, and J.E. Garrard. Describing the cognitive structures of learners
following instruction in chemistry. In Cognitive Structure and Conceptual Change, L.II.T. West
and A.L. Pines, Eds., Academic Press, Orlando, FL, 1985.

White, R.T. Interview protocols and dimensions of cognitive structure. In Cognitive Structure
and Conceptual Change, L.H.T. West and A.L. Pines, Eds., Academic Press, Orlando, FL, 1985.

Williams, J.P., :\LB. Taylor, and S. Ganger. Text variations at the level of the individual sentence
and the comprehension of simple expository paragraphs. Journal of Educational Psychology 73, 6
(1981), 851-865.

Woods, W.A. Transition ;\etwork Grammars for ;\atural Language Analysis. Communications
of the A CM 13 (1970), 591-606.

Woods, W.A. Cascaded AT:>/ grammars. American Journal of Computational Linguistics 6, I
(1980), 1-12.

210

TRADEMARKS
IB\IID and Ill\! PC:E are recistered trademarks and IB:\1 PC-AT"' is a trademark of Interna­
tional Business :1-lachines Corj;oration.

\lacintoshlY is a registered trademark of Apple Computer Company.

\licrosoft® and \IS-DOSS) are registered trademarks of \licrosoft Corporation.

Ready'n' and ThinkTanknt are trademarks of Living Videotext, Inc.

Smalltalk-80n1 is a trademark of the Xerox Corporation.

Sun Workstation ntis a trademark of Sun Microsystems, Inc.

Storyspacer" is a trademark of Jay David Bolter.

C:\'IX® is a registered trademark of AT&T.

\V ordPerfect T" is a trademark of WordPerfect Corporation.

2ll

