Automated Analysis of
Computer-Generated Software Usage
Protocols: An Exploratory Study

TR91-052
December, 1991

John Q. Walker, II

The University of North Carolina at Chapel Hill
Department of Computer Science

CB#3175, Sitterson Hall

Chapel Hill, NC 27599-3175

919-962-1792

jbs@cs.unc.edu

A TextLab/Collaboratory Report

UNC is an Equal Opportunity/Affirmative Action Institution.

JOHN QUILLIAN WALKER II. Automated Analysis of Computer-Generated Software UUsage
Protocols: An Exploratory Study (Under the direction of John Bristow Smith.)

ABSTRACT

Highly-interactive computer software can potentially help users think and work more cffectively.
To realize this potential, software developers should understand the cognitive processes involved
in the tasks being performed and the ways users interact with the software to accomplish the

tasks.

Gathering data about software usage—called protocols—is costly in several ways, including pre-
paring representative test scenarios, finding suitable subjects, training personnel to administer the
tests and record the protocols, and collecting and coding the protocols. Simiarly, analyzing pro-
tocols can be tedious, often done manually by skilled researchers. Because of their high costs,
protocol studies frequently consist of a few subjects tested while performing synthetic tasks in an
artificial setting. The value of these studies is limited both for software developers and rescarchers
in human-computer interaction.

This paper describes a method uscd to collect and analyze the protocols of a large number of
subjects performing tasks in a naturalistic setting. An interactive computer program was devel-
oped as a testbed for this study. It contained an automatic tracker that unobtrusively colected
protocol records of uscrs’ interactions with the program. Users’ strategies in working with this
program were modeled as a formal grammar, and a parser was devised, based on the grammar, to
analyze protocol records produced by the program. Users’ behaviors and strategies of working
with the program were examined and charactenzed, based upon the parsed protocol data.

A graphical structure editor was created as the testbed for this study; it assists in expository
writing, such as technical journal articles, with special emphasis on the exploratory and organiza-
tional phases of the writing process. This paper discusses lessons learned in devising the grammar
to model users” writing sessions with the editor, in building and refining the parser, and in ana-
lyzing the protocol records for 112 sessions collected from 29 subjects.

Dissertation Thesis Statement

A practical methodology can be developed for automating the collection and analvsis of large
amounts of protocol data from users of interactive software in their natural working environment.

v

ACKNOWLEDGEMENTS

Working full-time and wrting a dissertation took a lot of help!

John B. Smith was the best advisor I could ask for. He’s creative and inspiring; | continue to
learn a lot from him. [appreciate the innumerable hours he’s invested in this project.

What a dissertation committee!—alphabetically: David Beard, Fred Brooks, Marcy Lansman, and
Steve Weiss. It's the best committee I can imagne; their contributions to my education are

deeply appreciated.

Members of the Textlab group were always available to exchange ideas on the topics discussed
here; we've enriched each others” projects: Jay Bolter, Gordon Ferguson, Bobby Stam, Mark
Rooks, Irené Weber, Valerie Kierulf, Greg Berg, and Katie Clapp. I also acknowledge the
authors of the original PROSE program: Nancy Donaldson, Tom Morris, Lane Price, and Jim
Shoaf. Finally, I shared an office at UNC with some enlightened fellow students: Will Partain
and Phif Ambum.

IBM and my excellent managers there allowed me the luxury to pursue this degree; I'll assume
theyre starting to see the payback. Over more than ten years it's become a long list; thanks team,
you're great! My direct management team has included: Otis Bradley, Herb Pelnar, Nishan
Bouroudjian, Frank Corr, Joel Webb, Jim Staton, Jane Munn, Fred McGnff, Denise Kanyuh,
Bob Steen, Don Haile, John Hunter, and Rick McGee.

There’s a lot of other support I got from IBM; in particular I thank the subjects of this study for
helping me improve Prose {1 and for bothering to send me their interesting recordings. [used a
number of world-class IBM tools; thanks to their authors—I hope I am now returning the privi-
lege by supporting my own set. Key IBM software I used were VNET, BookMaster, almcopy,
Personal Editor 11, FileCommand, gfind, and gsee. Thanks to Margie Weaver and June Turner,
who admunistered the IBM Ph.D. Resident Study and Graduate Work-Study programs.

['ve been in three departments here in IBM RTP: E75, E64, and E42. Thanks to the terrific
friends I've had there, many of whom have moved on far from here. I can’t have asked for a
better place to work. My colleagues have exhibited amazing patience with my pursuit of this
“second job.”

I've had some wonderful friends who've joined me in the good days and the frustrating days of
this project. Terry Carns, Jane Troller, and Jay Whitehead put up with my habits. Thanks
always to Trileigh, Suzanne, Stephanie, and Rita. Other enduring friends know how they've been
frequent help and inspiration: Bob and Linda Gibson, Jim and Becki Beck, Biull Hogan, Jay
Kurtz, Don Andrews and Amy Svoboda and Georgia, John and Alice Pierce, Bob and Nancy
Donnan, Mark and Sherne Nickels, Peter and Suzanne Schwaller, Steve and Julic Jovee, and
Leonard and Marlene Van Camp.

I'm sure my wonderful sisters and their families will be glad to see this completed: Kathy and
John Wyrwich, and Frances and Bruce Walker. My grandmother, Lucille Maloney, would have
been surely glad to see it done. Finally, thanks Mom and Dad for everything—finally!

TABLE OF CONTENTS

Chapter 1. An Introduction To This Project e 1
1.I Project Overview T 2
1.1.1 The Task: Writing 3
1.1.2 The Testbed Software Systcm A Tool to Help Writers Organize 3
1.1.3 The Tools for Data Collection and Analysis 4
1.1.4" The Experimental Study: Examine 100 Sessions of System Usage in Actual Settings 7
1.2 Research Issues 8
1.3 Major Results e 8
1.3.1 Human Behavior and Patterns of Use 9
1.3.2 Methodology for Studying Subjects and Their Software Usage9
1.3.3 Feedback for the Software Design and Development Process 1E
1.4 Preview of Remaining Chapters 11
“ Chapter 2. Related Research 13
2.1 Understanding Readingand Wniting 13
2.1.1 A Look at Human Memory e 14
2.1.2 Organizing Concepts in \,{emory 15
213 Reading Research 16
214 Wnating Research L oL P 17
2.1.4.1 Representation and Wntmg 17
2,042 Concepts 18
2.1.4.3 Representation 19
2.1.5 The Wrnting Process e e 20
2.1.6 Writing Modes L. . S |
2.2 Toolsto Help Writers Organize 23
2.2.1 A Survey of Structure Editors and Hypertext Systems 23
2.2.1.1 Directed-Graph Structure Editors, L. 2
2.2.1.2 Hierarchical Structure Editors 24
2.2.1.3 Textlab’s Writing Environment (WE) 25
2.2.1.4 Why Build a New Structure Editor? L. 25
2.3 Protocol Collection and Analysis, 26
2.3.1 Protocol Collection 26
23.1.1 Think-aloud Protocols 26
2.3.1.2 Video and Audio Protocols 27
23.13 Computer Protocols 28
2.3.1.4 Comparing Protocol Collection Techniques - 28
2.3.2 Protocol Analysis e L0029
2.3.2.1 The ICARLS Study by Card, Moran, and Newell 29
23.2.2 Formal Models for Analysis 30
24 Summary e e e 3l
Chapter 3. System Design and Implementation, 32
3.1 Prose If Design and Operation 33
3.1.1 An Introductionto Prose II [P 33

vi

312 Creatmg and Labelinga Node L. 35
303 Tinking Nodes oL 35
3.1.4 Editing the File Associated witha Node 36
3.1.5 Moving and Copving Nodes L 37
316 Deleting Nodes 38
3.1.7 Moving through a Prose Il Workspace 39
3.1.7.1 Zooming in the Main Window 39
3.1.7.2 Working with the Map Window 39
3.1.7.3 Working with the Outhine Window 39
3.1.8 Tidving TEES - o o 46
3.19 Changmg the Root Onentation 41
3.1.10 Working with Workspace Files 42
31100 Creatinga New Workspace File 42
3.1.10.2 Opening an Existing Workspace File 43
3.1.10.3 Workspace File Formats oo 43
3.1.164 Savingand Deleting Files L L. 44
3.1.11 Copying to the Chpboard 44
3.1.12 Searching fora Node e 45
3.1.13 Requesting Help o o 45
3.2 Prose Il Implementation e e e e 48
Chapter 4. Protocol Collection and Analysis 49
4.1 Automating Protocol Collection with a Tracker 49
4.1.1 Content and Format of the Protocol Record Files 49
4.1.2 Implementation and Operation of the Tracker 54
4.2 Automating Protocol Analysis witha Parser 57
421 Grammar Symbols L 58
4.2.2 Design and Operatlon of the Grammar 61
4221 Overviewof Pass 2 L 65
4222 Overviewof Pass 3 66
4223 Overviewof Pass 4 67
4224 Overview Summary 68
4.2.3 Details of the Grammar Operation 68
4.2.3.1 Pass 0: Translating the Tracker Fde 69
4.2,3.2 Pass I: Combining Common Sequences 70
4.2.3.3 Pass 2: Segmenting and Characterizing Housekeeping Eplsodcs 73
4.2.3.4 Pass 3; Characterizing Constructive Episodes, 78
4.2.3.5 Pass4: Phasesof Activity L 83
4.23.6 Grammar SUmMmMAaryo e e e 35
4.2.4 Further Implementation Details of the Parser 85
4241 PassODetails 87
4242 Pass 2 Detailso 87
4.2.4.3 Producing the Parse Tree and Summary Information 88
4.2.4.4 Coatrolling the Parser Operation 88
4.2.4.5 Parser Implementation Details 91
Chapter 5. Observations On The Task and User Strateges AR 93
3.1 Expermental Setup and Subjects oL oo oL ... 93
5.2 An Overview of the Protocol Data and Parser Resulss 93
5.2.1 Five Categories of Sessions L. 94
5.2.2 Documents and Sessions per Subject Lo 935
3.3 Results and Discussion 95
5.3.1 How Long are the Time Periods? 96
3.3.1.} Overall Timings for Sessions, Phases, and Episodes 96
5.3.1.2 How is Session Time Distributed? 97
5.3.1.3 How is Document Time Distributed? 98

vil

5.3.1.4 How Long are the Pauses Between Commands? |
5.3.1.5 What Proportion of Session Time was Spent in Pauses? 132
3.3.1.6 Summary: Time Durations 103
5.3.2 How are Parse Elements Distibuted in Frequency of Use and Time? 103
5.3.2.1 Frequency Distribution of 7 Phases 103
5.3.2.2 Frequency Distribution of 12 Constructive Episodes 105
5.3.2.3 Frequency Distnibution of 7 Housckeeping Episodes 106
5.3.2.4 Trequency Distribution of 39 Commands 107
5.3.2.5 Relationship between Commands, Episodes, Phases, and Sessions 108
5.3.2.6 Number of Nodes vs. Time Spent in a Session 109
5.3.2.7 Number of Nodes vs. Number of Commands in a Session . to
5.3.2.8 Summary: Distribution of Commands, Episodes, and Phases it
5.3.3 How Were Particular Commands Used? 111
5.3.3.1 Creating and Deleting Nodes L. 112
5.3.3.2 Labeling Nodes L 113
3333 Wrting Textin Nodes o L 114
5334 Requesting Help 15
5.3.3.5 Opening and Saving a Workspace 117
5336 Tidying e 117
5.3.3.7 Comments Collected by the Tracker _ I8
5.3.3.8 Summary: Commands and Documents 120
5.3.4 What Was Learned About Writing With This System? 120
5341 How Bigare Trees? 120
5.3.4.2 How Does Order of Creation Correlate with Fmnal Position? 122
5.3.4.3 Which Node is the Final Root? 123
5.3.4.4 Are Nodes Created Left-to-right and Top-to-bottom? _ 124
5.34.5 Early Planning and Late Writing vs. Alternation? 124
5.3.4.6 What Patterns are Seen in the Sessions? 125
5.3.4.7 Summary: Planning and Writing 127
534 APortraitofaSession L 127
Chapter 6. Observations On Automating Protocol Collection and Analysis 129
6.1 Collecting and Managing Protocol Records 129
6.1.1 Protocol Data Statistics L 129
6.1.2 Managing Session Recordings 131
6.2 Automating Protocol Analysis L L 132
6.2.1 Devising and Testing the Parser 132
6.2.2 Key Decisions e 133
6.2.3 Parser Robustness L 134
6.3 Tools Used in the Protocol Analysis 136
6.3.1 Helpful Tools and Techniques, ..., ... 137
6.3.2 Tool Limitations and Problems 138
6.4 Enhancements to the Trackero, 139
6.5 Enhancements to the AnalysisTools 140
6.6 SUMMATY - o o e e e 142
Chapter 7. Observations On Software Butlding 143
7.1 General Software Engineering Lessons 143
7.2 Using the Protocol Analysis Tools to Guide System Refinement 146
7.3 Enhancements to the Testbed Sy e L 149
74 SUDIMATY . . . oo e 150
Chapter 8. Conclusions and Future Work e 151
8.1 User Behavior 151
8.1.1 What Kinds of Activities Took Place? 151
......... 152

8.1.2 How was Time Spent m the Sesstons?

viil

8.1.3 What Kinds of Patterns were Observed? 153

82 Software Development Feedback oo 0. 154
8.2.1 Frequent Refocus Episodes L oL 154

8.2.2 Concatenated Function 154
823 Extra Function e 155
8.2.4 Tidy, Save, and lelp Commands 155

8.3 Tools and Methodology 155
8.3.1 Advantagesof These Tools 156

8.3.2 Obscrvations on Protocol Collection 136

§.2.3 Obscrvation on Using a Parser for Protocol Analysis 157

84 Future Research e [58
8.4.1 Conducting Longitudinal Studies 139

8.4.2 Utilizing Rates, Times, Types, and Sizes 139

8.43 Using Media Other Than Text S 160

8.4.4 Developing an Integrated Sute of Tools 161
Appendix A. Cover Letter and Session Summary 163
A.l The Coverletter e e 16}
A2 The 112 8essions e 64
Appendix B. Example Parser Input and Qutput. 0L L ... 170
B:1 A Sample Protocol Recording L oo L 171
B.2 OQutput from Pass 0o 178
B3 Outputfrom Pass 1 e 185
B.4 OQutput from Pass 2 191
B.5 Qutput from Pass 3 195
B.6 Output from Pass4 196
B.7 Outputfrom Pass 5 e 197
B Parse Tree o e 197
B.7.2 Summary File for Session SI8ROQIO8 204
Appendix C. Parser Command Line Parameters e 205
REFERENCES . . e 207
TRADEMARKS . . . 212

iX

el e R Fal el e

LIST OF TABLES

Cognitive modes for writing L
Prose I{ Help Panels
Commands recorded by the tracker in Prose [[, listed alphabetically
Classification of the Prose /1 commands, grouped by type of episode
Taxonomy of Prose [fepisodes o
Taxonomy of Prose [{ phases e
Pass | fimte-state machine
Classification of Pass | output symbols, grouped by episodes
Timescale of Human Actions, from Newell (1988)
Pass 2output symbols L
Pass 2 finite-state machine L L
Pass Joutput symbols
Pass 3 counters, listed alphabetically
Pass 3 lists, listed alphabetically oL
Pass 3 production rule example P R
Pass 3 output symbols and how they are geperated e
Pass 4 output symbolso oo oL e e
Pass 4 finite-state machine L e
Distribution of 45 documents among 29 subjects
Distribution of 70 non-trivial sessions among 45 documents
Overall timings for Sessions, Phases, and Episodes
Distribution of session times among 70 non-trivial sessions
Distribution of 45 document times among 70 non-tnivial sessions
Distribution of 7370 pauses among the four pause types
Non-trivial sessions: Distribution of the 7 phasestypes
Trivial sessions: Distribution of the 7 phasestypes _
Distribution of time spent among the 7 phases, among all sessions
Distribution of 12 constructive episodes among the non-tnvial and trivial sessions
Distribution of 7 housekeeping episodes among the non-trivial and trivial sessions
Distnibution of time spent among the 7 housekeeping episodes
Distribution of the 39 Prose {{ commands
Ratios of commands, episodes, and phases among 27 single-document sessions -
Ratios of commands, episodes, and phases among 70 non-trivial sessions
Number of nodes created in different types of documents L
Distribution of help requests among all sessions,
Distribution of file formats used for Opens and Saves, among all sessions
Distribution of maximum tree depths
Distribution of maximum tree sizes
Distribution of the ordering correlation values among the 45 documents
Subjects, Sessions, and Docuamentso e

X0 80 N OV LA e Lo 1

LIST OF FIGURES

A protocol record generated by the tracker used in thisstudy 5
Anexample parse tICe8 L L L L e e e e 6
An example of portion of a workspace in Prose [f 34
An example of two nodes beinglinkedo oL 0L 36
An example of the Edit Dialog Boxin Prese [. e e 38
An example of the Map Window in Prose [. B 40
An example of the Outline Window in Prose fI4l
An example of a tree with a root odentationtothe west 42
An example of file format selection box in Prese If e e 44
The first, complete protocol record file returned by subject number 28 50
A portion of a protocol record file showing primary and secondary commands 51
A portion of a protocol record showing a canceled command 52
The € macro definition used in Prose {/ to contact the tracker 55
- Example C code, inserted in Prose [f to implement the tracker 55
A simple, generic parse tree L L e e e e e 59
The same parse tree, showing corresponding grammar passes foreach level 62
Data flow diagram forthe parser 63
State machine overview for Pass 2 oL L 65
State machine overview for Pass3 e e e e 66
State machine overview for Pass4 oL o o L Lol 67
An example protocol line and the corresponding 16-tuple generated by Pass 0 69
Anexample of Pass Ginput andoutput L. 70
Example parse tree drawing, for sesston SI6ROI02 89
Example session summary information, for session SI6ROIO2Z a0
An example Makefile for controlling the parsing process 91
An example Makefile for examining Pass 3output L. 91
Frequency distibution of pauses between commands L. 99
Frequency distribution of pauses betweencommands 100
Frequency distribution of total session time spent in pauses e 102
Frequency distribution of parse tree sizes across 112sessions 130
Multiple opens of the Map Window without ifitervening closes 148
Categorization of the 112 sessionsinto Sgroups 168
10 sessions that contained substantial writing 169

ANSI
ASCII
ATN
BNF
CISC
CPU
DOS
FFT
FIFO
FSM
GML
GOMS
GUI
IBM
I/O
Kbytes
LEX
LTM
MIT

ms

ns
0Ss/2
PC
PIF
RAM
RISC
stdin
stdout
tde
UNC
VAX
VLSI
VM
VNET
WE
Wil
YACC

LIST OF ABBREVIATIONS

American National Standards Institute
American Standard Code for Information Exchange
augmented transition network

Backus-Naur form

complex mnstruction set computer

central processing unit

disk operating systemn

fast Fourer transform

first-in-first-out

finite state machine

generalized markup language

goals, operators, methods, and selection rules
graphncal user interface

International Business Machines Corporation
input/output

kilo-bytes

lexical scanner generator

long-term memory :

the Massachusetts Institute of Technology
milhi-second

micro-second

Operating System/2

personal computer

program information file

random access memory

reduced instruction set computer

standard input

standard output

transition diagram editor

the University of North Carolina at Chapel Hill
Virtual Address eXtension

very large scale integration

Virtual Machine

VM network

Writing Environment

working memory

yet another compiler-compiler

CHAPTER 1. AN INTRODUCTION TO THIS
PROJECT

Recent computer software is highly interactive. It promotes a continual dialogue between the
computer systern and its human users. This software is often designed to help people carry out
intellectual tasks more efficiently and more effectively, that is, to help users think better with

respect to a given task.

As an example, recent interactive software for writing and planning offers users support for several
kinds of thinking:

» remembering and organizing thoughts,

+ explonng relationships among ideas,

+ developing clear and consistent organizational structures, and
» deducing unexpected results.

Feedback to software designers is increasingly important if they are to match the software tools
they create to the complex mental tasks the software is designed to support. Yet as the inter-
action between human and computer becomes more tightly coupled, software designers generally
have little understanding of how their software is actually used. Why? One reason is that col-
lecting the necessary mformation is expensive and obtrusive, and its analysis is inconsistent and
inconclusive. To make such feedback inexpensive, consistent, and readily available, powerful
tools are needed to automate its collection and analysis.

One source of help is the techniques already employed for examining human-computer inter-
action. Card, Moran, and Newell have initially surveyed the study of computer usage in their
landmark book, The Pspchology of Human-Computer Interaction (1983). They summarized a
large body of low-level experimental data, presenting a2 model of humans as rational information
processors, much like computers. From this basis, Card, Moran, and Newell developed a method
for dividing structured tasks into smaller subtasks, to form a task hierarchy. The subtasks are
small enough so that humans (with experience) can do them automatically; for example, moving
a cursor on a computer screen to a particular location. Although much of their book highlights
such low-level interaction, 1t discusses one extended example of how software usage In accom-

plishing a complex task might be analyzed.

In the research of Card, Moran, and Newell, as in the research of others, observations of users
and analyses of protocol data are done primanly by hand. This approach is labor-intensive,
making it hard to study many subjects and obtain consistent results, Subjects in studies of
human-computer interaction are conscious of “being watched,” since they are studied in con-
trolled settings. Further, testing of human-computer interaction frequently focuses on how a
systern is first learned and how its concepts are grasped. There is Little knowledge of how users’
patterns change as they become familiar with a given system in the settings where it is actually
used. ' _

The project described i this paper builds on the work of Card, Moran, and Newell and others.

In particular, the project addresses several problems with existing techniques for understanding
software usage; the intent 1s to make protocol data less expensive, less obtrusive, less inconsistent,

and thus more timely, more accurate, and more useful. The project consists of a cycle of
designing and implementing a software system, developing tools to automate the collection and
analysis of software usage data, conducting a study in which a large amount of software usage
data was collected and analvzed, and reflecting on the lessons learned in this exercise.

Overall targets for the project were the following:

to clanfy the tssues encountered,

to provide a finner foundation of repeatable techniques,

to provide insight on how to build interactive software and tools of this type,
to discuss interesting findings in the data, and

to give directions for future research and controlled studies.

Finally, this project was exploratory; it was not intended to provide a definitive solution. It used
a novel set of tools to explore human-computer interactions in a way not otherwise practical. Its
experimental study of actual users was open-ended, with few controls. Thus, it represents a first

try at a process that could be refined in future iterations. '

1.1 Project Overview

This project was designed for one cycle of a software design and feedback process. It included the
following steps:

1. Select and understand a specific task that contained a variety of types of human-computer
interaction.

2. Build a testbed software system that helps accomplish the elements of the task.

3. Build tools to automate the collection and analysis of data that describe users’ interaction
with the system.

4. Run an expenimental study of many subjects using the system in their actual settings. Collect
and analyze their software usage data.

5. Reflect on the results of the study and the analysis.

The specific task that was examined was writing, in particular, its early organizational stages. |
built a software system fo assist writers in organizing and wnting about their ideas. This software
included an internal tracker that automatically recorded key elements of the human-computer
interaction. The analysis of these recordings was automated, using techniques developed by Card,
Moran, and Newell (1983) in their manual analysis of a single session. To test the feasibility of
this approach, [collected and analyzed a large amount of protocol data in a field study of 29

subjects.

The details of these five steps are further summarized in the remainder of this section. These
topics are covered in more detail in the later chapters of this paper. In particular, Chapters 3, 6,
and 7 present three sets of observations. The first set describes the resuits of the protocol analysis
for this writing system: what was learned about the cognitive strategies employed by writers, and
how the structure editor was used to accomplish the wnting tasks. The second set of observations
centers on the meta-issues involved in doing automated protocol analysis, such as the power and
viability of specifying the strategy model as a grammar and then using the associated parser for
protocol analysis. The third set of observations concems the feedback that the analysis provides

for the software design process.

A simple analogy is helpful in describing the complexity of this project and the types of results
obtained. Suppose you had never played the game of baseball, and you knew nothing about its
rules and statistics. Then, suppose you were given recordings of the “uncolored” play-by-play for
a baseball team for an entire season. It is your job to infer the rules of the game from these
recordings. It is also up to vou to invent meaningful statistics to be used in evaluating the team
and the individual players. These tasks are roughly analogous to the steps in this project, but
they do not cover the entire project.

To complete the analogy... a first set of observations involves statistics: given the possible baseball
statistics you can invent, which are most meaningful for comparing players, games, and overall
strategy? A sccond set of observations involves the process of working with baseball statistics:
what is the best way to collect, categorize, and gencrate these statistics? A third set of obscrva-
tions addresses using these statistics; what is the best way to use these results to coach individual
players, to build better bats or gloves, or to improve the rules and regulations of the game, itself?

The following subsection introduces the components of this project. The mental task being
studied 15 technical writing. A testbed software svstem was implemented to assist in elements of
the writing task, namely its exploratory and organizational phases. To see how people used this
software for wnting, a recorder was built to capture user commands, and software tools were con-
structed to automate the analysis of the recordings. To test the efficacy of this approach, an
experimental study was conducted to collect usage data from users in the field. Major results of
the project are summarized in the next section.

1.1.1 The Task: Writing

Writing is a fundamental activity of technical professionals. For example, a recent report esti-
mated that design engineers spend 30% of their time writing documentation, twice the time they
spend in other technical design (Business Week, 1986). They write technical reports and summa-
ries, system documentation, strategic plans, training materials, letters, and memoranda. For
many, writing is difficult and unpredictable in terms of both time and resulis.

Writing involves several different kinds of thinking: some are at a low level, such as spelling and
text editing, and some are at a high level, such as organizing how ideas are related. Writing also
involves strategies for moving among these levels, and tactics that can be used when problems
arise. An understanding of these kinds of thinking, along with the strategies and tactics, would be
useful for software developers who could design their systems to be consistent with these patterns

of thinking. . -

Cognitive psychologists have devoted much research to understanding how people represent the
external world internally. In studying writing, the problem is reversed. Writers must represent
their internal thoughts externally. At the nitial, exploratory stage of writing a document, a writer
is likely to have in his or her head a loosely-connected set of ideas or concepts relevant to the
topic at hand. To convert these concepts into a document, a writer must organize them into a
coherent structure. Writers play with their ideas and concepts, in their head and sometimes on
paper, until the concepts are connected into a network of relationships and associations. This
network must eventually be transformed into the hierarchical form familiar in articles and manu-
scripts (that 1s, chapters, sections, and paragraphs), and then into a linear sequence of text, with
the desired “connecting tissue.” '

The testbed system used in this project assists these activities. It is intended to help writers repre-
sent and build a structure of concepts during the exploratory and organizational stages of pre-
paring a document.

1.1.2 The Testbed Software System: A Tool to Help Writers Organize

The results of a hiterature survey by the Textlab group at UNC (Smith and Lansman, 1988)
suggest that a tool that allows writers to create visual images of the relationships between their
ideas can facilitate the organizational process (for example, see Shepard, 1978). In addition, they
also assert that the tool would be most effective for expository wnting if it encourages a hierar-
chical representation of ideas. One reason is evidence from reading comprehension studies that
hierarchically-organized, expository documents are easier to understand than documents with
other structures. Other reasons have to do with current cognitive theories on the internal mental
organization of knowledge and our perception of visual images. Smith and Lansman (1988)

further describe the motivation for designing such a system. Many of their ideas are embodied in
the software used in this project, as well as in their Writing Environment (WE) system.

The software built for this project is a graphical structure editor writers can use to help them
explore and organize their ideas. With this system, they can create and label nodes, where each
node represents a single 1dea. Thus, in the earhiest stages of wnting, writers might use the system
as an aid to memory. They can then move and rearrange ideas, clustering on the screen ideas that
they see as related conceptually to one another. Nodes can also be linked with one another in a
hierarchical manner, and the resulting tree structures can, in turn, be moved and joined with other

trees.

Any time after a node is defined, writers can write text to be associated with that node. They
may sclect a node and a text-input option, normally a conventional text editor. If this node
appears at an upper level of the hierarchy for the document, the text is likely to be an introduc-
tory statement or an overview of a section; on the other hand, text within 2 leaf node is likely to
be a group of concrete paragraphs expressing the basic content of the document.

Structures of nodes often can grow too large to be seen on one screen. The software includes
tools that provide a schematic overview of the structures, along with the capability to roam and
zoom in the conceptual space. Beard and Walker (1987) describe these navigational techniques.

The target users for this software system are technical professionals. To meet their needs and
expectations, the software has fast response time and operates with a common graphical user
interface that can be found on many current desktop microcomputer systems—the Microsoft
Windows graphical environment.

1.1.3 The Tools for Data Collection and Analysis

A protocol, in cognitive psychology, is a report of the steps performed by a subject in attempting
some task. In psychological testing, protocols are usually verbal reports given by the subjects
themselves, with additional annotation consisting of observations by the tester(s). The wverbal
reports are either recorded at the time of the test as the subjects speak aloud their thoughts and
intentions, or recorded retrospectively—that 1s, at some time after the test—based on some
prompting by the tester. Audio and video recordings are also used to capture many aspects of an
interaction with greater fidelity. More recently, the interactions between a human and some com-
puter systems have been recorded and stored by the computer in its memory.

For this project, an automated tracker recorded writers” actions in a separate file concurrently with
the operation of the structure editor. For each action, the tracker recorded the particular action,
its cssential parameters, and a timestamp. Two types of trackers have appeared for commercial
mteractive computer systems: 1) “application-aware” trackers, such as those in spreadsheets and
word-processing software packages, that record information specific to the capabilities of the- soft-
ware, and 2) “application-independent” trackers, that capture keystrokes and mouse movement
without knowledge of their effect. The tracker created for this study was “application-aware,”
with these differences from the macro recording facilities available in some spreadsheet and word-

processing packages:

= the recorded actions are at a higher level of granularity than basic keystrokes,
= additional parameters, such as tine and spatial location for actions, are recorded, and
« all the actions for an entire session are recorded.

An example of a portion of a protocol record is shown in Figure | on page 5.

| Start Stop Time Operator Parameters |
[min:sec min:sec sec |
R e el L T T PP, +
03:46.52 03:47.46 B8.94 PAUSE

£3:47.46 03:47.62 0.16 CreateNode ID(1) StartPt(436, -225)
03:47.62 ©3:50.09 2.47 PAUSE '

03:50.09 03:50.26 0.17 CreateNode ID{2) StartPt(129, -53)
03:50.26 03:52.62 2.36 PAUSE

83:52.62 03:57.67 5.05 Editlabel I0(2) NewText(‘xx %xxx“)
83:57.67 04:00,37 2.76 PAUSE

94:00.37 04:03.59 3.13 EditLabel ID(1) MewText(xxxx*)

04:03.50 ©4:11.57 8.07 PAUSE

Figure 1. A protocol record generated by the tracker used in this study. This portion of a protocol
record shows two nodes being created and [abeled. The nodes here have identifiers (1Ds) | and
2, and the coordinates of the nodes’ centers is shown. The text of the labels is x'd out by the

tracker for anonymity.

A grammar was formulated to analyze the protocol data of a subject’s session with the testbed
system. An analytic model, embodied in the grammar, views cach session as being divided into
phases. Each phase lasts several minutes; a single kind of activity predominates in a phase. A
phase consists of a sequence of cognitive tasks, called episodes. A cadence of alternating work-
and-rest occurs within a phase: episodes of constructive work alternate with periods of reflection
and housckeeptng. These intervening perfods delimit the constructive episodes. At a lower level,
episodes are composed of sequences of individual user commands and pauses. .Each of these lasts
but a few seconds or less. Thus, these four elements—sessions, phases, episodes, and
commands—can bé viewed as forming a hierarchy of user behavior.

The protocol elements collected by the tracker were specified as terminals in the grammar. In this
project, these elements are the basic system actions used to manipulate nodes, trees, and subtrees
i a two-dunensional display space. These include user interface commands for creating a new
node at the currently-specified coordinates, moving a node, deleting a2 node, hnking a pair of
nodes, and editing a node.

The grammar was ¢xpressed as an augmented transition network (ATN). ATN grammars were
developed by Woods (1970, 1980) as a framework for parsing natural language. ATNs augment
finite state machines by-maintaining a sct of registers that can store information in addition to
state and stack information. Also, arbitrary computational tests and actions may be associated
with the state transitions. The actions miay extend to any function, providing Turing Machine
equivalency {i.e., Type 0 power in the Chomsky hierarchy).

The grammar was represented as a set of rules that could be executed as a computer program.
This computer program, or parser, autormnates the kind of analysis performed by Card, Moran,
and Newell. The result of running the parser with one protocol record was a parse tree that
hierarchically organized the major sequences of human-computer interactions that occurred during
a single session. An example of a parse tree created by the parser for this project is shown in
Figure 2 on page 6. Card, Moran, and Newell manually generated a similar parse tree in thetr
single-user study. To test that representative parse trees could be reliably produced for arbitrary
sessions, an experirnental study was devised with a goal of collecting 100 recordings. This study is

descnibed next.

Fri Sep 89 86:23:14 1988, Fite: (: RCDAZIC.THP

|
!
I
I
!
:
f
i
I
|
|
I
I
i
!
|
I
|
I
|
|
|
]
!
|
|
|
!
|
I
I
}
f
I
I
!
!
:
I
|
!
I
I
|
|

Hew Workspace [35.87 secs, 3 aps]
| Refocus [35.87 sécs, 9 ops]
1 pause [17.14 secs)
| Reset the Drawing [0.85 secs]
| pause {0.66 secs]
| Reset the Drawing [0.96 secs]
| pause [8.12 secs] .
| Move the Map window [3.96 secs]
| pause [9.16 secs}
{ Show the Map Window [9.06 secs]
| pause [9.58 secs]
xploration {86.18 secs, 4 ops]
Created a selo node: I [B.11 secs, 1 op]
| Create node 1 [B.11 sacs)
Help Request [86.67 secs, 3 ops])
| pause [7.19 secs}
| pause [28.48 secs]

! Hetp: Editing Labels & MHodes [58.48 secs]
efine Hierarchies {89.47 secs, 16 ops)

Created a new tree: (1 -» 2 3) and ...

Edited existing nodes [59.32 secs, 13 ops}

| Label nede 1 [19.39 sees]

| pause [4.86 secs]

| pause [2.86 secs]

| Create node 2 {4.22 secs]
| pause [4.66 secs]

{ Create node 3 [8.11 secs)
| tabel node 3 f11.81 secs}
| pause {2.58 secrs]

| Label node 2 [5.96 secs]
| pause [3.82 secs]
|

|

|

C

H
i

I
|
!
f
i
I
!
I
I
£
i
|
I
I
!
|
B
|

|
|
I
!

i

|

|

]

|

|

| .
i Link nodes {1 -> 2} [1.87 secs]

t pause [1.86 secs}

| Link nodes (1 -> 3) [1.82 secs]

| Cleanup and Take Stock [38.15 secs, 3 ops]
| pause [9.39 secs]

| Tidy the workspace [8.85 secs]

} | pause [20.71 secs])

Exploration £17.25 secs, 3 ops]

| Created a selo node: 2 [9.56 secs, 2 ops]
| | Create node 4 [9.22 secs]

1 1. Lakel node 4 [9.34 secs]

f Pause [7.69 secs, 1 op)

| | pause [7.69 secs] .

Top Down Construction [24.99 secs, 4 ons]

| Hooked existing nedes to a tree: (1 -> &4} [8.71 secs, 1 op]
| | Link nodes {2 -» 4) {8.71 secs])

| Cleanup and Take Stock [24.28 secs, 3 ops]
| 1 pauvse [4.87 secs]

| | Tidy the workspace [8.18 secs]

i | pause [28.11 secs]

Figure 2. An example parse tree. The rightmost column shows the commands and pauses. Adjacent

pauses, as occur twice above, can occur when a user presses a key or mouse without com-
pleting any command. The 2nd column from the right shows the grouping of the commands
and pauses into episodes. The 3rd column from the right shows the phases of activity. The
leftmost column shows the session’s date and time.

1.1.4 The Experimental Study: Examine 100 Sessions of System Usage in
Actual Settings

The idea of automated collection and analysis of software protocols needed to be tested using real
users to see whether it was feasible and provided useful information. We designed the study
carricd out in this project to collect and analyze approximately 100 sessions from about 20 sub-
jects. This study had three goals:

1. To broaden the knowledge of wiiters and their cognitive habits,
2. To provide mnsight to future builders of highly-interactive software systems, and
3. To consider the apparatus and procedures used to accomplish the first two goals.

Automated tracking allowed me to distobute the testbed system to subjects for use in their actual
field settings. After using the software for writing tasks, the subjects returned the protocol records
of their sessions. As an [BM employee, 1 was able to distribute the software to IBM employees
worldwide via the corporate communications network. The subjects were thus adult professionals
who routinely do expository writing. This afforded a relatively homogenous group of subjects
representative of the professionals to which such a writing system would be targeted. The sub-
jects already had the hardware and software required to use the system. [provided a user’s guide
that itself served as a demo of how to use the systern. ‘

The study was exploratory in nature, with few experimental controls.

« Although the testbed system generated protocol records automatically, subjects were not
compelled to retumn these recordings.

» Subjects had no prescribed topics to write about in their documents. The documents did not
have to fit a designated format, e.g., 2 memo, short story, or technical article.

» Subjects returmned their protocol records, but not the actual documents they were writing,
There was no knowledge of the content of the actual documents being produced. There was’
not even a requiremnent that actual work be done in a session.

» There was no restriction on the knowledge and experience of the subjects. All subjects were
adult professionals. Otherwise, the study was blind to matters of age, sex, race, and
nationality.

» There was no restriction on the computer hardware used by a subject. The speed of a sub-
ject’s computer and its screen size were two of the many variables that varied among sub-
jects. :

» There was no control on the time duration for a session or on how the time was spent in a
session. Subjects may be simultaneously working on any number of other tasks.

+ There was no restriction on the number of sessions per subject, on the number of documents
per subject, on the number of documents per session, or on the number of sessions per docu-

ment.

At the end of the study period, [had collected 112 sesston protocols from 29 subjects. The focus
of the data analysis was on descriptive statistics to discover patterns. This is in contrast to rig-
orous tests to make fine distinctions, which, at this point, are premature. This project is an early
step in understanding the problems and issues outlined in this introduction. The results suggest
areas where controlied, follow-up studies would be beneficial.

1.2 Research Issues

The rescarch 1ssues that we addressed cover the main arcas of the project. What can we learn
about human behavior with this software? What can we learn about the tools and methods we
used to examine that bebavior? What can we learn about improving the design of a given soft-
ware system? As an exploratory project, what topics are good candidates for future lines of
rescarch? A list of the particular issues we pursued follows, divided into the three main arcas:

Human Behavior and Patterns of Use
. How do people use this kmd of writing system? What patterns are revealed?
Methodology for Studying Subjects and Their Software Usage
= Pratocol Collection
— Can machine-recorded protocols provide rich and interesting data?
— What is the right level of granularity for these data?
* Analpsis and Categorization

— Can a grammar be described to capture the essential elements of the human-
computer interaction? ' :

— What power of grammar is needed to describe the session protocols?
— Can parsing tools be built so that an analyst is not buried in data?

—~ What do the tools address that we can’t get at otherwise? What kinds of questions
can be answered using these protocol analysis methods?

—~ How robust is the parser? How is robustness to be measured?

— What can we see in the analyzed data versus the raw data? How do we know if we
find something interesting?

- — How can the grammar be validated?
« Experimental Study
— What did we learn about this kind of study and future similar studies?
Feedback for the Software Devclopment Process
¢ What did we I.e:am about building this kind of system?
* What does the data confirm about the system?

The next section highlights major results from each area of the project. Later chapters, partic-
ularly Chapters 5, 6, and 7, provide greater detail.

1.3 Majer Resuits

As an exploratory project, we made a vanety of observations on a cross-section of the topics
encountered. The following give the general flavor of these obsgrvations.

1.3.1 Human Behavior and Patterns of Use

L.

Across all the sessions, users” work tended to fall into categories, where the categories
describe different kinds of documents and sessions.

« 38% of the 112 sessions cxamined were trivial or unproductive. In many sessions, sub-
jects were clearly learning and exploring this new software.

+ In the remamninyg sessions, subjects frequently used the systems in ways not anticipated.

» Fewer than 10% of the sessions included extensive writing within the nodes of the trees
(aside from labeling of the nodes).

In sessions with both planning and wnting, these activities were highly intermixed. Onl‘y one
session showed all planning done before any writing.

There was a preponderance of top-down document construction, as opposed to bottom-up
construction. In top-down construction, the root of a tree and its children are created and
labeled early, with the rest of the document construction consisting of creating new nodes
and adding them to the bottom of the evolving tree. In bottom-up construction, nodes are
created and labeled before they are linked; small trees are linked into larger trees. The ratio
between top-down and bottom-up was about four-to-one.

Sessions with extensive writing lasted about an hour. Sessions without writing lasted about
25 minutes.

About half of all the time in the protocol records was spent in pauses. The median pause
time, across all sessions, was three seconds. Two-thirds of all pauses were less than five
seconds.

Overall, document trees had about 3 to 5 levels and 15 to 30 nodes. Documents constructed
across several sessions were smaller than documents constructed in a single session.

Half of the commands executed in all the sessions can be accounted for by just three com-
mands: creating, labeling, and linking nodes. The other 36 commands available in the soft-

ware accounted for the other hali.

1.3.2 Methodology for Studying Subjects and Their Software Usage

Protocol Collection

L.
2

[t was easy to incorporate a tracker in a software system without degrading performance.

The internal tracker used a synchronous interfac_:e, which did not perceptibly slow response
time and simplified the amount of state information needed to identify each event.

The tracker recorded events at the command level, e.g., “Create a node.” If every keystroke
and mouse movement had been tracked, system performance \l.ould have been slowed and
the recording file would have been several times longer.

Subjects produced about 23 Kbyies or 7 pages of protocol data per hour with this system.
Networking proved a powerful tool for software development, distribution, and protocol col-
lection.

» [was a developer of this Microsoft Windows application before there was adequate doc-
umentation. 1 exchanged programming questions with Microsoft Windows developers
via the G Enie network, where Microsoft supported a bulletin board service.

s The testbed software used in this project was distributed for a year via IBM'’s internal
nctwork before protocols were solicited. This allowed me to fix bugs and make
improvements based on users’” feedback over the network. [was confident the system

was stable when I commenced the study.
+ The study was distributed to subjects in their actual field setting via the network. The
protocols were returned to me over the network.,

File management became a problem as protocol files with arbitrary names were collected
from difterent user’'s machines. '

As the tracker was implemented, it invented filenames unique to the user’s machines. These
names were no longer unique when all the files from all the users were stored on one
machine for analysis. Also, users had occasion to change their protocol filenames before
returning them to me for analysis.

Analysis and Categorization

1.

4,

Managing protocols is an important part of this approach. Collecting and analyzing proto-
cols as done in this project scaled up to about 100, but cataloging and file management then
became a predominant problem. Easy categonization of groups of sessions, documents, and
subjects is necessary as the number of sessions increases. A database management system is
needed to manage large numbers of session protocols.

Sessions varied from one to another among many vadables. Sessions could be grouped by
looking across any of these variables, or they could be characterized by looking across many

variables in one session.

Generating automatic session summaries and saving these in spreadsheet format simplified
much of the analysis.

A multi-pass parser allowed intellectual manageability and freqtient refinement.

Experimental Study

l.

This method of software distribution and protocol collection allowed a large amount of soft-
ware usage data to be collected in a short period. The costs per session were fixed, and low,

after preparing the tools.

Of all 210 potential subjects that were given copies of the testbed software, user’s guide, and
cover letter (printed in Appendix A on page 163), 14% of them returned one or more pro-
tocol recordings. The tracker was implemented to aveid writing any binary or confidential
information; users could browse through any protocol file with a simple ASCII text editor. 1
think this gave users confidence that no secret information was being collected about them.

Giving users a mechanism for inserting comments into the protocol record proifed valuable.
Users reported problems and wrote comments in the precise context where they occurred.
This feature should be considered for all software.

With few experimental controls, many sessions reflect merely training and learning. Much
like any harvest, this easy method of protocol collection requires additional methods to filter

out the chaff.

10

» The testbed software used in this project was distnbuted for a year via IBM’s internal
nctwork before protocols were solicited. This allowed me to fix bugs and make
improvements based on users” feedback over the network., [was confident the system

was stable when [commenced the study.
» The study was distnibuted to subjects in their actual field setting via the network, The

protocels were retumed to me over the network.

[ile management became a problem as protocol files with arbitrary names were collected
from different user’s machines.
As the tracker was implemented, it invented filenames unique to the user’s machines. These

names were no longer unique when all the files from all the users were stored on one
machine for analysis. Also, users had occasion to change their protocol filenames before

returning them to me for analysis.

Analysis and Categorization

L.

4.

Managing protocols is an important part of this approach. Collecting and analyzing proto-
cols as done in this project scaled up to about [00, but cataloging and file management then
became a predominant problem. Easy categorization of groups of sessions, documents, and
subjects is necessary as the number of sessions increases. A database management system is
needed to manage large numbers of session protocols.

Sessions varied from one to another among many variables. Sessions could be grouped by
looking across any of these variables, or they could be characterized by looking across many

variables in one session.

Generating automatic session summaries and saving these in spreadsheet format simplified
much of the analysis.

A multi-pass parser allowed intellectual manageability and frequent refinement.

Experimental Study

L.

This method of software distribution and protocol collection allowed a large amount of soft-
ware usage data to be collected 1n a short period. The costs per session were fixed, and low,

after preparing the tools.

Of all 210 potential subjects that were given copies of the testbed software, user’s guide, and
cover letter (printed in Appendix A on page 163), 14% of them returned one or more pro-
tocol recordings. The tracker was implemented to avoid writing any binary or confidential
information; users could browse through any protocol file with a simple ASCII text editor. 1
think this gave users confidence that no secret information was being collected about them.

Giving users a mechanism for inserting comments into the protocol record proved valuable.
Users reported problems and wrote comments in the precise context where they occurrad.
This feature should be considered for all software.

With few experimental controls, many sessions reflect merely training and learning. Much
iike any harvest, this easy method of protocol collection requires additional methods to filter

cut the chaff.

10

1.3.3 Feedback for the Software Design and Development Process

. The system had elements of functional overkill: some of the features were rarely used. In
particular, functions without direct mouse menu interface were rarely used by the subjects.
By count, half of all the commands could be accounted for by only 3 of the 39 possible

commands.

2. Subjects used the novel “TidyTree” command frequently: this allowed them to place nodes
wherever was comfortable, and then later ask the system to make the layout more structured.

3. Subjects rarely saved their work during a session; an ong,oing auto-save function could avert
disasters for some users. The tracker itself had no checkpointing; if a session was lost, so was
its recording.

4. The protocol analysis readily identified help panels that were used frequently, and showed on

which helps the most time was spent. The context where help was needed could be easily

scen. Frequently-requested helps indicate obvicus candidates for functions that need to be

simpiified.
The preceding set of observations are highlights of the extended descriptions found in Chapters 3,
6, and 7. They suggest that the project was fruitful; it showed many results that were not
expected when the software and study were designed. The study met its goals: much was learned
about writers and how they used this software, much was leamed about how to design and imple-
ment these types of tools to automate the study software usage, and feedback was obtained on
how to improve the specific software under study.

1.4 Preview of Remaining Chapters

Chapter 2 on page 13 is a review of the literature in the three principal research areas. It dis-
cusses the research basis behind the testbed system and the protocol collection and analysis tools.
This chapter also provides background information on structure editors and related hypertext

systems.

Chapter 3 on page 32 describes how the testbed writing system looks and feels. It introduces
each of the commands available in the software.

Chapter 4 on page 49 describes the implemehtation of the tracker and analysis tools.

Chapter 5 on page 93 tells what we learned about writers and their cognitive behavior by ana-
lyzing 112 protocol records.

Chapter 6 on page 129 presents lessons learned in constructmg and using the automated analysis
tools.

Chapter 7 on page 143 offers some insights gained from this exercise into the development of
interactive software.

Chapter 8 on page 151 summarizes the observations and discusses directions for future research.

Appendix A on page 163 contains the cover letter I sent to each of the 210 potential subjects for
this study. Three extensive tables summarize the {12 protocol recording files.

Appendix B on page 170 steps through each pass of the parser, starting with an example protocol
record and showing the output from each pass and the final parse tree and summary file.

Appendix C on page 205 describes each of the command-line parameters used by each of the six
passes of the parser.

11

CHAPTER 2. RELATED RESEARCH

This project spans multiple areas of research, taking a multi-disciplinary approach to accom-
plishing the five steps described in Section l.1. This chapter surveys related research in three

arcas:

1. Theories and studies of reading and writing.
2. Computer systemns that assist wnters m organizing and structuring their ideas.
3. Methods for collecting and analyzing protocols of human usage of computer systems,

In its examination of readmg and wnting, this chapter begms by looking at human memory and
theories about its organization. Reading comprehension is seen not simply as mterpreting text,
but as a process of altering the reader’s existing memory orgamzation. Writing research is then
examined, looking at basic research in the representation of ideas, the development of ideas, and
the writing process itsef. A more detailed discussion is provided for one specific aspect of writing
theory—cognitive modes—that was developed in our research group and has served as a rich
source of ideas—some adopted, some not—{for this project.

With this background of the mechanisms employed by writers, the next area reviewed is computer
systems designed to assist writers. Specifically examined are tools used to plan and write technical
documents. The features of representative systems are surveyed, along with the motivation for
designing the new system built as part of this project.

As system builders, we want to test the ideas we incorporate in our systems. Consequently, the
final section of this chapter discusses tools and techniques to collect, analyze, and interpret
data—called protocols—that reveal users’ interactions with computer systems. The section reviews
traditional methods of collecting protocols, mentioning their strengths and limitations. It reviews
1ssues of protocol analysis, looking at several models that have been developed. This discussion
provides the background and motivation for developing the grammar and other analytic tools
used in this project.

Thus, three ‘areas of research.are combined in this multi-disciplinary project: reading and writing,
writing systems, and protocol analysis. The discussion that follovas in this chapter reviews rele-

vant research and concepts used in this project.

2.1 Understanding Reading and Writing

The first body of work to be reviewed is that concerned with the processes of reading and writing.
It is relevant for this project because the computer program developed as a testbed systemn sup-
ported the task of writing expository prose.

The discussion begins by reviewing current perspectives on the_ function and organization of
human memory. Next, it shows how these properties affect reading comprehension. Finally, it
discusses writing from the perspective of processes and strategies for transforming concepts stored
in human memory into documents that can be understood and, in tum, committed to memory by

readers.

12

2.1.1 A Look at Human Memory

Only observed behavior of human memory is considered here; the information-processing model
discussed here does not describe the physiological operations of the human neural-motor system.
Brain physiology research is presently too low-level and inconclusive to descrbe the cognitive
workings of a writer organizing the elements of a document. Consequently, the model of human
memory presented here is based on cognitive theories that are still undergoing development and
elaboration in psychological research.

Card, Moran, and Newell (1983) proposed a “human information-processing system’" that can be
divided into three interacting subsystems: the perceptual system, the cognitive system. and the
motor system. They described each subsystem as if it had its own memories and processors, anal-
ogous to those in a computer:

* The perceptual system consists of sensors and associated buffer memones, principally bref
sensory-image storage for the visual and auditory systems. These hold the output of the
sensory system while it is being coded into symbols.

» The cognitive system receives symbolicaily-coded information from the sensory image storage
and uses previously-stored information to make decisions about how to rcspond

+ The motor system carries out the response.

A widely-held view of the cognitive system proposes two principal memories: Working Memory,
which holds the information under current consideration, and Long-Term Memory, which stores
knowledge for future use. Working Memory holds the mtermedxate products of thinking and the
representatlons produced by the perceptual system. Working Metmory is characterized by rapid
access times (in the 200 msec range), but small capacity. Long-Term Memory is charactenized by
much slower access and store times (often on the order of seconds), but essentially unlimited

capacity.

Long-Term Memory can be viewed as a structure having two components. In analogy with a
computer database system, Long-Term Memory can be said to have both a database and an
index. The information in the database, contained in the individual records, is accessed rapidly
using the pointers that comprise the index. .

The elements of Long-Term Memory can also be seen as an associative structure--a system of
concepts interconnected by numerous links (Simon, 1979). Information can be retrieved from
Long-Term Memory not only via the index but also by following paths of links from one concept
to another through intermediate concepts. Retrieval using the index is called recognition; retrieval
using sequences of links is called association. The latter process is considerably slower than the

former.

Working Memory is said to consist of elements, called chunks, which may themselves be organ-
ized into larger units. The use of chunk as the unit for Working Memory was proposed by Miller
(1956) in his *“Magical Number Seven” paper. The relevance of this unit for measuring fixation in
Long-Term Memory was later affirmed by Simon (1974). Recent research reaffirms the effective
capacity of Working Memory as indeed “seven plus-or-minus two” chunks (Card, Moran, and

Newell, 1983).

A seven-chunk limit would not seem to support the complex sort of information processing per-
formed, for instance, by chess grandmasters who can play 50 games at once or by writers organ-
1zing the many concepts in large documents. By chunking, sets of items are bound together
conceptually to form a unique, but abstract, item. For instance, rather than having to memorize
the geographic relationships among 11 football players, one can simply say, “They are in a
wishbone-T formation.” The concept “wishbone T" is a chunk that summarizes a large amount
of information about the positioning of different players.

13

The cructal assumption about chunks is that the contents of Working Memory arc symbols that
give access to, Or point to, corresponding concepts in Long-Term Memory. Thus an act of recog-
nition consists of using the index to retrieve such a symbol and to store it in Working Memory;
an act of recall from Long-Term Memory consists of placing in Working Memory the symbol
designating a particular concept in Long-Term Memory.

Card, Moran, and Newell observed that storing new chunks in Long-Term Memory requires a
fair amount of time and several Long-Term Memory retrievals, because remembering something
usually requires bulding links to existing items. Successful retrieval of a chunk from Long-Term
Memory depends upon whether associztions to it can be found. There are two reasons the
attempt to retreve a chunk might fail: 1) effective retrieval associations cannot be found, or 2)
stmilar associations to several chunks interfere with the retfeval of the target chunk. Items
cannot be added to Long-Term Memory directly; rather, items in Working Memory (possibly
consisting of several chunks) have a certain probability of being retrievable later from Long-Term
Memory. The more associations the item has, the greater its probability of being retrieved. If
someone wants to remember something later, his best strategy is to associate 1t with items already
in Long-Term Memory, especially in novel ways so there is unlikely to be interference with other

items.

On the other hand, Long-Term Memory can be accessed on a cognitive-processing cycle of about
70 msec. Thus, the human memory svstem operates as a fast-read, slow-write ‘system. This
asymmetry makes the limited capacity of Working Memory critical for many tasks, because it is
not possible in tasks of short duration to transfer much knowledge to Long-Term Memory as a

working convenience.

Each concept in Long-Term Memory, then, together with the links connected directly with it, is
said to constitute a chunk of information, while the symbol that designates such a concept is said
to constitute the corresponding chunk in Working Memory. If Working Memory can hold some
. fixed number of such symbols, then it will have a fixed capacity measured in chunks. Leaming
mvolves both storing new concepts and links in the database portion of Long-Term \Iemory and
elaborating the index to increase its powers of discrimination and recognition.

An important aspect of writing is the process of retrieving or generating the relationship among
concepts in memory and presenting them in a form where they can be understood and remem-
bered by readers. The writing system used in this project was designed to assist writers with this
task by providing them with tools to externally represent their internal memory organization.

2.1.2 Organizing Concepts in Memory

How do people organize concepts that they have learned? Can they or do they discover inherent
relationships in the information and employ this found structure? Do they impose a standard
structure. on all concepts regardless of their inherent organization? These questions are funda-
mental for understanding human memory structures and processes. They also have practical sig-
nificance for deciding how information is to be represented in so it can be well understood by

others.

Studies of human memory lead one to conclude that memory is organized so that information
can be accurately and quickly retrieved, new concepts can be easily fitted into existing structures,
and existing structures can be modified by or accommodated to new experiences {Durding,
Becker, and Gould, 1977). For example, Several different orgamizational schemes have been pro-
posed as the basis for providing these high-level capabilities.

« Smith, Shoben, and Rips (1974) have proposed that a structure composed of attribute lists
can account for many of the observed phenomena of memory.
» Collins and Quillian (1969; 1972) found that a model based on hierarchical structure

-accounted for most of their reaction time data.

14

» Anderson (1972) was able to stmulate several aspects of human performance using a model
based on associative networks.

Additional experimental support has accrued to each of these proposed models, but there is no
consensus that a single model best describes how memory is functionally organized. The type of
memory organization people use probably depends on task conditions. Certanly, people can
mentally represent the same information in more than one way by using different memory
encodings, depending on their purposes (Posner and Warren. 1972).

The writing systern designed for this project proposes to assist writers in organizing memory con-
cepts externally. The model chosen for its design incorporates a hierarchical structure, while also
accommodating some aspects of an associative network model. This meets the goal of the
systern, which was to assist in writing expository prose—which necessarily has an underlying
hierarchical structure. The research cited here suggests that humans work in more flexible ways
than that of a single model; future writing systems should consider designs with the flexibility to
accommodate a range of organizational models.

An alternative view is that memory organization is a function of the retrieval strategies used in a
particular situation {Landauer, 1972). In this view, the problem solving requirements of a task are
the primary determinants of the organizational structures observed by expenmenters. This Icads
to a shift in research emphasis from the structure of memory to the processes that are responsible

for organizing the retrieval strategies.

Whereas writing is a process of retrieving items from Long-Term Memory, reorganizing them, and
translating them into words, reading is a process of receiving items from an external medium,
mserting them into Working Memory and thén into Long-Term Memory. To increase the com-
prehension of their wrtten material, writers should try to trigger the right organizational processes
of the reader. We next look more closely at reading, to identify principles that may be used by
writers as well as those who build computer systems to help them.

2.1.3 Reading Research

Current theories of reading comprehension suggest that readers mentally encode what they read
into a form that is different from the literal text. They incrementally integrate portions of that
alternative version into their Long-Terrn Memory (see, for example, Kintsch and van Dijk, 197§;
Lachman and Lachman, 1979a; Schank and Abelson, 1977).

While opinion varnies on the precise nature of the encoding, Greeno (1977) has listed three criteria
for “good comprehension” that can be applied broadly: coherent, connected representation of
content; correspondence- between the representation and the text; and coanection between the
components of the message being comprehended and the reader’s general knowledge. As these
criteria suggest, comprehension involves several different cogmitive processes and takes place on
several different levels with respect to memory. For example, during comprehension, a reader
remembers units of information that include words, sentences, paragraphs, and so on—up to the
entire text—while constructing the encoded version that will be mtegrated mto Long-Term
Memory (Voss, Tyler, and Bisanz, 1982). Thus, features that help a reader remember one point

while reading another facilitate comprechension.

The theories of propositions advanced by Meyer and Kintsch are particularly relevant {Kintsch,
1974; Meyer, 1975; Kintsch and van Dijk, 1978). These researchers presume that a reader con-
structs a representation of the text content, called a text base, that is different from the sequence
of the printed words. While the semantic content of a discourse is composed of an ordered list of
propositions {Meyer, 1975), the content structure is hierarchical. Meyer showed that by selecting
a major superordinate idea and then relating subordinate ideas to it, one can construct a tree-
diagram representation of the content structure of the text. She and others have also shown that
recall of a proposition by readers is significantly affected by the position of that proposition in the

15

hicrarchy: propositions high in the tree siructure are recalled better than propositions lower in the
structure (Meyer, 1975; Kintsch and Keenan, [973; Britton, Meyer, Todge, and Glynn, [980).

The process by which a reader constructs the individual links in a text base has been clarified by
Kintsch and van Dijk (1978). A coherent text base can be represented by a connected graph.
The reader synthesizes the text base using a step-by-step process in which propositions in a sen-
tence are related to one another. Referents from some propositions carry over tfrom one sentence
to the next. Because Working Memory can retain only a few propositions at a time, the reader
first attempts to connect a new proposition to one already in Working Memory. If a link is
made, the new text being processed is perceived as coherent with the text just read. If not, an
inferential brideing process is initiated to locate a similar proposition in Long-Term Memory and
place it in Working Memory. Inference and Long-Term Memory searches are costly, since they
do not easily fit in the small capacity of Working Memory. "As might be expected, the inferential
bridging process considerably slows comprehension (Kintsch and van Dijk, 1978).

Several features of a text can contribute to the efficient construction of the text base hierarchy.
Thematic titles presented prior to a well-structured text significantly increase free recall of the
content of that text (Schwarz and Flammer, 1981). Similarly, advance organizers, or passages
containing the main concepts of a text but at a higher level of abstraction, positively affect com-
prehension (Ausubel, 1963). Texts in which the hierarchical structure is signaled or cued are com-
prehended more effectively than texts i which the hierarchy 1s not signaled {Mever, Brandt, and
Bluth, 1980). At the paragraph level, inclusion of a topic- or theme-sentence in the initial posi-
tion, rather than in an internal position or not at all, results in more accurate comprehension
(Kieras, 1980; Williams, Taylor, and Ganger, 1981). Thus, clear signaling of the writer’s intended
hierarchical structure of concepts through typographic and rhetorical conventions strongly influ-
ences the reader’s comprehension and the associated process of constructing a hierarchical text

base.

Knowledge of the kinds of cucs that help readers understand and remember what they read can
help developers of writing systemns to design their systems so that they encourage writers to
produce documents that include such cues. For example, a system intended for writers of
expository prose might encourage them to produce hierarchically-structured documents with
descriptive headings. Indeed, this was the strategy used for the testbed system described later in

this paper.

214 Writing Research

While rhetorical forms and prescribed structures for writing have been described for hundreds and
even thousands of years, most research into how writers compose expository prose dates from the
past twenly years. These studies have focused on two major areas:

« how writers internally and extemally represent the material they want to present, and
* what mental processes writers employ in producing a completed manuscript.

2.1.4.1 Representation and Writing

In 1980, Haves and Flower used think-aloud protocols to examine a number of writers from the
carliest stages of preparing a document through its completion. These protocols showed artic-
ulated plans and goals that never appear in the final text of the document, and 1n fact soon disap-
pear from the writer’s recollection of composing. They found that as writers compose, they create
multiple internal and external representations of meaning. Hayes and Flower conjectured that a
variety of forms of representation were necessary because the organization of knowledge and
meaning within human Long-Term Memory and Working Memory differs considerably from the
eventual organization presented by a writer in expository prose.

16

An important issue raised by these researchers is how people organize concepts, both internally
and in the external representation they are constructing. Writers often organize their documents
“in their heads.” Current cognitive theory on the operation of human memory, however, suggests
just two ways of accomplishing this task internally:

. Writers create in Long-Term Memory a separate cognitive structure for the concepts to be
conveyed. This is a slow process, prone to error and omission, and requires a great deal of

“mental effort.”
Writers organize in Working Memory the concepts to be conveyed. A major obstacle with

this approach 1s that writers cannot hold all their concepts in Working Memory at one time.
While they are organizing one set of concepts, another set slips out of consciousness.

t

By organizing externally, writers can potentially overcome these memory hmitations and more
cfficiently convey to their readers the desired set of concepts and their relationships. However,
complex ideas and relationships cannot always be represented by a short phrase or even a para-
graph. Consequently, writers often struggle to develop alternative ways to express their internal

cognitive structures externally.

2.1.4.2 Concepts

Researchers in cognitive structure describe several different types of concepts in the literature.
There is general agreement on the central definition of each type and little agreement on the
ambiguous areas between the types. Flower and Hayes (1984) observed that writers work with
three different types of representation of meaning: verbal, procedural, and imagistic represent-
ations. White (19835) similarly described these as propositions, algorithms, and images:

Propositions are representations in memory of facts or beliefs. Their prominence as the
basic unit in many models of cognitive structure is easily explained: they are the basis for
writing and speaking; they are a conveniently-sized unit; their existence can be readily

tested.

Algorithms and skills are step-by-step procedures for solving a problem or accomplishing
some task. West er al. {1985) use the term algorithm when they refer to public knowledge
and skill when they refer to prvate understanding: “This 15 not just a matter of semantics.
Books cannot have skills. They can only outline the steps of an algorthm that can be
used to perdorm a particular task. A person who can perform that task, possesses that
skill, whether one foliows the book algerthm or not.”

Images are mental pictures. I[n recent years there has been debate concerning the existence
of scparate storages in the brain for images and propositions. Because the ability to form
menta] pictures is universal and because real pictures have long been seen as a powerful
mode of communication, images can well be considered as an mdependent type of concept.

Concepts must comprise both general knowledge and specific knowledge. For example, the defi-
nition of “rock” is a generic definition. The knowledge about specific rocks we have seen is
knowledge about particular instances of the general concept. The generic definition applies gener-
ally to all rocks, but with some flexibility. Generic definitions describe the tvpical characteristics
of rocks, but any particular individual rock need not follow the generic definition exactly.

Hence, the definition of a concept must have two important properties. First, there is a need for
generic information about concepts that provides general knowledge, letting us deduce the proper-
ties of instances of the concept, even if we have not experienced those instances. Second, the
generic knowledge is prototypical: it specifies typical values, but we are not surprised if particular
instances of the concept differ from some of the generic properties. Thus, coneepts are not simply
organized in relation to one another, they have internal organization as well. Some examples of a
concept are more prototypical than others, and typicality greatly affects the speed of recognition

17

and categorization. The meaning of a concept for any person is part of that person’s private
understanding. Different people use the same concept labels for different internal meanings and
relationships. Not only can one label correspond to scveral concepts, but also some concepts
may have no corresponding label. ,

Writers must thus struggle with two goals: they must externally represent concepts with sufficient
information to be meaningful in their context, and they must provide enough information to
overcome mismatches between the understanding held by the writer and conflicting under-
standings already held by potential readers.

2.1.4.3 Representation

Many of the insights discussed in the section above come together in the notion of representation.
A representation is an isomorphism, or mapping, between a represented world and a representing
world {Palmer, 1978). In writing tasks, the represented world is the writer's multi-dimensional
cognitive structure for the document being produced. This represented world changes as the
writer progresses from the initial phase of exploration and organization of concepts to the final
document structure. The representing world is the medium within which the writer is working,
such as pen and paper or a computer display. The goal of any representation is to preserve in the
representing world the relationships of importance in the represented world.

Notice that the representing world necessarily reflects a subset of the possible relationships
existing in the represented world. For example, the “closeness” of concepts in a writer’s associa-
tive structure is an example of an aspect that is often included in the subset. Closeness or simi-
larity can be reflected in actual, physical distance relationships in a representation of those
concepts. By contrast, the “size” of a concept is often not directly represented in most computer
writing systems, although it could be. '

Simularly, not all aspects of the representing world model some aspect of the represented world.
For example, when using a graphic medium for representation, an author can use location, color,
size, shape, connections, texture, and motion to portray relationships. Not all of these are neces-
sartly used in a single representation. When using color, for instance, we often need a key or a
legend that maps the significance of each color used in the representation to its counterpart in the
represented world.!

Models of human memory indicate that a writer starts with loosely-connected sets of concepts
and molds them into a final-form document, a sequence of text. Thus, the world represented here
has 2 number of forms. Human memory is commonly modeled as a multi-dimensional semantic
network; for a graphic representation, closeness must be reduced to a two-dimensional distance.
At the start of the organizational phase of writing, we want to represent the similarity, disparity,
and distinctions among concepts, which can be done readily with closeness and explicit con-
nections between concepts. The result of the wnting organization phase should be a set of
sequences and hierarchies of concepts that can be reduced to the sequence of text expected and
well-comprehended by a reader.

The writing system designed for this project aims to meet writers” needs in the three areas just
discussed. It presents a place to work with ideas, instead of in their heads somewhere between
Working Memory and Long-Term Memory. It allows concepts of the three types discussed in
the literature to be captured: propositions, algonthms, and umages. And, 1t permits representation
of relationships of ideas—such as linkage, hierarchy, and closeness—m an easily-changeable
medium.

! As a counter-example, the meaning of “high-intensity” fields and items cofored “red™ are often readily
apparent without a legend.

This discussion of writing so far has surveved the objects a writer deals with—concepts—and their
cxternal organization and representation. The following discussion examines the process by which
writing is accomplished. It looks at the steps and thought processes a writer goes through when
bringing a piece of technical prose from inception to completion,

2.1.5 The Writing Process

Writing is a complex process that draws on many different cognitive skills. Among these skills
are:

» Retrieving information from the writer’'s memory or from external sources.
+ ldentifving associative relations among ideas.

= Drawing inferences and making deductions.

* Bulding large hierarchical structures.

e Translating ideas into words.

* Reading, analyzing, and rewording during the editing process.

Hayes and Flower, in their work reported in 1980 and since, have observed a shift of attention
from product-oriented rescarch in writing to process-otiented research. Using think-aloud proto-
cols, they looked at the steps that wrters employ in producing expository prose. Their results
indicate that Rohman's three-stage description of the wnting process (1965)—consisting of pre-
writing, writing, and rewriting—was oversimplified. The process that writers use is both iterative
and recursive and, hence, more complex.

Hayes and Flower found writing to be goal directed, with the goals often organized hierarchically.
Three types of activity are used by writers to accomplish their goals: planning, sentence gener-
ation, and revision. .

Planning: Writers use pointers, word images, and goals in planning their writing. Pointers can
consist of references to complete text or just jotted notes to stir a writer's memory.
Word images are fully-written sentence fragments, sentences, paragraphs, or more.
Goals are of the form “Add an introduction.” Adult planning consists of constructing
a complex goal structure:

* Goals form a hierarchy or network.
« Expert writers generate more elaborate networks of goals than novices.
* Priorties are dynamic, frequently changing and evolving over the course of
wnting.
Sentence generation: Hayes and Flower found this step to consist of explaining briefly-sketched
ideas produced dunng planning, interpreting non-verbal material, and carrying out
instructions. They noted that:

+ Essays are typically eight times the size of the writer’s outline.

» Sentences are generally composed in parts: these parts are 7-12 words in length,
separated by pauses.

« Experts write longer essays, with longer sentence parts.

Revision: The more expert a writer, the greater the time spent in revision.

» Experts attend more to global problems than novices.

» Experts detect and diagnose problems better than novices.
Writers have difficulty detecting faults in their own text.

» Revision can be applied to writing plans as well as written text.

Rather than progressing through distinct stages, writers accomplished their goals in arbitrary
sequences of activities; sometimes recursive and sometimes iterative. This complexity of goals was

19

recognized and was a key factor in the construction of the analysis tools used to examine writers’
protocols in this project. '

2.1.6 Writing Modes

The Textlab group views the processes used by writers as constituents of a set of cognitive modes
(Smith, Weiss, and Ferguson, 1987; Smith and Lansman, 1988). This concept of mode includes
many of the ¢lements of the wnting process described by Flower and Hayes, but in a more struc-
tured form. They describe four components that compnse modes:

One or more cogrutive processes.

A product produced and.or operated on by those processes.

Goals, representing a writer's intentions when undertaking the associated processes.

A set of rules or constraints that govern the kinds of products that can be produced within
the mode and the relations that can exist among the parts of the product(s).

e

Writers use different cognitive modes to produce different forms of information or to transform
one intermediate product into another. For an intuitive sense of modes, consider the following
examples. During early work on a document, many writers adopt a mode of thinking in which
the prnimary purpose is to wdentify ideas and data that may be included in the document and to
consider various relations among them. The writer retrieves potential concepts from Long-Term
Memory or from external sources, considers possible relations among ideas, and, perhaps, groups
related ideas and constructs small hierarchical structures. In that mode, the underlying rules are
those associated with a network: any idea can be related to any other idea through simple associ-
ation. Thus, the intermediate product is a network or directed graph of ideas. This exploratory
thinking is often creative and unfiltered as the writer generates and considers alternative possibil-
ities for the document. : '

The mode of thinking used for organizing the content of the document is different. The writer
shifts from exploring to building a single integrated structure for the document. Organization is
the task of constructing an integrated structure for the document. For many documents, partic-
ularly those written by professionals, that structure is hierarchical. Thus, the prodict is a hierar-
chical structure and the rules are those that govern hierarchies. That is, each concept in the
hierarchy can be subordinate to at most one other concept, but it may be superordinate to many
concepts. Building such a structure requires a different set of cognitive processes from those used
during exploration. The cntical one is the process of abstract construction that includes per-
ceiving subordinate/superordinate relations, comparative levels of abstraction, sequencing, propor-
tion, and balance.

Writing, per se, involves still a different set of cognitive processes. Here, the primary task is
encoding the abstractions of content and the relations of the hierarchical structure into a sequence
of words, drawings, or other explicit forms. The structure of the encoded text is linear and repres-
ents a path through the hierarchy. Consequently, it is even more constrained than organization

mode.

Thus, the Textlab group has adopted a multimodal view of writing. Inferences regarding the
mental processes of writing are based on the changes writers make to the document they are
developing. The modal view has been embodied by their Writing Emvironment (WE) system,
which provides a set of windows, each of which encourages a particular modal activity. The com-
plete deseniption of their model of cognitive modes for writing 1s shown in following table.

20

Table 1. Cognitive modes for writing. This table is taken from figure 3 of Smith and Lansman

{1988).
Modes Processes Products Goals Constraints
Exploration + Recalling * Individual * To externalize * Flexible
* Represeniing concepts ideas * Informal
¢ Clustering *+ (Clusters of ¢+ To cluster * Free
* Associating concepls related ideas expression
* Noting subor- * Networks of * Togaina
dinate and clustered con- general sense
superordinate cepls of available
relations cencepts
* To consider
various
refations
Situalional Anal- * Analyzing = High-level * Toclarify = Fiexible
ysis objectives summary rhetarical + Extrinsic per-
¢ Selecting slatement intentions spective
¢ Prioritizing + Prioritized list * To identify
¢ Analyzing of readers and rank
audiences (types) potential
= List of (major) readers
actions desired ¢ To identify
major actions
+ Consclidate
realization
+ To set high-
level strategy
for document
Organization * Analyzing * Hierarchy of * To transform + Rigorous
+ Synthesizing concepts a network of + Consistent
* Building ¢ Crafted tabels concepts into * Hierarchical
abstract struc- a coherent * Not sustained
ture hierarchy prose
* Refining struc- .
ture
Writing * Linguistic * Coherent * To transform * Sustained
encoding prose an abstract expression
representation * Not (neces-
of concepts sarily) refined
and relations
into prose

Editing: Giobal
Organization

* Nolung large

scale relations

* Noting and

Refined text
structure
Consistent

To verify and
revise large-
scale organiza-
tional

Focus on
large-scale
features and

correcting structural cues components
inconsistencies components
* |, Manipulating
large-scale
structural
| components
Editing: Coherence * Noting coher- * Refined para- + To verify and « Focus on
Relations ence relations graphs and revise coher- structuraf
between sen- sentences ence relations relations
tences and * Coherent within inter- among seh-
paragraphs logical mediate sized tences and
* Restructuring relations COMmMPponents paragraphs
to make between sen- * Rigorous
relations tences and logical and
coherent paragraphs structural
thinking
Editing: Expression * Reading * Refined prose * To verify and * Foecuson
* Linguistic revise the text expression
analysis of a document * Close alten-
¢ Linguistic tion to lin-
guistic detail

transformation

* Linguistic

encoding

21

While [commend the rigor of definition tn the Textlab view of cognitive modes, I believe there is
a great deal of shifting betwecn the different modes during a writing session. Consequently, the
writing system I developed for this study includes only one planning mode and one editing mode.
The focus of my analysis of writing strategies s on the sequences of actions and the pauses
between them. rather than the shifts between a number of different modes. Inferences regarding
the mental processes involved are based on identifiable series of important actions. This s dif-
ferent from the Textlab work, which does its delimiting based on the modes being used and the
products being produced. The design and implementation of this new writing system is the topic
of Chapter 3.

As we exarmined the aggregate of reading and writing research—and how key principles might be
incorporated in computer wrting systems—the members of the Textlab group saw many simnilari-
ties with existing computer systems that come under the title of structure editors and hypertext
systems. Before building new writing systems from scratch, we surveyed existing structure editors
and hypertext systems and the ten,hmques used by their builders.

2.2 Tools to Help Writers Organize

The key task for developers of computer writing systems i$ to help writers with the individual
processes, or cognitive modes, that constitute the overall process of writing in order to produce
documents that can be read, understood, and remembered. Thus, these systems should be viewed
against the background of theory and studies for both reading and writing, as discussed above,

This section reviews a family of systems—structure editors and hypertext—that attempt to help
writers, particularly with organizational tasks. It concludes by brefly discussing the rationale for
developing a new system as a testbed for this study, and its relation to earlier systems.

2.2.1 A Survey of Structure Editors and Hypertext Systems

The idea of a structure editor predates the computer and can be traced to Vannevar Bush’s
seminal paper, “As We May Think” (Bush, 1945). Bush proposed a new form of library, called
the memex, based on microfilm technology. By including manual cross-references, the memex
would help the knowledge worker create a vast network of associations among texts m a private
library and to integrate new texts wniten by the user, While a complete memex has never been
built, Bush’s vision has gutded many significant research efforts and commercial products. Based
on the underlying model of text structure, these projects fall into two distinct groups: directed-
graph systems and hierarchical systems.

2.2.1.1 Directed-Graph Structure Editors

The first serious attempts to realize Bush’s memex in computer technology occurred in the 1960°s.
Ted Nelson viewed a text as a number of independent logical, rather than physical, segments that
could be linked into a network in a variety of ways (Nelson, 1967). His system, Hypertext, was
developed on Brown University’s §/360 mainframe computer. It was used in an experimental
class in literary analysis (van Dam, 1976), but has not been used extensively beyond that.
However, van Dam and others (Feiner, Nagy, and van Dam, 1982) at Brown have included many
of the features of Hypertext in a dynamic system that combines pictures and text. Implemented
on stand-alone hardware with high-resclution graphics, this experimental system was impressive in
it flexibility and its effective use of color graphics, but has not been made public for reasons of
cost and response time. Another important network-based system is ZOG, developed at
Camegie-Mellon University (Robertson, McCracken, and Newell, 1981; Newell, McCracken, and
Robertson, 1981; Akscyn and McCracken, 1984). ZOG is a high-performance system designed
for accessing the massive documentation aboard a nuclear-powered aircraft carmer. While Z0G

22

can be used as a writing tool, 1ts primary function is fast, interactive traversal of a network of text
components.

The NoteCards hypermedia? system allows its users to build general semantic networks using rep-
resentations of 3x5 notecards and typed links (Halasz, Moran, and Trigg, 1987). “Its intended
users are authors, designers, and other intellectual laborers engaged in analyzing information,
designing artifacts, and generally processing ideas” (ilalasz, 1987). Its designers reviewed its
design by interviewing twenty of its users. Flalasz describes seven key issues that he believes need
to be addressed to better match this tool to the needs and preferences of its users. He describes
these issues as “an agenda for the next generation of hyperrnedia systemns.”

In 1987, Apple Computer began shipping the Hypercard system with its Macintosh family of per-
sonal computers. Bill Atkinson extended the ideas of NoteCards somewhat with his Hypercard
design; he represented groups of similar concepts as a stack of notecards, where the appearance of
entire stacks and individual cards can be graphically tailored. Any card may be made to point to
any other card in a stack. Cards may contain any combination of text, graphics, and audio. An
interactive scripting language allows users to direct the flow among cards, in addition to auto-

mating the contents of a card.

The power and ease-of-use of Apple’s Hypercard energized both academic and coms:. rcial
rescarchers; a wider public became aware of the possibilities of structure editors and hypertext
systems. Survey articles by Conklin (1987) and Smith and Weiss (1988) appeared in prominent
computer science journals. The Hypertext ‘87 conference at UNC brought together many of the
key researchers in hypertext systems; the conference proceedings (1987) provide a rich cross-
section of the state-of-the-art and the important issues involved in hypertext systems in 1987,

2.2.1.2 Hierarchical Structure Editors

Hierarchical structure editors are, i a sense, a subset of the directed-graph structure editors and
hypertext systems discussed above. Systems secking to support hierarchical text structures follow
a similar chronology. Douglas Englebart and his colleagues at the Stanford Research Institute
developed an experimental structure editor that also drew ideas from Bush (Englebart and
English, 1968). At a landmark demonstration of the system at the 1968 Fall Joint Computer
Conference, text, graphics, and live video of Englebart in San Francisco and his colleagues 20
miles away in Menlo Park were superimposed on multiple viewports on a screen, as they were
working together and explaining what they were doing. “Chalk-passing” protocols were demon-
strated for svnchronizing multiple users. This demonstration was a forerunner of graphics- and

sound-based teleconferencing.

Seeking to augment the mental capabilities of the emerging “Knowledge Worker,” Englebart’s
group built an extremely powerful and mnovative system, variously call dugmented Knowledge
Workshop, NLS, and Adugment. The structure editor portion created a hierarchy expressed in
outline notation (1.1.2, 1.1.3, etc.); by manipulating the outline values associated with blocks of
text, the writer could modify the structure of a document. ANLS introduced the notion of concep-
tual models for the editing and authoring processes, tree-structured editing, and other features in
the field of text editing and office automation. NLS and other related systems, such as HES,
FRESS, and Xanadu, are important because they view the editor as an author’s tool, an interac-
tive means for organizing and browsing through information.

A more general group of experimental hierarchical systems was the XS series developed by
Burkhart and Nievergelt in Zurich (Burkhart and Nievergelt, 1980; Stelovsky, 1984). These
editors have as their core a flexible tree editor that allows the user to manipulate the clements at

2 The term hypermedia implies that the nodes in the hypertext system may contain not only written text,
but graphics, motion video, and ‘or audio.

23

the node level. The target-independent tree editor can be combined with target-dependent back-
ends to create multiple editors, such as a document editing and formatting system. Intended for a
broader range of applications, including software development, XS-7 and .XS-2 provided flexible,
powerful tree manipulation functions on a microcomputer.. Innovations included verifying the
mtegrity of the tree after each editorial change to a document’s structure and representing the
hierarchical structure with altemative forms.

Fraser’s s is an attempt to provide standard editing primitives that can be used to build a variety
of editors; Fraser argues that a generalived structure and a generalized text editor nucleus can be
used for editing all applications. Janet Walker’s Document Editor operates on a document as a
collection of files in Scribe manuscript form; it infers the structure of a document from the tags in
the file being edited. The specialized functions for technical writing provided by the Document
Editor are extensions to the EMACS editor in the form of a user library. Hansen's EMILY
extended the concept of the structure editor and developed the syntax-directed editor, in which the
structure imposed on a program being edited was the structure of the programming language

itself.

More recently, commercial “outline processors” such as ThinkTank, Ready!, MaxThink, and More
have brought some of the features of these more ambitious but pnvate systems to the personal
computer. These systems help the writer create an outline, wnte sections of text within the

outline, and manipulate text structure by manipulating the outline.

2.2.1.3 Textlal’s Writing Environment (WE)

WE employs both a neiwork (directed graph) and a tree (hierarchical) structure editor—but for
different stages, or modes, of the writing process. Writers may work in either editor, developing
graphs and hierarchies separately, and they may also explicitly transfer these conceptuaj structures

from one mode to the other.

When designing the WE system, the Textlab group reasoned that writing could be viewed as a
complex process involving different cognitive processes. A key question in their system design
was how best to support these different cognitive modes and the flow of intenmediate products
among them. They saw two alternatives: 1) a single mode system where all system functions
would always be available, and 2) a multimodal approach where the environment was divided
into separate system modes, each including only the function appropriate for its corresponding
cognitive mode, WFE follows the multimodal approach.

Consequently, WE makes four system modes available at all times, each contained in a separate
screen window., These windows are labeled network mode, tree mode editor mode, and text
mode, corresponding to_the exploratory, organizational, writing, and editing modes of writing,
respectively. Of the modes shown in Textlab table of modes, they did not include a mode for
situational analysis, and they included only one mode for editing.

2.2.1.4 Why Build a New Structure Editor?

In the context of writing, a structure editor can cleanly separate the process of generating and
organizing concepts from the process of writing and revising an extended text. 1 chose to design a

new structure editor for this study for the following reasons:

« It provided me with the opportunity to design a system based on the ideas [felt were mnpor-
tant, rather than on other people’s emphases. [chose the altermative of implementing a
system where all the organtzational functions were always available, not exphcnly separated
into separate modal groups.

* It provided me with the data I needed to carry out my research objectives. More specifically,
it let me “compile in" the “hooks” necessary for an automated tracker, and i could optimize

the tracker to be fast and unobtrusive.

24

» This structure editor could be distributed worldwide without concern for the actual CPU,
screen size, or national language support being used. [t is implemented as a fast, powerful
graphics-based structure editor for an IBM or compatible personal computer. The structure
editor runs with Microsoft Windaws, which provides independence from the hardware being

used.
+ It could be modified to incorporate the lessons learned in the study.

« It provided a personal testbed for exploring issues of representation and graphics layout algo-
rithms.

The next chapter of this paper describes the structure editor I built in accord with these reasons.

2.3 Protocol Collection and Analysis

In this section [review mcthodological issues involved in detailed studies of human-computer
interaction, including user’s strategies. The discussion begins by considering different forms of
data, called protocols, and the various concerns and issues ratsed in collecting them. Then, [shall
discuss our particular approach to analysis—based on the concept of a grammar~by reviewing
several projects that have used grammars to describe user behavior.

2.3.1 Protocol Collection

To study human behavior, psychologists gather data in the form of protocols. For writing, proto-
" cols have historically been verbal reports by the subjects themselves, with additional annotation
consisting of observances by the tester(s). The verbal reports were either recorded at the time of
the test as the subjects spoke aloud their thoughts and intentions, or recorded retrospectively—that
15, at some time after the test—based on prompting by the tester. Further, audio and video
recordings capture many aspects of an interaction with a great deal of fidelity, Finally, the inter-
action between a human and computer can be recorded and stored by the computer. In this
subsection, I describe the strengths and hmitations of these different means of collecting protocols.

2.3.1.1 Think-aloud Protocols

_ Think-aloud protocols, where subjects narrate their thought process while performing some task,
have been used by rescarchers in examining the cognitive processes that take place in many
complex mental tasks. However, there has been considerable debate about these data, which has

been summarized by Smith, ez al. (1985).

To summarize the issues briefly, Nisbett and Wilson (1977) raised three objections to think-aloud
protocols: their validity or accuracy, thewr completeness, and their possible interference with the
task being performed. Ericsson and Simon (1984) have responded to that criticism by identifying

three levels of verbalization:

Level I: Verbalization of concepts already stored in human Working Memory in verbal form,
Level 2: Verbalization of data that would not be heeded as part of the cognitive process, and
Level 3: Verbalization of data that is not part of the cognitive process and must be generated.

They argue that concurrent think-aloud protocols constitute valid data for Level 1 verbalization.
They found no evidence that concurrent think-aloud protocols affect this type of cognitive proc-
essing or that such data are incomplete or distorted. However, for Level 2 and Level 3 condi-
tions, think-aloud protocols did significantly change the cognitive process, especially recognizing
complex pattemns and relationships presented visvally (Ericsson and Simon, 1984; Henry, 1934).

25

This is precisely the situation that highly-interactive software presents—the manipulation of
complex structural relations and patterns of associations represented visually. Phrased another
way, think-aloud protecols are well-suited (or indispensable) for reflective tasks such as reading,
but may interfere with or distort generative tasks such as writing—particularly during planning.

Think-aloud protocots are also expensive to use because their coding is labor-intensive. Personnel
must be trained to administer the tests and record the protocols. Test subjects must be found
who are approprate users for the target system and who are trained at verbalizing their thoughts
while using it. Since such persons are sometimes hard to find, new subjects must generally be
trained at the verbalization techniques.” Some subjects may need quite a bit of practice. Consist-
ency of verbalization for a given subject and among subjects is difficult to guarantee. An hour of
think-atoud protocol typically requires about 15 pages of transcription {Hayes and Flower, 1980).

Test personnel or researchers must usually code the verbalization into some regular format in
order for it to be analyzed across sessions and subjects. This coding is often subjective, and can
vary with the expenience of the coders or even with their mood at the time.

Despite these reservations, think-aloud protocols are used frequently to “‘get at” users” thoughts
and observations while interacting with a software system. Atkinson (1983), for example, used
think-aloud protocols to guide refinements in the development of the Macintosh MacPaint
program. Tools, such as the Mini-Protocel Analysis System (MPAS) of Encsson and Simon
{1984), have been developed to aid those collecting these protocols, by prompting for the next
utterance and timestamping the entry. The Playback methodology (Neal and Simons, 1984) also
prompts for observer input, and also carries out logging of keyboard activity for later statistical
analysis and measurement on a mainframe computer.

2.3.1.2 Video and Audio Protocols

Video equipment has become a powerful tool for recording user interaction with computers. [t
captures users’ reactions (including subtle elements such as eye movement and body language)
along with the computer display and users’ input actions.

Card, Moran, and Newell {1983) used videotape equipment and tracking programs together to
record users’ keystrokes and the contents of the screen. These were later combined to obtain the
full record of the session, which could be replayed readily by the researcher. However, this
method requires special equipment (the video-recorder), possibly an equipment operator, and pos-
sibly a special room for testing. This makes the protocol collection process particularly obtrusive,
and limits the number of subjects and length of tests that can be administered within a given time
period. 1t also results in a large volume of fine-grained data.

Tater (Mackay, 1988) states that the analysis of videotaped records “is a time-consuming, pains-
taking affair, requiring perhaps an hour for every minute of tape.” Hoping to overcome some of
this tedious post-analysis, researchers at MIT (Mackay, 1988) are developing a visual workstation
that digitizes moving video and presents it in an X-Window on a high-resolution display. A
researcher can create software “buttons” to tag particular events for later analysis. Dunng the
session, the output from the video camera is channeled through the X-Window; the researcher
can take online notes and tag events as they occur by pressing the appropnate button. After the
session, the researcher can watch the complete session at any speed or view just the tagged events.
As with the coding of think-aloud protocols, this process requires consistency and coordination
among the researchers; for example, identical events must be identically tagged among a group of
sessions, if they are to be compared.

Thus, while theoretical issues persist for think-aloud protocols, think-aloud, audio, and video pro-
tocols still cause practical problems with respect to effort and consistency of interpretation. An
alternative is machine-recorded protocols.

2.3.1.3 Computer Protocols

Software developers have devised a variety of hardware and software facilitics to encode and
record the input to a computer. Iowever, these have not been designed for protocol collection,.
but to aid in debugging or to allow a user to review and re-execute previous actions. Among the
most familiar is the UNIX history mechanism (Greenberg and Witten, 1988), which records each
command line entered by a user. Macro facilities (such as those in WordPerfect and Microsoft
Excel) simplify the re-use of frequently-executed input sequences specific to these products.
Standalone keystroke-capturing programs (e.g., Cocoon) allow replay of keyboard input inde-
pendent of the software being run.

The [CARUS VLSI circuit-layout system, studied by Card, Moran, and Newell (1983), collected
the key name, clock time, and mouse coordinates as part of the protocol. Note that keystroke
recording facilities are not usually sufficient to determine the actual command performed in an
interactive system. For example, when analyzing session protocols from the fCAREUS system,
Card, Moran, and Newell reconstructed the actual commands that were executed from the key-
stroke recording using “heuristic programs and hand editing.”

Such ambiguities were avoided in this project by recording actions at the command level. Each
time an action is selected (say, moving nodes), the start of the action is recorded. When the
action is completed (the nodes are released), the end of the action is recorded, along with its

parameters (where the nodes were moved to).

2.3.1.4 Comparing Protocol Collection Techniques

Each of the three means of protocol collection discussed above is best suited to different research
objectives. Concurrent verbal reports are good for capturing users’ short-term view of their
strategy and ongoing instances of frustration and delight. Audio and video recordings capture
minutiae of the interaction that must still be pamstakingly categorized and interpreted. Both of
these means have the disadvantage of requiring special equipment and/or personnel at a user’s

setting.

Verbal reports and audio or video recordings also introduce problems of reliability. For any
study, they must be transformed from their raw form into some set of categories in which the
model being examined is defined (Swarts, Flower, and Hayes, 1984). Training and practice can
increase the reliability and consistency of the transformations, but the encoding is still subjective.
Hayes and Flower (1980) report encoding errors on the order of 25%.

To investigate software interactions in volume, what is needed is a means of collection that is:

adequate—it captures the essential aspects of the interaction,

consistent—it captures similar interactions similarly,

unobtrusive—it does not influence the interaction, and

cost-effective—it reduces the human processing required to use the protocols.

Although automated trackers miss most of the extraneous noa-verbal (and verbal) reactions of
their users, they appear to meet these requirements reasonably. An automated tracker that meets
these requirements was implemented as the primary means of collecting protocols of wnters soft-
ware usage in this project.

27

2.3.2 Protocol Analysis

Collecting the protocols and preparing them in a consistent format is the prelude to the more
extensive task of understanding the behavior of test subjects. For many years, efforts by pssychol-
ogists to analyze protocols have focused on specific techniques for deriving condensed, but valid,
data from verbal reports. Frequently the skill of the investigator determined the accuracy, consist-
ency. and completeness of their personal interpretations of the verbal reports.

“Reliability is a problem with any method of research, and particularly so with protocol
analysis. People who look at protocols have the same problem as people looking at
clouds: everyone might see something different.” (Swarts, Flower, and Hayes, 1984)

Ericsson and Simon summarized the assumptions, techniques, and limitations of verbal reports as
data in their 1984 book, Protocol Analysis. They noted that a few programs have appeared that
systematize protocol analysis on a rudimentary basis. PAS-I and PAS-H (Waterman and Newell,
1971 and 1973) produce a problem behavior graph. SAPA (Bhaskar and Simon, 1977} predicts
the information addressed and decisions reached in solving thermodynamics problems. The
context is greatly constrained because the solutions are all built around the use of the equation for

the conservation of energy.

A more specific problem is the analysts of protocols collected in the study of human-computer
interactions. The following discussion of one analysis by Card, Moran, and Newell of a human-
computer interaction serves to provide specific details about their method of protocol collection
and analysis. Their analysis techniques provided the basis for the automated analysis techniques
applied in this project. Other models for analysis follow this detailed discussion.

2.3.2.1 The ICARUS Study by Card, Moran. and Newell

In Chapter 10 of their 1983 book, Card, Moran, and Newell discussed their hand-analysis of the
protocol of one subject doing a VLSI circuit layout. Most of their book focuses on carefully-
controlled text-editing tasks, which Card, Moran, and Newell analyzed at the keystroke level.
They presented this single chapter as an extension of their study to “a more creative task domain”
where the subject was not given specific instructions to follow, but used the system to sohe a

problem.

The subject for their experiment was an expenienced user. He talked aloud dunng the session; his
hands and the screen were recorded with two videotape machines. His keystrokes was also cap-
tured in 2 file with timestamps. The session lasted about 40 minutes.

When beginning their protocol analysis, Card, Moran, and Newell noted difficulty in coordinating
the keystroke recording and the two videotapes. The keystrokes were assembled into commands
using hand editing and some heuristic programs. Because of difficulty in aligning the coordinate
systems across the three recordings, they were unable to tell exactly what circuit element was

being worked on.

Their protocol analysis noted that the user frequently paused during the experimental session to
check the work he had done and to think about what to do next. A threshold of 5 seconds was
chosen to identify the pauses from the inter-event intervals (which varied from 0.3 seconds to 80
seconds). This divided the session into about 100 episodes, each with an average time of 23
seconds. Each episode consisted of a pause of at least 5 seconds followed by a varying number of
[CARUS commands. The episodes were manually identified by the researchers as one of four
different types of tasks: Draw, Alter, Dimension, and Check.

They observed that the expenmental session could be partltioned into phases lasting several
minutes each. In each phase, episodes are organized around one of the major subproblems of the
VLSI circuit-layout problem. They identified three phases, each of which occurred only once.
The phases lasted 14 minutes, 7 minutes, and 15 minutes, respectively.

28

Their analysis of this session fits within a hierarchical model: sequences of individual commands
form episcdes, and groups of episodes partition a session into phases. Similar models have been
used in other research efforts that examined human-computer interaction. These formal models
were used to guide the protocol analysis efforts of these researchers.

2.3.2.2 Formal Models for Analvsis

Three notable research efforts have employed hierarchical models in understanding the semantics
of sessions between humans and computers.

Reisner {1981, 1982) used a formal grammar specification to describe the user commands of a
araphics drawing system, as a means of comparing alternative interface designs. Her grammar
describes tasks such as “how to draw a green line” in terms of its constituent user commands.
The grammar is context-free (Type 2 power in the Chomsky hierarchy) and is described in

Backus-Naur form (BNF).

Retsner’s formal grammar gives a precise definition of the syntax of the action language she
describes. She showed that using a BNF specification can highlight the irregularities in the syntax
of the language; similar actions should have similar syntax. She used the grammar to describe the
system after it was implemented. She did not discuss broadening the grammar to encompass

higher-level strategies,

Card, Moran, and Newell (1983) studied performance of structured tasks at the keystroke level to
infer time predictions for the subtasks. An example subtask would be to edit a word in a manu-
script; its operations mnclude finding the marked-up word on the page, scrolling through the man-
uscript to locate the word, moving the cursor to the word on the screen, and making the
necessary changes. They introduce the GOMS method for formally representing their language; it
consists of goals, operators, methods, and selection rules. GOMS expresses structured tasks as a
hierarchy of goals. At the lowest level in the analysis (the leaf level), a user selects a method of
fulfilling a goal by executing specific operations. The grammar represented by GOMS is context-

free.

The GOMS model is well-suited to the study of time predictions and operator sequence pred-
ictions for small subtasks. However, its fine grain of analysis seems too low a starting point for
examining overall strategies. Its syntax resembles that of a recursive programming language; in
their exampies, it frequently becomes verbose and awkward to read for any but the simplest deci-
sions. In their own [CARUS study, Card, Moran, and Newell invented new terminology when
working with the strategies of an entire session.

Kieras and Polson (1985) presented two formal descriptions: one for the user’s knowledge of how
to use a device, and a second for representing interactive devices. Their goal was to quanufv the
complexm of a computer’s user interface. By representing the device behavior formally as well as
the user's knowledge of i, they could simulate the user-device interaction to obtain rigorous

measures of user complexity.

The focus of Kieras and Polson was the separation of device-independent knowledge from device-
dependent knowledge. For their job-task representation {the device-independent knowledge), they
used a production systern, which they described as equivalent in power to GOMS. For their
device representation (the device-dependent knowledge), they used a generalized form of aug-
mented transition network (ATN), presented in a graphical form in their paper. An ATN gener-
ally has Type 0 power (Woods, 1970; Bates, 1978).

Some common threads recur in these research approaches. First, all three groups were looking at
low-level interactions between the human and computer, essentially at the keystroke level.
Because of the fine grain of analysis and the work involved in analyzing the darz by hand, each of
these efforts reported on the human-computer interaction of only one subject .- i one task.

Secondly, these researchers used grammars of Type 2 power to represent the interaction. Foun-
tain and Norman (19835) observe the following in their review of Reisner’s grammar and GOMS;
it also applies to the job-task knowledge of Kieras and Polson.

“All grammars above Type 0 impose restrictions upon the languages which are capable of
being specified. This has important bearing upon the ficld of human-computer intcraction,
because the manner in which the language is specified is saving something about human
cognition. Type 2 grammars allow only one non-terminal symbol to the Ieft of a rule so
that 1) we are implicitly assuming that the human cognitive process is strictly serial and
monotonic: only one goal or task at a time may be attempted 2) the ability of a human to
solve goals is context-free and history insensitive: the current task is not affected in any
way by either previously completed tasks or future unstarted tasks. Only the current task
environment is to have any bearing on the goal at hand. It is not clear that either of these
conditions are necessarily true of the human cognitive process.” (Fountain and Norman,

1985)

Recognizing these deficiencies, the Textlab group at UNC has taken a broader and more powerful
approach to automating the analysis of their users’ protocols. Smuth, Rooks, and Ferguson
(1989) describe a cognitive grammar for modeling users of their hypertext Writing Environment
(WE) system. They describe their cognitive grammar as “‘a computer program that interprets the
actions of a user working with an interactive application system in order to infer the cognitive
activities taking place in the mind of that user.” This grammar, implemented as an OPS-83
program, can be considered as five separate grammars that work in conjunction with one another.
These five levels incorporate their theory of cognitive modes (Smith and Lansman, 1988); the
principal nonterminal symbols represent the cognitive products developed by writers, the cognitive
processes used in their creation or transformation, and the cognitive modes engaged by writers
during a session. '

[believe that these more powerful—and more complex—approaches are a promising direction for
research into protocol analysis and the underlying cognitive processes. The approach taken in this
project (described in Chapter 4) was built upon the same fundamentals as the grammar-based

approach of the Textlab group.

2.4 Summary

Thus, three themes guide the research described in this paper. An understanding of human
memory and how ideas are manipulated was motivated by the central tasks of reading and
writing. Writing research, in particular, was reviewed in two areas: the structure and represen-
tation of ideas, and the processes and stages a writer goes through in order to produce prose.
Writing systems for computers, specifically some hypertext systems, attempt to aid writers by
making concrete the structure of the prose as it evolves. Finally, techniques for collecting and
analyzing writers’ sessions assist researchers trying to understand writers mental processes—in
order to build better writing systems. '

Chapter 3 describes the design and implementation of the specific wnting system developed for
this project. Its description is thorough, since it introduces the operation of each command avail-
able to a user. These commands form the terminals for the grammar-based parser that is
described in Chapter 4 of this paper.

30

CHAPTER 3. SYSTEM DESIGN AND
IMPLEMENTATION

In addition to reviewing existing structure editors and hypertext systems, the preceding chapter
reviewed many cogmtive factors to be considered in the design of a computer writing system.
Members of the Textlab group have implemented several computer writing systems to explore
how these factors might drive design decisions: PROSE {(a UNC class project from 1983),
Storpspace (Bolter and Joyce, 1987), Writing Environment (Smith, Weiss, and Ferguson, 1987),
and Prose [(the testbed for this project). These systems share some common goals, addressing
the three interacting human subsystems proposed by Card, Moran, and Newell:

+ To lessen the load on a writer’s cognitive system,
* To lessen unnecessary motor activity, and
= To effectively use of the human perceptual system and human spatial abilities.

These researchers applied a common set- of techniques to the design of the four systems. An
tmportant technique was to assist writers in the external representation of their evolving cognitive
structure. Single conceptual items are explicitly represented. These items can reference an unlim-
ited amount of detail and associations. Items can be bound together to form new items, can be
associated with one.another, and can be hierarchically organized; the hierarchies can be moved as

a single item.

Further, the power of spatial perception and imagery was utilized in these systems. Conceptual
items can be graphically represented as visual entities. Links between items can be explicitly
drawn. Hierarclues can be represented by trees and other two-dimensional visual forms. The
conceptual neamess of items can be represented by arranging them so that there are short physical
distances between them. .

These systems include the ability to zoom mn, allowing a user to focus on a small set of individual
ttems—much like the human mind focuses attention on particular items by moving them from
Long-Term into Working Memory. By zooming out, large chunks and overall relationships can
be seen in the total spatial layout of the set of items being considered. The ability to visually
roam within the layout allows yet a different view of active items under consideration.

Direct manipulation of the visual concepts (Schneiderman, 1983) further reduces the cognitive
load of the writer. Using a mouse, a writer can grab the edge of a region to be zoomed and
accurately predict the results of the action. Thus, visually- represented items can be duectly acted
upon.

Prose 11, the testbed system for this project, was designed to make these techniques accessible on
personal computers. Section 2.2.1.4 on page 25 gives a detailed list of the motivations for the
creation of Prose ff. A thorough discussion of its design and operation follow.

a1

3.1 Prose II Design and Operation

Prose [l was designed from the outset as a Microsoft Windows application. Windows is a
graphics environment for IBM or compatible personal computers running the PC-DOS®E or
MS-DOS® operating system. It uses a 2- or 3-button mouse for input, in addition to a key-
board. The look and feel of the Prose [f user interface 1s consistent with the graphics techniques
described in the Microsoft Windows styvle guidelines (Microsoft Windows User’s Guide, 1987).

Windows provides a system designer with independence from the hardware and software used in a
personal computer. A variety of CPUs, screen sizes, printers, international character sets, and
memory configurations are supported by Windows. This allowed me to distrbute Prose [{ world-

wide with few prerequisites.

Particular attention was paid to reducing the amount of cognitive overhead required to operate
the system. A common characteristic of many text editing systems is their use of multiple editing
modes,* where the operation of the system differs according to context. Prose [f has just three
editing modes: a normal editing mode, and two exceptional modes—Delete Mode and Tidy
Mode—where the system operates differently. The active editing mode is identified in the action
bar of the main window. In Delete Mode {see 3.1.6 on page 38), the cursor image also changes,
and dcleting nodes is the only valid operation. In Tidy Mode (see Section 3.1.8 on page 40),
operations work as in normal mode, except that every tree operation causes all the trees in the
workspace 1o be neatly re-drawn. [devised no reasonable design alternatives to having these two
additional editing modes, so made their operation unmistakable. They miust be explicitly acti-
vated and deactivated by a user with a mouse selection. They are clearly described with separate

help panels.

This section has two goals: to describe how Prose I looks and operates, and to describe the
format and operation of each of its 39 commands. A hypothesis of this project is that commands
and sequences of commands build up into larger, hierarchically-organized pieces. This review of
the commands and formats is thus detailed, because these commands and file formats are dis-
cussed frequently throughout the remainder of this paper. The commands form the terminals for
the grammar used for the protocol analysis; this chapter is the place where their operation is

described.

3.1.1 An Introduction to Prose II

With Prose [I, a user can create and label nodes, where each node represents a single 1dea that
will later be expanded into text—such as a paragraph in a technical paper. Nodes, and thus ideas,
can be easily moved, copied, and rearranged, for example, to cluster related 1deas. Nodes can be
linked with one another in a hierarchical manner, and the resulting tree structures can, i tum, be
moved and joined with other trees. '

Nodes and the links among them were designed to visually approximate the concepts and inter-
connections in human Long-Term Memory. Trees are used to facilitate chunking; progressively
lower levels of detail can be seen or hidden using the appropriate tree manipulation commands.

3 The term editing mode used in this context differs from the term cognitive mode introduced by Smith,
Weiss, and Ferguson (1987) and 8mith and Lansman (1988). See Chapter 2 on page 13 for more
details on cognitive modes. The names of editing modes will be capitalized in the remainder of this

paper, e.g., Delete Mode.

32

i — s
o ey

= Prose 11 - ALLENT.SCR [v
1 File QOptions DeFaults Scarch Window EF1—-HELP

wIEtnent] (E'i;-:u:\:lcn) [Acb‘r«)wfedgﬂ] Eﬂeferem:es]
T L

esuts ol Reasult; of
ask (e Tatk Twn

P -l

: (Db:er-rah-:m] [Db:emiéors l T
Syitems alange

o \\\ o - 1\‘

{H;.-;-er.ad] Dther Sp:ti&] [Ma"u:uialhg] [Ulhev Iszues]

Irtc rsdior the Cizpay i Mavigatr g

Figure 3. An exarﬁple of portion of a workspace in Prose [/

Figure 3 on page 34 shows an example Prose [l screen, illustrating many of these features.
Nodés are shown as rounded rectangles with identifying text labels. Some nodes are linked to
other nodes with directed arrows. Parts of several trees are visible i this screen.

Additionally, a file can be associated with each node, and any program in the computer can be
run against such a file. Usually a text file 1s associated with a node, and the program run against
that file 1s a text editor—but users are not restricted to this combination.

When starting a new sesston, Prose I shows an empty workspace. The empty workspace repres-
ents a clean place to represent ideas, which are represented by labeled nodes.

KX

3.1.2 Creating and Labeling a Node

Users can create a node in the main Prose [/ window by moving the mouse cursor to where they
want the node located, and clicking the left mouse button. Prose [/ centers the newly-created
node at the tip of the mouse cursor. The node can then be labeled.

A node label can consist-of any text stnng; it 15 usually used to hold brief ideas (up to 250 charac-
ters) or to capture section headings in a document or article. Operationally, double-clicking inside
a node with the left mouse button brings up a dialog box window for editing a label: the Edit
dialog box. A user can then type the characters or words for the label. If a label already exists
for a node, it may be modificd, appended to, or deleted. Choosing the Save button ends the Cdit
dialog box and causes the label to be displayed inside the selected node. Alternatively, choosing
the Cancel button ends the Edit dialog box without replacing the node’s current label.

To reduce cognitive and motor effort, a new node may be created and labeled in a single step by
moving the mouse cursor to the desired location and double-clicking the left mouse button.

3.1.3 Linking Nodes

Almost any two nodes in the main Prose [I window may be linked.* All links in Prose I[are
hierarchical links. To link two nodes together in a parent-child relationship, a user moves the
mouse cursor inside the node to be the “parent,” holds down the left mouse button, and drags the
mouse cursor to within the node to be the “child.” The link follows the mouse cursor, and when
the mouse button is released, a link is drawn between the pair of nodes.

Figure 4 on page 36 shows a link while 1t is being drawn. One end of the link is drawn in the
parent node; the other end of the link follows the tip of the mouse cursor.

4 No node may have more than one parent; nodes may not be linked in a circular relationship.

34

Prose 11 - {untitled)
Options Defaults Secarch Yindow

Fraches of U2
Jovemmeri,

I Enacutive . :
J ’ [Legilatys
' [Jadicral -~

Figure 4. An example of two nodes being linked. Links already exist between the root of the tree, the
node labeled “Branches of US Government,” and two of its children: *“Executive” and
“Judicial.”

A link between a pair of nodes can be broken by repeating the above procedure. Alternatively,
giving a child node a new parent automatically breaks the link to its previous parent.

All the links in a workspace may be broken at once by choosing the “Break All Links”
command. A user can also break all the hnks in a workspace and randomly reposition ail the
nodes by choosing the “Scramble” command. This affords an alternate method of brainstorming,
by seeing nodes in different spatial relationships with one another. _

3.1.4 Editing the File Associated with a Node

Aside from each node’s label, a user can associate an arbitrary file with each node. Any program
may be run against such a file. This gives the ability both to sketch out the structure of a paper
{using nodes and labels), for example, and to write out detailed portions as they are thought of
{by running a text editor against a node’s file). Prose II thus supports the three types of concepts
described by White (1985): propositions, algorithms, and images.

Prose 11 shows nodes that have files associated with them by drawing thicker frames than nodes

35

without underlying files. A program can be run against the node’s file any time the Edit dialog
box is displayed. First, a user gets the Edit dialog box as before, by double-clicking the loft
mouse button in the nods whose contents are to be edited. Next, choosing the Editor button
invokes the program whose file extension is highlighted.®

Figure 5 on paue 38 shows an example of the Edit dialog box, which is used to both write a label
and to tie a node and a file together.

The Edit dialog box contains a list of file extensions. One of these file extensions is always high-
lighted in the list box—the last one used. Double-clicking with the left mouse button on a file
extension in the list box saves the node’s label and filename, then starts the corresponding
program, using the current node’s name as the first command-line parameter passed to the

program.’

As a third alternative, pressing Enter when the Edit dialog box is showing either saves the label (if
any is present) or starts the selected program {(which 1s the first one in the list box, if one has not
been selected yet). Users can thus operate with a single click if they are just entering labels or just
editing files, When doing both, a double-click on a file extension or click on the Editor button is

required.

The new program {such as a text editor) starts its own window or takes over the screen,
depending upon its Windows setup. The mouse cursor is located in the new window so that
Prose If no longer has control (this is known as the focus in Windows terminology).

3.1.5 Moving and Copying Nodes

Moving and copying nodes requires the same type of mouse movements as linking nodes, but
these three operations—linking, moving, and copying—look and feel different from one another
All three require starting with the cursor inside a node. Linking uses the left mouse button,
moving: the right mouse button, and copying uses the Ctrl key plus the right mouse button.

Moving or copying nodes is done by positioning the mouse cursor anywhere inside the node that
1s to be moved, holding down the night button, moving the mouse, and releasing the button.
While a node is being moved, links to the node stretch with a “rubber-band” effect; all its off-
spring nodes “snap” back into place when the move is complete. A node’s position in a tree
relative to its siblings is determined by its horizontai placement. Hence, moving a node to a dif-
ferent position among its siblings changes its place in the underlying tree structure. By addi-
tionally holding down the Ctrl key, these same steps are used to copy a node. There is no
rubber-banding effect when copying.

Changeable defaults determine whether single nodes or whole trees are moved and copied. The
wrutial default 1s to move and copy whole trees. Choosing the “Move node only” option causes
subsequent moves to change only a single node (breaking any links it had to children nodes).
Similarly, choosing “Copy node only” causes subsequent copy commands to copy only one node,
rather than copying that node and all of its descendants. Additionally, the Defaults menu allows
the choice for moving a node while maintaining its link with its parent, or not. The mmal default

is to maintain the hink (“Keep Parent Link™).

In DOS, a file extension is a 1- to 3-character string that follows the filename and a period. When
choosing to have a file associated with a naode, Prose I7 forms a unique, default filename by appending a
3-digit node [D to the first five characters of the workspace filename. A user can choose to override this

name and extension.

"

6 In Windows, the association between a file extension and the related program to start with such a file is
made by users in their internal run-time file, WIN, INI.

36

Search Window

Node label:
[Dtner Issues in Navigating in Two-dimensional Infermation Space l

Pouble-click a Node filename: |ALLENBBA.SCR]
file extension
from your

WIN.INI File.

(Saue] | pancel] L kelp

notepad.exe

[ai{Jne] [Tk Two T

#H | Obsersabons: Obzervatiors '
81 e Task from Tack Iw[uurawn
£ ,Rﬂm*

d

Hyper: e«t thet Sp:lld Me’n)uldlng D thet fesues
l il mation e Elfp ir Ma: 1qa||rq

Figure 5. An example of the Edit Dialog Box in Prose /I. The entire label is shown for the node at
the tip of the mouse cursor.

3.1.6 Deleting Nodes

Three types of node deletion are available in Prose [1: deleting a selected group of nodes, deleting
the last node created, or deleting all the nodes in the workspace.

Deleting selected nodes is designed so that it is not done accidentally. To delete selected nodes,
the Delete Mode must be explicitly activated. When activated, a special cursor is shown. The
node 1s deleted by moving the mouse cursor inside a node that is to be deleted and clicking with
the left mouse button. Delete Mode must then be turned off to return to normal operation.

Deleting the last node created is done by choosing the menu option “Delete the Last Node.” As
a shortcut, simultaneously pressing the Ctrl key and D deletes the last node created. This deletion
shortcut is included because we observed that users occasionally created a node accidentally, then
wanted to quickly delete it.

By choosing “New” from the File menu, a user can delete all the nodes in a workspace and reset
the filename to (untitled) (as shown in the top of Figure 4 on page 36). Users can alternatively
keep the current filename, but delete all the nodes, by choosing “Clear Drawing.”

37

3.1.7 Moving through a Prose II Workspace

An important design tenet is to allow users a large workspace within which to lay out nodes,
clusters of nodes, trees, and forest. As the workspace grows large, navigational techniques ure
needed to allow easy access to all regions. Three different navigational methods facilitated move-
ment within the workspace: zooming in the current viewport, working with a map of the current
workspace, and working with a text outline of the nodes’ labels.

3.1.7.1 Zooming in the Main Window

Users can zoom in the main Prose [/ window to enlarge or deform anything in the viewport.
Clicking the right mouse button in a blank region causes a dotted rectangle to be drawn, mndi-
cating the zoomed region. This rectangle follows the mouse cursor. When the button is released,
the window is redrawn, with items in the rectangle now filling the main window. This option can
also be used to change the shape and size of the nodes. For example, long labels can sometimes
be viewed i their entirety by making nodes appear to be long and flat.

3.1.7.2 Working with the Map Window

A map of the entire workspace can be brought to the forefront when desired. This map shows all
the nodes and links in the workspace, as well as their spatial relationship. It allows a user to
move to any other area of the workspace and also to zoom in or cut. Commands executed in the
main Prose [window also cause the Map Window to be updated. Showing and hiding the Map
Window is done by selecting a menu ttem. An example of the Map Window is shown in

Figure 6 on page 40.

A wire-frame rectangle in the Map Window indicates what portion of the current workspace is
presently visible in the main Prose IT window. The shape of this wire-frame rectangle may not be
proportional to the main window; by changing the shape of thus rectangle, the nodes in the main-
Prose I window change their proportion accordingly. Therr onginal shape and position can be
reset by choosing the “Reset-Drawing” menu item (or by pressing the Home key).

Two different actions can be used to update the main Prose [window. To pan, a user makes a
single click of the left mouse button anywhere mside the wire-frame rectangle and drags the wire-
frame rectangle. To zoom, a user makes a single click of the right mouse button anywhere inside
the Map Window and drags the new wire-frame rectangle. A blank screen beyond the extent of
the furthest node can always be reached in any of the four directions.

Finally, the size, shape, -and position of the Map Window itself can be changed using standard
Windows techniques.

3.1.7.3 Working with the Qutline Window

An Qutline Window shows an outline view of the node hierarchy. Each level of tree depth is
shown by indenting the labels three spaces. Unlabeled nodes are shown as --unlabeled--. Indi-
vidual trees are distinguished by a line of dashes. As with the Map Window, commands in the
main Prose [f window cause the Outline Window to be updated. Also, showing and hiding the
QOutline Window is done by selecting a menu item, or by using the middle mouse button. An
example of the Qutline Window is shown m Figure 7 on page 4l.

38

=-=l Prose Ii ap Window m if} s EI

Window [F1-HELP |

-

: Fesuks ot Besut; of
] i Tazk Trag

Gbsers ations Observations i
feee Task from T ask
Spstem

chems)
Hypenext Other Spaiial Manioulating Qther fssues
Irdormation tre Cispray in M avigaling

Figure 6. An example of the Map Window in Prose /1

3.1.8 Tidying Trees

By default, Prose [/ shows a node in the position where it was onginally placed. A tidy-tree
operation allows a user to create nodes anywhere and later clean vp the node arrangement. Prose
[] employs a new tree-tidying algorithm to reposttion the nodes of a tree (Walker, 1999, 1991),

Tidy Mode must be explicitly activated as a separate editing state, which causes Prose I1 to tidy
the entire workspace. In Tidy Mode, the workspace is then re-tidied after each command that
affects the tree structure. Choosing “Turn Tidy Trees Off” from the Options menu returns a user

to normal operation.

While in Tidy Mode, the gray minus (“—") and plus (“+") keys can be used to shrink and grow
the ‘tree drawings. Pressing “—" hides the lowest level of the trees; repeatedly pressing this key
can hide all levels up to the root of the trees. Pressing “+" shows the last level that was hidden.
Alternatively, by turming Tidy Mode off again, the full trees are restored. When doing a Save of
the workspace file while the tree is shrunk, the nodes in the lower levels of the iree that have been
hidden by the shrinking process are not saved. This allows displaying cross-sections of a
document—just looking at everything in the document down to the second level, for example,
without the detail. '

K3

Objectives
Hap Window
Zoom Hauigational Technique
Roan Navigational Technique
Experinent
Results of Task Gne
Bbservations frem Task One
Results of Task Two
Observations frem Task Two
Discussion
Acknowledgenents
References

Previous Yerk

Infermation Systems Using Ywo-dine a0 w.lh

Other Spatial information Syst ~
Navigating in a Large Two-dimensiog //x’/
Hanipulating the Display " &
--unlabeled-- [& (Manummhg] [QMa[ﬂues]
Other Issues in Mavigating in ir Havigaling

5

the Cisplay

--unlabeled--
--unlabeled-—-

Figure 7. An example of the Qutline Window in Prose []

A user can tidy up the workspace with one quick command by choosing the “Tidy the Drawing”
command from the Options menu; this does not turn on Tidy Mode. As a shortcut, simultane-
ously pressing the Ctrl key and T tidies the drawing.

As an arbitrary design restriction, .Prose {I does not handle trees with more than 99 levels. It
handles nodes until it runs out of memory {within the DOS 640 Kbyte memory boundary). 1

have had more than 1000 nodes concurrently.

3.1.9 Changing the Root Orientation

The default positioning for trees in Prose /[is to draw the root of each tree at the top of the
drawing, with its offspring below it. Dialog box options allow other orientations, such as placing
the root on the left and the siblings to its right. Four such orientations of the root are available:

North Root is at the top, its siblings are shown below it.
South Root is at the bottom, its siblings are above it.

Fast Root is at the right, its siblings are to its left.
West Root is at the [eft, its siblings are to its right. An example of a tree with the West oren-

tation is shown in Figure 8 on page 42.

40

~JJFrose 11 - ALLEN1.SER |!} I
IEFrnse IT Hap Wind

i ¢ Search Window [F1- HELP
§

roxaastngin: Lace
3] Teodnmensiors $Came

s i 0 A R D A A S-S e R R s e

et lzsues N
- Faseggtiong ny

T va-droensicnal
Irfarmation Spaca

Figure 8. An example of a tree with a root orientfation to the wést

3.1.10 Working with Workspace Files
| Prose Il workspace files can be created, saved, cleared, and listed using commands in the File

Menu of the Prose [window. Commands from the File Menu in Window's Executive window
are used to delete Prose If files.

3.1.10.1 Creating a New Workspace File

- To create a new, untitled workspace file from the Prose /I window, users select the File menu and
choose the “New” command. To create a new, named file, they use the Open dialog box by
selecting the File menu and choosing the “Open” command. The name of a new file 15 typed
into the text box at the top of the Open dialog box. If the workspace file is not found, Windows
displays a message inquiring whether a new file should be created or whether the file can be found
on a diskette.

41

3.1.10.2 Opening an Existing Workspace File

To open an existing workspace file from the Prose [] window, a user selects the Open dialog box.
In the displayed list box, they can select the name of the file to open (by double-clicking on it
with the left mouse button), or typing a pathname and filename in the text box at the top of the

dialog box.

3.1.10.3 Workspace File Formats

The only workspace files Prose {{ can open are those with file formats it understands. Opening
or saving a workspace in Prose {f commits it to a file format. The six supported file formats are
indicated by their DOS file extensions. The dialog box used in Prose /1 to select file formats is
shown in Figure 9 on page #4.

Extension Descriptioa of this file format

.PR2 This 15 the default file format for Prose I[. It allows saving and opening files con-
taining any mix of isolated nodes and multiple trees. This format also saves the x
and y coordinates of each node and the date and time of their creation and last mod-
ification. This format also allows text, graphics, or any file to be associated with

each node. .
.RDY This file format is compatible with the Ready/™ outline processor. Any file created
by Ready! can be read by Prose If. There can be only one tree and no isolated
nodes.
.SCR This file format is compatible with the IBM Script, GML, and BookMaster docu-

ment processors. Reading a .SCR file as imput causes each appropriately-placed
heading tag (such as, “:h2.”) to become a node label in a tree. Files written by Prose
1 in this format contain a heading tag of the correct level of each node in the tree(s).

. IND This file format is for reading and writing indented ASCII text. On input, each line
becomes a node label (up to 250 bytes). Prose [1 correctly handles the tree con-
struction for any consistent indenting method. On output, the labels are indented 3

blanks for each tree level.

.CRD This is compatible with the Microsoft Windows Cardfile format. CARDFILE.EXE is
one of the set of desktop applications that is shipped with Microsoft Windows. On
output, the maximum Cardfile index hine 1s 40 characters, so labels can get truncated.
The maximum card text is 450 characters.

AST This file format is for input of a sorted list of words or phrases. The structure is
automatically formatted into a single, left-to-right balanced, tidy tree by Prose [[.
This format served as my testbed for a new fanout algorithm to position the nodes in
a left-to-right balanced tree.

A user can change the workspace file format at any time, using a dialog box. Prose I[internally
saves the current file format each time a workspace file is saved.. This format is used as the
default file format the next time a workspace file is opened or saved.’

7 Preview of results: among the 112 sessions studied here, none of the subjects opened or saved saved any
workspace using the .RDY or .LST formats.

42

Prose 1] - ALLEMWI.SCR
Defaults Search Window

I Cheoose a File Format (extension)—]
r Prase II (.PR2)

{
i Ready?{tm) { -RDY) -
@ IBM Script/em {.SCR)

{r Indented ASCIT text (.IND} m

Oy Cardfile (.CRD)

< Sorted list {.LST) [hewn]

Work

Dbeaivations] Db;ewa!iors

frem Task

P

fror Tatk I-1I0|£ra ion
'w“"l"mo
/
-

Ellhm bpahd Maruoutating Other Issues
Irdrrnstion e Crpay r Mavigairg

Figure 9. An example of file format selection box in Prose [I. The SCR file format is being selected
at the mouse cursor.

3.1.10.4 Saving and Deleting Files

The “Save As” command names and saves a new file, or saves the current file under a new
filename or file format. Selecting the File menu and choosing the “Save” command causes Prose
II to replace the file on disk with the current workspace file.

3.1.11 Copying to the Clipboard

The Windows Clipboard application holds information cut or copied from other Windows appli-
cations. After sending an image from Prose II to the Clipboard, a user can paste the contents of
the Clipboard onto another Windows application. Images copied from Prose {1 to the Clipboard
are sent as a bitmap. Prose II does not have a facility for pasting images from the Chipboard

8 Preview of results: among the 112 sessions studied here, information was copied to the clipboard only
once. .

43

3.1.12 Searching for a Node

Users can search through the labels of ail their nodes for a given search string. When a match is
found, that node is centered in the main'window. A user enters the search string in a popup
dialog box. By repeating the search, other nodes with the same search string in their labels can be

found.

3.1.13 Requesting Help

Prose Il only operates as a Windows application: that is, it performs its graphics functions when
started from within Microsoft Windows. However, if a user starts it at a DOS command prompt,
Frose I displays 125 lines of information deseribing its purpose and usage.

Ten different help panels are available within Prese [{. The menu of help pancls can be raised by
pressing the “F1” key at any time, as well as by selecting the proper help button with a mouse.
Many of the helps are also available in appropriate context-sensitive situations. For example, the
dialog box for editing a node’s label contains a help button that immediately displays the help for

editing nodes.

As a way to summarize the operation of Prose /I, the text for all of the help panels is shown in
Table 2 on page 45.

Table 2 (Page I of 3}). Prose {I Help Panels

Introduction Prose Il Structure Editor
Version 2.09

Copyright 1086, 1989 John Q. Walker II
AlT rights reserved.

IBM VNET: JOHNG at RALVMG
IBM Internal Use Only

The First Time? Prose Il is a structure editor you use to explore and
organize ideas. You can use Prose II to create and
label nodes—each node representing a single idea to
be included in a Targer structure, such as a paragraph
in a technical report. MNodes can be visually linked
into trees, and the trees can be linked to other trees

_or simply kept as a forest or as clusters of nodes.

Prose I1 gives you the functions of an cutline processor
in a large, 2-dimensional windowed workspace. With an
outline processor, you are forced to commit your ideas
to a hierarchical position. Now you can positien or
cluster them anywhere and organize whenever you wish.

Table 2 (Page | of 3). Prose [l lclp Panels

The Mouse
Buttons

Use the LEFT mouse button to Create, Edit, or Link nodes
CREATE: single ctick outside of any ncde.
EDIT Label and Contents: double click inside a node.
LINK: single click and drag starting inside one node
and releasing the button in the target node.
BREAK LINK: redraw an existing link hetween nodes.

Use the RIGHT mouse button to Move and Copy ncdes and to
Zoom In for a closer view:
MOVE: single ¢lick and drag inside a node.
COPY: same as MOVE, except also hold down Ctrl key
Z0OM IN: single click outside a node and drag.
Ttems in the rectangle will fill the window.

The Map
Window

Show the Map Window to easily Move to other areas of
the workspace and to Zoom In and Zoom Out.

- The rectangle shown in the Map Windew indicates
what is presently visible in the Main Window.

A single click and drag of the LEFT mouse button
will move this rectangle, updating both the Main
Window and the scroll bars.

- A single click and drag of the RIGHT mouse button
draws a new rectangle indicating what will show in
the Main Window. This allows easy zooming.

- The Map Window can be moved, sized, and hidden
using the standard Windows techniques.

Delete and Tidy
Modes

Select "Turn Delete On" from the Options menu to

delete undesired nodes.

- A special -cursor will be shown. With OELETE ON,
use a single click with the left mouse button to
delete the selected node.

- Shortcut:; Ctrl+D deletes the last node you created.

Select "Turn Tidy Trees On" to tidy up the entire
workspace. If you leave TIDY ON, the workspace wili
be re-tidied after each tree operation.

Use '-' and '+' to shrink and grow the tree drawings.
- Shortcut: Ctri+T tidies the drawing quickly.

File Formats

Choose a format for storing the file for future use.
.PR2 the default format. Allows any mix of isclated
nodes and multiple trees. Saves x,y coordinates
and fite references. The best for general use.
LRDY compatible with the Ready!(tm} outline processor.
Ready! aliows oniy one tree and no isolated nodes,
No coordinates or file references are saved.
.SCR <compatible with IBM Script/GML, except for titles.
Reads and writes ':hx.' tags for each node label.
.IND indented ASCII text. WNo coordinates are saved.
.CRD Windows Cardfile, but reads the index line only.
On output, labels are truncated to 46 characters.
LLST input only; reads a sorted ASCII list and creates

a complete left-to-right filled tree.

45

Table 2 (Page 2 of 3). Prose /I Help Panels

Editing Nodes

Double-cltick in a node to enter a label and double-click
on a file extension to edit a file tied to this node.
- Use the labe! for brief ideas {up to 259 characters)

or section headings in a document or article.

- Type as normal the first time you enter a Tabel.
After the first time, the Tabel will be in reverse-
image. Just type to replace the old label. Cursor
keys append to or position within it; End moves to
the end; Backspace erases single characters.

- Then: Save the label, click an extension, or Cancel.
- Double-clicking an extensicn saves the node's label
and filename, then starts the program named in the

[extensions] part of your WIM.INI file.

Changing The
Trees

By choosing the Change Nodes or Change Links items from
the Options menu, you can change the way the tree
Tooks.

Among the interesting choices in the Change Links box is
the ability to change the way the root of the trees
are pointed.

- The default is North, where the root of each tree
is at the top of the tree.

- Another common choice is West, where the root of
each tree is at the left side of the tree.

You may need to Tidy the Drawing after changing one

of these options, depending on your file format.

Your WIN.INI
File

When tying a file to a node, Prose II forms its filename
by appending a 3-digit ID to the first 5 characters of
your workspace filename. VYou choose from the list for a
file extension, based on your WIN.INI file.

Yhen Prose II automatically starts this program, it must

‘tell Windows if this is a native Windows application or

not. In the [extensions] part of WIN.INI, make the
program's file extension lowercase for native Windows
applications and uppercase for standard applications.

Example entries, under [extensions]:

_wriswrite,exe ~,wri a native Windows application
preé=proseZ.exe ~.pr2 a native Windows application
serspeZ . PIF ~.ser a standard application

Help Me

Please help me improve PRGSE II.

- Bugs: Let me know what bugs you stumble across.

- Improvements: What features would you like me to add?
Since [don't like manuals, what else should [add to
the Helps? Where should I work on performance?

What additionat I/0 formats should I support?

- Recordings: Please e-mail me the automatic session
recordings, which I will analyze and parse as part of
my study of user interfaces. Press F2 to leave your
comments; press F3 when you take a lengthy break.

46

3.2 Prose II Implementation

Before beginning the design of Prose I/, I began by understanding the design of an existing struc-
ture editor. PROSE, A Tree-Structured Wrnting Support System, was developed as a class project
for the Software Engineering course at UNC-Chapel Hill in Spring 1984. It was implemented in
the € programming language and ran on the UNIX operating system for the departmental
VAX/11-780. PROSE was character-based: that is, it used characters on the terminal for drawing
lines. The displayed mformation was hmited to 80x24 characters.

In 1985, I ported PROSE to the IBM PC, including writing my own Curses package for the PC
to stmplify the port. Given this background understanding, [built a new structure editor, Prose
[I, in 1986 and 1987. It was designed and implemented from scratch to run in the Microsoft®
Windows graphical environment. Prose [[is based on many of the ideas embodied in PROSE,
although it shares no source code with it. [felt the bond was strong enough that it shares its

name with its progenitor.

Another ancestor of Prase I1 1s tde, a transition diagram editor available on the UNIX operating
system running on the Sun Workstation™ (Mills, 1984). While primarily designed to illustrate
finite state machines and state diagrams, tde can also be used as a general-purpose graph-drawing
editor. The primary objects it manipulates are nodes and the arcs among them, which are also
the principal components manipulated by Prose [1. 1 spent the time to understand the visual
operation of tde before I began implementing Prose {1,

The version of Prose [I used in this project consists of a single executable file, PROSE2.EXE. This
file’s size is 120,448 bytes when the tracker was compiled in, and 106,192 bytes without the
tracker. Thus, the tracker increases the total size by about 13%.

The implementation of Prose Il with the tracker is broken into 41 files of source code written in
the C language and 2 files written in assembler. [n these files are a total of 17,825 lines, which
includes comments and blank lines. '

Prose [source code file sizes, 43 files

range: 39 lines to 910 lines
median: 414 lines

mean: 415 lines
std dev: 231

47

CHAPTER 4. PROTOCOL COLLECTION AND
ANALYSIS

The Prose I structure editor introduced in the previous chapter contains an additional capability
not highlighted there: it can record the commands executed by its users. This recorder thus gener-
ates one complete protocol record for each session. For this study, I built a set of software tools
to analyze these protocol records. This chapter, describing these tools, consists of two large
sections: the first section discusses the protocol record files and how they were collected; the
second section discusses the grammar and parser used to analyze the protocol records

4.1 Automating Protocel Collection with a Tracker

As described in the first chapter, many of the methods and tools for collecting data about software
usage have been expensive to use and obtrusive to the humans being observed. An automatic
tracker was incorporated into the testbed software system to alleviate these problems. The design
of this tracker is derived from the research of Card, Moran, and Newell (1983). During a session,
all commands performed by a user of Prose /I are automatically written to a new file in the user’s
file system. This section describes these data, along with the design and operation of the Prose [
tracker, Because of the exploratory nature of this study, the rationale for the design decisions is
discussed, as well as alternative approaches.

4.1.1 Content and Format of the Protocol Record Files -

When designing this tracker, [attempted to strike a balance between too fine a granularity (and,
thus, excéssive data in each protocol record file) and too general a record. As the tracker captures
each Prose Il command (e.g., “Create a node”), it associates it with the corresponding parameters
and a timestamp. The tracker filters out 2 moderate amount of low-level information; for
example, if a user doodles with the mouse (i.e., moves the cursor around the window without
making any explictt selection), the tracker records this sumply as a pause.

In contrast, the tracker for the WE systcm {Smith, Rooks, and Ferguson, 1989) records informa-
tion at a finer level than the Prose I1 tracker. The WE tracker records each separate user action;
for example, the “create node” command entails the separate actions of opeming a menu, high-
lighting the appropriate menu item, and giving the node a new name. The WE analysis tools
then combine these actions in the first level of protocol analysis; thus, their “Operation Level”
corresponds to the commands recorded directly by the tracker in Prose I1.

Prose Il is designed for worldwide use, on personal computers running Microsoft Windows.
Other detatls of the actual hardware and software being used are unknown. As a result, the pro-
tocol record files do not contam sufficient detai for 2 high-fidelity playback of the session on an
arbitrary computer. The reason for insufficient detail is that among sessions and subjects, any of
the following system variables can differ;

48

hardware cnvironment
Examples arc the CPU speed, the screen size and density, the amount of memory, and

the type of disk access (RAM disk, hard disk, or floppy disk).

operating system characteristics
Lxamples are the number of buffers and file handles set aside, and other programs that
may be active,

Windows parameters
Examples are the size and placement of the windows, the international character sct

being used, and the frequency of internal messages.

Prose [defaults
Examples are the current file format being used, whether a node’s children are deleted

if it is deleted, and the size and placement of the Map and Outline windows.

In contrast, high-fidelity playback is provided in the WE system, since the range of computers it
runs on is small. Researchers analyzing WE recordings have built playback software that
reproduces the details of a user’s interaction directly on the display screen. A researcher can step
through a session recording one action at a time, or can play back a session at a variety of speeds

without intervention.

Figure 10 on page 50 shows an example of an entire protocol record file generated by the Prose
1{ tracker durng a session. The session was short (less than a minute), and the user’s actions can
be considered trivial, since no text was written in the nodes and the nodes were not saved.

o T r e ey e e ke i =y +
| Prose Il Session Recording (v2.09) Wed Feb 08 20:31:23 1989 |
i File B:"RCD136Q, THP |
L T e e et e b T +
| Start Stop Time Operator Parameters i
|min:sec min:sec sec |
R it it +
31:23.52 31:29.61 6.09 PAUSE
31:29.61 31:29.78 8.17 CreateNode ID(1) StartPt{14, -18)
31:28.78 31:34.23 4,45 PAUSE
31:34.23 31:34.45 8.22 CreateNode ID(2) StartPt(113, -41)
31:34.45 31:35.44 §.99 PAUSE
31:35.44 31:35.66° 8.22 Createlede 10(3) StartPt{273, -169)
31:35.66 31:44.66 9.80 PAUSE
31:44.66 31:47.96 3.30 Newlorkspace

+ DeleteNode 10(1)

+ DeleteNode 1D(2}

+ DeleteNode IB(3)
31:47.96 31:59.49 11.53 PAUSE

Figure 10. The first, complete protocol record file returned by subject number 28. In this trivial
session, the subject created three nodes, then deleted them by starting a new Prose /1 work-

space.

The format of a protocol record file, such as this one, closely follows the format designed by
Card, Moran, and Newell {1983). This format includes the start time, the stop time, and the
elapsed time for each command, followed by the command name and its parameters. The
timestamp is accurate to within one one-hundredth of second. For brevity, the timestamps
contain only minutes, seconds, and hundredths of seconds. In retrospect, a minor weakness of

49

using Card, Moran, and Newell's exact format is that it does not handle indefinitely long periods
of time well. Because there is nothing longer than minutes recorded (that 1s, hours, davs, or
months are not recorded), the tracker (and, therefore, the parser) assumed that no more than one
hour would clapse between consecutive entries. This could be a limitation m systems intended for
actual-use studies; work was often continued across multiple sessions and Prose I windows could
have casily been left running overnight.? :

When a Prose [] session is started, the tracker devises a unique file name for the protocol record,
opens that new file, and writes a header in the file describing its contents. This seven-line header
contains a date and timestamp for the beginning of the session. In retrospect, some of the envi-
ronment and state varmables that may have penmitted replay mmght have been captured in the
header of each protocol record file. For example, by using internal Windows’ calls, the tracker
could have recorded the screen size in pixels, and wntten that information in the header.

Many of the individual commands have side-effects; for example, opening a new workspace file
will cause any existing nodes to be deleted, as shown in Figure 10. Similarly, opening an existing
workspace file can cause many nodes to be created and linked together. The tracker records these
side-etfects, called secondary commands in this study—in contrast to the primary commands exe-
cuted by the user. Most commands can be either primary or secondary, depending on the context
in which they are used. The tracker places secondary commands in a protocol record file below
their primary counterpart, indented with a plus sign but with no timestamp.

Another example of a protocol record file, with primary and secondary commands, is shown in
Figure 11 on page 5I.

F o e +
| Start Stop Time Operator Parameters i
[min:sec min:sec sec) |
S S PR +
23:45.29 23:48.75 3.46 LinkModes ParentID(7) ChildIB{19)
23:48.75 23:50.18 1.43 PAUSE
23:50.18 23:58.62 0.44 LinkNodes ParentID(19) ChildID{13)
+ BreakLink - ParentID(7) ChildID(13)

Figure 11. A portion of a protocol record file showing primary and secondary commands. This
example shows two LinkNodes commands. Linking node 7 to node 19, and then linking node
19 to node 13 caused Prose I to break the existing link between nodes 7 and 13. This sec-
ondary command, BreakLink, is shown beneath its primary LinkNodes command.

One result of tracking secondary commands is that the overall size of a protocol record may be
disproportionate to the number of pnmary commands executed by a subject. A simple operation,
such as moving the root of a tree, may cause many secondary commands to be tracked. In this
example, when the root of a tree is moved, there is one secondary command recorded for each of
its descendants, tracking the change in posttion of each descendant.

The tracker can also show that a command is invalid or canceled. For example, Prose I/ does
not allow a linked cycle of nodes to be drawn; when attempting to link the last nodes, the
LinkNodes command fails since it is invalid with respect to the Prose] data model of a forest of

9 The collecting of elapsed hours would be a simple modification. Without changing Card, Moran, and
Newell’s compact format, a tracker alarm could cause a line to be written to mark the passing of each

elapsed hour.

50

irces. This would be shown in the protocol record as the parameter “-- invaiid --." Similarly,
commands corresponding to dialog boxes can be canceled.

An example of a protocol record containing a canceled command is shown in Figure 12 on
page 52.

LI e e b e g op g VRS gy +
| Start Stop Time Operator Parameters |
[minisec min:sec sec |
o e e e M — ———— e = +
40:01.67 40:10.84 8.17 Editlabel ID{3) -- canceied --

Figure 12. A portion of a protocol record showing a canceled command. The subject brought up the
Edit dialog box for editing node 3's label, but canceled the command after 9.17 seconds.

To increase runtime speed and decrease storage space, templates for all the command and param-
eter title strings written by the Prose IT tracker were compiled intemnally, as opposed to being
dynamically allocated. Care was taken to reduce their overhead in the Prose /[executable module
and in each of the lines written to a protocol record. For example, whenever a string of eight
blanks is to be written, a one-byte tab character is written instead. Careful attention to these
details kept the protocol records small, which improved performance for the user.

I designed the tracker to produce protocol records that are human-readable—in plain English.
The tracker could have produced its output in a more compact, computer-criented
format—possibly in a straight binary format—but the plain English form accomplishes three
things. First, the protocol records are portable; they can be printed -or hand-analyzed without
additional processing. For example, this let me analyze printed protoco! records by hand until 1
knew enough about users” behavior to construct a parser to produce similar results automatically.

Second, the human-readable format gave subjects the assurance that nothing “underhanded” was
going on in the protocol records. Everything in a protocol record is immediately readable and
obvious to any subject; they could see that the tracker was not capturing secret data. Secret data
might conceivably consist of any information a user considered private to their own computer,
such as the names and contents of other files on their computer. Further, the tracker x'd out all
the letters in the labels and search strings in the protocol records. This preserved the anonymity
of the subjects and their topics, and allowed them to use the system for business purposes without
compromising IBM confidentiality. Since Prose I and its protocol records were distributed via a
global computer network in a time of heightened concern for computer viruses. -For this type of
study to be successful, researchers and subjects must be assured that free software and free
recordings were adequately controlled against security problems.

Finally, many commercial products are capable of writing trace records or recording sequences of
user commands. The protocol format used in this project is “application-aware,” but is straight-
forward with little additional context information. | designed the techniques described here so
that they could be adopted by future researchers to construct parsers for commercial products that

produce traces or macros.

As seen in the examples, the tracker generates simple characters in the header (e.g., plus signs,

dashes, and bars), rather than “prettier” graphics symbols. [had four reasons for using simple

characters:

+ to assure that a user could view the file with even the simplest of text editors,

° to assure that it could be uploaded to a host system and sent across a network without char-
acter translation anomalies,

51

+ to reduce the overall size of the protocol record files. Subjects were more likely to upload
and return their protocol recordings if their size was relatively small. For example, tab char-
acters were used wherever possible to reduce 8 blanks to a single character.

» to simplify its later handling as input to the parser. For example, the parsing software gener-
ated by the UNIX tools LEX and YACC recognize only 7-bit ASCII characters.

Table 3 on page 53 is an alphabetical list of the 39 Prose /[commands and their possible param-
gters. It also shows precisely when the time value associated with each action is recorded. These

commands are the terminal symbols for the grammar used to analyze Prose [l protocol records.

Table 3 (Page 1 of 2). Commands rccorded by the tracker in Prose {1, histed alphabetically
Command Name When was the start When was the stop Parameters: “—"
tire recorded for this time recorded for this indicates no parame-
cornmand? command? ters
BreakLink mouse down in a mouse up in a linked ParentD(),
linked node ncde ChidID{})
CANCELED
BreakAllLinks menu selection instantaneous -
‘ CANCELED
ChangeDefault menu selection Instantanecus DY
ClearDrawing menu selection instanlanecus -
CANCELED
ClipboardCopy meny selection instantaneous -
Comment press F2 function key select save or cancel Text(}
. CANCELED
CopyNode maouse down mouse up StartPu(,)
INVALID
CreateNode molse up instantaneous NodelD() StartPt(,}
CANCELED
INVALID
DeleteNode mouse up in node to instantaneous iD()
be deleted
EditLabel mouse up select any dialog D0 NewText()
button [D{) CANCELED
EditNode menu sejection return from file 1D{} Editor(} File()
CANCELED
GoTo menu selection select OK or cancel Text()
CANCELED
HelpRequest help requested exit 1D
' CANCELED
LeaveProsell lose focus from a regain focus D01}
’ Prose I window 0: went to a different
window
1: pressed the F2 key
LinkNodes -mouse down in a- mouse up Parentl D(} ChildID{)
node CANCELED
MainWindowReset menu selection instantaneous -
MainWindowZoom mouse down mouse up StartRect(,,,}
EndRect(,.,}
] INVALID
MapMove mouse down mouse up StartRect(,,,)
EndRect(,,.}

52

Table 3 (Page 1 of 2). Commands recorded by the tracker in Prose i1, listed alphabetically
Command Name When was the start When was the stop Parameters: “—"
: tirne recorded for this time recorded for this indicates no parame-
command? command? ters
MapSize mouse down mouse up StartRect(,,,)
EndRect(,,.}
MapWindow meuse down mouse up OPEN CLOSE
MapWindowRoarm mouse down mouse up StartRect(,,,)
EndRect(,,,)
MapWindowZoom mouse down mouse up StartRect(,,,)
. EndRect(,,,)
MoveNode mouse down in a mouse up 1D() StartPtf,)
node EndPt(,)
INVALID
NewWorkspace menu selection instantaneous -
CANCELED
OpenWorkspace menu selection select any dialog File() Format{)
button CANCELED
QOutlineWindowMzove mouse down mouse up StartRect(,,,)
EndRect(,,,)
OutlineWindowSize mouse down tnouse up StartRect(,,,}
EndRect(,,)
Outline Window mouse down mouse up QPEN CLOSE
Pause end of previous start of next -
command comnand
SaveWorkspace menu sefection select any dialog Filef) Format()
button CANCELED
Scramble menu selection instantaneous -
CANCELED
SetDeleteMode menu selection instantaneous ON OFF
SetTidyMode menu selection instanianeous ONOFF
Systemlcon mouse down mouse up -
SystemMove mouse down mouse up . StartRect{,,,)
EndRect(,,,)
SysternSize mouse down mouse up StartRect(,,,)
] EndRect(,,,)
SystemZoom menu selection instantanieous -
TidyWorkspace menu selection instantanecus -
TreeGrow press the gray “+" instantaneous -
key while in Tidy
mode
TreeShrink press the gray “—" instantaneous -
key while in Tidy
mode

4.1.2 Implementation and Operation of the Tracker
The tracker was implemented by adding a one-line C macro at appropriate places in the Prose]

source code, This line of code was placed at places where it would capture the appropriate
elapsed time for each command.

53

#define P2mInformTracker{cmd,ps,1p) 7f(fRecerdPlayStatus==[DORECORD)\
{void)SendHessage (htindTracker, (unsignad) (cmd), (MORD) (ps}, (LONG) {1p))

Figure 3. The C macro definition used in Prose [/ to contact the tracker

Figure 13 on page 55 shows the source code for this C macro, P2mInformTracker. A sample
invocation is shown in Figure 14 on page 55. This macro was inserted at the appropriate places
in the Prose IT source code for cach of the 39 commands. This macro takes three parameters: a
constant containing a command identifier and whether this is its start or finish, a Boolean value
indicating whether this 1s a poimary or secondary command, and a pointer to any paramcter infor-
mation needed for the protocol record.

BOOL P2PostorderHove (LPHODE ipThisHede,
BOOL bFirstTime, /* Marks the first call of this recursive proc */

POINT ptDistancetloved)

if {1pThisHode) {
/* update the time that this node was last touched #/
P2mGetTime {1pThistode->1LastUpdateTime)

#ifdef BUILDTRACKER
/* only mark the start if this is a secondary command */
if {{{bPrimaryimd && bFirstTime})
P2mInformTracker (P2_HOVE_HODE_START,
FALSE, /* this is a secondary cormmand */
(LPHODE) P2mPointZLong(TpThishode->pt)) ;

#endif

/* update the new location of this node */
TpThisNode->pt.x += ptBistanceHoved.x;
TpThisNode->pt.y += ptDistanceHoved.y}

#ifdef BUILDTRACKER
PZelnforaTracker(P2_MOVE_NODE_END, (bPrimaryCmd & bFirstTime},l1pThisHode);

#endif

/* this impliements the post-order walk */
if {P2HasChild(1pThisNode})

P2PostorderMove (P2FirstChild(ipThisHode), FALSE, ptDistanceMoved);
if ({!bFirstIime) && (P2HasRightSibling{1pThisHode)))

P2Postordertove (P2RightSTh1ing{IpThishode), FALSE, ptDistanceHoved);

retdrn(TRUE); /* this node has been moved */

3

else
return(FALSEY; /* no further to goj this was not a node */

}

Figure 14. Example C code, inserted in Prose /1 to implement the tracker

- Figure 14 on page 55 shows the source code, ir 'C, inserted in the procedure used to implement
" the MoveNode command. The tracker is contacted by the statements surrounded by the pairs of

C preprocessor statements

#ifdef BUILDTRACKER

#endif

This allowed the tracker 40 be compiled into Prose If or omitted by setting compiler flags. Thus,
the decision of whether to include the tracker is made at compile time, not at runtime.

. In my first design for the tracker, the code that writes the commands and parameters to the
recording file was to be an asynchronous Windows process. Prose [T would send a message to
that tracking process each time a command was started or completed. The tracking process could
have a low priority so that the file 'O for the tracking would not interrupt a user. Since
Windows uses a message-passing process model, such a design would be clean and straightforward

to implement.

[rejected this asynchronous design after much work because of two reasons:

I. Tining problems were difficult to overcome.

The design required a great deal of state information to be saved in some messages because of
possible race conditions. A simple example of this problem occurs when a node is deleted
before its creation is recorded by the tracker process. More complex problems involved
primary commands that had many potential secondary commands; for example, a single
delete command may delete a large tree.

Note that this could be eliminated if the tracker has the highest, preemptive priority in the
system, but this defeats the intention of operating the tracker at the lowest prionty.

2. A synchronous tracker did not appear to affect users” perceived performance of the system.

To solve the timing problem, | implemented the tracker as a synchronous interface, using the
same message passing interface.'® No perceptible slowdown induced by the tracker was seen,
nor did any subject complain or comment on the performance (except that they thought the
overall system was fast). _

Thus, the tracker, as finally implemented, uses a synchronous interface. This reaffirmed a favorite
software engineering principle; if you can afford the luxury, try alternate designs and see what

happens.

There was a problem with the minimal elapsed time between consecutive commands being less
than the operating system’s clock resolution, which is 0.6 seconds in DOS. Whenever this
occurred, the tracker originally showed the elapsed time as 0.00 seconds, which was difficult to
handle in the parser. Therefore, I revised the tracker to force a minimal elapsed time of (.01
seconds for each pimary command. This could have caused a problem if more than six primary
commands were accomplished in less than 0.06 seconds, but this never occurred.

I did not provide a means of saving or checkpointing a protocol record file with the Prose [/
tracker. In DOS, a file is not committed to disk until it is explicitly closed. So, while a user
could save a workspace file at any time (forcing it to be written to disk and closed), there was no
mechanism for writing the protocol record file to disk untit the session was ended. If a user’s
computer crashes or s re-booted for any reason during a session, the protocol record is lost.
Some good times to do checkpointing would have been: 1} whenever the user saves the work-
space file, or 2) during long pauses (a suitable length for a long pause is discussed in later
sections). I did not consider automatic checkpointing of protocol files until after the study was
completed; no subjects reported lost sessions.

Among the drawbacks of distributing this tracker without other forms of concurrent protocol col-
lection (e.g., think-aloud or videotape} is that there is no knowledge of what users are doing or
thinking when they are not using the system. Also, users cannot readily contact those doing the

9 [n the top of Figure 13, 1 replaced the Windows function PostMessage (which is asynchronous) with
SendMessage (which is synchronous), as shown.

55

study to comment or complain. I built a couple of extra “hooks” into the tracker to give users a
way to step outside the system and leave additional information in the protocol record.

Commentary
By pressing the “F2” function key while using Prose I, subjects could leave com-

ments in the protocol record at any time. This allows subjects to record their
reactions to using this software when they occur. Something an automatic recorder
cannot easily capture is a user’s “attitude” and “intentions”; this function key made
such a capability available, although its use was entirely voluntary.

Section 5.3.3.7 on page 118 lists all the comments left by the subjects during the
study. It s interesting to see that this command was used for many different purposes

by the subjects.

Focus of Attention
By pressing the “F3” function key Whﬂe using Prose 11, subjects could indicate that

they were taking a lengthy mental or physical break during a session. Examples of
this are answcring the telephone or going to lunch. When this key is pressed, a
message box appears in the main Prose [window indicating a lengthy pause; selecting
OK in the message box returns the subject to normal operation.

With these function keys, Prose I provides subjects with commands for interacting with the auto-
mated tracker, and thus with the eventual analyst (and presumably the software devetoper).

This section has described the operation of the tracker, the handling of each user action, and the
generation of formatted recordings. These protocol records capture user actions at the command
level in a consistent format, easily readable by both humans and computer programs. The next
section describes a grammar, and subsequent computer program, for automaucaljy analyzing and
summarizing a protocol record. .

4.2 'Automating Protocol Analysis with a Parser

Having the protocol records captured in a regular form—readable by humans and
computers—made their analysis much more tractable than the handcoded methods discussed in
the second chapter. This section describes the grammar developed to describe users’ interaction
with the system. It also describes a parser based on that grammar; the parser was the principal
tool for automating the analysis of session protocols.

The grammar and parser described here are designed to categorize portions of an input string.
The input string consists. of symbols that correspond to each line of a protocol record file. These
categorizations are represented by the names associated with the intermediate nodes in the

resulting parse trees.

The model of user behavior defined by the grammar is based on the work of Card, Moran, and
Newell (1983), prmarily their [CARUS study (which was described in Section 2.3.2.1 on
page 29). The remainder of this chapter describes how the grammar and parser works. A
summary of the key decisions made in producmg these rules and symbols can be found in Section

6.2.2 on page 133.

The grammar is presented below in stages; the description follows a breadth-first strategy of first
providing an overview and then prov:dmg successwely finer layers of detail. An important
concept for understanding the grammar is that it is written in terms of levels. Separate sets of
rules are responsible for identifying sequences of symbols in one level and outputting more general
symbols representing that sequence in another hJ,her level. Thus, the output of one level is the
input for another level.

56

FFirst, the grammar symbols, both terminals and non-terminals, are introduced. A general over-
view descrbes the relationships among the levels and the symbols seen at each level. Each of the
symbols is listed in table forrn. Next, the overall structure of the grammar is introduced, with an
emphasis on how the various levels relate. Each level is generated with a separate state machine
fand accompanving logic); these machines are tied together by an Augmented Transition Network
(ATN) structure. Third, a detailed specification of each state machine is presented, along with the
tests and internal structures that further specify the ATN. Finally, a parser is described that
implements this grammar. In this study, the parser serves as the final authoritative definition of

the grammar.

4.2.1 Grammar Symbols

The grammar is described in terms of four principal components: sessions, phases, episodes, and
commands. '

» A protocol record for one session is partitioned into phases.
— FEach phase lasts several minutes.
— A single type of activity predominates in each phase.
+ A M_ consists of a sequence of cognitive tasks, called episodes.

— There is an underlying pulse in the sequence of episodes in a phase, in which episodes of
tree construction and writing alternpate with periods of inaction and housekeeping. -

— - These periods of housekeeping and inaction (here called housekeeping episodes) delimit
the periods of tree construction, writing, and editing (called constructive episodes).

» The constructive episodes and housekeeping episodes are composed of sequences of indi-
vidual user commands and intervening pauses.

— Each command lasts a few seconds or less.
— -Commands are the atomic elements of the protocol record.

Figure 15 on page 59 illustrates a generic parse tree. It shows a session composed of two phases,
three episodes, and eight total commands. The symbols for the pauses between each pair of com-
mands are not shown in this figure. An actual parse tree, showing actual commands, pauses,
episodes, phases, and a session 1s shown i Figure 2 on page 6.

57

Command

[— Episode

Command

’—— Phase |[—

——| Command

L Episode}——F—:Command

Session|—
——| Command

—| Command

—'Pha'se —|Episode |———| Command

| Command

Figure 15. A simple, generic parse tree

The terminal symbols in this grammar correspond to individual user commands. A sequence of
commands (and their parameters) is classified as an episode, the first level of non-terminal
symbols. Table 4 on page 60 classifies the 39 different Prose /I commands, indicating whether a
particular command is parsed as part of a housekeeping episode or a constructive episode. These
39 commands, plus Pause, comprise the terminal symbols for the Prose {{ grammar.

58

Table 4. Classification of the Prose [I commands,
grouped by type of episode. Each of these com-
mands was introduced inTable 3 on page 33 .

Commands in Houasekeeping Epi- Commands in Constructive Epi-
sodes sodes

Pause ' Breaklink
ChangeDefault BreakAllLinks
ClipboardCopy CopyNode
GoTo . CreateNede
MainWindowReset DeleteNode
MainWindowZoom EditLabet
MapMove - EditNode
MapSize LinkNodes
MapWindow MoveNode
MapWindowRoam Scramble

MapWindowZoom
OutlineWindowMove
QutlineWindowSize
QutlineWindow
SaveWorkspace
SetDeleteMode
SetTidyMode
SystemMove
SystemnSize
SystemWindow
SystemZoom
TidyWorkspace
TreeGrow
TreeShrink
LongPause
ClearDrawing
Comement
HelpRequest
LeaveProsell
NewWorkspace
OpenWorkspace
Systemicon

These two classes of episodes are divided into individual types of episodes that further classify the
sequence of commands. For example, some housckeeping episodes consist solely of session
maintenance, such as saving the workspace and closing unneeded windows, while others involve a
change in the focus of operations, such as moving to other regions of the workspace and zooming

in on a specific region.

Table 5 on page 61 classifies the episodes identified by the grammar from sequences of Prose [/
commands. These 20 different episodes comprise the first level of non-terminal symbols for the
grammmar. The names of the episodes describe the types of activity being done in that episode.
We devised the names by successive cycles of listing the representative kinds of activity we
expected to sce during sessions, and then observing sequences of commands that indicated each
particular kind of episode.

59

Table 5. Taxonomy of Prose ! episodes
THousekeeping Episodes Constractive Episodes
Cleanup Assemnbied trees
Cleanup and Take Stock Broke existing links
Help Reguest Created new trees
Long Pause Created solo nodes
Medium Pause Deleted nodes
Refocus Edited existing nodes
Take Stock Grew existing trees
Tracker Comment Hooked existing nodes 1o trees
Moved existing nodes
Start over
Unproductive work

Phases of work span one or more constructive episodes, including any intervening housekeeping
episodes. They represent the broad categories of work executed by users of Prose . For
example, when creating a document from scratch, users often begin with several episodes of
exploration, where they are laying out their imitial ideas, labeling them, and rearranging them
before connecting them into larger structures.

The 1dea of phases of work was introduced by Card, Moran, and Newell {1983). Table 6 on
page 61 classifies the phases identifted by the grammar from sequences of episodes. These 7 dif-
ferent phases comprise the third level of non-terminal symbols for this grammar. Their names
and descriptions were based on writing research and on the specific operations and capabilities of

Prose I,

Table 6. Taxonomy of
Prose Il phases

Phases identified in Prose I[ses-
sions

Bottom Up Construction
Define Hierarchies
[Document Revision
Exploration

New Workspace

Top Down Construction
Tree Structure Revision

Finally, the grammar describes a session as consisting of one or more phases. A single session is
the highest non-terminal symbol in the grammar. A session could be viewed as the start symbol
for a top-down parse.

4.2.2 Design and Operation of the Grammar

This subsection contains the general description of the rules that map sequences in one level of
the grammar to individual symbols in the next higher level. At this degree of detail, the architec-
ture of the grammar is influenced by the architecture of the parsing program that implements it.
Thus, the grammar rules are described for a particular level in terms of a pass for the parsing
program that carries out that part of the overall analysis.

The grammar rules are described in their relationship to five passes. Passes 0 and | are actuaily
preprocessing steps, and thus their operation and effect are not discussed in this overview. Passes
2 and 3 map commands to eplsodes Pass 4 maps episodes to phases which, in turn, are gathered

to form the session.

The same generic parse tree shown in Figure 15 on page 59 is shown below,kbut assoclating each
level of the parse tree with the gramrar passes that handle its categorization.

60

Pass 4 Passes Passes
2 and 3 8 and 1

Command

r Episode

Command

r——|Phase |-—

—-=1Command

\—— | Episode j=——t—|Command

Session{—

—— | Command

——{ Command _

—1Phase |{—————IEpisode|~——|Command

e | Comimand

Figure 16. The same parse tree, showing corresponding grammar passes for each level. Implemen-

tation details of the parse have been omitted. For example, commands are shown as single
symbols; they actually begin as text strings in a file that are reduced to, smgle symbols by Pass
0. Also, the pauses belween commands are nol shown.

No portion of the overall grammar needs power greater than that of a context-sensitive grammar
to describe its operation. Each pass, with its corresponding grammar, 1s introduced below.

Pass

Pass 1

Translates a human-readable protocol record into 16-tuples, one for each primary and
secondary command. (n-tuples are explained, with an example, in Figure 21 on
page 69.)

Type 2 power: a context-free grammar can describe this pass. The strings of English
that it reads have a context-free syntax: for example, parentheses must be properly
nested for label parameters.

Gathers selected subsequences into a single 16-tuple.

Tvpe 1 power: a context-sensitive grammar can describe this pass. Pass 1 reads in an
arbitrarily long sequence of symbols and decides whether to output that string or a
single replacement symbol. If the original string is to be output, it must be in FIFO
order, which precludes using a push-down automaton.

61

Pass 2 Segments the constructive episodes by determining and characterizing the house-
keeping episodes. _
Type 3 power: a finite-state machine can describe this pass. Pass 2 reads in a string of
input symbols, and generates a single output symbol corresponding to its current state
at the end of a housekeeping episode.

Pass 3 Characterizes the constructive episodes.

Tvpe | power: a context-sensitive grammar can describe this pass. Pass 3 builds a
great deal of context information (for example, the current tree hierarchy) as it reads
each new svmbol. [t generates one or more output symbols at the start of the next
housekeeping episode or at the end of the input string. The amount of context infor-
mation it keeps is proportional to the length of the entire input string.

Pass 4 Distinguishes phases in the sequence of constructive episodes.

Type 3 power: a finite-state machine can describe this pass. Pass 4 reads in a string of
input symbols, and outputs a single symbol whenever the state machine indicates a

reset.

The overall relation of these passes can be seen in Figure 17'0_11 page 63.

— i Pags —»| Pass p-—»|Pass —|Pass | Pass —{ Sum- —»

0 1 : 2 3 4 ——» [mary
l and
F tree

Figure 17. Data flow diagram for the parser

The input to Pass 0 is an actual protocel record file for one user’s sesston. The summary and
parse tree are constructed using the intermediate results of passes 0, 1, 3, and 4. Gtherwise, pass |
uses, as its input, the output of Pass 0, and so on through each of the other passes.

A lot of context information is carried along in these passes, but at any point in the input
sequence, the current state of each pass is always valid and can be determined. Hence, every state
of every pass can be considered one step away from a stop state, because a user could have been
interrupted or the session could have been ended at any time.

Three passes do most of the important grammatical analyses: passes 2, 3, and 4. To describe the
details of these passes, additional terminology will be introduced here to make the diagrams that

follow more succinct.

p designates a pause

Ch designates a housekeeping command
Ce designates a constructive command
Eh designates a housekeeping episode
Ec designates a constructive episode

Ph designates a phase symbol

For these three important passes, the parser can be illustrated by the following example diagram.
As a black box, these three passes reduce an arbitrary sequence of command symbols to a
sequence of phase symbols.

62

ch,p,Cc,p,Ce,p,Cc,p,Ch,p,Ch,p, Ch,p,Cc,p, Ce,p, Cc,p, Ccyp, Chyp,Chy ..o | Passes E Ph,Ph,...
5 =_2'3, I e

| and 4 1

In more detail, these three passes perform discrete transformations on their respective input
streams. ‘

Pass 2: compresses sequences of housckeeping commands into one or more housckeeping epi-
sodes. For example, an input sequence like the following:

Ch,p,Cc,p,Cc,p,Cc,p,Ch,p,Ch,p,Ch,p,Cc,p,Cc,p,Ccyp, L, p,Chyp,Chy. .. [Pass
» 2

would produce an output sequence where strings of housekeeping commands (Ch) are reduced to
prog L P q g ping

housekeeping episodes (Eh).

IPass i th,¢c,p,Cc,p,€c,Eh,Eh,Ce,p,Lc,p,Ce,p, L, Ehy ...

- 2
| S

¥

Pass 3: compresses sequences of constructive commands nto constructive episodes. For example,
an input sequence like the following:

s
th,Ce,p,Cc,p,Cc,Eh,Eh, L, p,Ceyp, Ce,p,Cc,Eh,. .. ;Pass
- 3

would produce an output sequence where strings of constructive commands (Cc) are reduced to
constructive episodes (Ec). Since Eh symbols are passed through unchanged, the output of pass 3
1s a stream of mterspersed Eh and Ec symbols.

Pass | Eh,Ec,Eh,Eh,Ec,Eh,...
w3

¥

Because they operate on different input symbols, passes 2 and 3 could have been combined into a
single pass. Separating them made their description and implementation more modular. It also
clearly separated the Type 3 grammar used for Pass 2 from the Type 1 grammar used for Pass 3.

Pass 4: compresses sequences of related constructive and housekeeping episodes into phases. For
example, an input sequence like the following:

1]

Pass !
§ —

[SR

Eh, Ec,Eh,Eh, Ec, £h, ...

i
roa
£

would produce an output sequence where strings of episodes (Eh and Ec) are reduced to phases
(Ph). '

:Pass | Ph,Ph,...

b% 'If >

Each of these three passes are previewed in more detail below. Rudimentary state diagrams are
used to show the averall handling of classes of symbols; the actual details of the handling of spe-
cific symbols and their parameters are described later in this chapter, as are the implementation

detatls. :

4.2.2.1 Overview of Pass 2

Pass 2 categorizes sequences of housekeeping commands as housekeeping episodes. Sequences of
housekeeping commands (Ch) are delimited by sequences of constructive commands (Cc). After
a sequence of housekeeping commands, any constructive command causes a symbol corre-
sponding to a housekeeping episode (Eh) to be output. Constructive commands pass unchanged
through Pass 2. Thus, the effect of Pass 2 is to consolidate Ch's into Eh’s, leaving the Cc

symbols alone.

An overview of Pass 2 is shown in the following state diagram.

Cc, output Cc some Ch
Ch l
state . states
L—»| @ 1-19 |—

T' some Ch, output Eh

Cc, output EhCc -

Figure 18. State machine overview for Pass 2

States 1 through 10 of this state machine operate similarly, and are thus represented as a single
node in Figure 18 on page 65. For each of these states, an input symbol causes the machme to
cither stay in the same state, make a transition to state 0, or make a transition to some other
state. Depending on their value and the current state, some members of Ch cause a transition to
state 0 and generate an output symbol. The remaining members of Ch may or may not cause a
state transition, but they generate no output symbol. Only when a transition is made to state 0 is

an output symbol generated.

Constructive commands (Cc) that follow housekeeping commands (Ch) always cause a transition
to state 0 and cause an output symbol to be generated. Constructive commands in state 0 cause
no state transition, although they are directly output as output symbols.

The rules that describe the different actions are described in Section 4.2.3.3 on page 73.

- 4.2.2.2 Overview of Pass 3

Pass 3 categonizes sequences of constructive commands as constructive episodes. Sequences of
constructive commands (Cc) are delimited by the housekeeping episodes (Eh) from pass 2. After
a sequence of constructive commands, any housekeeping episode causes one or more constructive
episodes (Ec) to be output. Although they cause Ec output symbols to be generated, Eh symbols
themselves are passed through unchanged.

An overview of this pass is shown in the following state diagram.

Eh, output Eh Cc, store info
Cc, store info
state . state
et 1 —

T Eh, output EcEh

Figure 19. State machine overview for Pass 3

Pass 3 is strongly context dependent. Its operation is unconventional, as are many Type 1
parsers. Its overall state operation appears simple; Cc symbols are accumulated by Pass 3 until an
Eh symbol is encountered. Each Eh symbol causes at least one cutput symbol to be generated.
Determining which output symbol(s) to generate, characterizing the constructive episode, is the
complex part of Pass 3's operation. :

store info and output Ec are extensive operations that involve building and resetting contextual
information about the order of operations and the ongoing structures being built in this pass.

store info consists of the following operations:

l. Look at the exact contents of Cc, including what command this is, its timestamp, and the
value of its parameters. In some cases, increment counters, counting such things as the
number of new nodes created in this constructive eptsode.

Add the command to a history list. This is a list of the Cc symbols seen since the last Eh.
Update the global data objects. Since the user was using the system to build nodes and trees,
the global data obijects here consist of an internal representation of all the nodes built so far

and their position in trees.

el

output Ec¢ consists of the following operations:

1. Decide the primary (and any secondary) Ec symbols to be output, based on

« counter values

* the history list for the episode

* the state of the global data objects

* a set of production system rules, which are conditional statements evaluated in a pre-
defined order.

Update the global data objects, if necessary.

Reset the history list and all the counters.

Sadl N

65

Each time a constructive episode is identified, at least one output symbol is generated. However,
because of the complexity of the sequence of operations in an episode, secondary descriptions of
the episode may also be generated. For exampie, in a single episode a user might both construct
a tree and delete a set of standalone nodes. A primary Ec symbol is output, along with a sec-
ondary symbol. Pass <4 uses these primary and secondary constructive episode symbols {which
carry the same timestamp) to further classify the phase. These two different types of symbols are
described as Ecp and Ecs in the discussion of Pass 4 that follows.

The detailed operation of Pass 3 is described in Section 4.2.3.4 on page 78.

4.2.2.3 Overview of Pass 4

Pass 4 categorizes sequences of constructive episodes as phases. Groups of similar input symbols
map onto a single symbol. Of the input symbols, Pass 4 looks only at the primary constructive
episodes. Housckeeping episodes, which were used to delimit the constructive episodes in Pass 3,
do not affect the phase symbol output by Pass 4, since they do not describe constructive work on

a document.

~ An overview of this pass is shown in the following state diagram.

Eh . Eh, Ecs, & some Ecp
state Ec states
| g > 1-7 |[——
some Ecp, some Ecp,
output Ph output Ph
—| states |+
1-7
Eh, Ecs, & some Ecp

Figure 20. State machine overview for Pass 4

Pass 4 consists of 8 distinct states, here reduced to 3. A full state diagram for pass 4 is a mesh,
with its 29 inputs causing different transitions in the 8 states. After seeing a constructive episode,
Pass 4 never returns to state . Housekeeping episodes (Eh) never cause a state transition.

There are two types of constructive episodes, Ecp (primary constructive episodes) and Ecs (sec-
ondary constructive episodes). Depending on their value and the current state, some members of
Ecp cause a state transition; the remaining members of Ecp cause no state transition. If a transi-

tion 10 a new state is made because of an Ecp symbol, a phase symbol (Ph) is output; the phase
describes the state that was just left.

Depending on their value and the current state, members of Ecs may or may not cause a state’
transition. As a secondary constructive episode, these symbols never directly cause an output
symbol to be generated, but may change the current state, and thus influence what the next

output symbol will be.

The detailed operation of Pass 4 is descnibed in Section 4.2.3.5 on page 83.

4.2.2.4 Overview Summary

Passes 2, 3, and 4 form the core of the grammar. They specify the transformation from individual
command symbols into a sequence of phase symbols that define a session. The subsection that
follows contains more detail on the construction of these passes, as well as the preliminary passes
that read and transform the text in actual protocol records. Pass 0 does the translation from text
mto grammar symbols. Pass 1 clarifies the association between certain command and their
parameters, as well as reorganizing a few specific sequences of commands. Pass | is necessary
because of sequencing anomalies in the tracker. For these passes, as well ‘as passes 2 through 4,
the meaning and usage of each input and output symbol is described. The extended logic for
processing these symbols is then presented, showing the transitions for each symbol in each state.

423 Details of the Grammar Operation

This subsection provides the detailed state machines and grammar elements introduced in the pre-
ceding section. Appendix B on page 170 contains a full example of a parse, showing the original
input file and each of the intermediate files for one of the protocol tecords in the study.

In passes 2, 3, and 4 of the grammar, a sequence of commands is collapsed into an episode, and
these episodes are similarly collapsed into a phase. To preserve sufficient status of what was seen,
the grammar carnes some contextual information forward from one pass to another. For
example, a user might have saved a workspace during an episode where the predominant activity
was creating and editing nodes. The fact that a save occurred must be carried forward. ‘

To carry this information between passes, one of the fields carried between the passes is a col-
lection of Boolean flags. For example, a Boolean flag indicates whether a workspace was saved
during that episode. As another example, Pass 0 sets a Boolean flag whenever the current
command is invalid or canceled. Similarly, Pass 3 of the grammar looks at how many of the
commands in an episode were invalid. When it sees comrhands with the “invalid command” flag
set, it increments its counter of invalid commands. These thirteen flags are hsted below.

Is the Mamn Window showing?

Is the Map Window showing?

Is the Outline Window showing?

Is Delete Mode on?

Is Tidy Mode on?

Was the workspace tidied?

Is this the first editing of this label?

Is this the first editing of this node’s contents?
Was this command canceled?

10. Was this command invalid?

1I. Was this constructive episode a complex one?
12. Was a file saved in this episode?

13. Dxd the subject start over in the workspace?

090 NN e e b —

67

The flags are first assembled in Pass 0, which translates the protocol record text into grammar
symbols. One example of this translation is the “-- invalid --,” discussed in Section 4.1.1 on
page 49. A grammar symbol for an invalid command would consist of the command and its
timestamp, yet that flag indicating it is invalid would be sct by Pass 0.

4.2.3.1 Pass 0: Translating the Tracker File

This pass of the grammar carries out the first step in analyzing a user’s session: it translates a text
file, ie., a protocol record, into distinct grammar symbols used in the later passes. Each line of
the input file is translated into a single output svimbol, consisting of up to 16 numbers; this is
known as a /6-tuple. This group of numbers captures all the relevant information about one
single command. Thus, each line in a protocol record is translated into a single 16-tuple, whether
it is a primary command, a secondary command, or a pause. An example of one of these
16-tuples is shown in [igure 21 on page 69.

An example line from a protocol record, indicating a pause:
39:52.88 139:59.91 7.91 PAUSE
The corresponding 16-tuple output generated by Pass 0:

0257, 0239200, 6239991, 0008791, 0001, 6060, 6, 6, @, O, O, 6, 0, 9, 6, 6

Figure 21. An example protocol line and the corresponding 16-tuple generated by Pass (0

Reading across the 16-tuple line in Figure 2! on page 6% “0257" is the internal identifier used by
the parser for Pause; “0239200” and “0239991" are the start and stop times of this pause in hun-
dredths of seconds; “0000791” is the elapsed time of this pause in hundredths of seconds; “0001”
indicates that this 16-tuple represents one command (this field is not important umtil later passes,
where it counts the number of commands in an episode); “0000” indicates the thirteen bit-
significant Boolean flags carried between passes. The remaining ten fields are specific to the
parameters used in each command (they would contain such fields as node ID and coordinates).

Omne concern was that users might alter a protocol record file in such a way that it could not be.
parsed. If this occurred in a simple manner, [expected to be able to correct the problem on an
individual basis. No protocol records were altered by any of the subjects, but, as mentioned in
Section 4.2 on page 57, one subject did attach a paragraph of text to the bottom of a protocol
record. The syntactic analyzer of Pass 0 terminated when it encountered the beginning of this
paragraph. 1 moved the paragraph to a separate file with a text editor, which corrected the

problem. L
Figure 22 on page 70 shows an example of the input to Pass 0, and the corresponding output.

68

| Prose II Session Recording Sat Hov 26 089:39:52 1988 |
| File: C:"RCD3ALA.THP |

| Start Stop Time Operator Parameters {
Imin:se¢ min:sec set |

39:52.06 39:39.91 7.91 PAUSE

39:39.91 40:00.07 0.16 Openkorkspace File{"18HSC.SCR*} Format({*.PR2")
. + Createtiode 10(1}
+ Createllode 10(2)
40:02.87 2.80 LeaveProsell o)

30:02.87 40:03.15 B.28 PAUSE

40:03.15 40:16.83 13.68 PAUSE

40:16.83 40:35.61 18,78 OpenWarkspace File{“IBNSC.PRZ*) Farmat(.PRZ2")

+ Createtiode 10(1)

10 40:35.61 40:58.84 23.23 PAUSE

11 40:58.83 41:15.60 16.76 PAUSE

12 41:15.66 41:18.62 3.02 PAUSE

13 41:18.62 41:19.50 3.88 EditNode 19(1) Editer(*notepad.exe‘} File{*IBHSCDO1.PRZ)
14 41:19.50 41:39.98 20.48 LleaveProsel} 10(0)

15 41:39.98 41:53.11 13.13 PAUSE)

OO~ DU S R
+a
=a
fen)]
=
(=]
~J

1 0257, 0239200, 0239991, 0OGS791, 000l, OOOO O B QO BOOBOOSG
2 6286, 0239991, 0240867, AOUGOL6, 0GOl, OOCO QO OO O000 GO OB
3 0264, -Oocooel, -0000091, -000GOO1, OGO1, COGD 1 DO OOOCDOODO
4 0264, -0000001, -6000061, -0000001, 0BOL, COO0 2000000600
5 0275, 0240007, 0220287, 0000280, 0G9%, COOQ GO COOCOEOO
5 0257, 0240287, 9240315, 0000GZ8, 000, 0OCO @ C OB OCGEOOO
7 0257, 0240315, 9241683, 0001368, 00OL, 00000 CDOCGOGOB
8 D286, 0241583, 0243561, 000i878, DOCl, COCE O 0O O0BO0DCGAO
9 6264, -6000@01, -00GOG61, -00OGE01, 0001, OCRR 1 DO O00CO0EBOR
10 8257, 0243581, 0245384, 0002323, 0001, OGO O 9000000 0G
11 0257, 0245884, 0247568, 0001676, 009i, 6A00 B 0 QGO0 BB A G B
12 0257, 9247560, 0247862, 0000382, 0OOl, QOOA B COOCGB R GAO
13 0271, 0247862, 06247950, 0000GES, 0001,.0000 1 68O 0O00E GO
14 0275, 0247950, 6249998, 0002048, 0001, OO 0 GO O OO G BOO
15 0257, 0249998, 6251311, 0O00I313, 0061, OGOG QDO 000G OO0

Figure 22. An example of Pass © input and output. The bottom half of this figure illustrates the
results of running Pass 0 against the protecol record show in the top half. The fifteen lines are
numbered to show the one-to-one correspondence.

An extensive example of the output from Pass 0 is shown in appendix B.2 on page 178.

4.2.3.2 Pass 1: Combining Common Sequences

This pass of the grammar carries out some minor corrective surgery on the sequence of grammar
symbols representing the commands. The grammar descnibed here is dependent on the sequence
of the imput symbols it received. Pass | serves to correct some minor anomalies in the sequence
of input symbols. It also widens the set of symbols considered by later passes; for example it
changes the symbol SetTidyMode with parameter Off into a new symbol: Set TidyModeOff.

Pass 1 is the simplest of the grammar passes. It was added late in the process of developing the
grammar—long after the protocol collection had been completed. In this pass, sequences of com-
mands that could have been represented with a single symbol are combined into that single
symbol. For example, setting TidvMode on and then off is equivalent to executing the
TidyWorkspace command. This pass handles side-effects of the command structure of Prose [/
such as this example. The conversions done in Pass | cannot easily be done in later passes
because the symbols involved deal with both housekeeping and constructive commands (these are
discussed in Section 4.2.3.3 on page 73).

69

Pass | handles only three cases:

1. When the EditNode and LeaveProsell commands are adjacent, they signal that the subject
" has started an editing program to edit the contents of a node. Pass [maps either of the
following sequences onto the single symbol EditNode.

. EditNode
- LeaveProsell

or
. [eaveProsell
« EditNode

2. The sequence SetDeleteModeOn, DeleteNode, and SetDelete ModeOff signals the deletion of
a single node. Prose {/ also has a single command for deleting one node, so this longer
sequence is mapped onto the single symbol DeleteNode. (“*” represents a Kleene star, indi-
cating this symbol could occur zero or more times.)

+ SetDeleteModeOn
* pause”

» DeleteNode

* pause” -

¢ SetDelete ModeOff

3. The sequence of SetTidyModeOn followed by SetTidyModeOff serves to tidy the workspace.
Prose II also has a single command for tidying the workspace, so this longer sequence is
replaced by this symbol TidyWorkspace.

» SetTidyModeOn
s pause’
* SetTidyModeOff

- A custom lexical analyzer reads the output from Pass 0, combining the commands with their

parameters to form unique symbols. It converts the 40 Pass 0 output symbols (39 commands
plus Pause} into 50 different symbols; for example, the SetTidyMode command with the param-
eter “ON" is converted to the internal symbol SetTidyModeOn.

The syntactic analysis of Pass 1 is implemented with a finite-state machine and a FIFO stack. At
any time in the parse, many commands can be on the stack. Pass 1 handles the generation of an
output symbol in one of two ways: either a single symbol is output and the stack is flushed, or
all of the symbols on the stack are output, in FIFO order. Thus, if the state machine so indi-
cates, the symbol from the lexical analyzer is pushed on the stack and another symbol is read.
When the state machine indicates the stack should be flushed, either the contents of the stacked
are replaced by a single symbol, or each of the symbols on the stack is output.

No processing is done by Pass | if the input command is a secondary command, or if the
command is canceled or invalid. The output symbol is identical to the input symbol, with no

changes to the current state. .

Pass 1 Finite-State Machine: The follow:'ing table describes the states defined for the Pass 1
finite-state machine. -

70

Pass I State Description of the state

Start state.

Saw EditNode, waiting for LoscFocusShort or LoseFocusLong

Saw LoseFocusShort or LoseFocusLoeng

Saw SetDeleteModeOn, wailing for DeleteNode

Saw DeleteNode, waiting for SetDeleteModeOff

Saw SetDelete ModeOff

Saw SetTidy ModeOn, waiting for SetTidy ModeOff

Saw SetTidyModeOff

Saw LoseFocusShort or LoseFocuslong, waiting for EditNode

Saw EditNode

Ol ||l w|lwi~o

Table 7 (Page 1 of 2). Pass | finite-state machine

State Names— > Sturt Saw Suw Saw Saw Saw Saw Saw Saw Suw
Stare | Edit- Lose- | Set Delete} Delete} Set- Set- Lose- | Edir-
Node | Focus| Deletet Node | Model Tidy- | Tidy-1 Focus-f Node
xxxx | Mode- &F Mode-t Mode} xxxx
On On off

Tnputs State Numbers— > [! 2 3 4 5 § 7 8 9
BreakAlLinks By [oB)y | ®C | AB) | om] oDy | OB) | KE) | OB) § OC)
BreakLink {B) o(B) ®C) | O(B) (B} oDy | OB ®E} | O(B) O(Cy
ChangeDefault +(B) B) %Gy 1 By | B) D) | OB XE) o(B) HCy
ClearDrawing B) o(B) NGy | GBy 0(B) oDy | AB) O(E) o(B) B(C}
ClipboardCopy {B) o(B) AC) 0(B) B} D) | AB) XE) 6B} | oCy
CopyNode B} O(B) %0 G(B) B} D) | AB) E) G(B) K<)
CreateNode B} B} | HC) o(B) %B) oD}y | OB) O(E) (B} HC)
DeleteNode +B} 0{B} HC) HA) | oB) oDy | XB) oE) O{B} HC)
EdntLabel +{B) &By | G | UB) (B} oD} { &B) { OE) | OB} | OO}
EditNode 1A} | OB} <) %B) O(B) oDy | OB %E) A | %Oy
GoTo +B) (B} HCy | B} o(B) oD) | oB) KE} (B} B(C)
HelpRequest B} By | KC} + OBy B} | &by | OB} | OE) | O(B) HC)
LinkNocdes B} uB) KC) | oB) (B} oDy | OB} E) (B} HC)
LoseFocusbong 8(AY § XA) ¢ UC) | OB) aB) | D) | OBy ®E) | B} ¥C)
LoseFocusShort 8A) 2A) Ay {A) {A) D) {A} E) (B} C)
MainWindowReset @ o | o | o® [o | oDy| B | oE) | om | O
MainWindowZoom +B) O(B) %0) X B) B) oD} } B} O(E) o(B} o(C)
MapMove, (B} OBy | wC) O(B} O(B) oD) | OB} O(E) O(B})
MapSize 4B} 0(B) <) B} GB) | OD) | XB) | XE} B} HC)
MapWindowClose {B} B}y <) B} 6By | oDy | OBy | KE} (B} xCy
MapWindowOpent B} By | %O | OB} GBy j D} | B} | &GE) | OB) | &<y
MapWindowRoam <B) (B} (C) B) 0(B) oDy (B} E) (B ®C)
MapWindowZoom <B} 0(B) oCy I oB) OB} | (D) | AB) ¥E) O(B) HCy
MoveNode <Bj OB} { XC | AB o(B) oDy | oB) O(E) (B} <Y
NewWorkspace (B} GB) { 0C) | By 0B} oD) | OB) E) B} {C)
OpenWorkspace : <B) o(B) AC} | «B) &B) oDy | OBy OE} (B} (o)
CutlineWindowClose {B) OB} Q) (B} B) D) 0(B) E} o(B) HC)
QutlineWindowMove +{B) {B) C) oB) B) oD} %B) 115} oB) HC)y
OutlineWindowQpen {B) (B} %0 0B} B} D) | %B) XE) 0o(B) %C)
OutlineWindowSize - 4B} o(B) N0 0{B} G(B) D) &B) XE) {B) %C)
PauseType0 B} <A) (9] (A} 1 44) oD} | () ME)} | &B) C)
PauseTypel ® | Ao}] lam) 4] e | | &0
PauseType2 4B} (A} HC) {A) £A} oD} | 4A) OE} | OB} HC)
PauseTypel «B} B} oC)y ¢ AB) (B} oDy { OB) OE) oB) o(Cy
SaveWorkspace B} | OB) | OC) { OB } oB) | P} | &B) | WE} | OB) | O{C)
Scramble B} o(B) %) o8y &B) ¥D) | XB) O(E) (B} ACY
SeiDeleteModeQfT +{B) (B} %C) o8} HA) oD} 0¢(B) XE) 0o(B) xS
SetDeleteModeOn 3A) o(B) ¥Cy (B *B) oD} KB} O(E) 0(B) %UC)
SetTidyModeOff {B) oB). | %O o(B) By | D} #A) | XE) (B} ¥Cy
. SetTidyModeOn KA} o(B) (] (B} OB} oDy | AB) KE) 0{B) %C)
Systemlcon B} (B} o) OB} GB) | Dy | B} | KE) 0(B) GC)
SysternMove +B} xB) <) 0(B} By | ®D) | OB} | &E) (B) HO)
SystemSize «B} (B} HO) (B} GB) § XDy [OB) | OE) &(B} U<
SystemWindowCloge +{B} o B) HC) (B} 0B} oD} O(B) OE) B} oy
SystemWindowOpen B} (B} HC) OB} { OBy | D) | OB} | OE) G(B} oSy
SystemZoom «B} OBy { XC) { B [OBy | Dy { ¥B} | KEy | OBy ; OC}
TidyTree «(B) OBy | O | OB By | oDy | 4A) O(E) (B} (<)
TidyWorkspace B} OB} | oC) | GB) oB)y | oDy | Ay | OE) [OB} <)
TrackerComment {B} oB) | oC) XB) (B} D) 0{B) XE) 0(B) o)
TreeGirow {B) B o) HB) B} D) KB} ALY B} 1]

71

Table 7 (Page 1 of 2). Pass | finite-state machine _
Strate Numes—- > Stare | Saw Saw Saw Saw Saw Saw Saw Saw Suw
State | Edit- | Lose-| Set Deletet Deletet Set- Set- Lose- | Edit-
Node | Focussy Deletet Node | Maode-| Tidy- | Tidy- | Focus-| Node
xxxx | Mode- aff Mode-§ Mode} xxxr
On] On off

Inputs State Numbers—> 4 1 2 3 4 5 & 7 & 9

TreeShrink _ -(B) 0By | OC) | OBy [OBy | &D) | &B) | OE) | OBy | OO

secondary, canceled, or invalid +{B) o) KO o B) 0(B) D) B} ®E) By O

command

end of input -{B) o(B) HC) U EB) B | D) B KE) B O

Pass 1 Function

Cutput Code

A Add this input symbol to the FIFO stack.

B " Add this input symbol to the FIFO stack, generate one oulput symbol for each
symbol currently on the stack, in HFO order, then clear all symbols in the FIFO
stack.

C Generate the output symbol EditNode, and clear all symbols in the FIFO stack.

D Generate the output symbol DeleteNode, and clear all symbols in the FIFO stack.

E Generate the output symbol TidyWorkspace, and clear all symbols in the FIFO
stack.

An extensive example of the output from Pass | 1s shown in appendix B.3 on page 185.

4.2.3.3 Pass 2: Segmenting and Characterizing Housekeeping Episodes

At this stage in the parsing process, the goal is to find the beginning and end of episodes, and to
characterize each episode. Between consecutive constructive episodes are periods of housekeeping
activities; intervening housekeeping episodes may be as simple as a six-second pause. Pass 2
determines each of the episodes of housckeeping activity; what is left are the constructive episodes,
which are characterized by Pass 3.

Pass 2 reduces selected sequences of 16-tuples into a single 16-tuple. The output symbols repre-
sent delimiters between sequences of productive work., Pass 2 operates using a finite-state
machine for the symbols in the housekeeping episodes. Upon reading each new housekeeping
symbol, it looks up the next state, and goes to that state. Upon encountering a constructive-
episode symbol, Pass 2 outputs a new symbol that characterizes the state it was in, but without
characterizing where it has wandered through the state table.

Some special housekeeping symbols also cause a sy’mbql to be output. These symbols are treated
differently because they indicate a “meta-housekeeping” command by the user, not directly related
to working with the housekeeping ltself The user has jumped out of the current working envi-

ronment.

e time spent in extemal windows,

» a physical or mental break, signalled to the tracker
* along pause {more than 100 seconds),

» asking for help, or

+ leaving a comment in the tracker.

Table 8§ on page 74 classifies the 50 output symbols generated by Pass .l, indicating whether a
particular command is parsed as part of a housekeeping episode, a meta-housekeeping episode, or
a constructive episode. Pass 2 determines and characterizes these first two categories of episodes.

72

Table 8. Classification of Pass | output symbols, grouped by episodes

Housekeeping Commands { handled
by Pass 2}

Mera-housekeeping Commands
{ handled by Pass 2)

Constructive Commands { handled
by Pass 3}

Pause LongPause BreaklLink
ChangeDefault ClearDrawing BreakAllLinks
ClipboardCopy Comment CopyNode
GoTa HelpRequest CreateNode
MainWindowReset LeaveProsell DeleteNode
MainWindowZoom NewWorkspace EditLabel
MapMove . OpenWorkspace EditNode
MapSize Systemicon LinkNoades
MapWindow MoveNode
Scramble

MapWindewRoam
MapWindowZoom
GutlineWindowMove
QutlineWindowSize
OutlineWindow
SaveWorkspace
SetDeleteMode
SetTidyMode
SystemMove
SystemSize
SystemWindow
SystemZoom
TidyWorkspace
TreeGrow
TreeShrink

A grammar with type 3 power, a finite-state automaton, was used for Pass 2 to characterize the
housekeeping episodes. [experimented with whether more power was needed for Pass 2. To
correctly characterize a housckeeping episode, Pass 2 needs to say what was happening in the
context of a string of symbols. Because it must make a distinct decision on every input symbol in
every state, a finite-state machine generally does not handle singular events well. Perhaps the
power of a context:free or context-sensitive grammar was required, [wondered. At one point, |
generated all the symbol sequences that are reduced by Pass 2, and, surprisingly, the finite-state
machine (FSM) turned out to be adequate. Each time I have re-examined this question, the Pass

2 FSM has turned out to be robust.

Pauses: Pauses are central to the operation of Pass 2. The fact that a writer pauses during
writing does not tell us much about what mental processes were taking place during the pause.
The wnter may have been planning the next sentence, daydreaming, or answering the telephone.
The tracker descnibed here records pauses without knowledge of their nature, but uses them as
separators between episodes of productive work.

One of the first research efforts I pursued was to categorize the different durations of pauses I saw
in some of my test protocol records. Finding the right decision points in pause durations was a
balancing act; the values were found through about 2 years of trial and error. A value too low
resulted i many, short episodes, which gave insufficient data reduction. A value too high .
resulted in a few, composite episodes, which were too complex to provide much insight. 1 ulti-
mately divided all possible pause durations into 4 groups for the sessions studied in this project: 0
to 6 seconds, 6 to 8.5 seconds, 8.5 to 100 seconds, and greater than 100 seconds. These were

designated as .“PauseTypeO" through “PauseTypel,” respectively.

PauseTyped
A short pause. In this analysis, this type of pause is indicated by times less than 6.0

seconds. If a pause for 6.0 seconds or longer occurs between two consecutive con-
structive commands, they are considered in separate episodes.

Cafd, Moran, and Newell used 5.0 seconds in their JCARUS study of one session. In
the early stages of the project, I observed a natural break in Prose [f sessions at about

73

5.5 seconds. After about a year of parsing pilot protocol records, it appeared that the
break was more naturally at 6.0 seconds.

PauseTypel
A medium pause, frequently seen between constructive episodes. In this analysis, 1
implemented a medium pause as the narrow range from 6.0 seconds to 8.5 seconds.
PauseTypel was used in this project to distinguish among the housekeeping episodes
named “Cleanup,” “Take Stock,” and “Cleanup and Take Stock.” It played no role
in distinguishing constructive episodes. A pause of 6.9 seconds or greater always dic-
tated a break between 2 constructive episodes, even if they are smular in class.

PauseType2
A long pause, indicating some dehberation or interruption between constructive epi-

sodes. In this analysis, [implemented this as the range from 8.5 to 100 seconds.
PauseType2 was used in this grammar to determine participation in the housekeeping
episodes that included “Take Stock.” Pauses in this range were considered part of the
process of taking stock by the human uscr; longcr pauses were considered to be snu‘
ations where a user had stepped out of the task in some way.

PauseType3
A very long pause, indicating the user has been interrupted, has pursued other tasks,

or has stepped away from the system. This was indicated by a pause of 100 seconds
or greater. In their /CARUS study, Card, Moran, and Newell noted that the longest
pause they observed (while the subject was still working on the assigned task) was 80
seconds. The threshold of 100 seconds was picked somewhat arbitrarily, but held up
as a reasonable reference point throughout the project.

Pauses of this duration were charactenized in their own episode, one whose time dura-
tions were so long that they were not included in many parts of the protocol analysis
that focused on time durations.

The cap on the duration of PauseType0 was the value that most affected the output symbols
generated by the parser. If this value is too short, the number of constructive episodes increases--
with these episodes containing fewer commands, and occurring together in sequence. If this value
is too long, the number of constructive episodes decreases, and they are characterized by more
composite constructive episodes. The fixed values used in this parser are admittedly inflexible to
individual differences, but proved robust enough to give useful results for the study.

In this project, the grammar handled the following situations as two different conditions:

» A long pause (e.g., an hour)
» Exiting the software-(closing the workspace)} and entering it again in the same time period.

It could be argued that there are only a few keystrokes difference between these two kinds of situ-
ations. Perhaps a future preprocessor pass of the parser might review sets of protocol records
from a subject and determine if they should be concatenated. Similarly, if a pause is significantly
longer than 100 seconds (e.g., a day), a single session might be divided into multiple sessions,
because significantly different cognitive activities may have taken place between the times the
subject used the system.

Newell’s “Timescale of Human Actions” {Newell, 1988), reproduced in Table 9 on page 76, gen-
erally concurs with the different orders of magnitude for my framework of categonizing pause
durations. The individual commands and pauses studied in this project fall within the “Cognitive
Band”; sessions had durations within the “Rational Band.” Episodes and phases were in the range
of several seconds to several minutes, spanning these two bands. This concurrence is reasonable,
since the grammar in this project was based upon earlier work of Card, Moran, and Newell,
which segmented a task into similar phases and episodes.

74

Table 9. Timescale of Human Actions, from Newell (1988). This table is copied from figure
7-2, page 257.

Scale (in seconds) Time Units System Horld (theory }

107 months Social Band

tas weeks

105 days

104 hours Task Rational Band

103 10 minutes Task

102 minutes Task

101 10 seconds Unit Task Cognitive Band

100 1 second Operations

10-1 100 ms Deliberate Act

[0-2 10-ms Neural Net iological Band

10-3 I ms Neuren

10-4 100 ps Organelle

Scction 5.3.1.4 on page 98 discusses the actual results of the study, in terms of the distribution of
the duration of the pauses in the 112 protocol records.

Pass 2 Qutput Symbols: Pass 2 generates eight different output symbols: five of these con-
stitute housekeeping episodes; the other three constitute meta-housekeeping episodes. These
symbols are shown in Table 10 on page 76. We chose the names for these output symbols to
characterize, in a few words, the underlying sequence of activities. Card, Moran, and Neweli did
not pame these types of sequences in their JCARUS study. For the set of input sequences we
saw in our study, these eight symbols proved sufficient. However, we can conjecture odd
sequences (not seen m this study) where additional symbols might be necessary.

Table 10. Pass 2 output symbols
Pass 2 oatput symbol name Description of the conditions that cause this output symbol to be Internal
.) generated Parser
Sembol
Heusekeeping Episodes :
Cleanup * Set Delete Mode on or off 2002
* Tidy trees
* Close windows
* Turn modes off
Take Stock * Lock at a Prose [f Gutline Window 2004
* Save a workspace file
* Make Prose II an icon
‘ * Encounter a PauseType2 (8.5 to 100 seconds)
Cleanup and Take Stock * Cleanup plus Take Stock, in either order or interleaved 2003
Refocus ¢ Zoom or size using the map or main window 2003
* Search for a node {GoTo)
Medium Pause . * Encounter PauseTypel (6 10.8.5 seconds) 2008
* Leave Prose II for another application in Windows for a :
. brief period
Veta-housekeeping Episodes
Long Pause + Encounter a PauseType3 (greater than 100 seconds) 2008
¢ Leave Prose II for another application in Windows
Help Request *+ View one or more heip panels 2009
Tracker Comment * Leave oné or more comments in the protocol record 2010

Pass 2 Finite-State Machine: The following table describes the states defined for the Pass 2

fintte-state machine.

. Pass 2 State Description of the state
0 Start state.
1 Long pause. A long pause was encountered, or the user left Prose /1 for another
Windows application. o
2 Cleanup. Set Delete Mode on or off, or tidy trees
3 Cleanup and take stock. Cleanup plus look at outline window, save file, icon
4 Short pause. This is a holding state, on the path to other states.
3 Refocus. Zoom or size using the map or main window, or search for a node.
6 Help request. Click on one of the help buttons.
7 Cleanup. We get here by setting Delete Mode or Tidy Vode.
8 Take stock. Lock at outline window, save file, icon.
9 Start over. Open a workspace file, clear drawing. or start a new workspace.
10 Tracker comment. [eave a comment in the tracker.

Table 11. Pass 2 finite-state machine

State Names-— > Start Long Ciean-| Clean} Short | Re- IHHelp Clearn-]! Tuke § Start Truck
State | Pause | up uwp & Pause | focus | Re- up . Stock | Over er
Take quest Com-
Stock ment
Inputs State Numbers—> [/ R 2 3 q 5 1 7 .4 9 10
PauseType0 4 - - - - - - - - -
PauseTypel 1 - - - 1 - B B - -
PauseType2 1 - - 1 - - 3 - - -
PauseTypel 1 - OA) O(A} O(A) O(A) - O(A) 0(A) 0(A) -
ChangeDefault 3 5 - - 3 . GA) - - - HA)
CliphoardCopy 3 8 3 - 3 - (A} 3 - - O(A)
GoTo 3 5 5 oAy | 3 - oAy | 5 5 oAy | oAl
HelpR.eguest &] O(A) A) 5 HA) - O(A}) oA) {A) (A}
LoseFocusLong ! - A) (A} 1 O(A) HA) O(A} 0(A) O(A) {A)
LoseFocusShort 4 - - - - - - - - - -
MainWindowR eset b] 3 . - 3 - - - - - O{A)
MainWindowZaoom 3 5 5 3 3 - O{A} 3 3 - KA)
MapMove 5 5 - - 3 - O(A) - - - A)
MapSize 3 3 - . 3 - O(A) - - - o(A)
MapWindowClose 2 2 - - 2 - O(A) - - - A)
MapWindowQpen 3 5 3 - 3 - VEY] 3 - - O(A)
MapWindowRoam 3 3 3 b 5 - O(A) 3 5 - 0A)
MapWindowZoom 5 5 3 3 5 - oAy | 3 5 - | - (A}
MentalPause l - O(A) O(A) 1 O{A) 6A) O{A) 0(A) O(A) -
OQutlineWindowOpen 3 8 - - 3 - 0{A) 3 - - KA)
OutlineWindowClose 2 2 - - 2 - (A} - - - OA)
OutlineWindowMove 1) 8 3 - 3 . HA) - - - (A}
QutineWindowSize "3 3 3 - 3 - O(A) - - - O(A)
SaveWorkspace § H] 3 - 8 - ®A) 3 - . O{A)
SetDeleteModeOn 7 7 7 - 7 7 O{A) - 3 O(A) O(A)
SetDeleteModeOff 2 2 - - 2 - - - - - A)
SetTidyModeOn 7 7 7 - 7 - A) - 3 O{A) A
SetTidy ModeOff 2 2 - - 2 - - - - - O(A)
Systemlcon 1 - O(A) OA) O(A) 0(A) O(A} 0{A) 0(A) 0(A) G{A}
SystemMove 5 5 5 - 3 - - 3 - - 0{A}
SystemSize 3 3 5 - 3 - - 3 -] O{A)
SystemWindowOpen 9 HA) AY | OA) A) HA) 0(A) O(A} D{A) - DAY
SystemWindowClose 9 HA) | oA oA | oo(A) | ooa) | ofa) | oAy | aa) 4 - (A
SystemZoom 3 3 - - 3 - O{A) - - - A}
TidyWorkspace 7 7 7 - 7 - O(A) . 3 . oA)
TrackerComment 10 O{A) 0(A) 0(A) O(A) O(A) O(A} O(A) O{A) O{A) -
TreeGrow 3 3 3 - 3 - O{A) 3 . - G(A)
TreeShrink 3 8 3 - g - KA} 3 - - G(A)
Unproductive i - - o A - - - - - -
end of input - 0A) 0(A) O(A) HA) oA} o(A) O(A} 0o(A) BA) O{A)

76

Pass 2 Function
Output Code
A Generate an output symbol corresponding to the current state, go to state), then
handle the current input symbol.

An extensive example of the output from Pass 2 is shown m appendix B.4 on page 191.

4.2.3.4 Pass 3: Characterizin,t.LConstmctive Episodes

The design assumption for Pass 3 is that a human is pursuing purposeful work during each of the
periods labeled as a constructive episode. This work is carried out in a sequence of small actions
with little elapsed time bctween them. Several goals may guide a user’s actions during a single
constructive episode: for example, a user might move some nodes, delete some nodes that are no
longer needed, and then create, label and link a new set of nodes.

The Pass 3 output symbols characterize a constructive episode. The input to Pass 3 are the
grammar symbols that were output by Pass 0 and Pass |, separated in the input string by the new
symbols written by Pass 2. Pass 3 reduces selected sequences of 16-tuples into one or more
n-tuples. Passes 0, 1, and 2 each generated 16-tuple records, as illustrated in Section 4.2.3.1 on
page 69. Pass 3, however, can generate tuples with unlimited size, since a single output symbol
might need to contain a list of all the nodes in a newly-created tree. Qutput symbols generated by
Pass 2 exit from Pass 3 unscathed; the resulting cutput string is thus an intermixing of Pass 2 and

Pass 3 output symbols.

The lexical analysis of Pass 3 is simple; the syntactic analysis is complex. In its lexical analysis,
Pass 3 reads input symbols, where each input symbol is a [6-tuple in the same format as the
output symbols generated by Passes 0, 1, and 2. Thus, the lexical analyms should never fail unless
an intermediate file, contammg the output symbols, 1s tampered with. -

The syntactic analysis for Pass 3 understands two characteristics of the node currently being oper-
ated upon: the node’s structural place in the current workspace and whether it was created within

the current constructive episode. The syntactic analysis is implemented using:

* A set of counters, reset whenever a new constructive episode starts. These counters record
such information as the number of nodes created so far in this constructive episode, the
number of existing nodes that had their labels changed, and the number of invalid commands
attempted during this constructive episode. A complete description of these counters is
shown in Table 13 on page 80.

+ A set of lists of nodes, also reset whenever a new constructive episode starts. These lists
record the information that is later written as clements of the output symbols. For example,
one of the output symbols mught say that 10 new nodes were created. The IDs of these 10
nodes are listed as parameters of the output symbol. Thus, a st of the newly-created nodes
during the constructive episode is maintained, to be used when Pass 3 generates the output
symbol. A complete description of these lists is shown in Table 14 on page 81.

+ A history list of the commands done so far in this constructive episode, to determine whether
later commands in this episode act upon new or old nodes, new or old trees, and so on.

* The complete underlying node;forest structure. For example, each time a pair of nodes are
linked, they are linked in the internal data structure kept by Pass 3. This lets Pass 3 query
the internal structure during later analysis—for example, “Is this node that is being deleted a

part of a tree?”

In this internal data structure, Pass 3 captures the information supplied by both primary and
secondary commands,

77

For example, linking two nodes may cause an existing link to be broken. This
appears as a primary command, LinkNodes, followed by a secondary command,
BreakLink. Pass 3 executes both actions upon its intemai data structure.

. The decision of what output symbols for Pass 3 to gencrate raised a group of questions with the

following flavor: “Did such-and-such occur in this constructive episode?” There is little concept of
sequencing among the events in an episode-—rather, it 1s simply, “did X and Y occur during this
time period?” To correctly characterize each constructive episode, many elements had to be stored
by the grammar durmg each episode. o

This allows more than one goal to be occurring concurrently, but says little about them
qualitatively—such as, how Iong they lasted, how much they ovi erldpped or the percentage of time
spent on each goal. As with Pass 2, T generated all the symbol sequences that are reduced by
Pass 3, and the approach [have taken turned out to be adequate. [Cach txme I have re- -examined
this question, Pass 3 has tumned out to be robust.

Pass 3 Qutput Symbols: Pass 3 generates twelve different output symbols. Most of these
symbols carry an additional list of parameters; for example, the output symbol “Created n solo
nodes™ carrics a list of the solo nodes created in this constructive episode, along with a count (n)

of these nodes.

Table 12 on page 79 describes each of these output symbols.

Table 12. Pass 3 output symbols
Pass 3 output symbol Description of the conditions that cause this output symbol to be Internal
generated Parser
Symbol
Created n solo nodes Created new niodes, but did not link them to other nodes. The 3001
] node's labels and contents may have been edited.
Created n new trees Created a new tree, using new nodes, or copied a tree, creating 2 3002
complete tree with new nodes.
Grew n existing trees Linked new nodes 1o one or more exisling trees. 3003
Assembled n trees Took existing nodes and linked them together into a tree. The 3004
) root of the tree may be newly-created in this episode. i
Broke existing links Broke the link betwveen nodes that had been ¢reated and linked in 3005
previous episodes.)
Deleted n nodes Deleted nodes that had been created in a previous episode. 3006
Edited existing nodes Edited the label and or file contents of nodes created in 2 pre- 30067
: vious episode. This is the first time these nodes had been edited,
Revised existing nodes . Edited the label and;or file contents of nodes that had been previ- 3008
- ously edited.
Moved existing nodes Moved nodes created in a previous episode. 3009
Hoaoked existing nodes to n trees Linked existing nodes t6 one or more trees. 3010
Unproductive work Canceled one of more commands, or attempted an invalid 301
command,
Start over ' Started over with a fresh workspace, The commands that corre- o1z
spond with this either open a workspace file, clear the drawing,
or start a new workspace. Any nodes already in the workspace
when the command was executed are deleted.

The episodes titled “Edited existing nodes” and “Revised existing nodes” both comprise editing of
a node’s label or its associated file. While these might be considered different types of activities,
Prose Il encouraged an easy flow between editing of a node’s label and its contents. The addi-
tional creation of 2 mere constructive episodes to draw a distinction was tried, but did not show
much value in the results of the study.

78

'

Pass 3 Counters and Lists: The counters and lists maintained by Pass 3 were dictated by
the output symbols. For example, to see if any new trees have been created in a constructive
episode, each time a new tree is created, a counter for “new trees created in this episode” is incre-
mented. Each time the count s incremented, the identifier of the node at the root of the new tree
is added to the list of new trees. When the output symbol “Created n new trees” is generated, the
corresponding counter is used to fill in the value for n, and the kst 1s used to generate the parame-
ters for this symbol, which are an enumeration of the names of the roots of the new trees.

Table 13 on page 80 describes the counters accurmnulated by Pass 3 during each constructive
episode. At the end of a constructive episode, Pass 3 uses the values in these counters to deter-
mine which output symbols to generate. The counters are all reset to zero at the end of each
constructive episode; nothing is carried between episodes, except the ongoing structure of nodes
and trees.

Table 13 (Page | of 2). Pass 3 counters, listed alphabetically

Pass 3 counter name Description of the Counter
Break NewLinksCounter Counts how often a link was broken, where the link was made in this con-
) structive episode.
BreakQldLinksCounter Counts how often a link was broken, where the link was made in a pre-
vious constructive episode.
CancelledCommandsCounter Counts how often a command was canceled in this constructive episode.
HookInNodesCounter Counts how many pairs of nodes were linked together, where both nodes

were created in a previous constructive episodes, and the parent node is
aiready a member of a tree. Literally, the child node is hooked into an

existing tree.

{nvalidCommandsCounter Counts how often an invalid command was attempted in this constructive
episode. .
Newl.abelsEditedCounter Counts how often a node, newly created in this constructive episode, was
labeled for the first time.
NewLabelsRevisedCounter Counts how often a node, newly created in this constructive episode, was
labeled more than once.)
NewN odesCopiedCounter Counts how often a node, newly created in this constructive episode, was
copied.
NewNoedesDeletedCounter Counts how often a node, newly created in this constructive episode, was
deleted.
NewNodesEditedCounter Counts how often 2 node, newly created in this constructive episode, was
_ edited for the first time using an ediling program.
NewNodesMovedCounter Counts how often a node, newly created in this constructive episode, was
: moved.
NewNodesRevisedCounter | Counts how often a node, newly created in this construclive episode, was
edited more than once using an editing program.
NewRootsCreatedCounter Counts how often a pair of nodes are linked, where both nodes were solo
nodes before this linking operation.
NewTreesAssembledCounter Counts how often a new tree was assembled from parts. . This is indicated

by one of two situations: 1) the parent node is a solo node and the child is
the member of a tree—and at least one of these was created in a previous
episode, or 2) the parent tree is new and the child node was created in a
previous episode—and at least one of these is a member of a tree.

NodesCreatedCounter Counts how often a CreateNode command is successfully executed in this
. constructive episode,

CldLabelsEditedCounter Counts how often a node, created in a previous constructive episode, was
labeled for the first time,

OldLabelsRevisedCounter Counts how often a node, created in a previous constructive episode, was
labeled more than once.

OldNodesCopiedCounter Counts how often a node, created in a previous constructive episode, was
copied.

OldNodesDeletedCounter Counts how often 2 node, created in a previous constructive episode, was
deleted.

79

Table 13 (Page 1 of 2). Pass 3 counters, listed alphabetically

Pass 3 counter name Description of the Counter

OldNodesEditedCounter Counts how often a node, created in a previous constructive episode, was
cdited for the first time using an editing program.

CldNodesMovedCounter Counts how often a node, created in a previous constructive episode, was
moved.

Old~NodesRevisedCounter : Counts how often a node, created in a previous conerucL_ive episode, was

. edited more than once using an editing program.

CldTreasGrownCounter Counts how often a new node'is linked as a child into an existing tree

ScloNodesCreatedCounter Counts how often new solo nodes are created in this constructive episode.
This can occur because of CreateNode command, or because an existing
link between a pair of node is broken.

StartOverCounter Counts how often the workspace was started afresh in this constructive
episode.

Table 14 on page 8l describes the singly-linked lists that Pass 3 constructs as part of character-
izing each constructive episode. After it sees the last symbol of a constructive episode, Pass 3 uses
these lists of nodes and trees to determine the parameters for some of 1ts output symbols. These
five emnpty lists are created when Pass 3 1s first called. The contents of a list have a lifetime of one
constructive episode; the lists are all flushed at the end of each constructive episode.

Table 14. Pass 3 lists, listed alphabetically

Pass 3 list name Description of the list

HookInNodeskist Lists the nodes that have been hooked inte existing trees. [f the newly-
linked node is the root of a tree, it is added to this list as a new root. Oth-
erwise, it is added to the list as the descendant of a node which is already

on the list,

NewRootsCreatedList Lists the nodes that are new roots of trees. These nodes became the new
roots during this constructive episode.

NewTreesAssembiedList Lists the trees that have been assembled in this constructive episode. If the

newly-linked node is the root of a tree, it is added to this list as a new rool.
Otherwise, it is added to this list as the descendant of a node which is
already on the list.

OldNodesDeletedlist ’ Lists the nodes, deleted in this constructive episcde, that were created
during previous constructive episodes.
OldTreesGrownList) Lists the existing trees that have been added to during the current construc-

tive episode.

Pass 3 Logic: At the end of a constructive episode, Pass 3 generates one or more of the
output symbols listed in Table [2 on page 79. It makes this decision based on the values of the
counters. Table 16 on page 82 provides the logic used in generating these output symbols. This
table is given as an alternative notation for what are essentally production rules. The evaluation
order of the rules is from top to bottom as shown in the table. For each true condition on the
righthand side, one of the symbols on the lefthand side is generated. The symbols in the right-
hand side of each table entry should be interpreted as being ANDed together.

The following is an example of an entry in Table 16 on page 82.

Table 135. Pass 3 production rule example

Pass 3 output symbol Logic

Created n new trees NewRootsCreatedCounter > 0
: NodesCreatedCounter > 0
SoloNodesCreatedCounter = 0

In more traditional, production rule notation, this logic might alternatively be shown as:

80

If the NewRootsCreatedCounter is greater than 0, and
the NodesCreatedCounter is greater than 0, and
the SolioNodesCreatedCounter is 9,

then generate the output symbol “Created N new trees,®
where N is the value of the KewRootsCreatedCounter.

No more than one instance of any output symbol is generated in a constructive episode. The first
of the output symbols generated serves as the primary constructive episode symbols. Later
symbols serve as secondary constructive episode symbols. This distinction between primary and
secondary constructive episodes is used in Pass 4 when characterizing phases of constructive.

Table 16 (Page 1 of 2). Pass 3 output symbols and how they are generated

Pass 3 output symbol What combination of counter values causes this outpat symbol
to be generated?

Start over StartOverCounter > 0

Created n new trees NewRootsCreatedCounter > 0
NodesCreatedCounter > 0
SoloNodesCreatedCounter = 0

Created n new irees . NewRooisCreatedCounter > 0
NodesCreatedCounter = 0

Created new trees NewRootsCreatedCounter > (
NodesCreatedCounter > 0
SoloNodesCreatedCounter > ¢

Grew n existing trees QldTreesGrownCounter > 0
NodesCreatedCounter > 0
SoloNodesCreatedCounter = 0

Grew n existing trees | ©ldTreesGrownCounter > 0
NewRooisCreatedCounter = 0
NewTreesAssembledCounter = 0

Assembled 1 trees NewTreesAssembledCounter > 0
NodesCreatedCounter > 0 :
SoloNodesCreatedCounter = 0

Assembled n trees NewTreesAssembledCounter > ¢
NodesCreatedCounter = 0

Hooked existing nodes to g trees HookInNodesCaounter > 0

Created n solo nodes SoloNodesCreatedCounter > 0

SoloNodesCreatedCounter = NodesCreatedCounter
- OldTreesGrownCounter = 0
NewTreesAssembledCounter =

NewRootsCreatedCounter = 0

Created n solo nodes - i ’ NewRootsCreatedCounter = 0
' NodesCreatedCounter > 9
SoloNodesCreatedCounter > 0

Broke existing links . BreakOldLinksCounter > 0
HookInNodesCounter = 0
Deleted n nodes . StartOverCounter = 0
OldNodesDeletedCounter > 0
Edited existing nodes OldLabelsEditedCounter > 0
Edited existing nodes OtdNodesEditedCounter > 0
Revised existing nodes Oldi_.abelsRevisedCounter > 0
Revised existing nodes OldNodesRevisedCounter > 0

81

Table 16 (Page 1 of 2). Pass 3 output symbols and how they are generated

What combination of counter values causes this output symbof
to be generated?

Pass 3 output symbol

Moved existing nodes OldNodesMovedCounter > 0
OldTreesGrownCounter = ¢
NewRootsCreatedCounter = 0
NewTreesAssembledCounter =
HookInNodesCounter = 0
OldLabelsEditedCounter = 0
QldNodesEditedCounter = 0
SeloNedesCreatedCounter = 0 or
no sclo nodes left remaining

Unproductive work no solo nodes remaining (nodes created then deleted)
Unproductive work no output symbol so far

: CancelledCommandsCounter > 0
Unproductive work . no output symbol so far

InvalidCommandsCounter > 0

An extensive example of the output from Pass 3 is shown in appendix B.5 on page 195.

4.2.3.5 Pass 4: Phases of Activity

Pass 4 characterizes sequences of similar activity among the constructive episodes. Its input is the
grammar symbols generated by Pass 2 {for the housekeeping and meta-housekeeping episodes)
and Pass 3 (for the constructive episodes). Pass 2 and Pass 3 output symbols are interleaved in
the output sequence of Pass 3; Pass 2 output symbols move unscathed through Pass 3. As with
previous passes, Pass 4 reduces selected sequences of n-tuples into a single n-tuple. The size of
the input n-tuples varies, depending upon the information generated by Pass 3; for example, a
single n-tuple may contain the number of nodes created in an episode and the identifier numbers

of each of the nodes.

The output symbols represent phases of work activity. Pass 4 operates using a finite-state
machine for the input symbols. Upon reading the first input symbol in a phase, it moves to the
indicated non-zero state. Whenever an input symbol causes the state to change, the current
output symbol is generated and the state of Pass 4 is reset. Otherwise, no state change is made,

and the next input symbol is read.

Since Pass 3 can generate multiple symbols for a single constructive episode, the Pass 4 finite-state
machine is divided into two parts. The first part is used to handle the first of multiple symbols;
the second part handles any subsequent symbols for the same constructive episode. The decision
on what output symbol to generate is heavily biased by the first of the Pass 3 symbols, since Pass
3 can generate multiple symbols to characterize each constructive episode.

Pass 4 Output Symbols: - Pass 4 generates seven different output symbols; these are the
highest level symbols generated by the grammar described here. These symbols are shown in
Table 17 on page 84.

82

Table 17. Pass 4 output symbols

Pass 4 output symbold Description of the conditions that cause this output symbol to be Internaf
generared Parser
Symbol
Exploration Created solo nodes. Edited new or existing nodes. 4001
Define Hierarchies Created new trees. 4002
Top Down Construction Grew old trees or hooked nedes to them. In top-down con- 4003

struction, the root of a tree and its children are created and
labeled early, with the rest of the document construction ¢on-
sisting of creating new nodes and adding them to the leaves of
the evolving tree.

Bottem U'p Construction Assembled trees from existing nodes. The root of the tree may 4004
be a newly-created nede. In boltom-up construction, nodes are
erecated and labeled before they are linked; smail trees are linked
into larger trees,

Tree Structure Revision Broke old links, deleted old nodes, moved old nodes 4005

Document Revision Revised the label and contenis of nodes that had been created or 4006
edited in previous episodes.]

New Workspace Started over: opened files or cleared the workspace. 4007

Pass 4 Finite-State Machine: The following table describes the states defined for the Pass 4
finite-state machine.

Pass 4 State Description of the state
Start state
Exploration: create solo nodes

Define hierarchy
Tap-down construction

Bottom-up construction
Revise structure: break old links, delete nodes
Revise document: edit and révise node labels and contents

||| Bl w]~

New workspace

In the following state table, the housekeeping episbdes are listed first, followed by the primary
constructive eprsodes, and concluding with the secondary constructive eptsodes.

Table 18 (Page 1 of 2). Pass 4 finite-state machine
Srare Names— > Start Ex- De- Fop- Bot- Re- Re- New
State | plor- Jine down tom- vise vise work-
ation hier- Cons., up Struc Doc space
archy Cons.
Inputs State Numbers—> L ! 2 3 4 5 6 7
START OVER 7 RN ECEENECHEDEE
LONG_PAUSE - . - - - - - -
CLEARUP . . . - - - - -
CLEANLP_TAKE STOCK - - - - - - - -
TAKE STOCK - - - - - - - -
REFOCUS - - - - - - “
HELP_REQUEST - - - - - - - -
CREATE _SOLO_NODES 1 - A} I{A) 1(A) [{A) 1{A) 1{A)
CREATE NEW_TREES 2 w | - Ay | 2A) | Ay 1 o2a) | Ay
GROW_OLD TREES 3 ¥A) | - - XAy | XA § XAy | XA
ASSEMBLE_TREES 4 HA HA) A} - - HA) HA)
BREAK OLD _LINKS 3 - - 5A) HA) - - HA)
DELETE_OLIG_NODES 5 . - X - .) HA)
EDIT_OLD_NODES 6 - - - - S(A) - 6(A)
- REVISE_OLD NODES 6 - - Ay | - qAa) | - A
MOVE GLD NODES 3 B : : - - (A}

83

Table {8 (Page 1 of 2). Pass 4 finite-state machine
Stare Numes—-> Start Ex- De- Top- Bot- Re- Re- Yew
State | plor- fine down tom- vise vise work-
ation hier- Cons. | uwp Struc | Doc space
~archy Cons.
Inputs State ;\'u..mbers->) /] f 2 3 4 3 4 e
HOOK_IN_NODES 3 3(A) YA) “ HA) HA) HA) 3A)
UNPRODUCTIVE_WORK . - - - - - - .
CREATE_SOLO_NODES (secondary) 1 - - 1 1 1 1
CREATE_NEW TREES (secondary) 2 2 - 2 2 2 2 2
GROW_OLD_TREES (secondary) 3 3 - - 3 3 3 k!
ASSEMBLE_TREES (secondary) 4 4 - 4 - - 4 1
BREAK_OLD LINKS (secondary) 3 - - - . 5
DELETE_OLI_NODES (secondary) 3 - - - - 3
EDIT_OLD_NGDES (secondary) 6 - - . 3 - 6
REVISE OLD_NODES (secondary} [- - - 6 - 5
MOVE_OLD_NODES {secondary} - - - . . . 1
HOOKIN_NODES {secondary) 3 3 - - - 3 3 1
UNPRODTCTIVE_WORK (secondary) - - . R - : : :
Pass 4 Function
Output Code i
A Generate an output symbol corresponding to the current state, then go to the new
state. : : :

An extensive examplé of the output from Pass 4 is shown in appendix B.6 on page 196.

4.2.3.6 Grammar Summary

The grammar has been described in progressive levels of detail. First, the levels in the abstract
model of user interaction that correspond with levels in the parse tree were imtroduced: session,
phases, episodes, and commands. Next, the grammar rules for each of these levels were intro-
duced; key categorizations in the grammar occur where sequences of commands are identified as
episodes, and where sequences of episodes are characterized as phases. Finally, the particular state
machines that implement each tevel were shown. Further implementation details of the parser are
described in the following subsection. These are included because of the methodological emphasis
of this project: what difficulties were encountered in implementing such a parser?

4.2.4 Further Implementation Details of the Parser

Aho and Ullman (1977, p 146) define a parser for a grammar G as “a program that takes as input
a string w and produces as output either a parse tree for w, if w is a sentence of G, or an error

message indicating that w is not a sentence of G

In all cases except one, the input strings (that is, the protocol records) in this study were valid,
that 1s, they were recognized by the parser without error.!! So, more unportant for this study 1s a
parser’s ability to create parse {rees.

The parser used six standalone programs to convert a protocol record into a parse tree and
summary file. Operating system pipes and filters were used to connect the six passes of the
parser. “The pipes and filters technology packages re-usable code into small, standalone pro-

! In the single exception, a subject used a text editor to append a paragraph to the bottom of a protocol
record. The parser stopped and indicated an error when it tried to read the beginning of this block of

text.

84

grams, in which each program is a tool (a filter) that does a single job well. The filters can be
connected by plpes a communication channel through which the output of one ﬁlter can be
received as the input of the next.” {Cox, 1986)

All but the last pass of the parser read their input from the byte-stream known as standard input
(stdin) and write to standard output (stdout). stdin and stdout. are generic files that are easily
bound to a filename by the operating system. For the first pass, an actual protocol record is
supplied as the standard input. By using the operating systems’ redirection capability, the output
of any parser pass can be sent to a single file or concatenated to a larger file. For example, by
running the parser (with the necessary command line parameters) against all the protocol records,
the list of all the commands issued in all the sessions can easily be written in a single file.

To construct a parse tree at the end of the parsing process, the final pass opens and reads from
the intcrmediate files produced in the preceding passes. If these intermediate passes are not other-
wise reguired, the passes can be piped together in such a way that a given pass is rcading directly
from the output of its preceding pass.

Reading from stdin and writing to stdout have another advantage. Although it was not done this
way in this study, this parser could be used to parse protocol records in real time. The parser
accommodates one of the facts of human behavior: at any point the telephone might ring and a
session would be abruptly ended. Thus, at all times during the parsing, the state of each pass is
known. A future enhancement to the testbed system can be conceived where a user could see the
current parse tree for a session at all times during the session. The tracker itself could write its
output to stdout, instead of to the unique file that it creates, and that cutput could then be piped
into the parser. The memory constraints and operating system restrictions of DOS and Windows
made such an arrangement impractical for the current system.

Using pipes and filters is efficient in programmer time, but because of their buffering character-
istics, they are not always efficient in terms of computer performance. For this study, this was a
reasonable trade-off. Performance of the parser was not a consideration (unless it had taken days
or hours). Another disadvantage of using pipes and filters is that they pass bytes, not the highly-
structured data that is frequently seen in complex programs. You cannot pass a pointer or a
linked list across a pipe without great difficulty. Agam, this did not pose a problem here.

The parser writes its intermediate output files m a generic spreadsheet format—the Lotus
spreadsheet ASCII format—which has become a standard among personal computer programs.
This makes it easy to run a spreadsheet, database, word processing, or statistical analysis program
against such an output file at any intermediate pass of the parsing process. Further, the entire
parsing process can be driven by a single Make input file, making it easy to run a consistent anal-
ysis against any selected group of sessions. This is discussed further in Section 4.2.4.4 on page 88.

The parser is designed to operate on a protocol record for a single session. One of my first
lessons from this study is that a document is frequently not written in one sitting. Many subjects
submitted a group of protocol records that defined their work on a single document. I considered
modifying the parser to handle this entire group as a single piece, rather than as a group of indi-
vidual files. The individual files define sessions; the conglomerate defines extended work on a
document over several days. [decided this was a problem 1 did not understand well, and should
be a topic for future study, Using the parser and its command line parameters as described here
allowed looking at a number of the features of the sessions for a single document; in addition,
sesstons could be concatenated by hand—but, this solution would not be tenable for thousands of
sessions.? The parser described hiere operates on one protocol record at a time.

12 Some of the ambiguities that can occur when concatenating sessions, as well as ways to resolve them, are
discussed as possible future enhancements in Section 6.5 on page 140.

85

The conversion of the grammar ATN into a sequence of connected parser passes made the imple-
mentation task manageable. Individual passes could be reworked without compromising other
portions of the parser. Most of the passes were simple to implement, with the state machines as
large compiled arrays. Some of the kev implementation decisions made in Passes 0, 2, and the

summary pass are highlighted below.

4.2.4.1 Pass 0 Details

For Pass (), the UNIX tool LEX (Lesk, 1975) was used to generate the lexical analyzer, and
YACC (Johnson, 1975) was used 10 generate the syntactic analyzer. The lexical analvzer gener-
ated for Pass 0 reads the stream of bytes which comprise a protocol record file. The lexical ana-
lyzer is designed to recognize the format of the header lines, the timestamps, the English keyword
for each command, and the parameter sequences. The syntactic analyzer for Pass 0 recognizes the
sequences of these on a line; for example, the YACC input is designed to recognize a well-formed
CreateNode command as having start, stop, and elapsed times, the keyword CreateNode, and
parameters consisting of a node ID and starting coordinates (or keywords like “-- invalid --").
For secondary commands, the syntactic analyzer additionally constructs distinctive values for the

timestamps.

The individual records produced by the tracker were designed in conjunction with the Pass 0
lexical and syntactic analyzers. One concern was producing unambiguous information in the pro-
tocol record; for example, the parser should not be confused if a command keyword is included in

the label for a node.

39:59.51 40:09.07 6.16 OpenmWorkspace File(“IBMSC.SCR") Format(®.PR2‘)

I solved this by delimiting stnings i the protocol record by the symbols (* and *). To avoid any
ambiguity, the Prose II tracker converts any grave quote () character in a user’s string to an
acute quote (“). As an additional piece of pre-processing, the tracker converts any alphanumeric
characters in the node labels or search strings to the letter x, for confidentiality.

All subjects worldwide spoke English, at least as a second language, so none of them commented
about the fact that the entire Prose [system uses English phrases and keywords. A problem
with intermnational character sets did occur, however. The version of LEX used to generate the
scanner dealt only with the seven-bit ASCH characters represented numerically by 0 to 127. I did
not anticipate that characters outside this range would be entered in node labels or search strings,
since Windows filters these symbols as part of its operation. - But, I was using a US English
version of Windows! Subjects in Finland and Greece submitted protocol records that contained
characters that were not x’d out by Prose {I and that were in the ASCII numeric range of 128 to
255. The lexical analyzer of Pass 0 terminated when it tried to read these characters. I had to
modify these characters by hand in order for them to be parsed; fortunately, this occurred in only

4 of the 112 protocol records.

4.2.4.2 Pass 2 Details

I first implemented the syntactic analysis portion of Pass 2 as a simple state look-up table, with a
custom lexical analyzer (similar to the lexical analyzer portion of Pass 1). The table was large and
not sparse, making it hard to maintain. After several months, it became difficult for me to com-
prehend the paths through the FSM. [later converted to a syntactic analyzer generated by
YACC. The YACC description, with its BNF-like syntax, made the operation of this pass easier
to comprehend. Working with the YACC source, I made several changes in the FSM for correct-
ness and uniformity—these were paths through the FSM that had been difficult to see before.

Fortunately, no users demonstrated truly strange or bizarre behavior among the protocol records
studied here. For example, there was no clear-cut playing with the system, such as going back
and forth between commands repeatedly, or creating nodes to fill the entire screen.

86

4.2.4.3 Producing the Parse Tree and Summary [nformation

‘A final pass of the parser does not read from a standard input stream. Instead it uses the output
from each of the previous passes to construct the parse tree and summary information about the

parse.

Its operation consists of opening the onginal protocol record (from which it reads the header
information), and the intermediate output files of Passes 0, I, 3, and 4. {The output information
from Pass 2 is entirely contained in the Pass 3 output.) Starting with the Pass 4 output, it reads
the first fine of information, which is the first n-tuple generated by Pass 4. This line of informa-
tion includes a timestamp with its start and stop ttme. It then reads lines [rom the Pass 3 file
until one of the starting times exceeds the stop time of the current Pass 4 line. Similarly, for each
Pass 3 record, it recursively reads Pass | records, and for each Pass | record it recursively read
Pass 0 records. An example parse tree diagram is shown in Figure 23 on page 89.

The parse tree is written to a file in text representation in one of the formats described in Section
3.1.10.3 on page 43. Since these are all tree formats, Prose [f itself can be used to view and
manipulate the resulting parse tree. The large size of some of the parse trees excceded the original
memory capabilities of Prose {/, and led me to a re-write of the memory management routines in
Prose [I to allow thousands of nodes to be active in memory and viewed in a single window.

This summary pass maintains a set of counters during the process of summarizing the parse for
one session. At the end of this pass, this counter information is written to stdout. This informa-
tion provides a surnmary of what happened during the parse. An example of the summary
output is shown in Figure 24 on page 90.

Using these counters, many varables can be examined and compared in aggregate across the
entire sample of subjects—or by selected groups. For values that vary within a task or among
subjects (such as the time spent on the task) standard measures such as range, mean, and variance

are easily computed.

An extensive example of the output from this summary pass is shown in appendix B.7 on
page 197

4.2.4.4 Cdntrolligg the Parser Qperation

I developed the parser a pass at a time. A “run” of the parser was controlled with a DOS batch
file, which handled the input to each pass and the sequencing of passes. A DOS batch file was
adequate for parsing a single input file, but it lacks flexibility. It had no knowledge of whether the
parse was already complete and it was difficult to use it to parse larger groups of protocol records.
I later switched to using the Make utility program to control the parsing.

Make is a program shipped with many current operating systems and compilers. M/ ake operates
by examining the temporal relationship among a set of files. A given file is said to have one or
more files that it is dependent on; if the dependent files are younger than the given file, Make runs
the prescribed programs, which presumably update the given file. For this parser, the given file is
frequently the parse tree file and the dependent file is the original protocol record file. When
Make is run, the protocol record is parsed if a parse tree file currently exists, or if the protocol
record file is younger than the current parse tree file.

Make examines these dependencics for groups of files and runs the same programs against these
files, using wildecard characters to substitute the changing file names. Further, Make stops its
operation if one of the programs it is running ends with an unexpected ERRORLEVEL value. This
allows me to run Make against a large group of files while the parser was still being developed; if
the parser failed for any reason, Make also stopped its operation.

Figure 25 on page 9! shows the Make input file (called a “Makefile™) used for running a com-
plete parse, in this case, against the list of non-trivial sessions. An abbreviated Makefile, shown in

87

f— Prose [[Hap Window

i ilaaatady nmlﬁmﬁﬁnﬂlﬂi{mmu i

Figure 23. Example parse tree drawing, for session SI6R0102. In the first row is the non-terminal
symbol representing the session. The second row indicates the non-terminal symbols for the
13 phases of the session. The third row indicates the non-terminal symbols for 46 different
episodes. On the bottom row are terminal symbols for the individual commands and pauses.

Figure 26 on page 91, illustrates how to generate a specific set of Pass 3 output, without the cre-
ation of any intermediate files.

88

302,
118,

= —
A~ O N O O
[P

-

~

Lo I S) B a0 S o S ON I o]

- o w w

o
D]
=

¥

(o3 (PN o]
w e w

o

25,

475.6,
449.3,
1181.3,

2106.2,

“S1gRO102"

nodes in the parse tree
commands

of
of

Number
Number

of
of
of
of
of
of
of
of

creates

deletes

copies

1inks

break links

moves

tidies

canceled operations

Mumber
Humber
Humber
Kumber
Number
Humber
Number
Number

of
of

Humber
Number
Mumber of nodes in last saved tree
Number of nodes with no offspring
Haximum depth of saved tree
Cumulative X vector of creates
CumuTative Y vector of creates
Stage Index

apens
saves

of
of
of
of
of
of
of
of

edit node operations

help requests

Jong pauses

user comments

times subject left Prose II
constructive episodes
housekeeping episades
phases

Number
Number
Humber
Number
Number
fumber
Humber
Number

Longest constructive episode, in seconds
Longest meta-housekeeping episode, in seconds
Longest housekeeping episode, in seconds

Total
Total
Total
Total
Total
Total

Total
Total
Total

Total

seconds
seconds
seconds
seconds
seconds
seconds

seconds
seconds
seconds

seconds

spent editing nodes
spent in help

spent in long pauses
in all pauses

spent in comments
spent outside Prose I

in constructive episodes
in meta-housekeeping episodes
in housekeeping episodes

in this sessicn

Figure 24. Example session summary information, for session S16R0102

89

.RCD.XXX:

PASSA ' <$* RCE >3*.P0

PASST <$* PO >$*_.p]

PASS2 <§*.P1 | PASS3 >$*.P3

PASS4 <$*.P3 >$*.p4 _
PASS5 -1 §* >>NTRIV.SUM

SO1RG161.XXX: SO1RO101.RCD

SO01R0201.XXX: SO1RO2G1.RCD

Figure 25. An cxample Makefile for controlling the parsing process. The programs are explained
below; the command line parameters are discussed in Appendix C on page 203.

In the example Makefile shown in Figure 25 on page 91, files with the extension .XXX must be
younger than files with the extension .RCD to avoid having the programs run. So, starting with
the first file, Make compares file SOIR010L.XXX to file SOIR0I01.RCD. Since the first file does
not exist {(and hence is not younger), Make cammes out the operations shown at the top. The
symbol “$*” serves as a wildcard to replace the current filename.

- Program PASSO reads file SOLR0I01.RCD as its standard mput, and writes its standard ocutput to
file SO1IR0I01.PO. When this is complete, program PASS] reads from SOIR0101.P0 and writes to
SO0IRO10L.PL. Program PASS2 reads from S0IR0101.Pl and writes its standard output directly
to program PASS3, which is waiting on it for tnput. In this way, the parsing continues through
pass 4 and the summary pass. Program PASSS (the summary pass) appends its summary output
to file NTRIV.SUM, which, in this case, is a summary file for all of the non-trivial sessions.

When the parsing of file SOIR0ICL.RCD is complete, Make begins the parsing for file
SCGIR0201.RCD.

LRCD. XXX:
PASSO <§*.RCD | PASSL | PASS2 | PASS3 >>EPISODN.SUM

SB1R0101.XXX: S01RO181.RCD

SO1RG291.XxX: SO1RO281.RCD

Figure 26. An example Makefile for examining Pass 3 output. A protocol record is read from stdin
.by Pass 0, then piped through Pass 1 and Pass 2 into Pass 3. Its output is appended to file
EPISODN.SUM. The symbol “$*” serves as a wildcard to replace the current filename.

4.2.4.5 Parser Implementation Details

The parser consists of ten execcutable modules: PASSS.EXE thrdugh PASSS.EXE plus four supple-
mental modules. These were constructed from 26 source files, in addition to sharing about ten
files with the Prose [f source code. The parser source code files were coded with LEX, YACC,

and C language source.

In these 26 files are a total of 7,845 lines, which includes comments and blank lines. In source
lines of code, the parser is about 44% of the size of Prose I itself.

90

Parser source code file sizes, 26 files

range: 18 lines to 1i60 lines
median: 214 lines

mean: 302 Tines
std dey: 281

The mean line Iength, including blank lines, in these files was 40.5 bytes. The 26 source files
totaled 318,048 bytes in size. _

Appendix C on page 205 list the command line parameter options available for each pass of the
parser.

91

CHAPTER 5. OBSERVATIONS ON THE TASK
AND USER STRATEGIES

[conducted a study of users in their field locations to test the ideas proposed in Prose If and its
parser. Observations on the results of this study are described in this chapter. The chapter begins
with an introduction to the subjects and the experimental setup. An overview of the sessions,
protocols, and user documents follows. The bulk of the chapter is an examination of detailed
questions about how users spent their time with the software. A portrait of a typical session,
built from the analysis results, closes this chapter.

5.1 Experimental Setup and Subjects

As mentioned earlier in this paper, a protocgl, in cognitive psychology, is a report of the steps
performed by a subject in attempting some task. The Prose [1 software, used by subjects in this
study to design and write structured documents, included a tracker that automatically made a pro-
tocol recording of each subject’s sessions with the software. When we designed this study in June
1988, our goal was to collect about 100 protocol records from 20 subjects using Prose [1.

[made Prose [] freely available over the IBM corporate network worldwide. The potential sub-
jects were adult professionals who do expository writing as part of their daily jobs. They already
had the hardware and software required to use Prose I1. Between January 1988 and January
1989, 210 different people requested copies of Prose I1.

In the middle of January 1989, I sent a cover letter to each of these individuals describing the
motivation for my planned study and the procedure for retuming session recordings to me over
the network (see Appendix A on page 163 for the text of the letter). I also sent the latest version
of the Prose IT software with the tracker activated, and its user’s guide. At the end of the data
collection period (the end of February 1989), I had received a total of 112 session protocol
recordings from 29 of the 210 potential subjects. This is a response rate of about 14%.

The cover letter explained the exploratory nature of this study, which assumed few experimental
controls. These are discussed further in Section 1.1.4 on page 7.

5.2 An Overview of the Protocol Data and Parser Results

In this section, the 112 protocol records are categorized and itemized. For example, was a given
document constructed in one or multiple sessions? Did it contain extensive wnting in the files
associated with the nodes? Overall statistics describe how many files were returned by the sub-
jects, how many documents were constructed, and how many sessions were used to complete a
document. The 112 session protocols are exhaustively listed in Table 40 on page 164, grouped in
chronological order by the person who submitted them.

92

5.2.1 Five Categories of Sessions

One of the uncontrolled aspects of the study was not anticipated and became an early problem.
There was no restriction on the number of sessions per subject, on the number of documents per
subject, on the number of documents per session, or on the number of sessions per document.
Further, there was no requirement that any meaningful work be done in a session. The tracker
and analysis tools were designed to automate an analysis like Card, Moran, and Newell described
in their /JCARU'S study; I had assumed one standalone session per document, with the work on a
single document done from beginning to end in a session. Of course, humans use tools as they
wish, despite the presumed intentions of their designers!

We categorized the 112 sessions many ways, but eventually the key separation was the nature of
the work done in a session and how pieces of work spanned sessions. Figure 32 on page 168
shows the categorization of the 112 sessions into five groups. :

" 42 sessions are considered trivial
389% of the sessions contamed little or no substantive work. A subject would start a

session, create a node or two, try some of the features, then end the session abruptly
with no save of the workspace Such trivial sessions are usually readily apparent on
visual exarmination; more nigorously, a trivial session consists of one of the following

situations:

+ The subject never saved the workspace.
* The subject opened a file, but never used it.
+ The session was short (several minutes or less), with little work done and no

follow-up session.

The parse trees for these sessions were not of primary interest for this study. An
example of a protocol record for a trivial session is shown in Figure 10 on page 50.

27 sessions are standalone work on one document _
These sessions showed a one-to-one correspondence between a session and a complete
document. All subjects saved the workspace at least once. The bottom 3 of these 27
sesstons in Figure 32 on page 168 contained substantial writing in most or all of the

nodes in the document.

37 sessions constitute work on documents spanning multiple sessions
Many of these sessions have no saves of the workspace, but in all of those sessions, at

lcast one node was edited. This implies the underlying node(s) file was changed and
saved. In all but three of these 37 sessions, nodes were edited.

5 sessions are editing of existing documents
These five sessions were distinguished by one open of an existing document; most
nodes were not created in sessions submitted by subjects. The document may or may
not have been originally created using Prose I]. Four of these five sessions were
somewhat similar to one another; they included one or two creates and one link
command. Session SI4R0105 had 12 creates, 12 links, and 5 moves.

3 sessions constitute work on multiple documents in one session
Three sessions consisted of work on two documents during each of those sessions.

This adds up to 114 sessions. Two sessions (S08R0201 and S29R0103) are counted twice since
they included follow-up editing of an existing document plus work on a new document with mul-
tiple opens and saves.

Figure 33 on page 169 shows yet a different subset of these 112 sessions. These 10 sessions were
non-trivial sessions where the subjects used Prose /1 as more than just an outline processor; they
wrote substantial text in the files behind the nodes.

93

5.2.2 Documents and Sessions per Subject

Given an uncontrofled nature study of this nature, how many documents might researchers expect
subjects to work on? Although several subjects returned 10 or more recordings, no subject
worked on more than 4 documents. Table 19 on page 95 shows the distributton of the 435 total
documents among the 29 subjects. Note that for four subjects, all of the protocol records they

submitted were trivial.

Table 19. Distribution of 45 docu-
ments among 29 subjects

Number of docu- Number of subjects
ments

E e]
[STTRTR TN

How were subjects’ documents constructed: over one session or over many sessions? How many
sessions might Tesearchers expect a writer to use to construct a document with this system?
Table 20 on page 95 shows how the 70 non-tnivial sessions were distributed among the 45 docu-
ments. About three-quarters of the documents were operated upon with Prose [in only a single
session. No more than six protocol files were returned for any document.

Table 20. Distnbution of 70 non-
trivial sessions among 45 documents

Number of sessions Number of docu-
ments

34

[R R S
EasBlo B SERE V)

5.3 Results and Discussion

This section is the core of the protocol analysis results. It consists of four large subsections:

1. Time Distribution: looks at the range of time durations for documents, sessions, phases, epi-
sodes, and pauses. - :

2. Frequency Distribution: looks at the range of frequency distributions for the types of phases,
constructive episodes, housekeeping episodes, and commands. Also examines the relation-
ships among these: commands per episode, episodes per phase, commands per session, and

SO On.

3. Command Usage: looks at the details of commands important in understanding user
behavior. For example, how many nodes were created, how were nodes labeled and edited,

how was help used, how was file 1;0 done, and so on.

4. Overall Patterns: looks at questions that span the sessions. For example, how big are trees,
which node is the final root, how does planning precede wnting, and so on.

94

5.3.1 How Long are the Time Periods?

Designers of computer software rarely have a quantitative measure of the time scale of users’ ses-
sions with thetr software. How long did sessions with Prose i1 last? How long did subjects work
on a document, even if it spanned multiple sessions? How long were the phases that the parser
identified, how long were the constructive episodes, and how long were the housekeeping eptsodes
that separated them? How long did subjects pause between commands, and how much of the

total session time did these pauses consume?

This kind of information was readily extracted from the protocol records. These gquestions are
answered in this subsection. In general, there was a wide difference between the median and
mean values for any measurements of time, as well as a large standard deviation. Almost all fre-
quency distributions of timing measurements were positively skewed, showing a curve with an
early peak and a long trathng tail.

5.3.1.1 Overall Timings for Sessions, Phases. and Episodes

Table 21 on page 96 presents overall timing distributions for the sessions, phases, constructive
episodes, and housekeeping episodes. The median time, along with the mean time and its
standard deviation are presented.” The median and mean often differ widely, and the standard
deviation is sometimes many times the value of the mean. This shows how widely overall times

varied.

Table 21. Overall timings for Sessions, Phases, and Episodes
All 112 Sessions 70 Non-trivial 42 Twivial Ses- 10 Sessions with
Sessions sions Friting
Session Times, in seconds
median 743 (12 mins.) 1364 (23 mins.) 172 (3 mins.) 3168 (53 mins.)
mean 1447 (24 mins.) 2074 (33 mins.) 402 { 7 mins.) 4789 (80 mins.)
sid dev _ 2071 (35 mins.) 2370 (40 mins.) 371 (10 mins.) 3013 (30 mins.)
Phase Times, in seconds '
median 112 112 103 163
fmean 322 330 264 541
std dev 389 668 430 939
Constructive Episodes Times, in seconds
median 11 12 6 : i4
mean 49 51 o 19 101
std dev 152 157 36 236
Housekeeping Episode Times, in seconds '
median 21 20 29 21
mean 60 55 [22 62
std dev 177 159 311 192

Discussion:

« The wide variation in times can be accounted for by some arbitrarily long factors inherent in
' the uncontrolled nature of the study:

— Sessions can be any length; trees can be any size.
— Housekeeping episodes can be arbitrarily long because they include long pauses.
-~ Constructive episodes can be arbitranly long because of writing time in a text editor.

« Comparing trivial and non-trivial sessions:

95

— Non-trivial sessions were much longer in duration than trivial sessions.
— The phase times were surprisingly close in value for non-trivial and trivial sessions.
They differed in how the time was allocated between constructive and housekeeping epi-

sodes.
— . Non-trivial sessions had longer constructive episodes than trivial sessions; trivial sessions

had longer housekeeping episodes than non-trivial sessions.
» The similar median phase times {about 5 minutes) across the different groups of sessions
suggest consistent human behavior for periods lasting several minutes.

In their /CARUS study, Card, Moran, and Newell noted three phases, of duration 7, 14, and
15 minutes. Thus, their mean phase time of 12 minutes can be compared against the mean
of 9 minutes among the 10 sessions with writing in this study.

5.3.1.2 How is Session Time Distributed?

Table 22 on page 97 provides more detail on the first row of the preceding table. It shows the
distribution of time durations among the 70 non-trivial sessions. This information might be used
to answer the question of how long a session normally lasts.

Table 22. Distribution of session
times among 70 non-trivial sessions

Session Time Number of sessions

{ minutes))

o 14 or less 24

i 15 10 29 14

30 to M4 14

45 10 59 7

60 to 74 7

- 75 or more ’ 4

Session times, 70 non-trivial sessions

range: 0.8 minutes (S16RO163) to 218.3 minutes {S17R0101)
median: 22.7 minutes

mean: 34.6 minutes
std dev: 39.5

A subset of these 70 sessions are the 10 sessions where a substantial amount of writing was done
in the nodes (these session IDs are listed in Figure 33 on page 169). Their duration was more
than twice as long as the median and mean duration for all 70 non-trivial sessions.

Session times, 10 sessions with substantial writing

range: 32.5 minutes (S26RG101) to 196.9 minutes (S25R6361)
median: 52.8 minutes

mean: 79.8 minutes
std dev: 50.2

Discussion:

+ Most sessions without writing were less than twenty-five minutes in duration. Most sessions
with writing lasted less than an hour. No session lasted more than four hours; the longest

sessions included extensive pauses.

96

This suggests that controlied tests that study such software systems should consider having
session times on the order of thirty minutes to an hour, as opposed to four hours.

In their JCARLUS study, Card, Moran, and Newcll analyzed one session of a circuit lé)'out
task that lasted 40 minutes. This data suggests their session time was of typical length.

+ The many short sessions might be explained because work on some documents was divided
over several sessions.

5.3.1.3 How is Document Time Distributed?

The following table shows the distribution of total time durations among the 45 non-trivial docu-
ments. Document times are different from the session times; a document may be composed of
more than one session, or many documents may be worked on i a single session.

Table 23. Distnbution of 45 docu-
ment times among 70 non-trivial
Ses$s10ns

Docament Time Number of sessions
{ minutes)

14 or less
151029
301044
4510 59
50 to 74

75 or more

@O Lo 60

Document times, 45 documents

range: 2.4 minutes [S18RD102) to 218 minutes (S17Rel8l)
median: 39.4 minutes

mean: 53.7 minutes
std dev: 52.9

Discusston:

-+ Most documents constructed with Prose ff were completed in less than forty-five minutes of
total session time.

5.3.1.4 How Long are the Pauses Between Commands?

One of the hypotheses built into this parser is that pauses of moderate length occur between
bursts of similar work. The two graphs that follow chart the duration of the pauses between
consecutive commands. The parser identified 7370 pauses across all sessions. .

Figure 27 on page 99 shows a “close-up” view of the pause durations; it looks at the frequency
distribution of pauses lasting 16 seconds or less, where the distribution has been computed at 0.2
second mtervals. Figure 28 on page 100 shows pause durations up to 100 seconds, in this case,
distnbuted using 1.0 second intervals.

97

400

30014

250+

200-

Frequency

15018

0 2 4 6. g8 10 12 14
Seconds, from 0 1o 16.0

Figure 27. Frequency distribution of pauses between commands. This figure shows the distribution
by 0.2 second intervals, from O to 16.0 seconds. The first peak in this graph is in the interval
from 0 to 0.2 seconds. The next two peaks are in the intervals 0.8 to 1.0 and 1.2 to 1.4

seconds.

98

Frequency

0 10 20 30 40 50 60 70 80 ' 90
Seconds, from 0 to 100

Figure 28. Frequency distribution of pauses between commands. This figure shows the distribution
by 1.0 second intervals, from 0 to 100 seconds. The peak in the graph is between 1 and 2

seconds, where 20% of all pauses occur.

99

Table 24. Distribution of 7370
pauses among the four pause types

Type of pause Frequency

< 6.0 secs - 72.6%

6.0 to 8.5 secs 7.7%
8.5 to 100 secs 18.8%
100 secs cr more ’ 0.7%

Duration of a single pause, among' all 7370 pauses

range: 0,05 seconds to 2820 seconds
median: 3.9 seconds '
mean: 19.0 seconds
std dev: 69.6

Duration of a single pause, excluding the 65 pauses greater than 100 scconds

range: .05 seconds to 99.6 seconds
median: 3.0 seconds

mean: 6.4 seconds
std dev: 10.4 -

Discussion:

The median pause duration was 3 seconds. Two-thirds of all pauses were less than 5
seconds.

Card, Moran, and Newell used 5 seconds as their inter-command cutoff value in their single
ICARUS protocol. '

In its version of freewﬁting, Addison Weslev's Wordbench puts a timer at the top of the
screen. and exhorts you to “KEEP WRITING” if you stop for more than 5 seconds. These

results corroborate their design.

When building the parser, my experience with pilot studies showed that there was a natural
break in the frequency of pause durations after 6.0 seconds and after 8.5 seconds. This data
shows I was close, but suggests 9.5 seconds mught have been a better selection point. The
handling of pauses by the parser is discussed in “Pauses” on page 74.

The clock resolution of DOS, and thus the tracker, was 0.055 seconds. 2.6% of the pauses

were 0.06 seconds or less, which is at about the resolution of the human cognitive processor -
that Card, Moran, and Newell describe (they specified the human processor cycle time as

0.07 seconds, with a range from 0.03 to 0.10 seconds).

More sophisticated parsers can be envisioned where the meaning assigned to pauses of dif-
ferent durations could be adjusted on a sliding scale—as opposed to making decisions based
on fixed points as was done here. To determine the classification of each pause, this sliding
scale could use information it maintains about the subject, their expernience, and the elapsed
time so far in a session. This technique might also be used to identify individual differences

in attention spans.

100

5.3.1.5 What Proportion of Session Time was Spent in Pauses?

Of the total time in a session, how much time was spent not actively executing commands with
this software? Figure 29 on page [02 shows the frequency distribution of the proportion of total

sesston timc spent in pauses.

Frequency

0 20 40 60 80 100
Parcentage of time in pauses

Figure 29. Frequency distribution of total session time spent in pauses. This chart shows how total
pause time within a session was distributed among the 112 sessions. For example, in 20 ses-

sions the total pause time was between 40% and 49% of the total session duration.
The proportion of total session time spent in pauses has the following size characteristics:
Proportion of total session time in pauses
range: 1% (S10RO101) to 99% (S27R0108)
median: 56%
mean: 58%

std dev: 25

Discussion:

101

» About half of the total session time is spent m pauses, not actually exccuting commands.
Long periods spent in a text editor are not included in the total pause time.

5.3.1.6_ Summary: Time Durations

= The frequency distnbution of most time durations showed large differences between the
rmedian and mean times, as well as large standard deviation values. Graphs of these distrib-
utions are positively skewed, showing curves with an early peak and a long trailing tail.

. Sessions were short, about a half hour or less, when no writing was involved.
+ Sessions with wnting lasted about an hour. '
*+ Overall document times were about an hour.

« About half the total session time was spent in pauses.

¢ Half of all pauses were less than 3 seconds; two-thirds were less than 3 seconds. The
measure of pause duration did not include the times spent for the execution of any com-
mands. The testbed system was fast, with only two commands that did not appear to be
instantaneous: opening and saving files. For all commands, the catire command completed

before measuring the beginning of the pause.

*« Mean and median phase times were close in value when comparing non-trivial and trivial
sessions. This could imply that spans of human behavior are of similar length, whether the
underlying activity is learning or doing productive work.

5.3.2 How are Parse Elements Distributed in Frequency of Use and Time?
Having looked at the distribution of the parse elements in time duration, this subsection exarnines

how frequently the different types of phases, episodes, and commands occurred within these ses-
sions.

5.3.2.1 Frequency Distribution of 7 Phases

Phases were the highest grouping applied by Card, Moran, and Newell. The parser divided ses-
sions into one or more phases, each lasting several minutes. A single type of activity predomi-
nates in each phase. A phase consists of a sequence of cognitive tasks, known as episodes.
Within. a phase, episodes of constructive work alternate with periods of thought and house-
keeping. While phases contain both types of episodes, only constructive episodes are used to
characterize the phases.

What were the broad types of activity that wrters engaged in? Of the seven types of phases
defined by the grammar in this project, which were seen most often? How long did the phases
last?

The seven different types of phases weré described in detail in Table 17 on page 84. Table 25 on
page 104 and Table 26 on page 104 shows the distribution of phase types and their durations.

102

Table 25. Non-trivial sessions: Distribution of the 7 phases types. This is sorted in order of
frequency of the phases observed in the non-trivial sessions

Phase Name | Distribution Percentage Median Phase Percentage

among 70 Non- count among time, Non- time among

trivial sessions Non-trivial ses- trivial sessions Non-trivial ses-

sions {seconds) sions

Exploraticon 145 33.0% 106.5 27.2%

Define Fierarchies 103 23.4% 121.7 28.3%

Top Down Construction 101 23.0% 172.2 24.2%
New Workspace 37 8.4% 347 2.0%
Document Revision - 31 7.0% 3308 16.5%
Bottom Up Construction I8 4.1% 46.0 1.7%
Tree Structure Revision 5 1.1% 264 G.1%
Total 440 100.0% 119 100.0%

Table 26. Trivial sessions: Distribution of the 7 phases types. This is sorted in order of fre-
quency of the phases observed in the non-trivial sessions

Phase Name Distribution Percentage Median Phase

among 42 among Trivial time, Trivial

Trivial sessions sessions sessions

{ seconds)

Exploration 23 35.9% 165.3

Define Hierarchies 4 37.5% 100.2

Top Down Censtruction 1 1.6% 1316.9
New Workspace 15 23.4% 1234
Document Revision 0 0% 0-
Bottom Up Construction 1 1.6% 12.4
Tree Structure Revision 0 0% Q
Total 64 100.0% 103.4

Table 27 on page 104 shows the percentage of time spent in each of the types of phases.

Table 27. Distribution of time spent among
~ the 7 phases, among all sessions

Type of phase Duration, among

total session

time

Exploration 27.3%

Define Hierarchies 30.0%

Top Down Constriction 22.5%

New Workspace 18%

Document Revision [4.8%

Bottom Lip Construction 1.5%

Tree Structure Revision) 0.1%

Total 100.0%

Discussion:
« A third of the phases were involved with exploration.
Exploration includes any initial wriiing done in a node.
+ There was much more top-down construction than bottom-up construction.

— The number of bottom-up episodes is 18% the number of top-down episodes. By time
duration, 15 times more time was spent in phases of top-down construction than in

phases of bottom-up construction.

163

— Although common, this may not be the most desirable strategy. Lansman, Smith, and
Weber (1990} noted in their experiments a significant negative correlation between top-
down score and the quality of subjects” documents. “Those subjects who tended to gen-
erate lower level ideas first wrote higher quality reports.”

» These results indicate that Prose IF was rarely used to revise a document’s hierarchical struc-
ture.

+ About one-sixth of the total time was spent in phases of document textual revision. These
were the longest phases (in median time duration).

* Pianko {(1979) reported that college freshman devote less that 9% of their composing time to
reading and revising. By count, the results of this study show that 8.1% of the phases were
used for document and structure revision. By time, 16.7% of the total session time was
spent in revision, a result somewhat higher than Pianko’s report. This may be accounted for
by the difference in strategy between college freshman and technical professionals.

5.3.2.2 Frequency DiStribution of 12 Constructive Episodes

The parser characterized the types of constructive episodes in a session. A constructive episode
consists of series of distinct user commands with short elapsed time between them. Multiple
overlapping goals may be attempted by a subject during a single constructive episode: for
example, they might move some nodes and delete some nodes that are no longer needed, so that
they might then create, label and link a new set of nodes. Section 4.2.3.4 on page 78 discusses
how Pass 3 of the parser produces the characterizations of constructive episodes from the
sequence of primary and secondary commands. The twelve different types of constructive epi-
sodes are described in Table 12 on page 79. Table 28 on page 105 show the distribution of con-

structive episode types and their duration.

Table 28. Distrbution of 12 constructive episodes among the nowo-trivial and trivial
sessions. This is sorted in order of frequency of the episodes observed in the non-trivial

sessions .
Construciive Episode Name Distrib- |- Per- Median Distrib- Per- Median
: ution centage Episode ution centage Episode
among among time, among among time,
70 Non- Non- Non- 42 Trivial Trivial
trivial trivial trivial Trivial sessians sessions
sessions sessions sessions sessions (seconds)

(seconds)

Created solo nodes . 126 17.6% 134 14 14.1% 6.9
Edited existing nodes 219 17.0% 374 4 4.0% 14.8
Grew existing trees 183 14.3% 255 2 2.0% 227
Hoocked existing nodes 147 11.4% 78 1 1.0% 23
Moved existing nodes 131 10.2% 39 3 3.0% 8.0
Created new trees 82 6.4% 154 14 14.1% 9.4
Revised existing nodes 82 6.4% 214 4 4.0% 1257
Deleted nodes 74 5.8% 23 5 5.1% 0.1
Unproductive work 64 5.0% 7.8 19 19.2% 14.3
Start over 36 2.8% 3.2 32 303% 4.8
Assembled trees) 20 1.6% 8.2 1 1.0% 3.2
Broke existing links 20 1.6% 5.8 0 - -
Total 1284 100.0% 11.6 99 106.0% 6.1

Discussion:

» The median time duratlon for all constructive episodes was about twice as long in non-trivial
sessions as in trivial sessions.

104

« Much of the time in constructive episodes was spent in iterative refinement: growing existing
trees and hooking nodes into them.

+ The median times for episodes of creating and editing nodes were longer for non-trivial ses-
sions than for trivial sessions. This is reasonable, since productive words were presumably

being written during the non-tnivial sessions.

* By count, 5% of the constructive episodes in the non-trivial session was unproductive work,
as opposed to 19% in the trivial sessions. The unproductive work episodes were of longer
duration 1n trivial sessions than in non-trivial sessicns.

* In thetr JCARUS study, Card, Moran, and Newell found their mean episode time was 25
 seconds. Their definition of an episode did not make the distinction between types of
episodes—housekeeping and constructive—shown in this study. To get to a comparable
measure, the median duration for both types of episodes can be summed. This combination

of one housekeeping episode and one constructive episode could be said to last about 32.0
seconds, for non-trivial sessions. A typical episode time for trivial sessions was surprisingly

close in duration: about 34.6 seconds.

5.3.2.3 Frequency Distribution of 7 Housekeeping Episodes

Between consecutive constructive episodes are periods of system operations, including pauses to
think and housckeeping operations. The parser determined each of these episodes of system
activity. Seven different types of housekeeping episodes were described in detail in Table 10 on
page 76. Table 29 on page 106 shows the distribution of housekeeping episodes and their dura-

tion.

Table 29. Distribution of 7 housekeeping episodes among the non-trivial and trivial
sessions. This is sorted in order of frequency of the episodes observed in the non-trivial
sessions

Housekeeping and Meta- Diserib- Per- Median Distrib- Per- Median
housekeeping Episode Name ation centage Episode ation centage Episode
among among time, among among time,
70 Non- Non- - Non- 42 Trivial Trivial
trivial trivial trivial Trivial sesséions sessions
sessions sessions sessions sessions { seconds)
. (seconds)
Medium & Long Pause 756 51.1% 16.3 66 53.7% 23.1
Refocus 361 24.7% 30.0 21 17.1% 48.0
Cleanup & Take Stock 93 6.4% 30.2 ’ 2 16% 333
Cleanup 38 6.0% g.6 5 4.1% 7.1
Help Request 72 4.9% 45.0 15 12.2% 74.9
Take Stock 72 4.9% 372 7 57% 246
Tracker Comrnent 20 1.4% 59.5 7 5.7% 1324
Total 1462 100.0% 204 123 100.0% 285

Table 30 on page 107 shows the percentage of time spent in each of the types of episodes. [t
shows the percentage of time among the total housekeeping episode time, as well as the per-

centage of time among the total session time.

105

Table 30. Distribution of time spent among the 7 house-
keeping episodes

Type of housekeeping episode Duration, among Duration, among
total house- total session
o keeping episode time (includes-

time constructive epi-

sodes)

Medium & Long Pause 60.8% 35.6%
Refocus 18.9% 11.1%

Cleanup & Take Stock 4.1% 24%
Cleanup 1.4% 0.8%

Help Request . 72% 4.2%

Take Stock 4.5% o 26%

Tracker Comment 3.0% 1.8%

Total 100.0% | 100.0%

Discussion:
s As defined in this study, about half of the housekeeping episodes consist of long pauses.

» There were many housekeeping episodes involving roaming and zooming in the workspace.

This suggests that the screen is probably too small. As a software developer, I believe |

- should be building systems with fewer occurrences of Refocus, and with less time per occur-

rence. For example, in this study, 11.1% of the total elapsed tune among all the session was
spent in Refocus episodes (see Table 30).

An area for a follow-on study is a controlled experiment, where two different screen sizes are
used. If the amount of time spent doing Refocus activities decreased with Iarger screens, one
could build a case for doing a cost analysis, comparing the cost in employee time for using a
small screen as opposed to using a large one.

« Episodes of Cleanup only were relatively short in duration; their mean duration was about 10
seconds, as opposed to about 20 seconds for the housekeeping episodes as a group.

* Trivial sessions contained a higher proportion of help requests and tracker comments, and
the time for these was longer than for non-tnvial sessions.

5.3.2.4 Frequencj Distribution of 39 Commands

One of the most valuable tools to a software engineer for tuning a system is a code profiler.
What code was executed, and with what frequency? Simlarly, designers of user interfaces need
feedback on which features of the interface are used most frequently. What are the most-
frequently-used commands—they should probably be the éasiest to use? Are there common sub-
sequences that might be grouped together? Are there commands that are never used? Are there

commands used by experts, but not by novices?

The tracker in Prose I recorded 39 different commands, in addition to the Pause. Across the 112
sessions, all of the commands were used at least once. Table 31 on page 108 shows how the
commands were distributed among the non-trivial and trivial sessions. The table is sorted in
order of frequency of the commands used in the non-trivial sessions. A total of 6225 commands
were performed among the non-trivial sessions; 447 commands were performed among the tmlal

sesstons.

106

[able 31. Distribution of the 39 Prose [/ commands
Command Name Distribution: 70 Percentuge: Non- Distribution: 42 Percentuge:
Non-trivial ses- trivial sessions Trivial sessions Triviul sessions

stons

LinkNodes 1079 17.3% 38 3.3%
Editlabel 1075 17.3% M 7.6%
CreateNode 974 15.6% 47 10.5%
MoveNode 513 §.3% 7 1.6%
\apWindowRoam 359 5.8% 12 2.7%
EditNode 287 4.6% 24 3.4%
TidvWorkspace | 238 3.8% 5 1.3%
MapWindowZoom 233 3.7% [1.3%
LoseFocus 204 33% 31 11.4%
HelpReguest 166 2.7% 47 10.5%
MapWindow 134 2.5% 16 3.0%
DeleteNode 142 23% 17 3.3%
SaveWorkspace 122. 2.0% 6 [.3%
OutlimeWindow 63 1.0% [E] 3.4%
MapMove 50 1.0% 9 2.0%
MainWindowZoom 39 0.9% 3 1.1%
SetTidyMode 36 0.9% 2 0.4%
QOpenWorkspace 33 0.9% 36 8.1%
BreakLink 48 0.8% 2 0.4%
MainWindowReset | 48 0.8% 16 3.6%
SetDeleteMode 38 0.6% 4 0.9%
Systemlcon 31 0.5% 4 0.9%
OutlineWindowSize 31 0.3% 12 2.7%
TrackerComment 2) 0.4% HY 2.2%
OutlineWindowMove 27 0.4% g 1.8%
CopyNode 2 6.4% 0 0.0%
SystemZoom 20 0.3% 3 1.1%
GoTo .19 0.3% t 0.2%
NewWorkspace 16 0.3% 3 0.7%
ChangeDefault 16 0.3% 3 0.7%
Scramble 12 0.2% 1 0.2%
System¥iove 3 0.1% 0 0.0%
TreeShank 4 0.1% 4} 0.0%
TreeGrow 4 0.i% 0 0.0%
MapSize 4 0.1% o 0.0%
BreakAllLinks 3 G.0% 0 0.0%
SystemSize 3 0.0% 0 0.0%
ClearDrawing 2 0.0% 0 0.0%
ClipboardCopy b 0.0% 0 0.0%
Total 6225 100.0% 447 100.0%

Discussion:

. Arhong the non-trivial sessions, more than 50% of the commands performed were either cre-
ating, linking, or labeling of a node, with the other 36 commands occurning far less fre-
quently. _

* Among the trivial sessions, the three most frequent commands were 1) leaving Prose I for
another application, 2) requesting help, and 3) creating a node.

* The bottom eight commands in Table 31 are good candidates for removal, or placement on

an “Advanced” menu. They were rarely used in the non-trmal sessions and never even tried
in the trivial sessions.

5.3.2.5 Relationship between Commands, Episodes, Phases, and Sessions

What is the relationship among the parse elements? How many commands were there per
episode, how many episodes in a phase, and how many phases in a session? [looked at these
relationships in two ways: among the group of 27 single-document sessions, and among all 70
non-trivial sessions. These results are unusual among those in this chapter; their standard devi-
ations are small compared to their means and medians!

107

Table 32. Ratios of commands, episodes, and phases among 27 single-
document sessions

Episodes per

Commands per Phases per session

episode phase
range: 201080 20t 11.0 20t 360
median: 4.0 43 6.0
mean: 4.0 4.8 9.4
std dev: 1.3 22 7.6

Table 33. Ratios of commands, episodes, and phases among 70 non-trivial

SESSIONS .
Commands per Episodes per | Phases per session
episode phase :
range: 121080 1.5t0 130 20 to 360
median: 29 4.0 4.0
mean: 3.1 4.4 6.3
std dev: 1.3 2.2 6.3

Discussion:

* Subjects worked in longer bursts in the 27 single-document sessions than i in the 70 non-trivial

sessions. There were more commands per episode and more episodes per phase in these 27

sessions.

The standard deviation values are small in the commands per episode and episodes per phase.
Also, the median and means are relatively close together. This suggests a consistency in the
definition of these terms and in how they are parsed It may further suggest that humans are

consistent in short time periods.

As a topic for follow-up research, it would be interesting to see how these values changed as
the time duration values were changed in the parser (e.g., PauseType0—see Section “Pauses”

on page 74).
These chunks (that is, the commands per episode and episodes per phase) are about the size
of human Working Memory chunks: in the range of 3 to 5 elements.

The number of episodes per phase is fairly consistent, even among the different types of ses-
sions. Table 21 on page 96 shows that the timings for phases was consistent among all
types of sessions. :

This suggests that the definition of phases, in both time and number of eplsodes was con-
sistent among all types of sessions.

There is large variation in phases per session, since session lengths and document sizes vary
considerably.

5.3.2.6 Number of Nodes vs. Time Spent in a Session

What's the cost, in time, of adding new nodes to a document? Is the cost per node higher for
large documents or for small documents? What's the time difference between sessions where sub-
jects only labeled nodes, as opposed to sessions where they wrote substantial text for the nodes?

In an effort to understand the “cost” of creating a node, I looked at the number of nodes saved in
the single-session documents, compared to their total session time.

108

Time per node, 22 single-session documents without substantial writing

range: 22 seconds/node (S17R0291) to 631 seconds/nade (S10R0104)
median: 76 seconds/node

mean: 113 seconds/node
std dev: 124

These 22 sessions are listed in the second column of Figure 32 on page 168.

Time per node, 10 sessions with writing

range: 94 seconds/rode {S18RO108) to 692 seconds/node (S15R8182}
median: 386 seconds/node

mean: 427 seconds/node
std dev: 206

These 10 sessions are ﬁsted in the two colurnns of Figure 33 on page 169.

Discussion:

* The data analysis showed that the time per node decreases as the number of nodes increases.
The decrease in the time per node as the number of nodes increases may be explained by the
fixed startup and takedown costs in a session.

* When wnting in the nodes, the time per node mcreases by a factor of about 4 to 6 times.

* In thesessions of labeling without writing, subjects devoted about a minute to each node. A
recent report supports this finding:

Psychology students using a new computer program were able to generate 86 ideas in
78 munutes (i.e., 54 seconds/idea), while students who tried brainstorming at random
produced 355 ideas in 55 minutes (ie., 60 seconds/idea). The program, called
IdeaFisher (from Fisher Idea Systems in Irvine, California) allows creative
“navigation” through 370 broad topics, 65,000 words and phrases, and 675,000 cross
references. (Roberts, 1989)

A minute per idea can serve as a predictor of overall session time.

+ Slow sessions can be identified. For example, S23R0101 was a relatively long session for the
number of nodes, yet there were no exceptionally long pauses and no wrting in the nodes.
However, the labels were long {a mean of 49.4 characters/label).

= S10R0104, which showed the long rate of 421 seconds per node, consisted simply of building
a tree with 6 nodes and labeling them. This points out a deficiency in the parser: inadequate
handling for one of the EditLabel commands that lasted 48 minutes.

5.3.2.7 Number of Nodes vs. Number of Commands in a Session

Subjects executed comnmands in a session for many different reasons, as we have seen: both for
housekeeping and for constructive work. What's the relationship between the number of nodes
and the number of commands in a session? The next set of statistics compares the number of
nodes created in a session with the total number of commands in a session. Counted among the
commands are all “non-pauses” recorded by the tracker; this includes LeaveProsell, HelpRequest,
and TrackerComment. Nodes were created in 56 non-trivial sessions (in the other I4 sessions,
existing nodes were edited, but none were created).

109

Commands per node

range: 3.6 commands/nade (SO6RE301) to 48.0 commands/node (S27R0104)
median: 6.2 commands/node '

mean: 8.8 commands/node
std dev: 7.8

Discussion:

L]

During a session, subjects performed about 4 to 8 commands pcr.node.

Since an expected command sequence is CreateNode, EditLabel, and LinkNode for each
node, three commands per node would be the reasonable minimum. Thus, session
S06R0301 (at the low end of the range) appears straightforward. Examination of this session
indeed shows an extended sequence of creating, labeling, and Imkm node, with lttle

Revision or Refocus activity.

The commands per node decreases slightly as the number of nodes increases. The decrease
in the number of commands per node as the number of nodes increases may be explamed by
the fixed staﬂ:up and takedown costs 1 In a session.

5.3.2.8 Summary: Distribution of Commands, Episodes, and Phases

Almost 80% of the phases involved exploring, defining hierarchies, or constructing trees in a
top-down manner. Subjects rarely used Prose {1 for textual revision or structural changes.

There was a preponderahce of top-down construction, as opposed to bottom-up con-
struction. Much of the top-down construction took place as iterative refinement.

A quarter of the housekeeping episodes were concerned with refocus operations, perhaps
because of the small screens used by the subjects.

Half of the commands can be accounted for with creating, labeling, and linking nodes.

The counts of commands per eplsodc and episodes per phase were surprisingly consistent,
with small variation.

As a rule of thumb, subjects spent a minute or two per node if writing was not involved in
the session; if writing was involved, they spent about 5 to 10 minutes per node.

5.3.3 How Were Particular Commands Used?

Some specific Prose II commands are examined here in greater detail. These include the com-
mands for creating, deleting, labeling, and writing text in nodes, as well as requesting help,
opening and saving a workspace, and tidying trees. Finally, all of the comments that subjects left
in the protocol records are listed. '

(110

5.3.3.1 Creating and Deleting Nodes

Counting nodes in a session is an ambiguous problem. At various points in the analysis, 1
encountered four different ways of counting the nodes created in a session or document:

L.

There was not a straightforward solution to this ambiguity.

Count the number of create commands in a session.

‘This misses the copy command, but CopyNode was only used in 3 of the 112 sessions. This
also omits nodes created 1n a previous session and present in the current session because the
subject used the OpenWorkspace command.

Count the number of nodes saved in the last save of a session.

This misses substantial work on nodes that were deleted before the save, and it includes
nodes from existing documents created in other sessions.

Count the total nodes for a given document, since they are uniquely numbered.

This counts all deleted nodes (which can be many) and can also include nodes from existing
documents created in other sessions.

Count the nodes actually touched by any explicit command in a session.

For example, in one sesston (SI4R0103) a file with 45 existing nodes was opened; the con-
structive work in that session consisted of writing text in 8 of the nodes.

I have used the first definition con-

sistently in this section, unless it is identified otherwise.

Table 34. Number of nodes created in different types of documents
Nen-trivial Docu- | Single-session Multiple-session
ments documents documents
median: 17.0 19.0 140
mean: 224 26.3 . 14.2
std dev: 171 19.4 4.8
Discussion:

In the multi-session documents, the median and mean value for the number of nodes in the
documents is similar (about 14 nodes) and the standard deviation is comparatively small. [
cannot directly account for this; I would like to look at a larger sample size. - _

In one unusual session (S17TRO101), 36 nodes were deleted. Otherwise, in the remaining 111
sessions, the most nodes deleted in a single session was 9; the mean was 1.0 nodes deleted in
a session. 70 sessions had no deletes. Of the sessions w1th deletes, the medn was 3.0 nodes

deleted.

The effectiveness of having a separate Delete Mode would be seen if no nodes were acci-
dentally deleted—this allows Prose {I to get by without an Undo command. The protocols
could be examined for evidence of accidental deletion—but this is hard to determine, since
nodes were frequently created soon after a delete. On the contrary, two-thirds of the deleted

nodes were the last node created.

A total of 945 nodes were created using the CreateNode command in all sessions, and 119
nodes were deleted. In aggregate, about 12.6% of the nodes created were deleted. This
count of deleted nodes does not include those deleted because of the NewWorkspace,
ClearWorkspace, or OpenWorkspace commands; these three commands delete all existing
nodes in a workspace. Similarly, this count of created nodes does not include nodes created
by opening existing documents using the OpenWorkspace command.

111

» Subiects used the CopyNode command to create nodes in only 3 of the 112 sessions. Tt was
used in session S17R0101 22 times; in the two other sessions, it_ was used twice.

5.3.3.2 Labeling Nodes

As a software designer, how should 1 plan for the labeling of nodes in an outline? How much
time is spent labeling a node (i.e., can other background activity be occurring during this period)?
How big can node labels become: if my software is allocating internal memory blocks, how big
might these labels grow?

Subjects labeled nodes in all but two of the 70 non-trivial sessions.
S25R0101: There was writing in all eight nedes, but none of the nodes were labeled.

S25R0301: The subject built a substantial tree with 21 nodes, wrote text in the files associated
with all of them, but labeled only one of them.

How much time was spent labeling a node? Across the 112 sessions, node labels were edited 954
times. The durations for these periods in the Editlabel dialog box are shown below.

Time spent labeling a node

range: 0.3 seconds to 2841 seconds
median: 11.9 seconds

mean: 17.8 seconds
std dev: 34.5

How long are the labels used for the nodes? Across the 112 sessions, the statistics are shown
below: '

Label length, in characters

range: 2 characters to 189 characters
median: 18 characters

mean: 24.7 characters
std dev: 21.2

Running a word-counting program against a file of all the labels showed that the 112 sessions had
a total of 3482 words.

Label length, in words

mean: 3.6 words/label
6.8 characters /word

Discusston:

» These subjects expressed their concepts with a few choice, long words. Compare 6.8
characters;word with the standard measure mentioned by Card, Moran, and Newel: 4.8
characters per word (for telegraphic data, from 1898). '

+ There was wide variation in the time spent labeling, but narrower variation in the number of
characters in the labels. This suggests some consistency in the size of the character stnngs
used for labels, which may be a side-effect of the displayed size of the nodes and the font

112

shown in the system. Subjects rarcly entered labels that were significantly longer than the
size of a node, which would have caused the label to be truncated during normal viewing.

» One session, S22R0101, was interesting in that it had somewhat long labels, yvet was efficient
in the number of nodes created and labeled during the elapsed session time. A fast typist.

0 5,3.3.3 Writine Text in Nodes

While most subjects labeled their nodes, few used a text editor to write extensive text to be associ-
ated with their nodes. When writing did occur, how much time was spent doing this writing?
Hayes and Flower (1986, p. 1109) noted that “Even for the most extensive outliners, the ideas
noted in the outline were expanded on the average by a factor of eight in the final essay.” Were
similar results seen in this study of writers?

In 54 of the 70 non-trivial sessions, subjects edited at least one node; 16 sessions contained no
writing at all. However, only 9 documents involved sessions with substantial text editing. 3 of
these 9 were additional work on existing documents; 6 were newly-created documents.

How much time was spent in one trip to an editor? For the 54 non-trivial sessions with periods
of writing:

Time spent writing with a text editor, per node

range: 0.1 seconds to 2136 seconds
median: 37.3 seconds '

mean: 119.6 seconds
std dev: 235.1

What amount of total session time was spent writing?

Proportion of session time spent writing, 54 sessions with any writing

range: 0.1% (S22R0101) to 84.7% (S15R0162)
median: 16.
mean: 25.
std dev: 26.

o

o0

1
7
5
5

Proportion of session time spent writing, 10 sessions with substantial writing

range: 7.8% (S13R0101) to §4.7% (S15R0182)
median: 44.7%

mean: 50.8%
std dev: 24.9

Total writing time in a session, 54 sessions with any writing

range: @.1 minutes (S22R0101) to 113.3 minutes (S15R0102)
median: 1.1 minutes

mean: 1€.6 minutes
std dev: 22.4

Discussion:

113

« Most subjects experimented with using a text editor, but few used it for actual document
writing. '
« In the 10 session with writing, about half the total session time was spent doing that writing.

There was wide variation in the time spent writing with a text editor.

» Although Prose If could invoke any editor (e.g., a paint program}, no subjects used anything
other than a text editor for work on an actual document. One reason: Prose I[is not well
suited to embedding graphics in final output. More extensive commercial programs, such as
PagelMaker, extend the idea of mixing text with graphics. Prose I was used principally as a
2-dimensional outline processor.

» Ilayes and Flower’s observation of an expansion by a factor of eight cannot be directly sub-
stantiated with the results of this study, because the number of words in the edited text was
not collected by the tracker. However, the times for labeling and writing can be roughly
compared. For the 54 sessions, both sets of time distributions have early peaks and long

trailing tails:

Time spent labeling, per node Time spent writing, per node
median: 11.9 seconds median: 37.3 seconds

mean: 17.8 seconds mean: 119.6 seconds
std dev: 34.5 std dev: 235.1

These mean values are consonant with the 8-to-1 ratio reported by Hayes and Flower.

»+ Subject 25 had two unusual sessions, where writing was done in large trees but with little
labeling.

5.3.3.4_Regquesting Helﬁ

Significant effort is invested in modem interactive software to provide online help. How often are
these helps used? How long do people spend looking at the helps? Are they actually helpful?

Ten different help panels were available in Prose If. The full text for each of these panels is
shown in Table 2 on page 45. Table 35 on page 115 shows how many times each of these helps
was requested and how much time was spent viewing them. Help was requested in only 27 of the
70 non-trivial sessions.

Table 35. Distribution’ of help requests among all ses-
sions _
Name of the help Total nimber of Median time spent
panel requests viewing this help
panel (seconds)
Introduction 24 6.0
First Time : 22 9.2
Mouse 31 11.6
Map Window 18 176 '}
Delete/Tidy 30 201
File Formats 14 244
Editing 32 180
Changing 14 15.7
WIN.INI 15 324
Help Me 4 21.0

114

Time per help panel, 112 sessions

range: 2.1 seconds to 205.9 seconds
median: 12.9 seconds

mean: 19.2 seconds
std dev: 21.7

Requesting help was the tenth most frequently-used command among the 70 non-trivial sessions.

Time per help panel, 70 non-trivial sessions

range: 2.2 seconds to 87.7 seconds
median: 12.8 seconds

mean: 16.8 seconds
std dev: 14.9

Requesting help was the second most frequently-used command among the 42 trivial sessions.

Time per help panel, 42 trivial sessions

range: 2.1 seconds to 205.9 seconds
median: 14.2 seconds

mean: 25.2 seconds
std dev: 34.8

Discussion:
« Subjects viewed help panels for about 15 to 30 seconds.
= Time spent in helps was longer in trivial sessions than in non-trivial sessions.

* There was wide vanation in the amount of time spent viewing help panels. This variation
was widest armong the trivial sessions.

» Help for frequent commands (e.g., using the mouse, labeling and editing) was requested more
frequently than for less-frequently-used commands (e.g., changing how the nodes are drawn).

* Help for complex operations (e.g., updating the WIN.INI file, or dealing with the six file
formats) took about twice as long as for others (e.g., using the mouse).

I can suggest two conflicting reasons why a user spends a long time reading a help panel:

— The help panel contains lots of valuable information, worth reading to understand the
particular problem it addresses, or

— The help panel is hard to understand. It should be re-written and;or re-organized in a
* future release of the software.

The Prose I tracker did not contain a mechanism to distinguish these conditions. It could
only observe that some helps took longer than others. A simple addition might provide

some additional insight:

Since the user must push an “OK” button already to exit a help, two buttons could
‘be displayed instead. One could read “This was helpful,” while the other could read
“This was not helpful.” Fither selection would exit the help. The tracker could record

115

the choice, which could be accumulated across many sessions dunﬂg the protocol
analysis.

5.3.3.5_Opening and Saving a Workspace

A variety of file formats were available to users of this system. Each format has a software devel-
opment cost, in its design, coding, and maintenance, as well as its size in the final product.
Which formats were used most and least? Could some of the formats reasonably be omitted from
the software, and yet satisfy the target users?

Across the 112 sessions, there were 87 OpenWorkspace and 125 SaveWorkspace commands per-
formed. Table 36 on page 117 shows which file formats were used in these Opens and Saves.
The .SCR format is used inside EBM as the basic format for document processing, so most of the
existing files that were opened were in that format. The percentage of files saved in the . IND and
.PR2 formats was larger than the percentage of files opened in those formats, implying that Prose
[I was sometimes used 10 translate from one format (particularly the .SCR format) to another.

No subjects used the .tST and .ROY formats, two file formats that 1 found useful in developing -
Prose II. The .CRD format, compatible with the Microsoft Cardfile application, was also rarely

used.

For a review of these file formats, see Section 3.1.10.3 on page. 43,

Table 36. Distribution of file formats used for Opens
~ and Saves, among all sessions

File format Percentage of Percentage of

Opens Saves

.SCR 57% 42%

.PR2 27% 39%

LJIND 5% 17%

.CRD 2% 2%

.ROY 0% 0%

.LST] 0%

5.3.3.6 Tidying

The TidyTrees function was new to most users of this software. It offered a new working
paradigm for some users, one of working in a rather “sloppy” manner, then choosing a tune to
ask the system to tidy up the workspace. Was this paradigm a useful one?

Tidying of trees was performed in 48 of the 70 non-trivial sessions. In these 48 sessions, tidying
was done with the following frequency:

Number of TidyTree commands in 2 session

range: 1 command to 41 commands {Session S17R0161)
median: 4 commands

mean: 5.7 commands
std dev: 7.2 '

The TidyTree function proved popular among those who used it. Evidence was both anecdotal
and in the parser summaries.

116

On the other hand, the TreeShrink and TreeGrow commands, which I constdered powerful func-
tions of Prose /I, were used in only two sessions, for a total of four times each across all the
sessions. TreeShrink and TreeGrow were among the few functions available through the key-
board interface only; they did not have a mouse or menu selection. Thus, to find out about
them, users had to read the appropriate help panel or the manual. This may have limited their
usage frequency. However, the converse was not true: the five commands that were used even
less frequently than these all had mouse;menu interfaces.

5.3.3.7 Comments Collected by the Tracker

How often did subjects use the two “hot keys” to communicate directly with the tracker? In
Prose [, the F2 function key could be pressed at any time to record a comment in the protocol
record; pressing the F3 function key indicated that the subject was taking a break in the session.

10 of the 29 subjects used the “F2” key in Prose /] to leave comments in their protocol records.
A total of 32 comments were left among the 112 sessions. The comments are listed verbatim

below, ordered by session ID.
Session - YVerbatim comments entered in the tracker

SO6RO107 “This looks like a terrific tool once [get to know it better. One thing is that
Windows messes up with the PC Char Set and the ANSI Set doing National Charac-

ters. Keep on going John!”

S06ROM 10 “This would be a wonderful tool for keeping minutes of a meeting etc. Especially
when a videobeam system were available. Then from a script file a written docurnent

would be output.”
SO8R0201 “There doesn’t seem to be a way lo disassociate filename from node.”

SO08RO301 “May have said this before, would like quick create "button” that would both make a
node and open the label text window”

SI10R0104 “This is the first time [am using Prose [1.”

wrr

SIZRMOL “trying to find how to preserve ordering of trees afier "tidy
“stopping work to send message to author on tidying of trees”

SISRO105 “I guess i screwed things up by changing file names of text to get my data back...”
“System keeps hanging or requires rebooting.”

S15R0106 “I seem to have lost all the text from my previous session...”

SISR0202 "‘S{range things are happening... [added a node and found text from another node
init”

S17R0101 "Jwé'retumed Jfrom lunch (1 hour 45 minutes! j”
“Undo would have. been nice here”

-S18RO103 “Will continue later”
S25R0101 “part:’cﬁ!ar{y like using the map window as a way to move around the document”

“for brainstorming this reminds of an idea wheel, where you just write the ideas down
and worry about the relationships later, very natural”

17

S26R0201 “After leaving PROSE2 and restarting, file extension for a node changed.”
“Why are two files created for each-node? One without .ext one with.”

S2TRO104 “When I go select "Editor’, ['d like to see the node label as a comment in the top
line.” :

“When [click outside a pulldown menu, | don't want to create @ node in the work-
space. The workspace should then be inactive.”

“'Save’ and *Save as” should confirm the action.”

“Outline window should be editable”

“ltems in map window should be selectable. [f | select the 3rd outside the workspace,
that node should be centered in the updated workspace.”

“Does not redraw workspace dafter viewing and sizing map.”

“I now have File and Defaults highlighted in the Action Barl Something odd has
happened to the workspace. The arrows are HUGE. Redrawing takes an awful long
time.”

“Windows messages ‘Not enough memory’. Windows fa[liﬁg apart. Will probably
have to end session. Colors and borders screwy. Sluggish. Lockouts.”

S27RMO05 “Have restarted, with more free RAM (about | SMB extra). [have about 6.5MB,
but use enormous cache and some IMB RAM disks under DOS3.3, normally. Dif-

ferent setup for DOS2.0/ and 0S72.”
“Closing down for a while to fi nish shapping, take a break, and a dump
S2TRO186 “The outline wma’ow needs a scroll bar at the bottom, so I can see text that's off the
‘ right of the screen.”
S27ROI0T “Now have to stop for the dap.”
“Not obvious how to gather the text, which I entered ‘behind’ each node, into a single
document.”

S27RO109 “Something odd: None of the text [enter is saved. Files exist, but length=0. Giving
up and returning to word processor.” :

Subjects used the “F3” key to sxgnal explicit pauses in their sessions a total of 17 times across all
the sessions.

Time spent in explicit breaks

range: 2.3 seconds to 256 seconds
median: 27.9 seconds

mean: 66.8 seconds
std dev: 74.2

Discussion:
« Subjects’ comments appear to fall into five general classes:

Descriptions of what happened during some elapsed time.
Observations on how they were using the system, or good ways it could be used.

Praise for functions of the system they liked.
Software bugs or lack of understanding of how to accomplish some function; also,

requests for additional functions.

Pl S e

18

5, System or hardware problems.

» Subjects rarely signaled explicit pauses in the tracker using the designated function key.
When they did use this mechanism, none of the explicit breaks were longer than 5 minutes;
most were less than half a miute.

Since the Comment function was sometimes used to mndicate pauses of a couple of hours,
these functions should probably be combined. They should also have a menu interface to be
readily accessible.

5.3.3.8 Summary: Commands and Documents

. Documents that were constructed across several sesstons were smaller than documents con-
structed in a single sesston.

+ Most documents had between 15 and 30 nodes. In documents constructed across multiple
sessions, the median and mean value for the number of nodes in the documents s close

{about 14 nodes), with small varation.

« About 1/8th of all nodes that were created were later deleted. Two-thirds of the deleted
nodes were the last node created.

« Subjects spent about 10 to 20 seconds labeling a node. Labels consisted of a few choice
words. ' ‘

+ Subjects spent about | or 2 minutes writing in a node.

* Most subjects tried running a text editor within Prese 1, but few used it for extensive writing
of a document.

» Help screens were typically viewed for 15 to 30 seconds. Help times were longer it trivial
sesston than in non-trivial sessions.

« Subjects used the TidyTree function frequently.

'+ Subjects left comments in the tracker for a varety of reasons, which generally fell into five
general classes.

5.3.4 What Was Learned About Writing With This System?

This subsection presents-a variety of results on some specific aspects of the writing process. For
example, how large are the structures that writers construct? When is the main point of a docu-
ment created? How are nodes laid out spatially when organizing in two dimensions? How do
sessions differ, depending on the number of nodes under consideration?

5.3.4.1 How Big are Trees?

Prose [I allows users to build immense trees. In actual use, how big did trees grow? As a soft-
ware designer, what are reasonable data structures to use, based on the expected size of the trees?
In studying writers, how many ideas are generated, and to what depth of elaboration are they

taken?

One of the previous sets of statistics looked at the number of nodes created in the sessions. Dif-
ferent from that is the number of nodes in the saved trees. For example, a workspace with 40
nodes might be saved, yet the largest tree in the saved workspace has only 5 nodes.

119

Three different measures of tree size are presented here. The first measure looks at the maximum
depth of the saved trees. The second measure looks at the number of nodes in the saved trees.
Finally, [looked at the sizes of the trees created in one of the single “CreateNewTrees” episodes.

46 distinct trees were saved among the 70 non-trivial sessions. A tree is defined as having at least
two lnked nodes. The following table shows the maximum number of levels in these trees.

Table 37. Distribution of maximum
tree depths

Maximam number Frequency
of tree levels

[=R0 el S0 e NEW RN PV]
—_— e b ON G0 O fe

Maximum number of tree levels

range: 2 to 18 levels {Session 527R0103)
median; 4 levels

mean: 4.7 levels
std dev: 1.9

How many nodes were in a single tree? This value is often smaller than the number of nodes in a
document, since some nodes created in a session may not be linked to others:

Table 38. Distribution of maximum
tree sizes

Maximum number Frequency
of nodes in a tree .

2tos 4

6 10 10 11

11 10 15 15

16 10 20 9

21 to 25 2

26-to 30 2

31 1035 i

36 to 40 1

mote than 40 3

Nodes in a single tree

range: 2 to 122 nodes (Session S17R0101)
median: 14 nodes

mean: 18.3 nodes
std dev: 18.3

One of the constructive episodes, CreateNewTrees, characterized a sequence of commands where
a subject built a tree from scratch—by creating nodes and linking them. How big were the trees
created in the 96 “CreateNewTrees” episodes?

120

Nodes created in a CreateNewTrees constructive episode

range: 2 nodes te 12 nodes
mediar: 3.0 nodes

mean: 3.4 nodes
std dev: 2.0

[Discussion:
» The distributions of tree depths and tree sizes is sumilar.

« Small trees differ from large trees mn their degree of fanout. There was small variation in the
tree depths; there was wide variation in tree sizes.

* The maximum tree depth was 10. Prose [/ was designed to support up to 99 tree levels; this
was ¢learly more than enough. This is a case where the protocol data mught be used to solve
a design issue: for example, how many internal memory blocks should be set aside to handle

tree levels?

» In the constructive episodes where a new tree was created, those trees tended to be small:
about 3 to 5 nodes.

5.3.4.2 How Does Order of Creation Correlate with Final Position?

Writer’s using this software laid out nodes in two-dimensional trees. How much brainstorming
actually took place with this system; were nodes generated in the order they were used, or were
they moved and re-ordered until a desired positioning was found?

To determine the relationship between when a node was created and its final tree position, [gen-
erated a pre-order walk of each document’s final tree structure. The nodes in a session’s final tree
were numbered according to the order in which they were created. A Pearson correlation was
then calculated between the two sets of numbers.

Table 39. Distribution of the
ordenng correlation values among
the 45 documents

Pearson coefficient Frequency

-1.0t0 -0.8
-0.79 to -0.6
-0.59 to -0.4
-0.39 10-0.2
-0.19 10 0.0

0.01 to 0.2

021 004

0.41 0 0.6

.61 to 0.8

081 to 1.0

—_
SN = RN OO

Correlation between final position and order of creation

range: -0.53 to 1.0
median: 0.53

mean; .42
std dev: 0,39

121

Discussion:

» The results showed strong correlation between the order of node creation and the sequence of
nodes found in a pre-order walk of the document tree.

* In 1989, Lansman working in a study with the Textlab group, found correlations among her
17 sessions that ranged from -0.16 to (.99, with a mean of 0.48. My values, for 43 docu-
ments, ranged from -0.53 to 1.0, with a mean of about 0.42. These mean cocfficient values
are sirmlar; my rcmge may be largcr because it had more subjects in less controlled condi-

tions.

* Do longer sessions imply more or less correlation?
The analysis showed a mild negative correlation between the session times and the preceding
coefficient: r = -8.27. This suggests that more experience and longer sessions imply more
exploration of a tree’s structure.

= Sessions with high correlation:

S25R0301: The subject constructed a tree with 20 nodes and 0.999 correlation between the
order of node creation and the tree position. These nodes were not labeled. This
is even more unusual, since there were many MoveNode commands.

S10R0104: In this one case of perfect correlation, the subject left the comment “This is the
first time I am using Prose [1.” Only six nodes were created in this session.,

= Pre-ordering was used in this analysis because it is the familiar ordering in Western culture

' for unraveling a hierarchical document into a linearly sequenced text. A future study might
considering examining other orderings, seeing where there are high correlations, and what
other factors they may correlate with. -

5.3.4.3_Which Node is the Final Root?

When is the main point in a document created? This discussion is motivated by a paper
(Bereiter, Burtis, and Scardemelia, 1989) that reported a bimodal distabution of “time until the
main point.” They found one mode at about 1 minute and the other mode at about 6 minutes.

In 35 documents, complete trees were saved (although 45 documents were saved by the subjects,
ten of these involved work on previous documents whose structure was not known by the
tracker). For 25 of these, the root of the tree was node number 1. There was no particular
pattern among the other 10 documents: 2, 5, 8, 9, 17, 17, 17, 25, 32, 48. For the 10 documents
whose root was not the first node, the mean time to creation was 16.8 minutes, with a standard

deviation of 10.5 minutes.
Discussion:
» Most subjects knew their main topic before they started.

+ Like many other results in this study, the frequency distribution shows an early peak and a
long trmlmg tail.

* The results do not directly support the bimodal dlstnbutzon reported by Bereiter, Burtis, and
Scardemelia. However, they reported on the time until the main point, whereas [looked at
which node was the eventual main point. Measuring the time until the first node is created is
another test that could readily be added to the parser and examined in a future study.

122

5.3.4.4 Are Nodes Created Left-to-right and Top-to-bottom?

When subjects create new nodes, where do they tend to position them? After watching my own
behavior, my guess was that a new node is generally created below, and to the right of, the last
node created. To test this, I considered a simple vector addition scheme of summing the total x
and y coordinate values, but realized it would not work, since one oddly-placed node can sway

the resulting sum.

[devised a scheme where the parser compared a new node’s x and y coordinates with those of the
last node created. If the new node’s x coordinate exceeded the last node’s value, a count was
mcremented; if it was lower, the count was decremented. A similar count was maintained for the
v coordinate. If my conjecture was true, the x-count would be positive and the y-count would be
negative, corresponding to moving to the right and down in the Cartesian coordinate system.

For the 27 single-document sessions, the statistics are shown below:

x coordinate count

range: -3 (S20R0101) to 25 (S17R6201)
median: 3

mean: 4.0
std dev: 5.2
y coordinate count

range: -18 (S22R0101) to 7 (S17RB201)
median: -3
mean: -4.3
std dev: 5.9
Discussion:

o There is a wide variation in node layout patterns (the standard deviation is larger than the
mean), but the results still suggest a classic left-to-right and top-to-bottom creation of nodes.

*+ The X and Y coordinate counts _(median, mean, and standard deviation) match up well.

» S$17R0201 was unusual; in this session the subject moved strongly up and to the right.

5.3.4.5 Early Planning and Late Writing vs. Alternation?

What proportion of planning preceded writing? Did subjects” writing tend to conform to a two-
stage model of writing (i.e., planning first, followed by writing or revising)?

To test this conformance, Lansman (1991) developed an index called the Stage Index. This index
was designed to gquantify the extent to which planning time preceded the time for writing and
revising. In order to understand this index, imagine computing—for every minute of wnting
time—the proportion of total planning time that preceded that minute of wrting. The Stage
Index takes an average of these proportions across all the minutes of writing. For example, if a
subject completed all planning before beginning to write, then for each minute of writing the pro-
portion of planning that preceded it would be 1.0 and the average, the Stage Index, would be 1.0.
The index can vary between close to 0 and 1.0. In practicality, 0.0 and 1.0 are hard to reach,
since at least one node must be created before writing occurs, and since pauses can separate the

writing periods at the end of a session.

123

Among the ten sessions with substantial writing (see Iigure 33 on page 169), the Stage Index
values are shown below:

Stage Index, among 10 sessions

range: .40 (S15R0202) to 6.81 (S18RO108)

median: 0.55
mean: .56
std dev: §8.14

Discussion:

+ The mean and median Stage Index values tended toward the low value in the ranpe, indi-
cating that planning and writing were generally intermixed in these 10 sessions.

+ The standard deviation was relatively low. However, the sample size of ten was small, since
few sessions had substantial amounts of writing.

« Lansman, Smith, and Weber (1991) descnibe Stage Index values for a study with 17 subjects;
the values ranged from a minimum of 0.58 to a maximum of (.98, with a mean of 0.78. In
the sessions they observed on the WE system, planning appears to precede writing to a much
greater extent. This might be explained by the different design of the two svstems, where
planning is encouraged in distinct windows. These windows lead a user to create and struc-
ture their document trees before a text editor becomes readily available.

+ In the two sessions at the extremes:

S15R0202: which had a Stage Index value of (.40, got that value because several nodes were
created and edited early in the session, followed by a pause of 26 minutes before
work on the session was completed. Long pauses are not accounted-for well by
the Stage Index. Like many other aspects of this study, this index scemed to
operate well in controlled, continuous-work environments, but was not robust in
some actual settings.

S18R0O108: which had a Stage Index vaive of 0.8], was unusual in that all the creation,
labeling, linking, and movement of the nodes was done before any writing in thé
nodes. This Stage Index of 0.8 might be as high as can be practically reached
using these analysis tools and this software,

5.3.4.6 What Patterns are Seen in the Sessions?

Finally, stepping back and looking at all the productive sessions, were there a set of overall
writing schemes that appeared? With the large amount of data available, there were many ways
to look for answers to this question. The best answer correlates different patterns with the
number of nodes being worked with.

Besides the four categories of non-trivial sessions described in Figure 32 on page 168, the sub-
stantial sessions can be grouped by the number of nodes created in that session. Our first conjec-
ture was to divide the sessions by groups of 10 nodes, that is, sessions with | to 10 nodes, sessions
with 11 to 20 nodes, sessions with 21 to 30 nodes, and s0 on. Examining all of these sessions, we
instead found three natural groupings: those sessions with 10 or fewer nodes those sessions with
11 to 21 nodes, and those sessions with 22 or more nodes.

Among the features evident in these groupings are some concepts 1 borrow from the game of
chess: the idea of an “opening move,” a “middle game,” and an “end game.” These concepts are
discussed below.

124

Sessions with 10 of Fewer Nodes: There were 13 sessions in this group. For the most
part, these sessions look like learning or experimentation by their subjects. For example, in 4 of
the sessions, there were no labels or only one label on the nodes. 5 of these sessions involved at
least some writing in the nodes.

This was little pattern to the opening moves in these sessions. These sessions were not time-
cfficient, probably because of 1) the fixed startup and takedown costs, and 2} the ongoing cxplora-
tron of the Prose [7 features by the subjects.

These sessions were clearly different from the trivial sessions, however. For example, comments
were left in the tracker only twice among all these sessions, as opposed to many comments left in
the trivial sessions.

Sessions with 11 to 21 Nodes: There were 22 sessions where 11 to 21 nodes were created.
As a group, three different pattems can be seen in these sessions.

Brainstorm ideas, then link
Brainstorming was evident in 4 of these sesstons. The subjects created and labeled all

or most nodes, then linked them together into trees.

Incremental development
In 9 of these sessions, the subjects created and labeled a “critical mass” of nodes, then

linked them into a tree. The rest of the session consisted of creating new nodes and
incrementalty linking them into the existing tree. The tree was frequently tidied
{almost compulsively) after each set of new nodes was linked into the tree.

Unstructured exploration
9 of these sessions evinced undirected exploratlon of the problem: many Roam,

Zoom, Move, and Breaklinks commands were interspersed among brief constructive
episodes.

An opening move was apparent in many of these sessions: usually 3 to 6 nodes were created in
the first constructive episode. Only 2 of these 22 sessions could be considered efficient in the
number of commands performed or the elapsed time, given the number of nodes they created.

Sessions with 22 or More Nodes: In 9 of the sessions, 22 or more nodes were created.
Most of these sessions start with an opening episode where 6, 7, §, or'9 nodes are created and
labeled. After that, the general pattern was incremental development.

Subjects appeared to be experienced with Prose I before tackling these larger documents. This
was indicated, for example, by the fact that little help was requested among these sessions; sub-
jects did not tend to tackle large documents without experience with the system. Also, 4 of these
9 sessions were efficient in the number of commands performed or the elapsed time, given the

number of nodes they created.
There were a pair of unusual sessions in this group.

S18R0108: In this session, 27 nodes were created, labeled, and linked, then all of them were
written . The document was all laid out and organized before any writing occurred.

SO02ZRO101: In this session, 28 nodes were created and labeled, then all of them were linked into a
tree. All the ideas were laid out onto the workspace before they were hierarchically

organized.

5.3.4.7 Summary: Planning and VWritine

« Trees generally had 3 to 5 levels, consistent with the conventional structuring of documents
into chapters, sections, subsections, and paragraphs. No tree had more than 10 levels,

. Most trees had between 15 and 30 nodes. Most saved documents consisted of a single, com-
plete tree.

* A rode’s order of creation generally correlated with its final pre-order tree position. Nodes
created early in a session ended up high in the structure trees; nodes created late were fow in
the trees. Two-thirds of the time, the first node created was the root of the eventual tree.

» In terms of spatial positioning, a node 1s generally created below and to the right of the node
created before it

+ Planning and writing were generally intermixed. Only one session had all the exploration and
planmng before any of the writing.

+ Sessions showed natural groupings according to how many nodes were operated upon during
the sessions. The groupings appeared to reflect the subjects” experience with Prose I1. Ses-
sions with 22 or more nodes looked similar: a critical mass of nodes were created and linked
into a tree, which was incrementally developed. Sessions with 11 to 21 nodes showed three
kinds of behavior, possibly because the number of nodes was manageable enough to be
manipulated in several ways. As with the sessions with 22 or more nodes, trees were incre-
mentally developed in some of these sessions. In other sessions, all the nodes were created
and labeled before any were hierarchically linked. And in the third group, subjects’ behavior
looked almost turbulent, as they searched for the right ideas and relationshtps among them.
Sessions with 10 or fewer nodes showed hittie overall patterns.

5.4 A Portrait of a Session

With the information learned in this analysis, we can construct the story of a typical user and
session (although there was no session exactly like the one portrayed here).

The user starts work on a document by launching Prose [I, opening a new workspace.
The session Jasts about 35 minutes. About half of the total time is spent in pauses
between commands; the pauses are around three seconds or less in duration, although at
some point in the sesston, a long pause of about two munutes is taken.

The session is spent creating a document tree, that is, an outline of the elements of the
document being constructed. Most of the commands that are executed are creating,
labeling, and linking nodes, although the user writes some extended text in a few of the
nodes. The labels are short and to the point; they average four words with seven letters
per word. It takes about 15 seconds to type and save each label.

The document tree has about 20 nodes, in a tree four levels deep. The tree is laid out in a
top-down manner; the title of the document is the first node created, followed by the nodes
in the first chapter, then the nodes in the second chapter, and so on. A few of the nodes
are moved, but nodes are generally put in the nght place to begin with. The user operates
it a manner where they are creating and labeling nodes quickly, then linking them into the
growing tree. Several times in the session, the user tidies up the tree. Since it is hard to
see afl ‘20 nodes on the screen along with -their labels, the user must roam to different
corners of the workspace to find more room. This is done about five times before the

document tree is complete.

An analysis of the session shows about 120 commands were executed by the user during
the sesston. These fell into natural groupings, with about four commands in each episode.

126

Most of these episodes consisted of creating solo nodes, cditing existing nodes, and linking
nodes into existing trees. Over the course of the session, these episodes formed into phases
of similar activity. There were about six phases in the session, with about five episodes per
phase. Two of these phases were exploration: creating and labeling new nodes and moving
them into position. The other phases involved constructing the document tree and
touching up its structure. At the end of the session, the tree is saved once, in the Script
format favored by the IBM employees who were the users in this study.

127

CHAPTER 6. OBSERVATIONS ON AUTOMATING
PROTOCOL COLLECTION AND ANALYSIS

This project was designed to examine the feasibility of automating both the collection and anal-
ysis of protocols. A goal in automating these steps is to allow naturalistic studies of the inter-
actions between humans and computers. Reports of naturalistic studies are important if systems
developers and researchers in human-computer interaction are to draw. informed conclusions on
tasks, strategies, and software usage.

This chapter reports on the costs, problems, and suggested improvements related to automating
protocol collection and analysis. In the first section in this chapter, [discuss the tssues I encount-
ered collecting and managing the protocol record files in this study. The second section discusses
my observations on building and using the parser and protocol analysis tools. The next two
sections list the enhancements to the tracker and parser that I recommend for future research

efforts.

6.1 Collecting and Managing Protocol Records

How big were the files that were collected? How big were the parse trees generated by the parser?
How much data can be expected for this type of a study? These statistics are presented below.
The second subsection examines the significant problem of managing the session recordings and
analysis data. o

6.1.1 Protocol Data Statistics

112 protocol record files were collected in this study. The 112 files together took 1,053,000 bytes,
small enough to fit on one high-density personal-computer diskette.

Protocol record file sizes

range: 736 bytes (521R0161) to 102,428 bytes (S17R9161)
median: 6,476 bytes

mean: 9,405 bytes
std dev: 12,889

A file about the size of the mean contained 130 lines, including the seven-line header in each file.

Because the tracker captures the secondary commands, [did not assume the size of a protocol
record file would correlate with the amount of work done in a session. For example, small moves
of the root of a large tree cause many secondary commands to be recorded, making the size of the
protocol file out of proportion to the number of commands done. However, the file size and
number of commands were surprisingly well correlated: r = 8.967.

128

With a mean session time of 1447 seconds, the tracker produced an average of about 6.5 bytes of
protocol data per sccond, which is 23,400 bytes per hour. This is about 373 lines of protocol data
per hour, or between 6 and 7 pages of protocol record per hour.

The parser produced parse tree files that were about 30% smualler than the protocol record files.
The total size of all 112 parse tree files was 704.820 bytes. Including the intermediate files
produced by passes 0, [, 3, and 4, the parser produced 360 files, with a total size of 3,290),[54
bsytes—about three times the size of the protocol records. The range of parse tree sizes is shown
in Figure 30 on page 130. '

30

25-‘ ... B LT IS TEEEEEPPE ettararearaaeaeeaamee

Frequency

750 1000 1250
Number of parse tree nodes

Figure 30. Frequency distribution of parse tree sizes across 112 sessions. This chart shows the
number of nodes in the parse trees generated by the parser.

The automated parse generated 112 parse trees, with the following size characteristics:

Parse tree sizes

range: 7 nodes (S21RO181) to 1398 ncdes (S17RO101)
median: 112 nodes

mean: 166 nodes
std dev: 212

129

On a 16Mhz 80386 personal computer, it took 35 minutes to run the parser against the 112 pro-
tocol record files. Thus, it took about 20 seconds to parse a single protocol record.

6.1.2 Managing Session Recordings

Soon after I sent the Prose {[package to the potential subjects, I began receiving their protocol
files on the network. The first unanticipated problém was the naming convention for the files. 1
implemented Prose {1 to use a Windows-specitic call to generate a unique name for each recording
file on the machine it was being run on. These names look like ~RCD1300.THP in DOS. 1 did
not anticipate the name conflict among files from different subjects. When uploaded to an IBM
VM host, the initia tilde was not accepted as a valid character. Subjects took this as an opportu-
nity to rename their files or to combine them into larger packages. When I received the files. [
had to carefully account for each file by each subject; the filenames I received differed from the
filename strings the tracker had recorded in the header of each protocol record.

[quickly settled on a naming convention that identified each subject, document by that subject,
and session for that document. For example, the session entitled SO8R0201 indicates subject
number 08, document number 02, session number 01. This naming convention was implemented
by looking inside each protocol file. [determined not only the chronological sequence of files
received from a subject (by looking at the date and timestamp), but whether this session con-
tained work on a new workspace or on an existing workspace. My quick evaluations were some-
times later proven wrong; also, they did not account for trivial sessions and sessions consisting of
work on multiple documents. Nonetheless, this naming convention proved stable. I kept the
filenames throughout the study, as shown in Table 40 on page 164.

This hand-assignment of names was part of a major issue uncovered in this study: the manage-
ment of session recordings. Because a single session could be efficiently analyzed, I did not antic-
ipate a new class of problems: management of the massive amounts of raw and processed data.
All this data needed unique sames and some type of atinbutes to identify it. The 112 sessions in
this study were managed by hand. Thus, the groupings of attributes such as subjects, documents,
and sessions, had to be done by hand. Scaling up to thousands of sessions will require more
sophisticated tools.

For example, I produced Table 40 on page 164 and Figure 32 on page 168 by hand. Over the
months of analysis, T found numerous transcription errors in these despite the care [took.
Finding a bookkeeping error (such as missing a session) involved the painstaking itemization of
all 12 sessions.)

The sequencing of the parser passes was automated using the software utility Make. 1 constructed
cach Make input file by hand. The Make files were rarely touched once I felt they were right,
implying a loss of flexibility.

Another unanticipated problem was the interweaving of subjects, documents, and sessions.
« Subjects worked on documents that spanned one or more sessions.
= Subjects worked in sessions that included several documents.

— Some subjects worked on a single document during several sessions in a day. Other
subjects left their Prose /I window active but unused for long periods of time. Could
the analysis account better for the difference between a very long pause (e.g., an hour),
and exiting the system and entering it again within a short time period?

— Some subjects worked with Prose /[for a while, exited it, worked on the document with
a real text editor for a few dayvs, then came back and used Prose {1 for a session with the
updated document. How should the analysis account for the discontinuity in the work
on a document? '

130

+ Some subjects revised documents that had already been written using a different text editor.
Prose I proved amenable to this sort of work. Ilow should the nodes in such a document

be accounted for?

+ It did not appear that multiple people shared work on a session or a document, but that
situation could occur often iIn muny environments. The current coilection techniques were
not prepared for multiple sequential or concurrent authors.

6.2 Automating Protocol Analysis

The parser and associated analysis tools developed in this project proved suitable for generating
answers to the many questions discussed in. Chapter 3. The questions, answers, and statistics
presented in the previous chapter explored a wide range of areas, providing a composite view of
this group of subjects, how they spent their time with this software, and what kinds structures
they worked with. At the outset of the project, a key research question was “What kinds of
questions is the protocol analysis designed to answer”?

The parse output provides researchers with the same kind of information that it provided Card,
Moran, and Newell in their /CARUS study: a guide to how time was spent in a session with a
software system. Besides segmenting a session and characterizing the sequences of commands, the
parser also produced a set of statistics, summarizing many aspects of the session. An example of
a session summary is shown in Figure 24 on page 90.

6.2.1 Devising and Testing the Parser

The parser described in Chapter 4 evolved from the protocol analysis described by Card, Moran,
and Newell in their {CARUS study. We designed each pass of the parser by first taking protocol
records and analvzing them by hand. How should a given sequence of commands be parsed? We
came up with consistent answers in our manual anajysis, then had to find a way to generate the

same answers with the parser.

[first completed Pass 0 (converting from the protocol record text to computer-oriented
16-tuples), since its success involved a close marnage between the syntax analyzer and the tracker.
I worked next on Pass 2 {characterization of housekeeping episodes), since its success was neces-
sary to define the constructive episodes, which are the crux of the analysis. Pass 3 (characteriza-
tion of constructive episodes) evolved over a year. It requires a great deal of context information,
and a lot of experimentation was required to determine just what that information was and how it
should be carried. Pass 4 {characterization of phases) also had a long gestation period, since [was
trying to understand exactly what the output symbols should be and what sequences of eptsodes
determune each phase. The collection of session statistics in Pass 5 s a process that continued
throughout the project. Finally, several inconsistencies caused problems that had to be solved
somewhere; Pass 1 resulted, late in the project.

The parser describes how time was spent in a session, in addition to looking at the products
produced over time. A helpful enhancement would be a fool-proof way to identify the different
groups of session types (as shown in Figure 32 on page 168), particularly trivial sessions. Card,
Moran, and Newell did not have 1o deal with these groupings m their single analysis. With about
160 sessions, the categorzation could be accomplished by hand. With more session data,
however, the categorization should be automated.

The way that this parser was developed and refined depends on a2 human analyst examining the
mmput and deciding how well each of the various output sequences describe the input. People
must do the leaming and convert the learning into changes in the parser. It may be that refining
the parser is a job well suited for technologies such as neural networks or expent systems. These
technologies were not used in this study because they generally provide little information about

131

their internal operation. However, in future automated protocol analysis software, I would con-
sider using a technology that decreases the amount of human time needed to construct the parser.

6.2.2 Key Decisions

What key decisions were made in formulating the grammar and parser? What hypotheses_ about
cogmitive processes are built into the parser?

To use pauses to separate identifiable episodes.
[chose to depart from the Textlab version of “modes™ in favor of more detailed anal-

ysis in terms of eptsodes. Thus, the use of pauses i this parser contrasts with the IWVE
system, where modes are associated with specific windows in the workspace. In WE,
changes in modes are distinguished by changes in which window a subject is working.

Having chosen to use pauses to separate penods of activity, I proposed that the
periods of activity between these pauses could be identified and reasonably character-

1zed.

To separate subjects” activities into two groups: housckeeping episodes and constructive episodes.
In this grammar I proposed two types of episodes. The episodes occur sequentially,
not simultaneously.

To assume that cohesive periods of cognitive work are ended when 2 person pauses or does a house-
keeping operation. '
[chose to delimit each constructive episode by the periods of housekeeping or long
pauses that precede and follow it. This software system is designed to allow a human
to performn useful work, not necessarily to spend their time doing housekeeping.
Stated another way, in the periods between this housekeeping and long pauses, con-
structive work is accomplished.)

To allow housekeeping episodes to occur in sequences.
The long pauses and periods of housekeeping can be of indefinite length. Identifiably

different types of activity can occur during those pertods.

To form composite descriptions for some constructive episodes.
During the periods of work, a human might pursue multiple, simultaneous goals.
These can be complexly interwoven, yet executed in rapid succession. The character-
izations of the constructive episodes reflect this complexity, with their multi-part

descriptions.

To characterize episodes and phases with a small group of names.
[proposed that the set of identifiable episodes and phases could be smail enough that
they can be easily explained to other humans, that they correspond to known type of
cognitive tasks, and that they can be recognized and characterized by an automated

parser.

To rewrite the internal representation for dense state machines.

Dense state machine are difficult to maintain and comprehend. The state matrices I
originally developed for the parser passes were easy to understand when they were
sparse (i.e., when, for a given state or input, there were few transitions to other states).
They soon developed paths through them that were difficult to anticipate and visu-
alize. Re-writing them using YACC source was helpful in clarifying the sequences. In
doing this, many parallel sequences were found and described as such; several
sequences clearly i error were found.

To vary the grammar powers among the passes of the parser.

For any task, you generally want 20 use the simplest tool with sufficient power to
complete the task and not waste the resources of the human user. For each pass of

132

the parser, [used what I considered the simplest technique with sufficient power to
characterize the sequence under consideration—all within the framework of an ATN.
Breaking down the parser tnto smaller components made its design, implementation,
and incremental refinement more modular and intellectually manageable. Section
4.2.2 on page 61 describes the power of cach pass and how the passes were used.

6.2.3 Parser Robustness

How robust is the parser? Did the parser converge? [low is this measured?

The parser is constructed to handle any syntactically-valid input string. Therefore, the question of
robustness became more a question of looking for weak and wrong characterizations of command
sequences. In contrast, anyone can create a syntactically invalid input file by deleting a line or
sorting the lines in a protocol record file. The parser does not make any attempt to handle an
invalid file. One of the 112 files from the study was invalid, since the subject had attached a
paragraph of text to the bottom of the ASCH file. Pass 0 of the parser failed, and | fixed the file

by hand.

When this study was originally designed, our plan was to parse 20% of the recordings, fix any
problems, then try on the next 20% of the recordings. - Presumably, fewer problems would be
found if the parser was converging. How many of the session protocols could not be parsed with
the initial grammar? Could we characterize the problem in terms of what changes had to be made

in order to parse all the protocol records?

That approach works only if all the recordings are homogenous in character, however. For
example, only a few of the recordings include the Scramble command; problems with that
command would only be evident in the recordings that contamned it. Also, by automating the
parser operation using Make it was as easy to process ALL the files as a group as it was to parse
just one. ' '

I had the parser tested and operating for more than a year before I began this study. For
example, I showed its operation at the Hypertext ‘87 conference in November 1987. [assumed
that no further changes would be made to the parser by March 1989 when all the 112 protocol
records had been collected. [was wrong!

The following list describes the bugs and modifications made to the parser since the end of the
protocol collection pericd.

Date Description
3/7/89 Added missing Format parameter for SaveWorkspace in the Pass 0 YACC input file.
3/7/89 Corrected the state transition for QutiineWindow when in state | of Pass 2.

3/7/89 Added handling for the BreakAllLinks and Scramble commands, missing from Passes
2 and 3 altogether.

3/7/89 Added handling for the ChangeDefault command, missing from the Pass 0 YACC
input file,

3/9/89 Added handling for the BreakAlll inks command, missing from Pass 0 YACC input
file.

3/9/89 Corrected the state transition for QutlineWindow when in state 5 of Pass 2.

3/13/89 Corrected the -parameters for the CopyNode command. CopyNode was expecting a
NodelD and a set of coordinates in the Pass 0 YACC input file. Instead, the ID of
the source node and the newly-created node ID are the parameters.

133

3/13/89

3/13/89

3/14/89
3/14/89

3/14/89
3/14/89

3/16/89
3/17/89
3/17/89
3/18/89

3/18/89

3/19/89
5/13/89

5/14/89
5/14/89
5/14/89
5/14/89
5/16/89
5/16/89
6/1’9/89‘

6/26/89

Corrected the paramecters for the CopyNode command. CopyNode lists Parent![)(0)
in the recording. This was changed after the system was first shipped, because of a
bug. Both forms are now accepted.

Modifted input symbols by hand, changing them to an uppercase X (so they could
later be distinguished from the lowercase x used in all labels). LEX rules did not
handle symbols above ASCII 127, which includes characters from foreign languages,
such as Greek and Finnish.

Lipdated a few older recordings to match the latest command names and parameters.

Generated the end of the text parameter by hand in some protocol records that [pre-
maturely clipped. This occurred for three labels in SI9R0I01, and for 2 comments.
The IBM Personal Editor II text editor clips text strings longer than 255 characters.

Removed the note left by Subject 20 1n the béttom of the ASCII recording fite.

Updated the Pass § YACC input file. It had always converted MapWindowZoom to
MapWindowRoam.

Added missing TreeGrow and TreeShrink commands to from the Pass 2 state table.
Corrected the handling of Canceled and Invalid commands in Pass 3.
Added the missing mput symbol META COMMENT to Pass 4.

Separated QutlineWindow into QutlineWindowOgpen and OutlineWindowClose (anal-
ogous to the MapWindow commands) in Pass 2.

Corrected an invalid state transition in Pass 2. MainWindowReset went to state 2
from state 4 {should go to state 5).

Integrated the handling of very long pauses into Pass 2.

Converted Pass 2 from a hand-tailored state machine coded in C to a YACC input file
with a lexical analyzer.

Corrected the handling in ‘Pass 3 that occurred when nodes were deleted because of
starting over.

Modified the output of all passes to allow it to be directly imported nto any DOS
spreadsheet.

Added tracking for the accumulation of the “number of commands” to the output of
all passes. :

Fixed the Pass 4 FSM to correct the output for Document Revision (was being
bundled under “Top Down Construction™).

Modified Pass 3 and Pass 4 output to produce single characters—to simplify
spreadsheet graphs.

Modified Pass 5 to produce IBM BookMaster-compatible output. This made it easier
to print all of the parse trees on a mainframe laser printer.

Modified the Pass 3 to output the workspace tree each time a SaveWorkspace
command is done.

Added Pass 1 to handle its unique cases:

1. Maps the following into the single symbol: EditNode. The subject has actually
brought up an editor, which caused an exit from Prose {1 proper.

134

6/26/89

7/9/89

7/26/89

8/7/89

8/18/89
8/18/89

H/12/89
12/23/89

« EditNode
’ [eaveProsell

[o]

Map the following into the single symbol: TidyWorkspace.

* SetTudyModeOn
* pause
= SetTidyModeOff

3. Maps the following into the single symbol: Delete Node.

SetDeleteModeOn
pause

DeleteNode

pause

SetDelete ModeOff

These sequences were by-products of using modes and how the system interacted with
other windows. Updated Pass 5 to read symbols from Pass 1.

Modified the Pass 3} output of workspace trees—to output them in a standard
spreadsheet format. This allowed easy running of the Pearson correlation, to correlate
the order of node creation to the node’s position in the final tree.

Fixed bugs in the sumnia.ry pass caused by looking at the flags of Pass 3 output
symbols. Rebuilt the summary output to be much rnore extensive: it now has 30
summary fields. There are still some fields that will need to be added by hand, such

as average label length.

Added an additional check to Pass 1. Some editors caused the ordering of the com-
mands to be reversed. Pass | now correctly maps the following commands into the

single symbol: EditNode.

. LeaveProsefl
» EditNode

Cleaned up the file names and Make files to clearly identify the passes to the uniniti-
ated. '

Fixed Pass | to recover comectly from concatenated sequences.

Adjusted Pass 3, so CreateNode and DeleteNode in a constructive episode maps to
the Unproductive Work symbol.

Added a field to the Pass 5 summary information: total pause time.

Added a field to the Pass 5 summary information: Stage Index.

6.3 Tools Used in the Protocol Analysis

‘Besides the basic six parser passes, several other tools and techniques were used to further auto-
mate the analysis and to rmake it faster and simpler. These are discussed in this section.

[used the following software as the base environment for the parser development and protocol

analysis:

« DOS 3.3 operating system
« FileCommand 3 DOS shell
e Personal Editor IT 1.01b text editor

+ GSEE general filename searcher
I used the following software tools to develop the parser:

Microsoft € compiler 5.1

Microsoft Make 4.07 program maintenance utility
LEX -

YACC

[used the following software tools for the protocol analysis:

Quattro 1.0 spreadsheet

MYSTAT statistical analysis package
Ready! 1.0 outline processor
GFIND general string searcher

6.3.1 Helpful Tools and Techniques

The following tools and techniques were particularly helpful for developing the parser and doing
the protocol analysis:

Use ERRORLEVEL to control program interaction.
DOS (and other operating systems) allow programs to return an integer value to their
callers upon exit. In DOS, this is known as the ERRORLEVEL. I defined unique
ERRORLEVEL values for each of the fatal errors in each of the passes of the parser.
These allowed for easy identification of an error during parser development.

Use stdin and stdout for file input and output.
: The generic file streams available in DOS (and other operating systems) made the con-

nection of the parser passes simple and casy to test. The output of one pass was
easily piped into the input of the next. For testing and collection of statistics, the
cutput could be sent to a file and examined later. These proved good object- _oriented
tools, as espoused by Cox (1986).

The lLiabilities of using stdin and stdout are two: no simple checkpointing and no
passing of complex datz structures between programs. These did not pose any
problem in this study. Checkpointing might be a necessity in a future system that
does online parsing. Complex data structures were accommodated by using a single
template to read the input and write the output for Passes 1 through 4.

Save Intermediate files in-spreadsheet format,
I initially invented 2 unique format for the intermediate parse files, but later realized

the many benefits of being able to look at the output of any pass or any session
summary using a sta.ndard DOS spreadsheet:

» Easy to examine proportions, for example, the proportion of total session time
spemnt in pauses.

Easy to do frequency analysis.

Easy to calculate mean, standard deviation, median.

Easy to replicate complex equations.

Easy to break data mnto groups, for example, all sessions with a2 non-zero Stage

Index.
» Easy to sort large body of data with several keys simultaneously.

* Easy to produce and tailor graphs.

I used the Quattro spreadsheet, which is compatible with the popular Loius /-2-3.

136

Use Wake to automate parsing

The parsing process for all the passes and all the sessions is driven by a single Vake
input file. This completely automated the job of analyzing a large number of sessions.
Some advantages of using Muake to automate the task of parsing are:

* Error checking is simplified. “The parser stopped if any error is found in any
parsing pass. [he returned ERRCRLEVEL value is displayed when Make completes.

» ltis easy to run a parse against a subset of sessions. For example, a certain factor
could be genecrated in all of the “trivial” sessions. Once the set of tnvial sessions
was determined. they could all be put in one Makefile, and only the programs run
against thern need be changed.

* Consistency is guaranteed across all sessions being anaiyzed: “Apply this opera-
tion to all recordings.” The same sct of programs and options was run identically
against all sessions in a Makefile. Out-of-date analyses were overwniten. When-
ever a modification is made to one of the parser passes, it is easy to test it.

» It was simple to start it up and let it run to completion.

« It was simple to stop a parse at any time, and then to later resume right where 1t
left off. ‘

The Lability of using Make was that the Makefiles had to be created and maintained
by hand. As always, any time [worked with such files, I introduced human errors.
For example, I would accidentally duplicate a filename in one place, but not in
another. These errors often took a long time to track down.

6.3.2 Tool Limitations and Problems

I encountered the following limitations with the tools I was using:

The DOS version of Make shipped with the Microsoft C compiler could not handle more
than 70 files. With 112 recording files, this implied breaking the protocol record files into
two groups in order to parse all of them. Since Makefiles were constructed by hand, this was
another possible source for errors.

The Ready! outline processor would not handle outlines or trees with more than 700 records
or 77 characters per line. This limited its useful for looking at parse trees—although only two
of the parse trees had more than 700 nodes, many labels were longer than 77 characters.

A parse of all 112 sessions produced about 800 files. While the DOS shell I was using,
FileCommand 3, could hold all 800 file directives in its memory simultaneously, it did not
have enough memory left to run the Quattro spreadsheet.

The SORT command in POS can only sort files whose size is less than 64 Kbytes. This was
not a significant problem whenever. the data was in a format that could be used as input to a
spreadsheet, since spreadsheets can sort files larger than 64 Kbytes.

The Quattro spreadsheet sorts spreadsheet data with a maximum of 5 sort keys.

The Quattro spreadsheet accommodates 8192 rows. The study included 7370 pauses, which
were sorted for analysis and locked at in various ways. So, although this was not a limita-
tion encountered in this study, a study that was shightly larger would have needed other tools
to look at a list of this approximate size.

Quattro spreadsheet graphs are limited to a maximum of 175 items on the x-axis. 1 used
Quattro to look at the time duration of episodes in a session; this restriction caused a
problem when there were more than 175 episodes in a sesston.

137

Scanners generated by LEX restnict their input character set to be the seven-bit ASCII
svmbols, numbered in decimal from 6 to 127. The scanner used for Pass 0 of the parser
balked with labels cntered by subjects in Greece and Finland.

The 1BM Personal Editor 11 text editor could only edit lines with 235 or fewer characters. |
truncated a few long labels and comments unexpectedly.

6.4 Enhancements to the Tracker

While using the tracker and its generated protocol recordings, [compiled: this list of future
enhancements that could tmprove its generality and usefulness.

I.

|

Add checkpointing of protocol record files.

If a sesston is ended abrupily by re-booting or powering-off the machine, the entire protocol
record for that session is lost. By adding periodic checkpointing, a significant portion of the
protocol record could be saved.

I did not plan for this in the design of the tracker, but did not receive any repons of whether
it would have been helpful to any of the subjects. [did encounter this situation myself
during a power failure, and realized the value of preserving as much as possible of each pro-
tocol record.

The checkpointing could be done'periodically, or it could be done duﬁng a long pause—the
range of which has been suggested in this study (e.g., see Section 5.3.1.4 on page 98).

Have the tracker ship sessions and protocol records directly to the researchers, where desir-
able and possible.

In some network environments, users of this kind of protocol collection system could elimi-
nate the step of uploading and sending the protocol records over the network. Starting a
session could open a comumunications link directly with the computer collecting the proto-
cols, and the records could be written directly to the target (collecting) computer. Entire
screen images could also be sent over communications lines.

There are some problems with this kind of approach, however. This raises again the issue of
user confidence: if the protocol is not visible, the user does not know what kinds of secret
data might be being collect. The software also needs to handle the occurrence of line outages
and communications failures; if the network or protocol collection fails, the primary software
should continue uninterrupted.

Handle indefinitely long pauses better.

The current tracker records nothing longer than one hour, since there is no hour (or day,
week, or month) field in the recordings. Pauses could conceivably last for many hours or
days. In actual use studies such as these, machines might often be left on overnight. Card,
Moran, and Newell showed only minutes and seconds in their protocol records; significantly
fonger periods should also be unambiguously recorded

Capture additional system information in the header of each protocol record (e.g., screen size,
CPU speed).

With the state of personal computer technology at the time of this study, I guess that most
users had display screens with resolutions of 640x350 or 640x480 pixels. While Prose {1 will
work with any screen resolution, it cries out for a larger/denser screen. 1 personally used a
display of 1280x800 pixels, which felt about right. Most subjects were somewhat crippled by
smaller screens, I suspect, indicated by the fact that 25% of the housekeeping episodes were
Refocus.

138

For example, the tracker could have found the screen size in pixels; this would have been
helpful in determining how many nodes were present on the screen and how much cost was
invelved in roaming and zooming. It would also help in targeting GUT software to com-
puters with screen real estate of the most prevalent size. If an overwhelming number of
target users have screens that are 300500, writing software that works best on a 100051000
pixel screen may be counterproductive,

Additional strategy questions, such as, “Is tree size correlated with screen size?” could have
also been answered.

Add feedback options when exiting help panels.

When viewing a help panel, a user is at an “interrupt”; they have stepped out of the context
of their work to understand more about the tool at hand. With a simple modification to the
tracker, we could could identify help panels that are not sufficiently helpful. Currently, users
press an "OK” button when they have finished reading a help panel. Instead, they could
press one of two buttons to exit: “This was helpful,” or “This was not helpful.” The tracker
could collect these responses, allowing the parser to find the degree of usefulness for all the

help panels in a system.
This could obviously be extended with vanous degrees of obtrusiveness: instead of two

-buttons, there could be a sliding scale. Also, whenever “not helpful” is selected, the tracker

could request additional information from the user.

Add a word count to the parameters recorded by the Edit Node command.

When tracking the information for the EditNode command—which records the time spent
writing with a text editor—the tracker should also record a word count for the file that was
edited. This would allow companson between the number of words in labels and the

number of words in the associated text.

6.5 Enhancements to the Analysis Tools

I compiled my longest kst of enhancements mn the area of inproving and simplifving the analysis
of protocols. While this study advanced the state-of-the-art in this area, it is still not clear how to
answer best questions like “Tell me what user X did with this software,” and so on. Many sug-
gestions are offered here, collected with the help of many researchers who saw or used these anal-

ysis tools. - :

L.

Add additional visualization and graphical aids to analysis.

For example, the visual playback ability of WFE lets a human analyst get a better feel for what
occurred in a session by actually seeing each step executed by a user.

Do parsing in real-time, so it is available as a tool to the user.

Allow human intervention to guide or alter the parse.

The parser works without intervention, making assumptions about what occurred during a
sessions. An enhancement would allow 2 human analyst to mark landmarks in a session, to
be accommodated by the parser. One set of landmarks would help in resolving the ambi-
guity among muilti-document sessions and multi-session documents.

Gordon Ferguson of the Textlab suggested the idea of a parse-tree editor. It provides a form
of guided parsing: here 1s the string, now what kind of parse tree do I want to see for this?
Gtiven that, now go about defining the rules.

In addition to comments by analysts, techmiques are needed to annotate the machine-
recorded protocols and the parse trees: what do people say that they are doing? This helps

139

el

10.

get at the issue of verification. The subject can help verify and adjust the correctness of the
resulting analysis.

Consider formulating a standard protocol record format.

Is there some base format that would allow protocols to be traded among
“application-aware” tracking systems? If possible, we could convert these protocols to a
format usable by the Textlab group, to be analyzed by their cognitive grammar.

Redesign the parser to recognize the four different categories of sessions, in addition to trivial
$C3310NS.

Culling the many trivial sessions was unexpected and labor-intensive. Especially with trivial
sessions, it 15 important that when this 1s automated, there are no false positive or false ncga-
tives.

Modify the parser to avoid skewing of results because of varying time durations.

The parser should find something interesting to do with command durations that fall out of
the bounds of reason. For example, SI0R0104 contained an EditLabel command that lasted
48 minutes. Although the subject clearly stopped the task they were involved in, this lengthy
period was not accounted for as a long pause or writing in the node. This skewed the overall
times in this session for constructive episodes, phases, time per node, and so on. The same

thing could happen with Help, for example.

Handle the parser’s key decisions about pause durations with a sliding scale.

A more sophisticated parser can be envisioned where the meaning assigned to pauses of dif-
ferent durations could be adjusted on a sliding scale—as opposed to making decisions based

. on fixed points as was done here (see Section “Pauses” on page 74). To determine the clas-

sification of each pause, this shding scale could use as its input history about the subject,
their experience, and the elapsed time so far in a session. This technique might also be used
to identify individual differences in attention spans.

As a topic for follow-up research, it would be interesting to see how the mean, median, and
standard deviation values for “commands per episode” and “episodes per phase” changed as
the pause duration values were changed in the parser {see Table 32 on page 109).

Avoid ambiguity in distinguishing among long pauses and consecutive sessions.

The parser and overall analysis needs to handle better the issue of the difference between a
long pause (e.g., an hour), and a subject who simply ends a session and then comes back in
an hour and continues where they left off. Perhaps a future preprocessor pass of the parse
might review sets of protocol records from a subject and determine if they should be concat-
enated. Similarly, if a pause is sufficiently long (e.g., a day), a single session should be
divided into multiple pieces, because significantly different cognitive activities may have taken
place between the use of the system. Finally, it may be reasonable to divide sessions where a
subject works on several different documents sequentially (i.e., multi-document sessions).

Modify the Stage Index definition to handle some typical session-duration situations.

The Stage Index, as devised by Lansman, was designed to quantify the extent to which plan-
ning time preceded the time for writing and revising. {The Stage Index 1s described in detail
in Section 5.3.4.5 on page 124.) It gave a suitable indication of the intermixing between
planning and writing in controlled studies. However, in the vared behaviors seen in the pro-
tocols associated with this study, it needs modification to better handle indefimitely long
pauses, multiple-session documents, multiple-document sessions, and so on.

Account for the Power Law of Practice.

Prominent in the second chapter of Card, Moran, and Newell (1983) is the Power Law of
Practice: “The time to do a task decreases with practice.” With a well-designed user interface,

140

this bchavior should be observable over time, with practice. With the tracker implemented
here, this could be observed with longitudinal studies, with users who submit many protocol
records over time. This behavior could not be obscrved in this study, because the numbers
were too small; few subjects submitted multiple protocols, with hittle elapsed time.

6.6 Summary

The richness of results documented in Chapter 5 speaks for the feasibility of automating protocol
collection and analysis. The parser was costly to develop, and many iterative refinements to it are
indicated. However, once it was debugged, it provided useful and reliable analyses of the proto-
cols. This analysts was truly automated, including construction of parse trees, summaries, and
direct input into spreadsheets. In fact, the amount of data handled by the parser led to con-
straints in the accompanying software utilities.

When we designed this project, I assumed that the only required tools to automate protocol anal-
vsis would be the new parser. The task of protocoi collection and analysis evolved into a much
rcher process. Database management, spreadsheets, statistical analysis software, tree editors,
make, and file comparison utilities also figured prominently in constructing an overall picture of
the users and sessions. The diversity of these tools, combined with the value of their inter-
operation, leads to the need for a protocol analysts” workbench. Such a suite of tools is discussed
in the “Future Research” section of Chapter 8.

141

CHAPTER 7. OBSERVATIONS ON SOFTWARE
BUILDING

We had two intentions for the parser and analysis tools constructed for the project. First, they
should help illuminate how the software is used in actual field settings. These tools should pre-
sumably offer an effective way to do such studies. Second, the analysis should provide feedback
on the design of the software system itself, as a way to puide in its further refinement. This
chapter is devoted to the second point.

The following pages first discuss general lessons learned in this software engineering exercise. Spe-
cific feedback, in terms of change orders to the testbed software, are discussed next; these changes
were indicated by the protocol analysis. This chapter closes with a st of additional modifications
to the testbed system that were collected during its implementation and usage.

7.1 General Software Engineering Lessons

This section could be viewed as a general overview of some classic gems of sound software engi-
neering. They are stated in the context of the issues that arose in designing and implementing the
25,000 lines of code that comprise the software used in this project.

Develop complex software incrementally. '
Throughout the design and development of Prose [/, its tracker, and the parsing tools,

1 always had a running system. This afforded me the following advantages:

* Problem determination and debugging was simpler, since the system was grown
from the original PROSE system and a working demo shipped with the Microsoft
Windows toolkit. Bugs [found were almost always in code that had been
recently added, and I could go back to the last version and see my changes.

= I always had a system in a condition where I could give a demonstration. People
who saw the system, even in its earliest stages, could easily give me feedback on
the tangible system they had seen and manipulated, not on a document of specifi-
cattons. For example, early in its development it was stable enough to run exper-
iments on to study navigation techniques {Beard and Walker, 1989).

= Modifications to the systern were easily staged. These were normally isolated to
the addition of new function, although a full re-wnte of the internal memory
management was done once.

« It was easy to prototype new functions inside the framework of a system that was
already running. [invented several new tree-positioning algorithms because I
always had a testbed system within which to test them {Walker 1989).

+ This was an experimental system. [did not know ahead of time exactly what the
result would look like. It continues to evolve, with new features I never foresaw
when the project started.

142

Use the tools you are developing.
The parse trees that were generated by the parser were In a format that could be used
by Prose I1. This let me read in parse trees and manipulate them. The large size of
some of the trees turned out to be a good driving problem: could Prose [7 display and
manipulate the thousands of nodes in the parse trees with reasonable response time?

As another example. whenever 1 was using Prose [[mysclf as an editor, T generally
kept a sccond Prose {1 scssion active, to keep track of bugs [was finding or other
gripes I had. Prose I is well-suited as a place to just stick unrelafed ideas. The wdeas
can later be grouped and organized—in this case, fixes to the system could be staged.

Plan for international character translation.

[did not explicitly plan for national language support as I was building the system,
and hence made some assumptions about the characters and character sets being used.
This was not a problem with the Windows portion of the system, but did cause a
problem in the tracker and analysis tools when Prose I/ was distnbuted worldwide.
The lexical analyzer I used dealt with the one-byte ASCII characters represented
numerically by 0 to 127. [did not anticipate that characters out of this range would
be entered in node labels or search strings, since the US English verston of Microsoft
Windows 1 was using filters these symbols as part of its function. However, subjects
in Finland and Greece submitted protocol records that contained characters that were
out of this range, causing the lexical analyzer to fail.

Plan to throw one awaj'.
This is a favorite suggestion from The Mythical Man-Month (Brooks, 1968). Prose [1

was a second system. Every line of the original, character-based PROSE was touched
in my onginal port from the VAX to the PC. This let me know all the good and bad
points in its implementation. Then [started over from scratch with Prose [1.

In The Mythical Man-Month, Brooks notes problems with second systems, particularly
with system architects attempting to exceed their design constraints. [encountered a
few problems with Prose [l as a second system: it included some commands that
were fun to implement, but clearly not of value its users. However, Prose [l was
implemented from a strong research base, and it was complimentary with a pair of
concurrent development efforts, Storpspace and WE, which somewhat limited the
unusual inventions that were incorporated.

Nonetheless, the protocol analysis showed several commands that were rarely used.
Architectural fluff?

Use the power of computer networking.
Networking played a key role in this study, in much the way it did for Mead and

Conway in the development of their VLSI book (1980).

= I was an early developer of a Microsoft Windows application, before there were
" adequate published examples or books on the topic. Much interaction with
Microsoft and the Windows developers themselves took place over the GEnie
network, where Microsoft supported a bulletin board service. This helped me a
great deal in learning how to solve many problems in Windows programming.

* Prose Il was distributed for a year via IBM's internal network before protocols
were solicited. This allowed me to fix bugs and make improvements based on
users’ feedback over the network. I was confident the system was stable when [

commenced the study.

» The study was distributed to subjects in their actual field setting via the network.
The protocols were returned to me over the network.

[43

Automate festcases for visual environments.

When developing non-interactive applications, it is ¢asy to amass a large set of
regression testcases, 1o be run whenever fixes or changes are made. This is much
harder when programming in a graphical, interactive environment, where the correct-
ness of the program must be painstakingly verified by a human entering sequences and
watching the display.

[did not build any automated testcascs to test the visual environment. [wish 1 had.
To provide any kind of a regression test, I had to manually execute all commands in
the visual language, including invalid and canceled commands. [did not explicitly do
this with every version. Omne problem this caused is that some items in the List of
recorded actions were overlooked by the tracker, and were not captured.

Perfoermance counts.
Much of the acceptance of Prose [/ may be attributed to its fast performance in a

graphical environment. Many users commented positively on its speed. Early in its
development, [identified the key sections of code that were performance-crtical, and
prominently labeled them in the source code. 1 spent much continued effort on
making those sections as fast as possible.

The tracker implementation was simpler because it was able to operate synchronously.
This was possible only because of the fast performance; having the tracker always
active did not cause a perceptible slowdown in users’ commands.

Buy, rather than build.
This is another favorite maxim, from Brooks” “No Silver Bullet” article {1987). Large

savings on this project resulted from the use of a spreadsheet in the protocol analysis.
Once I had modified the parser to produce spreadsheet-compatible output, any
questions concerning frequency and correlation could be reasonably asked and easily
answered. A separate statistical analysis package, which read input in the same
format, assisted in the more-complex queries. Customized programs did not have to
be written to analyze the parser output.

Other significant savings was provided by the Make utility, which was used to auto-
mate the operation of the individual parser passes and to manage the groups of pro-
tocol records. -

Have an early scout blaze the trail.
The interchange between me and the Textlab group was a good one. 1 came up with
ideas that they implemented and vice versa. By allowing diverse teams to explore the
same set of problems, we found interesting solutions that could be quickly included 1n

the current running systems. _ :
For example, WE and Storyspace both employ the tree-positioning algorithm [first
developed for Prose II. The researchers on the HE project have taken a lead in devel-
oping tools to help manage large numbers of protocol records.

Assure conceptual integrity with a single designer.
I think the conceptual integrity of Prose I[was enhanced by having a single designer
and implementer. [conjecture that this accounted for high productivity and fast, reli-

able code.

144

7.2 Using the Protocol Analysis Tools to Guide System
Refinement

A six-pass parser served as the primary tool for examining the 112 protocol records. The parser
automated and extended the work laid out by Card, Moran, and Newell m their fJCARLS study,
What did Card, Moran. and Newell use their parse for?

* To identify three broad phases, lasting 5 ~ 15 minutes.

* To classify unit tasks, lasting 10 ~ 30 scconds.

+ To identify command frequency; they found that six different comnmands accounted for §5%
of the command executions.

» To see that their user processed elements in small groups; for example, he transcribed about
three circuit elements at a time.

+ To look at the naturc of user crrors in the session.

« To predict the overall execution time, using their Keystroke Model.

Because of the higher-level and unstructured nature of the task reported in this current project,
the last item could not be examined with the current study. The tracker used in this project did
not count individual keystrokes, since they would have greatly increased the size of the protocol
record files. Also, they were not considered essential to the higher-level user strategies we were

trying to ascertain.

Similarly, errors, in an exploratory task such as writing, are not readily identifiable in an execution
sequence without knowing a user’s intentions. However, the analysis did reveal situations where a
node was deleted, and then 2 new node was created soon after that. This could be considered a

USCr CImor.

In their study, Card, Moran, and Newell observed one subject who subject completed one session
of consistent, structured work. Automating that approach directly showed some problems not
experienced by these original researchers:

Handling of multiple documents in one session

Handling of multiple sessions for one or more documents

Handling of long, unaccounted-for pauses

Handling for undirected work, or users inexperienced with the software

The value of the parser in this project can be seen to have a wider scope than sunply automating
the analysis done by Card, Moran, and Newell, since its use was extended across many subjects

and sessions:

1. It provides a consistent classification of sequences of commands and episodes.

2. Tt reduces large volumes of protocol data to a manageable size.

3. It avoids many human data-handling errors during collection and analysis.

4. It simplifies frequency analysis of all kinds; an analyst can tell which activities were per-
formed most frequently and where the most time was spent.

5. It focuses on activities by types and sequence. In particular, this parser was not particularly

useful for making judgement about time allocations. It was also not sensitive to fast versus
slow work and to long pauses

The parser indicated the following items as areas for further refinement of the software used in
this project. -

Identify the frequency of use for the commands within specific types of sessions.
The automated parse analysis made it straightforward to see how often each of the
commands was used. Among the non-trivial sessions, more than 30% of the com-
mands were CreateNode, EditLabel, or LinkNodes. This kind of information is a
clear indication to developers of which commands to make easiest to use, which com-

45

mands to have dedicated mouse buttons or accelerator keys for, and which commands
should have the fastest performance.

I had recerved early user feedback that suggested that the LinkNodes commands
should be easter to use. ! changed its mouse interface so that a single mouse clink
creates a node, while a double click both creates a node and positions the cursor to
begin labeling 1t.

At the other extreme of frequency distnbution, there were several commands that were
used rarely. As a developer, [must question whether the added complexity involved
to implement and document these commands is worth the cost to the eventual users.
For example, there were functions that | found interesting that were not used by many
subjects: ClipboardCopy, ClearDrawing, BreakAllLinks, TreeGrow, and TreeShrink.

Further, would this frequency distribution have been different if the subjects had more
experience or were working in a different environment? {t can reasonably be argued
that most subjects were new users of the system, and therefore tended to wuse those
commands central to its operation. More powerful and complex commands are used
by more experienced users, it is often claimed. (This approach begins to mirror the
RISC versus CISC discussion among computer architects.)

Identify the frequency of use for the file formats.
The protocol analysis showed that two of the six workspace file formats were not used

by any subjects. The formats never used were .RDY and .LST. Several hundred lines
of the internal code of Prose {[are imncorporated to handle these two formats; this
code could have been removed without affecting this set of subjects. This 1s one
example where the tracker served to “profile” the subjects and how they used the soft-
ware, identifying sections of code that were never executed—and are thus overhead to
the system, its user interface, and its documentation.

The analysis also showed that Prose I was frequently used as a file format translator;
workspace files were opened in one format and saved with a different format.

Determine appropriate system defaults.
For example, the tracker can easily record the size and position that users specify for

their map and outline windows. Should the initial default be changed? Should the
current position be remembered across sessions?

Unfortunately for this particular question,. the tracker information was incomplete,
because of a bug in my implementation. However, this kind of information should be
available with this tvpe of tracker, and could provide helpful information for software
developers who are desigming default values into their systems.

Determine which Helps need attention, _

The automated analysis provides straightforward direction on which Helps are most
frequently used and in which the most time is spent. In some of the Help panels,
users spent more than twice as much time as in others. For example, help for
complex operations (e.g., updating the WIN.INI file, or dealing with the six file
formats) took about twice as long as for others (e.g., using the mouse). This may
show that these panels provide too much information, or are not clear in the informa-
tion they present. These Helps should be made casily available; the information they
provide should be also explained clearly in the user’s manual.

Also, some of the Helps were requested much more than others. Help for frequent
commands (e.g., using the mouse, labeling and editing) was requested more frequently
‘than for less-frequently-used command (e.g., changing how the nodes are drawn).

Determine how often a Save is necessary.

When we started this study, we did not have a good feel for how often users save their
work. Should Prose [1 do saves automatically? The protocol records showed that the

146

maximum number of saves in a session was 3, but the median number of saves was 1.
Subjects tended to save once at the end of a scssion: until then, they were not ready to
save their work. They did not appear to fear system crashes or power failures
{although such records would never be scen, since the tracker did no checkpointing.)

Determine the size of nodes and their labels.
I designed the size of the nodes with only an intuitive feel about how large they
should be. With a 6-point font, a node of the default size held three lines of text with
about 20 character per line. Up to 250 characters of text could be wrntten in the node
labels; long labels could be seen in the Edit dialog box or if the size of the node is
zoomed. Analysis of the protocol records showed that most node labels consisted of a
few choice words—exactly what they were intended for.

Determine the size of displayed trees. ‘
Most trees contained fewer than 20 nodes, although a few trees had about 40 to 50
nodes. The tree size, combined with the size of the nodes, determined how much a
subject could see in a normal Prose [{ window at a time.

Determine the necessary tree depth.
When I designed Prose I{, I arbitrarily chose a maximum number of levels in dis-
played trees since one of the internal data structures was a compiled array. [decided
that a maximum tree depth of 99 levels was a reasonable limit, based on my own use
and on my observation of some pilot users. The protocol analysis showed that no
tree in the study was decper than 10 levels. This is an example of how usability tests
can asstst developers in making implementation decisions.

Minimize the number of Refocus episodes.
About 25 percent of all housekeeping episodes were spent playing with navigation:
roaming and zooming to new areas of focus within a workspace. This suggests that
the screen was often too small for the trees being displayed. Prose [users could
probably be more productive if they spent less total time in Refocus episodes.

It would be interesting to study this with a controlled experiment, where two different
screen sizes are used. If the amount of time spent doing Refocus activities decreased
with larger screens, one could build a case for doing a cost analysis, comparing the
cost in employee time for using a small screen as opposed to using a large one.

Expect the tracker fo find unexpected sequences.
The tracker showed sequences of commands that [do not know how to manually

reproduce. An example of this is the following:

50:55.58 50:55.55 0.05 MapWindow OPEN
52:17.39 52:17.45 0.06 Maplindow OPEN
55:44.96 55:45.61 0.05 MapWindow OPEN

Figure 31. Muitiple opens of the Map Window without intervening closes. \hen | tried to
reproduce this, closing of the Map Window was shown. How did this occur?

In this example actual users performed a sequence that I never saw during develop-
ment and testing, and could not reproduce. Additional pilot testing might have deter-

147

mined what this unexpected code path wds and whether it was causing problems for
users.

Offer a means of leaving comments in the recording.

As implemented in this project, the tracker captures one primary aspect of the human-
computer interaction: its command interface. The tracker in Prose [f also added a
way for humans to record their comments in context. This was a way to olfer ihe
unstructured feedback available with think-aloud protocols. Many subjects found this
to be a useful way to correspond with the protocol anaiysy(s) and software
developer(s). Subjects used this mechanism to describe what was occurring during
long elapsed time periods, to comment on how they were using the software now or
would use it in the future, to praise functions they liked, to complain about functions
they did not like or were missing, and to report bugs.

As both the software developer and protocol analyst, I found the feedback helpful,
and encourage incorporating such a mechanism in similar sofiware.

7.3 Enhancements to the Testhbed System

I had a strong desire to continue modifying the software used in this study, especially when anal-
ysis results showed areas of immediate interest. Ever the programmer!

Since the testbed system, Prose [l, was stabilized and used in this study, many hypertext writing
systems for personal computers have appeared on the market. These systems are becoming quite
sophisticated in their use of graphics and multimedia, and are proving useful in many professions.
Fersko-Weiss (1991) gives a comprehensive overview of these current systems.

Certainly Prose II can be updated with the functions and features contained in the latest hypertext
systems. | compiled the following list of enhancements to Prose /] dunng the study; these arc in
addition to enhancements driven by competition in the marketplace.

I.

Allow multipie, concurrent workspaces.

Multiple copies of Prose I can be active at any time on a machine. However, you cannot
drag nodes and trees among Prose [I windows. This would allow parts of documents to
reside in separate workspace files. As a wvser of Prose [/, | found that I frequently created
many more nodes than | needed during a session of brainstorming and exploration. As [
developed a document further, I found that 1 wanted to drag the nodes I chose not use into
another document for safekeeping, This was a tedious process with the current implementa-

tion.

Allow collaboration on work, as groupware, over networks.

As readily as [can create, link, and write in nodes 1n my own workstation, I would like to
have the ability to do this same thing cooperatively among two or more users in a network.
Many users could view the same workspace, adding and wnting in nodes which could be

viewed in real-time by other members of the group.

148

3. Port the Prose [{ source code from Windows to run in the OS2 Presentation Manager envi-
ronment.
The 0S/2 operating system for personal computers did not exist when Prose /] was first
designed and implemented. Although not vet as widely installed as DOS and Windows, OS82
proves to be a more suitable environment for a system of this type on personal computers.

* Automated trackers are well-suited to OS;2’s background thread structure.

* Online parsing is well-suited to O8:2's background thread structure. The tracker could
feed its output directly to the parser, which could display the current parser trec for a
scssion in real time.

* Checkpointing and quick file saves are well-suited to 0S;2's background thread struc-

ture.
» Having programmed extensively in both environments, OS/2 is a more productive and

robust environment in which to develop and run programs.
4. Provide handling for general directed graphs (i.e., nodes that have more than one parent)

Prose Il allowed a node to have no more than one parent, since this was algorithmically
“safe” and explainable within the original target usage. Given an outline as input, a two-
dimensional tree could be drawn; given a tree drawing, an outling could be generatad.

Allowing general directed graphs is a more difficult problem, but one that could find many
uses. Suitable algorithms might be invented through iterative refinement: inttially work
within some arbitrary restrictions, such as no more than two parents per node.

5. Indicate additional visual information about the file underlying a node.

The nodes in Prose Il showed, by their shading, whether a file was attached to them. An
additional indicator to show the size of the associated files would have been useful.

7.4 Summary

Chapter 1 noted that feedback to software designers is increasingly important if they are to match
the software tools they create to the complex mental tasks the software is designed to support.
Many types of feedback were available at each stage of this project; this paper attempts to capture
the flavor and detail of that feedback. Feedback to the software refinement process was outlined
in this chapter. In particular, it described specific “change-orders’—meodifications to the applica-
tion program directly indicated by the analysis results—as well as steps to make the ongoing soft-
ware development and refinement process more efficient. [t also descnbed some enhancements
that became apparent through long ecxperience in devcloping, testing, and using the application
program myself.

I played several roles in this project, roles often divided among several people: software designer,
software implementer, protocel analyst, and human-computer-interaction researcher. In all of
these roles, I gained insight into how this type of sofiware—the testbed application program and
the protocol collection and analysis tools—might be improved, both in their functional content
and in their development process. The final chapter summarizes the highlights of this feedback,
and discusses important areas for future researchers to focus.

149

CHAPTER 8. CONCLUSIONS AND FUTURE
WORK

This project was a first step in automating the process of analyzing and describing usage of com-
puter software. As such, it probably raised more questions than were answered—often the result
of an exploratory project. This chapter summarizes what was learned about the behavior of users
of this particular testbed systern. One of the goals of the analysis was to point to elements of the
testbed system that could be improved; these are discussed next. This is followed by conclusions
on the methodology used in obtaining and analyzing the data for the study.

Finally, as an cxploratory project, many follow-up items were tracked. The chapter closes with
an agenda for use by future rescarchers n the area of human-computer interaction.

8.1 User Behavior

The backdrop for this project was an examination of subjects in their actual field setting, using a
new software system to assist them in writing. Chapter 5 provides extensive detail on the results
of the analysis of the 112 session recordings received from the 29 subjects. It also contrasts the
results obtained in-this study with those of previous researchers. Some of the interesting findings
of this study are summarized below in three broad categories: what types of activities took place
across the sessions, how users spent their time and how long events lasted, and what kinds of
groupings and sequences were observed. '

8.1.1 What Kinds of Activities Took Place?

Much use of the system, 38% of the sessions, was tnvial or unproductive. [did not anticipate
this, and hence did not generate specific irformation about why this occurred. Reasonable con-
jectures on the high number of trivial sessions are:

» This an artifact of using a new system.
* These were the type of sessions retumed by subjects who return recordings.

» This is how people work.

Determining why so many trivial sesstons were received is an interesting topic for future explora-
tion. What vanables in the setup of the study or in the system itself would reduce or increase the
number of trivial sessions?

The observations that follow provide insight on phases, episodes, and commands in the non-
trivial sessions.

*+ By count, about 80% of the phases involved exploration, defining hierarchies, or top-down
construction. There were frequent alternations among these types of phases.

150

Although 9 different types of housekeeping cpisodes were identificd by the parser, about a
quarter of the housekeeping episodcs were concerned with refocus operations. This was
probably because of the small screen sizes available to most subjects.

39 commands were available in Prose [[. Half of the commands in the non-trivial sessions
can be accounted for with just three of these commands: creating, labeling, and linking
nodes.

About { 8th of all nodes that were crcated were explicitly deleted. This was unexpcgtcd
sinee nodes could have been easily moved or re-labeled.

Most subjects tried running a text editor within Prose If, but few used it for extensive writing
of a document.

Subjects frequently used the Prose [/ function that tidied their drawings of trees. This novel
function proved popular. Other novel functions (for example, Scramble) were rarely used.

Some subjects found the novel ability to leave comments in the tracker appealing. They left
comments in the tracker for a variety of reasons that generally fell into five general classes:

— Descriptions of what happened dunng some elapsed time
— Observations on using the system

-~ Praise for functions of the system

— Software bugs, requests for additional functions, queries
— System or hardware problems.

8.1.2 How was Time Spent in the Sessions?

The frequency distribution of the time duration for most commands; episodes, phases, and ses-
sions showed large differences between the median and mean times, as well as large standard devi-
ation values. Graphs of these distributions show curves with an early peak and a long trailing tail.
Out of this, some generalizations were identifted.

Sessions were generally short, about a half hour or less, when no extensive wrting in the
nodes was involved. Sessions with extensive writing lasted about an hour.

Previous studies of users doing wnting typically lasted two to four hours. When working on
their own, 1t appears subjects write for much bnefer periods.

Overall document times, for documents composed over one or more sessions, were about an
hour.

Dividing total document time by the number of nodes, subjects spent about one minute per
node if nodes were merely labeled; if extensive writing in the nodes was involved, they spent
about 5 to 10 minutes per node.

Subjects spent about 10 to 20 seconds each time they labeled a node. Labels consisted of a
few choice words, averaging 4 words of 7 characters each.

Help screens were typically viewed for 15 to 30 seconds.

The time duration of phases was consistent between non-trivial and trivial sessions: about
two minutes. However, the sequences and distributions of episodes within the phases were
quite different between trivial and non-trivial sessions.

One-sixth of the session work time was spent in phases of revision of the document text.

About half the total session time is spent in pauses. Most pauses were less than 3 seconds.
Two-thirds of all pauses were less than 5 seconds.

151

8.1.3 What Kinds of Patterns were Observed?

Throughout the analysis, we found that work tended to fall into classes. The first distinction was
between trivial and non-trivial sessions; the trivial sessions were later isolated from most of the
protocol analysis. Non-trvial sessions fell mto groups of single-document sessions, multi-
document sessions, and muiti-session documents. Some sessions also showed work on docu-
ments that already existed.

fferences in strategy became most apparent in the differences among small, medium, and large
documents. Sessions showed natural groupings according to how many nodes were operated on
during the sessions. The groupings appeared to reflect the subjects” expenence with Prose /1.

+ Sessions with 22 or more nodes looked similar: a critical mass of nodes were created and
linked into a tree, which was incrementally developed.

+ Sessions with 11 to 21 nodes showed three kinds of behavior, possibly because the number of
nodes was manageable enough to be manipulated in several ways. As with the sessions with
22 or more nodes, trees were incrementally developed in some of these sessions. In other
scssions, all the nodes were created and labeled before any were hierarchically linked. And in
the third group, subjects’ behavior looked almost turbulent as they searched for the right

ideas and relationships among them.
» Sessions with [0 or less nodes showed hittle overall patterns.

Some other observations invoived the size of documents, sessions, phases, and episodes, where the
meaning of size depends on the topic bemng discussed.

= Documents that were constructed across several sessions were smaller (i.e., had fewer nodes)
than documents constructed in a single sesston.

» The counts of commands per episode and episodes per phase were nearly the same, with
small variation. These counts are consistent with the size of human Working Memory

chunks: about 3 to 5 commands/episode and episodes/phase.

+ Trees generally had 3 to 5 levels, consistent with the conventional structuring of documents
into chapters, sections, subsections, and paragraphs.

» Most trees had between 15 and 30 nodes. Subjects generally saved their work when it was at
some state of completeness: most saved documents consisted of a single, complete tree, as
opposed to a forest of trees or unlinked nodes.

» There was a preponderance of top-down construction, as opposed to bottom-up con-
struction. The top-down construction took place in the form of iterative refinement.

« A node’s order of creation generally correlated with its final, pre-order tree position. Nodes
created early in a session finished high in the structure trees; nodes created late were low in
the tree. Two-thirds of the time, the first node created was the root of the eventual tree.

= In terms of spatial positioning, a node is generally created below and to the nght of the node
created before it.

+ Planning and writing were generally intermixed. Only one session had all the exploration and
planning before any of the writing.

Ultimnately, sessions varied from one to another among many vanables. Sessions could be
grouped by looking across any of these variables, or they could be characterized by looking across
many varables in one session. For example, all the sessions where “trees with more than 30
nodes were created” could be readily compared. :

152

8.2 Software Development Feedback

Orne of the important goals of this study was to understand the type of feedback available to soft-
ware designers and developers using these tvpes of analysis tools. This section lists modifications
to the Prose [testbed software indicated by the protocol analysts.

8.2.1 Frequent Refocus Episodes

.The analysis showed that 25% of the housckeeping episodes were Refocus. Users spent much
effort navigating to other areas of the workspace and zooming for better focus on what they were

working on.

With the state of personal computer technology at the time of this project, I assume that most
users had display screens with resolutions of 640x330 or 640x480 pixels. While Prose 11 will work
with any screen resofution, it cries out for a larger/denser screen. [personally used a display of
1280x800 pixels, which felt about night. Most subjects were somewhat constratned by smaller

screens, resulting in frequent refocusing.

A tracker of this type can show software designers how many nodes are present on the screen at a
time. Similarly, it could show software buyers how much cost is involved in roaming and
zooming. [t could help in targeting GUT software to computers with screen real estate of the
most prevalent size. If an overwhelming number of target users have screens that are 500x500,
writing software that works best on a 100(x1000 pixel screen may be counterproductive.

By also collecting extra information with the tracker, additional strategy questions could have also
been answered, such as, “Is tree size correlated with screen size’?

8.2.2 Concatenated Function

The protocol analysis showed that half of the more than 6000 commands executed by subjects
during the study were creating nodes, labeling nodes, and linking nodes. These three commands
therefore needed the closest attention:

» they should perform well,
+ they should be easy to execute, and
+ they frequently occur together in sequences.

In early feedback, the focus on these three commands became obvious from studying protocol
records and from direct comments from users. The mouse buttons were designed so that these
commands were readily available with single click, double click, and click and drag, respectively.
The Edit dialog box was re-designed so it was easy to enter the text for a node’s label. Editing of
a node’s text was also simplified. ‘

The large number of times these three commands were executed suggests further improvernents
may be warranted. Some ideas to be studied further: pre-built templates of common tree struc-
tures, and full-time icons for sequences of create, fabel, and write.

8.2.3 Extra Function

The protocol analysis readily identified commands were used with several orders of magnitude less
frequency than others. Thus, the system may have had elements of functional overkill: some of

the features were rarely used.

Because it appeared there were many tral and initial sessions with Prose [/, I am initiafly reluc-
tant to remove the rarcly-used functions without some further longitudinal studies of experienced
users. Clearly some functions were not used by novices with this system; are the functions,
however, helpful to experts?

In particular. functions without a direct mouse/menu interface (that is, they could done only with
the keyboard) were rarcly used by the subjects in this study. If these functions were now given
mouse interfaces, would their frequency of use increase (assuming they had the same utility as
before)? Or, would the additional menu size and complexity change the overall comfort with the

system?

8.2.4 Tidy, Save, and Heip Commands

Subjects used the novel TidyTree command frequently: this allowed them to work cluttered and
then ask the systern to clean up. This appears a good paradigm for user behavior with such soft-
ware, where complex structures are bemg created and modified.

Subjects rarely saved their work dunng a session; an ongoing automatic save functxon could avert
disasters for some users. The analysts showed mean and standard deviations for inter-command
pauses; to reduce disruption to users, a suitable (and possibly self-adjusting) interval for automatic
saves could be implemented.

The protocol analysis readily identified help panels that were used frequently, and showed on
which helps the most time was spent. The context where help was needed could also be casily
seen. Frequently-requested helps point to obvious candidates for functions that need to be sim-

plified.

The observations in this section were highlights of the extended descriptions found in Chapter 7.
They indicate that the project was fruitful; it showed areas for improvement that were not
expected when the software was designed. The project met this goal: useful feedback was
obtamed on how to improve the specific software under study.

8.3 Tools and Methodology

Aside from leamning lessons about peoples” strategies with this particular software, this project was
a platform to describe how we examined a group of software users and what we leamed from
doing that.

The automated techniques explored in this project are intended to supplement, not supplant,
other techniques for acquiring and analyzing protocols, such as think-aloud verbalization and vid-
eotaping. These methods still offer unique advantages of their own: namely the abifity to capture
users” attitudes and emotions. Moments of dehght, frustration, or bewilderment, as well as inter-
ruptions and distractions cannot be effectively captured with an automated tracker. Perhaps most
importantly, it has proved difficult to capture users” intentions with automated techniques.

154

8.3.1 Advantages of These Tools

By confrast, the tools and methods presented here are intended to address issues of users” styles
and strategies across a large sample of sessions and subjects. They offers several advantages over
previous protocol collection and analysis methods.

First, it allows unobtrusive collection of protocols from actual users in the field. The protocol
collection is not done m an expenmental setting. Users can perform tasks they consider represen-
tative and use the systern as they wish without the intruston of monitering personnel or equip-
ment. i

Second, because the protocol collection can occur “in parallel” among many users m their
naturalistic settings, a great deal of protocol data can be collected in a short period. The short-
ened period potentially allows quicker software design feedback. The large volume of data offers
2 broad look at the use of the system and the variety of strategies employed in its use. The auto-
mated analysis makes the volume of data manageable.

Third, after protocol records have been collected, the grammar and parser can be modified as
understanding of system usage increases. The protocol records can then be rerun with the modi-
fied parser to sce if the new decisions reflected in the parser still hold for the large cross-section of

existing protocol records.

Fourth, it allows researchers to see how peoples’ software usage changes over time. Introspection
savs that the ways we use a piece of software changes as we gain more expenience with it. How is
that change manifested in users” usage records? The internal tracker and consistent analysis tools

make such longitudinal studies possible.

[n general, automating the tracker and protocol analysis was a convenient way to observe many
users. This method of software distnbution and protocol collection allowed a large volume of
data to be collected in a short perod. The cost of collecting and analyzing each session 15 rela-

tively low, after preparing the tools.

8.3.2 Observations on Protocol Collection

Chapter 6 contains an extensive discussion on constructing the automated tracker and collecting
the protocol record files it generates. A summary of the protocol collection aspects of the study
follows.

s 14% of the users that were contacted returned their recordings. Anecdotal data says this was
a reasonable reply rate for a voluntary experiment.

« The tracker was desig!ed to avoid wnting any secret or hidden informatton; users could
browse through any protocol file with a simple text editor. This gave users confidence that
private information was not being collected about them.

» With few experimental controls, many sessions reflect merely leaming and exploration of the
software itself. Much like any harvest. the ease of this method of protocol collection requires

additional methods to filter out the chaff.

+ It would have been helpful to have some supplement to the protocols, indicating users’
intentions. The amount of experience each user had with the systemn would have also been
helpful, to discen novice sessions from expert sessions, and to watch a progression of ses-
slons as a user moves from novice to expert.

» (iving users a mechanism for inserting comments into the protocol record proved valuable.
It allowed users to report problems and comments in the exact context where they occurred.

155

This feature could be expanded upon considerably (up to the point of obtrusiveness) and
should be considered for addition in similar software.

* Subjects produced about 23 Kbytes or about 7 pages of protocol data per hour with this
system.

The automated tracker proved to be a simple, but powerful addition to the existing software
syster. It was easy to incorporate a tracker in a software system without degrading performance.

+ The mternal tracker used a synchronous interface, which did not perceptibly slow response
time and simplified the amount of state information necded to identify each event.

« The tracker recorded events at the command level, e.g., “Create a node.” If every keyvstroke
and mouse movement had been tracked, system performance may have been slowed and
recording files could have become ncedlessly long.

» Communications networks proved a powerful tool for software development, distribution.
and protocol collection.

— 1 was a develaper of this Microsoft Windows application before there was adequate doc-
umentation. [exchanged programming questions with Microsoft Windows experts via
the Genie network, w here Microsoft supported a bulletin board service.

— The testbed software used in this project was distributed for a year via [BM’s internal
network before protocols were solicited. This aliowed me to fix bugs and make improve-
ments based on users’ feedback over the network. [was confident the system was stable
when I started the study.

— The study was distnibuted to subjects in their actual field setting via the network. The
protocols were retumed to me over the network.

While it was simple to collect many protocol record files, their mapagement became time con-
suming. For example, file management became a problem as protocol files with arbitrary names
were collected from different user’s machines. As the tracker was implemented, it invented
filenames unique to the user’s machines. These names were no longer unique when all the files
from all the users were stored on one machine for analysis. Also, users had occasion to change
their protocol filenames before returning them to me for analysis.

In summary, many users were comfortable with generating protocol records of their sessions, and
returning them for analysis. [t is easy to collect a large volume of actual-use protocol data! Col-
lecting and analyzing protocols as done in this project scaled up to about 100 sessions, but cata-
loging and file management was becoming a predominant problem. Easy categonzation of groups
of sessions, documents, and subjects is necessary as the number of sessions increases. A database
management system 15 needed to manage large numbers of session protocols.

8.3.3 Observation on Using a Parser for Protocol Ar-lalys'is

The multi-pass parser used to analyze the protocol records allowed intellectual manageability and
programming refinement that was bounded in scope. For example, difficulties in the analysis
were eased late in the project by adding an additional pass to the parser. Also of value was the
parser’s ability to write its intermediate files in spreadsheet format. Complex analyses and
graphing could readily be performed on any factor or variable discovered in the analysis. This
case of analysis led, in tum, to the addition of more varables to the parser output, to satisfy
requests for specific views of the sessions.

The parser was labor-intensive to build, but straightforward to use once it was stabilized. Having
a large number of valid “testcases” (in the form of actual protocol record files) made regression

testing of parser changes easy to automate.

156

Playback of user sessions was not incorporated into the analysis. Playback is a difficult problem
across platforms: 1t requires a great deal of contextual information. Many other activities, besides
the one being studied, are possible in a multi-windowed environment, which compounds the
understanding of what the user is actually doing when not directly using the target software.

Several innovations in the collection and analysis helped me to uncover useful information from
the subjects and to work more efficiently:

* The tracker captured commands, not just the keystrokes. This makes the recordings shorter
and saves the step (and possible ambiguity) of recombination during the analysis. Both
Card, Moran, and Newell and Smith er al. have captured all the keystrokes, and then have
had to go to the effort of encoding groups of these as commands.

« I distributed the system over the network and getting the recordings back the same way. The
recordings could stand alone, and were compact enough that they did not need to be
compressed—to avoid network performance issues.

+ This project introduced a group of statistics that can be used to examine a similar task or
software system. These are described in detail throughout Chapter 5.

* Prose [I contained hot keys, allowing users to communicate directly with the tracker. Users
could refay their thoughts to the analysts and presumably the software developers in the exact
context where the comment occurs. Subjects used this for several purposes in this study,
including describing bugs at the place where they occurred.

With these innovations and those of others, this project progressed confidently in its quest to
understand how we use computer software and how it can be improved. The initial /CARUS
study of Card, Moran, and Newell provided an excellent basis for automating the tracker and
parser. Additional input from the concurrent Textlab research supplied a rich environment in
which to experiment with implementation 1deas. The resulting teols and techniques succeeded in
shedding light on user behavior, on methods for studying user behavior, and on ways to improve
human-computer software interfaces.

8.4 Future Research

In this exploratory project, ideas for future research and modifications were frequent throughout
all stages of design, implementation, testing, analysis, and summarization. Specific suggestions for
changes and extensions to the analysis tools and the testbed system are described in the final
sections of Chapters 6 and 7, respectively.

This section identifics four areas where additional studies and overall changes scem warranted.
First, with these software tools in place, numerous ideas for fruitful longitudinal studies are
descnibed. Next, many of the analysis summaries involve rates, types, and sizes; ways this know-
ledge could be used to build better human-computer interfaces are discussed. Third, media other
than text were rarely used in this study; how would the results change with advanced hypermedia
systems? Finally, using the analysis tools constructed for this project -suggested yet more tools
that a designer or analyst would like to have. Issues involved with building an integrated suite of
analysis tools are described.

157

8.4.1 Conducting Longitudinal Studies

This project laid the groundwork for observing users with a particular software system over an
extended period of time. The tools and techniques demonstrated here make those types of studies
tractable.

* Studying individual users over time: effects of learning

The teols introduced in this project make it simple to watch an extended sequence of user
sessions over time, as individual users move from being novices with the software to being
experts. How many sessions or how much clapsed time does it take to become an expert?
What 1dentifies an expert {(e.g., fewer errors, longer pauses, larger documents, shorter ses-
sions)? What is the mix and sequence of commands an expert uses, as opposed to a novice?
{We have an introduction to this answer in this study, with the mix of trivial versus non-
trivial sessions.) :

For software designers, can alternate implementations be objectively compared with two
scales: how fast users can move from novice to expert, and how efficiently experts can
perform given tasks?

= Studying experienced users: how do expert writers work?

I conjecture that most of the subjects in this study were neither expenienced users of this
software, nor were thev experienced writers. What would the data analysis have shown about
writing behavior if all the subjects had been skilled writers, expenenced with this software
system? Future studies with such a focused group of users will likely change the protocol
analysis results summarized in Chapter 5.

* Characterizing users by what they were trying to do i

The protocol data that was collected contained no background information on what goals its
users were attempting to accomplish. Thus, the major categorizations that were made in
Chapter 5 were made by the kind of session: single-document sessions, multi-session docu-
ments, and so on. Without becoming too obtrusive, a better categorization might take into
account verbal feedback and summaries from users. Users could guide how analysts deter-
mine highlights of sessions and categories for them.

+ Understanding the short, unproductive sessions

Nearly 40% of the sessions were tnvial or unproductive. A follow-up study could examine
further why this occurred, and how much semblance this bears to normal behavior. - For.
example, | know of no similar data with respect to the use of text editors or word processors.
Are unproductive sessions in fact helpful, part of the exploration and learning process? Do
certain software systems encourage unproductive sessions? Is similar behavior manifest in

other, non-computer-related activities?

8.4.2 Utilizing Rates, Times, Types, and Sizes

One way to improve the overall performance of a computer system is to take steps that bridge the
speed mismatch between processor memory and disk memory. Much computer science research
has focused on ways to use caches and simiar technology to optimize a computer’s throughput.

A similar mismatch exists between the speed of human operations and underlving computer
speeds. Certainly, human speed seems so much slower than raw CPU speed that this shouldn’t
be a concern, but advanced software functions and current GUls have a tendency to consume
computing resources. To bridge this gap, we need to understand the rates, types, and sizes of
human input operations. With this knowledge, future systems might be tuned to adjust to the
performance characteristics of their human users.

158

Card, Moran, and Newell (1983) organized a large body of diverse data on how the general
“human information processor” operates. For specific tasks such as writing, additional data is
needed to adjust software to its users. The protocol analysis tools used in this project Uluminated
many attributes of how users worked with the testbed software. For example, they showed

the distribution of the duration of pauses,
the distribution of wrting times in nodes,
the distribution of time spent reading helps,
the frequency of file saves, and

the distribution of label lengths.

Future software designers should consider capitalizing on the rhythms of their human users,
making their software appear more responsive. For example. highly-interactive computer software
can use the rhythms and sizes found through protocol analysis to find opportune times for [O,
backup, checkpointing, and garbage collection. .

Similarly, resource allocation can be optimized to utilize practical human sizes, instead of large,
fixed sizes. Items far outside the expected range of sizes can be treated on an exception basis; the
protocol analysis gives a basis for understanding the frequency of the exceptions.

8.4.3 Using Media Other Than Text

White (1985) proposed that we work with three types of concepts in our human cognitive
systems: propositions, algorithms, and images. All subjects in this study used propositions
(represented as labeled nodes) almost exclusively, even though Prese I1 nominally supports all
three types of concepts. A current challenge for computer scientists is the utilization of algo-
rithms, video and audio images, and their mix: how do we make them more inviting to express in
a hypermedia system, and how do we integrate them into “hypermedia documents”?

[assume that the rarity of algorithms and images as types of nodes was a by-product of their
inadequate support m Prose I[(and computer systems, in general). Recent hypertext systems,
however, are beginning to offer broad, integrated support for multimedia.

Strongly-integrated hypermedia systems introduce new questions for this kind of study. With dif-
ferent types of nodes (instead, or in addition to, labeled nodes), how do many of the behavior
results obtained int this study change? What is a common mix among the types of nodes? A
follow-on study could look at such things as the time spent per node, the duration of pauses, the
type and duration of episodes and phases, and the size of the resulting multimedia documents in
an attempt to better understand how humans behave in their interaction with these new systems.

In Prose [I, a node consists of only a single type; its label 1s always text. This restriction was an
implementation decision which reduced its underlying complexity. However, a full hypermedia
systemn should allow, for example, nodes composed of text, with audio annotation and imbedded
graphics. Although the current tracker design is sound, extensions are required to accommodate
this richpess of media. One feature of text-only systems is that the data storage of text is rela-
tively compact compared to audio and video. [t was easy to capture node labels in a text systemn;
it would be more costly to capture a graphic icon or audic message and store it in a protocol
record. Hypermedia systems potentially offer a rich development environment for multimedia
documents. The challenge presented to their developers is to make them so easy to use that they
actually get used. The tools introduced in this project offer designers and developers a means to
get consistent feedback on their systems’ usage.

159

8.4.4 Developing an Integrated Suite of Tools

The parsing tools developed for this project were designed 10 muke protocol analysis less expen-
sive and more consistent. Using them over an extended period suggested, in turn, other software
tools that could help make protocol analysis more accurate, more useful, and faster.

To improve accuracy, analysis tools could better match protocol analysis to users” intentions and
cxperience. ‘This can be done by allowing user input to guide or influence the parse. Lor
example, the parser built for this project could be adapted to operate concurrently with actual
user tasks; it could be shown in an adjacent window. Future cnhancements could be envistoned
that allow a viewer to give a running audio commentary and to modify an ongoing parse. This
ability could be excrcised by users concurrently dunng a task, as a think-aloud protocol, or by
anafvsts later while viewing a recorded session.

Another way to improve accuracy is to provide analysts with tools to help visualize one or more
sessions. Visualization of sessions through playback has proved a powerful tool for researchers
using the WE analysis tools. As mentioned, playback can be technically challenging in an arbi-
trary, multi-tasking machine environment. Additionally, the nodes in this project and the Textlab
studies consisted almost exclusively of text. With a richer mix of hypermedia components, play-
back of complex sessions will need new algorithms for representation and retrieval.

A parse tree can provide visual results for a single protocol analysis, as shown in this project, but
additional tools would strengthen the capabilities of this tool. For example, the parse trees illus-
trated by Prose II do nothing to illustrate the passage of time. Parse tree illustrators and editors
can be imagined that picture different factors of a session with different colors and icons. Addi-
tional tools are also necessary for looking across a groups of session analyses for various features.

Visualization tools to look across groups of sessions point to a general class of protocol analysis
tools to manage and query session analysis results. In this study, the number and size of the
sessions allowed me to manage them by hand. This should be automated with a database man-
agement systern; we should be able to put the protocol records in a standard database with search
keys and relations. Currently, the Textlab group is looking at constructing extensive headers for
protocol records. They have given the protocols attributes, which become an abstract description

of the protocol.

Analysis tools are needed to look across the landmarks and features of vast amounts of protocol
data. “Show me the prominent portions of a single session, of multiple sessions, or of all the

~session with a certain category. Or, show me all the sessions containing some factor, and show
me other features the they have in common.”

The scale of the problems allowed by analysis tools needs to increase, as well. Working in DOS
would bound many questions had my sample size been much larger, because of its constraint of
only 640 Kbytes of main memory. Modern workstations could have increased the practical study

size by an order of magnitude.

Finally, if parsing of protacol records is to be used more widely, tools are needed to build better
parsers faster. To be used across different kinds of software systems, skeletons of operating
parsers should be readily available and modifiable. Simple modifications to an existing parser
should be simple to make. In this project, they require knowledge of C programming, plus exten-
sive testing to assure they have not changed the results of previous protocol records that were
parsed “correctly.” Alternate parser umplementations might make them easier to develop and
modify. For exampie, technologies such as neural networks or expert systems might be used to
create parsers that learn how to parse by being guided by a human through a series of represen-

tative parses.

[assumed that an automated tracker and parser would be a panacea for studying user behavior
with software. What it allowed was to scale up the types of questions I could ask about broad
behavior patterns. To obtain answers to the new spectrum of questions suggested by this study,

160

additional tools are needed to coordinate the resulting analysis data. Integrating these tools into a
workbench for protocol analysis would make working with large sets of protocol data much more
tractable, and hence more timely and useful.

161

APPENDIX A. COVER LETTER AND SESSION
SUMMARY |

This appendix has two sections. The first is a copy of the cover letter sent to potential subjects.
The second section contains the exhaustive itemization of each of the 112 sessions. It also shows,
by session name, the five categories of sessions, and the 10 sessions that contained extensive

writing.

A.1 The Cover Letter

I sent a copy of the following cover letter to each of the 210 potential subjects on January 19,
1989. '

—— Cover Letter

['d like your help for a study I'm conducting on human-computer interaction, part of my
Ph.D. dissertation. [recently sent you the current version of my structure editor, Prose IL
You probably noticed that it makes recordings (ASCII files) descnibing the actions you took
while using it. I'm building some sophisticated tools to analyze these recordings, and need a
number of good recordings to analyze.

Please use Prose I to design and write a paper, an article, a set of class notes, or some simnilar
document of between 2 and 15 pages, and then send me the recording (I don’t need the actual
document). In fact, I'd really like two different recordings from you, if possible--maybe two
different kinds of documents? The recordings will be most useful if you use the system from
beginming to end in the process of writing the document.

You will not be judged in this study. There will be no public association made between ybur
name and any recording. The recordings contain no confidential information.

I'm hoping to appeal to your desire to advance the state-of-the-art, but I can sweeten the deal
a bit with the following:

+ I will acknowledge you in any papers or articles that arise from this research (let me
know if you don’t want me to}.

I can send you a copy of your analyzed recording.

I can send you a copy of my research proposal.

[can send you a copy of any papers that anse from this research. :

[can send you a copy of Prose II with the recorder “compiled out” (thus, a bit smaller

and faster).

My target date to get vour recordings is February 25th. Do what you can {somry--I know you
really don‘t need another schedule!).

Thanks in advance, - John Q. Walker
L

162

A.2 The 112 Sessions

The 112 session protocols are summarized below in Table 40 on page 164, grouped in chrono-
logical order by the person who submitted them. 1 assigned each of these protocol records a
unigque name, which is the session ID shown as the first column in the table. The column enti-
tled “Number of Commands”™ is a count of the primary comrmands executed in a sessiort. The
rightrnost four columns identify, for a @ven subject, which document a given session applics to.
This 15 beeause two subjects returned sessions showing work on four documents; the other sub-
jects showed cvidence of work on three or fewer documents. Other symbols in the table are
descnbed by the following legend.

—— Legend of Symbols:
Symbol Description of this symbol

E Existing file: the subject opened and worked with an existing file. The file was not
necessarly created using Prose /.

N No save: the subject created several nodes and worked with them, but did not save
the file.

R Revision session: the subject edited the labels and content of existing nodes, but did
not structurally change the document.

T Trivial session: the subject was learning the system or just playing around with the
features. No constructive work was observed. Trivial sessions are discussed further
in Section 5.2.1 on page 94

Table 40 (Page .1 of 4). Subjects, Sessions, and Documents.

Session ID (file Total Session Number of Nodes in Naodes in Nodes in Nodes in
name} Time (seconds} Commands Doc 1 Doc 2 Doc 3 Doc 1

Subject 1

S0IR0101 1973 226 56

S01R0201 1128 | 82 17

SO01R0O301 2293 ' 133 29
Subject 2

S02RG101 1407 115 28

S02R0201 : 875 72 19
Subject 3

s03Ra10t | 2146 | 130 | a1 | | |
Subject 4

S04R0101 | 3245 { 230 | 60 | | {
Subject 5

SOSR0O101 1016 24 T

S05R0201 999 45 14-E
Subject 6

506R0101 2863 84 6

S06R0102 121 4 1-E

S06R0103 169 6 2-E

S05R0104 1 2 T

S06RO105 452 13 f

S06RO106 557 10 3-E

163

Tabte 40 (Page | of 4). Subjects, Sessions, and Documents.

Session 1D (file Total Session Number of Nodes in Nodes in Nodes in Modes in
name) Fime (seconds) Commands Doc 1 Doc 2 Doc 3 Doc 4
SO6RO107 337 9 2-E
SO06RO108 1130 21 3
SUO6RGI09 1719 143 18
50RO 10 253 106 T
SO6RO201 902 67 12
" S06R0301 359 40 11
Subject 7
SOTRII01 365 16 T
Subject 8
SO8RO101 1454 103 19
508R0201 2210 140 23 14
S08R0301 1311 112 17
Subject 9 '
SO9R0O1G] [51é 27 T
509R0102 369 17 T
Subject 10
SI0R01I01 793 3 T
S10RG102 5 2 T
S10R0103 780 2 T
SIORO104 3789 38 9
SIOR{105 [178 123 14 11
Subject 11
S11R0101 460 35 T
SLIRD102 286 18 T
S11RGI03 831 35 T
S1IRO104 19 12 2
Subject 12
SI2R0101 2219 79 17
Sublect 13
S13R010E 3803 68 7
Subject 14
$14R0101 I8 2 T
S14R0102 24 2 . T
S14ROI103 1241 21 45-E
514R0104 630 5 T
$14R0105 4124 83 46
$14R0106 289 4 48
S14R0107 5 2 T
Si4RO108 34 3 T
SI4R0109 4 1 T
Subject 15 .
S15R0101 1320 36 8
S13R0102 8023 52 17
S15R0103 282 10 5-E
S13R0104 50 7 3-E
S15R0105 100 4 T

164

Table 40 (Page 2 of 4). Subjects, Sessions, and Documents.

Session 1D | file Total Session Number of Nodes in Nodes in Nodes in Modes in
name) Time (seconds) Commands Doc 1 Doc 2 Doc 3 Doc 4

515R0O106 58 3 T

SI5ROMW7 25) 2 T

515R0108 39 3 T

S13R0201 2770 24 3]

S153R0202 6367 70 17

S15R0203 2562 22 18

S13R0204 100 6 T

SE3IRO205 223 13 15
Subject 16

S516R0O10T 222 21

516R0102 2106 118

S16R0103 47 3 [-E

SieR0Oi04 337 7 I-E

S16R0103 221 9 2-E

S16RO106 | 233 17 2-E

S15R0107 1217 68 T

S16R0108 1773, 36 T

Si6R0O109 363 17 T

SI6RO11G 211 15 7-N

516R0O111 3065 101 15

S16R0O112 203 9 T

S16RD113 56 3 T

S16R0114 219 15 _ T
Subiect 17

S17R0101 13096) 522 176

317R0201 1846 335 89
Subject 18

S18RO101 23 3

SISRO102 146 i1 4

S18R0103 1296 69 1t

S1ER0104 19 2 T

Si8R0OI05 . 54 4 I-E

S13R0106 379 33 24

SI8RO107 705 29 ’ 6

S18R0O108 2356 153 27
Subject 19 i

S19R0101 | 2555 | 265 | 27 | I f
Suhbiect 20

S20R0101 [653 | 56 | 6 | |]
Subject 21

S2IR0101 | 2 | il T | [f
Subject 22

S22R0101 2038 248 41

522R0201 1124 102 13

$22R0301 2543 303 19
Subject 23

Table 40 (Page 3 of 4). Subjects, Sessions, and Documents.

Session 1D { file foral Session Number of Nodes in Nodes in Nodes in Nodes in
Aame) Time { seconds) Commands Dac 1 Doc 2 Doc 3 Doc 4
S23R0I01 4308 138 20
Subject 24
S24R0101 2138 123 17
Subiect 25
S25RO1D1 2974 43 8
S25R0201 55 3 T
S25R030GH 11811 198 21
Subject 26
S5i6R0101 1953 105 20
S1RO20¢ 350 23 2-E
Subiject 27
S27R0101 68 3 T
S2TRO102 825 5 T
S27R01I03 3315 id3 21
S27RO1I04 2750 48 5-E
S27R0105 700 6 T
S27R0106 4140 71 23
S2TRO107 142 4 T
S27RO108 2825 2 T
S2TRO109 140 T
Subject 28
SZ8R0O10} 35 4 T
528R0102 3362 164 3t
S28R0103 8 2 T
Subject 29
S29R0101 1204 27 6
S29R0102 441 14 8
S29R0103 4440 N 12

166

Trivia! 1 session/ H sessions/ Wark on an Hultiple
sessions doc doc existing dec docs/session
SO5RO10L S01R01GL SO8RO141 §05RE201 S0BRGZ01
SO6R0O104 SO1R0201 SOBR0O2G1 S14RO103 S10R01Q5 {2 docs)
SOEROLIG SO1RO301 S16RD1GZ S1I4R0D105 $2500103
SG7R0101 SQ2REe10! S16R0103 S14R0106

SO9R0IDL SeZROZ201 S16RO1B4 S18ROLCZ

S09R01G2 SO3R0101 S16R0105

SiDRO1OL S04R8101 S16ROLCH

S10R01Q2Z SG6R0201 S16RO111

S10RG103 SDER0O3BL S16RO113

S11R0101 SE8RO301 518R0O103

511R0102 S10RO104 S18ROL05

S11R0103 . §12Rrelot $18RO106

S1IR0104 $17R0101 $29RO101

S14RO10L $17R0201 S29R0102

S14R0102 S18R0167 S29R0103

$14R0104 S19ROL01

514RO107 SZ0RE10%

S14R0108 $22r0101 S0BRE1O1L

$14R0109 $22R0201 SO6RA102

S15RG105 $22R6G30% SO6RELO3

$15R0106 S23R0101 SG6RO105

S15R0197 $24R0101 SO6RO106

S15R0108 SO6RO1BT

S16RAL0L SOAROLO8

$16RO107 S13R0101 SO6RAL0%

S16RE108 518RE108 S15RE101

S16RO189 SZ5R0161 S15RB182

S16R0118 §25R0301 S15R0103

S16RO112 $28RB102 S15RE104

S16R0114 515R0201

S18RO101 . S15R0202

S1BROLD4 SI5R0203

S21RaO101 515R0204

$25R0201 . S15R0205

2780101 $26RG101

§27R0162 S26R0O201

SZ7R0195 S27R0103

S27Rr0107 S27R0104

$27R0108 S27R0106

$27R0109

$2BRO1GI

§28R0O103

42 sessions 2} sessions 37 sessions 5 sessians 3 sessions
8 documents 27 documents 11 documents 3 documents 4 documents

Figure 32. Categorization of the 112 sessions into 5 groups. Among the 112 sessions, a total of 43
different, substantial documents were constructed or edited. Sessions in the righthand four
categories are considered “non-trivial.” The columns in this table are explained further below.

167

S08RO101 518R0108
S13R0101 525R0101
S15R8102 525R0301
S15RE261 S27R0106
S15R0282 S28R0182

Figure 33. 10 scssions that contained substantial writing. Among the 112 sessions, these [0 sessions
were significant in that the subjects wrote substantial text in the file behind the nodes.

168

APPENDIX B. EXAMPLE PARSER INPUT AND
OUTPUT

Session S18R0OI08 was a classic among stand-alone sessions. All the nodes were labeled and
linked together, the structure of the tree was touched up, then the contents of the nodes were
edited. This session dealt with 27 nodes during 2356 seconds (39.3 minutes), and it consisted of
175 commands. The mean length of the labels was 11.5 characters.

The following is my summary of the session.

{create and label} 4 nodes

link into a tree

tidy

create label, createslabel, 2 link
create/delete

create/label, create/label, 2 link

tidy

create, abel, link, tidy

(create, label, and link) 2 nodes, tidy
{{create and label) 2 nodes, links, tidy) 5 times
{create, label, link, and tidy) 3 nodes

breaks and finks
Edit: 5, 6, 5, 8,9, 12, 13, 10, 14, 15, 16, 17, 22, 23, 19, 20, 21, 25, 26, 27

169

B.1 A Sample Protocol Recording

Including the header, the protocol record file is 456 lines in length.

) T R T LT e b b i iiietetel it teleted
2 | Prose Il Session Recording {v2.89) Hon Feh 12 22:52:46 1989 |
3 | File C: RCDIBEG.THP) |
- B R bt e e mmm st E e e ————— *
5 | Start Stop Time GOperator Parameters i
6 |min:sec min:sec sec |
e e edal e +
B 52:16.04 52:13.85 2.81 PaUSE

9 57:48.85 52:49.62 8.77 LeaveProsell [o{ey

10 52:49.62 52:58.85 9.43 PAUSE

11 52:50.85 52:52.58 2.53 PaUSE

12 52:52.58 53:95.71 13.13 Gpendorkspace File(*GUEUEMGR.PR2*) Format{*.PR2'}
13 + {reatedode 10¢1)

14 + Createlode 0{2)

15 + LinkHodes ParentIb(1) ChildiD(2)
16 + {reateiede H{2)

17 + Linktiodes PareatiD(2) Child1D({3}
13 + Createlode in(a)

19 + LinkHodes ParentID(2} ChildID(4)
20 + Ereateliode n{s)

21 + LinkHodes Parent{D{2} ChildlO{5)
22 + Createflode [D{6)

23 + LinkHodes Parent!D{2) Childin(e}
24 + Createlode 10(7)

25 + LinkHodes Parent[D{2} ChildiD(?)
26 + Createtiode 10(8)

27 + LinkNodes Parentin{2) ChildlD(8}
28 + Createlode n{9) 3

29 + LinkHodes ParentID(Z} ChildID(9)
10 + CreateNode [0{18})

31 + LinkHodes ParentiD{2) ChildID{1®)
32 + Createlode ip{11)

33 + LinkHodes ParentID(2} ChildID(11)
34 + Createdode 10(12)

35 + Linktedes ParentiD{2) ChildID(12)
36 + Createllode in{13)

37 + LinkHodes Parent[0(2) ChildID(13)
kt:} + Createflode ID(1a}

39 + LinkRodes ParentID{2) ChildID(14)
490 + Createlode I0{15)

41 + LinkHodes ParentID(2) ChildIDB{15)
42 + CreateNode 10(15)

43 + LinkModes ParentID(2} ChildID(216)
44 + CreateNode I0(17)

45 + Linklodes ParentiD{1) ChildID{17}
46 + Createffode 10{18)

a7 + LinkNodes Parent[D(1} ChildiD{18)
48 + CreateHode [0(19}

49 + LinkHodes ParentiD{1) €hildIG{19}
50 + Createkede 10{20)

51 + LinkHodes ParentID(19) ChildlD(24)
52 + Createlode ID(25)

53 + LinkHodes ParentIR{19} ChildID{20)
54 + Createtiode 1D(26)

55 + LinkModes ParentID(19) ChilélD{21)
56 + Createfode [0(27)

57 + LinkHodes ParentiD{19) ChildID{22}
58 + Createfode in{28)

59 + LinkHodes ParentlD{19) ChildID{23)
68 53:05.71 53:12.41 6,78 PAUSE

61 53:12.41 53:28.78 8.29 PAUSE

62 53:20.70 5§3:20.76 B.66 MapMove StartRect{®, 8, 558, -216) EndRect{18, 36, 214, 136)
63 53:20.76 53:21.89 6.33 PaUSE

64 53:21.89 53:21.14 p.685 MapWindow OPEH

65 53:21.14 53:24.85% 2.91 PAUSE

66 53:24.65 5§3:25.79 1.65 MapWindowZoom StartRect{D, 8, 558, -216} EndRect{-28, 494, 768, -48@)
67 53:25.76 53:47.87 21.37 PAUSE

68 53:47.687 53:47.12 B.65 NewWorkspace

69 + DeleteNode [0(1)

170

13
114
115
116
117
118
119
120
121
122
122
124
125
125
127
128
129
138
13
112
133
132
135
136
1317
138
133
140
141
142
143
144

531
:87.33

54

54
54:
54:
4
126,78
129.25
129.36
:46.83
54:
54;
54:

47.12

67.44
13.43
19.29
19.36

£9.82
49.13
59.82

55:18.82

55:18.7%
552
55:
85:
55t
55:
55:
85:
85:
55:
55:
585:
55:
55:

19.67
76.22
24.93
21.65
24.29
24,34
28.48
28.87
34.66
36.50
42.47
42.63
51.86

54:67.33

.54:87.44

£4:13.43
54:19.2%
54:19.38
54:26.78
54:29,25
54:29.36
54:46.83
54:49.82
54:49.13
54:59,82
55:18.82
55:18.79
55:19.67
§5:208.22
§5:28,93
§5:21.65
55:24.29
55:24.3%
55:28.49
55:28.57
55:34.086
55:36.59
§5:42.47
55:42.63
55:51.86
55:53.18

- [
HFOTNRVND RSN RDRORDNNDR

26.21
6.11
5.92
5.77
8.16
7.42

.47

.1

47

.19

.11

89

-]

i7

88

55

71

72

64

]
.17
49
53
88
16
23
32

P I I I I T T T T e S S e

Deletelode
Deleteliode
Deletelode
Deletetlode
Deletehlode
Deletellode
DeleteHode
Deietelode
Deteteliode
Detetettode
Deletetode
Deletetiode
Deletetode
Deletelode
Peletelode
BreakLink
BreakLink
BreakLink
Breaklink
BreakLink
BreakLink
8reakLink
BreakLink
BreakLink
BreaklLink
BreakLink
BreakLink
BreakLink
BreakLink
Deietetlode
DeleteRode
deleteitode
Deletelcde
Deletelode
Oeletelode
Deletelode
DeleteNode
BreakLink
BraakLink
Breakiink
BreakLink
Breaklink
BreakLink
BreakLink
Breaklink
BreakLink
MainWindowReset
PAUSE
CreateNode
EditLabel
PALSE
CreateNade
Edittabel
PAUSE
Createlode
Edittabel
PAlSE
Createlode
EditLabel
PAUSE
LinkHodes
PAUSE
Linkdodes
PAUSE
LinkHodes
PEUSE
TidyWorkspace
PAUSE
Createdode
EditLabel
PRUSE

PAUSE
CreateNode
EditLabel
PAUSE

+

in(2)

10{3)

10(4}

10(5)

iD{6}

10(7)

in(8)

10(9)

10(18)

{11}

(12}

i0(13)

En{14}

10{15)

18{16)

ParentID{2) ChildiD(16)
Parent1D(2) ChildiD(15)
Parent1D(2) ChildiD(14)
ParentID(2) ChildID{13)
ParentiD(2) ChildiD{12)
ParentiD(2) ChildEn{11)}
ParentED{2) ChildID{18}
ParentID(2) ChildID{9)

parentID(2) ChildID{8}

Parent[D{2) ChildID{7)

Parent1D(2) ChildiD(6)

ParentiD(2) ChildID(5}

ParentiD(2)} ChildlD(4)

ParentiD(2) ChildED(3)

1D(17)

10(18)

iD(19)

1n(24)

" ID{28)

[p{21)

F0{22)

10{23}

ParentID(19) ChildIB{23)
Parent1D(19) ChildI0{22)}
ParentiD(19) childID{21}
ParentiD(19) childin{za)
Parent1D(19) ChitdID{24)
ParentfD(1) childib{19)
ParentED(1) ChildID{18)
PareatID{1) childID{17}
ParentID{1) ChildID{2}

10(1} StartPt(293, -29)

10(1) HewText{ mxxx xx0mxx*}

10€2)} StartPt(99, -84)
1D(2) NewText{*XXXXXXXXXXXAKK XXAKXKXXR")

10(3) StartPt(257, -28)
10(3) HewText{ XXRXXXX XXXXXXKHXKX XAXXXXXKX')

1D(4) startPt(396, -81)
i0{4) HewText(XxXXXXX XXXXXXXXXXXX XXKHREEXA)

Parent1D{1) ChildID(2)
Parent1D(1) ChildED(3)

Parent1D(1) ChildiD{4)

1D{5) startPt{24, -179)
1D{5) NewText{*x_xxxx*}

10{6) StartPt(152, -176}
10(6) MewText(*x_xxxx_xxx*}

I71

176
177
178
179
184
181
182
143
134
185
186
187

189
190
19t
192
193
194
195
196
197
188

200
201
202

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

55:53.18
55:53.78
55:54.68
£5:55.37
55:56,75
55:56.86
56:06.38
56:18.15
56:18.28
56:12.29
56:12.48
£6:23.69
56124.54
56:24.65
56:32.72
56:38.71
55:39.42
56:48.14
56:48.69
56:43.16
56:43.21
56:49.984
56:49.99
57:11.72
57:13.64
57:14.58
57:17.69
57:17.65
57:21.66
£7:21.11
57:23.31
57:24.13
57:34.84
57:36.11
57:41.68
57:41.65
57:47.59
£7:49.48
57:50.28
57:51.87
57:51.498
58:65.11
58:06.59
58:07,52
58:18.54
58:14.68
58:13.73
58:15.65
£8:18.87
58:18.12
58:25.685
53:26.53
58:26.64
58:43.45
58:45.42
54:46,52
58:47.51
58:48.28
£8:51.35
53:51.41
58:54.81
58:54,92
58:58.49
59:96.20
59:00.31
50:63.88
59:65.36
59:46,02
59:06.,98
56:67.89
59:19.98
59:18.14
59:18.65
59:18.82
£9:22.44

55:53.78
55:54.69
55:55.37
£6:56.75
55:56.86
56:96.38
26:18.15
55:18,20
56:12.2¢
£6:12.14
£6:23.80
56:24.54
56:24.65
56:32.72
56:38,71
56:39.42
56:48.14
56:49.69
56:43.16
56:43.21
56:49.944
56:49.99
§7:11.72
57:13.64
57:14.58
57:17.68
57:17.65
57:21.66
§7:21.11
57:23.31
57:24.13
£7:34.84
57:36.11
57:41.60
57:41.65
57:47.59
57:49.48
57:56.28
57:51.87
57:51.98
58:65.11
58:06.59
58:687.52
£8:16.54
£3:16.60
£8:13.73
53:15.05
58:18.87
§8:18.12
58:25.85
58:26.53
58:26.64
53:43.45
58:45,42
53:46.52
58:47.51
53:48.28
£8:51.35
58:51.41
58:54.81
58:54,92
58:58.49
59:08.28
59:688.31
53:03.88
59:85,36
59:086.62
59:65.98
£9:97.89
59:18.93
59:18.14
£9:18.65
59:18.82
59:22.44
59:24.42

~ -
——

o

f=]

—
- MR A e e e
o

i

—

3.57
1.48
.66
.88
.99
.19
.86
.51
W17
3.62
1.98

@ 00 DD D

Linktodes
PAUSE
Ltinklodes
PAUSE
Createlinde
EditLabel
PAYSE
Jeletetlode
PAUSE
Createtode
EditLabel
PAUSE
Createtiode
EditlLahel
PAUSE
{inkkodes
PAUSE
Linklledes
PAUSE
TidyWorkspace
PAUSE
Createftode
Editlabel
PALSE
Linkkodes
PAUSE
TidyWorkspace
PAUSE
Maplindow
PAUSE
Hap#indowZoom
PAUSE
Map¥indewZoom
PAUSE
Createlode
EditLabel
PAUSE
LinkNedes
PAUSE
Createtode
EditLabel
PAUSE
LinkNodes
PAUSE
TidyWorkspace
PAUSE
KapWindewZaom
PAUSE
CreateNode
EditLabel
PAUSE
CreateNode
EditLabel
PAUSE
LinkNodes
PALISE
LinkNodes
PAUSE
TidyWorkspace
PAUSE
Creztelede
EditLabel
PAUSE
Createitode
Edi tLabetl
PAUSE
LinkHodes
PAUSE
LinkNodes
PAUSE
TtdyWerkspace
PAUSE
Createlode
Edi tLabel
PAUSE

Parent10(2) Childld(5)

Parent[D(2) ChildiD{6)

T ID(7) StartPt{279, -181)

15{7) -- cancelled --
{7

19(8) StartPt(279, -186)
10{8) Mewlext{ x_xxx*)

10(9) StartPt{399, -175)
10{9) HewText{*x_xxxxxx‘)}

Parent[D(3) ChildID(8)

ParentID{3} ChildIn{9}

ID(18) StartPt{557, -187)
10(18) HewText{*x_xxxx‘)

Parent[0(3) ChildID{18}

GPEN
StartRect{®, @, 668, -258) EndRect{148, -9, 692, -238}
StartRect{148, -47, §92, -276)} EndRect(-92, 64, 876, -311)

10{11} StartPt{717, -182)
1D(11} HewText{*x_xxxx_xxx*}

ParentID(3) Childin{11)

1D(12) StartPt{839, -177)
10(12} HewText{ X _xuxx*)

ParentID(3) ChitdlB{12}

StartRect{-92, &4, 876, -311} EndRect(5, 128, 1196, -3i1)

10(13) StartPt(926, -173)
10(13} NewText{*x_xxxxxxxx*}

15(14) StartPt{1863, -158)
10(14) MewText{*x_xxxxx*)

ParentID{4) ChiTdID{14)

ParentID(3} ChildiD{13)}

1B(15) StartPt{18i6, -182)
10{15) MewText{*x_xxxx"}

10{16) StartPt{1122, -178)
ID{16) HewText{*x_xxxx*}

ParentlD(4) Chitd[D{15}

Parent[0{4) ChildID{I6)}

[D{17} StartPt(1223, -188)
10{17) HewText{ x_xxxx')

172

220
221
22z
223

225
226

227-

229
230
231
232
233
234
235

236

237
238
239
240
241
242

244
245
246

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
77
278
279
280
281
za2
283
284
285
%86
287

289
290
291
252
293
299

59:21.
£9:24.
59:52.
59:56.
59:56.
60:84.
99:05.
00:88.
60:68.
ge:1l.
ge:12.
99:14,
04:14,
09:28.
90:21.
66:30.
g@:32.
ag:32.
a8:37,
99:40.
99:41.
a9:42.
00:43.
09:45.
80:45,
Bl:e1.
§l:02.
B1:33,
81:33.
41:35.
91:37,
a1:37.
62:61.
02:41,
62:86.
02:97,
B2:88,
82:11.
82:11.
92:14.
92:14.
02:18,
a42:28.
02:26.
682:23.
82:24.
82:32.
82:33.
§2:37.
§2:37,
92:44,
92:48.
92:48.
82:51.
82:53.
82:56.
82:57,
a3:01.
b3:01.
83:86.
83:87.
83:68,
83:69,
83:69.
93:16.
83:18.
63:18.
83:24.
83:27.
03:28.
83:29.
83:34.
83:33.
a3:34.
83:44.

90:43.067
99:25.76
90:45,82
91:01.64
61:02.96
81:33.06
61:33.16
81:35.86
01:37.23
91:37.89
02:01.51

92:32.76
92:33.31
82:37.37
62:37.43
62:48.29
82:48.08
82:48.96
§2:51.82
92:53.19
92:56.98
02:57.684
93:01.59
03:61,.6%
63:86.79
83:87.97
83:88.68
83:69.34
B3:69.45
83:16.53
63:18.46
63:18.62
83:26.31
83:27.63
83:28.56
03:29.55
83:30.54
83:33.95
93:34.68
83:40.98
93:41.97

.71

-
=

0
=3
=]

Createlode
EditLabei
PALSE
HaphindowZoos
PAUSE
LinkNodes
PAUSE
TidyWorkspace
PAUSE
Linkltedes
PAUSE
TidvMorkspace
PAUSE
Createliode
EditLahel
PAUSE
Createliode
EditLabe}
PAUSE
Linkitodes
PAUSE
LinkHodes
PAUSE
TidyWorkspace

" PAUSE

MapWindowZoom
PAUSE
Createlode
Editlabel
PAUSE
LinkHodes
PAUSE
Createdode
EditlLabel
PAUSE
LinkHodes
PAUSE
TidyWorkspace
PAUSE
CreateNode
£ditLahel
PAUSE
Linkifodes
PAYSE
Tidyworkspace
PAUSE
MapWindowZoom
PAUSE
CreateHode
EditLabel
PAUSE
MapWindowZoom
PAUSE
Linkkod2s
PAUSE
TidyWorkspace
PAUSE
Createdode
EditLabet
PAUSE
LinkNodes
PAUSE
CreateNode
£ditLabel
PAUSE
CreateHode
EditLabel
PAUSE
LinkNodes
PAUSE
LinkNodes
PAUSE
Tidyworkspace
PAUSE
MapWindowZoon

[0(18) StartPt(1384, -188}
10(18) MewFext (“XXxX¥X XXXEXXXXKXK XXX0OXXX)

StartRect(389, 128, 1491, -311) EndRect(-39, 86, 1605, -362)

ParentID{1)} ChildID(18)
ParentID(4) ChildID(17)

16(19) Startpt(1329, -187)
10(19) NewText(x_utxtx*)

[0(28) StartPt(1467, -183)
ID(28) MewText{ x_xxxx*}

Parent[D{18) ChildiD(19)

ParentID{18) ChildID(28)

StartRect(79, 48, 1723, -302) EndRect(597, -55, 1677, -328)

fD{21) StartPt{1422, -179)
IB{21) HewText(*x_xxxx‘)

ParentID(18) ChildID(21)

10(22) Startpt(1833, -137)
19(22) HewText (*x_xxxx_xxx*}

Parent[D(4) ChildIG{22}

1D{23) Startpt(1877, -145)
1D{23) NewText{*x_xxxx_xxx‘}

ParentID(4) ChitdIp{23)

StartRect{429, -55, 1588, -320) EndRect(773, 128, 1887, -247)

I0{24) Startpr{1724, -97)
ID{24) HewText{*XXxXX XXXHXXXXNKOK XRHOXXKX™)

startRect(773, 128, 1887, -247) EndRect(-I8. 119, 1967, -347)

Parent[D(1} Childlb{24)

10(25) StartPt{1657, -179)
ID{25) HewText(x_xxxx')}

ParentID(24} ChildID{25)

ID{26) StartPt(1817, -181})
ID{26) NewText(*x_xxxxx‘)

10{27) StartPt(1385, -118)
13(27) HewText(™x_xxxxxx*)

Parent10{24) ChildID{26}

Parent10(24) ChildID(27)}

StartRect{-18, 119, 1967, -347) EndRect(-1423, -46, 1932, -265)

173

295
296
297
298
299
300
161
Joz

304
305
306
307
308
309
319
311
312
113
314
315
316
317
il8
319
320
321
322
323
324
325
326
327
328
329
330

312
333
134
135
336
337
138
139
340
341

343
344
345
346
147
348
139
350
351
152
353
354
355
356
357
358
359
360
161
362
363
364
365
366
367
368
369

68:19.
68:19.
88:24.
#8:28.
B8:32.
19:32.
19:33.
18:37.
lB:48.

18:45

19:45,
11:47.
.89

11:47
12:63
12:87
12:12

12:12.

12:48

12:41.
12:45.

12:49

12:54,
13:47.
13:48.
13:54.
13:57.

14:82

15:25.
15:26.
15:35.
15:48.
15:45.

16:19
16:19
16:24
16:27
16:33
17:29

61
.28
33
a1

.64
.44
.28
33
.29
[:L]
51
.57
L3}
98
73
22
57
13
16
88
12
12
33
.08
72

.22

.96
.23
.31

04:27.
01:28.
64:33.
ga:34.
8445,
064:46.
05:84.
(5:94.
§5:86.

.33
.29
.88

=

—_

-

(7

— —

>

b

> —
o P A T S i e S A,
oo

—

PAUSE
HapWindowZoom
PAUSE
HapWindowZoom
PaUSE
HMapwindowZaom
PAUSE
BreakLink
PAUSE
BreakLink
PAISE
SetDeleteMode
PAUSE
Deletedode
PEUSE
SatDeleteMode
PAUSE
MapWindowZaom
PAUSE
LinkHodes
PAUSE
TidyWorkspace
PAUSE
Savelorkspace
PAUSE
HapWindowZoom
PAUSE
CreateHode
PAUSE
Deleteltode
PAUSE
MainWindowloom
PAUSE

PAUSE

PALSE

PAUSE
LeaveProsell
EditHode
PAUSE

PAUSE

PAUSE
LeaveProsell
EditNode
PAUSE

PAUSE

PAUSE

PAUSE
LeaveProsell
£ditHode
PAHSE

PAUSE

PAUSE

~ PAUSE

LeaveProsel]
Editliode
PAUSE

PAUSE

PAUSE
LeaveProsel]
Edi tHode
PAUSE

PAUSE

PAUSE’
LeaveProsel]
£di tHode
PAUSE

PAUSE

PAUSE
LeaveProsell
Edi thode
PAUSE

PAUSE

PAYSE
LeaveProsel]
EditHode

StartRect(-1423, -46, 1932, -265) EndRect(-1314, -46, 244, -311}
StartRect(-1314, -46, 244, -311) EndRect(-1379, 275, 201, -311)
ﬁtartRect(-Lsrg, 275, 261, -311) EndRect{-1811, -27, 389, -256)
ParentlD(3) ChildID(10)

Parent1D(3} Child{D{11}

ot

(1

OFF

StartRect{-1611, -27, 389, -256} EndRect(-86d, 0, 1131, -293)

ParentID(4) ChitdID(16}

File(*QMGR*} Format(*.PR2*}

StartRect(-868, &, 1131, -293) EndRect(-1318, 2ii, -87, -366)
10(28) StartPt(-1063, -221)

in(28)

StartRect{-1318, 211, -87, -366) EndRect(-1146. -18, -779, -259)

JOIE)]
14{5) Editor{*c:\windows\pifit.pif*) File(*(MGRB&5.SCR)

(e}
I16) Editor{*c:\windows\pifit.pif*) File(*(MGROG6.SCR"}

19(8)
10(5} Editor{*c:\windows\pifit.pif*} File(*(MGROBS.SCR}

10{6}
10(8) Editer{*c:\windows\pifit.pif} File{*QHGREBS.SCRY)

1n{e)
[0{9) Editor(*c:\windows\pifit.pif) File{ (MGREAY.SCR*)

inie)
i0{12) Editor{‘c:\windows\pifit.pif*} File(*QMGRBEC.SCR")

10{a)
10{13) Editor{*¢:\windows\pif\t.pif*) File(*(MGROSD.SCR*)

1D{8)
16{18) Editor{*c:\windows\pif\t.pif*} File(*QMGROBA.SCRY)

174

62 PAUSE

83 PAUSE

89 PAUSE

12 LeaveProsell Do)

94 Editilode 1014} Editor(*c:\windows\pifit.pif*) File{ QMGROGE.SCR™)
7% PAUSE

48 PAUSE

33 PAUSE

93 LeaveProsell [o(a) .

76 Editilode 10{15) Editor(’ct\windowsipifit.pii®
21 PAUSE

79 SaveWorkspace File(“OMGR.PR2*} Format(®.PRZ*)

42 PAUSE

.88 PAUSE

370 17:30.92 17:34.64
371 17:34.64 17:38.47
372 17:39.47 17:44.47
373 17:44.47 18:12.59
74 18:12.59 18:13.63
375 18:13.63 18:22.42
376 18:22.47 18:23.98
377 18:28.99 18:34.23
378 18:34.23 19:29.16
379 19:29.16 19:29.92
380 19:29.92 19:36.13
381 19:35.13 19:39.92
382 19:39,92 19:42.34
383 10:42.34 19:43.72

a3

e R T
un

File{* QMGROEF.SCR")

—

3184 19:43.27 19:46.73 51 PAUSE

385 19:46.73 19:51.78 PAUSE

386 19:51.78 20:14.96 23.18 LeaveProsell 10(8)

387 20:14.96 20:16.17 21 Editlode [0(16) Editor(*c:\windows\pifit.pif*} File{ QMGRO1O.SCR™}.
188 208:16.17 20:23.89 92 PAUSE

389 20:;23.89 20:26.11 .82 PAUSE

390 26:26.11 28:31.22 .11 PAUSE

391 29:31.22 21:22.14 56.92 LeaveProsell 1D(8) :

392 21:22.14 21:23.82 88 fditiade 1p{14} Editor{ c:\windows\pifit.pif*) File(QMGROIL.SCR")
193 21:23.62 21:27.74 .72 PAUSE

394 21:27.74 21:30.49 .75 PAUSE

396 21:30.49 2i:35.81 32 PAUSE

396 21:35.81 22:16.24 49.43 {leaveProseil e{e}

397 22:16.24 22:17.81 77 Editiode 10{22) £ditor(*ct\windows\pifit.pif*) File(* GMGRO16 .5CR")
398 22:17.81 22:22.65 .85 PAUSE

399 22:22.06 22:25.52 46 PAUSE

400 22:25.52 22:36.85 5.33 PAUSE

401 22:308.85 23:32.69 61.34 LeaveProsell 15(8)

402 23:32.69 23:33.52 6.33 EditHode 10(23) Editor(*c:\windows\pifit.pif*) File{*QMGROIZ.SCR™)
403 23:33.52 23:38.35 4.83 PAUSE

404 23:38.35 23:56.22 11.87 PAUSE

305 23:59.22 23:55.43 5.21 PAUSE

3406 23:55.43 24:41.99 46.47 LeaveProsell 10{8)

467 24:41.98 24:42.62 B.72 EditHode ID(19} Editor{*c:\windows\pifit.pif*) File(®QMGRO13.5CR")
408 24:42.62 24:46.62 4.68 PAUSE . :

409 24:46.62 24:849.65 3.83 PAUSE

410 24:49.65 24:54.64 4.99 PAUSE

411 24:54.64 24:54.70 B.66 PAUSE

412 24:54.74 26:05.17 78.47 LeaveProsell 1n{6}

413 26:65.17 26:06.32 1.15 Editilode 10(26) Editor{*c:\windows\pifit.pif*) File(>QMER®14.SCR™)
414 26:06.32 26:12.88 6.48 PAUSE

415 26:12.88 26:16.18 3.30 PAUSE

416 26:16.18 26:21.59 5.49 PAUSE

417 25:21.59 27:45.35 §3.76 LeaveProsell 10{8}

418 27:45.35 27:46.%7 8.72 Edithode 19{21) Editor(*c:\windows\pifit.pif*) File(*QMERO15.SCR™}
419 27:46.87 27:58.79 4.72 PAUSE

426 27:58.79 27:53.43 2.64 PAUSE

421 27:53.43 27:58.68 5.21 PAUSE

422 27:58.64 28:26.82 28.18 LeaveProsell 10(8)

423 28:26.82 28:27.75 0.93 Editdode 10(25) Editor{ c:\windows\pifit.pif*) File(*qMGRO19.SCR")
424 28:27.75 28:32.28 4.45 PAUSE

425 28:32.29 28:35.66 3.46 PAUSE

426 28:35.66 28:46.77 . 5.11 PAUSE

427 28:40.77 29:10.33 38.56 LeaveProsell 10(8) }

428 29:19.33 29:28.26 0.93 EditHode 10(26) Editor{‘c:\windows\pifit.pif*) Fite(*QMGRBIA.SCR")
429 29:28.26 29:24.88 3.74 PAUSE

439 29:24.88 29:26.74 2.74 PAUSE

431 29:26.74 29:32.82 5.28 PAUSE

432 29:32.82 29:32.67 6.85 PAUSE

433 29:32.87 29:32.13 0.86 PAUSE

434 29:32.13 38:27.16 55.83 LeaveProsell 18(8)

435 38:27.16 368:27.99 8.83 Editlode 18427) editor{*c:\windows\pifit.pif*) File(*QMGROIB.SCR)

436 30:27.99 30:33.42 5.43 PAUSE

437 30:33.42 38:33.48 0.86 MapMove StartRect(-1318, 211, -87, -366) EndRect(418, 48, 618, 140)

438 38:33.48 38:33.81 8.33 PAUSE

439 30:33.81 36:33.85 9.85 MapWindow 0PEN

440 30:33.86 38:36.12 2.26 PAUSE

441 39:36.12 36:38.26 2.14 MapWindowZoow StartRect(1482, -18, 1849, -259) EndRect(-1276, 183, 1832, -329)
442 39:38.26 38:44.68 5.82 PAUSE

443 30:44.08 36:45.34 1.26 MapHindowZoom StartRect(-1276, 183, 1832, -329) EndRect(-1276, -118, 1936, -254)
444 30:45.34 30:49.38 3.96 PAUSE

175

115
aab
a7
118
449
450
451
152
453
454
155
156

——
?J‘-sl:ﬁig‘v—‘mm@mh\d

—

HaphindowZoom
PEUSE
Savedorkspace
PAUSE

Gt iredindoedove
PAUSE
Outlinedindow
PAUSE
Saveiorkspace
PaUsSE
SaveWorkspace
PAUSE

StartRect(-1276, -118, 1936, -256) EndRect{-656, i3, -171, -293}
File(*QMGR.PR2) Format(*.PR2")

StartRect(-1276, -118, 1936, -256) EndRect(le, 36, 245, 236)
OPER

File{*QMGR*) Format{*.SCR*)

File{*QMGR*) Format{*.PRZ*)

176

B.2 Output from Pass 0

Pass 0 does not generate the header, so the output from Pass 0 is 449 lines in length.

8 0257, 0316604, 06316885, 0000281, 0001, 9066 8
9 @275, 0316885, §316962, 0ae0077, 0061, 8884 8
160 B257, B316962, 0317005, 6690043, 5681, 84999 @
11 0257, 0317605, 8317288, 0008253, peal, G006 4
12 9226, 6317258, 6318571, @091313, 0001, 9469 9
13 3264, -GI6OE31, -0060001, -0000001, 0GO1, 6666 1
14 9264, -£949001; -6O0GRGL, -9060081, GOOL, 6869 2
15 B2, -P0GNG01, -00000G1, -0000001, §0Gl, 4498 1
16 0264, -GDOBE61, -8500001, -000e06%, 0081, G608 3
17 4274, -pReeAAl, -9a00eAl, -000001, 0G01, 60ed 2
18 9764, -0458091, -9000001, -0000001, BOOL, 0689 4
19 0274, -D999001, -@00N0Al, -00000G1, Bosl, 6949 2
20 0264, -0000BGL, -G000RA1, -0D00BRY1, POAL, G66E 5
21 6274, -6000661, -9000001, -@800801, 00OL, 6080 2
2z 0764, -0DREOS1, -00Q00P0L, -0000OB1, 66Q1, 0689 6
23 6274, -00BAAAL, -00QG0G1, -0DBEEEL, 9601, 8308 2
24 9264, -0GOOEGL, -9009001, -008006%, 9081, 6688 7
25 0274, -00A0BO1, -0009061, -080686L, 0061, 0869 2
26 0264, -0pEGES1, -G000801, -0000601, GOBL, 6889 8
27 68274, -0E684G1, -6060001, -0DOBOOEL, 9001, ogag 2
28 5264, -£980091, -Go0ROB1, -DOEOO4L, 0061, 6860 9
29 0274, -6008G61, -2000001, -00000Al, 0061, 6068 2
30 0264, -5066681, -9800001, -090060L, e6el, ga88 1
31 6274, -PDOGAG1, -6O0RGOL, -0000E0L, 0BDL, 0689 2
32 0264, -0966091, -0OO06B1, -0006G1, 00B1, 6469 1
33 0274, -8094641, -0008001, -p6EREEL, 9681, €990 2
34 6264, -5EOBEEL, -9000081, -a0neeaL, 0Gel, 6688 12 8
35 6274, -0000881, -2000001, -6000601, 0661, 0088 2 12
16 ©2ed, -00pEAS1, -000000L1, -00Q000L, GBOY, 668E 13 8
17 8274, -69B6041, -60R0OOL, -00RROEL, 0001, 63482 13
38 9264, -6000DBE, -5309941, -0908061, 6881, ae68 14 @
39 9274, -0006001, -9000041, -084GGOL, 0BAl, G664 2 14
40 6264, -0086661, -0pARGO1, -6OAOGOL, 0001, 0868 15 &
41 ©274, -00BGR81, -AODGE0L, -00600GL, GO61, 9860 2 15
42 B264, -6066HG1, -@060EO1, -0060G1, 6061, B089 16 9
43 0274, -0066001, -P0690G1, -0060081, 06OL, 6068 2 16
44 0264, -0460001, -9008AQ1, -0AQBG01, PBGL, 066E 17 @
45 0274, -60EEBGI, -G30O0A1, -6900001, GOOL, oede 1 17
46 ©764, -0DDEAS1, -GPQOE81, -30pOA0l, GOO1, B399 i8 8
47 0274, -0880081, -gd42661, -0000061, 00OL, 8868 1 18
48 0264, -6896001, -$009001, -0900461, 661, 0A6E 19 &
49 0274, -6GROOBI, -0000001, -9506061, ceel, coeg 1 19
50 6264, -0PABEGL, -0300001, -00OOBOL, €061, 6689 20 68
51 ©274, -0906481, -000RB8L, -9060081, GEE1, 6998 10 241 B8 06 8 888
52 02764, -09660081, -89099@1,. -9600881, 860L, 6006 256600800808
53 0274, -A6Q0681, -A080A41, -A0HBOAL, 0691, 6668 1926 60 96800 @
54 6264, -H0Q0BOT, -0909061, -0AE0801, 00O, OBOE 26 6 8 5 8 & 8 6a8
55 6274, -806PA61, -AB0GGO1, -060OGOL, GOOL, 0860 19 216800684880
56 G264, -0pGEAG1, -890B081, -0DOPOR1, 6661, CEAR 27 9 B A B D @ 688
§7 0274, -6A66061, -9004A8L1, -00p0661, 0BAL, 6066 19 2gpE0O0B0G
58 0264, -60Q0BEY, -G0AAAE1, -0860801, 0BAL, APGE 23 8 6 B B 9 8 -]
59 9274, -BEEEASL, -00PGAO1, -900EDEL, 0001, 086 ;]
66 0257, 6318571, 6319241, 00eB676, oeel, 0669 B
51 9257, 6319241, £3268876, 9000829, ¢e6l, 9006 @
52 9279, 8320078, ©320076, 00AO0G6, 0001, 6686 9
§1 8257, 0320076, 632019%, 0308033, 0pel, G066 @
64 0281, 6329169, 0320114, 6000605, 0801, £062 8
65 0257, 8326114, 032848%, 0006291, DBOL, 0E88 B
56 0283, 0328485, €320578, 0990165, 4861, €606 @
§7 9257, 0320578, 4322747, '@082137, 008%, 6hBG @
8
1
2
3
2
5
&
7

VPO DRDD NI D WD N D DD DD DD
L DD LD DRLDEPDDDD D@D D
T DD LD DDODDDDEOCDEDDE DD DD
PPLPOITPIIDPDCDDPDDTODDDEHD DD
P DO DTDPPDT LD DDDE DD D
PUVDD DS IOC O TDD DD DEDD DD
DT DICTLTDTITDIOCTDDDDDDDD
PO T DPODPLTDT D DDDODDDDDDDTD
DR DT PEDDDBDDDD DD DD D P DD

<€

—
—
=GP

—
PP DD D DB TOPDDTDPEDDD P
DD DD PO D PP DD DD P DD DR DD
BT D DG TDHDODPTDDEHDDD@
P TPDDDODDDODD DD D EDEDDCT
DO OO DD ODDDODD DO OO DD DD
DB ODDDODTDPD DDA DEDTEH DD DD
PP I I PRI DOD IR DDDD PR
PP PO IS DDIH B LB DB DR

-
w0
r
@M

8
8
L}

6 18 36 218 136

N

-2

@ @

D@
mwmm@cmmmwhmmcxzmomm

= O D= @ DR

8 494 768 -480

un
O OO D PP T DL DD DO DD

-216 -
68 0285, 6322707, 0322712, 00AG065, 6001, beed
69 B265, -6006861, -POAG061, -00606EL, 6001, €GO
70 9265, -AAH0EG1, -8080061, -9000881, 0661, G966
71 0265, -8806601, -9000081, -9689961, 6081, 8460
72 0265, -9DOBEET, -0090001, -9090601, HEB1, GOBY
73 6265, -60R6GA1, -08G0AS1, -80A0B91, 0081, 0668
74 6265, -0060401, -6066081, -0060001, BEOl, DGOO
75 6265, -6900061, -8008401, -9000601, 8801, 9508

]
8
8
5
[}
(]
L}
5
]
§
[
8
[
]
L
8
[
76 0265, -8998600F, -6000801, -000B081, 0001, 6e6d 8]

D ODDDDDD DO DP DT DD
DT P PDD DD DD DD DD W
D P DD D PP T PDEOODDP @D

DO DO DOD DD
o= - = e e el R]
WD ODd @D DD

177

265,
8265,
a265,
0265,
8265,
268,
9265,
8265,
B258,
B25E,
8258,
0258,
8258,
£258,
0258,
0253,
8258,
9258,
0258,
0258,
6258,
8258,
0285,
02685,
62685,
G265,
5265,
265,
6265,
8285,
9258,
6258,
6258,
9258,
8258,
8258,
6258,
p258,
5258,
8276,
8257,
264,
8278,
6257,
264,
0278,
257,
pz64,
8278,
9257,
p264,
B274,
8257,
8274,
257,
06274,
8257,
a27%,
6257,
p297,
6257,
6264,
8278,
8257,
6257,
g264,
8278,
9257,
8274,
6257,
a274,
8257,
0254,
0278,
8257,

-5800001,
-0006881,
-5p68881,
-8600081,

-9698801,

-3806880%,
-2069091,
-3463061,
-3986891,
-8088091,
-96€8901,
-g@aaenl,
-8009081,
-5300001,
-9895991,
-30aaa01,
-3080001,
-3909001,
-90808001,
-9000081,
-5696901,
-3000061,
-9889681,
-poaganl,
-686081,
-9866881,
-3800801,
-G080801,
-6090981,
-98068881,
-3800001,
-6860881,
-686881,
-0980081,
-8068061,
-8080801,
-6899901,
-6000081,
-8099861,
-4800801,
8322712,
(324733,
4324744,
9325343,
9325928,
8325936,
9326678,
8326925,
9326936,
9328683,
8328992,
8328913,
9329962,
4331862,
8331879,
#331967,
8332822,
8332893,
9332165,
8332429,
8332438,
#332848,
8332857,
8333486,
8333659,
8334247,
8334263,
8335186,
8335318,
8335378,
92354686,
3335537,
8335675,
8335626,
8336638,

-99g0e81, -6E666L,
-0605801, -6940841,
-90pG6A1, -0699081,
-4papeel, -0008881,
-3006081, -6E60601,
-9006081, -6098001,
-30paEei, -099898l,
-A806001, -8080881,
-0pEEse1, -6G69681,
-3000001, -6006G401,
-0066001, -080G001,
-9606061, -6060001,
-500G481, -0B0Q6BE,
-3p86001, -9903801,
-0000601, -0096681,
-pe666R1, -0886081,
-0B6R0S1, -B008861,
-Gage0al, -ooeeosl,
-06000081, -0008981,
-0p0R6R1, -0060001,
-0666861, -0060061,
-3068001, -6008091,
-0006001, -0080081,
-gpenRa1, -08606861,
-0066801, -666GEAL,
-pB86641, -00066081,
-Bgggaal, -vceeel,
-90008061, -0688881,
-660B491, -0000001,
-gepEngl, -0660061,
-88890681, -0006661,
-3000661, -0606061,
-00eege1, -9688081,
-6666901, -0000061,
-8860001, -geesesl,
-09¢0001, -0DBBGE6L,
-gbbesel, -0008981,
-pBOEEAL, -00688661,
-beposel, -cooessl,
-abaaeal, -oeeessl,
8324733, 0062021,
8324744, Qee0qll,
8325343, 6000599,
8325920, 6008577,
8325936, 6806616,
9326678, 88068742,
8326925, 0006247,
6326936, 6e@esll,
8328683, 6601747,
9328982, 0666219,
8328913, de@sell,
6329502, 898A98Y,
8331802, 6001960,
8331879, o6eaer7,
8331967, 0900488,
6332822, 0400055,
9332093, 0800871,
8332165, 4008872,
6332429, fepo264,
8332434, 0860665,
63328460, 0000406,
0332857, 6860617,
83334086, 0008549,
8333659, 0086253,
8334247, 0666588,
8334263, 0088016,
9335186, 0680923,
8335318, 0066132,
8335378, 0088060,
8335466, 0606682,
4335537, 6068677,
4335675, 0066128,
8335686, 8686811,
8336636, 00860944,
9337815, 60083385,

8981,
0901,
ga61,
0081,
296],
2601,
asal,
oaal,
BE61,
e001,
9893,
2681,
8861,
2ea1,
8eai,
aeal,
Bo61,
8081,
8041,
6661,
6861,
8B61,
seez,
aea1,
peal,
HBE1,
a@el,
0001,
pant,
oBel,
8661,
8001,
8661,
6061,
8661,
Ged1,
geal,
6081,
8861,
aeel,
8661,
aee1,
eeel,
o681,
2081,
ge81,
peet,
8661,
661,
8041,
gavl,
0661,
8661,
2641,
aeal,
pe6L,

[-I:1:

661,
asel,
goel,
8661,
0001,
8681,
peel,
peel,
8pot,
seet,
3001,
0061,
post,
poel,
5881,
peal,
6661,
Bo6t,

5968
go0e
9808
4608
84449
lclelc]
0008
6088
5880
2908
9448
ooed
g6ee
goaa
9869
oged
6088
0608
9008
o080
6600
6008
Ll
gaee
a@es
0090
aooeg
9888
gaag
0608
8660
0868
8868
6840
6e60
aoes
4988
806e
0688
ooog
6068
4008
6eo66
Ba0ee
o008
9068
goge
6680
0668
0068
g068
8886
8600
6008
9908
agae
:LLE
aoee

bees

28ee
2868
Ll
0088
2009
gage
8868
0060
poea
9508
8000
9660
9008
gaed
8256
poeE

9689069886
136006008688
1190680800609
12ap00d0300680
i13paooedendd
4po06B0p6a0
159864080929
6396000808028
2160080600868
2150006066809
214060008598
21360080000
2120000308090
2119008086469
2leooBoceBoa
2900883006008
280000088840
2766006008
26036606098
25008009089
24900608028
23neopce0e8
1760068088889
1880690080968
1900606680080
249690088089
2000008008680
216n6d0600868
2266060080889
2300008090880
192360060088
1922006908008
1921680060088
19220860060660649
1924606666639
1196686666080
118869800808
1170806880688
1206686868868
ghoeebenes
aGo00OROGE
19293-2968608088¢8
1606680886
ao0668REAEB
2699-84popoae
zoaooe0ea08
gAapaboBBO
39257-8886666088
3006886888
688000600868
4639% -8106686048
48P006860868886
6B0BB0E0686
120p08060868
69gapboEHOB
13668808808
o8B BOEGEE
la9eo06088
gopopoooo00 8
egaoobDBARE
6Boo0BGEEBOE
5824-179688698
seAeae00O0
9898000008
89@8c060BGOG
60152 -1768006888
68968606868
4008606088
254060888680
goapabeBae
2600080660080
pBoGABOODO
79279-13166886488
7oapeceass
LRGN NG

178

152 0265, 9337915, 6337828, 9000085, 4601, 6698 7
153 4257, ©337920, 0337229, 0004209, 0661, 694D
154 07264, 0337229, 6337240, 06884611, 0981, Gaes
155 0278, 0337240, 6338300, 0981063, €061, 9068
156 0257, 0338380, 6338454, 0000154, G6€1, Geee
157 0264, 6338454, 338465, 0000011, 0881, 0888
158 9279, 0338465, 6339272, 0000867, d0Q1, 9608
159 9257, B339272, 6339871, 0000599, 6041, 0088
1660 9274, 0339871, 6339942, 0BGOET71, BOG1, ©88B
161 0257, 9339942, 6310814, 0000072, 0001, 6G06
162 0274, 0340014, 6348869, 0000055, G041, GGOO
163 8257, 0340069, 9346316, 008247, 0001, G606
164 6297, 6348316, 6346321, OeBGEES5, 2001, 6608
165 0257, 6340321, 6346904, 0©GB6583, 00681, 6869
166 0264, 0340984, 6349989, 0000665, §081, 6880
167 0278, 9340909, 6343172, 0662263, 0061, 694D
168 6257, 9343172, 0343364, 0608192, 0041, 6068
169 0274, 0343364, 6343458, 8000094, DOG1, 088D
170 0257, 8343458, 0343766, 6000302, 0001, 0880
171 0297, 0343768, 0343765, 0000005, 0001, 5088
172 8257, 9343765, @344i66, 0000341, 0661, 4868
173 6281, 0344106, 6344111, 0066605, 8681, 9082
174 8257, 9344111, 6344331, 0060226, 0601, 3660
175 0283, 6344331, 9384413, 60066082, 0001, 8688
176 6257, 9344413, 46345484, 0061671, 8661, GGAB
177 6283, 0345484, 4345611, 0006127, 0661, 6668
178 6257, 8345611, 0346168, 0GG6549, 3681, 6806
179 @264, 0346168, 0346165, 0086685, 3881, 6866
188 8278, 0346165, 6346759, ©CG534, 8661, ooes
181 8267, 6346759, 0346048, 0089181, 3081, 486
182 9274, 0346549, 6347028, 06BO4SE, 9001, 0068
183 9257, 03476828, 6347187, 6684159, 0001, 0668
184 0264, 6347187, 6347193, 0666911, 6061, 6669
185 0274, 0347198, @348511, 6691313, 6661, 6660
186 9257, 0348511, #348659, 6069148, 6661, 6BES
187 0274, 0348659, 6348752, 660993, 0001, PABE
188 0257, 9388752, 6349054, 0066362, 0681, 0880
189 0297, 9349854, 6349068, 6000006, AGBL, G060
190 0257, 0349068, 6349373, 6000313, se6l, 6868
191 0283, 9349373, ©349505, 6000132, 6881, 6668
102 0257, 6349505, 8349867, 6006362, 0081, 6066
193 0264, 0349807, 0349812, 6606005, 0081, 6HBO
194 0276, 9349812, 9350565, 6600693, 2681, 0808
185 0257, 0350505, 9350653, 0066148, 0801, 6065
196 BZ64, 0358653, 0350664, 0666811, 5681, 6668
197 8278, ©358664, 6352345, 0061681, 6661, o666
198 @257, 6352345, 9352542, 0060197, 9081, GE6E
199 §274, 0352542, 4352652, 6660116, 3601, 6606
200 @257, 0352652, @352751, 0060699, 8661, O6BE
201 9274, €352751, 9352828, 0686677, 0661, ooes

M)
%8
oB089a0

~
WD <o
PO T EDDIEE L DD D@
—
o @
T

D <D
&
3 @
@ @

5900800

o

h @ D OO DD W0 D

- ~BR]

DD DD D DD @ DD @@
—
M D DB BED @D - GR @D D

@ o
QPP DEDDD

- DD D D D@D
DD DD DS DD D
D@ PO DD D DD

L=~ g
& &
@ th

]

g6660600¢8
a08e0pB8O0

@ &

h
mmwmmq}m

6 52 64 876 -311

=
D D @ DD DD DD

@~

DO @OPDDD D~ D
2
o=

D= DD @D DI DD

L3
=D A PP D

@

a
]
]
a9
8
8 146 -9 692 -238
8
-27
8
8

8
3

=
mm
@‘hl
(=]
==
=]
@<
=]
[--]
<

D= B P DD DDPDD DWD e DD DL P WD D DR T
O

9 eaoanee
11608088008
-]

N
B D
~ @
@© D
@D m
o @

5 128 1196 -311

]
:]

g L

epeB0B8BH00
1663 ~186 89
6gae086
asesonoees

6gaé
]

-
o &

1
pBoBOBERE
13p500080488

D D@ bt bt B B D DB GED H DI D ODL DS DD S DDDDDW DD W

202 9257, 0352828, 0353135, 0G8397, 9601, pORB 0O 0GB 6B OB 8

203 6297, 0353135, 9353141, 0680686, 0601, ce60 68 6 00600 00

204 9257, 0353141, 0353481, 066349, 9661, 0BG 6 O B H A B B 6 B 8

205 0264, 6353481, 6353492, 0006611, 0001, 6069 15 6 1816 -182 6880 8 @
206 A278, 0353492, 6353849, ©0G88357, 0PGBI, 0660 150660808603

207 9257, 0353849, 83546268, 0008171, 0661, 0BG 0O G 6 B O O O B B B

208 0264, 0354028, 6354831, ©BGA611, 8661, 6660 16 6 1122 -178 608 08 8
209 @278, 06354631, 0354388, 6008357, 0081, 0668 seoeABGHRE

210 9257, 0354388, 0354536, 0088148, 0661, pREO 0B O BO B O B8 8

71l 98274, 6354536, 03546082, 000DODG6, 0661, 00AR 4 1506 B 6D OB 6

712 6257, 9354682, 8354698, 0060658, 0061, GEEB 6 00 B D6 60D 6

213 ©27a, 9354698, 0354789, ©EOREYY, 0661, GOGB 4 6B B E B0 B 8 6

214 98257, ©354789, 8355008, 6066219, 9661, 60AG H O 086 B A 6 @

215 6297, 4355068, 0355614, 0PO0G0G, 9661, ceB @ oD 0B O G066

216 0257, §355014, 6355865, 8606851, 90P1, 6GG0 6 6600 8 geen

717 o264, 0355865, $355882, 0600017, 0061, 6000 17 @ 1223 -188 € B B @]
718 0276, 6355882, 356244, 0069362, @661, 6006 1706000808 6

219 8757, 0356244, 6356442, 0GOBBI9S, 9061, 6EEG- 0 0 6 6O B O D B 6

220 8264, 0356442, 6356453, 0OGB611, 9061, 0BG 13 0 1354 -186 606 8 6 6 O
221 9278, 0356453, 96350203, 0662840, 000L, 0068 186680 A B 6O S

222 6257, 6359293, 6359686, 00BD367, 9061, pEGR 6 6 0 6@ 600 B 8

223 G283, 0359689, 0359694, 0086694, 0001, 6609 O 8 306 128 1491 -311 -39 46 1685 -302
274 6257, 0359694, 6360462, 006708, 6661, BREE A @O 0O G B B O O

226 9274, 0360402, 0366545, BG@G143, 6601, BRER 1 18 PO OO 6B GO
226 9257, 0366545, 0360803, OGO6258, 0681, 606 06 6 8OO 6 B0 8

179

227 6297, 0366803, 0366809, 0060896, 04E]l, HOOG G
228 0257, 9360809, 0361188, 0698379, 846], G606 @
220 @274, 6361188, 0361281, 6600093, 0051, o6ed 4
230 @257, @361281, 9361479, 8@90198, G001, 6560 6
231 6297, 9361479, 6361484, 9366835, 8841, 8569 O
232 G257, 0361484, 9362004, 4000610, 0891, 000G @
233 G264, 0367094, 0362105, 06064ll, BGBl, PO6G 1
1
]
2
2
8
1

@ o
@

& DD - DD
I o

@~
@
(=R
@

234 0278, 0362105, 9363871, 6680966, 8661, oeck
235 6257, ©363871, 8363231, 6600168, 00dl, 0069
236 6264, 0363231, 0363242, 0000011, 068l, 2060
237 6273, 02363242, 0363758, 00608516, 0BAl, 84994
238 6257, 0363758, 1364044, 0060286, DEAl, 4906
239 9274, 0364044, 8364115, 0660071, G631, 0880

240 9257, 9364115, 8364283, 0600688, 9001, 0008 8

241 ©274, 0364283, 0364307, 0000184, 9661, 2666 1

242 6257, 0364307, 0364576, 09688269, 0681, gGed 6

243 B297, 9364576, 0364582, 0390006, 00§l, cede 9

294 6257, 0364582, 0366164, 0081582, Besl, egee 8

245 8283, 0366164, 0366299, 0000126, G891, 0006 B

2]

2

2

8

1

o @
[
<
(=)
(==}
L= 3 ¥}
o <
f=lg =]

@ L e}

k=

02 597 -55 1677 -326

=]
=

~
DR O DD D E D

246 9257, 0366298, 6369386, 0003016, @801, 80966
247 0264, 0369306, 6360316, ©O6OOLS, G061, 9688
248 0276, 0369316, 0369586, 94600270, G061, G6Ed
249 8257, 0369586, 0369723, 0966137, 6681, BO9O
250 0274, 0369723, 0369789, 0068066, 5881, G364
251 6257, 0369789, 8372151, 6062362, D051, 9988 B
252. 0264, 0372151, 6372162, 66EE611, G991, 8808 2
253 8279, 0372162, 0372628, 0006466, A9al, 8000 2
254 8257, 0372628, 0372766, 6068138, 0081, 6000 O

4

[}

-]

Moo oo@do
| QDD @O @O

fas]
@B -

255 §274, 0372766, 9372837, 6068671, D661, 9068
256 @257, 0372837, 0373117, 4068280, BeSl, 68646
257 @297, A373117, 0373123, 0666606, 8841, 0400
258 6257, 0373123, 0373469, 0060346, 8661, 8008 O
259 @264, 0373469, 8373488, B0E600lLl, 9961, 9009 2
260 9270, 03734808, 8373831, 0eR64el, 9091, acee 2
261 8257, 0373881, 06374013, 0666137, 0001, 9506 B
262 9274, 0374018, 0374495, G0BB677, 0061, 9060 4
263 @257, 9374995, 0374397, 6669392, 0081, ovee &
264 0297, 4374397, 0374403, 0000066, 0091, 9990 8
]
[}
]
2
2

D D D
@D O D
D @ D

265 @257, 0374403, 8375276, ©000873, 9401, 9088
266 6283, 0375276, 6375331, 0066855, 2061, 4606
267 6257, 0375331, 375737, 60664856, 0081, 4686
268 0264, 0375737, 8375743, B66O006, 0081, 6868
269 0270, 0375743, 0376429, ©O0B6636, 0061, G000
270 9257, 0376429, 0376308, 0068379, 0acl, 6006 &
271 ©283, 4376808, 0376896, 0060688, 0691, 0006 8
272 6257, 0376896, 0377182, 0060286, 8981, 9000 B
273 6274, 6377182, 8377319, 0000137, 9801, 9668 1
274 8257, 8377319, 8377698, 6066379, 9081, 9na0 @
275 9297, 9377698, 08377704, 0060996, 0081, 6000 O
275 9257, 0377784, 0378159, boB645S, 9081, 0066 &

2

2

]

2

]

277 0264, 0378159, 0378165, OOBGA96, 861, 006 25 8 1657 -179 600 0 0 O
278 0270, 0378165, 0378679, 0660595, 6661, 66EB 25608 Q 00800
279 €257, 0378678, 0378797, 0060127, 9941, 9906 6808 6 6 0 & DB 8
780 8274, 0378797, 6378868, 00BEOTL, 9901, 006@ 24 25006668340
281 0257, 0373868, 8378934, 6666066, 9991, 9666 68 66 0 89 0 9 0
817 -18 668

282 9264, 0378934, 8378945, 0666011, 0091, 6006 26 6 L
2831 0279, 0378945, 0379653, 0660793, 0061, 4666 26 8 ©
284 8257, 0379653, 0370846, 6688193, 0681, cope 6 O P R GO B A B 8
285 @264, 9375846, 0379862, 6680016, 0061, HEGe 27 @ 1385 -118 @

786 6279, 8379862, 0380631, 0066769, 8861, 9968 27 0 0 B 0B O O
287 8257, 0386631, B380753,. 6668132, 9991, 9606 B O D 6
288 0274, 0386763, 0380856, 0068603, 0A01, 0006 24 26 O
288 9257, 0380856, 0386955, 6O6GE99, 6991, 6066
200 4274, 0380955, 83816054, 06680699, 0800I, 6000
291 9257, 0381654, 0381395, GOGG341, 0601, 0666
292 6297, 6381395, 9381466, AR9GEAS, A66L, Hobe
293 6257, 0381466, 0382898, 64600698, 6PGI, o064
294 9283, 0382098, 6382197, 6066699, 9441, 0666
205 9257, 0382197, 8386794, 0064537, 86BE, 8606
206 0283, 0386794, 03363893, 06060194, 0061, goee
297 6257, 0386893, 98387343, 6GEG445, 8661, HOED
298 0233, 0387343, 0387486, 0668137, 8081, bees
299 6257, 6387486, 0388573, 0961493, 8961, 5663
300 9283, 9388573, 0388656, 0006833, 8061, 9666
301 9257, 0328656, 0396463, 0061867, P69, 6BED

[==I =]
L=l
==l
=
I

<
I
k=]
@
@

P
~3
@

@4 D v @) DY DD
D@D DD D

7 -347 -1423 -46 1932 -265

mewwbqngmmmcb

9

@y D DO D m R
QDD DD P DS
O L) DD DD DD D

2 -265 -1314 -46 244 -311
8
-311 -1379 275 281 -311

—

[
1

.

9

(=
WO @O @ = DS DD DD

—
—
'
£
DD D

4

[--3

-31L -1611 -27 2089 -256

—
~4
DO DR PWD —~ D@D DD DD
—

(]

DO T DD h® DD DN
L= = S = s s e s < = i)
Dok OB DL @D

oA D
~
[==]

180

302 0258, 395463, 6396468, 0090695, 801, 4966 3 16 8 8 6B8adBo6 8
303 0257, 6300468, 0390611, G0A56143, 8061, 0040 8 8 & 086649368
364 8758, 0396511, 6390877, G00BU6S, BEEL, 0089 lasedanasbao
305 6257, 6398677, 6391182, 06898505, 00E1, £AAD
306 289, 6391182, 6391193, 0688611, 0661, G083
367 8257, 0391193, 6391270, ©OB8R77, cR6l, 0940
308 0265, 8391278, 6301276, 8000666, C6E1, BOA0
309 8257, ©391276, 0391847, ©E8H571, 00R1, BAG6
310 8289, 0391847, 6391352, 6HHOEAS, 0001, 9900
311 9257, 0391852, 63927165, 8690313, 00p1, 809
317 3283, €3%2165, 0392781, ©B6O116, 0691, LIk
313 9257, @392281, A392665, €650384, 0081, 2690
314 0274, 6392665, 0392726, ©EL0O61, 0061, DEOO
315 0257, 6392726, 0393906, 0000286, 0001, 6608
316 0297, B393986, 0393911, 0090005, 0091, 2866
317 9257, 6393011, 6396466, 0083455, 0081, 5606
318 0287, 6396466, 0397323, 0020357, 0991, 9966
319 0257, 0397323, 6398443, 0091120, 0941, 0oed
320 9283, 0398443, ©398713, 0080270, 9691, 8046
321 0257, 0398713, 6399921, 0001158, 0991, 68486
322 0264, 6399921, 8399932, 06090311, 8661, 0008
323 0257, ©399932, 6408432, 0006500, 6BA1, 6086
324 0265, 6480432, 6466437, 0008905, GGEL, 046D
325 0257, 0490437, 0401684, 8091247, 6e6l, 600
126 9278, b401684, ©401926, 0039242, GE61, 804D
327 A257, 6481926, G46218%, 068G263, 00B1, 6866
328 9257, 0482189, 0482645, 4686456, COEl, 6088
329 0257, 0462545, 0493156, 06€88511, £OE1, GeA6
330 9257, 0463156, 0483162, 6830006, obel, 6OER
131 06275, @463162, 0409912, 6ORA7SE, 0001, 6898
3132 9271, 6469912, 0499983, ©OOE6T1, DBO1, 6860
331 9257, 0469983, 0410456, K EBOG4TI, 0001, 086
334 4267, ©419456, ©410818, 6006362, 9001, 9644
135 @257, 0418818, 411296, 0020478, 8001, 0068
3316 8275, 9411296, 0423292, 6611996, 0001, 0666
317 8271, 9423292, 0423385, 0000093, 0001, 0669
338 9257, B423385, ©423792, 6090467, 0461, 2066
339 9257, ©423792, 6424061, 0093269, 0841, 0886
340 0257, 6424961, 6£424528, 0800457, 6081, 0868
341 9257, 0424528, - 424533, 0439085, £OEl, 8908
342 9275, 0424533, 0430761, 0956168, 8061, 6000
343 0271, 0438781, 0436789, 6GOEES3, peel, 6906
344 0257, @43878%, 0a32308, 60B1511, 0061, BEAE
345 9257, 8432388, €432744, oo00444, 5081, /858
346 4257, 0432744, ©433228, 0006484, 6601, 6884
347 @257, 9433228, 6433233, 0000BES, 00@l, 6069
348 9275, 9433233, 0436029, 0062796, 0081, 586
349 9271, 0436829, 0436100, 6000671, 0601, 0660
350 8257, 9436166, 0436551, 6606451, 0081, 5680
351 G257, 9436551, A436957, 06806406, 0001, 0669
352 @257, 0436957, 9437441, 0008434, 6gol, 0084
353 G275, 6437441, 9442799, 0065349, 0061, 668d
354 6271, 0442798, 0442873, 0DO0VE3, 0601, 0666
355 0257, 0442873, 0443422, 00668549, 0061, 00ed
356 0257, 0443472, 0443757, 0008335, 0061, G868
357 8257, G443757, 0444213, 0008456, 9081, 0669
358 6275, 6444213, £A52616, 0008483, 9861, 0066
359 8271, ©452616, 6452688, 0008472, 0061, 0668 1286860060 8
366 9257, 6452688, 6453512, 6000824, 9961, 5666
361 6257, 6453512, 0454812, 0ODBSGE, 086G, 60D
362 6257, 9454612, 0454533, 0098521, 36001, HEEO
363 6275, 0454533, 6457988, OO03367, 00E1, 0BED
364 0271, 0457988, 0457972, 0000672, 6001, B6GD
365 9257, B457972, 0458422, 0000450, 66el, 0668
366 0257, 0458422, 0458796, 068374, 0061, 066D
367 0257, 0458796, 6459323, 6899527, 0001, €66
368 6275, B459323, 6464931, 0085608, G061, G060
369 0271, 0464931, 0465662, 600B071, 6681, 6660
370 6257, 6465882, 6465464, BOOR46Z, 9061, 0669
371 0257, B465464, 6465947, 0008483, 0061, o666
372 6257, 6465047, E466447, 0000508, 6081, 6064
373 B275, ©466447, GA59259, 0092812, 6081, 0089 6
374 0271, 06469259, 6459363, 0609104, 0801, 066G 14 BB B EB D GA A
375 8257, 6469363, 0470242, 0000379, 0961, 6ABG B A O 0 & @
176 6257, 6479242, 6478896, 0000648, 9061, 0060 0 6 8 6 8 9

@ @@
[l e)
& <D D
o I D
[~ -

1
]
]
8

;| o
L= e >]
I O @

16980806485 08068

& @ P
T @I D

-256 -866 B 1131 -293

—

® @ D DD
-

[= o = 2 =

L=+

i
RS

o

o4 DD
[= - - -]
@& L DO
@D @ T D

@

pe0RBODGSE

D P @M e =D W

[R Y
O DD DD
(-~ - -]
T DD DD

0
96
98
a8
08
1

]

3 -1318 211 -87 -366

DO DD D@~ DD @OE D

&
]
L}
9
8
6
98

[69
8 & -19863 -32
apoe6EBaE
goafopB0DBE
866
-366 -1146 -18 -779 -259

9
-868 6 1131 -2
1

@ @D @D D

ag88

b2
D oh D
D@ D@ P DR D

-

P DD DRI PIITTDDEDPITIIDCDODDDO TP IPRPDD@—D
DA PPTOIPA TP T DI DODPDDOIRRIDODHRDDDODT

—

D P DO OO TIOHSTEDHPOHDODDMDDDEOPD DR DD DD W@
)

DO D ODD DD PHRCTLLNHEOEF DO DR IMDE D TSP D
DI OPPTTIIDIODDDDIDDPTODOPDDETDETD DD
QDD TODDDDDODDODODPERDDRDE@ELDM DD DD v D
OB PRI OO DODDDDITRROPOHDPDDOEDD D DD
OO DD O PP ®RDODDOD DD R OEE DO DD DD D
]
‘Dmmﬁbm@@@@mQQ@@O@QQQ@UQO@Q@G@@Q@@EQ

]
[}
]
[}

o P E D
P D
@D @ D@
m @ P oo
& b P
P O D
D @ DD
Q@ e P oo

jneasaeenan

D @ D

&
]
]
]

@ I @D P
QCDGJQ
OQCDO
L --I- - -
W O @
=R R~)
D Mm@

606886866886

D D@k D@ DD DD DD

& @ d

]
]
5}
]

-3
D@ D@
D D 3
[-
<O @ D @
D D DD

]
]
]
]

@ D
& D

B8
-]

D @

]
]

181

B.3 OQutput from Pass 1

Pass 1 reduces the Pass 0 input strcam from 449 lines to 425 lines.

8316684,

8316885,

5316962,

317605,

5317258,
5006981,
-pe6ase:,
-886ABAT,
3065881,
-QoeEdn],
-(668861,
-6609901,
008661,
-(006981,
5606981,
-(0G9981,
-0eeaee1,
9808641,
9006381,
0065081,
-8663081,
~060BE81,
5808001,
5006901,
-8BBgaA],
-pEHaseL,
-9800891,
_goeeasl,
9608901,
3808001,
6960601,

-pesesel,’

5088881,
-4008981,
3068901,
-0060681,
-peasust,
9806891,
2008981,

. -6606681,

8080861,
-9886841,
-806981,
-ge68981,
-p968861,
-ga80681,
_paeensl,
-p80ea8al,
-6669981,
3068601,
-gagenet,
-pe8eae1,
0318571,
8319241,
8320078,
8320676,
8320189,
9328114,
320485,
8320578,
8322787,
-6068981,
-pA00BA1,
-4866681,
8900881,

-.-38069081,

-5669841,
-6980861,
-63686681,

3316885,

8316062,

6317805,

8317258,

3318571,
-G000881,
-3866901,
-poanee1,
-G08aes1,
-8800881,
-36B08081,
_npoeaat,
-3800001,
-Ga60861,
-36680091,
-0p684a1,
-ea68001,
-4600061,
-6800881,
6606441,
_gposaat,
3068001,
-4660881,
-8800681,
-BB0RAA1,
-5pOAAA1,
-3aBaeel,
-8p00881,
-6600801,
-6666001,
-3086861,
-9a80061,
-3000661,
-06068G1,
_560BAG1,
9908061,
9606001,
8800601,
_eaeeae1,

-0000881,

-jadaset,
-6g80eeal,
-Geeeegl,
-0600061,
-pagaae,
-9668661,
-9680601,
-ape0es1,

-6BB06e1,
-9806801,

-5684081,
-9000601,
6319241,

2320076,
8326876,

8328109,
8328114,

4320485,
§326578,
9322787,

8322712,
-5080601,

-8a995481,
-9g06001,

-8666601,
-6080681,

-6006681,
-gogesel,

-6666001,

9600231,

4800677,

8600043,

8000253,

5681313,
-9008881,
3606081,
-0000041,
-0008041,
-ggessel,
-8008681,
-B000081,
-906e8aL,
09081,
9000001,
-8000061,
-6686081,
-8060d1,
9006601,
-0000021,
-60BBOB1,
-0000091,
-9860881,
9008681,
2086661,
-0666061,
5400081,
.B266081,
-8B0089E,
-BBE6EE1,
82000891,
-9006081,
-008861,
-9a9PB61,
-B0G6B6T,
-8600001,
3009001,
-9068891,
-0006881,
-56008a1,
9600081,
5069081,
-9908681,
9300601,
-paaeeal,
-006861,
-9908001,

- -n08e8n1,

9600861,
-8006691,
0699091,
-90eaA81,
0008676,
p899829,
4900096,
8908833,
0908685,
8606291,
5860165,
apez137,
9908045,
-9008901,
-5684601,
8046081,
-0900091,
-3068081,
-5066661,
-5699901,
-9490081,

9941,
8981,
0aal,
aaal,
3941,
9891,
ael,
Beol,
2641,
8991,
8841,
0081,
5991,
96801,
9991,
geel,
8061,
3681,
a0et,
Qee1,
0061,
3091,
4981,
8981,
a661,
8861,
8091,
a6a1,
9901,
8991,
8601,
8641,
94841,
a8al,
8891,
8841,
3641,
8841,
0681,
8661,
9641,
8601,
8981,
#a8l,
o681,
9661,
8641,
agel,
981,
5681,
8841,
aa61,
9881,
8681,
9661,
8681,
a6d1,
8481,
8661,

Goel, @

aeal,
6eal,
peal,
8681,
9801,
ggal,

088l, ©

6061,
aeel,

2008
o862
w988
ilelehs]
2608
2608
2349
2969
0008
0008
2600
2968
2608
bees
6864

6468
[LLE]

I D D

=]

PR D DT DAETWLDRNDT OO DD DD
C O PODTHDEDDODDODDDDD DT DD
OO @D DR MDD P D D@D D DT DD
DD DT DPDIODPPEDDIEEODPDEEDDD
DR DT DD DDODOD DD @D DD

DO OO PO DD D@D E DD DD DD D@D
OO P ORI OTODNDETOTDPOTD
DT TP DT DODDDO DD DD DD D@D
DD PE DD DPTDDDEDm D@ EO@DET DO DD

]
8
8
g
4
1
2
1
3
2
F
2
5
2
6
2
7
2
8
2
9
2
1
2
1
2
1
4
1

ad0d060008 48

668000069
lee006086849

110080088
296806008068

12eg6pa8648
36600600808
2138006006880
l46bBa6800%@
2146868600608
1580006868868
2158600808068
66060000098
2166086480848
1700608688843
117606808084
lgo6e06880860488
1186686808060¢0
198006068888
1196808608819
6060080888
1920000808806

2508860868068
1920800060880
2686086000660820
1921800886688
2700688800806

1922060606808
28000060888
192300680088
8000868608
46068008080

9966559 -216 19 36 218 136
506608088689
99600600888
pog6oBEBBEGE

969 0 55§ -216 -49 494768 -486
90860086888
398880680048
1860886888
2866896088
39068088068
49680088884
590686868888
56088608888
7668680860888
30086808868

184

118
119
120
121
122
123
124
125
126
127
128
129
130
in
132
133
134
135
136
137
138
139

141
142
143
144
145
144
147
148
149
158
151

B258,
9276,
9257,
0264,
8278,
8257,
0264,
0270,
9257,
B264,
6278,
8257,
p264,
p278,
8257,
8274,
0257,
274,
9257,
p27a,
8257,
8297,
8257,
0264,
278,
8257,
6257,
8264,

-50660601,
-0eeae81,
-5908891,
-080a681,
-G905601,
-600do01,
-0E0see1,
-30694481,
-agaoe0l,
-0008001,
-6908661,
-8G639461,
-6969081,
-0300001,
-6606601,
-6889991,
-09949941,
-A899601,
-0008081,
-6203801,
-8369981,
-6ag99081,
-9968081,
-0Qaaedl,
-9886681,
-6600661,
-6668801,
-G00081,
-9099991,
-9088081,
-4880001,
-6adga61,
-6a99061,
-898688@1,
-5000081,
-9808061,
-6600601,
-6600681,
-6889661,

-0960061, -

9322712,
9324733,
6324744,
8325343,
6325928,
.8325936,
9326678,
8326925,
8326936,
8328643,
8328982,
9328913,
8329962,

6331862,

8331879,
6331967,
6332822,
6332093,
9332165,
8332429,
8332434,
6332840,
8332857,
8333486,
9333659,
6334247,
8334263,
9335186,
8335318,
4335378,
8335468,
8335537,
8335675,
8335686,
4336638,

-886094L,
-B880001,
-8888391,
-8806991,
-6666091,
68360401,
-6840601,
-6aaGael,
-5668441,
-A05604L,
-6333001,
-6993081,
-4808001,
-0884661,
6699481,
-8a90001,
-8996001,
000881,
9080681,
6653001,
-Bgaeeal,
-6096081,
-088aee1,
-99a0661,
-9860681,
-6e85061,
-2893081,
-8806001,
-Bg08681,
-poseesl,
4080661,
-e894001,
-6943661,
-2830081,
-0898661,
5880661,
-668a681,
-6820881,
-689998t,
-A998661,
9324733,
8324744,
8325343,
325926,
8325936,
326678,
8326925,
8326936,
9322683,
9328902,
9328913,
83279962,
9331862,
331879,
6331967,
8332022,
§332093,
8332165,
8332429,
8332434,
@332848,
6332857,
6333486,
8333659,
8334247,
8334263,
£335126,
8335318,
8335378,
8335468,
p335537,
8335675,
6335686,
8336638,
8337615,

-6080861,
-0898661,
6699581,
-0630601,
-6506691,
-6880881,
-6990841,
-BA0BeE],
-GE59691,
-8860691,
-GRG668L,
-BAHOG61,
~Bo0BGE1,
-9066601,
-9g06601,
-peaBeet,
-6050081,
-6A90061,
-8800601,
-0686001,
-6600661,
-ga0eeet,
-69900861,
-9666601,
-a@666a1,
-0800601,
-6806661,
-6OD661,
-8656001,
-8066001,
-ag88691,
-Beg0eRE,
-e800061,
-g080041,
-aa86661,
-8868681,
-geaasel,
-g690601,
-po0eent,
-5400861,
8982021,
80808011,
8698599,
8646577,
6966016,
8806742,
8908247,
2066611,
0691747,
AEAB2LY,
pOGEB1E,
€000989,
8961960,
8680677,
5600088,
BBAB6SS,
6986071,
6988872,
8968264,
6698085,
BO60406,
6896617,
6866549,
3908253,
0000538,
BE90016,
8068923,
8880132,
0900666,
2006682,
6690677,
563138,
8896611,
0696944,
9906385,

aedl,
0681,
goa1,
908,
4981,
9691,
asel,
aedl,
6aol,
901,
aeat,
agal,
aedt,
oeel,
8901,
9601,
8meal,
g6e1,
aee1,
8081,
8001k,
aeel,
8g81,
ae61,
9681,
881,
agat,

861, |

8081,
a0%1,
eed1,
aeel,
8601,
Beel,
Besl,
aesl,
9881,
6@el,
8861,

8681,

4681,
a891,
9801,
9861,
@861,
Bea1,
agel,
0881,
861,
4881,
9081,
8661,
ape1,
8681,
9661,
a881,
8881,
8081,
fanl,
681,
3001,
agetl,
8681,
agal,
8881,
genl,
fae1,
9881,
8eet,
681,
881,
Qes1,
8001,
88e1,
8861,

99080860068

—

RS RS P R RS R R RS NI RS M RS R RS s e e
=TSO T NI
—_

—
~

18
19
24
28
21
22
23

—
"=
MM RN ODOG@D DD D D

=
W
ED R W

-
[roy

D~ N DRSSPI DN DO D OO DA OGLWDR R DR b DD R e
T OO DA NI DD T O ODDATWONDDODTCEEDDEODDODDED M-

[=21
DO ODD DT DDD D@D
& DD D DD DD DD DS DD

@@ G @D DD
O DO D P D
OO D DT @
DD DD DD

PO DD ED

L= el = I = R e]

~ 00 W
@ ¢ @
[« I - =

=
D @ WD DD

@@ mo

G OO ODD DD DNDPDOD OO DPODD DD DODDE DD EDD

L+ I

[

-~ =
' O OMPODODO OO D DO DD~ DD

h

~l

TN DD OO DTIMN TDTDODOIODOCDIRLTDODNTOORDONDTDD
T DO DD DD T RD DD

185

@ DT D O DD DT DD @D
QDT DDDDTDDDE DD
D PP D DD D D@D DT D P
DD T DD DD P DD DO D
T D P PPOHDLDEDTD
G PP DD DD DD OTD D

(=== - I = s > T e o]
DD oo @D E@ D
DD PP @D
E=-J -~ - - (R~ - - B -

@D D DO DD @
@ PO MmO DD D
D@D DD D
PP DD DD DD
Lo I - e]
R = = e R - S L -

& D @ D
Lo
@& D @D
@@ @D D

4006608880

|
(=)
-]
<

oo

]
o

o
o

o
-]

~
DO DD DDDDDO®DRDDDE DD @D

DT PDLDODDTDIRDDDPDDDODODTED
DT PH PO TR PRDDP DD
PP DDDNDDDDDODDOCTTDDDD

176e6c0660¢€8

DD TDDD) DD DD D DD DD D DB

DR S DD
D PP DD
DD PP D
TP DD

-181646888

@ O
L= o)
@ b
= 4
@® @

9285,
9257,

6337815,
0337028,
0337229,
8337249,
5333300,
0338454,
0333465,
6339272,
0339871,
03339942,
4349014,
0348869,
0346316,
0348321,
33409908,
09340909,
0343172,
8343364,
0343458,
03237469,
8343765,

" 5344186,

9344111,
0384331,
0344413,
8345488,
6345611,
8316160,
9346165,
0386759,
6396940,
9347028,
0347187,
0347198,
a348511,

‘9348659,

0398752,
0349054,
4349069,
6349373,
0349505,
0309807,
0349812,
9350595,
8350653,
358664,
0352345,
8352542,
8352652,
8352751,
9352828,
0353135,
5353141,
0353481,

8353492,

8353849,
0354028,
8354831,
0354388,
9354536,
8354662,
4354698,
8354789,
8355008,
8355814,
6355865,
0355882,
4356244,
8356442,
6356453,
0369293,
6359684,
8359694,
8365402,
0360545,

9337920,
9237229,
0337248,
9338300,
5338454,
9338465,
5339272,
8339871,
6339942,
0340014,
2345069,
§340316,
8346321,
A346904,
8328909,
8343172,
6343364,
8343458,
93437640,
0343765,
0344186,
8344111,
8344331,
8344413,
9345484,
0345611,
8346160,
8346165,
9346759,
8346948,
0347628,
0347187,
6347198,
£348511,
0348659,
9343752,
8349054,
8349668,
6349373,
8349505,
8349367,
9349812,
8359505,

. B350653,

0350664,
¢352345,
8352542,
4352652,
9352751,
6352828,
£353135,
8353141,
6353481,
9353492,
0353843,
2354028,
6354931,
£354388,
8354536,
3354602,
9354699,
0354789,
5355008,
8355614,
6355865,
9355882,
8356244,
8356442,
§356453,
6350293,
9359669,
8350694,
0366482,
0368545,
0368883,

5996695,
0098209,
4000611,
9981668,
2999154,
4000811,
0006807,
0089599,
5090071,
6300672,
5000655,
aa86247,
0889995,
0999583,
4908695,
0082263,
6060192,
0909494,
0890302,
2080845,
0968341,
a06605,
5689220,
8690082,
9891671,
0088127,
000549,
06684505,
0680594,
0890131,
8990088,
8086159,
090911,
8681313,
8599148,
5490693,
8009302,
8060096,
6086313,
9688132,
0690332,
86005,
0860693,
8600148,
6668611,
0051681,
9699197,
886118,
A060699,
4860877,
6608367,
0668666,
8680340,
a0e86811,
0908357,
a980171,
6006611,
06846357,
0634148,
4066656,
6606688,
8960899,
BERO21Y,
0610606,
6599851,
g8a0e17,
8060362,
8600198,
0666411,
8682840,
9699387,
9000694,
6006798,
pABA143,
0086258,

bosl,
0001,
oael,
aeel,
0881,

baal,

geal,
ged1,
pesl,
8esl,
peel,
2601,
8691,
apay,

8081,

Bodl,
poal,
aenl,
9401,
0061,
pesl,
8ea1,
2041,
agal,
agai,
6631,
691,
2691,
9991,
paai,
a9at,
eel,
8091,
9841,
feal,
aeat,
8e61,
061,
9681,
2891,
aea1,
2881,
o661,
8661,
Besl,
pesl,
8841,
0aol,
6661,
8601,
apd1,
8891,
9941,
aoel,
peel,
8661,
Bg91,
Beal,
9441,
geel,
681,
8681,
5681,
eal,
pesl,
8681,
8601,
pesl,
6681,
091,
06e1,
8601,
8631,
Beal,
8091,

L]
gaed
6808
5008
660F
2120}
8809
66499
6008
apog
6e6a
6689
5096
agan
[el:lals
[LL:L]
Goe8
BGAg
4aaa
0608
6068
8962
6549
9888
6606
6069
6668
6609
BELL]
9808
4000
6608
6668
i]
9890
6860
6688
689
go08
4849
6868
6668
aoog
0]
ggoe
LLLL]
8669
9868
BB6E
60908
(i3 544
9669
9908
o668
6O68
6084
G069
9668
ELLL]
oebe
6868
0868
6989
8489
4883
BROG
6668
6e6a
fgae
5608
L1
Beesd
8604
6608
G869

~
—
@ @
D @
D @
R ==}

9008680

&
D EDODOD @S DD
o @
o @
@ @
@& @

L DO O oD@ @D @S O D

175 608

T DOV DDODO DD DD
0O OO O @D DLW OO DD
DG @

m g
[=3e,]
e =R
D~
@
e e R
@
N oo
OO DD D
DT O D DD P D
[- e

ag8a
ga0080608
aa0g0e0E

&0 @
@O I D
@D @

8 1

o
DO m DD D

@D D@ @ @D
NOU\@(‘\JG@QOG

=
- @D DT o@D

R= g

92 -2

8

OO T E D =D
= DD o oD D

@ 4
-9
@~
OTNS VT oD
==
O uD D@ DD

-1
|
poeREROD

@ 4 D
S @
L= St |
&
- O
S e
-~ @
@ 3
GO D
@D

@D O
@© @

(==l

& D@
@ DD
D b b
@ D

@ D

1122 -178 8 &
epo0888
8666688886

8
]

[S]
@
@ [
=)
oo
@ D
QD D
@ @
@ D @
L - -]
o D@

& @
@ =

68066
1491 -3
66498
806809488

asp006680090

186

@ T

6049

6aa

6.0
8

g

8 -9 692 -238

6 -92 64 876 -311

=
(=]
@D

B689

loesapsgan

5 128 1196 -311

aee

a8

98886
]

agae

ged

11 -39 48 1605 -302

]

227 9297, 6360803, 8360209, 600686, 0481, 9666 O
728 4257, H366889, 6361188, 660379, 004L, 9668 B
220 9274, 6361188, 0361281, 9566693, 0001, 6669
230 @257, 48361281, 0361479, 0660198, 0001, 08606
231 @297, 9361479, 0361484, 0049245, Boel, ouae
232 0257, 4361484, 0362894, 0000618, 0061, 9566
211 0264, 6362994, 0362105, ©6BOB11, 0081, 0866 1
234 9279, B362185, 9363071, 6850966, 9081, 4669 1
235 9257, 6363871, 0363231, 08968160, G081, 9668 B
236 @264, 9363231, ©363242, .50G0011, 0001, 0888
237 0278, 4363242, 9363758, 9800516, 0001, 9348
238 0257, 0363758, B364044, 0008286, 00G1, 4400
219 0274, 0364844, 9353115, 0000071, 0081, 6666 18 1
1
-]
[}
2
i

L=
L= -]
& P

[=l]
w D@
[~R - R]
0 D D D
@© D D
@ D o
@D D D

240 8257, 6364115, 9364203, 0006038, 6081, 8860

LR~ = -]
f==3

3
8
=]
2]
2
2
¢}
[}

231 8274, 43642063, 0364307, 0000104, 0001, 0669

242 0257, 0364387, ©364576, 6099269, €801, 9689

243 8297, 6364576, 6364532, 0600006, 6081, Bede

204 ©B257, 0364582, 8365164, 0001582, 0081, 5Ea8 6

245 ©§283, 6366164, 0566290, 0000126, 0061, 9906 €

[}
2
2]
2
2
8
g
2
2

D @O DD P DD

3 -36

BN DD GO D P D

597 -85 1677 -328

T La D D D@D DD

246 6257, 8366298, 0369306, 0083816, BOO1, 0086
247 6264, 6369386, 0369316, 0000010, 0GO1, 0968
248 0278, A369316, ©369586, 0008279, AGOl, 066
249 8257, 06369586, 6365723, 0000137, 06861, 6648
250 8274, 0369723, 8369789, 0000066, 0001, 8eed
251 0257, 08369789, 9372151, 0062362, 8061, 2669
252 06264, 0372151, 0372162, G0006il, 6091, 4980
263 0278, 0372162, 0372628, 0000466, 081, 8860
254 6257, 0372628, @372766, 0066138, BEd1, 0600 6
255 @274, 6372766, B372837, 0000071, 8851, 96Re 4
256 ©257, A372837, 6373117, 0006288, G661, 4868
257 8297, 0373117, 8373123, 0806086, 8681, 8860
258 6257, ©B373123, 0373469, (0608346, 0661, 6690
259 0264, 0373459, 6373480, 6086611, 6061, 6966
260 6278, ©373486, 0373381, 6000401, 0601, eoed
261 ©257, 6373881, 0374018, 6606137, ©601, Aece &
262 B274, 6374818, 0374895, 0OOOO77, BOS1, 8966 4
263 @257, 6374895, 6374397, 0908382, 066l, 6660 O
264 8297, 6374397, 8374403, 0000086, 6661, DO6E B

[}

2

)

Al Sl I SR < -)

=
@
NoN oo

[8 ta)
[=:3
@ @D

6fgo60088

L+ = -
& o @m

265 @257, 6374483, 08375276, 06006873, 0061, BA6G
266 6283, 6375276, 4375331, 0660655, 0001, 6666
267 8257, €375331, 9375737, 0006486, Dedl, Goee
268 9264, 8375737, 6375743, 0000666, 6601, 6006 24 8 1
269 9278, 6375743, 06376429, 0000686, €691, 6986 24 8 @

270 0257, 0376429, ©376808, 0008379, 9691, 0666 0 06 B8 B B H 6 8

271 6283, 06376808, ©376896, 0000638, 0081, AG6 © & 773 128 1587 -247 -13 119 1867 -347
272 @257, Q376896, 8377182, 900A236, 66¢l, DAEA B 8B O 8D OB 0 0 8

273 8274, 0377182, 9377319, 9060137, 0061, 60EO 1 24 B GO B8 A B B 8

274 6257, B377319, 6377698, 4600379, 6601, eece e e oe 6B B OB @

275 6207, 0377698, 0377784, 0000006, HORl, 6eeE 6 0B 8L BB OO

276 8757, ©377784, 0378159, 0008455, G691, 0AEE D O B DB OO 68 B O

277 ©264, 6378159, 0378165, 0006A66, 9801, 8086 25 8 1657 -179 6688 8 8

278 6278, 0378165, 0378678, 0A0GS505, 9¢9l, fope 2506006680608

279 @267, 0378678, 8378797, 09000127, 6001, 0BER O 6 O 6 B
280 8274, 0378797, 9373868, 9066671, 0061, 0660 242508
281 6257, B378868, ©378934, 0060066, OOBl, 666G 6 6 0 6 8
282 ©264, @378934, 0378945, 0600011, 0661, 8688 26 6 1317
283 0278, 6378945, 0379653, 0000768, 6001, 6386 26 6 6 8 0
284 6257, 0379653, 0379846, 0006193, 6641, @AeE B O B G G666 B 6
285 6264, ©379846, 0379862, 006686, G891, 6966 27 B 1885 -118 4 @
286 8276, 0379862, 8384631, 0008769, £E61, 0OED 27 4 6 6 986 6 8 6
287 0257, 0386631, 9338763, 5988132, 8681, 6068 8 O
288 9274, 0386763, ©380856, 0600093, 0061, HA60 24 2
289 0257, 6320856, 6380955, 0006699, £6Al, 6068 O
290 8274, ©388055, 63816854, 0EOEEBYS, BO61, £996 24 2
201 6257, 6381854, 8381395, 0066341, 061, 8066 8
292 0297, 6381395, 0381406, 000605, 8691, 8380 9
293 6257, 0381488, 0382098, 0660695, 9601, 0066 &
794 8783, 0382098, 0382197, 0060899, 0661, 0666 6
295 @257, 6382197, 0386794, 0004597, 6661, 086G 6
266 0283, 0386794, 0386898, .9008184, 6681, 6968 O
8
8
£}
&
]

@

-]

-3
o
P @ @ @D D
ogmmwwmcb@
D @ [--3 1]
|

7 -347 -1423 -46 1932 -265

DD @D P DD D O

2 =265 -1314 -46 244 -311

by

)

—_
~N
Q\Dmﬁﬁ’w@:—;ﬁw@ﬁ@@@
@3

<o
mmmm@mcpsmmmmcnmm

297 6257, 6386898, 0387343, o006445, 8601, 6968
298 6283, 0387343, 0387486, 0000137, 9681, 6966
293 0257, 0387480, 6338573, 0661093, 9891, 8046
300 €283, B388573, 0388656, 6060683, 9801, 4066
301 8257, 6388656, 0398463, 0681887, beel, b66d

44 -311 -1379 275 281 -311

MDD DD D@ DD D

phary
]
La

@
[« R
o

-311 -1811 -27 389 -256

~

C]

Ml P D B 09 DD DD D

& M P
-~

[=+

-

187

392 5258, £396463, 5395468, 6696065, 6661, 6560 3 18 OB 6 08 089

303 9257, B390468, 6396611, 6590143, A961, 0990 D 6 B B 6B 8 B D]

304 9258, 0390611, 6395677, GAO0066, 9661, 0600 3 11 G906 B 888

305 0257, 0396677, 6391182, 0Q00565, 60pl, 6069 0 G OV O 6 6 9 0 @

306 6265, 6301182, 0391852, 0009679, 6605, 0003 11 0008 080 0 B 9

311 G257, 8391852, 6397165, ©€090313, 0601, 8ARG A O BB 06 00600

312 0283, 0392165, 9392281, O0AOO1IE, 68B1, 60960 6 & -1811 -27 389 -256 -360 8 1131 -293
313 0257, @392281, 0392665, 0000384, 6061, 0GAN P HA DB G080 B

314 0274, 0352665, 8392726, 006061, 661, 6AOG 4 13 G D EE A BB E

315 0257, 9392726, 0393906, 6900288, 0861, 4008
316 @297, 6393506, 039391, Q080665, 08I, 8009
317 6257, 0393911, 6395466, @BA3455, 0GEL, 9600
318 0287, 0396466, 6397323, 6800857, 9601, 0068
319 9257, ©397323, 6393443, 6001129, cool, oeoe
320 0283, 0398443, 8398713, 490068276, 8661, 9600
3121 8257, 0398713, 8399921, 0001158, 0061, 6960
322 9264, 9399921, 6399932, GOO00LL, 6661, 00680
323 0257, 0399932, 0400432, 0006509, 0601, 6600
324 0265, 0469437, 0463437, 9008065, 0861, 0606
325 0257, £490437, €401684, 0001247, 0061, 0666
326 6278, 0491684, 6481926, 0086242, 6061, 00608
127 8257, 0401926, 0402189, 0DOO263, 0601, BOGE
128 9257, 6402189, 0492645, O0DGOB456, ©6O1, 6608
329 0257, 9482645, 0463156, 0888511, 6681, 6668
3306 6357, 6483156, 6463162, 00D6GE6, 06R1, 66BE
331 9271, 0493162, 0489983, 6006821, 0662, 6008
333 8257, 6499983, 08410456, O00BE473, HEAL, 86D
3134 0257, ©410456, 0418818, 6669362, 6661, 0669
3135 0257, 04108183, 0411296, ©6BO478, BOR1, 0066
336 6271, 0411296, 6423385, 0012689, 0602, 6ed
138 0257, 0423385, 9423792, DOOGL67, 6641, BB6E
3319 0257, 8423792, 0424461, 0GEA269, 9861, 6860
340 0257, 6424061, 5424528, ©0GB467, 6661, D006

@$ B @ @

¢}
]
]
]
]

S O D

:Ducow-mcnamo
D DD DD

DD DO PP DDD

-86@ 8 1 3 -1318 211 -37 -366

]

31 -2

CDGDG?@U?GO

9
[
g9 [
2 60080008080 -

a

2]

2]

B

]

2]

28 6968
2

o]
B

-]

1]

1

-

1

13

1

13

1

2

@D B DD DD P

g8
9
9
9
8
13
99 8
-1863 - 9
86 2}

-87 -366 -1146 -18 ?79 -25%

o

D@ DO O PTTODDDDDEOHTDDD 0D DOODEHDO DD D
—_

PP IO DIPIPIODTOPPDONRDEOED DS DD D
—

PR D ORI RTDLETDTODRDODD DD DDDDD

342 9271, 0424533, 0430789, 0066256, 6662, BEBE
344 9257, 6430789, 6432300, 6661511, @601, 6888
345 0257, 6432308, 0432744, 66A9444, 0661, 6864
346 0257, 0432744, 433228, 6000484, 8681, GO0
347 6257, 0433228, 6433233, 6066665, DEA1, 6BOE
348 8271, 433233, 6436186, 0662867, 0002, 8GO
350 9257, 6436186, 0436551, 6GO8451, 9661, 8409
351 6257, 0436551, 0436957, 06BE4&6, 6BBL1, 0666
352 0257, 6035957, B437441, 0006434, BEO1, GOE6
353 8271, 6437441, 0442873, 6665432, 89662, 66E6
355 D257, 6442873, 0443422, 0080549, 4061, 6844
356 0257, 6443422, 0443757, 6EAE335, 6661, 0989

PO HF O PRI OO DIOCHETDDODCD DD
DL DD DDP DD DDODECGIDODODO D DD DD) D
DO OO OD DD DD @DPODO P P@ODPDRD A DD D
PRI POIADIEDTRDDDDEFDDD G DD

357 0257, G443757, 6444213, 0008456, oesl, o6ee
358 8271, 6444213, €452688, 6668475, 66A2, 66BG 12 0B 0 BB G B AR
360 9257, 6452688, 6453512, 0060824, 9601, 6066

F
a
5
9
g
;]
a
5
-]
8
a
8
8
]
9
-]
a8
] 8
361 9257, ©453512, 0454612, 0008508, 9601, 8984 @
3]
8
-]
8
8
-]
9
[c]
8
8
9
g
e}
3]
a
8
8
9

Gbmab
< I @
m @ o
@ D B
D D@D
D D P
o @@
O D D
L]

362 6257, 6454812, 6454533, 6600521, 6681, 0060
353 6271, 0454533, 0457972, @OB2439, 0062, 6668
365 8257, 6457972, 0458422, 0006458, 8641, 6666
366 92657, 6458422, 04%8796, 0686374, €401, ooae
367 9257, @458796, H459323, 6099527, 0681, 8000
368 G271, 0459323, 60465062, 6085679, 6662, 0660
170 9257, 8465002, 5465464, 0BBB462, 06B1, BEEe
371 0257, 6455464, 0465947, 06BB483, 9001, 60GG
372 9257, 6465947, 0466447, 6008508, 0081, 0008
373 9271, e466447, 5469363, ©862916, 9882, 8699
375 6257, 6469363, @478242, 6606879, 6601, 6eed
376 98257, 0479242, 473898, 0EO0E648, Ho6l, Deasd
377 0257, 6470896, 0471423, 0668533, 0601, €60
378 0271, 8471423, 6476992, 66095569, 0602, 600
380 0257, 8476992, 6477613, 6000621, 6681, 666
381 8287, 0477613, 0477992, 0606379, 6081, 2680
82 9257, 6477992, 8478234, 6068242, 9601, B63A
3183 0257, ©478234, p478322, 6608088, 9061, £908
3a4 0257, 9478322, 9478673, 6098351, 906i, 0808
385 9257, 6478673, 479178, 066055, 4661, 0EA4
386 0271, 6479178, 6481617, 6682439, 8682, 6860
388 0257, 0481617, 0482369, 6889692, 0091, 08868
389 6257, 0482309, 5482611, 6000362, 6R4l, 9960
390 0257, @482611, 6483122, 0E6BBS11, 8661, 0664
391 9271, 483122, 0433382, 005136, AA62, GHAG 17 660668 8600

390066600488

D D @
& D O
& @ D
@ ok
@ T D
o @
-]
D & o
Lo -

a086680008¢8

& @ @
@D o O
@ @D D
@ b @
& @ D
D D
@@
DD @
I D @

p60808B698

mcna:a
@O D D
SO D D
D e @
@O & I
D@ @
(-3~ -~ 3
@ & @D
D Do

b
@
g
&
341 6257, 0424528, €424533, 0006665, D66l, 0606 &
;]
8
[
L
1

5860600608

DPTCD T
[==Rk= R el - Y)
DD T D DD
PTG D@
D D@ @
D@D DD DD
DT BE DD
@ T DO D e
cTEDDT@

666806069088

@ D@
[= I~ Sl e
@ D D
D @ D
D D@
o @ I
@ D O
€T D @
m R @

188

6488302,
4488774,
0439049,
3439581,
5493701,
3494206,
0494552,
4495085,
9561382,
0581835,

| 0583622,

0503543,
6508262,
6503662,
0508965,
6509464,
2589474,
6516632,
p517288,
0517618,
0518159,
0526607,
8527079,
8527343,
0527864,
4534775,
0531229,
0531566,
0532077,
£536026,
6536400,
0536674,
0537262,
8537207,
8537213,
8542799,
8543342,
0543348,
0543381,
6543386,
8543612,
£543826,
45444988,
6544534,
6544930,
0545812,
0545798,
8546218,
6546874,
6546889,
6546924,
6546929,
6543688,
6549788,
6550192,
8551911,

8488774,
2489849,
5489581,
8493701,
0494206,
0494552,
8495885,
08581352,
8581835,
603022,
0503543,
6508262,
502662,
9508955,
0589464,
8509470,
8516632,
0517288,
9517619,
4518159,
8526687,
0527679,
0527343,
9527864,
0536775,
0531226,
0531566,
0532677,
0536626,
0536488,
6536574,
537262,
8537267,
9537213,
0542799,
0543342,
£543348,
8543381,
543386,
6543612,
9543826,
£544468,

8544534,

8544938,
8545812,
9545798,
8546214,
8546874,
8546888,
0546924,
9546929,
0543088,
8549788,
8558192,
08551911,
8552279,

6688472,
0696275,
6606532,
20684120,
6636505,
060346,
pGEAB533,
80906267,
0630483,
0041187,
6038521,
0694719,
6990400,
6000303,
0636499,
0608406,
0887162,
8000648,
5080338,
0689549,
0643448,
eAaa472,
9990264,
£088521,
8082911,
698445,
6608346,
6esasil,
8903949,
6886374,
6068274,
9608528,
2660465,
£8008906,
£385586,
(086543,
0686866,
0609033,
5080965,
2608226,
8006214,
8080582,
2689126,
0690396,
626682,
0HBE786,
8968412,
968664,
6699986,
600044,
0698665,
8091269,
8661692,
6006412,
8681719,
2899368,

8061,
6pa1,
3691,
§662,
6e81,
8091,
8681,
5602,
a66t,
@eal,
seal,
gee2,
§881,
aget,
66681,
Be81,
8602,
9691,
9681,
geet,
8o82,
6661,
a8l
9geL,
4882,
8601,
paol,
gael,
Q98z,
gedl,
8661,
8aol,
8601,
9481,
age2,
9601,
aeel,
6661,
8881,
[ae1,
9001,
aael,
sael,
gedl,
aael,
8a81,
481,
8661,
geel,
paol,
8681,
g08l,
8661,
aao1,
Bao1,
gao1,

-8809

€949
6008
gaes
6069
6949
[ililsl3}
5668
6880
6408

6999
6608
6600
8089
8800
6009
G600
geag
9866
2606
£609
0968
6668
o880
8600
6899
goaa
(LT
88688
0686
608 |
go68
6668
2606
0000
6888
8666
6008
0082
8008
9866
8666
46aq
0608
5666

gaee
60868
8899
8600
6064
g8ee
8868
aaee
[CL:L]
(LLE]

DO DD PR DDDODDTODDDD DD E D

B0 GB0AAAF 0
860000888
90800000
26006009803
9600008068
AOB0000DE
g000000D0
3006608088
9006860008
BOOO00000O
pBBOOA6EDRO
9900000088
60800080
poeBEOOAe
8680680666
pooosasoa
g900008068
500000000
poOBBOAARS
BOGBODOGE
1986080806868
900008690
G0B0008908
pooBBBOAE
560366060868
A606000068
900008088
'R EEEK:

Ee6ROBOOBR

DML
D O P D
O DD P D
@ @D T P
[==J = I R -
oM Q@ D
DD @@ D
[=o e~ = s e e)
DD P D

7668686606008
[N}
-87 -366 418 48 618 146

—
@KDCD@OG@NQ’CDQNGNQ@G@QSQ
@@ oD

L=

1

o@D D
D DD

49 -259 -1276 183 1832 -329

£
~N
'
[=2]

2 +329 -1276 -118 1936 -256

Jary
~3

83 18

-1
[
[I < = I)

T @OmPD O DD OCPRP O DTODWNTEDOD

-256 -656 19 -171 -293

&

-
GO DD DDOONDDEO DT

~l

~4
T D PP P DD DEDODDDE
—

=
CTTPRRDRD D DD D WP
@ @
= P

& D D

[

-256 18 36 245 236

=
DEDDDDED I DD DD =B D@D

O OPE D@D DI PD@D D PEHDD@DY D

T D@D D

189

reduces the Pass | input

2316684,
3317258,
-8066081,
-3008981,
350861,
-2089861,
-8B69061,
-BEAEES1,
-8900901,
-300e901,
-9080001,
-epeagel,
-9009801,
-gee0001,
-6003981,
-poeagnl,
-66698a1,
-B6Rg8a1,
-9BE3061,
-0906861,
-6a66681,
-6096861,
-0906861,
-0600001,
-6960001,
-6p6388 1,
6009961,
-8608061,
-eoB8el,
-8089881,
-988686L,
-8006661,
-6905661,
-0866081,
-9866601,
-a86861,
-0806081,
-6896901,
-8968061,
-80dsee1,
-geegeal,
-8880861,
-2860861,
-9066601,
-6966001,
-aa66a61,
-0806891,
858801,
-6066001,
8318571,
9322787,
6698081,
-6868001,
-5808061,
-6688641,
-ea9ae61,
-8aa8881,
-8000001,
-6808661,
-8896061,
-9396861,
-6006861,
-goeagel,
-Ggaag8l,
-8380861,
-2800881,
-9006681,
-9980881,
-9996661,

B.4 Output from Pass 2

@317258, 0008654,
0318571, 8661313,
-0630681, -0068891,
GOEDAY, -8088801,
6691, -6069081,
9089941, -0B0g0B1,
-pERaesl, -56a0aR1,
-0R00e1, -0008691,
-8@90661, -0060E41,
-0906001, -0866841,
-8098691, -0088041,
-pORBeS1, -006A91,
-poeeEal, -B850081,
-0066891, -0002001,
-6068091, -0633081,
-6086601, -6BAAGGL,
-BB89681, -6690081
-0eagasl, -6609601,
-BBIge81, -2088661,
-8990061, -0068491,
-8508691, -0008691,
-6006661, -0080981,
-9306641, -0089081,
-6006881, -0080481,
-9008061, -0609081,
-6066891, -00BAA0AL,
-6088801, -0699001,
-00GA8A1, -5090881
-e098081, -HBAA0A1,
-B089061, -8608061,
-p000BR1, -BEBRES1,
-D000OR1, -DABREAL,
-G006691, -606G691,
-6000661, -BA6BEAL,
-gaoeBal, -00E6841,
-a006681, -BOG0091,
-G066RA1, -BREE0AL,
-8096691, -DOBAAB],
-90e86a1, -6688081,
-BpBE6EA1, -6089681,
-poGaeal, -6/E9661,
-8000661, -0006661,
-9900661, -000BB41,
-0096061, -8080661,
-6096A81, -B00R6A1,
-g606881, -Gaseedl,
-0806081, -0086691,
-pe8pes1, -e098ee1,
-aoeseel, -0eesaal,
§322797, 6084136,
6322712, 663886,
-BRBAaA1, -8606681,
6088091, -6006@91,
-9886661, -0OAROEL,
-9084801, -08006861,
6080081, -B00BER1,
-9900891, -0080681,
-6066681, -6660681,
-8g66661, -0086041,
-090pE8]1, -B8668A1,
-g8eeRel, -9686091,
-Bo80091, -BROSEEL,
-5038051, -6OR9EHL,
-BeEgEA1, -BEAG0RL,
-9058BB1, -0G00661,
-0g60681, -0BEBEGL,
-H806661, -5860E6L,
-BB0064a1, -0006081,
-80906801, -0066691,

-@

stream from 4235 lines to 284 lines.

6o,
oodl,
6991,
oedl,
o8al,
02a1,
0eal,
an01,
goel,
goel,
0981,
Go91,
0241,
0esl,
oeal,
eedl,
6oal,
2891,
6§61,
goel,
0061,
0681,
oedl1,
oedl,
0eal,
oea1,
oesl,

-peal,

6oal,
6991,
Besl,
8e61,
ag81,
0oei,
6081,
oedi,
6681,
oegl,
geal,
peal,
6801,
6841,
68681,
asel,
gesl,
8601,
oeal,
0881,
0081,
0eas,
essl,
Bagl,

6601,

86e1,
6601,
sael,
aeel,
0681,
ae8l,
0061,
0681,
0891,
peal,
6601,
8801,
a0e1,
8081,
gnel,
geel,

0098
6996
8800
8908
8098
8966
avee
CLEL]
poan
0338
0930
0098
2008
8000
8968
Q868
569
00868
6088
0aon
5306
8008
8398
8866
300
8968
9068
9009
088
608
0808
8968
6968
5360
908
8308
8308
8868
9008
a089
9089
9809
6838
6998
0608
L
2908
8308
408
8302
9969
0909
0998
L]
0048
poen
GLEL]
380
5908
28399
8098
9869

6868680008848
apggpaneees
1909060060688
2800080008079
1299686660071
308008060870
23006880808
4960 BE00B
24666808008
5006459068686
256693688898
68B6B000BAE
266866800008
7e4b0098000
274800060080
3008606008
2gnoaeenp0e
966000806088
2904080600839
laapsoennase
21069800008
116800600668
211800060888
1266000086688
212900688668
1369006868668
2136006686068
1466006864080
214086006808868
150000800886
2156880008068
156686080668
2160608000808
170808008068
1178603668868
136060008888
118860806686
1988086008
113580088068
468008088080

1924600606888
2%60000848%98
1920606060066¢8
PN
921086000808
7068800608
1922898066608
BpHpOOG000BBSE
8

—
o
™

DD @D OO DD DD

@ DD DD DD DG DR
@D D@D PP DR DD
PP Do HED T DD
BB P oD @D DD DD
DO DD DD D DD DD
DD DDPDD DR DD DD
DM DB DODDD DD
DO P DD DD DD D DD

MO D@ @D DD D
DPHDDODED DD DD
WP h DD DD D
TDDODDDD DT
TR DDOD @
DD DDEO DD @
S DD DD DD D

190

258, -GBA0HEI,
253, -0560681,
6258, -GA0GRGT,
253, -9086681,
3758, -0060881,
9258, -GE4GOAI,
0258, -6906981,
0258, -0069881,
9258, -3000941,
B258, -0000061,
2758, -0000681,
0253, -96E6041,
8265, -0660081,
0265, -0500081,
265, -2600901,
0265, -0600891,
9265, -00E8H941,
0265, -0609091,
8265, -3666091,
9265, -0000041,
a258, -0066091,
8268, -0659081,
Br58, -8680081,
9258, -0666081,
6258, -0066981,
9258, -0G68091,
258, -0660061,
258, -3606EH1,
§258, -Gobeea],
2008, 0322712,
B264, 8324733,
" B7@, 0324744,
8257, 9325343,
0264, 8325928,
9270, 8325936,
257, 0326678,
6264, 0326925,
8270, 9326936,
9257, 9323683,
0264, 328962,
278, 08328913,
2008, 0329902,
8274, 08331802,
8257, 9331879,
@278, 6331967,
257, 8332022,
0274, 0332893,
2002, 9332166,
264, 8332848,
8278, 332857,
8257, 4333496,
n264, 9334247,
0279, 8334263,
#257, 06335186,
8274, 0335318,
@257, 8335378,
@278, 9335468,
257, 0335637,
6264, 06335675,
8276, 8335686,
9257, 0336638,
a26s, 9337618,
257, 8337628,
9264, 6337229,
p278, 0337248,
0257, 9338388,
6264, 6338454,
273, 0338465,
257, 8339272,
6274, 0339871,
8257, 6339942,
8274, 0340914,
2882, 6348669,
0264, 9348984,
g270, 9340999,

—oeEeedl,
-9668091,
-a068881,
_0066881,
666091,
0006631,
_9660891,
-0068001,
0608081,
-5066691,
0069031,
-0669681,
-660691,
8406881,
688081,
6008881,
3469601,
-Basoeet,
—a06s881,
-9609081,
6608081,
-6200961,
-geagenl,
-0699881,
-6609981,
6666981,
60668681,
9608091,
-5608081,
324733,
324744,
8325343,
9325928,
8325936,
6326678,
8326925,
B326936,
9328683,
p328982,
8328913,
8329962,
9331882,
8331879,
8331967,
8332022,
8332093,
8332165,
93323480,
8332857,
8333486,
6334247,
8334263,
8335186,
8335318,
335378,
8335468,
9335537,
8335675,
93356885,
8336630,
83376815,
833702e,
8337229,
8337240,
8338388,
8338454,
6338465,
8330272,
8330871,
8330942,
§349914,
348869,
8348984,
9346989,
8343172,

-8GH3EA1,
-B006681,
.6600661,
06063481,
6669941,
- 0000061,
-B6666a1,
665491,
-5890691,
0960061,
00098681,
0668681,
5800041,
90600681,
-60BSB91,
-e689a4a1,
9900041,
-0000661,
0065661,
6668091,
-8608691,
9000081,
-9009001,
-6669091,
5060691,
-8900881,
-0008661,
-pBBE9a1,
B98I,
9982021,
2099811,
6960599,
BO40577,
3600416,
gaaa74z,
go60247,
8aeanll,
BOG1747,
- 8994219,
4068811,
0968989,
8661960,
6809977,
6009088,
2969855,
geesn71,
8668872,
8509675,
9990817,
8060549,
BeGes1,
gooaels,
9009923,
9908132,
9896068,
8668682,
5608977,
0069138,
8908811,
8666944,
586385,
6600685,
8008289,
8068811,
8061664,
BeAs154,
eanaall,
80098087,
8686599,
50086871,
#a8472,
9066855,
9999835,
B85,
8092263,

(Rl Lt Y ST -
O DD DD
D D@D D@

L3 B U D D0 D ek e

N DN MNN G @E D DD DD

DO DWW OOTDEOD OO D OO DD O DDDDDEDTWDNODDDmEPDD D@D DD R e

B @
Ut

oo @m D
oo D D@
Lo i e > i]
@ @@ @ @
e @D o d
D <D D

DT O D DD D
PO O oo o
oD DD D@
DO DD O @
DOET DD
1D O @ D DD
Do @D oD
PRD DD D@

oCDOWmEo Do
ToOoco oD@
=R~ = e -~ « R I < =)
@D @D O @ oD D
DTV E DD D
DD PG D @
DO PD DD DD
Do P DD ED

£ @i W
[R I]
o Eh DD
D@ D@ A
@© @ DD D
D& D D@D
D O M P D
o@D DD
D @ D D o

oD Do
@@ D@D
m D h P @D
@O DD
@
@

9-330600660948

D @ 0o D

NP DO DR OO D@D D D d

L]

o

DD T ODPODTDRADD D@
|
[o-]

@ ¢

98

[
1
o

a8

o
U

=~
DD DO PPDODTDRODPODDO PO

PO DDDE I DD DD DD P DD
DD P D@D D P @D DD DD DD
DO PP DDDTODRDTO0DDD

I @D @D O DD @D

606088880

s
-

D m gD DD
@O m @O DD
D@D D
D@D D @D D@

1680866

-3

1

o DD
D@

@ D@D @
D D S o

66908068
g8
L]
560606680

~3

1

<= R - I - - - - R e -)
<o @
o B

=
P

PR DD EPWDTINCTOODONEGDODDPPRPDR DO TR TTWPONDELEDING D

D O P @D DD
= OO D D NDEp R D OEH@ O OCD g @D

NP D DODEPRPODDEDDTODDRDDDD P DN DD
& Do

O~
~ @D DD D @

@O @ @ DD ED T
D @ D DD @ D
QT @D D e O

<
@
&

6688

191

9257,
9274,
2305,
6254,
9279,
9257,
azva,
9257,
9264,
6270,

2257,

0274,
2935,
G264,
027e,
0257,
0264,
- 8279,
8257,
0z74,
0257,
0274,
2992,
0254,
827d,

2343172,
§343364,
0343458,
0346160,
0346165,
0346759,
6346944G,
9347028,
8347187,
0367198,
6348511,
8343659,
9348752,
3349807,
8349812,
9350565,
9350653,
0350664,
8352345,
8352542,
8352652,
0352751,
9352828,
0353481,
8353492,
8353849,
9354020,
8354831,
9350388,
0354536,
083546082,
0354690,
9354789,
9355865,
0355882,
9356244,
6356442,
£356453,
8359293,
9360402,
9369545,
0361188,
0361281,
8362094,
8362185,
0363671,
9363231,
0363242,
6263758,
8364044,
§364115,
0364203,
0364367,
§3693096,
8369316,
6369586,
9369723,
9369789,
9372151,
0372162,
8372628,
8372766,
6372837,
8373469,
9373428,
8373881,
6374018,
0374895,
8375737,
9375743,
8376429,
§377182,
3377319,
3378159,
9378165,

0343364,
6343458,
8346164,
8346165,
2346759,
9346940,
8347028,
8347137,
9347198,
2318511,
0348659,
0348752,
0349867,
9349812,
8350505,
8350653,
9350664,
8352345,
8352542,
8352652,
8352751,
8352828,
8353431,
8353492,
0353849,
0354020,
8354031,
8354388,
0354536,
0354662,
8354690,
8354729,
9355865,
8355882,
0356244,
8356442,
8356453,
8359293,
9360402,
8366545,
0361188,
8361281,
08362094,
8362165,
8363871,
8363231,
8363242,
8363758,
8364044,
9364115,
9364263,
9364367,
8369386,
9369316,
6369536,
8369723,
9369789,
9372151,
8372162,
8372628,
8372766,
4372837,
8373469,
9373488,
§373881,
8374018,
9374895,
9375737,
8375743,
0376429,
8377182,
8377319,
8378159,
8378165,
p378678,

0669192,
0000R94,
6692762,
5088605,
6600594,
0000181,
0060088,
6646159,
5608811,
0001313,
0000143,
BORORO3,
BEG1455,
0069005,
0060693,
0066148,
6EEE611,
BeE1681,
8003197,
BoBeoLle,
0600899,
BEEOBTT,
BEGEES3,
5008911,
8000357,
6000171,
8066611,
6606357,
8690148,
4080466,
8000088,
8000099,
6EB1876,
8666417,
£0A6362,
6908198,
9606011,
2002840,
6661169,
BEEO143,
8088643,
§008093,
6068813,
BeBROLE,
B6E0G6E,
BEBB16E,
6086811,
8008516,
0006286,
6068671,
CEEGEEER
poaaled,
8864999,
8666016,
0680278,
eepe137,
BBGHO6E,
8662362,
6860811,
8680466,
8008138,
866E8T1,
5686632,
BoGa811,
8006481,
8680137,
8660877,
BBR1642,
6846846,
§006686,
2000753,
BEEeL3Y,
6666848,
6660006,
6609585,

bapl,
aeel,
woas,
o9el,
0001,
BBel,
seel,
6961,
ooal,
oool,
aoel,
asgel,
6945,
oael,
8061,
2001,
g8el,
agel,
0a41,
pool,
geol,
Gg6l,
0983,
a0l
6041,
6ee1,
5401,
agel,
a9gl,
o041,
6001,
neel,
9603,
9981,
g0l
6081,
geel,
#aol,
9063,
9041,
0043,
aeel,
4663,
agel,
9961,
9961,
a0el,
6881,
a8e1,
gael,
9861,
fael,
9865,
6881,
gaei,
pael,
pael,
fael,
0881,
8601,
2981,
9061,
8083,
gesl,
g08l,
esel,
gasl,
0965,
5081,
9081,
8303,
8aet,
0963,
9081,
8e61,

3509
0663
6634
2008
8609
0889
Goed
6868
A6gg
G669
juelch]
6608
6032
2008
4600
0é6e
0648
6609
0008
098
8600
clelcl:]

ELL]
ogeg
00ea
9060
6632
6668
LT
0808
6869
8888
8600
oges
6832
oaoe
8632
5608
o088
0668
6eae
L:L
g680
8e8s
L]
6868
0832
6a09
6669
8008
ae88
[eleicl:]
feee
L]
8688
6o6e
8632
Bege
]
L]
6008
aa32
L3S
B6a0
8666
[:LE11}
6832
beoe
6690

6080095008
3198000863008

50800608080

D - D
—
(s
SD
[=2]
-3
o
o
D
&

gpaoo0o0o000
1298000000
gBoobB

1

@ @
o D
@ F

=2
o
[
'
—
o
<o
L= 23 =}
oD D
D D
S

6ea0000089
43800480608

o
=== -]

[==g=31
[y
b
[a']

0
—
~

< 0o

[-}

@ D

fo6BBBBBRE
4158060000808
(LR E K]
4160606606080
R EEEEEEE]
1 268
800080668
gge0EEBBE
§ 1362 -188 @
ag00608
REEEEEEE]
1

T @

86
g0

]

(=1]
@ D

=-3
@ @

gpavegace
2306068600089
LR

I @

fgBgosaas
4p8060868
-]

192

[-R]

B8

ae

-]

;]

)

98

98

G257, ©373670, 0378797, 6080127, GOO1, @006 9 9 6
@274, B378797, 0378868, 000671, 0901, DOG6 24 25
g257, 06378868, B378034, 0080666, 0001, GOOE 9 & 8
G264, 0378934, 8378945, 0048611, 6901, 0068 26

0276, 0378045, 0379653, 9099798, §0Ql, 9960 26
6257, ©379653, 0379816, G609193, 6901, 0008 A 8 @A A B D B9 9
g264, 0379346, 0379862, G9a0016, £001, GBAG 27 8 1885 -118 0 @
p278, 6379862, 6330631, A0AG769, 0061, EEEO 27 @O DO B B9 0
p257, 0390631, 03309763, 0E99132, 0991, G996 9 9 6 8 4
0274, 0336763, 0380856, 0990693, 9901, 0006 24 26 0 @
6257, 0330856, 0330955, £000E99, @001, q6B O B B A O
8274, 05330955, A321654, 0000099, 0001, 6066 24 27 9 @
20085, 9331054, 0390463, 0009489, 0011, GR3Z 6 DB A @
4258, 0390463, 0398458, 0090005, 6061, 0686 3 1666006600438
@257, 0398458, 030061L, ©£900143, 0601, AE00 A 0GB 800 0 0 0
4258, 9396611, 0390677, @0A0A66, 6A1, 0066 3 11 69 0B 0B E 8
9257, 3390677, 0391132, 0050595, 0001, GOS8 6 6B B O G B OO D
9265, 9391182, 0391852, 0096670, 0065, GoR8 1168800 H0 Q0
7695, 0301862, 0367665, 0000813, 9063, BEAG 0 0G0 00 B B 00
8274, 0392665, 0392726, 00G006L, 0901, OBOG 4 18 8B 060004
2085, 0392726, 0399921, 987195, G007, 208888684000
§264, 06399921, 0399932, 0060811, 6061, 0986 28 & -1863 -321
8257, ©399932, 0400432, 0006508, 6001, EBEA B B B S 8 0 6 6
9265, 0400432, 0406437, 000AGAS5, BO01, AC0G 22 B 8B 6 6T 6 0 0

D D

aned
]

3}
¢
6
&
8

D @

8
qobesn
8

2005, 0400437, ©483162, 0662725, 6006, EE90 D B0 G0 DA A O O
0271, 0463162, 0409933, 0096821, 0902, 0AEB 50 B A A BB B B 0
@257, 0439983, 0411296, 0991313, 0063, GO 80686060838
@271, 0411296, 0023335, 6012889, 0662, 0GB 6 8 #8806 600
G257, 6423385, 0424533, 0901143, 6084, 6EEB R 6 8 G 0 0 B B O O
9271, 0424533, ©43878¢, 0096256, 00602, PEOA 560600088 0
2608, 0430789, 0433233, 0082444, ¢Bgd, pEOO B H B B P BB A B O
@271, 0433233, 0436166, 5092867, 0602, pOGB E B 6 880D 6 0 0 4
g257, 0436190, 6437441, 6991341, 0063, 00RO 0BG 006 00 0
6271, 0437441, 0442873, 0085432, 6002, 006G 9 068 A B 6 E 00
B257, ©442873, 0444213, 0001348, 0093, ORGP B BB A 6 6B 00 B

9271, 8444213, 0452688, ©AE8475, 0PEZ, 0696 12685 0 08B 8 8
2093, 9452688, 0454533, 0081845, 0663, G 6 H BB O 6B 80 B
@271, 0454533, 0457972, 8403439, 0002, 0066 136606063498
@257, 0457972, 0459323, 9991351, 0063, B0 A B H O 0B 0 6O 0
@271, 0455323, 0465662, @995679, BOO2, 6OAG 18D B A BB G A OB
6257, 0465842, 0466447, @0aldas, 6063, GG O G G OB €8 90 0
8271, 0466447, 0469363, 0002916, 0082, CREG 14 p G B O E OO RE
2603, 6469363, 0471423, ©£AA2960, 0083, pBEE B A B B OB E OB
0271, 0471423, 9476992, G095569, 0962, 6600 156 80008 849 0
2604, 0476992, 0479178, 4902186, 6086, 2048 0 8B E O BB B O 6
@271, 0479178, ©481617, 0082439, 0662, 6080 16 0 80 0 60800
2008, B481617, 0483122, 0081505, 0003, GGG P B OGO B9 880
G271, 9483122, 0438382, 0085136, 6662, 0608 17 ¢ 6o b B GG OO
g257, 0438382, 0489581, 0891279, 6983, AGEB O B B H OB G B O 4
0271, 0489581, 9493701, G0Q4120, 6662, 4068 22 8 @0 D 0 B B 9 0
8257, 0493791, 0495885, 4001384, 6663, GEEG 0B OG0B B 6 G0
6271, 0495085, 0501352, 0096267, 0062, A6A6G 23080 00899 0
2008, 9591352, 0583543, 0002191, 0603, pE0G D G GO 6 G R A0 B
@271, 4503543, 0588262, 0604719, 00B2, ABOO 19906 0B B8 0 0 O
0257, 0588262, 0509476, 6891208, 9904, 0600 H A G H O 0 0 0 &8
g271, 0509478, 0516632, 097162, 9602, 6200 20 680 068 6 8 9 0
2808, 0516632, 0518159, 8901527, 6063, AP66 9 860 9D 0 B 8 0
a271, 9518159, ©5266867, 0068448, 8602, 6660 21 0 G 0D B B A 9 0
9257, 526647, ©527864, 0061257, 6003, BEG6 0 0 AP 06 B A0 8
g271, 8527864, 0539775, 06092011, 99A2, ABAG 25 B 66 0 6 Q00 6
§257, 0538775, 0532877, 6861362, 6803, OB 8908800000
8271, B532677, 0536626, 0083949, 06002, 0DGG 26 6 B 66 0 6 6 8 8
8257, 0536626, ©537213, @941187, 6665, 6E6B A 003 a0 & 6 80
8771, 8537213, 8542799, @995586, 0002, 0906 27 6 80 0B 696 8
2005, 8542799, 0552279, 09H9486, 6621, 2054 B O B OB OB 800

193

B.5 Output from Pass 3

Pass 3 reduces the I"ass 2 input stream from 284 lines to 64 lines.

3612, 0315604, 9318571, GER1967, 0005,

3602, B316644, ©318571, 0091967, 0885, 11 23
3001, 8316684, 6318571, 0691967, @805, 2412
2005, 0318671, 4322787, 00G4136, 0008, 002 4 80 B8 B8 EH 6
3012, 0322707, A322712, 0086095, 0BOl,

8910 1112 13 14 15 16 17 18 19 24 20 21 22 23
918 11 12 13 14 15 16 17 18 19 26 25 26 27 28
8

2098, 0322712, 0324733, 0002021, €791, 008 60 B A B BB BOG
3001, 6324733, @329992, 06@5169, 8611, 41234

2008, 8329987, @331852, 0681994, 0001, Q0GB 209 066060 6 9
3962, 09331862, §332165, 00363, GBS, 113234

2002, 0332165, 8332848, 0808675, 0003, BE32 0006 B G R B BB
3003, 9332348, 0340069, 0897229, 9025, 1145689

2002, 0340069, 0346004, 0000835, 0063, 0032080068006 89
3003, 9340984, 8343458, 0092554, ooe4, 11118

2005, 0343458, 0346168, 0002762, 0999, G634 6866006688
3003, 0346168, 0348752, 0002592, 6g9, 11211 §2

2005, 0343752, 6349887, 0081655, 0665, BE32 406 6006088
3003, 0349807, 0352828, 0063821, 6869, 1121413

2002, 0352828, 6353481, 0000653, €963, P32 86080868648
3003, 0353481, 8354739, 6001308, 6969, 1121516

2003, 6354789, 0355865, 0081876, 0003, AE3295 690 B 6 6B 6 8 8
3901, B355865, 6359203, 4863428, @985, 217 18

2065, 0359293, 9368402, 0691109, 0603, BOB 6 BB O BB 86 6 &
3016, 9366492, 0368545, 0990143, egel, 11118

2802, 0369545, 8361188, 0090643, 0BE3, BE32 8GR B 8D6BAB
3016, 0361188, 4361281, 0608693, 066l, 11117

2602, 0361281, 0362094, 0Q90813, 0863, 66329 860086668400
3003, 9362004, 9364387, 0002213, 6889, 1121920

2006, 0364387, 0369386, 0084999, 6695, 8326608060608
3003, 9369366, 0369789, 0008483, B684, 11121

2008, 0369789, 6372151, 0002367, ebol, BEM B OB G B BB B OO
3883, 0372151, ©372837, 5669686, 0pes, 11122

2682, ©372837, 0373469, OOC0632, 0063, 0663200 36 D6BD6GA
3803, 0373469, 0374895, 6000626, 0964, 11123

2005, 0374095, 6375737, GE01642, 6965, P32 6 600 B 080 40
3681, 0375737, 6376429, 0690692, @eez, 124)

2005, 0376429, 0377182, 0809753, 0883, RGP A B B E G B &R A B
3018, ©377182, 8377319, 0660137, oeel, 11124

2892, @377319, 8378159, 0896848, 0003, 9032060000080 6
3303, 0378159, B381054, 0992895, 6914, 11 32526 27

2005, 0381854, 0398463, 0809409, 0P)], 66320 80606480498
3905, 0399463, 9391852, 0091389, 0664,

3866, 6398463, 0391852, 0901389, pee9, 1118
2005, 6391352, 0392665, OGGE813, 9083, 9089 9 O
3818, 0392665, B392726, €066861, @pAl, 111 18
2205, 0382726, ©399921, 8067195, 6067, 2086 4 B 60 6 9B B BB
3911, 0399921, 0468437, 5668516, 98603,

2005, B409437, 0483162, @0G2725, 0966, 0660 8 6 66 PO A BB @
3097, 6403162, DA38789, 6627627, 8413,

3008, 6403162, 6430789, 9827627, 6813,

2008, ©4309789, 6433233, 0002444, 6664, B0 0 60 66D 80 A D
3987, 6433233, 6452688, 0619455, 8012,

2008, B452688, 0454533, 0901845, 0093, @B 6 6060 68608
3997, 6454533, 0469363, 6814838, oei2,

2008, 8460363, §471423, 0062066, 9003, G008 8B B0 6660 B 0
3907, 6471423, 6476392, 0005569, 9462,

2004, @476992, 6470178, 0GOOZ186, 0686, 2648 4B 660 8460 88
3067, 6479178, 0481617, 0662439, 6802,

2088, 8481617, 0483122, ©OOE1585, 0603, BEB6 A B 06 6 G RO B 6
3887, 0483122, 60541352, 9018238, es8lz,

2608, 0581352, 6563543, 9062191, 0993, 0860 0B 9B B OO OO B
3697, 0583543, 0516632, 4613689, G668,

2008, 8516632, 6518159, 061527, 6063, 6AEA 6 B 0 0 508806
3097, 0518159, ©542799, 60624644, @819,

2005, 8842799, 6552279, 6009486, P02, 20540 B0 0636008 B

306006063

194 ‘

B.6_Output from Pass 4

Pass 4 reduces the Pass 3 input stream from 64 lines to 10 lines.

4062, €316664, 6322767, 6906193, CO13, 1626 D 0 6 G O 0D O D @
4897, 8322767, €324733, 0902626, 0002, 982 6P G S 00 B B 08
486%, 8324733, 0331282, 4G0997069, G012, 00 B D5 Q9 3 GO e 09
4307, A331802, 0355855, 0024063, A037, G334 8000 0000 9 9
A0G1, 0355865, 0360492, 06604537, 0088, GE32 0B 00000 B E D
42303, 0360402, 0375737, 0615335, G043, 6032 A ¢ 90000 CRD
4001, 0375737, 6377182, 0001445, 0005, 6A32 000 00 00 6649
4963, 0377182, 0398463, 0913281, €929, 4432 000 DV B OGO
4085, Q390463, 0392665, 00082262, 0912, 1956 0 D R DG B O O B O
4086, 0392665, 9552279, 6159614, @143, 31106 Q€GB €2 Q000

195

B.7_Output from Pass 5

This final pass of the parser combined the results of the previous passes to produce a parse tree
and a summary of the session.

B.7.1 Parse Tree
Pass 5 combines elements of passes 0, 1, 3, and 4, producing a parse tree with 450 nodes.

Mon Feb 13 22:52:46 1989, File C: RCD3BO6.THP
Define Hierarchies [61.93 secs, 13 ops]
Start Over in the Workspace and ...
Created a new tree: {1 ->2 3456789101112 13141516 17 1819 24 28 21 22 23) and .
Created 24 solanodes: 123456 78910111213 141516 17 18 19 20 25 26 27 28 {19.67 secs, 5 ops)
| pause [2.81 secs]
| Leave Prose I1 for another Application [G.77 secs]
| pause [6.43 secs]
| pause [2.53 secs]
! Open a workspace file [13.13 secs]
Refacus [41.36 secs, 8 ops]
{ pause [6.70 secs]
| pause [8.29 secs]
| Hove the Map Window [0.06 secs]
| pause [6.33 secs}
| Show the Map Window [6.05 secs]
| pause [2.91 secs]
| Zoom in the Map ¥indow [1.65 secs]
| pause [21.37 secs]
ew Workspace [20.26 secs, 2 ops)
Start Over in the Workspace [0.05 secs, 1 op]
| Start a new workspace [0.05 secs]
Pause [20.21 sees, 1 op]
| pause [20.21 secs]
xploration [70.69% secs, 12 ops]
Created 4 sola nodes: 1 2 3 4 [51.69 secs, 11 ops]
| Create node 1 [B.11 secs]
1 Label node 1 [5.99 secs]
| pause [5.77 secs]
| Create node 2 [0,16 secs]
| Label node Z [7.42 secs]
| pause [2.47 secs]
| Create node 3 {0.11 secs]
| Label node 3 [17.47 secs]
{ pause [2.19 secs]
| Creats node 4 [0.11 secs]
| tabel node 4 [9.89 secs]
Pause [19.00 secs, 1 ap]
| pause [19.80 secs]
efine Hierarchies [248.63 secs, 87 opsl
Created a new tree: {1 -» 2 3 4) [3.83 secs, 5 ops]
| Link nodes {1 -» 2) [0.77 secs]
| pause [0.88 secs]
| Link nodes (1 -> 3) [0.55 secs]
| pause [G.71 secs]
| Link nodes {1 -» 4) [0.72 secs]
Cleanup [6.75 sees, 3 aps]
| pause [2.64 secs]
| Tidy the werkspace [0.05 secs]
| pause [4.06 secs]
Grew an existing tree: (1 -» 56 8 9) [72.29 secs, 25 ops]
| Create node 5 [0.17 secs]
| Label rode 5 [5.49 secs]
| pause [2.53 secs}
|

}
{
:
I
|
|
I
I
|
}
{
I
I
I
I
|
M
!
i
i
.
E
|
|
I
|
|
i
f
}
I
|
|
|
|
o]
]
]
I
I
|
|
I
|
|
I
I
|
l
] pause [5.88 secs]

I
I
I
I
!
|
I
I
I
I
|
!
|
I
|
I
I
I
|
|
!
f
|
I
I
I
I
E
!
|
I
I
|
i
i
!
i
!
!
{
I
I
I
I
!
I
I
I
I
I
|
i

196

— T A e — —— e ——— —_
& -] U N o ————— e . T M —

Create node 6 [0.16 secs]

labe] node 6 [9.23 secs]

pause [1.32 secs]

Link rodes {2 -» 5) [0.60 secs]
pause [0.82 secs]

Link nodes (2 -» 6) [0.77 secs]
pause [1.38 secs]

Create node 7 [0.11 secs]

Label node 7 --cancelled-- [9.44_secs]

pause [3.85 secs]

Delete node 7 [0.05 secs]

pause [2.09 sees}

Create node 8 [0.11 secs]

tabel rode 8 [10.60 secs)

pause [1.54 secs]

Create node 9 [0.11 secs]

Label node ¢ [8.67 secs]

pause [5.99 secs]

Link nodes (3 -> 8) [6.71 secs]

pause {B.72 secs]

Link nodes (3 -» 9) [0.55 secs]
leanup {8.35 secs, 3 ops)

pause [2.47 secs]

Tidy the workspace [0.05 secs]

pause [5.83 secs]

rew an existing trees (1 -» 1) [25.54 secs, 4 ops}

€reate node 18 [0.05 secs]

Label node 10 [22.63 secs]

pause [1.92 secs]

Link nodes (3 -> 10) [0.94 secs]
efocus [27.02 secs, 9 ops]

pause [3.92 secs]

Tidy the workspace [0.85 secs]

pause [3.41 secs]

Show the Hap Windew [0.05 secs]

pause [2.20 secs]

Zoom in the Hap Window [0.82 secs]

pause [10.71 secs)

Zoom in the Hap Window [1.27 secs]

pause [5.49 secs]
rew an existing tree: (1 -> 11 12}

Create nede 11 {0.05 secs]

Label node 11 [5.94 secs]

pause [1.81 secs]

Link nodes (3 -> 11) [8.88 secs]

pause [1.59 secs]

Create node 12 [0.11 secs)

Labe? nede 12 {13.13 secs]

pause [1.48 secs]

Link nodes {3 -> I2) [0.93 secs]
efocus [10.35 secs, 5 ops}]

pause [3.02 secs]

Tidy the workspace [8.06 secs]

pause [3.13 secs]

Zoom inh the Hap Window [1.32 secs]

pause [3.82 secs]
rew an existing tree: {1 -» 14 13}

Create node 13 [0.85 secs]

Label node 13 [6.93 secs]

pause [1.48 secs]

Create node 14 [0.11 secs]

Label node 14 [16.81 secs]

pause [1.97 secs]

Link nodes {4 -> 14) [L.10 sees)

pause [0.99 secs]

Link nodes (3 -» 13) {0.77 secs]
leanup [6.53 secs, 3 ops]

pause {3.07 secs]

[25.92 secs, 9 ops]

[38.21 secs, 9 ops)

197

| | Tidy the warkspace [0.06 secs]
| | mpause [3.46 secs]

i Grew an existing tree: {1 -> 15 16) [13.08 secs, 9 ops]

| | Create nade 15 [0.11 secs]

| | Label node 15 [3.57 secs]
| | pause [1.71 secs] .

| | Create node 16 [9.11 secs)

| | Label node 16 [3.57 secs]
| | pause [1.48 secs]

| | Link nodes (4 -> 15) [0.66 secs]

I | pause [0.88 secs]

i | Link nodes {4 -» 16) [0.99 secs]

| Cleanup and Take Steck [190.76 secs, 3 ops]

i | pause [2.19 secs]

I | Tidy the workspace [0.66 secs]

i | pause 8,51 secs]
Exploration {45.37 secs, 8 ops]
| Created 2 solo nodes: 17 18 [34.28 secs, 5 ops]
| | Create node 17 {8.17 secs]

| | . Label node 17 [3.62 secs]

f | pause [1.98 secs]

} | Create node 18 [6.11 secs]}

| | Label node 18 [28.4G secs}

| Refocus [11.09 secs, 3 ops]

| | pause [3.07 secs]

I | Zoom in the Map Windew [0.94 secs)
| | pause {7.08 secs]

Top Down Construction [153.35 secs, 43 aps]
| Hooked existing nades to & tree: (I -> 18) [1.43 secs, 1 op]
| | Link nodes (1 -» 18) [1.43 secs]
| Cleanup {6.43 secs, 3 ops]

I | pause [2.58 secs]

I | Tidy the workspace [D.06 secs]
I | pause [3.79 secs]

| Hooked existing nodes to a tree: (I -> 17) [0.93 secs, 1 opl
| | Link nedes. (4 > 17) [8.93 secs]

| Cleanup £B.13 secs, 3 ops)

| | pause [1.98 secs]

| | Tidy the workspace [0.05 secs]

! | pause [6.10 secs]

| Grew an existing tree: {1 -> 19 28} [22.13 secs, 9 ops]

| | Create node 19 [0.11 secs]

| | Lahel node 19 [9.66 secs]

| | pause [1.60 secs]

| | Create node 26 {0.1I secs]

| | Label node 28 [5.16 secs]

| | pause [2.86 secs]

| | tink nades {18 -» 19) [8.71 secs]

| | pause [0.88 secs])

{ | Link nodes (18 -» 20) {1.04 secs]

| Refocus [49.99 secs, 5 ops]

| | pause [2.69 secs] :

| | Tidy tie workspace [0.06 secs]

| 1 pause [15.82 secs}

| | Zoom in the Map Window [1.26 secs]

| | pause [30.16 sees]

| Grew an existing tree: (1 -> 21) [4.83 sees, 4 ops]
| | Create node 21 [0.10 secs]

| | Label node 21 [2.70 secs]

| | pause [1.37 secs]

| | Link nodes (18 -> 21) [0.66 secs]

| Pause [23.62 secs, 1 opl

| | pause [23.62 secs]

| Grew an existing tree: (L -> 22) [6.86 secs, 4 ops]
| | €reate node 22 [0.11 secs]

! | Label node 22 [4.66 secs]

{ | pause [1.38 secs]

| | Link nedes {4 -> 22} [8.71 secs]

198

Cleanup [6.32 secs, 3 ops)
| pause [2.80 secs]
| Tidy the workspace [0.05 secs]
| pause [3.46 secs]
Grew an existing tree: {1 - 23) {6.26 secs, 4 ops]
| Create nede 23 [0.11 secs]
| Label node 23 [4.01 secs]
| pause [1.37 secs]
| Link nodes (4 -> 23) [0,77 secs]
Refocus [16.42 secs, 3 ops])
| pause [3.02 secs]
| Tidy the workspace {0.06 secs]
| pause [8.73 secs]
| Zoom in the Map Windew [0.55 secs]
| pause [4.06 secs]
xploration [14.45 secs, 5 ops)
Created a solo node: 24 [6.92 secs, 2 ops]
| Create node 23 [B.06 secs]
| tabe? node 24 [6.86 secs]
Refocus [7.53 secs, 3 ops)
| pause [3.79 secs]
| Zoom in the Map Yindow [0.88 secs]
| pause [2.B6 secs]
op Dawn Construction [132.81 secs, 29 ops]
Hooked existing nodes to a tree: (1 -> 24) [1.37 secs, 1 op]
| Link nodes (1 -» 24) [1.37 secs]
Cleanup [8.40 secs, 3 aps]
| pause [3.79 secs]
| Tidy the workspace [0.06 secs]
| pause [4.55 secs] _
Grew an existing tree: (1 -> 25 26 27) [28.95 secs, 14 ops]
| Create node 25 [0.06 secs]
| Label node 25 [5.05 secs]
| pause [1.27 secs]
| Link nodes (24 -> 25} [0.71 secs]
| pause [6.66 secs]
| Create node 26 [0.11 secs]
| tabel node 26 [7.08 secs]
| pause [1.93 secs]
| Create node 27 [0.16 secs]
| Label node 27 [7.69 secs]}
| pause [1.32 secs]
| Link nodes (24 -» 26) [0.93 secs]
| pause [0.99 secs]
| Link nedes (24 -» 27} {0.99 secs]
Refocus [94.09 secs, 11 ops]
|- pause [3.41 secs]
| Tidy the workspace [0.05 secs]
| pause [6.98 secs]
[Zoom in the Map Window [0.99 secs]
| pause [45.97 secs]
| Zoom in the Hap Window [1.04 secs]
| pause [4.45 secs] .
1 Zoom in the Map Window [1.37 secs]
| pause [10.93 secs]
f Zoom in the Map Window [8.83 secs]
| pause [18.87 secs]
ree Structure Revision [22.02 secs, 12 ops]
Broke existing 1inks and ...~
Deleted a node: 11 [13.89 secs, 9 ops]
| Break link (3 -» 10} 9.65 secs]
| pause [1.43 secs]
[Break link (3 -» 11) [08.66 secs]
| pause [5.065 secs]
| Delete node i1 [6.70 secs])
| | Set Delete Hode On [0.11 secs, I op]
{ | pause [0.77 secs, 1 op]
| | Delete node 11 [0.06 secs, 1 op]

199

!
!
i
I
I
I
D
I
|
|
I
[
|
!
I
I
I
I
I
|
!
I
I
I
I
I
!
|
[
I
I
I
I
|
I
!
!
[
I
[
I
!
!
f
[
I
[
!
!
|
I
I
I
I
!
!
I
I
|
!
[
I
I
!
{
{
!

| | vpause f5.7% secs, 1 op]
| | Set Delete Hode OFf [0.85 secs, 1 op]
Refocus [8.13 secs, 3 ops]
! pause [3.13 secs]
{ Zoom in the Hap Window [1.16 secs]
| pause [3.84 secs]
ocument Revision [1596.14 secs, 143 ops]
Hooked existing nodes te a tree: {1 -» 10} [0.61 secs, 1 op]
| Link nodes (3 -> 10) [©.61 secs]
Refocus [71.95 secs, 7 ops]
| pause [2,80 secs]
| Tidy the workspace [0.05 secs]
| pause [34.55 secs}
| Save the workspace [B.57 secs]
| pause [11.20 secs]
| Zaom in the Map Window [2.70 secs]
| pause [12.08 secsl
Unproductive work [5.16 secs, 3 ops]
| Create node 28 [0.11 secs]
| pause [5.08 secs]
| Delete node 28 [0.05 secs]
Refocus {27.25 secs, 6 ops]
| pause {12.47 secs]
| Zoom in the main window [2.42 secs]
| pause {2.63 secs]
| pause [4.56 secs]
| pause [5.11 sees]
| pause [0.06 secs] .
Edited existing nodes and ...
Revised existing nodes [276.27 secs, 13 ops]
| £dit node 5's contents [68.21 secs]
| | Leave Prose [1 for ancther Application [67.58 secs, 1 op]
| | Edit node 5's contents [8.71 secs, 1 op}
| pause [4.73 secs]
| pause [3.62 secs]
| pause [4.78 secs]
| Edit node 6's contents [120,89 secs}
| | Leave Prose II for another Application [119.96 secs, 1 op]
{ | Edit node 6's contents {0.93 sees, 1 op]
| pause {4.07 secs]
b pause [2.69 secs]
| pause [4.67 sees)
| pause [0.05 secs]
| Edit aade 5's contents [62.56 secs]
| | Leave Prose Il for another Application [61.68 secs, 1 op]
| | Edit node 5's contents {0.88 secs, 1 op}
Pause [23.44 secs, 4 ops]
[pause [15.11 secs]
| pause [4.44 secs]
| pause [4.84 secs]
| pause [0.05 secs]
Edited existing noedes [194.53 secs, 12 ops]
| Edit node 8's contents [28.67 secs]
§ | Leave Prose Il for another Application [27.96 secs, 1 op}
| | Edit node 8's comtents [0.71 secs, 1 op]
} pause [4.51 secs]
| pause [4.06 secs]
| pause [4.84 secs]
| Edit node 9's contents [54.32 secs)
| | Leave Prose [I for another Application [33.49 secs, 1 op}
[| Edit node 9's contents [0.83 secs, 1 op]
| pause [5.49 secs]
| pause [3.35 secs]
| pause [4.56 secs]
| &dit nade 12's contents [84. 75 secs]
|] Leave Prose Il for another Application [84.83 secs, 1 op]
| 1 Edit node 12's contents [0.72 secs, 1 op]
Pause [18.45 secs, 3 ops]

200

J— e e e e =t e e e A fp e Ml e e e L A e S Tk = e e o e e

I
|
E
|
|
|
i
I
!
I
I
I
I
[
I
|
|
!
{
I
|
|
{
I
I
!
!
I
|
!
f
|
I
f
I
I
I
!
I
I
I
!
I
|
!
[
I
[
[
I
I
|
I
[
|
|
!
I
I
i
I
I
i
|
I
[

| pause [8.24 secs]

| pause [5.00 secs]

| pause {5.21 secs]

Edited existing nodes [148.30 secs, 12 ops]

| Edit node 13's contents [34.39 secs)

| | Leave Prose II for another Application [23.67
| | Edit node 13's contents [0.72 secs, 1 op]

| pause [4.50 secs}

| pause [3.79 secs]

| pause {5.27 secs]

{ Edit node 10's contents [56.79 secs]

| | Leave Prose [T for another Application {56.08
| | Edit node 18's contents [9.71 secs, I op]

f pause [4.62 secs]

| pause [4.83 secs}

| pause [5.00 secs]

| Edit node 14's contents [29.16 secs)

! { leave Prose [I for ancther Application [28.12
{ | £dit node 14's centents [1.84 secs, 1 op]
Pause [20.60 secs, 3 ops]

| pause [8.79 secs]

| pause [6.48 secs]

! pause [5.33 secs]

Edited existing nodes [55.69 secs, 2 ops]

| Edit node 15's contents [55.69 secs]

| | -Leave Prose [I for another Application {34.93
i ¢ Edit node 15's coentents [0.76 secs, 1 op]
Take Stock [21.86 secs, 6 ops}

| pause [6.21 secs]

] Save the workspace [3.79 secs]

| pause [2.42 sees]

| pause [0.88 secs]

| pause [3.51 secs]

| pause [5.85 secs]

Edited existing nodes [24.39 secs, 2 ops]

| Edit mode 16's contents [24.39 secs]

| | Leave Prose II for another Application [23.18
| | Edit node 16's contents [1.21 secs, 1 op]
Pause [15.05 secs, 3 ops]

| pause [6.92 secs)

| pause [3.02 sees]

| pause f[5.11 secs)

Edited existing nodes [182.30 secs, 12 ops]

| Edit node 17's contents [51.80 secs]

| | Leave Prose Il for another Application [50.92
| | Edit node 17's contents [0.88 secs, 1 op]

i pause [4.72 secs])

| pause [2.75 secs]

| pause [5.32 secs]

! FEdit node 22's contents [41.20 secs]

[| teave Prase II for another Application [40.43
| | Edit nede 22's cantents {8.77 secs, 1 op)

| pause [5.05 secs]

| pause [3.46 secs]

| pause [5.33 sees]

| Edit node 23's contents [62.67 sees]

| | Leave Prose Il for another Application [61.84
| | Edit node 23's contents [0.83 secs, 1 op]
Pause [21.91 secs, 3 ops]

| pause [4.83 secs]

| pause [11.87 sees]

| pause [5.21 secs]

Edited existing nodes [130.89 secs, 8 ops]

| Edit nede 19's centents [47.19 secs]

| | Leave Prose Il far anather Application [46.47
| | Edit node 19's contents [B.72 secs, 1 op)

| pause [4.00 secs]

| pause [3.B3 secs]

201

secs,

secs,

secs,

58Cs,

Secs,

S&CS,

segs,

SECS,

Secs,

op]

opl

opl

op]

| pause [4.99 secs]

| pause [0.06 secs]

| Edit node 20's contents [71.52 secs]

| | Leave Prese Il for another Application [70.47 secs, 1
| | Edit node 20's contents [1.15 secs, 1 op}’
Pause [15.27 secs, 3 ops}

[pause [6.48 secs]

| pause [3.30 secs]

} pause {5.49 secs]

Edited existing nodes [246.40 secs. 19 ops]

| Edit node Z1's contents [84,48 secs]

| | Leave Prase Il for another Application [B3.76 secs, 1
| | Edit node 21's contents [0.72 secs, 1 op]
| pause [4.72 secs]

| pause [2.64 secs]

| pause [5.21 secs]

| Edit node 25's contents [29,11 secs]

{ | teave Prose Il far ancther Application [28.18 secs, 1
| ¢ £dit node 25's comtents [0.93 secs, 1 op]
| pause [4.45 secs]

| pause [3.46 secs]

| pause [5.11 secs]

] Edit node 26's contents {39.49 secs]

t | Leave Prose [I for another Application [39.56 secs, 1
| 1 Edit node 26's contents [6.93 secs, 1 op]
| pause [3.74 secs]

| rause [2.74 secs]

| pause [5.28 secs]

| pause [0.05 secs]

| pause [0.06 secs]

| Edit node 27's contents [55.86 secs]

| t Leave Prose 1I for another Application [55.03 secs, 1
| | Edit node 27's contents [0.83 secs, 1 op]
Refocus [94.80 secs, 21 ops}

! pause {5.43 secs] :

| Hove the Hap Window [0.06 secs]

| pause [9.33 secs]

| Show the Hap Window [0.85 secs]

| pause {2.26 secs]

| Zaom in the Map Window [2.14 secs]

i pause [5.82 secs]

| Zoom in the Hap Windew [1.26 secs]

| pause [3.96 secs]]

| Zoom in the Map Window [0.82 secs}

| pause [7.86 secs]

{ Save the workspace [4.12 secs]

{ pause [6.64 secs]

| Hove the Outline Window [0.06 secs]

| pause [0.44 secs]

| Show the CGutline Window [0.05 secs]

| pause f11.59 secs]

{ Save the workspace [16.92 secs]

| pause [4.12 secs]

| Save the workspace [17.19 secs]

| pause [3.68 secs]

202

op]

opl

B.7.2 Summary File for Session SIS8R(0108

“S18R0188.P4* |
450, Humber of nodes in the parse tree
153, Humber of commands '

28, Humber of creates

3, Humber of deletes

@, Number of copies
26, Number of 1inks

2, Number of break links

g, Number of moves
14, Number of tidies

1, Number of cancelled operations

1, Number of opens

5, Humber of saves

0, Number of nodes in last saved tree
0, Humber of nodes with no offspring
8, Maximum depth of saved tree

18, Cumulative X vector of creates

0, Cumuiative Y vector of creates
0.81, Stage Index

20, Number of edit node operations
0, Number of help requests
0, Number .of long pauses
@, Number of user comments
1, Number of times sybject left Prose II
30, Number of constructive episodes
21, Number of housekeeping episodes
18, Number of phases

276.3, Longest caonstructive episode, in seconds
24.4, Longest meta-housekeeping episode, in seconds
94.8, Longest housekeeping episode, in seconds

2, Total seconds spent editing nodes
.0, Total seconds spent in help

8, Total seconds spent in long pauses
.0, Total seconds in all pauses

.0, Total seconds spent in comments

.8, Total seconds spent outside Prose II

1634.5, Total seconds in constructive episodes
178.6, Total seconds in meta-housekeeping episodes
543.7, Total seconds in housekeeping episodes

2356.8, Total seconds in this session

203

APPENDIX C. PARSER COMMAND LINE
PARAMETERS

-[lach of the passes in the parser uses one or more command line parameters to control the work
done in that pass.

Pass 0 Command Line Parameters: Pass 0 uses only one command line parameter, to
control whether debugging information is to be generated in its output file.

Option Description '
-d Turn on tracing and generate the output information used for debuggmg this pass. A

previous try at parsing a given input file failed on this pass; the debugging information
should help a human in finding problems in this pass.

Pass 1 Command Line Parameters: Pass 1 uses two command line parameters to control
its operation.

Option Description
-C Send only the ID of the command to the output file, rather than the entire 16-tuple of

information. This can be used to generate a condensed file containing all the com-
mands issued.

-d Tum on tracing and generate the output information used for debugging thlS pass. A
previous try at parsing a given input file failed on this pass; the debugging information
should help a human in finding problems in this pass.

Pass 2 Command Line Parameters: As with Pass 0, Pass 2 allows one optional command
line parameter: to control whether debugging information should be oenerated because a parsing

bug was found.

Option Description .
-d Turmn on tracing and generate the output information used for debugging this pass. A

previous try at parsing a given input file failed on this pass; the debugging information
should help a human in finding problems in this pass.

Pass 3 Command Line Parameters: Pass 3 of the parser accepts exc,ht optional command-
line flags. _

Option Description

-d Turn on the extra tracing and information used for debugging this pass.

-f Create a new file and write the current workspace to it in indented format every time a
successful SaveWorkspace command is encountered. If multiple saves are done, these
files are numbered with DOS file extensions of .1, .2, etc. This allows seeing such
things as how the trees were evolving during the trace, whether trees were deep or
wide or both, and how a node’s position in a tree correlated with when it was created.

- Write a unique letter, instead of the four-digit internal parser symbol, when producing
each record in the output file. This helps when reading this file as mput to a
spreadsheet and graphing the distribution of the types of phases.

204

=M

-5
=t
-2
-3

Save the file structure in spreadsheet format. This format was used to compare the
order of node creation against the node’s position in a pre-order tree traversal. In the
following example, the first node in the tree (the root) was the seventeenth node

created.

pre-order
position node ID

1 17
2 3
3 2
4 3
5 6
6 4
7 7
8 15
9 16
18 12

Qutput the sequence of commands that compose each episode.
Output only the operators and times, rather than the full n-tuples.
Qutput Pass 2 symbols only.

Output Pass 3 symbols only.

Pass 4 Command Line Parameters: Pass 4 of the parser accepts two optional command-

line flags.

Option
-d
-1

Description
Tum on the extra tracing and information used for debuggmg this pass.

When producing each record in the output file, output a unique letter, instead of the
four-digit internal parser symbol. This helps when reading this file as input to a
spreadsheet and graphing the distribution of the types of phases.

Summary Pass Command Line Parameters: The command line parameters for the
summary pass generally controiled the format of the output. Prose [itself allowed tree structures
to be input in several different formats; the summary pass could generate the parse tree in these

same formats.

Option
Sfilename

-d
-
-r

-5

-t

Description

This summary pass reads from the preceding intermediate files, not from stdin. This
specifies the filename used by each of the intermediate files. It assumes the interme-
diate files have DOS file extensions of .PO, .Pi, ..., .P4.

Turn on the extra tracing and information used for debugging this pass.

Produce an indented parse tree; that is, write the parse tree using the . IND file format.
Produce a Ready!-compatible parse tree; that is, write the parse tree using the .RDY file
format.

Produce a Script-compatible indented parse tree, with Script “&ibrk.” tags and vertical
bars, |, to illustrate indentation.

Write text headers in the summary file. This makes the summary information for a
single protocol record easily readable by a human. If this option is not specified, the

output is written to stdout in ASCII spreadsheet format.

REFERENCES

Aho, A.V. and J.D. Ullman. Principles of Compiler Design. Addison-Wesley, Reading, MA,
1977.

Ausubel, D.P. The Psychology of Meaningful Verbal Learning. Grune and Stratton, New York,
NY, 1963. :

Bates, M. The theory and practice of augmentéd transition network grammars. In Naneal Lan-
guage Communication with Computers, L. Bole, Ed., Springer Verlag, New York, NY, 1978,
191-260. '

Beard, D.V. and J.Q. Walker II. Navigational Techniques to Improve the Display of Large Two-

Dimensional Spaces. Behaviour & Information Technology 9, 6 (1990), 451-466. Also available as
Technical Report TR89-042, Department of Computer Science, University of North Carolina at

Chapel Hil, October 1989.

Bhaskar, R. and H.A. Simon. Problem solving in semantically rich domains: An example from
engineering thermodynamics. Cognitive Science 1 (1977), 193-215.

Bolter, J.D. and M. Joyce. Hypertext and Creative Writing. Hypertexr ‘87 Papers. Technical
Report TR88-013, Department of Computer Science, University of North Carolina at Chapel

Hill, (March 1988), 41-50.

Brtton, B.K., B.J.F. Meyer, M.H. Hodge, and S.M. Glynn. Effects of the organization of text
on memory: tests of retrieval and response critedon hypotheses. Journal of Experimental Psy-
chology: Human Learning and Memory 6 (1980), 620-629. '

Brooks, Jr., F.P. The Mythical Man-Momth: Essays on Software Engineering. Addison-Wesley,
Reading, MA, 1975,

Brooks, Jr., F.P. No Silver Bullet—Essence and Accidents of Software Engineering. Computer
20, 4 (April 1987), 10-19.

Bryan, W.L. and N. Harter. Studies in the physiology and psychology of the telegraphic lan-
guage. Psychological Review 4 (1898), 27-53.

Burkhart, H. and J. ;\‘ievergelt. Structure-oriented editors. Technjcai Report 38, Eidgenossische
Technische Hochschule Zurich, Institute fur Informatik, Zurich, Switzerland (May 1980).

Business Week. Giving Design Engineers More Time to Design. {February 3, 1986), 63.

Card, S.K., T.P. Moran, and A. Newell. The Psypchology of Human-Computer [nteraction.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1983,

Chomsky, N. Aspects of the Theory of Syntax. MIT Press, Cambridge, MA, 1975.

Collins, A.M. and E.F. Loftus. A spreading-activation theory of sémantic processing. Psycholog-
ical Review 82 (1975), 407-428.

206

Collins, A.M. and M.R. Quillian. [How to make a language user. In Organization of Memoryp, E.
Tulving and W. Donaldson, [ds., Academic Press, New York, NY, 1972,

Cox, B.J. Objeci-oriented prograrmming. Addison-Wesley, Reading, MA, 1986.

Durding, B.M., C.A. Becker, and J.D. Gould. Data organization. Human Factors 19, 1 (1977),
1-14. '

Encsson, K.A. and H{.A. Simon. Verbal reposts as data. Psychological Review 87, 3 (May 1980),
215-250.

Ercsson, K.A. and H.A. Simon. Protoco! Analysis. MIT Press, Cambridge, MA, 1984,

Fersko-Weiss, Henry. 3-D Reading with the IHypertext Edge. PC Magazine 10, 10 (May 28,
19913, 241-282.

Flower, L.S. and J.R. Hayes. Images, plans, and prose: The representation of meaning in writing.
Written Communication 1, 1 (January 1984), 120-160.

Foley, 1.D., V.L. Wallace, and P. Chan. The Human Factors of Computer Graphicé Interaction
Techmiques. [EEE Computer Graphics and Applications, (November 1984), 13-48,

Fountain, A.J. and M.A. Norman. Modeciling user behaviour with formal grammar. In People
and Computers: Designing the [nterface, P. Johnson and S. Cook, Eds., British Computer Society,
(Cambnidge, September 17-20, 1985), 3-12.

Greenberg, S. and LH. Witten. How Users Repeat Their Actions on Computers: Principles for
Design of History Mechanisms. In Proceedings of the 1988 Conference on Computer-Human
[nteraction, (Washington, DC, 1988), 171-178.

Greeno, J.G. Process of understanding in problem-solving. In Cognitive Theory (vol. 2), NI
Castellan, D.B. Pisoni, andP G.R. Potts, Eds., Lawrence Erlbaum Associates, Hillsdale, NJ, 1977.

Halasz, F.G., T.P. Moran, and R.H. Trigg. NoteCards in a Nutshell. In Proceedings of the 1987
ACM Conference of Human Factors in Computer Systems, (Toronto, Ontario, Apnl 5-9, 1987),
45-52.

Halasz, F.G. Reflections on NoteCards: Seven Issues for the Next Generation of Hypermedia
Systems. Hypertext ‘87 Papers. Technical Report TR88-013, Department of Computer Science,
University of North Carolina at Chapel Hill, {March 1988), 345-363.

Hayes, J.R. and L.S. Flower. Identifying the organization of the wnting process. In Cognitive
Processes in Writing, 1,.W. Gregg and E.R. Steinberg, Eds., Lawrence Erlbaum Associates,

Hillsdale, NJ, 1980, 3-30.

Hayes, J.R. and L.S. Flower. Writing research and the wnter. American Psycholagist 41, 10
(October 1986), 1166-1113. :

Henry, L.K. The Role of Insight in The Analytic Thinking of Adolescents. Studies in Education,
University of lowa Studies 9 (1934), 65-102,

Tohnson, S.C. YACC—pet another compiler compiler. Computing Science Technical Report No.
32, Bell Laboratories, Murray Hill, NI, 1975

Kieras, D. E. Initial mention as a signal to thematic content in technical passages. Memory and
Cognition 8, 4 (1980), 345-353. '

Kieras, D. and P.G. Polson. An Approach to the Formal Analysis of User Complexity. [nterna-
tional Journal of Man-Machine Studies 22 (1985), 365-394.

207

Kintsch, W. The Representation of Meaning in Memory. Lawrence Erlbaum Associates,
Hillsdale, NJ, 1974

Kintsch, W. & Keenan, J.M. Reading rate and retention as a function of the number of prop-
ositions in base structure of sentences. Cognitive Psychology 5 (1973), 257-274.

Kintsch, W. and T.A. van Dijk. Toward a model of text comprehension and production. Psy-
chological Review 85 (1978), 363-394.

Lachman, J.L. and R. Lachman. Comprehension and cognition: a state of the art of inquiry. In
Levels of Processing in Human Memory, L.S. Cermak and F.I.M. Cnaik, Eds., Lawrence
Ertbaum Associates, Hillsdale, NI 1979a, 183-210.

Landauer, T.K. Memory without organization: Some propetties of a model with random storage
and undirected retrieval. Paper presented at the [3th Meeting of the Psychometric Socicty, St.

Louis, MO, November, 1972,

Lansman, M., J.B. Smith and I. Weber. Using Computer-Generated Protocols to Study Writers'
Planning Strategies. Technical Report TR90-033, Department of Computer Science, University
of North Carolina at Chapel Hill, September 1990.

Lesk, M.E. LEX—a lexical analyzer generator. Computing Science Technical Report No. 39,
Bell Laboratories, Murray Hill, NJ, 1973,

Mackay, W.E. Video: Data for Studying Human-Computer Interaction. Proceedings of the [958
Conference on Computer-Human [nteraction, {(Washington, DC, 1988), 133-137.

Mandler, J.M. Categorical and schematic organization in memory. In Memory Organization and
Structure, C.R. Puff, Ed., Academic Press, New York, NY, 1979.

Matsuhashi, A. Pausing and Planning: The tempo of written discourse production. Research in
the Teaching of English 15, 2 (1981), 113-134.

Mead, C. and L. Conway. [ntroduction to VLSI S ystems. Addison-Wesley, Reading, MA, 1980.

Meyer, B.LE. The Organization of Prose and its Effects on Memory. North Holland Publishing,
Amsterdam, 1975. .

Meyer, BJ.F., D.M. Brandt, and G.J. Bluth. Use of top-level structure in text: key for reading
comprehcnswn of ninth grade students. Reading Research Quarterly 1 (1980), 72-103.

Microsoft Windows Users Guide. Microsoft Press: Redmond, Washington, 1987, document
number 050050051-200-R01-0887.

Miller, G.A. The magical number seven plus or minus two: Some limits on our capacity for
processing mformation. Pspchological Review 63 (1936), 81-97.

Mills, C.C. Drawing USE Transition Diagrams using TDE, Computing Science Division, Univer-
sity of California, Berkeley, CA, 1984.

Neal, A.S. and R.M. Simons. Playback: A method for evaluating the usability of software and its
documentation. [BM Systems Journal 23, | (1984), 82-96.

Nisbett, R.E. and T.D. Wilson. Telling More than We Can Know: Verbal Reports on Mental
Processes. Psychological Review 84, 3 (May 1977), 231-259.

Palmer, S.E. Hierarchical structure in perceptual representation. Cognitive Psychology 9 (1977),
441-4735. '

208

Palmer, S.E. Fundamental Aspccts of Cognitive "Representation. In Cognition and
Categorization, E. Rosch and B.B. Lloyd, Eds., Lawrence Erlbaum Associates, Hillsdale, NJ,

1978.

Posner, M.I. and R.E. Warren. Traces, concepts, and conscious constructions. In Coding Proc-
esses in Human Memory, AW, Melton and E. Martin, Eds., Winston, Washington, DC, 1972,

Quillian, M.R. Semantic memory. In Semantic Information Processing, M. Minsky, Ed., MIT
Press, Cambridye, MA, 1968,

Reisner, P. Formal Grammar and Human Factors Design of an Interactive Graphics System.
[EEE Transactions on Software Engineering SE-7, 2 {March 1981), 229-240.

Reisner, P. Further Developments Toward Using Formal Grammar as a Design Tool. In Pro-
ceedings of the Gaithersburg conference on Human Factors in Computer Systerns, National Bureau
of Standards, (Gaithersburg, MD, March 15-17, 1982), 364-308,

Roberts, M. Brainstorming by computer. Psychology Today (July/August 1989), 51.

Schank, R.C. and R.P. Abelson. Scripis, Plans, Goals, and Understanding. Lawrence Erlbaum
“Associates, Hillsdale, NJ, 1977.

Schneiderman, B. Direct Manipulation: A Step Beyond Programming Languages. [FEE Com-
puter 16, 8 {August 1983), 57-69.

Schwarz, M.N.K. and A. Flammer. Text structure and title effects on comprehension and recall.
Journal of Verbal Learning and Verbal Behavior 20 (1981), 61-66.

Shepard, R.N. The Mental Image. American Psychologist 33 {February 1978), 125-137.

Shepard, R.N. Externalization of Mental Images and The Act of Creation. In Visual Learning,
Thinking, and Communication, B.S. Randhawa and W.E. Coffinan, Eds., Academic Press, New

York, NY, 1978, 133-189.
Simon, H.A. Models of Thought. Yale University Press, New Haven, CT, 1979,

Smith, I.B. and M. Lansman. A4 Cognitive Basis for a Computer Writing Environment. Technical
Report TR87-032, Department of Computer Science, University of North Carolina at Chapel

Hill, June 1988.

Smith, J.B.,, M.C. Rooks, and G.J. Ferguson. 4 Cognitive Grammar for Writing: Version 1.0.
Technical Report TR89-(11, Department of Computer Science, University of North Carolina at
Chapel Hill, April 1989. .

Smith, I.B. and C.F. Smith. A4 Strategic Method for Writing. Technical Report TR87-024,
Department of Computer Science, University of North Carolina at Chapel Hill, August 1987.

Smith, 1.B.,, S.F. Weiss, and G.J. Ferguson. A4 Hypertext Writing Environment and [ts Cognitive
Basis. Technical Report TR87-033, Department of Computer Science, University of North
Carolina at Chapel Hill, October 1987. Also printed in Hypertext ‘87 Papers, Technical Report
TRE88-013, Department of Computer Science, University of North Carolina at Chapel Hill,

(March 1988), 195-214.

Smith, J.B., S.F. Weiss, M. Lansman, 1.D. Bolter, and D.V. Beard. An Experimenial Study of
IWriters” Cognitive Strategies Using Advanced Computer Tools. Project description submitted to
the U.S. Army Research Institute for the Behavioral and Social Sciences. Department of Com-
puter Science, University of North Carolina at Chapel Hill, September 1985.

Swarts, H., L.S. Flower, and L.R. Hayes. Designing protocol studies of the writing process: An
Introduction. In New Directions in Composition Research, R. Beach and 1.S. Bridwell, Eds.,

Guilford Press, New York, NY, 1984, 53-71.

209

Tulving, E. Episodic and semantic memory. [n Organization of Memory, E. Tulving and W.
Donaldson, Iids., Academic Press, New York, NY, 1972,

Voss, J..F., S.W. Tyler, and G.L. Bisanz. Prose comprehension and memory. In Handbook of
Research Methods in Humar_:. Memory and Cognition, C.R. Puff, Ed., Academic Press, New York,

NY, 1982,

Walker 11, J.Q. A Node-Positioning Algorithm for General Trees. Saftware—Practice and Expe-
rience 20, 7 (July 1990), 685-705.

Walker H, J.Q. Posttioning Nodes For General Trees. The C Users Jowrnal 9, 2 (February
1991), 47-62. '

Waterman, D.A. and A. Newell. Protocol analysis as a task for artificial intelligence. Artificial
Intelligence 2 (1971), 285-318.

Waterman, D.A. and A. Newell. PAS-I: An miteractive task-free version of an automatic pro-
tocol analysis system. In Proceedings of the Third [/CAL, Stanford Research Institute, Menlo
Park, CA, 1973, 431-445. '

West, LH.T., P.J. Fensham, and J.E. Garrard. Describing the cognitive structures of leamers

following instruction in chemistry. In Cognitive Structure and Conceptual Change, L.I1T, West
and A.L. Pines, Eds., Academic Press, Orlando, F L', 1985.

White, R.T. Interview protocols and dimensions of cognitive structure. In Cognitive Structure
and Conceptual Change, L.H.T. West and A.L. Pines, Eds., Academic Press, Orlando, FL, 1985.

Williéms-, J.P., M.B. Taylor, and S. Ganger. Text vanations at the level of the individual sentence
and the comprehension of simple expository paragraphs. Journal of Educational Psychology 73, 6
(1981), 851-865.

Woods, W.A. Transition Network Grammars for Natural Language Analysis. Corvnunications
of the ACM 13 (1970), 591-606.

Woods, W.A. Cascaded ATN grammars. dmerican Journal of Computational Linguistics 6, 1
(1980), 1-12. '

210

TRADEMARKS

IBM® and IBM PC® are registered trademarks and IBM PC-AT™ is a trademark of Interna-
tional Business Machines Corporation.

Macintosh® is a registered trademark of Apple Computer Company.
Microsoft® and MS-DOS® are registered trademarks of Microsoft Corporation.
Ready!™ and ThinkTank™ are trademarks of Living Videotext, Inc.
Smalltalk-80™ is a trademark of the Xerox Corporation. -

Sun Workstation™ 1is a trademark of Sun Microsystems, Inc.

Storyspace™ is a trademark of Jay David. Bolter.

UNIX® is a registered trademark of AT&T.

WordPerfect™ is a trademark of WordPerfect Corporation.

211

