Techniques for Interactive Manipulation
of Graphical Protein Models

TR92-016
April, 1992

Mark Christopher Surles

The University of North Carolina at Chapel Hill
Department of Computer Science

CB#3175, Sitterson Hall

Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Affirmative Actioa Institution.

Techniques for Interactive Manipulation of
Graphical Protein Models

by

Mark Christopher Surles

A Dissertation submitted to the faculty of The University of North Carolina at Chapel Hill
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the
Department of Computer Science.

Chapel Hill
1992
Approved by:

M @‘ M&r Advisor -

Reader

%vujz\m& (\/‘ Reader
N

MARK CHRISTOPHER SURLES. Techniques for Interactive Manipulation
of Graphical Protein Models (Under the direction of Frederick P.
Brooks, Jr.)

ABSTRACT

This thesis describes a graphics modeling system, called Sculpt, that maintains physically-
valid protein properties while a user interactively moves atoms in a protein model. Sculpt
models strong properties such as bond lengths and angles with rigid constraints and models
weak properties such as near-neighbor interactions with potential energies. Sculpt
continually satisfies the constraints and maintains a local energy minimum throughout user
interaction. On a Silicon Graphics 240-GTX, Sculpt maintains 1.5 updates per second on
a molecular model with 355 atoms (1065 variables, 1027 constraints, and 3450 potential
energies). . Performance decreases linearly with increased molecule size. Three techniques
yield interactive performance: a constrained minimization algorithm with linear complexity
in problem size, coarse-grain parallelism, and variable reduction that replaces model
segments with rigid bodies.

The thesis presents a Lagrange multiplier method that finds a constrained minimum and
achieves linear computational complexity for articulated figures whose spine contains many
more joints than any attached limb (e.g. reptiles, mammals, and proteins). The method
computes the Jacobian matrix of the constraint functions, multiplies it by its transpose, and
solves the resulting system of equations. A sort of the Jacobian at program initialization
yields a constant, band-diagonal pattern of nonzeros. Multiplication and solution of band-
diagonal matrices require computation that increases linearly with problem size. One or
two iterations of this algorithm typically find a constrained minimum in this application.

The number of functions and variables can be reduced by the use of rigid bodies. A user
can specify that a rigid object with few variables replace large segments of a model that
should not change. For example, a user can twist a backbone into a helix and then freeze
the helix by replacing its atoms and bonds with a cylinder of rigid shape but movable
position and orientation.

Two improvements over existing interactive protein modeling systems have been observed
in modeling sessions with Sculpr. First, time-consuming model correction is avoided by %
maintaining a physically-valid model throughout a modeling session. Second, additional
cues about model properties can arise when a chemist interactively guides a folding
simulation rather than viewing a cine loop from a pre-computed simulation.

iv
Acknowledgements

I thank my advisor, Professor Fred Brooks, for his advice and tutoring through graduate
school. In addition to computer science, Professor Brooks greatly increased my critical
thought and precision in technical prose. He taught strategies for conducting long-term
research projects and for leading careers in scientific endeavors. I also thank Professor
Brooks for generously funding this research through a molecular graphics research grant
from the National Institutes of Health's National Center for Research Resources.

I thank Professors David and Jane Richardson of the Duke University Department of
Biochemistry first telling me about their ideas for protein sculpting system. The
applications in this thesis come from them. Both spent a significant amount of their
sabbatical leaves teaching me about protein structures. I could not have attempted this
thesis without their continued encouragements and ingenious insights.

I also greatly appreciate the moral encouragement given by my family and friends. My
parents and brothers supported me from the beginning of school, through the gloomy days
of searching for a suitable thesis topic, into the completion of this dissertation.. My newest
family members, Sharon and Amanda, provided great joy and excitement during the final
segment of my graduate tenure. To each of these people and many more not listed, thank
you.

Table Of Contents

Rdnt 0 - kb S a R A B>+ s hef oo s snsessseasnaal X

N Ot R0 M s isiionics bisin issi Vi S S taeibivoviitibnis it sBi s e s e idusesnessese Xii

Chapter 1 — Introductionccccecececccccccccccccccccccsccccccacaasl

L TRODIOn CCEIIEION . . «.oooon o sosnsnstoseaneersaoiBohbii ARl bae s cooiboressraarsnns 2
2 Thesis and GETDONSERLIONcc0000ianaseasernnasassonssibunbisneseovoss Liadmineee 3
SO i o oo i o5 00000 snntrin et anERANIASSSACAVISROIIEERIAG s s o selfo s sv5 0008 va s 5
4. Constrained minimization algorithmccceeiiiiiiiiiiiiiiiniiienineninane. 7
4.1. Estimate Lagrange multipliers.......cccceeiieiniiuiiiieiieeniceiiereceenncnnnnes 9
42 Determine a penalty terM........ccccceeeeruunereeeeeererennsceseeaesensnnsnnnnns 10
4.3. Parallel execution of algorithm........cccoiiiiiiuiiiiiiiiiiiiiiiiiiceenenanne. 10
3. AIROURIG MRBIYEIE . ..o coves v revaseveveds bV ININT IR o £d + 0NE Drs S4BT s oz essvases 10
5.1. Linear complexity of energy and constraint evaluation............ccccceuee. 11
S 2 CORMMDE WDOMOBY. .« vsevovsvosnsrverndbbbhiidbbas s b LTV TR s Senbnsveasessnsene 11
5.3. Linear complexity of matrix algorithms..........ccccvuiiiuiieiieininennnnnene. 12
3,3.1,. Contents. .of . MAtriCes..... .l il i iidiii v 12
5.3.2. Sparsity pattern with a sorted Jacobian transpose 13
3.3.3, Mol Spanithams. . ..cconne o FR N M S vaibilnt s siifionnsncacnnes 14
0. Fiernchicsl modelcocccanamsaes e B BRI RN T AT o e s 15
7. SYStEm POrTOIIMNCE ... iooi sl it AR IS e V4 FITHIRE it veeeccnnnses 17

Chapter 2 — Proteins........ccccceeeeeeeceneccececccccnsscccnsccccnnseee 20

Part I - Protein Properties.........c.ccccooiiuuiiiniiiiniiiniieeierneeeneeneennnnns 20
1. BOnod BEEOCHONEc.ooooveiiransrseisssnsessncsnnssssasssssssssassssasasasss 20

2. Non-bonded interaction..... .. .ussises < frorbsabiasso covee s o ofdddolisustos 23
2.1. Electron shell repulsion and attraction..........cccceceeeeveeeescnecnne 23

2.2 " ElecuonBic MABRCHONS ciinvernes siisogiiss silise s hach s oo sosassana 24

2.3, O DIccindevmsts ol ke s shn b ses e sasenens 24

T SR L el i S N i S TR T IR 25

CPREERR. - E R SR L S S S 25
3.1, OB ol innns snoitisnaians die Gkl LBl BSTRA T RS R ks s¥0e e e 25

B B I S e e et e issls 15 Eo s sassnsnones 26

3.3.'% Glebmlarprotetns 210 L L 2 e 27

Chapter 2 — Protelil.iii. .. 0. iidihiieeccccccccrocssscocconcoccccceneas ld
Part II — The Sculpt Model..............ooiniiniiiiiiiiiiiiiiieiieieecaiaeenes 29
1. Bonded interactions—lengths and angles..........ccccccvmnninnnnnnnnanannnes 29
1.1, COnltem TEDresBntalion.. ...cccocsiivsinsesassennsnansnnsasassansassanss 29
Rl o RN AR o o o 5o s v i i s 3 i Mo AR AR S8 S 04 9 29
1.3. Fixed hydrogen bonds.........cccceveninsennsmmnvmidiiveipssnsipmiodoss 30

1.4. Springs versus constraints—departing from common
T N S FONS SOUT LI SRRt 31
2. Non-bonded interactions—van der Waals and electrostatic 32
Bide: DOUNBRDEIIENID i cisassssinsnossonsasinesssnsbhbossass snassnesvnssias 32
2.2. Van der Waals potential and the 4-8 approximation................. 32
2.3. ElcCUOMBIC CREIPEoccocimsorsonssscngastivsassespransansnsandiinees 33
3. . Jplicit - RYGRDEENe. i 0100 B R i o e e assacsns e Tyas s saones 34
4. DIORBROIE OEL isoviiiiiiiiiiiiciiiiitiiiiiei et savaaneiang sasannonsissensses 34
L PR . BSRSONNOIE ST RTINS BY S PRI IR lehin s wa i e LN 34
O . SIIIIIEY - v cvv0ide s 254845 4103 b5 BRI A i b AL AR S5 2 <Y s s < so 39 5w 35

Chapter 3 — Mathematical Background.......ccceceucerecaecenceesc 37

1. Introduction tO OPHMEZAON.ceurenrneeeeeeenreeeneeaseeesencanssenceasasoncences 39
2. Unconsmuined Riiemnmion ;. -viiicish. 6. i dicssaditiin ividibassanssssonscoscassnes 40
2.1, STEEPEET. UEECRNL...... .ooocrminccsns KA AT Tk ras vehihn0nsssesessese 41
2.2. Newton's methodiogii. suiw i ibmanisio it wivTescesnens 42
3. Constrained OpHBEBIREION 2o it i30T il s s s detsaboncacncecncnsasnsens 43
3.1. Ponglty ... N SRR AR i s S eeesesnasssrasanses 43
3.2. Lagmugian Ol i G A ARG i hdisiesnensgssensansnanes 44
4. Sculpt's mathematical MOAE].ccceeeeiireneesrsiorsesesessosscsossesssssensns 46
4.1. Estimate the Lagrange multiplierS.......ccccceeiiiiiimmmmiecececerancnnnnncnce 47
4.2. Determine a penalty term........cccccciiiicnenrcrencecressssesssssossessessasass 48
4.3. Find a minimum Of L(X,A,P).uccceeremmmnceeenennnieerenenneeeeeenceecesnannenns 48
4.4. Summary of AlgOorhmc0cuuecnnsss hiBbusinsiips covwe o ieesRusbibiitesens 49

Chapter 4 — Related Systems.......cccceeeeeeeeececececnccccanccenneeeed0

T Nioleoular BINE ... o0 ot e orrraprinsambllscss Holiovarensnsnsnsncoses 50
1.1, Energy Ml mmtIOn neprnsiasiashisescfosioseccssacnnsacscnes 51
Lode NIl GYBINCE ;o ..ol iotaees vamptnboipans s ifadiessasnsssvansuonans 52
1.3 Nottual 0008 15,0 il nsrrnnnnsasysirmesatdi ssessfsreseerosvene 52
1.4 Interactve OB g i i i iiinirenencionsnsesasrssnnsssnssnanenns 52

2. Physically-based modeling in computer graphicsccccevueeenennennn... 53
2.1. Simulation of constrained Newtonian dynamics.............................. 53

%2'2' Sutisfying HeW CONBIAINLS....ouresiisssnsiios s Besissirrssssessanssrssoranss 54

Chapter 5 — Algorithms and Analysns...............................56

Interaction with springs and nailscccccieiiiiiiiiiisiencietiaritencinrennens 56

2. COMPUNRONEL COMPIBKILY........ciovnroecnsnirsnininsssamebiitvihassbashsoossessecess 57
PR AR SSRORST S WS SO TR T S 58

2 p: VO DA inisonsisonyermrsfiarshhlmidvhesdvslachessssecssssessasas 60

9. IR T L i it caiin - shobir s sanerid ails smbmart Kbs s B sla sk srse seessarosassan 61
4. Finding Lagrange multplerscccccrveaveessrserssnsescisoinsbeccescascescescnss 62
4.1 TORIR BRI i st s mpasiins s s it pamdah s s s kis Govrsssssrnasansossse 62
B2 AN ... ovsvisririnninnonsioanoiabnmitnab bt < s o e s nos s sesass 64

5. Summary of computational compleXity.......cccceeevureeacannns S SN 67
Chapter 6 — Parallel Computation......ccccceeeeccccccccnnecesneessss 68
1.. Neighbor Jist GOtmminationc. it Vit datiinceitectos sosanstotanpocsasessces 69
2. Vector and function Opemtions« BB LGN LT LA 69
3. Loear oquation SOIRIONccocovcrceonicassasessosnscssassescsssanssassssosnsane 70
Chapter 7 — Structural Hierarchyccccccceenvnccccccnnnnncccceaa. 71
. MOUVEEOR.ovconicnssesrrrssssresyvnsssad MOREE SRS ELI AT s s d0ov s oo 72
1.1, Hianarchy and SroUDS e pessodintbiss aaanibss -« IROR T e covnnracas 2
1.2. Performance IMpProvemenL.....eveseeihiiadiiiss s AbhsFiiisevisasesssossssees 73

2. ROORISIONESun 00 mybBRai i ve Lt it 3 S tR Tl bl s e it ennas 74
2.1. When can atoms De groupedy!cixasvsanse Bk oA G 0 s ennaes 74
2.2, GEWD DEINBIENIRIION« cy5riiBi5iea te o PiisPonss sbidibassosnssssnusosessasess 74

3. Groups change the set of variables and funCtions.........c.ccoeveeiiiiininenenennn. 1
3.1. Groups add new variables and functions...........cccceviieieiniininnnnns 75
3.2. Groups remove variables and functionsccceeiuieiiiiiiniieininnnens 76
3.3. Which constraints and variables must be removed and inserted? 76
3.4. Changes to the CONSraint MAIXcuvieiiieineineeeneineaneeneeeaeaneeneanens 76

4. Non-bonded interaCtionsccceeeiiuieeriiesnrerrnrenceeeesncneesancnssecnnes 77

Chapter 8 — System Descriptionccceeveeeenneccccnncccccnnncceeas 79

- Userinnesface S ABIPIAY.cciiiimriinaisrinssnanisnssransanansbstassonsasas 79
1.1. Workstation configuration and basic display........c.cccoeeveieiiininannnn. 79

R U - . .0 i s oo s B i s 80
1.3. Visualization of non-bonded interactions............cc..cceeeuererenennnnnnn. 82
I e A AR s Rk oo Wi s el kA s i P sl ki A A 83

o AN DIINRIEIIN . .o o i ws ms m B m 5 p E 84
e RO N .5 e e o i 8 b e A e o e o s 5y 2 P i A 85
R RN L il T e e ke Bk R e R A e A i B 5 86
3.2, DOMINEBRIETOND.c.ovonivansamsasusnssnnsnnsssasssnsnsansasnsassopibssassons 87
Bk TR IBRIE oo voincorserrissassvbnrsnsensnsnnnnsihyssissnsasnsranas 87

300 RIVERORON BOBccooininrsnsrcnsnesinssanssnasnssansnnavessnasas 87

3.3, Non-Bonint SUNCHONSEooonicesiconscsiosncaasasnsssnsnsasossasnsvonsssssses 88
T I L et o ke s e s kg i e A i e R kA S e 88
o SR O TRo oncius svsnsvasanannsonassins cvimssstnnsnidoansmons pamnare 88

Chapter 9 — User Session and System Performance.............90

R T TR SR AR LA s e T S
IR EEY IR IS PRt e St bl e e Sl

1.2 -AUmpiod SOIIIONS 000 iiiiiiiieayanstnses sassrasinsihss Evedooesss

1.2.1. Model all atoms throughout the session.........ccccceeeeeene.
1.2.2. Rotate helices with the rigid bodies........ccccoeeeeceicannnnce.

1.2.3. Automatic repair after automatic rotationsc...ceceuee.

1.2.4. Manual repair after automatic rotations...........cccceerveeees

R YOI T - ... i iin e i s n s e mt kAR WS L AN Pt e o 0 65 »

1.3
1.4. - Comments i::i:itsain G hiinisnion B i T e i ewese

2. Performance without tigkd bodies.........aeasseEh s iiEua. ..

3. Performance with rigid bodies..........c6 i Boiiiivii g i iatiiereevess

.......

oooooo

......

90

Chapter 10 — Future WorK....cccccececeeeecccceccccccecccccscccaccceca 105

. RNl ORI ORARL, oo cvoiiiiiiiiiiiiiiiiiiiiniitiniiasmis e taaerass

Deformable models
User interface and graphical visualizationccccoceeiiiencneennnnn.
OMDEE RPPBCROONE - . .o et viinviiaciatWitas s ove svissin cotebetse conuanassapspnsoass
5.1..Skeletal figure . SRIMALON. . .oiio. it i i R G armnisaeness
5.2. Architectural layout

il > R

BIDLHOGERDRY ...ccn0rsnensacesassiisubinli i SveittsBiVosdervorsesss

Improved . . POTTORIMBRCE. .1 iiiivarniiiididi ivesat s tsaats toane s srsnesesass

...

......

..

.......

105

5 R SN L PR PN B AP SR AN P L i

Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 1.4:
Figure 1.5:
Figure 1.6:
Figure 1.7:
Figure 1.8:
Figure 1.9:
Figure 1.10:
Figure 1.11:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:

Figure 2.6:
Figure 2.7:

Figure 2.8:
Figure 2.9:
Figure 2.10:
Figure 2.11:
Figure 2.12:
Figure 2.13:

List Of Figures

Three planar segments of a protein backbone.ccccceiiieinennnn.e.. 2
Photograph of a Sculpt session.cccoevveiiiiiniiiiiiiiiiiiniineenennnn. 4
Protein properties addressed in this research...............ccooieiiiii 6
First-order necessary conditions at a constrained minimum................. 9
Algorithm that finds a local constrained minimum.........cccccocevrecnnneen. 9
Topology of protein bonds.ceeeeiurueieiierieieerieiieieeeeneeneaeenens 12
Worst-case structure of sorted Jacobian transpose.c..coeeeinenens 14
Photograph of Felix with two rigid helices...........ccccoooviiiiiiin. 17
Statistics for the four models used in performance analysis................. 17
Performance with four models using an SGI 240-GTX..................... 18
Plot showing linear increase in compute-time with model size.............. 19
Schematic of an amino acid's bonds. aFb g spaipase fho - o o5 K4 ooy HaTs 21
Geometrical arrangement of atoms and bonds in peptides................... 21
Ilustration of @ and y angles between two peptides.o..ue 22
Lennard-Jones formula and its graph.ccooevviiiiiiiiiiiiiin.. 24
Twodrawings of an B-DEliX.cccoorincrsasaresnnenssnomnsssrnsms snpsagiine s 26
Two drawings of @ B-Sheet.......oueeiuiiiiiinininiiaiiieiiieieeeeeaeaes 27
Anti-parallel and parallel sheets denoted with a ribbon that represents

the dEeeSon OF the DREKDONE.ccccccoiticivinrcrrncsessicscsonsassacnnsns 27
Illustrations of three globular proteins.ccccvviieiiiiiiiiiiiiiiininn, 28
Protein properties modeled in Sculpt.......cccoeininiiiiiiiiiiiiiiiiiiin, 29
Illustration of a dihedral angle.......ccooiviiiiiiiiiiiiiiiiiiiiiiiniiiinninnnnn. 30
Energy function of a dihedral angle with multiplicity three.................. 30
Comparison of spring and constraint models of protein properties......... 31

Default division of properties in SCUPL.cccoveiiiiiiiiiiiiiiiiiinin.n. 32

Figure 2.14:

Figure 2.15:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:

Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 5.1:

Figure 5.2:
Figure 5.3:

Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 6.1:

Figure 7.1:
Figure 7.2:
Figure 8.1:
Figure 8.2:

Plot of Sculpt and Lennard-Jones model of attraction and repulsion

I B I = .. ol s aineasarsanarsasanrusnnasssons sposnbsasnnsessnnnsens 33
Summary of specification and model of protein properties in Sculpt....... 35
Summary of the notation contained in the chapter.cooeee. 38
Function showing one global minimum and three local minima. 39
Points at a constrained MinimMUumMLcooeviiiiiniiiiiiiniieiieieiieeiennns 40
Iterative algorithm for finding an unconstrained minimum. 41

Sufficient conditions of a constrained minimum show the constraint
is satisfied and the constraint gradient is a scalar multiple of the

CROTEY EERBIBIIR. .. oo nniansss besansrionsrtn sasavsneampiiiils oo oolnds MBLIEHoTo oo 45
Augmented Lagrangian method for finding a constrained minimum. 46
Sculpt algorithm for finding a constrained, local minimum. 47
Direction used in the Sculpt algorithm.cocoviiiiiiiiiiiiiiinnn.. 48
A tug that does not move the point and a tug that moves along one

component of the tug direCtion.coceuiieieiiiiiiiiiiiiiiiiiiciiaannas 57
A series of figures showing a tug that pulls a point between minima. 57
Computational complexity of Sculpt’s constrained minimization

L T S S B S P RRPP PR R CRLRTROL. . 58
Derivation of maximum span of a constraint function.........cccceceeeceee 60
Three data structures used in the sparse-matrix definition. 62
Example of Sculpt’s sparse-matrix data Structure............ccceeeeervueenne 63
Worst-case structure of the Jacobian transpose.ccoceveeiniiennnnn. 65
Worst-case structure of the product JTJ.cocvvniiiiiiniininiininnannn.. 66
Assumptions made in analysis of Sculpt’s minimization algorithm. 67
Block diagram of concurrent and parallel segments of Sculpt’s

et SRR et vk S SR 69
Protein hierarchy modeled in Sculpt.......cocueeeeveeeieiiiiiiiiiiiiiiicennne. 14
Dashed lines illustrate two examples of atom groups. 73
Photo of Scuipt display using the Felix protein..................cccceuenene.. 80

Photo of Sculpt display with tugged atoms.........c.cccoeeeurerrecnnennenee. 81

Figure 8.3:
Figure 8.4:
Figure 8.5:
Figure 8.6:

Figure 8.7:
Figure 8.8:
Figure 8.9:
Figure 9.1:
Figure 9.2:
Figure 9.3:
Figure 9.4:
Figure 9.5:
Figure 9.6:
Figure 9.7:

Figure 9.8:
Figure 9.9:

Figure 9.10:

Photo of Sculpt display with shells illustrating non-bonded

RN « i <o o v s i es s rnn Soas s anntnd e s n s RSN v s n i R e w3 83
Photo of Sculpt display with two helices grouped into rigid
BIIIIIEE: - oo ki v b oy s A SRS A RN won oA M g 84
Arrows show main communication paths between the modules in
B DI ... o oo oo rvoimmirnnsih nbng v viva bnphin aekbms s b o wabu b dawica 85
Input file specifying atom positions and functions defined among

them for 8 BIUGAMELe TOSHANG........ocensiiscnsanracarssnsnsssinsnnassdonsanisens 86
Three formats for a point in the Sculpt input.ccccovieiniininnininnnn.. 87
Grammar for a set of bonded functions in the Sculpt input.................. 87
Grammhr POr: SPRCSEVINE B P iveoriinrsser o insionsnsnsarssivoananssisnns 88
Change in helix orientations during session............ccceveeuiiuininnennnne. 91
Photograph of Felix backbone before modeling session..................... 95
Photograph of Felix backbone after modeling session....................... 95
Photograph showing atom repulsions after session.ccc.cu.en. 96
Statistics for the four models used in performance analysis................. 99
Performance with four models using an SGI 240-GTX..........cc.cc...... 99
Plots show linear increase in compute-time and number of constraints

G IDOGE] SR8 IBCTORBES......ovooacirsinncverssrassasnsssonsonamanthbosssossssss 100
Statistics for four models containing rigid bodies.cc..ccceenenn.e. 101
Performance with Felix and four models containing rigid bodies. 102

Plot of performance with rigid bodies........cccccceerieeiirirnneeeeeecnennns 102

Vector notation:

Reserved names:

CRE W

»n
-
N

E

&l

Vf(a)

Vf(a)

Notation

column vector
i® element of vector a
value at i® iteration
transpose
inner product; Ziaiz;
length of a; Ya'a
partial derivative of f with respect to a;
_ ax -
oai
gradient vector; :
of
L daa |
’f ¥
daida 0a10an
Hessian matrix; : :
ok
| dandai 0an0an _
number of variables
number of constraints
k-dimensional space of real numbers

variables in minimization problem; x ¢ R"
vector of Lagrange multipliers; A £ R™

nonzero bandwidth of a square matrix

energy function; e:R"—>R

i constraint function; c;RX"—>X

column vector of constraint functions; ¢:R"—>R™

value at local minimizer

Jacobian of constraints;

o
ox1

0Xn

dcr

oCm

ox1

0Xn

Chapter 1
Introduction

This dissertation examines techniques for enabling high-end graphics workstations to
maintain basic physical properties of a protein model while a chemist interactively changes
the model's structure. I combine constrained minimization, parallel processing, an
approximation of protein properties, and a method for reduction of variables into a
prototype system that maintains one update per second on a Silicon Graphics 240-GTX as
a chemist moves atoms in an eight-hundred atom model. The computational model in this
research narrows the gap between interactive graphical modeling based on purely
geometrical operations and batch modeling based on simulation of physical properties.

This research makes a step towards including modeling of physical properties in interactive
computer graphics. Within the last ten years a trend in computer graphics has been to
increase scene realism by using physically-based models. Animators use physically-based
modeling to create realistic, detailed behavior. Most animations generated with physically-
based modeling, to date, required minutes to hours of computation for each frame. This
large computation time has kept physically-based modeling out of interactive graphics
systems except with small, simple models.

As a goal, I sought to build a modeling system that maintains marginal interactivity (one to
three updates per second) with real chemical modeling tasks and whose computation
increases linearly with model size. I constrain stiff properties such as bond lengths rather
than model their potential energy. An algorithm that maintains these constraints while
minimizing the energy in the rest of the model can make much largcﬁsteps per iteration than
an algorithm without constraints that minimizes the energy in the entire model. However,
the algorithm must satisfy the constraints (a set of nonlinear equality functions) on each
iteration. In order to solve these efficiently I only allow constraints among atoms reached
by traversing one, two, or three bonds (no such restriction is placed on energy functions).

This property yields a banded system of equations. Solving this requires time linearly
proportional to the number of atoms rather than cubically proportional, as would be
required if arbitrary atoms appear in the same constraint.

1. Problem description

A protein, to a first approximation, contains fixed bond lengths, bond angles, and planar
segments. Figure 1.1 shows three sequential segments (peptides) in a protein with vectors
representing bonds between atoms and gray areas denoting planar regions. The only

degrees of freedom in the figure are rotations between the planar segments (shown with
arrows about the N-C, and C,-C bonds). A linear sequence of the segments comprise the

protein backbone. Attached to the atom between each segment (C,) are sidechains (not
shown) with additional fixed length and angle properties, and often additional allowable

rotations. The sidechains are short relative to the backbone (up to eighteen atoms versus
hundreds to thousands of atoms).

Figure 1.1: Three planar segments of a protein backbone.

Proteins also contain attractions and repulsions between non-bonded atoms (points without
connecting vectors). Attractions hold nearby atoms together, whereas repulsions maintain
a minimal separation defined by the atoms' electron shells. Figure 1.1 shows near-ideal
separation between H and O atoms with adjacent circles (ideally, the circles should be
tangent). If two circles overlap, their atoms repel each other; otherwise, they attract. This
is called a van der Waals interaction.

Chemists build and change molecular models with interactive molecular modeling systems
such as Sybyl [Tripos 1988], Quanta [Polygen 1991], and Insight [Biosym 1991]. A
chemist usually changes the backbone conformation in these systems by rotating the
segments about the N-C, and C,-C bonds. This prevents changes in the bond lengths and
angles in the segments. However, adjusting an interior segment with this method often
requires numerous rotations, since even a small rotation moves all the atoms further along
the backbone. Thus achieving a desired interior adjustment is an inverse-kinematics
problem with perhaps hundreds of joints. Additionally, interactive systems do not maintain
proper non-bonded atom separations during a modeling session. A chemist must return a
protein to physically-valid geometry by either laborious manual adjustments using these
rotations, or by batch energy minimization. Batch minimization automates model repair but
~ often changes the model differently than the user desires.

Professor David Richardson of the Duke University Department of Biochemistry posed the
driving problem in this research, called protein sculpting: let a chemist manipulate a
graphical representation of a protein while the model simultaneously mimics fundamental
behaviors in the real protein.

2. Thesis and demonstration
The thesis of this dissertation is that current, high-end graphic workstations with multiple
processors can interactively maintain physically-valid protein properties by combining the
following:
1. a constrained minimization algorithm that converges rapidly and scales linearly
with protein size;
2. parallel and concurrent execution of the constrained minimization algorithm;
3. hierarchical models that reduce the number of variables by exploiting inherent rigid
substructure.

I demonstrate the validity of this thesis in two ways. First I demonstrate the proof of
concept through a graphical modeling system, called Sculpt, based on these techniques.
Sculpt lets a user move any atom by first attaching a symbolic spring between it and the
cursor and then dragging the cursor in the desired direction. Throughout the dragging
process, Sculpt polls the cursor position and adds the strain energy of that spring to the
potential energy modeled among bonded and non-bonded atoms in the protein. Sculpt then

finds a local minimum of the new total energy that also maintains rigid bond lengths,
angles, and planar segments (Section 3 details the protein model). Lastly, Sculpt displays
the results. Figure 1.2 shows a photograph of a Sculpt session with depth-cued vectors
representing bonds between atoms; cyan denotes the central backbone, and gray denotes
sidechains connected to the backbone. The backbone winds through four helices. Each
gold coil shows a spring left by a user that pulls an atom towards the three-dimensional
position marked with the gold thumbtack. Figure 1.2 shows a medium-size protein, called
Felix [Hecht 1990], with 760 atoms. The model contains 2205 rigid constraints (bond
length, angle, and others) and approximately 8030 energy functions (attraction, repulsion,
and others). On a four processor Silicon Graphics 240-GTX, Sculpt maintains 0.8 updates
per second with this model.

Figure 1.2: Photograph of a Sculpt session.

Second I prove the computation in the constrained minimization algorithm increases linearly
with model size. In this application I assume atom positions in a protein model at local

energy minima are more important than the dynamics of the atoms for reaching the minima.
This assumption lets Sculpt minimize strain energy in the model rather than simulate model
dynamics. The time steps in the algorithm are large enough for interactive performance on
medium-size protein models. The algorithm also has linear complexity when used with
other applications (e.g. articulated figures) that have more joints in the spine than in any
limb. An additional benefit of the algorithm is that most of its steps can execute in parallel.

The remainder of this chapter surveys the protein model, algorithms, analysis, and
performance that are described in detail in the subsequent chapters. The following list
summarizes the contents of Chapters 2 through 10. _
Chapter 2 describes protein properties and how I model them.
Chapter 3 describes algorithms for finding unconstrained and constrained minima.
Chapter 4 surveys related molecular modeling and computer graphics systems.
Chapter 5 proves the number of operations in the constrained minimization algorithm
increases linearly as the number of atoms in the model increases.
Chapter 6 analyzes the steps in the algorithm that can execute in parallel.
Chapter 7 describes a method that reduces the number of variables by combining
atoms into rigid bodies.
Chapter 8 discusses important implementation details.
Chapter 9 describes a user session and performance results from the session.
Chapter 10 concludes with a discussion of future research.

3. Protein model

The protein properties addressed in this research are listed in the center column of
Figure 1.3 and described in Chapter 2. The left column separates the properties into
bonded and non-bonded categories. Each bonded property is defined throughout a
modeling session; Sculpt does not model breaking and forming bonds. The non-bonded
properties include the attractive and repulsive van der Waals interaction discussed in
Section 1, electrostatic interactions, and solvent interaction. Non-bonded properties are
applied to atoms within a given radius of each other. As atoms move, the pair-wise
interactions change. Electrostatic interactions and solvent interaction are not currently
implemented in Sculpt because they seriously degrade performance; the linearity of the
minimization algorithm, however, still holds. For simplicity of implementation I specify
the hydrogen bonds at program initialization. Hydrogen bonds are actually weak

attractions between certain nearby, non-bonded atoms. A future version will model
hydrogen bonds between atoms within a given radius of each other.

Property type Protein Property Mathematical Model
Bond length C T
onstrained
Bonded Bond angle } ideal value
Fixed dihedral angle
Variable dihedral angle } Spring energy from
Hydrogen bond nearest ideal value

Van der Waals potential } 4-8 Lennard-Jones potential

Non-bonded { Electrostatic charge } Coulomb potential (not implemented)
Solvent interaction } -Not treated

Figure 1.3: Protein properties addressed in this research.

The right column in Figure 1.3 divides the computational model of each property into
constraints and energies. A constraint requires the value of a function equal some ideal
value. An energy (or restraint) imposes a penalty as a function value varies from its ideal
value. Consider a distance function, d, that represents the separation of two bonded atoms.
Modeling this as a constraint requires that d = d or equivalently, d - d = 0, where d is
the ideal separation. Modeling this as a spring energy function evaluates the variance of the
separation from the ideal value using Hooke's Law: Energy = k(d-d)?, where k denotes
the stiffness of the spring. The van der Waals interactions and the electrostatic interactions
use empirical potential energy models.

The non-bonded interactions are modeled with energy functions. Additionally, I model
weak and multi-value bonded properties with energy functions and stiff bonded properties
with constraint functions. For example, the energy required to change certain dihedral
angles is three orders of mhgnitude weaker than that required to change bond lengths. I
model these dihedral angles with springs with an ideal value equal to the ideal angle and
model bond lengths with constraints fixed to their ideal values. A hydrogen bond is
modeled with two energy functions—one models the length and the other models the angle
of the bond. The strength of a hydrogen bond is approximately two orders of magnitude
weaker than that of the other bonds in a protein.

The energy and constraint functions are grouped into the following constrained
minimization problem. Assume each point has three variables that denote its three-
dimensional position. Let the vector x (bold face denotes vectors) with n elements
represent the independent variables (atom positions). Let e(x) equal the sum of all the
energy functions. Let ¢(x) represent the vector of the m constraint functions. Specifically,
row i in ¢(x) contains a constraint function, ¢;(x), minus its ideal value, c;, as follows:

c1(x)-¢; 0

C(X)= 02(X):- E2 b 9

cm(®)-Cm] LO
On each update as a user tugs an atom, Sculpt finds a local minimum of the total energy,
e(x), while maintaining the set of constraint functions, ¢(x) = 0.

4. Constrained minimization algorithm

Minimizing an arbitrary function subject to arbitrary constraints is an open research
problem. The class of constrained minimization problems in this research has the
following properties:

nonlinear energy and constraint functions;

equality constraints;

continuous energy and constraint functions through the second derivative;

initial variables that satisfy or nearly satisfy constraints;

wn A W N -

starting point is usually very close to a local minimum.

The last property allows rapid convergence to a local solution. A new constrained
minimization runs each time a user tugs an atom. The only differences in the total energy
from the previous invocation are the changes in energies from a user spring and near-
neighbor interactions resulting from prior atom movements. Neither case changes the total
system energy very much. In most cases, a small change in the total energy only slightly
shifts the minimum.

A solution (x*,A*) of the following minimax problem, for sufficiently large p, is also a
solution to the constrained minimization problem [Hestenes 1975]:

rr)x‘in mfx Lx,A,p) = n}‘in m;':lx e(x) -)»T c(x) + % c(x)T e(x)

Ve(x') # Vex)A
4 Vex) Ve(x*) = Ve(x*)A*
Ve(x*)

c(x)=0

N
\
<ex®) P\ .
\ D | S

v

axl Contours of e(x)

Figure 1.4: Example of first-order necessary conditions at a
constrained minimum.

For penalties greater than some finite value, a point x minimizes L(x,A*,p) if and only if it
is a constrained minimum of the original problem [Gill 1981, p. 226]. Additionally, a
sequence x‘ that minimizes L(x,A’p), for a sequence of multipliers that converge to A,
converges to x* [Hestenes 1975, p. 308]. I use these results in the algorithm listed in
Figure 1.5 to find the saddlepoint. This algorithm is first presented in Gill [Gill 1981,
p. 227]; Witkin presents a similar algorithm for constrained dynamics [Witkin 1990].
Step 3 minimizes the augmented Lagrange function by following the negative gradient.
Steps 1 and 2 are more complex and are discussed in the following subsections.
Chapter 3 details the steps in this algorithm.

0. Set initial x Initializes variables to current position

1. Find A: [Ve(x)TVe(x)] A = Ve(x)TVe(x) Estimate Lagrange multipliers

2. p« IIVe(x) - Vex)All Determine a penalty weight

3. xchange _Ve(x) + Ve(x)A - pVe(x)e(x) Minimize augmented Lagrange function over x
given A and p from Steps 1 and 2

4. X « x°ld 4 xchange: Goto step 1 Update; repeat if change is greater than some
threshold

Figure 1.5: Algorithm that finds a local constrained minimum.

4.1. Estimate Lagrange multipliers

[use a modification of the first-order multiplier method [Gill 1981, p. 248] to estimate the
Lagrange multipliers. Given the current variables, x, this method finds the Lagrange

10

multipliers that best satisfy necessary condition (2). Gill's algorithm estimates the ideal
Lagrange multipliers at each iteration by solving the following system of equations for A:
[Ve(x)] A = Ve(x). This system contains m unknowns (the number of Lagrange
multipliers) and n equations (the gradient of the constraints with repect to each of the atom
positions). Since the number of constraints, m, is typically less than the number of
positions, n, the system is over-constrained. I find a least-squares approximation to the

system of equations by first multiplying both sides of the equality by the transpose of the
matrix before solving for A.

4.2. Determine a penaity term

The penalty term, p, pulls the solution towards one that satisfies the constraints. The
previous step estimates the Lagrange multipliers using a first-order approximation of the
constraints. Since the constraints are nonlinear, this approximation lets the solution drift
from the constraints. The penalty term keeps this from moving beyond some limit. The
penalty term is set to the error in the least-squares approximation.

4.3. Parallel execution of algorithm

Many of the steps in this algorithm can execute in parallel. Sculpt evaluates a set of the
constraint and energy functions and their derivatives on separate processors. Sculpt also
evaluates in parallel the elements of vectors calculated in Steps 1-3 from vector-matrix and
matrix-matrix operations.

5. Algorithm analysis

This section surveys the main properties in the protein model that yield linear computational
complexity, O(n), with this algorithm. The full proof is given in Chapter 5. The two
important properties assumed are that the number of constraint and energy functions
increases linearly with protein size and that constraint functions are only defined on
topologically-near atoms. The former gives a linear increase in the evaluation time for the
constraint and energy functions and their derivatives. The latter, coupled with a pre-
processing sort of the constraint gradient matrix, yields a band-diagonal matrix (all
nonzeros lie within a fixed distance from the diagonal).

11

5.1. Linear complexity of energy and constraint evaluation

The number of bonded and non-bonded functions increases linearly with the number of
atoms. Each atom bonds to at most four other atoms which bond to at most three others,
etc. This bounds the number of distance, angle, and dihedral angle functions for each
atom. Therefore, the total number of bonded functions increases linearly with the number
of atoms. The maximum number of constraints per variable, k., is used in the matrix-
multiplication analysis. '

For each atom, Sculpt determines the other atoms within a given distance and evaluates the
van der Waals potential energy between them. Only a finite number of atoms fit within this
neighborhood because each atom's electron shell occupies a nonzero volume
[Levinthal 1966]. Sculpt uses an O(n) algorithm described in [Bentley 1979] that
determines the neighbor lists. The algorithm uniformly subdivides space into cubes with
the given radius on each side, deposits each atom into the cube containing its three-
dimensional position, and sets the neighbor list for each atom to the atoms in its cube and
adjacent cubes. Atoms in adjacent cubes may be outside the neighborhood. A final step
prunes the lists of such atoms.

5.2. Constraint topology

Matrix-matrix multiplication and linear equations solution require O(nm?) and O(m3)
operations, respectively, for an arbitrary number of constraints defined among arbitrary
points. However, constraints in the protein model are defined only on atoms within a fixed
number of bonds. Figure 1.6 shows a graph of the bond topology in a protein (lengths
and angles are not drawn to scale). Nodes represent model variables (a three-dimensional
coordinate for each atom). Nodes are numbered by a depth-first traversal beginning at the
left. Constraints are defined on nodes connected by a fixed number of arcs. For example,
a distance constraint is defined for each pair of connected nodes. Angle and dihedral angle
constraints are defined on nodes connected by two and three arcs, respectively.

12

et

Figure 1.6: Topology of protein bonds.

The maximum separation between the lowest and highest variable indices in a constraint is
bound by a constant, kg,,,. This constant is a function of the maximum number of

variables referenced in a constraint and the maximum number of atoms in any sidechain.
The worst case in a protein occurs when a dihedral angle constraint is defined on backbone
atoms around a sidechain with the most atoms (tryptophan).

Some proteins violate this assumption by containing a few bonds, called disulfides,
between atoms in separate sidechains. Chapter 5 shows that the computational complexity
analysis remains valid when there is a fixed number of constraints among arbitrary atoms.

5.3. Linear complexity of matrix algorithms

The linear complexity of the matrix algorithms arises from the pattern of nonzeros in the
matrices. Sculpt stores two matrices, the transpose of the constraint gradient (denoted JT
for Jacobian transpose) and its product with the Jacobian (JT)). Both matrices are very
sparse (typically more than ninety-five percent of the entries are zero).

5.3.1. Contents of matrices
Jacobian transpose, JT. The dimension of this matrix is m x n. Element (i,j) of the
Jacobian transpose holds the first partial derivative of constraint i with respect to variable ;.

Matrix product, A=JTJ. The dimension of this matrix is m x m. Nonzero elements in

this matrix are related to nonzero elements in the Jacobian transpose. Matrix multiplication
defines an element a, . in A as the inner product of row r in the left matrix and column ¢ in

the right matrix. Column c in a matrix is also row c in its matrix transpose. Using this

13

information, a, . equals E:fo.lk.ﬁ zJ TJix The element is nonzero only when rows r and ¢

in the Jacobian transpose contain a nonzero entry in the same column (i.e. when constraints
r and ¢ reference the same variable).

Sculpt determines the nonzero elements of A at program initialization by comparing each
row in the Jacobian transpose with the other rows for common, nonzero columns (requires
O(m?) operations). Since bonds are not broken or formed during a modeling session,
rows (constraints) are not added or removed in the Jacobian transpose. Therefore, the
sparsity pattern of JT and A remains constant.

5.3.2. Sparsity pattern with a sorted Jacobian transpose

Matrix A is band-diagonal if the rows of the Jacobian transpose are sorted relative to the
smallest nonzero column index. The nonzero elements in a band-diagonal matrix lie within
a constant distance (bandwidth) from the diagonal. What is the bandwidth of an arbitrary
row, i, in A? Column j in row i is nonzero if and only if constraints i and j reference the
same variable.

Constraint i references a fixed span of variable indices. Each variable in that span is in at
most k., constraints. Therefore, the number of constraints that can reference a variable in
constraint i is bounded (see Figure 1.7). The bandwidth, b, of A is a function of the
number of constraints defined on a variable times the span of variables in a constraint,
ko k

span*

14

§ i
O £ 8
%'. (] i [o |

ik o ::H:;:

i+K cyKspan | K

o

Figure 1.7: Worst-case structure of sorted Jacobian transpose around
constraint i.

5.3.3. Matrix algorithms

Matrix-matrix multiplication, A—JTJ. The limited bandwidth limits the number of
nonzero elements in A to twice the bandwidth times the number of rows. Computing the
value of a given element, (7,c), requires multiplying rows r and ¢ of the Jacobian
transpose. Each of these contains a fixed number of elements, so the entire multiplication
requires O(bn) operations.

Matrix-vector multiplication, b«JTVe. This step multiplies each of the mrows in
the Jacobian transpose by a vector. Each row contains a fixed number of nonzero
elements, so the entire multiplication requires O(m) operations. The linear complexity of
the matrix-vector multiplication in Step 3 follows a similar argument.

15

Linear equation solution, AA=b. Gaussian elimination requires O(b?n) operations
on a band-diagonal matrix.

6. Hierarchical model

I also investigate a method for improving user manipulation and system performance by
replacing segments of a protein with rigid or deformable objects. For example, consider
replacing the variables, energies, and constraints in a backbone segment with a rigid body
that only changes position and orientation. A change in the orientation or position of the
rigid body simultaneously changes the backbone atoms in the segment; sidechain atoms still
move freely. This lets a chemist change the relative orientation of two segments without
changing their internal configuration, which is a much more natural manipulation than
tugging each atom separately. Independently of this advantage, the performance, in
general, improves because a small set of variables that define the rigid body and the
functions that connect it to the rest of the model replaces the larger set of variables and
functions defined within the body.

A deformable object such as a coil could represent a segment of the backbone that forms a
helix. In addition to the orientation and position of a rigid object, deformable objects have
additional parameters that define its shape. The coil, for example, could allow bending and
twisting. Rigid and deformable objects are required to move their atoms in a physically-
valid manner—one that maintains an energy minimum and does not violate constraints.

Chapter 7 examines using inherent protein structure to aid specification of groups. The
chapter shows the following hierarchical model of protein structure: a protein consists of a
sequence of residues; each residue contains a backbone and sidechain; each of these
contains atoms (see Chapter 2 for a discussion of protein structures). A chemist could
then specify atoms for a group by selecting a node in the hierarchy. Superimposed on this
hierarchy are inherent protein structures such as a helix defined on a sequence of residues
or a sheet defined on a set of residue sequences.

The rigid and deformable groups require few changes to the constrained minimization
algorithm and do not change the linear computational complexity. The constrained
minimization algorithm contains a vector of variables, x. The variables are now augmented

16

to include group variables. Since an atom's position may be defined by variables in a
group, the gradient operator must take partial derivatives with respect to group variables as
well as cartesian coordinates. When a group is inserted (removed), constraints are added
(removed) from the model. This changes rows in the two matrices of the algorithm.
Chapter 7 shows a method for efficiently making such changes.

The matrix bandwidth can increase using groups because the number of constraints per
variable, k., can increase. If only the backbone atoms in a long segment are placed in a
group, then many sidechains connect to the group. Each connection requires distance (and
other) constraints defined on the group's variables which can increase k;,. On the
contrary, if the backbone and sidechains of a long segment are placed in a group, the only
connections to the group are at its ends. The number of constraints per variable in this case
does not increase. The complexity of the linear equation solution increases with b%n.
Performance can actually degrade if the square of the bandwidth increases faster than the
decrease in variables. Chapter 9 presents performance results that demonstrate this.

The current implementation of Sculpt contains only rigid, not deformable, objects. The
objects are defined at the beginning of a modeling session and cannot be removed or added.
Sculpt is designed for future enhancements to provide deformable groups and on-the-fly
creation and deletion of groups. Figure 1.8 shows a photograph of the Felix model with
two rigid cylinders representing the backbone atoms in two of the four helices.

Figure 1.8:

7. System performance

Photograph of Felix with two rigid helices.

17

The following performance analysis describes system behavior with four protein models.
The models include (1) the Felix protein pictured in Figures 1.2 and 1.8, (2) two of the
four helices from Felix, (3) a segment with ten residues, and (4) a small segment with four

residues. Figure 1.9 summarizes the number of energy functions, with and without the
near-neighbor interactions, and constraint functions.

Model | Atoms | Variables| Constraints | Bonded energies| Total energies
1 760 2280 2205 428 8029
2 355 1065 1027 198 3465
3 99 297 282 43 788
4 36 108 96 18 216

Figure 1.9:

analysis.

Statistics for the four models used in performance

The performance results listed below come from running Sculpt on a four processor Silicon
Graphics 240-GTXB [Akeley 1988] using double-precision floating-point arithmetic.

18

Figures 1.10 and 1.11 show performance results with the four protein models. The
performance (seconds per update) includes the time to receive a user tug, run a constrained
minimization, and re-display the screen. I list the performance for molecular simulations
that model and do not model near-neighbor interactions. The performance results for
simulations without near-neighbor interactions are given for one and four processors. The
performance results with near-neighbor interactions use four processors. The list of
neighbors for each atom is implemented with a linked list rather than an array; this requires
more computation but greatly easied implementaation. Due to this inefficient
implementation, I split the performance results for the near-neighbor interactions into two
categories. The first uses the same neighbor list throughout a session, while the second
computes a new list on each iteration. Only one processor creates neighbor lists and
evaluates non-bonded interaction energy; these tasks can be parallelized in a future version.

Without near-neighbor With near-neighbor

interactions interactions (4 CPUs)
Model | 1 processor | 4 processors | Same list | New list
1 1.405 0.954 1.228 1.603

% 0.586 0.396 0.514 0.689

3 0.147 0.105 0.126 0.169

4 0.045 0.048 0.047 0.054

Figure 1.10: Performance (seconds per update) with four models using
an SGI 240-GTX.

19

1.8 9000
A 1 Processor, no near-neighbors * Constraints
. * 4 Processors, no near-neighbors 8000 + Bonded Energies 0
s o 4 Processors, same neighbor list * 0 Total Energies
1.4 + 4 Processors, new neighbor list A 7000
§.1.2 o 6000
g1 . g 00
30.8 © 4000
+ 0
0.6 A 3000
o *
0.4 * 2000
0.2 3 1000 0 b
o1t ode + M
P Ly T e r T T T T T T
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Variables Variables

Figure 1.11: Left plot shows linear increase in compute-time with
model size; right plot shows linear increase in the number
of constraints and energies with model size.

The update rates, though far from those needed for smooth interaction, allow productive
new research in biochemistry. Professors David and Jane Richardson, collaborators from
the Duke University Department of Biochemistry, use a preliminary version of Sculpt for
their research in protein design (see Chapter 9). They believe Sculpt significantly
improves productivity and understanding over previous molecular modeling systems.
Maintaining a physically-valid model throughout a modeling session relieves the user from
the time-consuming task of returning the model to a physically-valid state. Immediately
viewing the effect of an atom movement also provides better awareness of intricate
interactions among atoms.

Chapter 2 B Bas
Proteins

This chapter discusses the protein properties relevant to this research and the Sculpt model
of them. Part I of the chapter introduces the properties to readers without a background in
biochemistry; those familiar with proteins can skip this. Part II discusses the Sculpt model
of proteins. This contains the specific model of each property and a discussion of its
validity. Part II also lists the properties ignored and compares the model to other protein
models. A T

A protein is an arbitrarily long, linear sequence of bonded amino acids (defined in part I).
A protein contains from a few hundred to greater than fifty thousand atoms. Most proteins
contain regions with regular geometry (e.g. a helix). A subunit is a single chain in close
proximity that contains these regions; often several subunits stick together to form a large
protein. The proteins considered in this research are called globular proteins. These
contain subunits with roughly four hundred to three thousand non-hydrogen atoms. The
largest proteins used in Sculpt so far contain approximately eight hundred atoms, including
about 150 of the hydrogens.

The majority of the material and figures in this chapter comes from two books: The
Structure and Action of Proteins, by Dickerson and Geiss [Dickerson 1969]; and Principles
of Protein Structures, by Schultz and Schirmer [Schulz 1979]. Both books assume no
prior knowledge of proteins and describe protein properties through examples and
illustrations. A third book, Prediction of Protein Structure and the Principles of Protein
Conformation, edited by Fasman [Fasman 1989], contains a detailed description of
proteins and their properties.

Part I - Protein Properties

1. Bonded interactions

Amino acids are the building blocks of proteins. Part A in Figure 2.1 shows a schematic
of an uncharged amino acid. Lines represent bonds between atoms, and letters represent
atom names (Carbon, Oxygen, Nitrogen, Hydrogen). Subscripts differentiate atoms of the

21

same type, for example C and Cy. The twenty common amino acids differ only in
sidechain composition (denoted with ®). The sidechain in the smallest amino acid,
glycine, contains only one hydrogen. The sidechains in large amino acids, such as arginine
and tyrosine, contain fifteen to eighteen atoms, (refer to Figure 2.1, Part B). A sidechain
can only contain carbon, nitrogen, hydrogen, oxygen, and sulfur (S) atoms. The
arrangement of the four atoms bonded to a Cy is tetrahedral and always left-handed as
depicted in Figure 2.2. The Cu-C, Co-®, and Cy-N bonds appear in clockwise order
when viewed along the H-C, bond.

/®\ —‘H ar ini e
H ook }! C/O ﬁ

| |

H

o glycine

tyrosine
@ ®)

Figure 2.1: (a) Schematic of an amino acid's bonds; (b) Three of
twenty possible sidechains for the ® in part (a).

A protein is a linear sequence of amino acid residues resulting from a chemical reaction that
bonds the acids. Two amino acids can form a bond, called a peptide bond, between the
nitrogen (N) in one and the carbon (C) in the other. The chemical reaction that forms the
bond releases a water molecule created with the O-H from the carbon and one H from the

nitrogen. A similar reaction occurs between positively charged (extra hydrogen on
nitrogen) and negatively charged (missing hydrogen from oxygen) amino acids. The

structure that remains after the reaction is called an amino acid residue, or residue for short.
5y

Figure 2.2: Geometrical arrangement of atoms and bonds in peptides.

22

The group of six atoms bonded to and including the carbon and nitrogen of the peptide
bond (Cqg-C, C-O, C-N, N-H, N-C,) is called the peptide. Peptides are nearly rigid,
planar structures. Figure 2.2 shows one peptide and its properties; bond lengths are in
Angstroms (1 Angstrom = 10-19 meters), and bond angles are in degrees. The lengths and
angles rarely change more than a few percent because the force required is not commonly
developed in protein structures. The atoms bounding and within each grey area are co-
planar. Atoms rarely move out of the plane more than ten degrees. The peptide atoms are
called the backbone or mainchain of a protein; the ® atoms are the sidechains.

Significant conformational variation in proteins occurs only between peptides and along
sidechains. Peptides rotate about the N-C, bond (denoted ¢) and the Co~C bond (denoted
y). Figure 2.3 illustrates the @ and y angles and shows a segment of a protein containing

nine peptides with different sidechains.

(b) [Dickerson and Geis 1969]

Figure 2.3: (a) Illustration of @ and y angles between two peptides,
and (b) a series of peptides illustrating ¢ and y rotations
and sidechains.

Atoms in separate sidechains infrequently form covalent bonds (a bond formed by shared
electrons) between one another. The only such bond seen at all commonly is the disulfide
bond formed between the sulfur atoms in two nearby cystine sidechains. This bond helps
hold together residues that are arbitrarily separated along the backbone. Many proteins do
not contain any disulfide bonds; those that do have one to ten in common sizes of subunits.

23

2. Non-bonded interaction

Atoms that are not bonded to each other nevertheless influence the three-dimensional
structure of a protein by attracting and repelling each other. The attractive energy between
two non-bonded atoms is approximately three orders-of-magnitude smaller than in a
peptide bond, but the cumulative attractive energy among all atoms rivals the magnitude of
bonded energy. This section presents the potential energy associated with four non-bonded
interactions: attraction and repulsion induced by orbiting electrons, attraction and repulsion
between partially charged atoms, hydrogen bonds, and hydrophobic and hydrophilic
interactions.

2.1. Electron shell repulsion and attraction

One or more electrons orbit the nucleus of each atom within its electron shells. The
electron shells can be modeled as non-interpenetrating spheres (ignoring the overlap
between bonded atoms). Physical models of proteins that center a plastic ball at each atom
to represent the shell illustrate an important property: steric hindrance resulting from non-
interpenetrating electron shells drastically reduce the possible atom positions. For example,

the bulk of the shells in the peptide blocks seventy-five percent of the possible positions
about the N-C, bond.

The hard-shell model provides a simple approach to steric hindrance. However, electron
shells can intersect, but the potential energy associated with this increases substantially.
Studies show when two shells penetrate, the energy increases proportional to the twelfth
power of the inverse distance between the nuclei. Though this produces a dramatic
increase in energy, it does allow some plasticity in electron shells.

The repulsive potential is countered with an attractive potential. All atoms, even neutral,
attract one another. Orbiting electrons around a nucleus induce an oscillating dipole. For
two atoms each dipole polarizes the other. Together the oscillators are coupled and form an
attractive potential. The energy in this attraction is proportional to the sixth power of the
inverse distance between the nuclei.

Van der Waals discovered this attraction and repulsion between atoms in 1873. The
Lennard-Jones model combines both attraction and repulsion into one potential energy
function as shown in Figure 2.4.

24

Energy (kcal/mole)
0.41
o E=Em(-R+122+2&§“-)
r r
0.271
r = distance(atom;, atom;)
0.1 Rm Em = energy minimum
. : . | : Separation (é) Rm = separation at minimum
Rt 03 l e
-0 1] o
-0.27

Figure 2.4: Lennard-Jones formula and its graph using a minimum
energy of -0.13 kcal/mole and a minimum-energy
separation of 3.24 Angstroms.

2.2. Electrostatic interactions

Some atoms are fully or partially charged. In particular, the oxygens at the end of
glutamate and aspartate are negative, the nitrogens at the end of lysine and arginine are
positive, and the ring nitrogens in histidine are positive when the surrounding solution has
a pH lower than 7.0. Also, bonds between some atoms leave an asymmetric distribution of
electrons around the nucleus that forms a dipole, or partial charge. These fully and partially
charged atoms interact with each other. The potential energy of the interaction is modeled
with Coulomb's Law: Energy = é—%, where d is the distance between atoms i and j, gi is
the partial charge of atom i, and € is the dielectric constant of the surrounding medium.

Coulomb's Law provides an approximation of the potential energy between charged atoms
but is not entirely correct. The dielectric constant in Coulomb's Law assumes the
conductivity of the medium is constant, which is not true in solvent, on the microscopic
scale of bond lengths. The appropriate relationship for use with proteins is still an open
research problem.

2.3. Hydrogen bonds

Many covalently-bonded hydrogens have a substantial partial charge. A nitrogen or
oxygen that bonds with a hydrogen (e.g. a peptide N-H) pulls the hydrogen's one electron
into its shell. This leaves the hydrogen with just one proton, only part of an electron, and a
large positive partial charge. The resulting positive partial charge can bond with a
negatively charged atom. These bonds, denoted hydrogen bonds, are approximately two
orders of magnitude weaker than covalent bonds. Hydrogen bonds are distinguished from

25

general electrostatic interactions because of their prevalence in proteins and their importance
in determining higher-level structures.

2.4. Solvent

Proteins reside in an aqueous environment. The entropy of the surrounding water
influences the final form of a protein in several ways. First, the dielectric constant in
Coulomb's equation is much higher in water than in vacuum. Second, some residues are
hydrophilic and prefer the protein exterior. Others are hydrophobic and prefer the interior
because they have an unfavorable effect on the entropy of the water. Third, since water
molecules have a partial charge (for the same reason as discussed with hydrogen bonds)
and are mobile, they continuously form and break bonds with exterior, hydrophilic
sidechains. This causes constant movement of some sidechains. Many unanswered
questions remain concerning the role of water in protein structure.

3. Secondary structure .
Secondary structures are regular arrangements of the backbone peptides. The structures
form distinguishable geometries which are found in proteins. The most common structures
are the helix and sheet. Together, two properties determine many of the structures: steric
hindrance limits possible rotations between peptides, and hydrogen bonds between
backbone hydrogen and oxygen atoms of different peptides hold peptides together.
Richardson presents a thorough survey of secondary structures [Fasman 1989]. The
following sections discuss the helix and sheet.

3.1. a-helix
Successive peptide units with identical (@,y) angles and hydrogen bonds between adjacent

turns form a helix. Helices can be described by the rise per residue, d, the number of
residues per turn, n, and the radial distance, r, between the Cy and the helix axis. Steric

hindrance and the limited number of potential hydrogen bonding sites allow only a few
combinations of these parameters.

The right-handed a-helix is the most prevalent secondary structure (and helix) found in
proteins. It has 3.6 residues per turn, 1.5 Angstroms rise per residue, and a
2.3 Angstrom radius. The a-helix has more favorable energy than other helices. The
oxygen in one peptide forms a hydrogen bond with the hydrogen (attached to the nitrogen)

three peptides later. This helps hold the helix together. Also the radius allows attractive
van der Waal potentials across the helix. A left-handed a-helix has a higher energy than a

26

right-handed helix because the Cg (first atom in sidechain) bumps into the next helical turn.
The bump comes from the asymmetry of the atoms bonded to the C (refer to-Section 1).
No one has observed a natural, left-handed helix longer than three residues.

Figure 2.5 shows two schematics of an a-helix. The left figure shows peptide bonds

(solid lines) and hydrogen bonds (dotted lines). The right figure shows the general path of
the peptide with less detail.

Felix

(@) [Schulz 1979] (b) [Richardson 1992]
Figure 2.5: Two drawings of an a-helix. (a) Solid and dashed lines
denote covalent and hydrogen bonds, respectively. (b)
Ribbon follows path of backbonme in the Felix protein.

3.2. B-sheet

The second most prevalent structure found in proteins is the B-sheet. On average fifteen
percent of a protein structure is -sheet. Sheets contain extended, nearly-straight strands of
peptides beside one another. Hydrogen bonds hold the strands together. Figure 2.6
shows two types of sheets, parallel and anti-parallel, whose names refer to the relative
direction of adjacent strands.

27

(a) [Fasman 1989] (b) [Fasman 1989]
Figure 2.6: Two drawings of a f-sheet. Strands are anti-parallel in (a)
and parallel in (b).

Usually sheets have an overall left-handed twist around an axis in the sheet perpendicular to
the strands. Figure 2.7 shows the geometry of two sheets. The arrows show the sheet
and the direction of the peptides. The small tubes show residues not in the sheet.

f\‘

(a) [Fasman 1989] (b) [Richardson 1992]
Figure 2.7: Anti-parallel (a) and parallel (b) sheets denoted with a
ribbon that represents the direction of the backbone.

3.3. Globular proteins

All the properties just discussed play crucial roles in determining a protein's three-
dimensional structure. The van der Waals and Coulomb potential energies pull non-bonded
atoms together yet restrict their minimum separation. Hydrogen bonds help hold peptides
together in helices and sheets.

28

Figure 2.8 shows three globular proteins. The figure emphasizes helices with tubular
spirals and sheets with broad arrows. The number of non-hydrogen atoms in the proteins
of Figure 2.8 are approximately 400 (top), 3000 (lower left), and 2500 (lower right).

\

Potato Carboxypeptidase Inhibitor

Triose Phosphate Isomerase Prealbumin Dimer

[Richardson 1992]
Figure 2.8: Illustrations of three globular proteins.

29

Part II - The Sculpt Model

This part presents the mathematical model of each property used in Sculpt. Figure 2.9 lists
the protein properties that Sculpt models. The first five are bonded interactions, and the
last one is a non-bonded interaction. The bonded and non-bonded interactions are first
discussed separately and then combined into a general mathematical model.

Property Interaction

Bond length
Bond angle
Fixed dihedral angle Bonded
Multiple dihedral angle
Hydrogen bond
Van der Waals potential } Non-bonded
Figure 2.9: Protein properties modeled in Sculpt

1. Bonded interactions—lengths and angles

1.1. Common representation

Each bond length and bond angle has an ideal value. For example, the ideal Euclidian
distance between the carbon and nitrogen of the peptide bond is 1.325 Angstroms. Many
systems model the potential energy in a stretched bond length or angle with a spring that
obeys Hooke's Law. The potential energy is defined as E = k (f - f)z, where f is a length
or angle (typically a function defined on atom positions), f is the ideal value of £, and & is
the spring constant dependent on the property.

1.2. Dihedral angle

A dihedral angle is the angle between one vector and a plane defined by two other vectors.
Part A in Figure 2.10 shows a view of a dihedral angle. Sculpt, and most systems,
represent planarity and local steric hindrance with dihedral angles. Two examples illustrate
uses of dihedral angles. First, three dihedral angles specify the planarity of the peptide
atoms (Part B). Second, a dihedral angle specifies which angles are preferred for a
hydrogen after steric hindrance reduces the possible values (Part C).

30

A
A angle D
-120° 120°
, ' “H

di(C5CNH) = 0°

di(CLCNC2) = 180° di(ABCH) = 0°, 120°, -120°
di(OCNH) = 180°

@ (®) ©

Figure 2.10: (a) Illustration of a dihedral angle. (b) Dihedral angles
that define the planarity of a peptide. (c) Three equally-
favorable dihedral angles.

Notice Part C has three equally-favorable dihedral angles. A multiple dihedral angle
‘expresses this. A multiple dihedral is specified with two parameters, the multiplicity of the
ideal angle and the first (reference) ideal angle. Figure 2.11 shows the energy functions
associated with multiple and fixed (single) dihedral angles. The graph shows three equally-
spaced energy wells for a dihedral with multiplicity three and starting angle zero (the same
dihedral given in Part C above). Dihedral angles are only used to model steric hindrance
that restricts the dihedral angle among four atoms to one value or multiple, equally-spaced
values; otherwise, a van der Waals interaction is used.

Energy

Efied =k (-0
Ecubipie = K (f - Foner)

f: dihedral angle

f: ideal dihedral angle
focar: Nearest ideal dihedral

-180 -120 -60 20130180 Jgrees

Figure 2.11: Energy function of a dihedral angle with multiplicity
three.

1.3. Fixed hydrogen bonds

Hydrogen bonds may be manually inserted into the model rather than forming and breaking
them as atoms move. This helps hold a secondary structure together during the sculpting
process. Sculpt models a hydrogen bond with a distance and an angle function. Consider
a hydrogen bond formed between the oxygen of a C-O bond and the hydrogen of a N-H

31

bond. The distance function represents the ideal separation of the oxygen and the
hydrogen. The angle function measures the angle between the N-H bond and the H-O
hydrogen bond; the ideal value for this angle is 180 degrees.

1.4. Springs versus constraints—departing from common molecular models
Sculpt makes an approximation that dramatically improves performance without
appreciably decreasing accuracy. Properties whose deformation require very large potential
energies relative to others in the model are replaced by rigid constraints. Bond lengths are
modeled as constraints since the potential energy increase for changing a bond length is five
orders-of-magnitude larger than the energy increase associated with a comparable change in
distance between two attractive atoms. Minimizing functions with similar potential energies
that are subject to constraints requires less computation, in this application, than minimizing
all the energies without any constraints. This approximation provides interactive
performance with more complicated models. Figure 2.12 lists some pros and cons for
representing bonded properties with springs or constraints.

Spring: Kk(f -f) Constraint: f-f =0

v Allows plasticity Brass/mechanical model

v Allows multiple dihedrals X Prevents moving among multiple

dihedrals

Variable bond lengths not needed
during manipulation

X Yields stiff equations v Yields stable equations

Figure 2.12: Comparison of spring and constraint models of protein
properties.

Is this approximation valid? Approximating bond-length potential energy functions with
rigid constraints reduces the accuracy of the physical model. However, the large potential
energy signifies that bond-length variability is very small relative to the variability of other
properties. Since the bond lengths hardly change, constraining them for increased
performance is justified. Sculpt lets a chemist trade performance for accuracy when
desired, by modeling lengths with potential energy functions.

32

Property Model
Bond length :
Bond angle } Constraint
Fixed dihedral angle
Multiple dihedral angle } !
Hydrogen bond Spring

Figure 2.13: Default division of properties in Sculpt.

At run time a chemist specifies which properties are constrained and which vary.
Figure 2.13 shows the default division of the bonded properties in Sculpt. Variable
dihedral angles and hydrogen bonds use springs since they are not as stiff.

2. Non-bonded interactions—van der Waals and electrostatic

2.1. Neighborhoods

For each atom Sculpt maintains a (neighbor) list of the other atoms within a fixed radius.
The van der Waals potential, electrostatic charge, and hydrogen bond properties are only
applied to atoms in one's neighbor list. The non-bonded energy between two atoms
approaches zero as the separation increases. Since the potential energy in each property
approaches zero at a different rate, Sculpt needs multiple neighbor lists with various radii
(e.g. four Angstroms for hydrogen bonds, six Angstroms for van der Waals potential, and
ten Angstroms for electrostatic interaction).

Many nearby atoms are removed from the neighbor lists. Since covalent bonds keep atoms
closer than the van der Waals potential allows, all atoms reachable via one, two, or three
bonds from a given atom are not in its neighbor list. The neighbor-list technique is used in
most molecular modeling systems.

2.2. Van der Waals potential and the 4-8 approximation

The van der Waals potential energy models repulsion of intersecting electron shells and
attraction of induced dipoles from orbiting electrons. The Lennard-Jones model combines
the repulsion and attraction with E = E, (- R—l'll; +2 3%-) where r is the separation, E,, is the
energy minimum, and R, is the separaticrm at th:: energy minimum. The gray line in
Figure 2.14 shows a graph of this function for a particular E,, and R,,. Two aspects of
this function cause computational difficulties: the extremely sharp increase in energy when
the separation is less than R,,, and the infinite extent of the attractive distance. The
minimizer discussed in Chapter 3 moves atom positions a distance proportional to the
magnitude of the energy. Thus a large energy occurring when two atoms are more than,

33

say, ten percent closer than R, results in large atom movements. Since the distance for
attraction extends to infinity, the Lennard-Jones model would require that Sculpt calculate
the pair-wise attraction between all atoms in a molecule.

Energy
Lennard-Jones

o o o o
L] . o

4

.
2
1

. sepmicn

1 2 3 3
_0 z 1..

-0.2¢

Figure 2.14: Plot of Sculpt and Lennard-Jones model of attraction and
repulsion between two atoms.

Sculpt uses a similar model that allows faster update rates but is slightly less accurate.
Figure 2.14 illustrates the three differences between the two models. First, the separation
distance of attraction is limited. The discussion of neighbor lists justifies this. Second, the
energy well is wider because the Sculpt model replaces the 6 and 12 exponents in the
Lennard-Jones model with 4 and 8. The slower ascent when the separation is less than R,
allows faster solution of the equations. However, the wider energy well allows smaller
separation and stronger attraction between atoms. Third, the repulsive energy increases
linearly after a given threshold. The positive energy still repels atoms but avoids large atom
movements that arise when the minimizer encounters large repulsive energies. A chemist
can invoke the Lennard-Jones model when accuracy is more important than speed.

2.3. Electrostatic charge

Sculpt does not currently model the potential energy between charged atoms. Calculating
this energy with Coulomb's Law fits into the Sculpr model. However, electrostatic energy
falls off so slowly with distance that computing it destroys interactive performance on
current machines. The goal of the system is to provide a means for sculpting proteins
while interactively modeling as many basic properties as possible. Modeling electrostatic
interaction is not so crucial as modeling local electron shell interactions and hydrogen
bonds. This application is different from docking (bonding) two molecules where
electrostatic interaction plays a crucial role in the outcome. Electrostatic interaction will be

34

added when faster computers arrive. For now a chemist can recognize important, local
interactions and use tools provided in Scuipt to pull them together or apart.

3. Implicit hydrogens

Many hydrogen atoms are not used explicitly in the calculations. Instead atoms bonded to
hydrogens are modified to model them implicitly. Roughly half the atoms in a globular
protein are hydrogens. About a quarter of the hydrogens can form hydrogen bonds, the
rest just get in the way (sterically speaking). Sculpt, and most molecular modeling systems
(e.g. [Biosym 1991; Polygen 1991; Tripos 1988]), only explicitly model hydrogens that
can form hydrogen bonds (the hydrogen in the backbone, for example). The rest are
implicitly modeled by appropriately increasing the radius of each atom bonded to a
hydrogen.

4. Pluggable model

Sculpt reads the ideal values, spring constants, van der Waals coefficients, and bond
topology from an input file (described in Section 3 of Chapter 8). None of the
coefficients in the Sculpt model are hard-wired into the system. This lets a chemist use
different modeling coefficients. The values used in this research come from Jan Hermans'
molecular dynamics system, Cedar [Hermans 1989], which is based on the CHARMM
model of proteins [Brooks 1983].

5. Solvent

Sculpt does not model solvent. No existing computational model of solvent runs
interactively on current computers. Without the entropic force exerted by surrounding
solution, proteins slowly drift apart. Sculpt lets a chemist pull structures together by
attaching springs (discussed in Chapter 5). A central gravity that attracts atoms inward is
another possible approximation to the properties of solution. Sculpt, at present, does not
implement this approach.

35

6. Summary

Figure 2.15 lists the protein properties Sculpt models. The figure shows the specification
and model of each.

Specification Protein Property Mathematical Model

Bond length :
Bond angle } ?onstramed to

Input file Fixed dihedral angle oul Yome
Variable dihedral angle } Spring energy from
Hydrogen bond nearest ideal value

Neighbor Van der Waals potential } 4-8 Lennard-Jones potential

list Electrostatic charge } Coulomb potential (not implemented)

Solvent interaction } Not treated

Figure 2.15: Summary of specification and model of protein properties
in Sculpt.

In conclusion I present some mathematical notation that casts the Sculpt model into a
general framework. Chapter 3 discusses the solution of this model.

First, assume the cartesian coordinates of the atoms are represented in a column vector
X =[xy X2---Xn T, where T is the transpose operator. Second, separate the constraint
functions from the energy functions. Let Energy(x) equal the sum of all the energies in the
protein including potential energies in springs representing multiple dihedral angles and
hydrogen bonds, and potential energies from van der Waals and electrostatic interactions.
Let Constraint(x) represent a column vector of the constraint functions (bold face
denotes a vector). Each constraint—bond length, bond angle, and fixed dihedral angle—
gets one row in the vector. For example, if a protein contains only two constraints—the
distance between atoms one and two must equal two, and the angle formed by atoms one,
two, and three must equal one—then Constraint(x) equals the following:

Constraint(x) = distance(atom;, atomz) — 2]=[ci1(x) - ¢1 }{o]

angle(atom;, atomy, atoms) — 1 c2(x) - 2 0.,
In general if a protein contains m functions (denoted c;(x), where i = 1..m) constrained to
g ideal values (C;), the vector of constraints is the following:

ci(x) - ¢ 0

c(x)-c2 | _| 0

Constraint(x) =

Cm(xX) - an 0

36

This notation shows the protein model contains a total energy, Energy(x), subject to a set
of constraints, Constraint(x). Sculpt continuously adjusts the atom positions to maintain
a local energy minimum that simultaneously satisfies the constraints. This problem is
equivalent to finding a local solution to

minimize Energy(x)

such that Constraint(x) =0
The next chapter discusses how Sculpt solves this problem.

Chapter 3
Mathematical Background

This chapter discusses the mathematical methods selected for finding a constrained
minimum. The general problem addresses how to find a minimum of a real-value function,
e(x), such that a vector of equality constraint functions is satisfied, c¢(x) = 0. The last
section of Chapter 2 casts the protein sculpting problem into an energy function and a set
of constraints.

This chapter contains four parts. The first part defines terms in constrained optimization
and introduces goals for the Sculpt algorithm. The second part discusses two algorithms
for finding an unconstrained minimum. Constrained minimization algorithms contain steps
that use these techniques. The third part describes classes of constrained minimization
problems and positions the sculpting problem within these. This part also presents two
general-purpose algorithms for finding a constrained minimum in this class. The fourth
part discusses the Sculpt algorithm for finding a constrained minimum. The algorithm is an
adaptation of others in the chapter to the interactive minimization problem. The fourth part
also presents the central decisions that led to this algorithm.

The core material in this chapter comes from one book: Practical Methods of Optimization,
by Fletcher [Fletcher 1987]. Two other books contain useful explanations and derivations
for readers interested in exploring these techniques in greater depth. Optimization Theory,
by Hestenes [Hestenes 1975], concentrates on theoretical issues and illustrates them with
numerous figures. Practical Optimization, by Gill et al. [Gill 1981], is a cookbook of
techniques every implementor should read.

Prose is usually chosen over symbols, but clarity and precision require some use of
symbols. Figure 3.1 summarizes the symbols and notation found in the chapter. Column
vectors are used throughout. Vectors, in lower case, and matrices, in upper case, are
shown with bold type. A subscript denotes an element in a vector, and a superscript
denotes an iteration within an algorithm. For example, g; is the i element of vector a, and
al is the value of a at the i*# iteration. The superscript T denotes transposition so that aT is

38

a row vector. The inner product of two vectors al and z is aTz = Z;a;z;. The square root

of the inner product of a vector with itself (YaTa =VZ; a,z) is the Euclidean distance, or I,
norm, denoted llall.

a column vector
& i® element of vector a
a value at i iteration
Vector notation: o
aTz inner product; Ziaiz:
llall length of a; Ya'a
% partial derivative of f with respect to a;
g i
oa;
Vf(a) gradient vector; :
of
Differential operators: L3
W, ST .
daioa; 0a10aq
V’f(a) Hessian matrix; LRIV SNPY
i SR & |
L dada; 02,02 _|
n number of variables
m number of constraints
R k-dimensional space of real numbers
x variables in minimization problem; x ¢ R"
A vector of Lagrange multipliers; A ¢ R™
e(x) energy function; e:R">R

Reserved names: ci(x) i® constraint function; ciR"—>R
c(x) column vector of constraint functions; ¢:R"—>R™

L] o .
x", A" value at local minimizer

[31 dom]
ox1 oxi1
Ve(x) Jacobian of constraints; woh Vi
der . Om
L aXn aXn

Figure 3.1: Summary of the notation contained in the chapter.

This chapter reserves the letters e and ¢ in mathematical notation to represent the energy
function and a constrained function. Throughout this chapter assume there are » variables,

39

x € R", and m constraints. The real-valued function Sculpt minimizes, e(x), is defined
from R" to R. An individual constraint is in plain type with a subscript, for example c(x),
and the column vector of all constraints is the bold face ¢(x). The vector of first partial
derivatives of a constraint with respect to each variable (its gradient) is denoted by the
column vector Vci(x). Often the first derivatives of all the constraints are collected into

columns of the n X m Jacobian matrix Ve(x).

1. Introduction to optimization

Optimization theory concentrates on finding the best, or optimal, configuration of a system
that has a fixed set of variables and a means of comparing different configurations. The
sculpting problem uses optimization theory to find an arrangement of atoms that satisfies a
set of constraint functions and minimizes a potential energy function.

This research seeks a local minimum and not a global minimum. A point.x* is a local
minimum if the function value is lower than the value at all neighboring points (i.e.
e(x*) < e(x) for all x near x*). If the function value is lower than the value at all
possible points, then x* is called a global minimum (i.e. e(x*) < e(x) for all x = x*).
Figure 3.2 illustrates the difference between global and local minima. Finding the global
minimum of an arbitrary function is HARD. Methods exist, such as simulated annealing
[Kirkpatrick 1983], that find a global minimum, but may require enormous computation
time. Maintaining a local, rather than a global, minimum during the sculpting process lets a
chemist explore different energy configurations en route, hopefully, to the global

Global min

Y
\Local{/

Figure 3.2: Function showing one global minimum and three local
minima.

A constrained minimum is a minimum that additionally satisfies one or more constraint
functions. Optimization theory studies both constrained equality and inequality functions,
though this research only uses equality constraints. Figure 3.3 shows a graph of a two-
dimensional energy function and one constraint. The constraint requires that the variables

40

x lie on the line ¢(x) = 0. The dashed lines show contours of the energy function e(x) on
which the value is constant.

Constrained min

ce ~ c(x=0
5 N
~ N
~ N \
<e(x*) —>"
\ \ \\ >e(x*)
. i |
e(x*)
Contours of e(x)

Figure 3.3: A constrained minimum. The dashed lines show contours
of constant energy and the solid line shows where the
constraint function is satisfied.

This research places two conditions on all the energy and constraint functions: the first and
second partial derivatives exist and are continuous. Most optimization theorems place these
conditions to prevent difficulties arising from disjoint energy functions and energy
functions with cusps. All functions discussed in Chapter 2 meet these requirements.

The algorithms described in the remainder of the chapter are general purpose but perform
better on some problems than others. In general I seek an algorithm that converges to a
local minimum from any starting point and converges rapidly in the neighborhood of a local
minimum. Each algorithm is judged against this criterion. The final section in the chapter
discusses which algorithm best fits the criterion and why.

2. Unconstrained minimization

This part examines algorithms that find an unconstrained local minimum. What are the
necessary and sufficient conditions for a point x* to be a local minimum of a function e(x)?
The slope must equal zero and the curvature must be non-negative. That is equivalent to
requiring the gradient at x* equal zero, Ve(x*)=0, and, for any nonzero vector s,

41

sTV2e(x*)s > 0. A sufficient condition for an isolated local minimum at x* requires
strictly positive curvature. The necessary and sufficient conditions are used throughout the
following algorithms.

No known analytic solution exists that finds a minimum of an arbitrary polynomial with
degree greater than four. Two methods that iteratively find a local minimum of an
unconstrained function are presented next. Both methods follow the algorithm listed in
Figure 3.4, differing only in the determination of the direction in step 2.

0. Given starting point x% k « 0,
1. while not StoppingCriterion(x*)
2. Calculate direction d
3. Find step length o that minipizes e(x* + ad)
4. e xt+adikek+ 1
Figure 3.4: Iterative algorithm for finding an unconstrained minimum.

StoppingCiriterion() is typically a function of x and/or the energy derivative that determines
when the current value of x is close enough to the minimum. One criterion for stopping is
when the first derivative equals zero. Such a position is called a stationary point. A
stationary point occurs at a local minimum, maximum, or saddle. Usually
StoppingCriterion() incorporates other information that ensures the point is a minimum.
Step 2 determines a direction vector, d, in which to move. Step 3 minimizes the function
over one scalar variable. The minimization searches along the line from x in the direction
d for a minimum function value. The search limits & to lie between zero and one. The
following sections present two algorithms that determine the direction and discuss the line
search in greater detail.

2.1. Steepest descent

The simplest choice of the direction in Step 2 is the direction of steepest descent. At a
given point, xk, the direction in which the function decreases the fastest is the negative
gradient evaluated at that point (i.e. d = - Ve(xk)). An infinitesimal movement in the

direction of the negative gradient is guaranteed to give the fastest decrease in the function's
value.

In practice we want algorithms that make larger movements than infinitesimally small. The
ain Step 3 states how far to move in the direction. The function at some points along the

direction vector can have larger values than at the current point since the function is

42

nonlinear. The line search over « ensures that the function at the new point has a smaller
value than the current point. A common algorithm for the line search is the bisection
method which starts with « set to one and then repeatedly halves & until the function value
is less than the initial value.

The steepest descent algorithm converges to a local minimum from any starting point. The
algorithm evaluates the first partial derivative of the function at each step. The algorithm is
easy to implement and useful to employ when far from the minimum. Some algorithms,
however, converge to a minimum with fewer iterations than the steepest descent.

2.2. Newton's method

Newton's method repeatedly approximates the function with a quadratic function and
minimizes the quadratic function. Minimizing a quadratic function takes one iteration since
there is an analytic solution. The curvature information in the quadratic approximation
provides more information about the energy function than the slope information in the
steepest descent. :

The quadratic approximation comes from truncating the Taylor series expansion of e(x)
about x*. First, expand e(x) = e(x* + d), where d = x - x*, in a Taylor series about
the current iterate, xX. Next, let g(d) represent the quadratic approximation of e(x) that
results from truncating the series after the second-order term,; that is, let g(d) =

e(xk) + dT Ve(xk) + ;‘JT V2e(xk)d. Recall that the slope of a function at a minimum point
equals zero. For g(d) to be a minimum, Vg(d) must equal 0. Taking the gradient of the
quadratic approximation with respect to d gives Vq(d) = 0 + Ve(xk) + V2e(xk)d
which must equal zero. Rearranging the equation shows the minimum occurs when d
satisfies V2e(xk)d = -Ve(x*). This d is the direction of movement in Step 2 of the
unconstrained minimization.

The second derivative of the energy requires calculating the Hessian matrix, the matrix of
second partial derivatives. Determining d then requires solving the n x n system of
equations, where n is the number of variables. Since the equations only have a unique
solution when the matrix is invertible, Newton's method is applicable only under certain
circumstances. The major advantage of Newton's method is that the rate of convergence is
quadratic when the matrix is invertible. Hybrid, or quasi-Newton, methods exist that try
balancing the guaranteed convergence of the steepest descent and the quadratic convergence

43

in Newton's method. A discussion of hybrid methods is found in /ntroduction to Linear
and Nonlinear Programming [Luenberger 1973].

3. Constrained optimization
This part describes two algorithms that find a local solution of

o 2003
such that c;(x) = 0 (i = 1..m), or equivalently, c(x) =0.

Minimizing an arbitrary function subject to arbitrary constraints is an unsolved research

problem. Different algorithms exist for solving constrained optimization problems that can

be classified by specific properties. Some of these classes include the following: the

energy function is linear, quadratic, or nonlinear; the constraints are linear or nonlinear; the

constraints are equality and/or inequality; the functions are smooth and continuous in zero

or more derivatives; the initial point does or does not satisfy the constraints. The class of

problems this research addresses possess the following properties:

nonlinear energy and constraint functions;

continuous energy and constraint functions through the second derivative;

only equality constraint functions;

initial point satisfies or nearly satisfies the constraints.

B W pELES

There is no general agreement on how this class of problems should be solved in practice.
The remainder of this chapter presents two algorithms that theoretically can solve this
problem. One algorithm, the penalty method, recasts constraints as energy functions that
rapidly increase value as the constraints are violated. The second algorithm, the Lagrangian
method, minimizes a new function that is the sum of the original energy and the inner
product of the constraints and some additional variables. This research uses an adaptation
of the Lagrangian method.

3.1. Penalty method

Interactively solving a nonlinear constrained minimization problem balances reducing the
energy function and maintaining, or nearly maintaining, the constraints. A penalty method
penalizes (increases) the energy function when constraints are violated. A penalty method
minimizes a new function that is the sum of the original energy function and the penaliged
constraints (equivalently, this models constraints with springs). Consider the function
o(x) = e(x) + %pc(x)Tc(x), where p is a scalar penalty (spring stiffness) applied to each
constraint. When the constraints are satisfied this function reduces to the energy function.
As p approaches infinity the solution of minimize ¢(x) converges to the solution of the

44

original constrained minimization problem, but as p approaches zero constraint violations
are ignored.

The constrained problem now requires choosing a penalty and minimizing ¢(x). Steepest
descent and Newton's method follow a multiple of the gradient of the function at each step.
The gradient of ¢(x) is Vé(x) = Ve(x) + pVe(x)c(x). Notice as p approaches infinity,
the magnitude of the gradient approaches infinity even though a constraint may only be
slightly violated. The range in magnitude is hard to model accurately in a computer due to
limited precision. As the penalty increases the step length, &, must decrease, and thus
more iterations are needed to converge. The same problem arises when modeling springs
that are arbitrarily stiff.

The technique of penalizing errors is also used in conjunction with other techniques. For
example, the Lagrangian method provides a theoretical approach to constrained
optimization problems but, in practice, is augmented with a penalty term to increase
convergence.

3.2. Lagrangian method

The Lagrangian method is derived from the first-order conditions of a locally constrained
minimum x*. The first-order necessary condition of an unconstrained problem requires the
gradient of the function at the minimum is zero. The constrained problem has two
conditions: the constraints are satisfied, ¢(x*) = 0; and the gradient of the energy
function is a linear combination of the gradient of the constraint functions, Ve(x*) =
I Veilx "),1,3' = Ve(x*)A*. There is one scalar A;, called a Lagrange multiplier, for each
constraint. The vector A* denotes the value of the multipliers at the minimum, x*.
Figure 3.5 illustrates these conditions. At the point x’ the gradient of the energy is not a
linear combination of the constraint gradients. There exists a step, d, in the direction, -,
that reduces the energy and maintains the constraints. At the local minimum, x*, the
conditions are satisfied and no descent direction remains that satisfies the constraints. For a
problem with n variables and m constraints the first-order conditions give n+m nonlinear
(in x) equations and n+m unknowns.

r g

45

Ve(x) # Ve(x)\

~4 Ve(x) Ve(x*) = Ve (x*)A*
Ve(x¥)

o,

<o) —P
\ \ \\ >e(x*)

. i ‘
e(x*)
Contours of e(x)
Figure 3.5: Sufficient conditions of a constrained minimum show the
constraint is satisfied and the constraint gradient is a
scalar multiple of the emergy gradient.

The necessary conditions are concisely stated by introducing a new function, called the
Lagrangian. The Lagrangian is defined as L(x,A) = e(x) - ATe(x). If (x*,A%)is a
stationary point of the Lagrangian (i.e. VL(x*,A*) = 0) then it is also a constrained local
minimum of the original problem. Notice that when a point x satisfies the constraints,
minimizing the Lagrangian is equivalent to minimizing the energy function. The techniques
discussed in Section 2 can be used to solve this problem.

Unfortunately, the Lagrangian may not have a minimum even when the original constrained
problem has a solution. This is because the solution depends solely on first-order
information. This problem in general disappears if convexity is considered. Hestenes
describes a method, called the augmented Lagrangian method, that adds a penalty term,
pe(x)Te(x), to the Lagrangian [Hestenes 1975, p. 308]. For sufficiently large p (though
not infinite!) a point x minimizes the augmented Lagrangian if and only if it is a constrained
minimum of the original problem.

In practice the augmented Lagrangian method converges faster than the penalty method
because its penalty term is bounded rather than required to approach infinity. In the
molecular modeling problem the penalty term is quite small. Fletcher gives an algorithm

46

[Fletcher 1987, p. 292] based on Hestenes' work that solves the constrained minimization
problem with the augmented Lagrangian method. Figure 3.6 presents the steps.

0. Initialize x° A%, p; k « 0
k+1 A k s
1. x**" ¢« minimize L(x,Ap) (Note: minimize over x only)
2. if (le(x**Hil > lle(xI)
pe< 10xp

goto step 1
. kek+1

kK Lkl
4. A =A +pc(xk); goto step 1
Figure 3.6: Augmented Lagrangian method for finding a constrained
minimum.

If the Lagrange multipliers at the solution, A*, are known, the solution to Step 1 is the
solution to the original problem, independent of the value of p. That is
x*= mm;mxzz L(x,l‘). Unfortunately, A* is not known in advance. Step 4 generates a
sequence of Lagrange multiplier estimates that converges to A*. Each estimate is used to
find the next value of x. The penalty term pulls the solution towards one that satisfies the
constraints. When the constraints are far from satisfied, the penalty term is large and the
algorithm is similar to the penalty method. When the constraints are satisfied or nearly
satisfied, the penalty term is negligible and the algorithm approximates the Lagrangian
method.

Sculpt bases its algorithm on the steps just presented. The system estimates the Lagrange
multiplier, performs an unconstrained minimization, and if necessary, adjusts the penalty
term. The remainder of this chapter presents the approximations made in Sculpt to
Steps 2—4. A comparison and explanation is made to justify the differences between steps
in the preceding algorithm and the Sculpt algorithm.

4. Sculpt’'s mathematical model

An important feature of the sculpting problem is that the system always maintains a near
local minimum. Before any external springs are placed in the model, I assume the
constraints are satisfied and the system is in or very near a constrained local minimum.
This assumption gives tremendous computational advantages. First, the minimization
begins with the constraints satisfied. Second, a new tug only adds potential energy to the
model. Third, since the additional energy is small relative to the total energy, a new
minimum is usually near the last minimum. Figure 3.7 lists the general steps taken in the
Sculpt model. Each step is discussed next.

47

0. Initialize x% k « 0

1. Estimate the Lagrange multipliers, A*
2. Determine a penalty term, p

3. x**! minimize L(x,A%p)

Figure 3.7: Sculpt algorithm for finding a constrained, local
minimum.

4.1. Estimate the Lagrange multipliers

The augmented Lagrangian method (Figure 3.6) gives a method for estimating the
Lagrange multiplier that uses the previous estimate and the current value of the constraints;
specifically, A¥ = A%/ + pc(xk). The accuracy of the estimate is higher if first-order
information about the constraints is included. A more accurate estimate lets the constrained
minimizer converge in fewer iterations.

Gill presents a method for estimating the Lagrange multipliers called the first-order
multiplier estimate [Gill 1981]. This method uses first-order information about the
constraints rather than just zero-order. Section 3.2 shows at a local minimum the gradient
of the energy function is a linear combination of the gradient of the constraints
(Ve(x*) = Ve(x*)A). This algorithm finds the Lagrange multipliers that best satisfy this
equation at each iteration. Thus Gill's algorithm estimates the ideal Lagrange multipliers at
each iteration by solving the following equations for A%: [Vc(xk)JAk = Ve(xk).

The dimension of the Jacobian matrix of the constraints, Ve(x), is n x m, and the Lagrange
multiplier vector is m x 1. In this system there are n equations and m unknowns. Since
m is typically less than n, the system is over-constrained. Sculpt finds a least-squares
approximation to the system of equations by first multiplying both sides of the equality by
the transpose of the matrix and then solving for A%:

[Vexk)TVe(xk)]Ak = Ve(xk)TVe(xk).

Estimating the Lagrange multiplier in each iteration of the Sculpt algorithm requires the
following steps. Evaluate the first derivative of the constraint and energy functions at the
current point. Pre-multiply the gradient of the energy by the transpose of the constraint
Jacobian to get an m x I vector, denoted b. Pre-multiply the Jacobian by its transpose to

get an m X m matrix, denoted A. Finally solve the m xm simultaneous equations,
AAk = b, for Ak,

48

The sparsity and structure of the Jacobian lets an algorithm perform the matrix multiply and
solve the equations in operations linearly proportional to the number of constraints.
Chapter 5 discusses the details of those algorithms and analyzes their complexity. In
practice the multipliers attained through this approach let the entire algorithm converge in
one or two iterations.

4.2. Determine a penaity term

The penalty term, p, pulls the solution towards one that satisfies the constraints. The
previous step estimates the Lagrange multipliers using a first-order approximation of the
constraints. Since the constraints are nonlinear, this approximation lets the solution drift
from the constraints. The penalty term keeps this from moving beyond some limit. The
penalty term is set to the error in the least-squares approximation: p «/#Ve(x)-Ve(x) M.

4.3. Find a minimum of L(x,A,p)

This step finds an x that minimizes the augmented Lagrangian using the multipliers and
penalty term of the previous steps. That is, the step finds an x that minimizes ¢(x) where
o(x) = L(x,A,p) = e(x) - ,ch(x) - {pc(x)rc(x). Sculpt finds the minimum with the
steepest descent method. The direction of descent is - V@(x). Sculpt restricts the step
length to 0.25 Angstrom (about one-fourth of a bond length). The direction vector is
normalized if it is greater than one. The following algorithm lists the steps that find a local
minimum of the augmented Lagrangian function, given A and p.

L d e -Vo(x) =-Vex) + Ve(xIA" + pVe(xHe(xd
2. if (Iidil > 1) then @ « s R
else @« 1 lidil

3. x**le x*+ad
Figure 3.8: Direction used in the Sculpt algorithm.

This algorithm repeats using the same penalty and Lagrange multipliers until it satisfies a
convergence condition. In practice the algorithm converges in one or two iterations.
A different method such as Conjugate Gradient can be used if convergence requires more

iterations. Since the steepest descent converges so rapidly in this application, I did not try
other methods.

Another method for finding a minimum of the augmented Lagrangian function uses
Newton's method. I implemented Newton's method because I assumed the starting point

49

is near a minimum and wanted quadratic convergence. However, several drawbacks of the
implementation caused me ultimately to settle for the steepest descent method. First,
implementing the second-derivative evaluation requires a large amount of code—the
second-derivative code for the angle function was five times the length of the code for the
first derivative, resulting in an additional six hundred lines of C++ code. Second, the time
to evaluate the second derivatives increases linearly with code length. Third, the method
requires solving an n x n system of equations which consumes additional time. The
version of the system that used Newton's method only modeled distance and angle
functions. The large increase in code size and computation and the discovery that steepest
descent converges quickly led me to chose the steepest descent method rather than
Newton's method.

4.4. Summary of algorithm

The Sculpt algorithm for finding a local minimum of an energy function such that equality
constraints are satisfied is based on the augmented Lagrangian method. The original
problem is converted into finding a saddle point of the Lagrangian function. That is,
convert the problem of finding a solution, x*, of minimize e(x) such that ¢(x) = 0 into
finding the pair (x*,A*) that is a saddle point of L(x,A,p). This is done by first estimating
the Lagrange multipliers and setting the penalty term. The method then finds an x that
minimizes L(x,A,p) by using the steepest descent method.

More details about the implementation are presented in Chapters 5 and 8. Chapter 5
discusses properties of the protein model that yield linear computational complexity with
the technique described here. Chapter 9 gives timing results for computing the minimum.

.Chapter 4
Related Systems

This chapter discusses molecular modeling and computer graphics systems related to
Sculpt. The first section describes energy models and applications of molecular modeling.
The second section discusses dynamics simulations and constrained modeling used in
computer graphics. The second section also describes algorithms that let constraints be
added to a model and find model configurations that satisfy arbitrary sets of constraints.
The systems and algorithms are analyzed for their applicability to the sculpting problem
without regard for their intended application.

1. Molecular modeling

Two computational models of proteins, CHARMM [Brooks 1983] and Amber [Weiner
1984; Weiner 1986], are commonly used to calculate the total energy. Both model the total
energy as the sum of the energies in the bonds, bond angles, fixed and variable dihedral
angles, van der Waals interactions, electrostatic interactions, and hydrogen bonds:

E= T k(t-D%+ 3 ko®-0'+ T ko(@-8+ I |kd-kycos(at)+
bonds

angles fixed variable
dihedrals dihedrals
A; Bj Cij Dy
.Sy E, ¢ oS _L)
i\ B G goponds T

They differ in the parameters for the spring constants and ideal values and in the model of
electrostatic interactions, hydrogen bonds, and solvent interactions. CHARMM allows
different electrostatic models other than the one given; these include letting the dielectric
constant vary with distance and computing a dipole moment for a group of atoms far from
other atoms. CHARMM and Amber allow van der Waals interactions, electrostatic
interactions, and hydrogen bonding with surrounding solvent. Both models use a constant
dielectric for nearby interactions with solvent; however, CHARMM uses the group dipole
approximation for long-distance electrostatic interaction. CHARMM also allows a different
hydrogen-bond model that includes the angle between the hydrogen bond and the covalent
bond attached to the hydrogen.

51

These models evaluate the van der Waals interaction on atoms within a five to seven
Angstrom neighborhood radius. The same list is used for multiple iterations of algorithms
that calculate the energy. Both models let a user choose among modeling all the
hydrogens, only hydrogens that can form hydrogen bonds (Sculpt’s approach), and no
hydrogens. The goal of these models is physical realism, so no constraints are placed on
bond lengths or angles.

The parameters in Sculpt are based on the CHARMM model. Sculpt, however, does not
model electrostatic and solvent interactions. Sculpt also constrains the bond lengths,
angles, and fixed dihedral angles to their ideal values rather than let them vary. Sculpt uses
a different variable dihedral angle function and hydrogen bond model. The variable
dihedral angle model uses a quadratic centered at the nearest ideal angles as an
approximation of the cosine function (expanding cos x in an infinite series gives cos x =
1 - é-xz + O(x*)). The quadratic is faster to evaluate but has a slightly wider energy
well. Hydrogen bonds are manually specified at Sculpt’s program initialization and remain
throughout the session rather than being continually evaluated between atoms in neighbor
lists. Sculpt models a hydrogen bond with a length and angle spring.

These energy models and variants of them are used in commercial molecular modeling
systems such as Sybyl [Tripos 1988], Insight [Biosym 1991], and Quanta [Polygen 1991]
for several purposes. First, determining the energy allows comparison among multiple
conformations. Second, energy minimization moves atoms into locally minimum energy
wells. Third, the energy gradient gives a force used in the simulation of the Newtonian
motion of atoms. Fourth, the second derivative of the energy allows analysis of the normal
(vibrational) modes in a given configuration.

1.1. Energy minimization

Energy minimization is used to move atoms into locally minimum energy configurations.
A user often lets an energy minimizer shift atoms that are too close and adjust torsional and
angular violations after manually editing a molecular model. However, energy minimizers
often resolve bad atom separations by moving atoms more than a user intends. Energy

minimization is also used as a pre-processing step to find a stable atom configuration before
molecular dynamics simulation and normal mode analysis.

52

1.2. Molecular dynamics

Molecular dynamics are used to examine the motion of atoms in a molecule and to move
atoms out of local energy minima. Molecular dynamics simulates the motion of atoms in a
molecule by simultaneously solving Newton's equation of motion for each atom
[Mc Cammon 1977; van Gunsteren 1977]. This requires solving the set of coupled,
second-order differential equations given an initial position and velocity for each atom i
with mass m;:

azxi Fy .EJ. :
o2 M where the force on atom i is Fj = - VxE(x)_

Numerically integrating these equations through time requires time steps shorter than the
inverse of the highest frequency in the model. For bond length changes, that frequency is
about 1010 hertz. In proteins this requires time steps on the order of femtoseconds.
Because of the small time step and large computation required during each step, dynamics
of proteins have only run for simulated time periods of a few nanoseconds [Brooks III
1988; Hermans 1992]. Removing the highest frequency component, flexible bond lengths,
allows a two-to-three performance increase [van Gunsteren 1977]. The short time steps,
however, prevent molecular dynamics from being a viable method for interactively
sculpting protein.

1.3. Normal modes

A normal mode analysis gives principal vibration axes in a structure (the most flexible axes
of change). A normal mode analysis requires solving an n x n system of equations that
results from taking the second partial derivative of the energy function. This requires batch
processing on all but very small molecules. The analysis is valid assuming only small
changes in atom positions [Brooks III 1988; Pentland 1989]; large movements require a
new analysis. Sculpting a protein by interpolating the normal modes is not a viable
approach since a new analysis must run after the protein is deformed.

1.4. Interactive modeling

In most molecular modeling systems the user manually positions atoms by a series of
purely geometric dihedral angle rotations. For example, commercial modeling packages
such as [Biosym 1991; Polygen 1991; Tripos 1988] display a graphical (vector)
representation of the covalent bonds and let a user apply rotations about particular bonds.
Along the backbone only rotation about the N-Cq and Cqy-C bonds (refer to Chapter 2) are

53

allowed. This keeps the peptide atoms planar and distances and angles valid. However,
no restriction is placed on non-bonded atom separation. Atoms can move closer than
allowed by the van der Waals repulsion. In practice a user manually moves the atoms to a
good separation and then invokes a batch energy minimizer for fine-grain adjustments.
Often the results are not acceptable and the manual/automatic process is repeated.

A research modeling package called FORME [Tuffery 1991] lets a user interactively deform
a protein backbone (rotations are currently not allowed in sidechains). FORME lets a user
specify end positions of two atoms in a backbone chain. FORME then determines
incremental rotations about the N-Cy and Cq-C bonds in the backbone that will move the
two atoms to their target positions. FORME determines the rotations by analyzing the
possible rotations allowed if the electron shells of all atoms are modeled with hard spheres
(a CPK model). As yet no energy model is used to determine the conformations along the
path.

A few systems have allowed limited interactive energy minimization. The GRIP system let
a user manually disconnect a bond in the backbone and move a new residue into place
[Britton 1977]. Then the user can invoke a structure idealizer that pulls the new residue
into proper geometry while keeping the rest of the structure fixed. In crystallography a
combination of constraints and restraints (energy model) is used to fit known structure into
observed data [Hendrickson 1980].

2. Physically-based modeling in computer graphics

2.1. Simulation of constrained Newtonian dynamics

Physically-based modeling frequently aids computer animations by automating detailed
motion planning and complex object interactions. Miller generates realistic snake motions
by modeling muscle contractions with springs [Miller 1988]. Witkin models the energy
and momentum of a Luxo lamp jumping hurdles and ski jumps [Witkin 1988].
Terzopoulos models energy in elastically deformable objects such as cloth to create
animations of flags [Terzopoulos 1987]. These examples simulate the motion of objects by

first stating application-specific conditions about the objects and scene and then solving
Newton's equations of motion.

Similar applications use constraints to restrict the allowable states of objects and maintain
dependencies among objects. Barzel uses constraints in computer animation to specify
paths for objects [Barzel 1988]. Witkin uses geometric constraints to assemble models

54

[Witkin 1987], and he describes a system that lets a user interactively connect and
manipulate objects such as a mechanical assembly or tinker-toy [Witkin 1990]. Constraints
maintain constant volume in incompressible solids [Platt 1988] and restrict penetration
when a ball strikes a trampoline [Platt 1989].

2.2. Satisfying new constraints

Drawing systems such as [Claris 1988] let new objects be inserted that have simple
constraints, independent of other objects (e.g. constraining a line to be horizontal or two
inches long). Satisfying such constraints simply eliminates some degrees of freedom of the
object. Some systems allow constraints on objects that are dependent on another object's
property. For example, Sketchpad let a user create a line that was constrained to be
perpendicular or parallel to another line [Sutherland 1963]. Since such constraints are
dependent only on another property, they are also easily solved. These constraints are
active only during object creation; arbitrary changes are allowed later.

Satisfying arbitrary constraints defined among objects that also are constrained is much
more complex and is a subject of active research. Analytic techniques can find solutions to
some constraint problems by symbolically solving the set of constraint equations.
However, a closed-form solution is usually not possible. Leler surveys many analytical
techniques for satisfying constraints [Leler 1987]. Unfortunately, as the complexity of a
constraint and the number of constraints increases, analytic methods often fail. Analytic
methods have only been successfully applied to systems with a few dozen to one hundred
constraints.

An interactive system, called Thinglab [Boming 1979], lets a user construct constrained
objects in an object-oriented programming environment. Each object has a user-
programmed method that satisfies internal constraints (e.g. extending a side to maintain a
constant area in a rectangle). If an initial analytical method fails, the system iteratively calls
each object until the constraints are solved. The research in Thinglab centered on
programming-language design and analytic constraint satisfaction, so only models with a
few dozen objects and constraints were used.

Grant discusses a system that finds a configuration of objects that best satisfies an arbitrary
set of constraints [Grant 1991]. An associated error function measures the violation of
each constraint (constraints are modeled as restraints in his work). The system finds an
optimal solution (a global minimum of the sum of error functions) using simulated

55

annealing [Kirkpatrick 1983] which iteratively surveys a random sampling of the parameter
space. The approach is very useful when one has little intuition about the optimal model
configuration and the model contains many constraints. Theoretical results give a
probability that the computed solution is a global minimum. This probability depends on
the number of iterations run and other parameters of the algorithm; the optimum is not
guaranteed without an infinite number of iterations. In practice acceptable probability
requires on the order of hours of computation.

: Chapter 5§
Algorithms and Analysis

This chapter describes and analyzes the algorithms in Sculpt that tie the problem in
Chapters 1 and 2 and the mathematical model in Chapter 3 together into an interactive
modeler. The first section discusses how atoms are interactively manipulated while
satisfying the mathematical model. The remainder of the chapter analyzes the
computational complexity of each algorithm. This chapter restricts the discussion to those
algorithms necessary for protein sculpting on a single-processor workstation. Chapter 6
discusses which algorithms benefit from parallel processing, and Chapter 7 examines an
approximation that drastically reduces computation.

1. Interaction with springs and nails

A chemist moves an atom in Sculpt by tugging it to the desired position. Tugging follows
the pick-and-drag methodology found in many window systems. A chemist positions a
cursor over the atom, invokes a pick command, and drags (moves) the cursor to the desired
direction (Chapter 8 presents a detailed description of the user interface). The system
attaches a zero-length spring between the picked atom and the cursor. The system reads the
cursor's position multiple times during dragging and changes the end of the spring. At
each read the system adds the potential energy in the spring to the total energy in the
protein. The system then minimizes the energy and displays the new atom positions.
Therefore, moving an atom is accomplished through a series of individual zugs on a spring
(attached between the atom and the cursor) and energy minimizations.

The motion of the tugged atom is not always as expected. Assuming no opposing forces or
constraints, the atom does move in the direction of the tug (towards the cursor). Since the
mathematical model only considers atom positions, and not velocities, the atom can be
placed exactly at the desired position. However, an opposing force or constraint can
prevent the atom from following the cursor. Suppose a tugged atom is bonded to another
atom exactly opposite the direction of the tug. If the bonded atom cannot move, the atom
will not follow the tug (Sculpt does not model the breaking and formation of bonds).

57

Part A in Figure 5.1 illustrates this case with atom F fixed. The tangential component of
the tug direction is followed if another direction is picked as in Part B.

Tug

No movement
Tug
Movement

(@ ®)
Figure 5.1: The point T is constrained to the circle. (a) shows a tug
that does not move the point, and (b) shows a tug that
moves T along one component of the tug direction.

Tugging provides a method for moving between local minima. Figure 5.2 shows a case
where tugging pulls an atom, T, from one energy minimum to another. Assume atoms F;
and F; are fixed. The arrows show the direction and magnitude of the atom attractions.
Initially (Part A) atom T is closer to F; and has a stronger attraction to F; than F». The tug
in Part B pulls the atom towards F5. Part C shows the final result. This example shows
where user intervention can overcome a local energy minimum.

T . T Ty " T
F.‘A/‘* F2 .‘4/“' ——) .2 Fi A P2
[) []

(@ ®) ©
Figure 5.2: A series of figures showing a tug that pulls T between
minima. (a) shows attractions before the tug; (b) shows a
tug applied to T; (c) shows attractions afterwards.

Nails let a chemist fix an atom's position to a three-dimensional position in space. Nails
provide additional control over atom motion. Often many atoms follow the motion of one
atom due to attraction, even though a chemist only wants to move the one atom. For
example atom F; in Figure 5.2 would follow atom T if it was not nailed to its position.
Nails fit into the mathematical model in two ways—with an equality constraint on the
atom's position or a strong, zero-length spring between the atom and the position.

2. Computational complexity

This section begins a detailed analysis of the computational complexity of the minimization
algorithm described in Chapter 3. I use big-O, or order, notation to describe the worst-
case complexity of the algorithms. Big-O analysis is a formalism for expressing the

58

intuitive idea that the number of steps required to execute an algorithm is proportional to
some function of the number of items processed. For instance, an O(n?) algorithm
executes in a number of steps proportional to the square of the number of items.
Figure 5.3 lists the computational complexity of each step in the minimizer. The remainder
of this chapter explains how this algorithm solves the protein sculpting problem in time that
increases linearly, O(n), with the number of variables.

IO(n) 1 Create neighbor lists
IO(kf., X kyg X n) i Function/derivative evaluation
'
i Compute Lagrange multipliers
]
i[Ok x ke xn) 1 Multiply vector: b =J Ve
]
O(KEI a +kEK2) X 1) , Y <
(ipn +h)): OGZ x ki xm) 1 Multiply matrix: A =J 1
: Y vk
1 2s gres .
: O(kév X Kspen X 1) ' Solvefor A: AA=b
O(ks X n) i Compute update
O(n) ' Update variables
A Useful derived it

n number of variables = 3 x number of atoms

Constants

kvt maximum variables in a function = 12
kv maximum functions containing same variable
Kepan maximum range of indices in a constraint

f: number of constraint functions < kgXxn
f. number of energy functions < keXn

Notation

Ve gradient of energy, (n x 1)

A Lagrange multipliers,(£ x 1)

J_ gradient of constraint functions, Vc (n x fo)

JT transpose of J, (f. x n)

Figure 5.3: Computational complexity of Sculpt’s constrained

minimization algorithm.

2.1. Notation

n. The only free parameter in the algorithm is the number of atoms. Each atom has three

variables that specify its position. The total number of variables, n, equals three times the

number of atoms.

59

Kdomaine The domain of the functions gives the maximum number of variables each
function can reference, denoted Kk ,pmqin- The dihedral angle function uses the most
variables—twelve, four atoms, each with three variables.

K¢. The number of functions that can reference the same variable is bound from above,
denoted kg, (functions per variable). This comes from a property of the atoms in a protein.
Consider how many bonded functions (length, angle, and dihedral) can include a particular
atom. An atom can only form as many bonds as it has unpaired, outer-orbit electrons—call
this number v for valence (in proteins carbon forms the most bonds, four). This means at
most v length functions contain the same atom. Each of the bonded atoms is also bonded
to at most v- other atoms, giving at most v x (v-1) angles that can include the initial
atom. A similar argument follows for dihedral angle functions. The section on neighbor
lists shows that the number of non-bonded functions that can refer to one atom is also
bounded. Therefore, there is a constant, maximum bound on the number of functions that
refer to the same variable. This also limits the number of functions, energy or constraint,
to ks (thus the number of energy, f,, and constraint, f,, functions is O(n)).

Kspan- The span of a row in a matrix is defined as the separation between the lowest and
the highest nonzero column. Since one row in the Jacobian transpose represents the
gradient of one constraint and a column represents the partial derivative of all the
constraints with respect to one variable, the span of a row in this matrix depends on the
separation of variable indices referenced by a constraint. The maximum separation in
proteins is bound by a constant, k,,,. This requires an atom numbering scheme so that a
constraint only references atoms within a fixed range of indices. A scheme that I use
sequentially numbers atoms along the protein backbone with breaks at the sidechains.
Part A in Figure 5.4 shows the numbering scheme used for proteins. Note the only
discontinuity in the numbering is at the sidechain. The constant, kg,,,, is derived by
examining a dihedral angle function (formed by four atoms) defined on atoms before and
after a tryptophan sidechain. This is the worst case because a dihedral function references
the most variables and a tryptophan sidechain contains the most atoms, ten. The right side
of the figure derives the constant.

i-4
Rt
.'..'. !:i-l e : dihedralN*2 C*! ci Ni+l+l)
o Koy = IS syl ORI, € Con
1 X~ = maximum [(i+1+s) - (i-3)] atoms
i+1+sN = 3Jvaniables % (4 + 10——2oms ___
5 c./3\"i+s mom ¢ WM)
T Tah 0 ps = 42 variables
Coi+d+s
(@ (®)

Figure 5.4: Derivation of maximum span of a constraint function. (a)
lists the numbering scheme, and (b) derives Ic,p".

This restriction on constraint functions does not prevent interactions between arbitrary
atoms. Constraint functions are only applied among covalently-bonded atoms. Arbitrary
interactions between non-bonded atoms are modeled with energy functions. Separation of
variable indices in energy functions is not restricted. Similarly, hydrogen bonds are
modeled with energy functions. A hydrogen “bond” is actually an attraction between two
partially charged atoms—not a bond formed with shared electrons.

A disulfide bond violates this restriction. This covalent bond occurs between atoms in
separate sidechains which can have indices arbitrarily separated. Most proteins do not
contain disulfide bonds; those that do usually contain from one to ten. The complexity
analysis remains valid when a model contains a fixed number of constraints among
arbitrary atoms. I do not factor this into the definition of kspan but address it separately at
the end of Section 4.2.

2.2, Vector operations

Function and derivative evaluation. Each function contains at most k;,mqin
variables. Evaluating a function and the partial derivative with respect to each of its
variables requires O(kzomain) Operations. This is done for each of the f,+f, functions,
resulting in O(kdomain(fo+f.)) = O(kdc_,,,.a;,.kﬁ,u) operations.

Compute update. Section 4.3 in Chapter 3 gives the following equation for computing
the update: d « -Ve + JA + pJc. Assuming previous steps provide the function
gradients and the Lagrange multipliers, this algorithm involves two vector sums requiring
O(n) operations and two matrix-vector multiplications. Both multiplications involve the
n X f. matrix of the constraint gradients and an f, x I vector. The multiplication requires
multiplying each of the n rows in J by the vector. A row r contains the partial derivatives

61

of each function with respect to variable 7. Since a variable is in at most kg, functions, each
row contains at most kg, nonzero entries. Thus the multiplication of a row by a vector
requires O(kg) operations, assuming the location of the nonzero entries is known (a data
structure presented in Section 4 keeps this information). The entire matrix-vector
multiplication (and the computation of the update), therefore, requires O(k4,n) operations.

Update variables. This step just adds the update vector to the variables, involving O(n)
operations.

3. Neighbor lists

The non-bonded interactions, van der Waals and electrostatic, are computed for atoms near
one another. Sculpr keeps a list of the atoms within a spherical neighborhood of radius
Tneigh Of €ach atom. This radius is different for the van der Waals and the electrostatic
interactions, so Sculpt actually needs two neighbor lists (Sculpt does not currently compute
electrostatic interactions, so only one list is presently computed). Chapter 2 discusses
advantages and disadvantages for using neighbor lists; this section only presents the
algorithm that determines the members of the lists.

An algorithm can compute these lists in O(n) steps by exploiting a property of atoms. Each
atom occupies a nonzero volume, referred to as its electron shell in Chapter 2. Levinthal
shows from this fact that only a finite number of atoms can fit within a finite volume
[Levinthal 1966]. A conservative bound on this number is r neigh (the neighborhood
volume divided by the volume of the smallest atom, hydrogen, with a radius of
one Angstrom).

Bentley gives an algorithm with linear complexity that computes neighbor lists that have a
bounded number of entries [Bentley 1979]. First, uniformly subdivide space into cubes
with 7,,,;,4 On each side. Second, deposit each atom into the cube at its position. Third, set
the neighbor list for each atom to the atoms in its cube and the adjacent cubes. This
algorithm takes O(n) steps.

Storing all the cubes can require a lot of memory if the molecule is large and the cubes are
small. Rather than storing a full three-dimensional grid of cubes, I use a hashing scheme
based on the three-space coordinate. Only cells that contain atoms are stored. Collisions in

62

the hash function are not resolved, so two atoms with the same hash index are placed in the
same cell regardless of their separation.

The list of neighbors for each atom is initially set to the list in its cell. A final step of the
algorithm removes those atoms in the list that have the same hash index but are far apart.
In practice this pruning can reduce the number of interactions by forty percent.

4. Finding Lagrange multipliers

- Finding the Lagrange multipliers requires matrix multiplication and solution of linear
equations. The system of equations is very sparse (typically more than ninety-five percent
of the entries are zero). Exploitation of this property by data structures and algorithms
provides drastic reduction in memory and computational requirements. The first section
presents the data structure that holds the matrix. The second section examines the
complexity of the algorithms that find the Lagrange multipliers.

4.1. Data structure

Sculpt stores the transpose of the Jacobian (gradient) of the constraints, J7. The matrix has
f. rows and n columns. Element (i,j) holds the first partial derivative of constraint i with
respect to variable j. Since each constraint is defined over a small number of variables—
much smaller than the total number of variables—most entries in the row are zero. In fact
an average row in a small test model with 300 atoms is 98.7 percent zero. The percentage
increases with the problem size.

Basic structure. A new sparse-matrix data structure, optimized for this application, is
used. The data structure is a variant of one described by Knuth [Knuth 1973, p. 300] that
stores each nonzero element of a matrix in a node of a linked list. Knuth's node contains
the element's value, the row and column indices, and pointers to the next row element and
column element. Figure 5.5 shows the data structures used in this research. The structure
does not store the row and column index at each node, but instead, stores pointers to the
row and column headers which contain the index. Inserting a row or column requires
changing the indices in the row and column headers rather than the matrix elements.

Value Ptr to ColumnHeader Index Index #Elements
Ptr to RowHeader Ptr Down Ptr to FirstElement Ptr to ElementArray
MatrixElement ColumnHeader RowHeader

Figure 5.5: Three data structures used in the sparse-matrix definition.

63

The matrix element does not contain a pointer to the next element in the row. Since each
row holds the partial derivatives of a specific constraint, the number and location of the
nonzero elements is known when a constraint is created. The row header, therefore,
contains the number and a pointer to an array of nonzero elements. Figure 5.6 shows a
full matrix in the upper-left and its associated sparse-matrix data structure. The additional
arrays, RowDirect and ColumnDirect, provide direct access to the rows and columns,

respectively.

ColumnDirect
102030 0 i f : '
0 40 050 4 4 A 4
0 06070
: iy 2 3 4
Full Matrix Headers | _ P & &
RowDirect
Row Headers
y y . y
» 1|3 / 10| & | 2] di] 30| -
'
o] $ ® /l * ’
) 7 / ;
Y
L o [- ;\
A
Y N
> 3 2 > 60 l 70 ®
e 9 ®
Z
Sparse Matrix

Figure 5.6: Full matrix in upper-left represented in Sculpt’s sparse-
matrix data structure.

Sparsity of matrix product, A=JTJ. The system also uses the data structure to store
a second matrix, the product of the Jacobian transpose and the Jacobian, A=JTJ. The
sparsity pattern of matrix A closely resembles the pattern in JT.

Which elements in the A matrix are nonzero? The element a, . is defined as the inner
product of the r# row of the left matrix and the ¢ column of the right matrix (i.e.
Qrc= E‘. J,T_,J kc)- The c* column of a matrix is also the ¢’ row of the matrix transpose.
Applying this to the definition of a, . gives a, . = }E'. J Z:,J Z' & This indicates that the element
is nonzero only when rows and c in the Jacobian transpose contain a nonzero entry in the

64

same column. Comparing each row of the Jacobian transpose against its other rows for
common, nonzero columns gives the nonzero elements of A. Since no rows (constraints)
are inserted or removed during a program session, the sparsity pattern of JT and A remains
constant. (Chapter 7 relaxes this assumption in limited cases.) A pre-processing step
analyzes the sparsity pattern of J7 to create the sparse matrix A.

A matrix times its transpose, and vice versa, is symmetric. A symmetric matrix equals its
transpose (i.e. A = AT). The maximum number of elements in a row of this matrix, and
likewise in a column, is bound by a constant. Each nonzero element with index (r,c)
implies that constraints and ¢ share a common variable. A given constraint uses at most
Kaomain variables that are each in at most kg, functions. Therefore, a given constraint has
common variables with at most komainks Other constraints. This implies a given row in A
has at most K jomgainks, NONZETO €lements.

4.2. Algorithm

Finding the Lagrange multipliers requires three steps: matrix-vector multiplication,
b « JTVe; matrix-matrix multiplication, A«JTJ; linear equation solution for A, AA=b.
Each step is discussed separately.

Matrix-vector multiplication. This step multiplies the f, x n Jacobian transpose
matrix by an f, x I vector. The algorithm multiplies each row of the matrix by the vector.
Since each row contains at most k ,,,,i, NONZero elements, multiplication of one row
requires O(kzomain) Operations. The entire multiplication takes Ok ,mainfc) =

O(ksk 4omainm) OPeTations.

Matrix-matrix multiplication. This multiplication requires calculating the value for
each nonzero element in matrix A. The location of the nonzero elements is determined at
program initialization. The maximum number of entries in matrix A is the number of rows,
fe, times the maximum number of elements per row — O(f X gomainksy) = O(kdomainkin).
Determining the value of a given entry, (r,c), requires multiplying rows r and c of the
Jacobian transpose. This requires O(k ,mqin) Operations since the maximum number of
nonzero entries in a row is ky,main. The computational complexity for the entire
multiplication is O(k2,aik 2,1)-

Linear equation solution. Solving the system of equations in linear time critically
depends on a sort of the rows in the Jacobian transpose. At program initialization the rows

65

of the Jacobian transpose are sorted relative to the smallest index (column) referenced.
Matrix-matrix multiplication of this sorted matrix yields a band-diagonal matrix, one whose
nonzeros lie within a constant distance (band) from the diagonal. The number of
operations in Gaussian elimination on a banded-diagonal matrix increases linearly with row
dimension. The remainder of this section analyzes the sparsity pattern in the matrix A and
the complexity of Gaussian elimination applied to it.

The worst-case structure of matrix A depends on the largest possible span of an arbitrary
row, say i. What are the smallest and largest column numbers that are nonzero in the row?
Column j in the row is nonzero if and only if constraints i and j reference the same variable.
Assume constraint i references variable indices L and L+, the maximum separation of
variable indices in a constraint. Figure 5.7 shows the arrangement of the sorted Jacobian
transpose around constraint i that yields the largest span in A after matrix-matrix
multiplication.

P 2.

RN

%

L+k span
| L2k gpun

R

i ap
o

b
-

ke :
ke SN B e .
kv Kepan | Kgy B o MR

Figure 5.7: Worst-case structure of the Jacobian transpose.

66

The figure shows one constraint that references variable indices L and L-k,,,, and one that
references L+kgpq, and L+2kg,,,. The fact that a variable appears in at most k5, functions
limits the number of constraints that can appear between the first constraint in the figure and
constraint i. Only kg, constraints can reference each of the variable indices between L-Kpqn
and L. Therefore the smallest-numbered constraint that can reference a variable in
constraint i is i - kkspan. Similarly, the largest-numbered constraint is i + kpkspan.
Therefore, row i in matrix A can only contain nonzero entries kkspan columns before and
kfkspan columns after the diagonal element. The same argument holds for each row in A.
Matrix A is called band-diagonal with bandwidth kpkspan. All the nonzero elements in a
band-diagonal matrix with bandwidth b lie within b elements of the diagonal. Figure 5.8

shows such a matrix with bandwidth 5.
b
[

L
|
b{ S

—+——

902
L1

H xt
Figure 5.8: Worst-case structure of the product JTJ. Empty squares
represent zeros.

Gaussian elimination reduces a band-diagonal matrix in O(b?f,) operations. Figure 5.8
highlights one block of a band-diagonal matrix. Consider the operations necessary to
eliminate the elements under the diagonal in the left-most column of the highlighted block.
This requires eliminating the value in the b-1 rows following the first row in the block.
Each row elimination requires multiplying and adding b elements in the row. So
eliminating the column elements below a diagonal element requires O(b?) operations.
Repeating this for each diagonal element gives the computational complexity listed.
Su stituting constants gives the following number of operations to solve the linear
equations: O(b2f,) = O((kpkspan)?kon) = O(kLkZann). In general some elements within
a band are also zero. Equation solvers can often use this information to reduce the average
number of operations.

67

Assume a model now contains one distance constraint, i, defined between two arbitrary
atoms (e.g. a disulfide bond). This constraint only references variables in k., other
constraints, but a given constraint, j, can be arbitrarily separated from i. The nonzeros in
this matrix are either within the original bandwidth or at a few stray places such as (i,j).
The computational complexity of Gaussian elimination on such a matrix does not increase,
since only the elements in the column under these stray elements are filled. A similar
argument proves that the complexity of Gaussian elimination remains linear when there is
some constant number of distance, angle, and dihedral angle constraints defined among
arbitrary atoms. However, an unbounded number of these constraints yields a general
matrix which requires O(%) operations.

5. Summary of computational complexity

This chapter proves the computation of the constrained minimization algorithm scales
linearly with the number of atoms. Figure 5.9 lists the assumptions the preceding analysis
makes on the underlying model. The table lists reasons for each assumption and some
additional notes.

Assumption Reason Note

Nonzero object volume and fixed Bounds number of non-bonded

neighborhood radius interactions per atom

Bound number of variablesina Limits number of nonzeros in Reasonable but prevents functions
function Jacobian requiring global information

Bound number constraints that Same as above Reduces probability of an over-
reference same variable constrained model

Bound range of variable indices in Yields block-diagonal matrix Gaussian elimination is cubic

a constraint without this; relaxed in certain cases
Constraints are not added or Allows Jacobian matrix pre- Relaxed in Chapter 7

removed processing

Figure 5.9: Assumptions made in analysis of Sculpt’s minimization
algorithm.

Chapter 6
Parallel Computation

This chapter discusses improving system performance with parallel processing. Parallel
computation divides data into portions that can be processed independently by different
processors (often called processing elements). Concurrent computation divides an
algorithm into portions that can be processed simultaneously. The Sculpt minimization
algorithm contains steps that can proceed in parallel and concurrently. These techniques
reduce the constant of proportionality of the algorithm, but do not reduce the linear
complexity. The solution of linear equations contains a property that requires O(n)
operations regardless of the number of processors. Chapter 9 lists some timing results
made using the techniques described in this chapter.

Figure 6.1 presents the steps in the minimization algorithm that operate in parallel and
concurrently. The vertical axis represents data dependencies; a stage cannot begin until the
previous stage completes. The horizontal axis shows parallel processing within an
algorithm and current processing between algorithms. Boxes with round corners represent
stages in the algorithm. Round-corner boxes beside one another (within Stages 2 and 4),
execute concurrently. Small square boxes represent processing elements that execute in
parallel. The figure contains three types of computation: neighbor-list determination,
vector and function operations, and solution of linear equations. The remainder of the
chapter discusses each of these.

69

Sequential stages
C Neighbor list) 0
Function/Derivative
(e - Ve G o+) !
P
3
4
Update: x=Ve+q+r 5

E ...

Figure 6.1: Block diagram of concurrent and parallel segments of
Sculpt’s minimization algorithm. Execution of a block
must wait until preceding blocks finish. Blocks beside
one another execute in parallel.

1. Neighbor list determination

Function and derivative evaluation must wait until the neighbor-list computation completes
because functions that model non-bonded interaction (Van der Waals and electrostatic)
interactions require a neighbor-list for each atom. This dependency can be avoided if the
neighborhood radius is enlarged. The functions that model non-bonded interactions can
use the same neighbor-lists for multiple iterations if the neighborhood encompasses the
maximum possible atom movement during the iterations. This approach lets computation
of new neighbor-lists proceed concurrently with function and derivative evaluation. Scuipt
partially implements this approach. A user can choose whether or not a list is computed on

each iteration. However, the list is not determined concurrently with the rest of the
algorithm. %

2. Vector and function operations
Stage 1 evaluates the constraint and energy functions and their derivatives in parallel.
Sculpt stores each constraint value in one element of an array and the gradient of each

70

constraint in one row of the Jacobian transpose matrix. Simultaneously writing the values
to memory does not cause contention. Memory contention does arise when energy
gradients are stored. Sculpt stores the sum of all the energy gradients. Since each energy
function can reference the same variable, parallel updating of the sum can cause errors.
Sculpt adjusts for this by computing the energy gradients on a small number (four or eight)
of processors, each of which holds a local copy of the sum. When all the processors
complete, a final step combines the local copies.

Stage 5 performs a vector addition, and Stages 2 and 4 calculate a matrix-vector
multiplication. Processors can compute the elements of the resulting vector in parallel. If
the number of elements in a vector result equals the number of processing elements, a
stage requires only O(1) computations. Note that stages 2 and 4 contain algorithms that
can proceed concurrently.

3. Linear equation solution

A band-diagonal matrix requires O(kn) steps to solve using Gaussian elimination. Parallel
processing can reduce the constant of proportionality, £, but cannot lower the linear
complexity. Before any row is reduced, all prior rows must be reduced. Consider a tri-
diagonal matrix—a band-diagonal matrix with one band above and below the diagonal.
Eliminating the rows below a diagonal element, say (i,i), affects the next row, i+1. This
prevents processing row i+ until completion of row i. Therefore, processing row I must
complete before beginning row 2, which must complete before beginning row 3, etc. The
dependencies between rows keep this algorithm O(n) regardless of the number of
Processors.

Iterative solution of the system of equations holds promise for reducing the average
computation. Iterative solutions of a band-diagonal system of equations require O(n)
operations in the worst-case, but may require fewer on average. These methods hold
promise for improved performance and should be considered in future research.

- Chapter 7
Structural Hierarchy

The sculpting process, as described so far, only allows tugs on atoms. This works well
for changing relative atom positions and twisting backbone segments into secondary
structures (e.g. a helix). However, moving an entire section of secondary structure as a
unit is cuambersome with this method. Consider the steps needed to change the orientation
of a helix without changing its internal configuration. Tugging one atom after another
changes the internal arrangement. Instead, simultaneous tugs applied to multiple atoms are
needed to move the entire helix simultaneously. This approach eventually orients the helix
properly, but any variation in the relative tug strengths changes the internal arrangement of
the helix.

Arbitrary atoms in Sculpt can be grouped into higher-level objects that facilitate movement
of secondary structures. Moving the object moves the atoms it contains according to a
programmable model. In a simple case, a translation of an object translates all of its atoms
the same amount. Two examples help illustrate applications and benefits of higher-level
objects. A chemist freezes the backbone of a helix, representing its atoms with a cylinder.
When the chemist tugs the cylinder, the backbone atoms within it move with the cylinder.
The sidechain atoms still interact with other atoms as usual, but the backbone atoms
maintain their relative orientations. In this example the atoms move exactly the same as the
rigid cylinder. A second application lets the chemist bend the cylinder (not yet
implemented). Now the backbone atoms further from the cylinder center move more than
those near the center. Mapping a change in cylinder parameters to a change in atom
positions is programmable. Discovering and then applying individual atom tugs that solve
the two examples is much more difficult and time-consuming than using groups.

This chapter discusses how a hierarchical model of protein structure, coupled with arbitrary
grouping of atoms within deformable objects, significantly improves the sculpting process.
The first section details some advantages, including enhanced user interaction and
performance. The second section lists conditions placed on grouped atoms. The third
section presents modifications of the algorithm and data structures described in previous

72

chapters. Grouping atoms eliminates variables and constraints. It also introduces new
variables that define the group and constraints that connect the group to the protein. The
third section also discusses how these changes affect the sparse matrix and complexity
analysis. The fourth section addresses how a non-bonded interaction between an atom in a
group and one outside a group is handled in Sculpt. Simply eliminating grouped atoms
from all non-bonded interactions lets grouped atoms move arbitrarily close to other atoms.
The concepts presented in this chapter that are not implemented in Sculpt are explicitly
noted.

1. Motivation

Sculpting proteins, like many assembly tasks, requires working with a model at multiple
levels of detail. Consider the steps in assembling an automobile. At one stage, a worker
stitches seat upholstery, and another puts screws into an alternator. At a later stage,
someone combines these objects by placing assembled seats into the passenger
compartment and the alternator onto the engine. At the final stage, quality control tightens
particular screws, though not necessarily all. This process requires multiple levels of
detail. Similarly, protein sculpting requires moving backbone atoms into a secondary
structure, orienting the structure relative to other assembled structures, and then adjusting
sidechain atoms for better fit between structures. At each stage of the process, a system
should only model what is important. Therefore, Sculpt may not need to model all the
atom positions individually while changing the relative position of secondary structures.

1.1 Hierarchy and groups

Sculpt maintains a hierarchical model of a protein's primary structure that is shown in
Figure 7.1. The figure shows a protein contains a sequence of residues that each contain a
backbone and a sidechain, each of which contains atoms.

A A A
AA ﬁmmm 9 om MM

A.
Figure 7.1: Protein hierarchy modeled in Sculpt.

Sculpt lets a chemist form arbitrary groups of atoms, though in practice, particular groups
prove more useful than others. A chemist can group any set of nodes in the structural tree

73

and all their children. A chemist can group a secondary structure by specifying each
residue in it. However, a future version of Sculpt will facilitate this common operation by
maintaining a data structure that keeps lists of residues that are in particular secondary
structures. Using these lists, a chemist will first specify the secondary structure and then
form a group with the entire structure or just its backbone. The system will then
automatically group nodes in the structural hierarchy. Figure 7.2 shows two illustrations
of a protein hierarchy with elements in a group represented with dashed lines. The top
figure shows grouped residues in different segments of the chain (for example, a group of
all the atoms in a sheet). The bottom figure shows a group composed of the backbone of a
continuous segment of residues (for example, a group of the backbone atoms in a helix).

] i g 3 | !’ ¥
e s .- Mmoo e
mﬁc.bou 0 AZA fHEKo A A NHEL0 Ao A i

fo\oods fo
MDA Mmﬁﬁ. M AN

(b)

Figure 7.2: Dashed lines illustrate two examples of atom groups: (a)
shows a group of nonadjacent residues; (b) shows a group
of adjacent backbone segments.

Creating the structural hierarchy and the lists of residues in secondary structures is specific
to proteins. The frequency of operations anticipated on secondary structures justifies
implementing the lists. The minimizer, however, only uses an application-independent
structural hierarchy whose leaves represent variables in the minimization (in this case, atom
positions). The minimizer is informed when sets of nodes in the hierarchy are grouped.
Therefore, creating the protein hierarchy is application-specific; using it is not.

%

Grouping atoms not only makes protein sculpting easier and more natural, it can also
dramatically improve system performance. The variables that define a group replace the
variables for atoms within it. Similarly, functions that connect a group to the protein

1.2 Performance improvement

74

replace functions that connect atoms within the group (bond lengths, angles, dihedral
angles, and hydrogen bonds; non-bonded interactions are discussed later). The number of
variables and functions introduced is smaller (usually much smaller) than the number
removed. For example, consider replacing a helix containing 194 backbone and sidechain
atoms and 561 bonded functions with a rigid cylinder. The group replaces 582 variables -
(three times the number of atoms) and 561 functions with 6 variables, representing position
and orientation, and 30 functions, connecting the cylinder to the rest of the protein. If one-
fourth of the functions in the protein model are defined within the helix, this grouping
yields a twenty-five percent improvement in performance. Section 3 discusses adding and
removing variables and constraints in greater detail.

Groups reduce the number of energy and constraint functions and the dimension of the
constraint matrix. In general this linearly decreases the evaluation time of the functions and
the solution time for the linear equations.

2. Requirements

2.1. When can atoms be grouped?

I place two requirements on atoms (elements) that are grouped. First, an atom can only
reside in one group at a time. This prevents ambiguity about which group moves the atom.
Second, atoms must be in an energy minimum when grouped. This prevents problems that
can occur when the atoms are released. Without the second requirement, one could freeze
atoms with a large repulsion among them by grouping them together. When the group is
released later, the repulsion would cause the atoms to fly apart.

2.2. Group representation

The minimization module requires that a group perform the following four operations.
First, a group must inform the minimizer how many variables define it. This lets the
minimizer allocate internal arrays to accommodate the new set of variables. Second, a
group must state the position of atoms within it. Third, a group must evaluate the
derivative of those atom positions with respect to the group's variables. Fourth, a group
must update its atom positions when the minimizer updates the group's variables. Rigid-
body movement of an object simply mags the same movement to the atoms. For example,
a translation of an object translates the atoms within it the same amount. However, the

change in atom positions that results from a general deformation (e.g. twisting a helix or
sheet) is not as obvious.

75

I implemented a rigid cylinder to represent the grouping of a helix. The cylinder axis is
aligned along the helix axis, and the length and radius are set to those in the helix. The
cylinder variables are a center and an orientation; the length and radius cannot vary.
Additional representations are subject of future work. In particular a deformable cylinder
could represent bending and twisting a helix, and a thin slab that twists like a piece of paper
could represent changing a B-sheet. Implementing deformable models requires addressing
two outstanding problems: deformations of geometric objects, which has been studied to
some extent in [Barr 1984] and [Sederberg 1986], and mapping geometric deformations to
valid changes in atom positions. Both subjects should offer fruitful research.

3. Groups change the set of variables and functions

3.1. Groups add new variables and functions

Groups introduce new variables to the protein model. The variables associated with a
fixed-length cylinder, for example, are the location of the center and the orientation of its
axis (the length and radius are initialized when created, but do not vary). The atom
positions within the group are defined on these variables. Consider the position of atom i
before and after it is grouped into a fixed-length cylinder. Before it is grouped, the position
is (x3i, X3i+1, X3i+2), assuming x3, represents the x-ordinate of atom k. After it is
grouped, the rigid cylinder defines the atom position. The position is defined by the
position and orientation of the cylinder plus a constant offset from a reference point within
the cylinder (e.g. the center of the cylinder axis).

Groups also introduce new constraint and energy functions that connect the group to the
protein. Assume a strand of backbone atoms, those between atoms i and j, are grouped
and represented with a cylinder. Since atom i is now defined by new variables (the
group's), a function defined with it and some atom outside the group now affects the
position and orientation of the group. Functions defined with atoms within the group and
atoms outside the group help keep a particular orientation of the group.

The minimization algorithm is not affected by the new variables and functions. Even
though the discussion of variables prior to this chapter concerned only the position
(cartesian coordinate) of atoms, the minimization algorithm is not restricted to them. The
minimization algorithm in Chapter 3 is based on a vector of variables, x, and a set of
functions defined on the variables. The minimizer uses derivatives of the functions with
respect to the variables, regardless of what they represent.

75

I implemented a rigid cylinder to represent the grouping of a helix. The cylinder axis is
aligned along the helix axis, and the length and radius are set to those in the helix. The
cylinder variables are a center and an orientation; the length and radius cannot vary.
Additional representations are subject of future work. In particular a deformable cylinder
could represent bending and twisting a helix, and a thin slab that twists like a piece of paper
could represent changing a B-sheet. Implementing deformable models requires addressing
two outstanding problems: deformations of geometric objects, which has been studied to
some extent in [Barr 1984] and [Sederberg 1986], and mapping geometric deformations to
valid changes in atom positions. Both subjects should offer fruitful research.

3. Groups change the set of variables and functions

3.1. Groups add new variables and functions

Groups introduce new variables to the protein model. The variables associated with a
fixed-length cylinder, for example, are the location of the center and the orientation of its
axis (the length and radius are initialized when created, but do not vary). The atom
positions within the group are defined on these variables. Consider the position of atom i
before and after it is grouped into a fixed-length cylinder. Before it is grouped, the position
is (x3i, X3i+1, X3i+2), assuming x3, represents the x-ordinate of atom k. After it is
grouped, the rigid cylinder defines the atom position. The position is defined by the
position and orientation of the cylinder plus a constant offset from a reference point within
the cylinder (e.g. the center of the cylinder axis).

Groups also introduce new constraint and energy functions that connect the group to the
protein. Assume a strand of backbone atoms, those between atoms i and j, are grouped
and represented with a cylinder. Since atom i is now defined by new variables (the
group's), a function defined with it and some atom outside the group now affects the
position and orientation of the group. Functions defined with atoms within the group and
atoms outside the group help keep a particular orientation of the group.

The minimization algorithm is not affected by the new variables and functions. Even
though the discussion of variables prior to this chapter concerned only the position
(cartesian coordinate) of atoms, the minimization algorithm is not restricted to them. The
minimization algorithm in Chapter 3 is based on a vector of variables, x, and a set of
functions defined on the variables. The minimizer uses derivatives of the functions with
respect to the variables, regardless of what they represent.

76

3.2. Groups remove variables and functions

Groups eliminate variables and constraints. Because a group solely determines the position
of its atoms, the variables representing the atoms' positions are discarded. All functions
defined entirely on those atoms are also removed.

3.3. Which constraints and variables must be removed and inserted?

The structural hierarchy shows the variables and functions that a group removes. If a node
is grouped (e.g. a residue), the variables of the atoms under it in the tree are removed.
Each node also contains the functions defined on the atoms under it. For example, a
backbone node contains the distance and angle functions defined among the peptide atoms
(N, H, Cg, C, O), and the sidechain node contains the functions defined on its atoms. The
residue node contains the functions that connect the backbone and sidechain, and the
protein node contains connections between the residues. Functions defined solely with
atoms in the same group are removed.

The tree also provides the new group and functions. Each node contains the object that
represents its elements when grouped (currently, a rigid cylinder). The functions that
connect the group to the protein are modifications of those functions defined with variables
both inside and outside the group. For example, consider the distance function modeling
the bond between the carbon in one residue and the nitrogen in the next. If the atoms in the
first residue are grouped together, the variables for the carbon atom are removed. The
distance function, however, is not removed. Instead it is redefined to reference a point
defined within the group (the carbon) and the original nitrogen. These redefinitions
connect the group to the rest of the protein.

3.4. Changes to the constraint matrix

Adding and removing constraints changes the structure of the constraint matrix (the
Jacobian transpose of the constraints). First, rows (constraints) and columns (variables)
are eliminated as a result of the preceding discussion. Second, new variables representing

a group are inserted. Third, rows representing redefined constraints are modified to refer
to the new variables.

The sparse-matrix data structure presented in Chapter 5 facilitates fast insertion and deletion
of rows and columns. The structure stores row and column indices in headers rather than
in matrix elements to reduce the computation for inserting and removing rows and columns
(see Figure 5.6).

77

In practice many groups contain continuous segments of backbone and sidechains (e.g.
atoms in a helix reside in a continuous sequence of residues). The new variables are
inserted into the gap left by removed variables. The number of variables in a group is
smaller than the number of variables it replaces. This reduces the span of the rows in the
Jacobian transpose and the number of operations in the matrix multiplication. Most
importantly, groups eliminate constraints. This reduction yields fewer linear equations
which in general reduces the computational bottleneck in Sculpt, the solution of linear
equations.

The drawback of groups is possible increased bandwidth in the linear equations. The
matrix bandwidth (defined in Chapter 5) increases linearly with the maximum number of
constraints that reference any variable. This, in turn, increases with the cube of the number
of distance constraints defined on any variable (see Section 2.1 of Chapter 5). In proteins
the maximum number of distance constraints that reference the same variable is four—at
most four atoms can bond to any atom. In groups, however, if ¢ bonds connect to a
group, then ¢ length constraints reference the group's variables. The linear complexity
analysis still holds when a group is added to the model (assuming the group is not
connected to all the other atoms). However, the system performance may not improve if
many atoms bond to the group and few constraints are removed from the model. Keep in
mind that the computational complexity increases with the square of the bandwidth, which
in turn increases with the cube of the number of connections.

Groups are commonly used to model the atoms in both the backbone and sidechains of a

helix and the atoms in just the backbone of a helix. The first case only slightly increases

the matrix bandwidth. Only atoms at the two ends of the helix connect to the group. At

most three atoms not in the group can connect to each of the two ends. The second case

can significantly increase the bandwidth. A helix can commonly have ten to twentyv
residues. Grouping only the backbone atoms requires connections for each of the

sidechains and both ends. Chapter 9 lists performance results for both cases.

4. Non-bonded interactions

Eliminating all the non-bonded interactions among atoms that are grouped and those not
grouped allows inaccuracies. This lets atoms in a group move arbitrarily close to other
atoms in a protein. Assume the atoms in a helix are grouped and then moved into the
middle of another structure. Without the van der Waals repulsion modeled, this is not

78

prevented. When the atoms are freed, the van der Waals repulsion among the atoms in the
helix and the other atoms explodes the protein.

Sculpt prevents this by treating non-bonded interactions the same as bonded interactions:
those defined solely between atoms in the same group are removed, and those defined
between an atom inside and an atom outside a group are calculated. Since the atoms in a
group are defined on the group's variables, a non-bonded interaction with the atom actually
affects the group rather than the atom. Using this approach, the previous problem is
avoided. As one moves the helix near another atom, the atoms begin to repel one another.
The repulsion is applied to the helix and thus prevents it from interpenetrating the other
structure.

Chapter 8
System Description

This chapter describes the implementation of the Sculpt system. The chapter describes the
user interface and graphical display presented to a user. The system implementation
consists of three modules: user interface, display, and minimizer (as described in
Chapter 3). The chapter outlines their communication and function. Implementation
details particularly relevant to the research and the sculpting system are presented. The
input file that specifies a protein and its bonds is described. The input file consists of a list
~ of points representirig atoms and connections among them. Though the primary application
is protein sculpting, only a small percentage of the code and input file is specific o
proteins. Chapter 9 presents a user session and performance results.

Sculpt runs on a Silicon Graphics 240-GTXB [Akeley 1988]. This machine contains four
general-purpose, MIPS R3000 processors that run at 25 MHz. Sculpt uses shared
memory for multi-processing communication. Sculpt mainly uses the vector-rendering
capability of the machine. The machine renders 400,000, 10 pixel, depth-cued, z-buffered
vectors per second [Akeley 1988]. The machine also renders trzinsparent polygons using
alpha blending [Porter 1984]. Timing results presented in this dissertation are based on
this system. The system also runs on Silicon Graphics XY0 architectures where X
represents the two-, three-, or four-hundred family of processors and Y represents the
number of processors.

1. User interface and display

1.1. Workstation configuration and basic display

The system displays covalent bonds with colored, depth-cued vectors. Figures 8.1
and 8.2 show photographs of the Felix protein displayed by Sculpt. Both figures show
the backbone bonds with cyan vectors. Figure 8.2 also shows the sidechain bonds (gray
vectors) and marks the sulfur atoms (yellow tetrahedrons). The system differentiates two
bonds in each peptide along the backbone: the C-O bond is red, and the N-H bond is
brown. Notice that the backbone winds through four helices in this protein. Hydrogen

80

bonds in each helix are displayed as purple vectors connecting the oxygen of the C-O and
the hydrogen of the N-H.

Figure 8.1: Photo of Sculpt display using the Felix protein. Vectors
represent bonds in the protein's backbone.

The workstation consists of a liquid-crystal stereo plate attached to a monitor, a keyboard, a
mouse, and a dialbox. The graphics are displayed in stereo to provide better three-
dimensional cues. The dials rotate, translate, and scale the model. The mouse duplicates
these transformations in case a dialbox is not available. Pop-up menus let a chemist toggle
graphics parameters such as antialiasing, stereo, depth-cueing, and visibility of objects
(e.g. sidechains and tetrahedrons). Menus also let a chemist toggle the modeling of non-
bonded interactions and hydrogen bonds within the minimization.

1.2. Tugging atoms

A chemist moves an atom by first picking and then tugging it in a desired direction.
Picking is done by placing the cursor over an atom and pressing the left mouse button. The
system picks the atom nearest a ray shot beneath the cursor, perpendicular to the screen.

81

Pressing a particular key on the keyboard indicates that the pick begins an atom tug (other
keys specify display of text or other items at the atom). Subsequent movement of the
mouse moves the cursor in a plane parallel to the screen (rotating the model gives different
planes through the model). This moves one end of a spring attached between the cursor
and the atom (refer to Section 1 in Chapter 5). The system displays a gold coil that
stretches along with the spring. The constrained energy minimizer runs as the chemist
moves the spring. This moves the atoms, which are subsequently displayed.

When one releases the left mouse button during a tug, Sculpt leaves the spring attached to
the current position, but no longer associates mouse movements with the spring. A gold-
colored nail marks the position (refer to Figure 8.2). A chemist can now tug another atom.
Releasing the key that enabled tugging removes all the springs. Figure 8.2 shows the
previous model with multiple springs attached.

Figure 8.2: Photo of Sculpt display with tugged atoms. Gold coils
show tugs between atoms and fixed positions in space
(marked with a thumbtack). Cyan vectors show backbone
bonds; gray vectors show sidechain bonds.

82

Often a user runs the minimizer for multiple steps without tugging an atom to a new
position. This is done by either increasing the number of iterations taken in the
minimization algorithm or by picking an atom and wiggling the cursor a small amount. In
the latter approach Sculpt places a tug on the atom and runs the minimizer each time the
cursor moves. Though the minimizer stays near a local constrained minimum, this
operation lets the minimizer further settle into the minimum. This approach is most
frequent when a user turns on van der Waals interactions after making drastic structural
changes without the interactions modeled. The atoms move to reduce the strong repulsions
as the user wiggles an atom. This is quite interesting to watch using the visualization
described next.

1.3. Visualization of non-bonded interactions

Non-bonded interaction plays an important role in protein sculpting because a chemist
typically wants tight-fitting contacts among internal sidechains. Unfortunately, non-
bonded interaction is not as simple to display as a covalent bond. Figure 2.14 in
Chapter 2 plots the van der Waals potential between two atoms that Sculpt models. The
figure shows that an attractive (negative) potential energy appears between two atoms
separated by 3.24 Angstroms. As their separation decreases, the magnitude of the
attraction increases nonlinearly until it reaches a maximum at an ideal separation. Further
decreases in the separation increase the energy nonlinearly, but at a different rate than
before. A small decrease from the ideal separation just diminishes the attraction; a greater
decrease causes a repulsive (positive) energy. A useful display of non-bonded interactions
should convey attractions, repulsions, their magnitudes, and the ideal separation.

My first attempt at showing non-bonded interactions displayed a sphere at each atom with
its ideal (van der Waals) radius. I used wireframe spheres to reduce the occlusion
introduced by the new objects. Intersecting spheres indicated repulsion and nearby spheres
implied attraction. However, this technique did not indicate the magnitude of an attractive
or repulsive energy. Also the spheres cluttered the display without significantly increasing
the content.

Sculpt displays van der Waals interactions that have an energy magnitude greater than a
user-defined threshold. A partial spherical shell is placed around both of the interacting
atoms and aligned along a vector between them (see Figure 8.3). Currently a shell with a
solid angle of 0.4 7 steradians (ten percent coverage) represents the weakest interaction.
Solid angle increases with the .magnitudc of the interaction. Weak interactions are

83

represented by dot spheres, and strong interactions are represented by wireframe spheres.
A dot-sphere indicates that an interaction exists without distracting the user and consuming

as much screen space as the wireframe sphere. Blue denotes attraction, and red denotes
repulsion.

Figure 8.3 illustrates this visualization on a small model. Notice the wireframe shells
around the two atoms labeled with text (one in the planar ring and the other in the
backbone). Interpenetrating shells crush flat rather than intersecting so that the vectors in
the two shells do not interfere visually. Intersecting wireframe shells are difficult to
associate with their respective atoms.

Figure 8.3: Photo of Sculpt display with shells illustrating non-
bonded interactions. Shell coverage increases with

interaction strength. Blue denotes attraction and red
denotes repulsion.

1.4. Groups

The current version of Sculpt allows specification of groups only at initialization, through
the input file discussed in Section 3. This reduced the development effort in the user

84

interface, but future versions will allow on-the-fly creation of groups. The minimizer does
handle groups and functions defined on atoms within groups. The sparse-matrix data
structure correctly adds and removes rows and columns. Figure 8.4 shows two purple,
translucent cylinders surrounding the backbone of the second and third helices in Felix.

Each cylinder denotes a group of atoms. I use translucent objects to reduce occlusion of
the model.

Figure 8.4: Photo of Sculpt display with two helices grouped into
rigid cylinders. A translucent purple cylinder represents
each group.

2. System structure

Sculpt contains display, user interface, and minimization modules. Figure 8.5 shows the
main communication paths among the modules. The user interface module monitors user
actions (e.g. view rotations or atom tugs). Most user actions modify display parameters.
Beginning, ending, and moving a tug, however, cause the user interface to invoke the
minimizer. A minimization then executes, and the minimizer module passes the new

coordinates to the display module. The minimizer also adds and removes some graphical

85

objects (e.g. shells). More details about the minimizer's implementation are given in
Chapters 5 and 6.

Display

Figure 8.5: System architecture contains three modules. Arrows show
main communication paths between the modules.

Sculpt is written in C++ version 2.0 [Stroustrup 1986]. The system contains
" approximately 28,500 lines of code divided as follows among the modules: 5,000 lines in
the user interface, 5,700 lines in the display, 16,300 lines in the minimizer, and 1,500 lines
in general-purpose routines. The only code specific to proteins or molecules consists of
1,000 lines of C++. The protein-specific code builds and traverses the hierarchical tree
used in groups.

The minimizer uses a linear equation solver from the Harwell Sparse Matrix Library
[Harwell 1988]. The package reduced system development effort and provides very stable
equation solving. The linear equation package uses a direct Gaussian elimination with
partial pivoting based on [Duff 1983]. Two routines are used to solve the linear equations.
The first determines a pivot strategy based on the sparsity structure (location of nonzero
elements) of the matrix. That routine is only called when the sparsity structure changes,
which is at program initialization and group creation. The second routine uses this pivot
strategy to solve the system of equations.

3. Input file

This section describes the input file that specifies the initial location of the points (atoms)
and the topology of the model. The file lists the functions defined on the points. Each
function contains an ideal value and an energy constant. Figure 8.6 shows an actual input
file that specifies one glutamate residue (also drawn in the figure). An input file contains
four parts: points, groups (not shown), bonded functions, and non-bonded functions.
Only a small, optional section of the file is protein-specific. Text within /* ... */ are
comments ignored by Sculpt. Each component in the file is described next.

86

points
/* id: (xy 2z) atm res resé class */
0: (=5.36438 -0.06433 ~11.4652) n qlu 3 0:

1: (=5.17301 -8.60105 -12.287) hn glu
2: (=5.34536 -8.84922 -10.222) ca gqlu
3: (=-5.12422 -10.3299 -10.5392) cb gqlu
4: (-5.91854 -11.2423 -9.60156) cg glu
S: (=5.58754 =10.9816 -6.13032) cd gqglu
6: (=6.39143 ~10.3493 -7.4115) oe2 glu
7: (=4.49645 -11.3672 =7.65743) ocel glu
8: (=4.24038 -8.34169 -9.29501) ¢ glu
9: (=4.24234 -8.60932 -8.08375) o glu
endpoints

VWWWLRWULWWLW
L R X
e e %e %o %o Se Se v %o

/eswsnsnsnnavanss Bonded functions °*eeessessnsnen/
function distance
/* dist (AB) ideal forceConst */

01 1.00 895; /*n hn */
0 2) 1.47 760: /*n ca */
23 1.53 600; /* cacd */
(3 4) 1.53 600; /* cbecg */
49 1.53 600; /* cged */
(S 6) 1.25 1300: /* cd oe2 */
(s 1.25 1300: /* cd oel */
29 1.53 740: /*cac */
(s 9) 1.24 1390 /*c o */
endfunction

function angle

/* angle(ABC) {d;:; tore-c=n7t ./ raadW
(2 1) . 88; *ca n o
(320 1.920 112; /* cb can °/ Glutamate
(820) 1.920 112;: /* ¢ can */
(8 2 3) 1.919 112; /* ¢ cacbh */
432 1.955 112; /* cg cbca */
(S 4 3) 1.955 115; /* cd cgcb */
(6 5 4) 2.094 120; /* oce2 cd cg */
(75 4) 2.094 120; /® oel cd cg */
(75 6) 2.094 120: /* oel cd oce2 */
(982 2.112 124; /* o c ca */

endfunction

function dihedral /* fixed dihedral angle */
/* angle(ABCD) ideal forceConst mult */

(754 6) 3.142 20.5 1; /* oel cd cg ce2 */
endkill

function dihedral /* multiple dihedral angle */
/* angle(ABCD) ideal forceConst mult */

(0234) 3.142 2.8 3; /*n cacbcg */

(2345 3.142 2.8 3; /*cacbcgecd */

(3457 1.5 0.6 6: /* cb cqg cd oel */
endfunction

/'-t.t-!l't.t' Non-bonded int.z.ction. "-l.'t../

function waal

/* class A
0:

24.1284 635.4727: /*n */
1: 0.0000 ° 0.0000: /* hn */
2: 54.6507 4140.3486: /* ca */
3: 23.6445 897.9717; /* c */
4: 23.2485 420.8784: /* o */
S: 46.6241 2905.5764: /* cb */
6:

46.6241 2905.5764: /* cg */

7: 23.6445 897.9717: /* cd */

8: 23,2485 421.3672: /* oce2 */

9: 23.2485 421.3672: /* ocel */
endfunction

Figure 8.6: Input file specifying atom positions and functions defined
among them for a glutamate residue.

3.1. Points

The first part of the input lists the points (atoms in this application) that represent the
variables of the model. Each line within the points ... endpoints structure lists a different
point. The format of the line is one of the three listed in Figure 8.7. The first line in the
figure gives the minimal information: an identifier (usually an atom number) used for later
reference and a three-dimensional cartesian coordinate. The second and third lines list
protein-specific information: atom name, residue name, and residue number. This
information is used to create the structural hierarchy and to display information about the
point when requested. The third format in the figure contains an additional field that
associates the atom with a class of atoms. Functions modeling non-bonded interaction
(discussed in Section 3.3) use this classification.

87

id: (real real real);

id: (real real real) atom_name residue_name residue_number;

id: (real real real) atom_name residue_name residue_number atom_class;
Figure 8.7: Three formats for a point in the Sculpt input.

3.2. Bonded functions

Each line within a function ... endfunction structure lists the parameters of a specific
function. Figure 8.8 lists the syntax for the bonded functions. Valid values of
Jfunction_type for bonded functions are distance, angle, or dihedral angle. Optional_name
identifies the set of functions for user reference (e.g. to turn off modeling or toggle
between energy and constraint models). Each function is defined on the points given in
id_list whose length depends on the function type (e.g. id_list contains idl id2 id3 if
function_type is angle). The ideal_value and spring_constant fields are used for the
mathematical model of the function. The system ignores spring_constant if the function is
constrained.

function function_type name
(id_list) ideal_value spring_constant;
(id_list) ideal_value spring_constant;

(id_list) ideal_value spring_constant;
endfunction

Figure 8.8: Grammar for a set of bonded functions in the Sculpt input.

3.2.1. Dihedral angle

The dihedral angle requires an additional field before the semicolon that specifies the
multiplicity of the angle (number of ideal angles). The ideal_value serves as the first, or
reference, ideal angle. Figure 8.6 separates the dihedral angles into the fixed (single-
value) dihedral angles and the multiple dihedral angles.

3.2.2. Hydrogen bond

A hydrogen bond is specified with a distance and an angle function in the input file.
Consider a hydrogen bond formed between the oxygen of a C-O bond and the hydrogen of
a N-H bond. The input file requires a distance function defined on the O and H atoms and
an angle function defined between the O, N, and H atoms. Figure 8.6 does not }ist
hydrogen bonds because the residue does not contain any.

88

3.3. Non-bonded functions

Van der Waals interaction is specified in the input file with the function waal ...
endfunction structure. Each line in the structure contains information for a class of atoms
(refer to Section 3.1). The first field states the atom_class for the line. The remaining
fields give constants used in the Lennard-Jones model (the A and B terms [Schulz 1979]
used in most molecular modeling systems). The constants are intended for the 6-12
Lennard-Jones model. Sculpt converts them into parameters for its model of van der Waals
interaction.

3.4. Groups

The input file contains a section, not shown in Figure 8.6, that specifies groups. The
specification states the atoms in a group and the type of group that represents them. The
left box in Figure 8.9 shows the grammar for a group; the right box shows one particular
instantiation. The list from_id to to_id specifies the identifiers of the points in the group.
The right box groups all the points between identifiers 220 and 343. The right box uses the
cylinder to group the atoms. Each end of the cylinder is initialized by averaging the
coordinates of the points referenced in index(...) (e.g. one endpoint is the average of the
positions with identifiers 214, 224, 233, and 239).

group
from_idl to to_idl group
from_id2 to to_id2 220 to 343
into
cylinder
KA : index (214 224 233 239)
SEONCAME 5o Sagaee index (317 326 335 348)
endcylinder
into
endgroup
particular_group
endgroup

Figure 8.9: The left box shows the grammar for specifying a group.
The right box shows the atoms of a helix grouped into a
cylinder.

3.5. Summary of input

This input format is not specific to the protein application. This lets one medel articulated
figures with Sculpt by specifying a list of points with functions defined among them. This
also lets a chemist choose the ideal values and energy constants used in the protein model.
For more practical use with molecular modeling, a pre-processor is needed that transforms
a common protein file format into Sculpt’s input file format. Such a program could input a

89

list of residues and the initial atom positions and output the functions describing the bond
topology.

Chapter 9
User Session and System Performance

The chapter describes a modeling session in which a biochemist used Sculpt to make large
structural changes to an existing protein model. The chemist at first used rigid bodies to
move helices large distances and later modeled all the atoms (without rigid bodies) during
subsequent fine-tuning. The chapter surveys the goals of the modeling operations and
several attempted strategies for achieving them. The chapter presents the chemist's
perceived contributions of Sculpt in molecular modeling; a separate paper [Surles 1992] is
included in the Appendix that describes two other modeling sessions with Sculpt that are
not as complex as the one described here. This chapter concludes with performance results
based on data with and without rigid bodies from the session. The performance on several
other data sets shows the linear decrease in performance as protein size increases.

1. A Sculpt session

Professors David C. and Jane S. Richardson of Duke University's Biochemistry
Department originally conceived a system that would let a user interactively sculpt proteins.
As members of my doctoral committee, they continually guided my research and Sculpt’s
development. They redesigned a protein model with a prototype version of Scuipt.

1.1. Problem

The problem involved large changes to the structure of the Felix protein. The Felix model
contains seven hundred sixty atoms in seventy-nine residues that wind through four helices
(refer to Figure 2.5 in Chapter 2 for a hand drawing of its backbone). The schematics in
Figure 9.1 show end-views of the helices before (left), during (middle), and after (right)
the session. The inner circle represents the backbone of the four helices (labeled A, B, C,
and D). The line segments attached to the backbone illustrate the sidechains. For clarity
the sidechains in the four helices are separated more than in the actual protein. Th¥
direction of the backbone is marked with arrow heads (¢) and tails (X); a head means the
backbone winds out of the page and a tail means the backbone winds into the page. The
backbone begins in the page at the bottom of helix A, winds out of the page in helix A and
crosses to helix B. This continues until the backbone winds into the page in helix D.

91

Flgnre 9.1: Change in hehx onentatlons during session.

The pointed and rounded divots and extrusions indicate the orientation change between the
initial and final models. Three operations change the model from the original to the final
orientation. First, unwind (counter clockwise) helix A ninety- degrees and wind
(clockwise) helix B ninety degrees (similar to unrolling a scroll). Second, unwind
(counter clockwise) helix C ninety degrees and wind (clockwise) helix D ninety degrees.
The middle figure shows this intermediate stage. Third, translate helices C and D to the
left. The third step reverses the left and right pairs of helices.

Three additional restrictions are placed on the structural changes allowed in the helices.
The main helical structures cannot change. The backbone at the ends of the helices must
have valid bond geometry. The sidechains between helices must have tight, but valid,
packing.

The reason such large changes are needed is that in doing de novo design of proteins it is
just as important to do negative design that avoids major alternative structures as it is to do
positive design for the desired arrangement. The transformation done here is between the
two major alternative arrangements of a four-helix bundle such as Felix.

1.2. Attempted solutions

Professor Jane S. Richardson (subsequently referred to as JSR) tried to solve this
modeling problem with these four strategies: (1) model all the atoms using only atom tugs
to change the structure, (2) first rotate the helices with rigid bodies and then model all the
atoms, (3) automatically rotate the helices and let Sculpt automatically movc‘thc atoms so
that the constraints are not violated, and (4) disconnect the segments between the helices
before automatically rotating them and then let JSR reattach the segments while Sculpt
maintains valid properties within the segments. The final approach worked the best. The

92

remainder of this section describes in greater detail the four strategies and their problems.
It concludes with photographs of the resulting structure.

1.2.1. Model all atoms throughout the session

JSR first tried to rotate each helix by tugging individual atoms. She rotated two of the
helices in approximately one hour. However, this approach had two drawbacks. First,
she often changed the conformation of a helix by tugging an atom too much. Second, the
method was frustratingly slow. During this session she used a model that only contained
two helices. On the full Felix model Sculpt requires approximately 1.2 seconds per update.
Given enough patience JSR probably could have completed the entire modeling task using
this strategy. However, we decided to try strategies that rotated the helices as rigid
structures, both for convenience and to keep their geometry ideal.

1.2.2. Rotate helices with the rigid bodies

With the second strategy JSR modeled the atoms in each helix with a rigid body and
explicitly modeled the atoms in segments connecting the helices. There was very little slack
in the segment connecting the helices, so she rotated each helix by approximately ten
degrees at a time (similar to unrolling a scroll).

We believe the rigid body strategy failed for two reasons. First, helix B and C were
overconstrained. Both of the helices had constraints defined on bonds that connected to the
helix at the top and at the bottom. A helix would oscillate back and forth when JSR tried
turning it. Eventually, the helix would turn easily. We believe the oscillation shifted
residues in the segments attached at each end until a degree of freedom appeared.

Sometimes, when a helix eventually moved freely, it did not go in quite the intended
direction.

The second reason for the failure of rigid bodies is a poor implementation. Sculpt ignored
some of the constraints on atoms bonded to the rigid body. JSR would manually move the

atoms so that the constraints were satisfied, but in subsequent iterations Sculpt would
violate them.

1.2.3. Automatic repair after automatic rotations

In the final two strategies JSR let Sculpt initially move each helix to its goal position and
orientation without modeling any constraints or energies! After this automatic step, many
of the bonds and angles were extremely far from their ideal value. The problem now

93

remained of how to adjust the residues in the connecting segments and in the first and last
turn of each helix so that the model was physically realistic.

JSR first tried unsuccessfully to see if Sculpt would automatically move the atoms into
positions that satisfied the constraints. However, the initial state of the model violated a
principle assumption from Chapter 3—the constraints are satisfied, or nearly satisfied, at
the start of each constrained minimization. Sculpt tended to distribute the large error in a
few constraints into small errors in all the constraints. Sculpt never did bring the model
back to a state with all the constraints satisfied.

1.2.4. Manual repair after automatic rotations

The strategy that ultimately succeeded used the manual positioning strategy (Section 1.2.1)
after an initial, automatic movement of the helices (Section 1.2.3). We divided the model
into four pieces: helix A with the connecting segment from A to B, helix B, helix C with
the segments from B to C and from C to D, and helix D. Sculpt automatically positioned
each of the four pieces. JSR tugged each of the three segments back to join its unconnected
helix (e.g. moved the segment between A and B back to join B). During this part of the
session, Sculpt modeled the constraints and energies in the segment and kept the helices
fixed in space. Once JSR believed the segment end was close enough to the unconnected
helix, she had Sculpt insert springs that pulled the final peptide into its proper position in
the helix. Positioning each segment required approximately an hour and ended with a
reasonably satisfactory model.

Next we combined the coordinates from the four pieces and ran Sculpt on the new Felix
model. JSR repositioned many internal sidechains before turning on the van der Waals
interactions. At that stage the model contained hundreds of atoms with overlapping
electron shells. JSR let Sculpt resolve these contacts in batch mode. The session resulted
in a complete three-dimensional model of Felix in this alternative folding pattern. This new
model can now be used as the starting point for redesign.

1.3. The resulting model

Figures 9.2 and 9.3 show photographs of the Felix backbone before and after the session.
The helices are numbered in clockwise order beginning in the lower-left corner in
Figure 9.2 and in <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>