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ABSTRACT 

This thesis describes a graphics modeling system, called Sculpt, that maintains physically­
valid protein properties while a user interactively moves atoms in a protein model. Sculpt 
models strong properties such as bond lengths and angles with rigid constraints and models 
weak properties such as near-neighbor interactions with potential energies. Sculpt 
continually satisfies the constraints and maintains a local energy minimum throughout user 
interaction. On a Silicon Graphics 240-GTX, Sculpt maintains 1.5 updates per second on 
a molecular model with 355 atoms (1065 variables, 1027 constraints, and 3450 potential 
energies) . . Performance decreases linearly with increased molecule size. Three techniques 
yield interactive performance: a constrained minimization algorithm with linear complexity 
in problem size, coarse-grain parallelism, and variable reduction that replaces model 
segments with rigid bodies. 

The thesis presents a Lagrange multiplier method that fmds a constrained minimum and 
achieves linear computational complexity for articulated fi~s whose spine contains many 
more joints than any attached limb (e.g. reptiles, mammals, and proteins). The method 
computes the Jacobian matrix of the constraint functions, multiplies it by its transpose, and 
solves the resulting system of equations. A sort of the Jacobian at program initialization 
yields a constant, band-diagonal pattern of nonzeros. Multiplication and solution of band­
diagonal matrices require computation that increases linearly with problem size. One or 
two iterations of this algorithm typically find a constrained minimum in this application. 

The number of functions and variables can be reduced by the use of rigid bodies. A user 
can specify that a rigid object with few variables replace large segments of a model that 
should not change. For example, a user can twist a backbone into a helix and then freeze 
the helix by replacing its atoms and bonds with a cylinder of rigid shape but movable 
position and orientation. 

Two improvements over existing interactive protein modeling systems have been observed 
in modeling sessions with Sculpt. First, time-consuming model correction is avoided by \ 
maintaining a physically-valid model throughout a modeling session. Second, additional 
cues about model properties can arise when a chemist interactively guides a folding 
simulation rather than viewing a cine loop from a pre-computed simulation. 
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Chapter 1 
Introduction 

This dissertation examines techniques for enabling high-end graphics workstations to 

maintain basic physical properties of a protein model while a chemist interactively changes 

the model's structure. I combine constrained minimization, parallel processing, an 

approximation of protein properties, and a method for reduction of variables into a 

prototype system that maintains one update per second on a Silicon Graphics 240-GTX as 

a chemist moves atoms in an eight-hundred atom model. The computational model in this 

research narrows the gap between interactive graphical modeling based on purely 

geometrical operations and batch modeling based on simulation of physical properties. 

This research makes a step towards including modeling of physical properties in interactive 

computer graphics. Within the last ten years a trend in computer graphics has been to 

increase scene realism by using physically-based models. Animators use physically-based 

modeling to create realistic, detailed behavior. Most animations generated with physically­

based modeling, to date, required minutes to hours of computation for each frame. This 

large computation time has kept physically-based modeling out of interactive graphics 

systems except with small, simple models. 

As a goal, I sought to build a modeling system that maintains marginal interactivity (one to 

three updates per second) with real chemical modeling tasks and whose computation 

increases linearly with model size. I constrain stiff properties such as bond lengths rather 

than model their potential energy. An algorithm that maintains these constraints while 

minimizing the energy in the rest of the model can make much large\steps per iteration than 

an algorithm without constraints that minimizes the energy in the entire model. However, 

the algorithm must satisfy the constraints (a set of nonlinear equality functions) on each 

iteration. In order to solve these efficiently I only allow constraints among atoms reached 

by traversing one, two, or three bonds (no such restriction is placed on energy functions). 
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This propeny yields a banded system of equations. Solving this requires time linearly 

proportional to the number of atoms rather than cubically proportional, as would be 

required if arbitrary atoms appear in the same constraint 

1. Problem description 
A protein, to a first approximation, contains fixed bond lengths, bond angles, and planar 

segments. Figure 1.1 shows three sequential segments (peptides) in a protein with vectors 

representing bonds between atoms and gray areas denoting planar regions. The only 

degrees of freedom in the figure are rotations between the planar segments (shown with 
arrows about the N-C11 and Ca-C bonds). A linear sequence of the segments comprise the 

protein backbone. Attached to the atom between each segment (Ca} are sidechains (not 

shown) with additional fixed length and angle properties, and often additional allowable 

rotations. The sidechains are short relative to the backbone (up to eighteen atoms versus 

hundreds to thousands of atoms). 

Figure 1.1: Three planar segments of a protein backbone. 

Proteins also contain attractions and repulsions between non-bonded atoms (points without 

connecting vectors). Attractions hold nearby atoms together, whereas repulsions maintain 

a minimal separation defined by the atoms' electron sbflls. Figure 1.1 shows near-ideal 

separation between H and 0 atoms with adjacent circles (ideally, the circles should be 

tangent). If two circles overlap, their atoms repel each other, otherwise, they attract. This 

is called a van der Waals interaction. 
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Chemists build and change molecular models with interactive molecular modeling systems 

such as Sybyl [Tripos 1988], Quanta [Polygen 1991], and Insight [Biosym 1991]. A 

chemist usually changes the backbone conformation in these systems by rotating the 
segments about the N-Ca and Ca-C bonds. This prevents changes in the bond lengths and 

angles in the segments. However, adjusting an interior segment with this method often 

requires numerous rotations, since even a small rotation moves all the atoms further along 

the backbone. Thus ~chieving a desired interior adjustment is an inverse-kinematics 

problem with perhaps hundreds of joints. Additionally, interactive systems do not maintain 

proper non-bonded atom separations during a modeling session. A chemist must return a 

protein to physically-valid geometry by either laborious manual adjustments using these 

rotations, or by batch energy minimization. Batch minimization automates model repair but 

often changes the model differently than the user desires. 

Professor David Richardson of the Duke University Department of Biochemistry posed the 

driving problem in this research, called protein sculpting: let a chemist manipulate a 

graphical representation of a protein while the model simultaneously mimics fundamental 

behaviors in the real protein. 

2. Thesis and demonstration 

The thesis of this dissertation is that current, high-end graphic workstations with multiple 

processors can interactively maintain physically-valid protein properties by combining the 

following: 

1. a constrained minimization algorithm that converges rapidly and scales linearly 

with protein size; 

2. parallel and concurrent execution of the constrained minimization algorithm; 

3. hierarchical models that reduce the number of variables by exploiting inherent rigid 

substructure. 

I demonstrate the validity of this thesis in two ways. First I demonstrate the proof of 

concept through a graphical modeling system, called Sculpt, based on these techniques. 

Sculpt lets a user move any atom by first attaching a symbolic spring between it and the 

cursor and then dragging the cursor in the desired direction. Throughout the dragging 

process, Sculpt polls the cursor position and adds the strain energy of that spring to the 

potential energy modeled among bonded and non-bonded atoms in the protein. Sculpt then 
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finds a local minimum of the new total energy that also maintains rigid bond lengths, 

angles, and planar segments (Section 3 details the protein model). Lastly, Sculpt displays 

the results. Figure 1.2 shows a photograph of a Sculpt session with depth-cued vectors 

representing bonds between atoms; cyan denotes the central backbone, and gray denotes 

sidechains connected to the backbone. The backbone winds through four helices. Each 

gold coil shows a spring left by a user that pulls an atom towards the three-dimensional 

position marked with the gold thumbtack. Figure 1.2 shows a medium-size protein, called 

Felix [Hecht 1990], with 760 atoms. The model contains 2205 rigid constraints (bond 

length, angle, and others) and approximately 8030 energy functions (attraction, repulsion, 

and others). On a four processor Silicon Graphics 240-GTX, Sculpt maintains 0.8 updates 

per second with this model. 

Figure 1.2: Photograph or a Sculpt session. 

Second I prove the computation in the constrained minimization algorithm increases linearly 

with model size. In this application I assume atom positions in a protein model at local 
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energy minima arc more important than the dynamics of the atoms for reaching the minima. 

This assumption lets Sculpt minimize strain energy in the model rather than simulate model 

dynamics. The time steps in the algorithm arc large enough for interactive performance on 

medium-size protein models. The algorithm also has linear complexity when used with 

other applications (e.g. articulated figures) that have more joints in the spine than in any 

limb. An additional benefit of the algorithm is that most of its steps can execute in parallel. 

The remainder of this chapter surveys the protein model, algorithms, analysis, and 

performance that are described in detail in the subsequent chapters. The following list 

summarizes the contents of Chapters 2 through 10. 

Chapter 2 describes protein properties and how I model them. 

Chapter 3 describes algorithms for finding unconstrained and constrained minima. 

Chapter 4 

Chapter 5 

surveys related molecular modeling and computer graphics systems. 

proves the number of operations in the constrained minimization algorithm 

increases linearly as the number of atoms in the model increases . 

Chapter 6 analyzes the steps in the algorithm that can execute in parallel. 

Chapter 7 describes a method that reduces the number of variables by combining 

atoms into rigid bodies. 

Chapter 8 discusses important implementation details. 

Chapter 9 describes a user session and perfonnance results from the session. 

Chapter 10 concludes with a discussion of future research. 

3. Protein model 
The protein properties addressed in this research are listed in the center column of 

Figure 1.3 and described in Chapter 2. The left column separates the properties into 

bonded and non-bonded categories. Each bonded property is defined throughout a 

modeling session; Sculpt does not model breaking and forming bonds. The non-bonded 

properties include the attractive and repulsive van der Waals interaction discussed in 

Section 1, electrostatic interactions, and solvent interaction. Non-bonded properties are 

\ applied to atoms within a given radius of each other. As atoms move, the pair-wise 

interactions change. Electrostatic interactions and solvent interaction are not currently 

implemented in Sculpt because they seriously degrade performance; the linearity of the 

minimization algorithm, however, still holds. For simplicity of implementation I specify 

the hydrogen bonds at program initialization. Hydrogen bonds are actually weak 
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attractions between certain nearby, non-bonded atoms. A future version will model 

hydrogen bonds between atoms within a given radius of each other. 

Property type Protein Property Mathematical Model 

{-~p } Constrained to 
Bonded Bond angle 

ideal value 
Fixed dihedral angle 

V ariablc dihedral angle } Spring energy from 
Hydrogen bond nearest ideal value 

{ Vander Waals potential } 4-8 Leonard-Jones potential 
Non-bonded Electrostatic charge } Coulomb potential (not implemented) 

Solvent intemction } -Not treated 

Figure 1.3: Protein properties addressed in this research. 

The right column in Figure 1.3 divides the computational model of each property into 

constraints and energies. A constraint requires the value of a function equal some ideal 

value. An energy (or restraint) imposes a penalty as a function value varies from its ideal 

value. Consider a distance function, d, that represents the separation of two bonded atoms. 

Modeling this as a constraint requires that d =a or equivalently, d- a= 0, where a is 

the ideal separation. Modeling this as a spring energy function evaluates the variance of the 

separation from the ideal value using Hooke's Law: Energy = k( d-a;l, where k denotes 

the stiffness of the spring. The van der Waals interactions and the electrostatic interactions 

use empirical potential energy models. 

The non-bonded interactions are modeled with energy functions. Additionally, I model 

weak and multi-value bonded properties with energy functions and stiff bonded properties 

with constraint functions. For example, the energy required to change certain dihedral 

angles is three orders of magnitude weaker than that required to change bond lengths. I 

model these dihedral angles with springs with an ideal value equal to the ideal angle and 

model bond lengths with constraints fixed to their ideal values. A hydrogen bond is 

modeled with two energy functions-one models the length and the other models the angle 

of the bond. The strength of a hydrogen bond is approximately two orders of magnitude 

weaker than that of the other bonds in a protein. 
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The energy and constraint functions are grouped into the following constrained 

minimization problem. Assume each point has three variables that denote its three­

dimensional position. Let the vector x (bold face denotes vectors) with n elements 

represent the independent variables (atom positions). Let e(x) equal the sum of all the 

energy functions. Let c(x) represent the vector of them constraint functions. Specifically, 

row i in c(x) contains a constraint function, Ci(X), minus its ideal value, Ci, as follows: 

c(x) = [ ~)~~: = :~ ] = [ ~ ] 
Cm(X)-Cm 0 

On each update as a user tugs an atom, Sculpt finds a local minimum of the total energy, 

e(x), while maintaining the set of constraint functions, c(x) = 0. 

4. Constrained minimization algorithm 
Minimizing an arbitrary function subject to arbitrary constraints is an open research 

problem. The class of constrained minimization problems in this research has the 

following properties: 

1. nonlinear energy and constraint functions; 

2. equality constraints; 

3. continuous energy and constraint functions through the second derivative; 

4. initial variables that satisfy or nearly satisfy constraints; 

5. starting point is usually very close to a local minimum. 

The last propeny allows rapid convergence to a local solution. A new constrained 

minimization runs each time a user tugs an atom. The only differences in the total energy 

from the previous invocation are the changes in energies from a user spring and near­

neighbor interactions resulting from prior atom movements. Neither case changes the total 

system energy very much. In most cases, a small change in the total energy only slightly 

shifts the minimum. 

A solution (x*,A*) of the following minimax problem, for sufficiently large p, is also a 

solution to the constrained minimization problem [Hestenes 1975]: 

min max L(x, A, p) =min max e(x)- AT c(x) +E. c(x)T c(x) 
X A, X A, 2 
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Figure 1.4: 

I 
e(:x•) 

Colmn of e(:x) 

Example of first-order necessary conditions at a 
constrained minimum. 

For penalties greater than some fmite value, a point x minimizes L(x,A.*,p) if and only if it 

is a constrained minimum of the original problem [Gill 1981, p. 226]. Additionally, a 
sequence xi that minimizes L(x,J..i.p), for a sequence of multipliers that converge to A.*, 

converges to x* [Hestenes 1975, p. 308]. I use these results in the algorithm listed in 

Figure 1.5 to find the saddlepoint. This algoritlun is first presented in Gill [Gill 1981, 

p. 227]; Witkin presents a similar algorithm for constrained dynamics [Witkin 1990]. 

Step 3 minimizes the augmented Lagrange function by following the negative gradient. 

Steps 1 and 2 are more complex and are discussed in the following subsections. 

Chapter 3 details the steps in this algorithm. 

0. Set initial x 

1. Find A.: [Vc(x)TVc(x)] A.= Vc(x)TVe(x) 

2. p ~ IIVe(x)- Vc(x)A.II 
3. xchms• ~ -Ve(x) + Vc(x)A.- pVc(x)c(x) 

4. X ~ xold + xchms•; Goto step 1 

Initializes variables to current position 

Estimate Lagrange multipliers 

Determine a penalty weight 

Minimize augmented Lagrange function over x 
given A. and p from Steps 1 and 2 

Update; repeat if change is greater than some 
threshold 

Figure l.S: Algorithm that finds a local constrained minimum. 

4.1. Estimate Lagrange multipliers 

I use a modification of the first-order multiplier method [Gill1981, p. 248] to estimate the 
Lagrange multipliers. Given the current variables, x, this method finds the Lagrange 
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multipliers that best satisfy necessary condition (2). Gill's algorithm estimates the ideal 
Lagrange multipliers at each iteration by solving the following system of equations for A.: 
[V c(x)] A. = Ve(x). This system contains m unknowns (the number of Lagrange 

multipliers) and n equations (the gradient of the constraints with repect to each of the atom 

positions). Since the number of constraints, m, is typically less than the number of 

positions, n, the system is over-constrained. I find a least-squares approximation to the 

system of equations by first multiplying both sides of the equality by the transpose of the 
matrix before solving for A.. 

4.2. Determine a penalty term 

The penalty term, p, pulls the solution towards one that satisfies the constraints. The 

previous step estimates the Lagrange multipliers using a first-order approximation of the 

constraints. Since the constraints are nonlinear, this approximation lets the solution drift 

from the constraints. The penalty term keeps this from moving beyond some limit. The 

penalty term is set to the error in the least-squares approximation. 

4.3. Parallel execution of algorithm 
Many of the steps in this algorithm can execute in parallel. Sculpt evaluates a set of the 

constraint and energy functions and their derivatives on separate processors. Sculpt also 

evaluates in parallel the elements of vectors calculated in Steps 1-3 from vector-matrix and 

matrix-matrix operations. 

S. Algorithm analysis 

This section surveys the main properties in the protein model that yield linear computational 

complexity, O(n), with this algorithm. The full proof is given in Chapter 5. The two 

important properties assumed are that the number of constraint and energy functions 

increases linearly with protein size and that constraint functions are only defined on 

topologically-near atoms. The former gives a linear increase in the evaluation time for the 

constraint and energy functions and their derivatives. The latter, coupled with a pre­

processing sort of the constraint gradient matrix, yields a band-diagonal matrix (all 

nonzeros lie within a fixed distance from the diagonal). 
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5.1. Linear complexity of energy and constraint evaluation 

The number of bonded and non-bonded functions increases linearly with the number of 

atoms. Each atom bonds to at most four other atoms which bond to at most three others, 

etc. This bounds the number of distance, angle, and dihedral angle functions for each 

atom. Therefore, the total number of bonded functions increases linearly with the number 
of atoms. The maximum number of constraints per variable, kcv, is used in the matrix-

multiplication analysis. 

For each atom, Sculpt determines the other atoms within a given distance and evaluates the 

van der Waals potential energy between them. Only a finite number of atoms fit within this 

neighborhood because each atom's electron shell occupies a nonzero volume 

[Levinthal 1966]. Sculpt uses an O(n) algorithm described in [Bentley 1979] that 

determines the neighbor lists. The algorithm uniformly subdivides space into cubes with 

the given radius on each side, deposits each atom into the cube containing its three­

dimensional position, and sets the neighbor list for each atom to the atoms in its cube and 

adjacent cubes. Atoms in adjacent cubes may be outside the neighborhood. A final step 

prunes the lists of such atoms. 

5.2. Constraint topology 

Matrix-matrix multiplication and linear equations solution require 0(nm2) and O(m3) 

operations, respectively, for an arbitrary number of constraints defined among arbitrary 

points. However, constraints in the protein model are defined only on atoms within a fixed 

number of bonds. Figure 1.6 shows a graph of the bond topology in a protein (lengths 

and angles are not drawn to scale). Nodes represent model variables (a three-dimensional 

coordinate for each atom). Nodes are numbered by a depth-first traversal beginning at the 

left. Constraints are defined on nodes connected by a fixed number of arcs. For example, 

a distance constraint is defined for each pair of connected nodes. Angle and dihedral angle 

constraints are defmed on nodes connected by two and three arcs, respectively. 
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Fiaure 1.6: TopoloiY of proteiD bonds. 

The maximum separation between the lowest and highest variable indices in a constraint is 

bound by a constant, kspan· This constant is a function of the maximum number of 

variables referenced in a constraint and the maximum number of atoms in any sidechain. 

The worst case in a protein occurs when a dihedral angle constraint is defined on backbone 

atoms around a sidechain with the most atoms (tryptophan). 

Some proteins violate this assumption by containing a few bonds, called disulfides, 

between atoms in separate sidechains. Chapter 5 shows that the computational complexity 

analysis remains valid when there is a fixed number of constraints among arbitrary atoms. 

5.3. Linear complexity of matrix algorithms 

The linear complexity of the matrix algorithms arises from the pattern of nonzeros in the 

matrices. Sculpt stores two matrices, the transpose of the constraint gradient (denoted JT 

for Jacobian transpose) and its product with the Jacobian (JTJ). Both matrices are very 

sparse (typically more than ninety-five percent of the entries are zero). 

5.3.1. Contents of matrices 

Jacobian transpose, JT. The dimension of this matrix ism x n. Element (iJ) of the 

Jacobian transpose holds the first partial derivative of constraint i with respect to variable j . 

Matrix product, A=JTJ. The dimension of this matrix ism x m. Nonzero elements in 

this matrix are related to nonzero elements in the Jacobian transpose. Matrix multiplication 

defines an element ar.c in A as the inner product of row r in the left matrix and column c in 

the right matrix. Column c in a matrix is also row c in its matrix transpose. Using this 
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information, ar.c equals fJI.Jk,c= fJI.JI.~~o The element is nonzero only when rows rand c 

in the Jacobian transpose contain a nonzero entry in the same column (i.e. when constraints 

r and c reference the same variable). 

Sculpt determines the nonzero elements of A at program initialization by comparing each 

row in the Jacobian transpose with the other rows for common, nonzero columns (requires 

0(m2) operations). Since bonds are not broken or formed during a modeling session, 

rows (constraints) are not added or removed in the Jacobian transpose. Therefore, the 

sparsity pattern of JT and A remains constant. 

5.3.2. Sparsity pattern with a sorted Jacobian transpose 
Matrix A is band-diagonal if the rows of the Jacobian transpose are soned relative to the 

smallest nonzero column index. The nonzero elements in a band-diagonal matrix lie within 

a constant distance (bandwidth) from the diagonal. What is the bandwidth of an arbitrary 

row, i, in A? Columnj in row i is nonzero if and only if constraints i andj reference the 

same variable. 

Constraint i references a fixed span of variable indices. Each variable in that span is in at 

most kcv constraints. Therefore, the number of constraints that can reference a variable in 

constraint i is bounded (see Figure 1.7). The bandwidth, b, of A is a function of the 

number of constraints defined on a variable times the span of variables in a constraint, 

kcvkspara· 
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Matrix-matrix multiplication, A~JTJ. The limited bandwidth limits the number of 

nonzero elements in A to twice the bandwidth times the number of rows. Computing the 

value of a given element, (r,c), requires multiplying rows r and c of the Jacobian 

transpose. Each of these contains a fixed number of elements, so the entire multiplication 

requires O(bn) operations. 

Matrix-vector multiplication, b~JTVe. This step multiplies each of them rows in 

the Jacobian transpose by a vector. Each row contains a fixed number of nonzero 

elements, so the entire multiplication requires O(m) operations. The linear complexity of 

the matrix-vector multiplication in Step 3 follows a similar argument 
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Linear equation solution, AA.::b. Gaussian elimination requires O(IJ2n) operations 

on a band-diagonal matrix. 

6. Hierarchical model 

I also investigate a method for improving user manipulation and system performance by 

replacing segments of a protein with rigid or deformable objects. For example, consider 

replacing the variables, energies, and constraints in a backbone segment with a rigid body 

that only changes position and orientation. A change in the orientation or position of the 

rigid body simultaneously changes the backbone atoms in the segment; sidechain atoms still 

move freely. This lets a chemist change the relative orientation of two segments without 

changing their internal configuration, which is a much more natural manipulation than 

tugging each atom separately. Independently of this advantage, the performance, in 

general, improves because a small set of variables that define the rigid body and the 

functions that connect it to the rest of the model replaces the larger set of variables and 

functions defined within the body. 

A deformable object such as a coil could represent a segment of the backbone that forms a 

helix. In addition to the orientation and position of a rigid object, deformable objects have 

additional parameters that define its shape. The coil, for example, could allow bending and 

twisting. Rigid and deformable objects are required to move their atoms in a physically­

valid manner--one that maintains an energy minimum and does not violate constraints. 

Chapter 7 examines using inherent protein structure to aid specification of groups. The 

chapter shows the following hierarchical model of protein structure: a protein consists of a 

sequence of residues; each residue contains a backbone and sidechain; each of these 

contains atoms (see Chapter 2 for a discussion of protein structures). A chemist could 

then specify atoms for a group by selecting a node in the hierarchy. Superimposed on this 

hierarchy are inherent protein structures such as a helix defmed on a sequence of residues 

or a sheet defined on a set of residue sequences. 

The rigid and deformable groups require few changes to the constrained minimization 

algorithm and do not change the linear computational complexity. The constrained 

minimization algorithm contains a vector of variables, x. The variables are now augmented 
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to include group variables. Since an atom's position may be defined by variables in a 

group, the gradient operator must take partial derivatives with respect to group variables as 

well as cartesian coordinates. When a group is inserted (removed), constraints are added 

(removed) from the model. This changes rows in the two matrices of the algorithm. 

Chapter 7 shows a method for efficiently making such changes. 

The matrix bandwidth can increase using groups because the number of constraints per 

variable, kcv, can increase. If only the backbone atoms in a long segment are placed in a 

group, then many sidechains connect to the group. Each connection requires distance (and 

other) constraints defined on the group's variables which can increase kcv· On the 

contrary, if the backbone and sidechains of a long segment are placed in a group, the only 

connections to the group are at its ends. The number of constraints per variable in this case 

does not increase. The complexity of the linear equation solution increases with b2n. 

Performance can actually degrade if the square of the bandwidth increases faster than the 

decrease in variables. Chapter 9 presents performance results that demonstrate this. 

The current implementation of Sculpt contains only rigid, not deformable, objects. The 

objects are defined at the beginning of a modeling session and cannot be removed or added. 

Sculpt is designed for future enhancements to provide deformable groups and on-the-fly 

creation and deletion of groups. Figure 1.8 shows a photograph of the Felix model with 

two rigid cylinders representing the backbone atoms in two of the four helices. 
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Figure 1.8: Photograph of Felix with two rigid helices. 

7. System performance 

The following performance analysis describes system behavior with four protein models. 

The models include (1) the Felix protein pictured in Figures 1.2 and 1.8, (2) two of the 

four helices from Felix, (3) a segment with ten residues, and (4) a small segment with four 

residues. Figure 1.9 summarizes the number of energy functions, with and without the 

near-neighbor interactions, and constraint functions. 

Model Atoms Variables Constraints Bonded energies Total ener2ies 
1 7fiJ 2280 2205 428 
2 355 1065 1027 198 
3 99 297 282 43 
4 36 108 96 18 

Figure 1.9: Statistics for the four models used in performance 
analysis. 

8029 
3465 
788 
216 

The performance results listed below come from running Sculpt on a four processor Silicon 

Graphics 240-GTXB [Akeley 1988] using double-precision floating-point arithmetic. 
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Figures 1.10 and 1.11 show performance results with the four protein models. The 

performance (seconds per update) includes the time to receive a user tug, run a constrained 

minimization, and re-display the screen. I list the performance for molecular simulations 

that model and do not model near-neighbor interactions. The performance results for 

simulations without near-neighbor interactions are given for one and four processors. The 

performance results with near-neighbor interactions use four processors. The list of 

neighbors for each atom is implemented with a linked list rather than an array; this requires 

more computation but greatly easied implementaation. Due to this inefficient 

implementation, I split the performance results for the near-neighbor interactions into two 

categories. The first uses the same neighbor list throughout a session, while the second 

computes a new list on each iteration. Only one processor creates neighbor lists and 

evaluates non-bonded interaction energy; these tasks can be parallelized in a future version. 

Without near-neighbor With near-neighbor 
interactions interactions (4 CPUs) 

Model 1 processor 4 processors Same list New list 
1 1.405 0.954 1.228 1.603 
2 0.586 0.396 0.514 0.689 
3 0.147 0.105 0.126 0.169 
4 0.045 0.048 0.047 0.054 

Figure 1.10: Performance (seconds per update) with four models using 
an SGI 240-GTX. 
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The update rates, though far from those needed for smooth interaction, allow productive 

new research in biochemistry. Professors David and Jane Richardson, collaborators from 

the Duke University Department of Biochemistry, use a preliminary version of Sculpt for 

their research in protein design (see Chapter 9). They believe Sculpt significantly 

improves productivity and understanding over previous molecular modeling systems. 

Maintaining a physically-valid model throughout a modeling session relieves the user from 

the time-consuming task of returning the model to a physically-valid state. Immediately 

viewing the effect of an atom movement also provides better awareness of intricate 

interactions among atoms. 
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Chapter 2 
Proteins 

This chapter discusses the protein properties relevant to this research and the Sculpt model 

of them. Part I of the chapter introduces the properties to readers without a background in 

biochemistry; those familiar with proteins can skip this. Part II discusses the Sculpt model 

of proteins. This contains the specific model of each property and a discussion of its 

validity. Part II also lists the properties ignored and compares the model to other protein 

models. 

A protein is an arbitrarily long, linear sequence of bonded amirio acids (defined in part 1). 

A protein contains from a few hundred to greater than fifty thousand atoms. Most proteins 

contain regions with regular geometry (e.g. a helix). A subunit is a single chain in close 

proximity that contains these regions; often several subunits stick together to form a large 

protein. The proteins considered in this research are called globular proteins. These 

contain subunits with roughly four hundred to three thousand non-hydrogen-atoms. The 

largest proteins used in Sculpt so far contain approximately eight hundred atoms, including 

about 150 of the hydrogens. 

The majority of the material and figures in this chapter comes from two books: The 

Structure and Action of Proteins, by Dickerson and Geiss [Dickerson 1969]; and Principles 

of Protein Structures, by Schultz and Schirmer [Schulz 1979]. Both books assume no 

prior knowledge of proteins and describe protein properties through examples and 

illustrations. A third book, Prediction of Protein Structure and the Principles of Protein 

Conformation, edited by Fasman [Fasman 1989], contains a detailed description of 

proteins and their properties. 

Part I - Protein Properties 
1. Bonded interactions 

Amino acids are the building blocks of proteins. Part A in Figure 2.1 shows a schematic 

of an uncharged amino acid. Lines represent bonds between atoms, and letters represent 

atom names (Carbon, Oxygen, Mtrogen, Hydrogen). Subscripts differentiate atoms of the 
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same type, for example C and Ca. The twenty common amino acids differ only in 

sidechain composition (denoted with ®). The sidechain in the smallest amino acid, 

glycine, contains only one hydrogen. The sidechains in large amino acids, such as arginine 

and tyrosine, contain fifteen to eighteen atoms, (refer to Figure 2.1, Part B). A sidechain 

can only contain carbon, nitrogen, hydrogen, oxygen, and sulfur (S) atoms. The 

arrangement of the four atoms bonded to a Ca is tetrahedral and always left-handed as 

depicted in Figure 2.2. The Ca-C, Ca·®, and Ca-N bonds appear in clockwise order 

when viewed along the H-Ca bond. 

~ 
~ o-H 

H;_N/" I "-c,......... 
I H II 

~ argmme 

]' 
H 0 glycine 

tyrosine 
(a) (b) 

Figure 2.1: (a) Schematic or an amino acid's bonds; (b) Three or 
twenty possible sidechains for the ® in part (a). 

A protein is a linear sequence of amino acid residues resulting from a chemical reaction that 

bonds the acids. Two amino acids can form a bond, called a peptide bond, between the 

nitrogen (N) in one and the carbon (C) in the other. The chemical reaction that forms the 

bond releases a water molecule created with the 0-H from the carbon and one H from the 

nitrogen. A similar reaction occurs between positively charged (extra hydrogen on 

nitrogen) and negatively charged (missing hydrogen from oxygen) amino acids. The 

structure that remains after the reaction is called an amino acid residue, or residue for short 

Figure 2.2: Geometrical arrangement or atoms and bonds in peptides. 
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The group of six atoms bonded to and including the carbon and nitrogen of the peptide 

bond (Ca-C, C-0, C-N, N-H, N-Ca) is called the peptide. Peptides are nearly rigid, 

planar structures. Figure 2.2 shows one peptide and its properties; bond lengths are in 

Angstroms (1 Angstrom = lQ-10 meters), and bond angles are in degrees. The lengths and 

angles rarely change more than a few percent because the force required is not commonly 

developed in protein structures. The atoms bounding and within each grey area are co­

planar. Atoms rarely move out of the plane more than ten degrees. The peptide atoms are 

called the backbone or mainchain of a protein; the® atoms are the sidechains. 

Significant conformational variation in proteins occurs only between peptides and along 

sidechains. Peptides rotate about the N-Cu bond (denoted tp) and the Ca:-C bond (denoted 

VJ'). Figure 2.3 illustrates the <p and 'If angles and shows a segment of a protein containing 

nine peptides with different sidechains. 

(a) 

(b) [Dickerson and Geis 1969] 

Figure 2.3: (a) Illustration or <p and 'I' angles between two peptides, 
and (b) a series or peptides illustrating <p and 'I' rotations 
and sidechains. 

Atoms in separate sidechains infrequently form covalent bonds (a bond formed by shared 

electrons) between one another. The only such bond seen at all commonly is the disulfide 

bond formed between the sulfur atoms in two nearby cystine sidechains. This bond helps 

hold together residues that are arbitrarily separated along the backbone. Many proteins do 

not contain any disulfide bonds; those that do have one to ten in common sizes of subunits. 
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2. Non-bonded interaction 
Atoms that are not bonded to each other nevertheless influence the three-dimensional 

structure of a protein by attracting and repelling each other. The attractive energy· between 

two non-bonded atoms is approximately three orders-of-magnitude smaller than in a 

peptide bond, but the cumulative attractive energy among all atoms rivals the magnitude of 

bonded energy. This section presents the potential energy associated with four non-bonded 

interactions: attraction and repulsion induced by orbiting electrons, attraction and repulsion 

between partially charged atoms, hydrogen bonds, and hydrophobic and hydrophilic 

interactions. 

2.1. Electron shell repulsion and attraction 
One or more electrons orbit the nucleus of each atom within its electron shells. The 

electron shells can be modeled as non-interpenetrating spheres (ignoring the overlap 

between bonded atoms). Physical models of proteins that center a plastic ball at each atom 

to represent the shell illustrate an important property: steric hindrance resulting from non­

interpenetrating electron shells drastically reduce the possible atom positions. For example, 

the bulk of the shells in the peptide blocks seventy-five percent of the possible positions 

about the N-Ca bond. 

The hard-shell model provides a simple approach to steric hindrance. However, electron 

shells can intersect, but the potential energy associated with this increases substantially. 

Studies show when two shells penetrate, the energy increases proportional to the twelfth 

power of the inverse distance between the nuclei. Though this produces a dramatic 

increase in energy, it does allow some plasticity in electron shells. 

The repulsive potential is countered with an attractive potential. All atoms, even neutral, 

attract one another. Orbiting electrons around a nucleus induce an oscillating dipole. For 

two atoms each dipole polarizes the other. Together the oscillators are coupled and form an 

attractive potential. The energy in this attraction is proportional to the sixth power of the 

inverse distance between the nuclei. 

Van der Waals discovered this attraction and repulsion between atoms in 1873. The 

Leonard-Jones model combines both attraction and repulsion into one potential energy 

function as shown in Figure 2.4. 
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Figure 2.4: Lennard-Jones formula and its graph using a minimum 
energy of -0.13 kcallmole and a minimum-energy 
separation of 3.24 Angstroms. 

2.2. Electrostatic interactions 
Some atoms are fully or partially charged. In particular, the oxygens at the end of 

glutamate and aspartate are negative, the nitrogens at the end of lysine and arginine are 

positive, and the ring nitrogens in histidine are positive when the surrounding solution has 

a pH lower than 7 .0. Also, bonds between some atoms leave an asymmetric distribution of 

electrons around the nucleus that forms a dipole, or partial charge. These fully and partially 

charged atoms interact with each other. The potential energy of the interaction is modeled 

with Coulomb's Law: Energy = l ~, where d is the distance between atoms i and j, qi is 
e d 

the partial charge of atom i, and e is the dielectric constant of the surrounding medium. 

Coulomb's Law provides an approximation of the potential energy between charged atoms 

but is not entirely correct The dielectric constant in Coulomb's Law assumes the 

conductivity of the medium is constant, which is not true in solvent, on the microscopic 

scale of bond lengths. The appropriate relationship for use with proteins is still an open 

research problem. 

2.3. Hydrogen bonds 

Many covalently-bonded hydrogens have a substantial partial charge. A nitrogen or 

oxygen that bonds with a hydrogen (e.g. a peptide N-H) pulls the hydrogen's one electron 

into its shell. This leaves the hydrogen with just one proton, only part of an electron, and a 

large positive partial charge. The resulting positive partial charge can bond with a 

negatively charged atom. These bonds, denoted hydrogen bonds, are approximately two 

orders of magnitude weaker than covalent bonds. Hydrogen bonds are distinguished from 



25 

general electrostatic interactions because of their prevalence in proteins and their importance 

in determining higher-level structures. 

2.4. Solvent 
Proteins reside in an aqueous environment. The entropy of the surrounding water 

influences the final form of a protein in several ways. First, the dielectric constant in 

Coulomb's equation is much higher in water than in vacuum. Second, some residues are 

hydrophilic and prefer the protein exterior. Others are hydrophobic and prefer the interior 

because they have an unfavorable effect on the entropy of the water. Third, since water 

molecules have a partial charge (for the same reason as discussed with hydrogen bonds) 

and are mobile, they continuously form and break bonds with exterior, hydrophilic 

sidechains. This causes constant movement of some sidechains. Many unanswered 

questions remain concerning the role of water in protein structure. 

3. Secondary structure 

Secondary structures are regular arrangements of the backbone peptides. The structures 

form distinguishable geometries which are found in proteins. The most common structures 

are the helix and sheet. Together, two properties determine many of the structures: steric 

hindrance limits possible rotations between peptides, and hydrogen bonds between 

backbone hydrogen and oxygen atoms of different peptides hold peptides together. 

Richardson presents a thorough survey of secondary structures [Fasman 1989]. The 

following sections discuss the helix and sheet. 

3.1. a.-helix 

Successive peptide units with identical (<p,'lf) angles and hydrogen bonds between adjacent 

turns form a helix. Helices can be described by the rise per residue, d, the number of 

residues per tum, n, and the radial distance, r, between theCa and the helix axis. Sterle 

hindrance and the limited number of potential hydrogen bonding sites allow only a few 

combinations of these parameters. 

The right-handed a.-helix is the most prevalent secondary structure (and helix) found in 

proteins. It has 3.6 residues per tum, 1.5 Angstroms rise per residue, and a 

2.3 Angstrom radius. The a.-helix has more favorable energy than other helices. The 

oxygen in one peptide forms a hydrogen bond with the hydrogen (attached to the nitrogen) 

three peptides later. This helps hold the helix together. Also the radius allows attractive 

van der Waal potentials across the helix. A left-handed a.-helix has a higher energy than a 



., 

26 

right-handed helix because the c~ (first atom in sidechain) bumps into the next helical turn. 

The bump comes from the asymmetry of the atoms bonded to the Ca (refer to Section 1 ). 

No one has observed a natural, left-handed helix longer than three residues. 

Figure 2.5 shows two schematics of an a-helix. The left figure shows peptide bonds 

(solid lines) and hydrogen bonds (dotted lines). The right figure shows the general path of 

the peptide with less detail . 

Felix 

(a) [Schulz 1979] (b) [Richardson 1992] 
Figure 2.5: Two drawings or an a-helix. (a) Solid and dashed lines 

denote covalent and hydrogen bonds, respectively. (b) 
Ribbon follows path of backbone in the Felix protein. 

3.2. 13-sheet 

The second most prevalent structure found in proteins is the 13-sheet. On average fifteen 

percent of a protein structure is 13-sheet. Sheets contain extended, nearly-straight strands of 

peptides beside one another. Hydrogen bonds hold the strands together. Figure 2.6 

shows two types of sheets, parallel and anti-parallel, whose names refer to the relative 

direction of adjacent strands. 



(a) [Fasman 1989] (b) [Fasman 1989] 
Figure 2.6: Two drawings of a P·sheet. Strands are anti-parallel in (a) 

and parallel in (b). 
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Usually sheets have an overall left-handed twist around an axis in the sheet perpendicular to 

the strands. Figure 2. 7 shows the geometry of two sheets. The arrows show the sheet 

and the direction of the peptides. The small tubes show residues not in the sheet. 

(a) [Fasman 1989] (b) [Richardson 1992] 
Figure 2.7: Anti-parallel (a) and parallel (b) sheets denoted with a 

ribbon that represents the direction of the backbone. 

3.3. Globular proteins 

All the properties just discussed play crucial roles in determining a protein's three­

dimensional structure. The van der Waals and Coulomb potential energies pull non-bonded 

atoms together yet restrict their minimum separation. Hydrogen bonds help hold peptides 

together in helices and sheets. 
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Figure 2.8 shows three globular proteins. The figure emphasizes helices with tubular 

spirals and sheets with broad arrows. The number of non-hydrogen atoms in the proteins 

of Figure 2.8 are approximately 400 (top), 3000 (lower left), and 2500 (lower right). 

Potato Carboz;ypcptidau lralaibitor 

Triose Plaot~plaatc l•omcra•• Prcalbumin Dimtr 

[Richardson 1992] 
Figure 2.8: Illustrations of three globular proteins. 
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Part II- The Sculpt Model 
This part presents the mathematical model of each property used in Sculpt. Figure 2.9 lists 

the protein properties that Sculpt models. The first five are bonded interactions, and the 

last one is a non-bonded interaction. The bonded and non-bonded interactions are first 

discussed separately and then combined into a general mathematical model. 

Property 

Bond length 
Bond angle 
F'txed dihedral angle 
Multiple dihedral angle 
Hydrogen bond 
Vander Waals potential 

Interaction 

}-
} Non-bonded 

Figure 2.9: Protein properties modeled in Sculpt 

1. Bonded interactions-lengths and angles 
1.1. Common representation 

Each bond length and bond angle has an ideal value. For example, the ideal Euclidian 

distance between the carbon and nitrogen of the peptide bond is 1.325 Angstroms. Many 

systems model the potential energy in a stretched bond length or angle with a spring that 

obeys Hooke's Law. The potential energy is defined as E =kif- ])2, where/is a length 

or angle (typically a function defined on atom positions), f is the ideal value off, and k is 

the spring constant dependent on the property. 

1.2. Dihedral angle 

A dihedral angle is the angle between one vector and a plane defined by two other vectors. 

Part A in Figure 2.10 shows a view of a dihedral angle. Sculpt, and most systems, 

represent planarity and local steric hindrance with dihedral angles. Two examples illustrate 

uses of dihedral angles. First, three dihedral angles specify the planarity of the peptide 

atoms (Part B). Second, a dihedral angle specifies which angles are preferred for a 

hydrogen after steric hindrance reduces the possible values (Part C). 
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di(~-o· 
di(C!acNc!),. tso• di(ABCH). o•. 120•. -120° 
di(OCNH) • tso• 

(a) (b) (c) 
Figure 2.10: (a) Illustration or a dihedral angle. (b) Dihedral angles 

that define the planarity or a peptide. (c) Three equally­
favorable dihedral angles. 
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Notice Part C has three equally-favorable dihedral angles. A multiple dihedral angle 

· expresses this. A multiple dihedral is specified with two parameters, the multiplicity of the 

ideal angle and the first (reference) ideal angle. Figure 2.11 shows the energy functions 

associated with multiple and fixed (single) dihedral angles. The graph shows three equally­

spaced energy wells for a dihedral with multiplicity three and starting angle zero (the same 

dihedral given in Part C above). Dihedral angles are only used to model steric hindrance 

that restricts the dihedral angle among four atoms to one value or multiple, equally-spaced 

values; otherwise, a van der Waals interaction is used. 

-2 
Eruod = k (f - t) 

- 2 
Emuhiplo = k (f- f ... ) 

!= dihedral angle 
!= ideal dihedral angle 
f,_: nearest ideal dihedral 

Energy 

Figure 2.11: Energy function or a dihedral angle with multiplicity 
three. 

1.3. Fixed hydrogen bonds 

Hydrogen bonds may be manually inserted into the model rather than forming and breaking 

them as atoms move. This helps hold a secondary structure together during the sculpting 

process. Sculpt models a hydrogen bond with a distance and an angle function. Consider 

a hydrogen bond formed between the oxygen of a C-0 bond and the hydrogen of a N-H 
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bond. The distance function represents the ideal separation of the oxygen and the 

hydrogen. The angle function measures the angle between the N-H bond and the H-0 

hydrogen bond; the ideal value for this angle is 180 degrees. 

1.4. Springs versus constraints-departing from common molecular models 

Sculpt makes an approximation that dramatically improves performance without 

appreciably decreasing accuracy. Properties whose deformation require very large potential 

energies relative to others in the model are replaced by rigid constraints. Bond lengths are 

modeled as constraints since the potential energy increase for changing a bond length is five 

orders-of-magnitude larger than the energy increase associated with a comparable change in 

distance between two attractive atoms. Minimizing functions with similar potential energies 

that are subject to constraints requires less computation, in this application, than minimizing 

all the energies without any constraints. This approximation provides interactive 

performance with more complicated models. Figure 2.12 lists some pros and cons for 

representing bonded properties with springs or constraints. 

Spring: k(f -f )2 

..J Allows plasticity 

..J Allows multiple dihedrals 

Variable bond lengths not needed 
during manipulation 

X ko-t !mph - 1 ()4 k.nu!l dihednl 

X Yields stiff equations 

Constraint: r - r = 0 

B~echanical model 

X Prevents moving among multiple 
dihedrals 

X Simultaneous equations 

..J Yields stable equations 

Figure 2.12: Comparison or spring and constraint models or protein 
properties. 

Is this approximation valid? Approximating bond-length potential energy functions with 

rigid constraints reduces the accuracy of the physical model. However, the large potential 

energy signifies that bond-length variability is very small relative to the variability of other 

properties. Since the bond lengths hardly change, constraining them for increased 

performance is justified. Sculpt lets a chemist trade performance for accuracy when 

desired, by modeling lengths with potential energy functions. 



• 
Property 

Bond length 
Bond angle 
FIXed dihedral angle 

Model 

} Comttaint 

Multiple dihedral angle } Spring 
Hydrogen bond 

Figure 2.13: Default division of properties in Sculpt. 
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At run time a chemist specifies which properties are constrained and which vary. 

Figure 2.13 shows the default division of the bonded properties in Sculpt. Variable 

dihedral angles and hydrogen bonds use springs since they are not as stiff. 

2. Non-bonded interactions-van der Waals and electrostatic 
2.1. Neighborhoods 
For each atom Sculpt maintains a (neighbor) list of the other atoms within a fixed radius. 

The van der Waals potential, electrostatic charge, and hydrogen bond properties are only 

applied to atoms in one's neighbor list. The non-bonded energy between two atoms 

approaches zero as the separation increases. Since the potential energy in each property 

approaches zero at a different rate, Sculpt needs multiple neighbor lists with various radii 

(e.g. four Angstroms for hydrogen bonds, six Angstroms for van der Waals potential, and 

ten Angstroms for electrostatic interaction). 

Many nearby atoms are removed from the neighbor lists. Since covalent bonds keep atoms 

closer than the van der Waals potential allows, all atoms reachable via one, two, or three 

bonds from a given atom are not in its neighbor list. The neighbor-list technique is used in 

most molecular modeling systems. 

2.2. Van der Waals potential and the 4-8 approximation 
The van der Waals potential energy models repulsion of intersecting electron shells and 

attraction of induced dipoles from orbiting electrons. The Leonard-Jones model combines 
12 6 

the repulsion and attraction withE= Em(- Ri'2 + 2 ~)where r is the separation, Em is the 
r r 

energy minimum, and Rm is the separation at the energy minimum. The gray line in 

Figure 2.14 shows a graph of this function for a particular Em and Rm. Two aspects of 

this function cause computational difficulties: the extremely sharp increase in energy when 

the separation is less than Rm, and the infinite extent of the attractive distance. The 

minimizer discussed in Chapter 3 moves atom positions a distance proportional to the 

magnitude of the energy. Thus a large energy occurring when two atoms are more than, 
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say, ten percent closer than R,. results in large atom movements. Since the distance for 

attraction extends to infinity, the Lennard-Jones model would require that Sculpt calculate 

the pair-wise attraction between all atoms in a molecule. 

Energy 

0.4 Lennard-Jones 

0.3 

0.2 

0.1 

1 2 
-0.1 

-0 . 2 

Figure 2.14: Plot of Sculpt and Leonard-Jones model of attraction and 
repulsion between two atoms. 

Sculpt uses a similar model that allows faster update rates but is slightly less accurate. 

Figure 2.14 illustrates the three differences between the two models. First, the separation 

distance of attraction is limited. The discussion of neighbor lists justifies this. Second, the 

energy well is wider because the Sculpt model replaces the 6 and 12 exponents in the 

Lennard-Jones model with 4 and 8. The slower ascent when the separation is less than R,. 

allows faster solution of the equations. However, the wider energy well allows smaller 

separation and stronger attraction between atoms. Third, the repulsive energy increases 

linearly after a given threshold. The positive energy still repels atoms but avoids large atom 

movements that arise when the minimizer encounters large repulsive energies. A chemist 

can invoke the Lennard-Jones model when accuracy is more important than speed. 

2.3. Electrostatic charge 

Sculpt does not currently model the potential energy between charged atoms. Calculating 

this energy with Coulomb's Law fits into the Sculpt model. However, electrostatic energy 

falls off so slowly with distance that computing it destroys interactive performance on 

current machines. The goal of the system is to provide a means for sculpting proteins 

while interactively modeling as many basic properties as possible. Modeling electrostatic 

interaction is not so crucial as modeling local electron shell interactions and hydrogen 

bonds. This application is different from docking (bonding) two molecules where 

electrostatic interaction plays a crucial role in the outcome. Electrostatic interaction will be 
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added when faster computers arrive. For now a chemist can recognize important, local 

interactions and use tools provided in Sculpt to pull them together or apart. 

3. Implicit hydrogens 

Many hydrogen atoms are not used explicitly in the calculations. Instead atoms bonded to 

hydrogens are modified to model them implicitly. Roughly half the atoms in a globular 

protein are hydrogens. About a quarter of the hydrogens can form hydrogen bonds, the 

rest just get in the way (sterically speaking). Sculpt, and most molecular modeling systems 

(e.g. [Biosym 1991; Polygen 1991; Tripos 1988]), only explicitly model hydrogens that 

can form hydrogen bonds (the hydrogen in the backbone, for example). The rest are 

implicitly modeled by appropriately increasing the radius of each atom bonded to a 

hydrogen. 

4. Pluggable model 

Sculpt reads the ideal values, spring constants, van der Waals coefficients, and bond 

topology from an input file (described in Section 3 of Chapter 8). None of the 

coefficients in the Sculpt model are hard-wired into the system. This lets a chemist use 

different modeling coefficients. The values used in this research come from Jan Hermans' 

molecular dynamics system, Cedar [Hermans 1989], which is based on the CHARMM 

model of proteins [Brooks 1983]. 

S. Solvent 

Sculpt does not model solvent No existing computational model of solvent runs 

interactively on current computers. Without the entropic force exerted by surrounding 

solution, proteins slowly drift apart Sculpt lets a chemist pull structures together by 

attaching springs (discussed in Chapter 5). A central gravity that attracts atoms inward is 

another possible approximation to the properties of solution. Sculpt, at present, does not 

implement this approach . 
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6. Summary 
Figure 2.15 lists the protein properties Sculpt models. The figure shows the specification 

and model of each. 

Specification Protein Property 

{::::: } 
Input flle Flxed dihedral angle 

Variable dihedral angle } 
Hydrogen bond 

{ 
Vander Waals potential } 

Neighbor 
list Electrostatic charge } 

Solvent interaction } 

Mathematical Model 

Constrained to 
ideal value 

Spring energy from 
nearest ideal value 

4-8 Leonard-Jones potential 

Coulomb potential (not implemented) 

Not treated 
Figure 2.15: Summary or specification and model or protein properties 

in Sculpt. 

In conclusion I present some mathematical notation that casts the Sculpt model into a 

general framework. Chapter 3 discusses the solution of this model. 

First, assume the cartesian coordinates of the atoms are represented in a column vector 

x = [x1 x2 · · · xnf, where Tis the transpose operator. Second, separate the constraint 

functions from the energy functions. Let Energy(x) equal the sum of all the energies in the 

protein including potential energies in springs representing multiple dihedral angles and 

hydrogen bonds, and potential energies from van der Waals and electrostatic interactions. 

Let Constraint(x) represent a column vector of the constraint functions (bold face 

denotes a vector). Each constraint-bond length, bond angle, and fixed dihedral angle­

gets one row in the vector. For example, if a protein contains only two constraints-the 

distance between atoms one and two must equal two, and the angle formed by atoms one, 

two, and three must equal one-then Constraint( X) equals the following: 

C - . ( ) [ distance(atomt, atomz)- 2 l [ Ct(x)- Ct ] [ 0 ] onstramt x = = = 
angle(atomt, atomz, atom3)- 1 cz(x)- cz 0 . 

In general if a protein contains m functions (denoted ci(x), where i = l .. m) constrained to 

• ideal values <:Ci), the vector of constraints is the following: 

Ct(X)- Ct 0 

Constraint(x) = cz(x)- cz 0 = 

Cm(X)- Cm 0 
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This notation shows the protein model contains a total energy, Energy(x), subject to a set 

of constraints, Constraint( X). Sculpt continuously adjusts the atom positions to maintain 

a local energy minimum that simultaneously satisfies the constraints. This problem is 

equivalent to finding a local solution to 

minimize Energy(x) 
such that Constraint( X) = 0 

The next chapter discusses how Sculpt solves this problem. 
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Chapter 3 
Mathematical Background 

This chapter discusses the mathematical methods selected for finding a constrained 

minimum. The general problem addresses how to find a minimum of a real-value function, 

e(x), such that a vector of equality constraint functions is satisfied, c(x) = 0. The last 

section of Chapter 2 casts the protein sculpting problem into an energy function and a set 

of constraints. 

This chapter contains four parts. The first part defines terms in constrained optimization 

and introduces goals for the Sculpt algorithm. The second part discusses two algorithms 

for fmding an unconstrained minimum. Constrained minimization algorithms contain steps 

that use these techniques. The third part describes classes of constrained minimization 

problems and positions the sculpting problem within these. This part also presents two 

general-purpose algorithms for finding a constrained minimum in this class. The fourth 

part discusses the Sculpt algorithm for finding a constrained minimum. The algorithm is an 

adaptation of others in the chapter to the interactive minimization problem. The fourth pan 

also presents the central decisions that led to this algorithm. 

The core material in this chapter comes from one book: Practical Methods of Optimization, 

by Fletcher [Fletcher 1987]. Two other books contain useful explanations and derivations 

for readers interested in exploring these techniques in greater depth. Optimization Theory, 

by Hestenes [Hestenes 1975], concentrates on theoretical issues and illustrates them with 

numerous figures. Practical Optimization, by Gillet al. [Gill 1981], is a cookbook of 

techniques every implementor should read. 

Prose is usually chosen over symbols, but clarity and precision require some use of 

symbols. Figure 3.1 summarizes the symbols and notation found in the chapter. Column 

vectors are used throughout. Vectors, in lower case, and matrices, in upper case, are 

shown with bold type. A subscript denotes an element in a vector, and a superscript 

denotes an iteration within an algorithm. For example, ai is the ith element of vector a, and 

ai is the value of a at the ith iteration. The superscript T denotes transposition so that aT is 
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a row vector. The inner product of two vectors aT and z is aT z = :EiaiZi. The square root 

of the inner product of a vector with itself ('Y aT a = ...; :Ei ar) is the Euclidean distance, or h 
norm, denoted llall. 

Differential operators: 

a column vector 

ilh element of vector a 

value at ilh iteration 

transpose 

llall 
ac 

inner product: IiaiZL 

length of a; -rari 
partial derivative of/with respect to a;. 

daa 

Vf(a) gradient vector; 

;if a2r --···--
daadal aaaaaa 

n number of variables 

m number of constraints 

9tk k-dimensional space of real numbers 

x variables in minimization problem; x e ~n 

A. vector of Lagrange multipliers; A. e ~m 

e(x) energy function; e:9t0 -+9t 

Reserved names: Ci(X) ilh constraint function; Ci:9t0 -+9t 

c(x) 
• 'I. 

X,ll. 

column vector of constraint functions; c:~0-+9tm 

value at local minimizer 

Vc(x) Jacobian of constraints; 

dCt ... dcm 
dXn axn 

Figure 3.1: Summary or the notation contained in the chapter. 

This chapter reserves the letters e and c in mathematical notation to represent the energy 

function and a constrained function. Throughout this chapter assume there are n variables, 
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x £ 9tn, and m constraints. The real-valued function Sculpt minimizes, e(x), is defined 

from 9tn to 9t. An individual constraint is in plain type with a subscript, for example clx), 

and the column vector of all constraints is the bold face c(x). The vector of first partial 

derivatives of a constraint with respect to each variable (its gradient) is denoted by the 

column vector Vcj{x). Often the frrst derivatives of all the constraints are collected into 

columns of the n x m Jacobian matrix Vc(x). 

1. Introduction to optimization 

Optimization theory concentrates on finding the best, or optimal, configuration of a system 

that has a fixed set of variables and a means of comparing different configurations. The 

sculpting problem uses optimization theory to find an arrangement of atoms that satisfies a 

set of constraint functions and minimizes a potential energy function. 

This research seeks a local minimum and not a global minimum. A point.x• is a local 

minimum if the function value is lower th~ the value at all neighboring points (i.e. 

e(x•) < e(x) for all x near x•). If the function value is lower than the value at all 

possible points, then x• is called a global minimum (i.e. e(x•) < e(x) for all x ;t x•) • 

Figure 3.2 illustrates the difference between global and local minima. Finding the global 

minimum of an arbitrary function is HARD. Methods exist, such as simulated annealing 

[Kirkpatrick 1983], that find a global minimum, but may require enormous computation 

time. Maintaining a local, rather than a global, minimum during the sculpting process lets a 

chemist explore different energy configurations en route, hopefully, to the global 

minimum. 

Figure 3.2: Function showing one global minimum and three local 
minima. 

A constrained minimum is a minimum that additionally satisfies one or more constraint 

functions. Optimization theory studies both constrained equality and inequality functions, 

though this research only uses equality constraints. Figure 3.3 shows a graph of a two­

dimensional energy function and one constraint The constraint requires that the variables 
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x lie on the line c(x) = 0. The dashed lines show contours of the energy function e(x) on 

which the value is constant 

Constrained mia 

-- ' 
c(x)=O 

-- - ' ..... ' '\ 
' ' <e(x*) - ..,.. ' 

\ \ 

l 
e(x*) 

Contours of e(x) 
Figure 3.3: A coastraiaed miaimum. The dashed liaes show contours 

of coastaat eaergy aad the solid liae shows where the 
coastraiat fuactioa is satisfied. 

This research places two conditions on all the energy and constraint functions: the first and 

second partial derivatives exist and are continuous. Most optimization theorems place these 

conditions to prevent difficulties arising from disjoint energy functions and energy 

functions with cusps. All functions discussed in Chapter 2 meet these requirements. 

The algorithms described in the remainder of the chapter are general purpose but perform 

better on some problems than others. In general I seek an algorithm that converges to a 

local minimum from any starting point and converges rapidly in the neighborhood of a local 

minimum. Each algorithm is judged against this criterion. The final section in the chapter 

discusses which algorithm best fits the criterion and why. 

2. Unconstrained minimization 

This part examines algorithms that find an unconstrained local minimum. What are the 

necessary and sufficient conditions for a point x• to be a local minimum of a function e(x)? 

The slope must equal zero and the curvature must be non-negative. That is equivalent to 
requiring the gradient at x• equal zero, Ve(x•)=O, and, for any nonzero vectors, 
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sTV2e(x*)s ;a 0. A sufficient condition for an isolated local minimum at x• requires 

strictly positive curvature. .The necessary and sufficient conditions are used throughout the 

following algorithms. 

No known analytic solution exists that finds a minimum of an arbitrary polynomial with 

degree greater than four. Two methods that iteratively find a local minimum of an 

unconstrained function are presented next. Both methods follow the algorithm listed in 

Figure 3.4, differing only in the determination of the direction in step 2. 

0. Given starting point xll; k +- 0. 
1. while not StoppingCriterion(x~ 

2. Calculate direction d 
3. Fmd step length a that mJ$~!fS e(xk + ad) 
4. xk+ 1 +- xk + ad; k +- k + 1 

Figure 3.4: Iterative algorithm ror finding an unconstrained minimum. 

StoppingCriterion() is typically a function of x and/or the energy derivative that determines 

when the current value of x is close enough to the minimum. One criterion for stopping is 

when the first derivative equals zero. Such a position is called a stationary point. A 

stationary point occurs at a local minimum, maximum, or saddle. Usually 

StoppingCriterion() incorporates other information that ensures the point is a minimum. 

Step 2 determines a direction vector, d, in which to move. Step 3 minimizes the function 

over one scalar variable. The minimization searches along the line from xk in the direction 
d for a minimum function value. The search limits a to lie between zero and one. The 

following sections present two algorithms that determine the direction and discuss the line 

search in greater detail. 

2.1. Steepest descent 

The simplest choice of the direction in Step 2 is the direction of steepest descent. At a 

given point, xk, the direction in which the function decreases the fastest is the negative 

gradient evaluated at that point (i.e. d = -Ve(xk)). An infinitesimal movement in the 

direction of the negative gradient is guaranteed to give the fastest decrease in the function's 

value. 

In practice we want algorithms that make larger movements than infinitesimally small. The 

a in Step 3 states how far to move in the direction. The function at some points along the 

direction vector can have larger values than at the current point since the function is 

.-



42 

nonlinear. The line search over a ensures that the function at the new point has a smaller 

value than the-current point. A common algorithm for the line search is the bisection 
method which starts with a set to one and then repeatedly halves a until the function value 

is less than the initial value. 

The steepest descent algorithm converges to a local minimum from any starting point. The 

algorithm evaluates the first partial derivative of the function at each step. The algorithm is 

easy to implement and useful to employ when far from the minimum. Some algorithms, 

however, converge to a minimum with fewer iterations than the steepest descent. 

2.2. Newton's method 
Newton's method repeatedly approximates the function with a quadratic function and 

minimizes the quadratic function. Minimizing a quadratic function takes one iteration since 

there is an analytic solution. The curvature information in the quadratic approximation 

provides more information about the energy function than the slope information in the 

steepest descent. 

The quadratic approximation comes from truncating the Taylor series expansion of e(x) 

about xk. First, expand e(x) = e(x" + d), where d = x - x", in a Taylor series about 

the current iterate, xk. Next, let q(d) represent the quadratic approximation of e(x) that 

results from truncating the series after the second-order term; that is, let q( d) = 
e(x") + dl'Ve(x") + }JIV2e(x")d. Recall that the slope of a function at a minimum point 

equals zero. For q(d) to be a minimum, Vq(d) must equal 0. Taking the gradient of the 

quadratic approximation with respect to d gives Vq(d) = 0 + Ve(x") + V2e(xk)d 

which must equal zero. Rearranging the equation shows the minimum occurs when d 

satisfies V2e(x1)d = - Ve(x"). This d is the direction of movement in Step 2 of the 

unconstrained minimization. 

The second derivative of the energy requires calculating the Hessian matrix, the matrix of 

second partial derivatives. Determining d then requires solving the n x n system of 

equations, where n is the number of variables. Since the equations only have a unique 

solution when the matrix is invertible, Newton's method is applicable only under certain 

circumstances. The major advantage of Newton's method is that the rate of convergence is 

quadratic when the matrix is invertible. Hybrid, or quasi-Newton, methods exist that try 

balancing the guaranteed convergence of the steepest descent and the quadratic convergence 
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in Newton's method. A discussion of hybrid methods is found in Introduction to Linear 

and Nonlinear Programming [Luenberger 1973]. 

3. Constrained optimization 
This part describes two algorithms that find a local solution of 

minimize e(x) 
such that Ci(X) = 0 (i = l..m), or equivalently, c(x) = 0. 

Minimizing an arbitrary function subject to arbitrary constraints is an unsolved research 

problem. Different algorithms exist for solving constrained optimization problems that can 

be classified by specific properties. Some of these classes include the following: the 

energy function is linear, quadratic, or nonlinear; the constraints are linear or nonlinear; the 

constraints are equality and/or inequality; the functions are smooth and continuous in zero 

or more derivatives; the initial point does or does not satisfy the constraints. The class of 

problems this research addresses possess the following properties: 

1. nonlinear energy and constraint functions; 

2. continuous energy and constraint functions through the second derivative; 

3. only equality constraint functions; 

4. initial point satisfies or nearly satisfies the constraints. 

There is no general agreement on how this class of problems should be solved in practice. 

The remainder of this chapter presents two algorithms that theoretically can solve this 

problem. One algorithm, the penalty method, recasts constraints as energy functions that 

rapidly increase value as the constraints are violated. The second algorithm, the Lagrangian 

method, minimizes a new function that is the sum of the original energy and the inner 

product of the constraints and some additional variables. This research uses an adaptation 

of the Lagrangian method. 

3.1. Penalty method 

Interactively solving a nonlinear constrained minimization problem balances reducing the 

energy function and maintaining, or nearly maintaining, the constraints. A penalty method 

penalizes (increases) the energy function when constraints are violated. A penalty method 

minimizes a new function that is the sum of the original energy function and the penal\Zed 

constraints (equivalently, this models constraints with springs). Consider the function 

¢(x) = e(x) + }pc(x)Tc(x), where pis a scalar penalty (spring stiffness) applied to each 

constraint. When the constraints are satisfied this function reduces to the energy function. 

Asp approaches infinity the solution of minimize ¢(x) converges to the solution of the 
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original constrained minimization problem, but as p approaches zero constraint violations 

are ignored. 

The constrained problem now requires choosing a penalty and minimizing l/J(x) . Steepest 

descent and Newton's method follow a multiple of the gradient of the function at each step. 

The gradient of t/J(x) is Vt/J(x) = Ve(x) + p Vc(x)c(x). Notice asp approaches infinity, 

the magnitude of the gradient approaches infinity even though a constraint may only be 

slightly violated. The range in magnitude is hard to model accurately in a computer due to 

limited precision. As the penalty increases the step length, a, must decrease, and thus 

more iterations are needed to converge. The same problem arises when modeling springs 

that are arbitrarily stiff. 

The technique of penalizing errors is also used in conjunction with other techniques. For 

example, the Lagrangian method provides a theoretical approach to constrained 

optimization problems but, in practice, is augmented with a penalty term to increase 

convergence. 

3.2. Lagrangian method 
The Lagrangian method is derived from the first-order conditions of a locally constrained 

minimum x•. The first-order necessary condition of an unconstrained problem requires the 

gradient of the function at the minimum is zero. The constrained problem has two 

conditions: the constraints are satisfied, c( x•) = 0; and the gradient of the energy 

function is a linear combination of the gradient of the constraint functions, Ve( x*) = 
l:iVCi(x*)A.t = Vc(x*)A.*. There is one scalar Aj, called a Lagrange multiplier, for each 

constraint. The vector A. • denotes the value of the multipliers at the minimum, x* . 

Figure 3.5 illustrates these conditions. At the point x' the gradient of the energy is not a 

linear combination of the constraint gradients. There exists a step, d, in the direction, -J.L, 

that reduces the energy and maintains the constraints. At the local minimum, x* , the 

conditions are satisfied and no descent direction remains that satisfies the constraints. For a 

problem with n variables and m constraints the first-order conditions give n+m nonlinear 

(in x) equations and n+m unknowns. 
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Figure 3.5: Sufficient conditions or a constrained minimum show the 
constraint is satisfied and the constraint gradient is a 
scalar multiple or the energy gradient. 

45 

The necessary conditions are concisely stated by introducing a new function, called the 

Lagrangian. The Lagrangian is defined as L(:r,A.) = e(:r)- A.lc(:r). If (:r*,A.*) is a 

stationary point of the Lagrangian (i.e. VL(:r*,A.*) = 0) then it is also a constrained local 

minimum of the original problem. Notice that when a point :r satisfies the constraints, 

minimizing the Lagrangian is equivalent to minimizing the energy function. The techniques 

discussed in Section 2 can be used to solve this problem. 

Unfortunately, the Lagrangian may not have a minimum even when the original constrained 

problem has a solution. This is because the solution depends solely on first-order 

information. This problem in general disappears if convexity is considered. Hestenes 

describes a method, called the augmented Lagrangian method, that adds a penalty term, 

pc(:r)Tc(:r), to the Lagrangian [Hestenes 1975, p. 308]. For sufficiently large p (though 

not infinite!) a point :r minimizes the augmented Lagrangian if and only if it is a constrained 

minimum of the original problem. 

In practice the augmented Lagrangian method converges faster than the penalty method 

because its penalty term is bounded rather than required to approach infinity. In the 

molecular modeling problem the penalty term is quite small. Fletcher gives an algorithm 
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[Fletcher 1987, p. 292] based on Hestenes' work that solves the constrained minimization 

problem with the augmented Lagrangian method. Figure 3.6 presents the steps. 

0. Initialize x0, A. 0, p; k +- 0 
1. xk+ 1 +- miniptize L(x,A. k,p) (Note: minimize over x only) 

2. if (llc(x"·~u > llc(~ll) 
p +- 10 X p 

goto step 1 

3. k +- k + 1 
k k-1 k 

4. A. • A. + pc(x ); goto step 1 
Figure 3.6: Augmented Lagrangian method ror finding a constrained 

minimum. 

If the Lagrange multipliers at the solution, A. •, are known, the solution to Step 1 is the 

solution to the original problem, independent of the value of p . That is 
• x* =minimize L(x,A. ). Unfortunately, A.* is not known in advance. Step 4 generates a 

X 

sequence of Lagrange multiplier estimates that converges to A. •. Each estimate is used to 

fmd the next value of x. The penalty term pulls the solution towards one that satisfies the 

constraints. When the constraints are far from satisfied, the penalty term is large and the 

algorithm is similar to the penalty method. When the constraints are satisfied or nearly 

satisfied, the penalty term is negligible and the algorithm approximates the Lagrangian 

method. 

Sculpt bases its algorithm on the steps just presented. The system estimates the Lagrange 

multiplier, performs an unconstrained minimization, and if necessary, adjusts the penalty 

term. The remainder of this chapter presents the approximations made in Sculpt to 

Steps 2-4. A comparison and explanation is made to justify the differences between steps 

in the preceding algorithm and the Sculpt algorithm. 

4. Sculpt's mathematical model 
An important feature of the sculpting problem is that the system always maintains a near 

local minimum. Before any external springs are placed in the model, I assume the 

constraints are satisfied and the system is in or very near a constrained local minimum. 

This assumption gives tremendous computational advantages. First, the minimization 

begins with the constraints satisfied. Second, a new tug only adds potential energy to the 

model. Third, since the additional energy is small relative to the total energy, a new 

minimum is usually near the last minimum. Figure 3. 7 lists the general steps taken in the 

Sculpt model. Each step is discussed next. 
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0. Initialize x 0; k +- 0 
1. Estimate the Lagrange multipliers. A. k 

2. Detenninc a penalty reno. p 
3 k+l • • · L( '\k ) . x +- .mmtmJZC x.~~. .p 

ll 

Figure 3. 7: Sculpt algorithm tor finding a constrained, local 
minimum. 

4.1. Estimate the Lagrange multipliers 

47 

The augmented Lagrangian method (Figure 3.6) gives a method for estimating the 

Lagrange multiplier that uses the previous estimate and the current value of the constraints; 
specifically, .A,.t = .A,.t-1 + pc(xk). The accuracy of the estimate is higher if frrst-order 

information about the constraints is included. A more accurate estimate lets the constrained 

minimizer converge in fewer iterations. 

Gill presents a method for estimating the Lagrange multipliers called the first-order 

multiplier estimate [Gill 1981]. This method uses first-order information about the 

constraints rather than just zero-order. Section 3.2 shows at a local minimum the gradient 

of the energy function is a linear combination of the gradient of the constraints 

( Ve(x*) = Vc(x* )A.). This algorithm finds the Lagrange multipliers that best satisfy this 

equation at each iteration. Thus Gill's algorithm estimates the ideal Lagrange multipliers at 

each iteration by solving the following equations for A.": [Vc(xk)]A.k = Ve(xk). 

The dimension of the Jacobian matrix of the constraints, Vc(x), is n x m, and the Lagrange 

multiplier vector is m x 1. In this system there are n equations and m unknowns. Since 

m is typically less than n, the system is over-constrained. Sculpt finds a least-squares 

approximation to the system of equations by first multiplying both sides of the equality by 

the transpose of the matrix and then solving for A. lr.: 
[V c(xk)TV c(xk)]A.k = Vc(xk)TVe(xk). 

Estimating the Lagrange multiplier in each iteration of the Sculpt algorithm requires the 

following steps. Evaluate the first derivative of the constraint and energy functions at the 

current point. Pre-multiply the gradient of the energy by the transpose of the constraint 

Jacobian to get an m x 1 vector, denoted b. Pre-multiply the Jacobian by its transpose to 

get an m x m matrix, denoted A. Finally solve the m x m simultaneous equations, 

A .. V = b, for A.k. 
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The sparsity and structure of the Jacobian lets an algorithm perform the matrix multiply and 

solve the equations in operations linearly proportional to the number of constraints. 

Chapter 5 discusses the details of those algorithms and analyzes their complexity. In 

practice the multipliers attained through this approach let the entire algorithm converge in 

one or two iterations. 

4.2. Determine a penalty term 
The penalty term, p, pulls the solution towards one that satisfies the constraints. The 

previous step estimates the Lagrange multipliers using a first-order approximation of the 

constraints. Since the constraints are nonlinear, this approximation lets the solution drift 

from the constraints. The penalty term keeps this from moving beyond some limit. The 
penalty term is set to the error in the least-squares approximation: p ~Re(x)-Vc(x)M. 

4.3. Find a minimum of L(x,A,p) 

This step finds an x that minimizes the augmented Lagrangian using the multipliers and 

penalty term of the previous steps. That is, the step finds an x that minimizes ¢( x) where 

¢(x) = L(x,J..,p) = e(x)- A. Tc(x) -fpc(x)Tc(x). Sculpt finds the minimum with the 

steepest descent method. The direction of descent is - VtP(x). Sculpt restricts the step 

length to 0.25 Angstrom (about one-fourth of a bond length). The direction vector is 

normalized if it is greater than one. The following algorithm lists the steps that find a local 

minimum of the augmented Lagrangian function, given A." and p. 

1. d ~ -V ~(xk) = -Ve(xk) + V c:(xk)A. k + p V c:(xk}c:(xk) 
2. if (lldll > 1) then a~ _I_ 

else a ~ 1 lldU 

3. xk+t ~ xk +ad 
Figure 3.8: Direction used in tbe Sculpt algorithm. 

This algorithm repeats using the same penalty and Lagrange multipliers until it satisfies a 

convergence condition. In practice the algorithm converges in one or two iterations. 

A different method such as Conjugate Gradient can be used if convergence requires more 

iterations. Since the steepest descent converges so rapidly in this application, I did not try 

other methods. 

Another method for finding a minimum of the augmented Lagrangian function uses 

Newton's method. I implemented Newton's method because I assumed the starting point 
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is near a minimum and wanted quadratic convergence. However, several drawbacks of the 

implementation caused me ultimately to settle for the steepest descent method. First, 

implementing the second-derivative evaluation requires a large amount of code-the 

second-derivative code for the angle function was five times the length of the code for the 

first derivative, resulting in an additional six hundred lines of C++ code. Second, the time 

to evaluate the second derivatives increases linearly with code length. Third, the method 
requires solving an n x n system of equations which consumes additional time. The 

version of the system that used Newton's method only modeled distance and angle 

functions. The large increase in code size and computation and the discovery that steepest 

descent converges quickly led me to chose the steepest descent method rather than 

Newton's method. 

4.4. Summary of algorithm 
The Sculpt algorithm for finding a local minimum of an energy function such that equality 

constraints are satisfied is based on the augmented Lagrangian method. The original 

problem is converted into finding a saddle point of the Lagrangian function. That is, 

convert the problem of finding a solution, x*, of minimize e(x) such that c(x) = 0 into 

fmding the pair (x*,A.*) that is a saddle point of L(x,A.,p). This is done by first estimating 

the Lagrange multipliers and setting the penalty term. The method then finds an x that 

minimizes L(x,A.,p) by using the steepest descent method. 

More details about the implementation are presented in Chapters 5 and 8. Chapter 5 

discusses properties of the protein model that yield linear computational complexity with 

the technique described here. Chapter 9 gives timing results for computing the minimum. 



. Chapter 4 
Related Systems 

This chapter discusses molecular modeling and computer graphics systems related to 

Sculpt. The first section describes energy models and applications of molecular modeling. 

The second section discusses dynamics simulations and constrained modeling used in 

computer graphics. The second section also describes algorithms that let constraints be 

added to a model and find model configurations that satisfy arbitrary sets of constraints. 

The systems and algorithms are analyzed for their applicability to the sculpting problem 

without regard for their intended application. 

1. Molecular modeling 
Two computational models of proteins, CHARMM [Brooks 1983] and Amber [Weiner 

1984; Weiner 1986], are commonly used to calculate the total energy. Both model the total 

energy as the sum of the energies in the bonds, bond angles, fixed and variable dihedral 

angles. van der Waals interactions. electrostatic interactions. and hydrogen bonds: 

They differ in the parameters for the spring constants and ideal values and in the model of 

electrostatic interactions. hydrogen bonds. and solvent interactions. CHARMM allows 

different electrostatic models other than the one given; these include letting the dielectric 

constant vary with distance and computing a dipole moment for a group of atoms far from 

other atoms. CHARMM and Amber allow van der Waals interactions, electrostatic 

interactions, and hydrogen bonding with surrounding solvent. Both models use a constant 

dielectric for nearby interactions with solvent; however, CHARMM uses the group dipole 

approximation for long-distance electrostatic interaction. CHARMM also allows a different 

hydrogen-bond model that includes the angle between the hydrogen bond and the covalent 

bond attached to the hydrogen. 
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These models evaluate the van der Waals interaction on atoms within a five to seven 

Angstrom neighborhood radius. The same list is used for multiple iterations of algorithms 

that calculate the energy. Both models let a user choose among modeling all the 

hydrogens, only hydrogens that can form hydrogen bonds (Sculpt's approach), and no 

hydrogens. The goal of these models is physical realism, so no constraints are placed on 

bond lengths or angles. 

The parameters in Sculpt are based on the CHARMM model. Sculpt, however, does not 

model electrostatic and solvent interactions. Sculpt also constrains the bond lengths, 

angles, and fixed dihedral angles to their ideal values rather than let them vary. Sculpt uses 

a different variable dihedral angle function and hydrogen bond model. The variable 

dihedral angle model uses a quadratic centered at the nearest ideal angles as an 

approximation of the cosine function (expanding cos x in an infinite series gives cos x = 
1 - }x2 + O(x4 )). The quadratic is faster to evaluate but has a slightly wider energy 

well. Hydrogen bonds are manually specified at Sculpt's program initialization and remain 

throughout the session rather than being continually evaluated between atoms in neighbor 

lists. Sculpt models a hydrogen bond with a length and angle spring. 

These energy models and variants of them are used in commercial molecular modeling 

systems such as Sybyl [Tripos 1988], Insight [Biosym 1991], and Quanta [Polygen 1991] 

for several purposes. First, determining the energy allows comparison among multiple 

conformations. Second, energy minimization moves atoms into locally minimum energy 

wells. Third, the energy gradient gives a force used in the simulation of the Newtonian 

motion of atoms. Fourth, the second derivative of the energy allows analysis of the normal 

(vibrational) modes in a given configuration. 

1.1. Energy minimization 

Energy minimization is used to move atoms into locally minimum energy configurations. 

A user often lets an energy minimizer shift atoms that are too close and adjust torsional and 

angular violations after manually editing a molecular model. However, energy minimizers 

often resolve bad atom separations by moving atoms more than a user intends. Energy 

minimization is also used as a pre-processing step to find a stable atom configuration before 

molecular dynamics simulation and normal mode analysis. 
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1.2. Molecular dynamics 
Molecular dynamics are used to examine the motion of atoms in a molecule and to move 

atoms out of local energy minima. Molecular dynamics simulates the motion of atoms in a 

molecule by simultaneously solving Newton's equation of motion for each atom 

[Me Cammon 1977; van Gunsteren 1977]. This requires solving the set of coupled, 

second-order differential equations given an initial position and velocity for each atom i 

with mass m;: 

i32xi F· · 
atl = fnt , where the force on atom i is Fi =- V x1E(x). 

Numerically integrating these equations through time requires time steps shorter than the 

inverse of the highest frequency in the model. For bond length changes, that frequency is 

about 1010 hertz. In proteins this requires time steps on the order of femtoseconds. 

Because of the small time step and large computation required during each step, dynamics 

of proteins have only run for simulated time periods of a few nanoseconds [Brooks ill 

1988; Hermans 1992]. Removing the highest frequency component, flexible bond lengths, 

allows a two-to-three performance increase [van Gunsteren 1977]. The short time steps, 

however, prevent molecular dynamics from being a viable method for interactively 

sculpting protein. 

1.3. Normal modes 
A normal mode analysis gives principal vibration axes in a structure (the most flexible axes 

of change). A normal mode analysis requires solving an n x n system of equations that 

results from taking the second partial derivative of the energy function. This requires batch 

processing on all but very small molecules. The analysis is valid assuming only small 

changes in atom positions [Brooks m 1988; Pentland 1989]; large movements require a 

new analysis. Sculpting a protein by interpolating the normal modes is not a viable 

approach since a new analysis must run after the protein is deformed. 

1.4. Interactive modeling 

In most molecular modeling systems the user manually positions atoms by a series of 

purely geometric dihedral angle rotations. For example, commercial modeling packages 

such as [Biosym 1991; Polygen 1991; Tripos 1988] display a graphical (vector) 

representation of the covalent bonds and let a user apply rotations about particular bonds. 

Along the backbone only rotation about the N-Ca and Ca-C bonds (refer to Chapter 2) are 
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allowed. This keeps the peptide atoms planar and distances and angles valid. However, 

no restriction is placed on non-bonded atom separation. Atoms can move closer than 

allowed by the van der Waals repulsion. In practice a user manually moves the atoms to a 

good separation and then invokes a batch energy minimizer for fine-grain adjustments. 

Often the results are not acceptable and the manual/automatic process is repeated. 

A research modeling package called FORME [Tuffery 1991] lets a user interactively deform 

a protein backbone (rotations are currently not allowed in sidechains). FORME lets a user 

specify end positions· of two atoms in a backbone chain. FORME then determines 

incremental rotations about the N-Ca and Ca-C bonds in the backbone that will move the 

two atoms to their target positions. FORME determines the rotations by analyzing the 

possible rotations allowed if the electron shells of all atoms are modeled with hard spheres 

(a CPK model). As yet no energy model is used to determine the conformations along the 

path. 

A few systems have allowed limited interactive energy minimization. The GRIP system let 

a user manually disconnect a bond in the backbone and move a new residue into place 

[Britton 1977]. Then the user can invoke a structure idealizer that pulls the new residue 

into proper geometry while keeping the rest of the structure fixed. In crystallography a 

combination of constraints and restraints (energy model) is used to fit known structure into 

observed data [Hendrickson 1980]. 

2. Physically-based modeling in computer graphics 

2.1. Simulation of constrained Newtonian dynamics 

Physically-based modeling frequently aids computer animations by automating detailed 

motion planning and complex object interactions. Miller generates realistic snake motions 

by modeling muscle contractions with springs [Miller 1988]. Witkin models the energy 

and momentum of a Luxo lamp jumping hurdles and ski jumps [Witkin 1988]. 

Terzopoulos models energy in elastically deformable objects such as cloth to create 

animations of flags [Terzopoulos 1987]. These examples simulate the motion of objects by 

frrst stating application-specific conditions about the objects and scene and then solving 

Newton's equations of motion. 

Similar applications use constraints to restrict the allowable states of objects and maintain 

dependencies among objects. Barzel uses constraints in computer animation to specify 

paths for objects [Barzel 1988]. Witkin uses geometric constraints to assemble models 
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[Witkin 1987], and he describes a system that lets a user interactively connect and 

manipulate objects such as a mechanical assembly or tinker-toy [Witkin 1990]. Constraints 

maintain constant volume in incompressible solids [Platt 1988] and restrict penetration 

when a ball strikes a trampoline [Platt 1989] . 

2.2. Satisfying new constraints 
Drawing systems such as [Claris 1988] let new objects be insened that have simple 

constraints, independent of other objects (e.g. constraining a line to be horizontal or two 

inches long). Satisfying such constraints simply eliminates some degrees of freedom of the 

object. Some systems allow constraints on objects that are dependent on another object's 

property. For example, Sketchpad let a user create a line that was constrained to be 

perpendicular or parallel to another line [Suth~rland 1963]. Since such constraints are 

dependent only on another property, they are also easily solved These constraints are 

active only during object creation; arbitraty changes are allowed later. 

Satisfying arbitrary constraints defined among objects that also are constrained is much 

more complex and is a subject of active research. Analytic techniques can find solutions to 

some constraint problems by symbolically solving the set of constraint equations. 

However, a closed-form solution is usually not possible. Leier surveys many analytical 

techniques for satisfying constraints [Leier 1987]. Unfortunately, as the complexity of a 

constraint and the number of constraints increases, analytic methods often fail. Analytic 

methods have only been successfully applied to systems with a few dozen to one hundred 

constraints. 

An interactive system, called Thinglab [Boming 1979], lets a user construct constrained 

objects in an object-oriented programming environment. Each object has a user­

programmed method that satisfies internal constraints (e.g. extending a side to maintain a 

constant area in a rectangle). If an initial analytical method fails, the system iteratively calls 

each object until the constraints are solved. The research in Thinglab centered on 

programming-language design and analytic constraint satisfaction, so only models with a 

few dozen objects and constraints were used. 

Grant discusses a system that finds a configuration of objects that best satisfies an arbitrary 

set of constraints [Grant 1991]. An associated error function measures the violation of 

each constraint (constraints are modeled as restraints in his work). The system finds an 

optimal solution (a global minimum of the sum of error functions) using simulated 
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annealing [Kirkpatrick 1983] which iteratively surveys a random sampling of the parameter 

space. The approach is very useful when one has little intuition about the optimal model 

configuration and the model contains many constraints. Theoretical results give a 

probability that the computed solution is a global minimum. This probability depends on 

the number of iterations run and other parameters of the algorithm; the optimum is not 

guaranteed without an infinite number of iterations. In practice acceptable probability 

requires on the order of hours of computation. 
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ChapterS 
Algorithms and Analysis 

This chapter describes and analyzes the algorithms in Sculpt that tie the problem in 

Chapters 1 and 2 and the mathematical model in Chapter 3 together into an interactive 

modeler. The first section discusses how atoms are interactively manipulated while 

satisfying the mathematical model. The remainder of the chapter analyzes the 

computational complexity of each algorithm. This chapter restricts the discussion to those 

algorithms necessary for protein sculpting on a single-processor workstation. Chapter 6 

discusses which algorithms benefit from parallel processing, and Chapter 7 examines an 

approximation that drastically reduces computation. 

1. Interaction with springs and nails 

A chemist moves an atom in Sculpt by tugging it to the desired position. Tugging follows 

the pick-and-drag methodology found in many window systems. A chemist positions a 

cursor over the atom, invokes a pick command, and drags (moves) the cursor to the desired 

direction (Chapter 8 presents a detailed description of the user interface). The system 

attaches a zero-length spring between the picked atom and the cursor. The system reads the 

cursor's position multiple times during dragging and changes the end of the spring. At 

each read the system adds the potential energy in the spring to the total energy in the 

protein. The system then minimizes the energy and displays the new atom positions. 

Therefore, moving an atom is accomplished through a series of individual rugs on a spring 

(attached between the atom and the cursor) and energy minimizations. 

The motion of the tugged atom is not always as expected. Assuming no opposing forces or 

constraints, the atom does move in the direction of the tug (towards the cursor). Since the 

mathematical model only considers atom positions, and not velocities, the atom can be 

placed exactly at the desired position. However, an opposing force or constraint can 

prevent the atom from following the cursor. Suppose a tugged atom is bonded to another 

atom exactly opposite the direction of the tug. If the bonded atom cannot move, the atom 

will not follow the tug (Sculpt does not model the breaking and formation of bonds). 
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Part A in Figure 5.1 illustrates this case with atom F fixed. The tangential component of 

the tug direction is followed if another direction is picked as in Part B. 

(a) (b) 

Figure 5.1: The point T is constrained to the circle. (a) shows a tug 
that does not move the point, and (b) shows a tug that 
moves T along one component or the tug direction. 

Tugging provides a method for moving between local minima. Figure 5.2 shows a case 

where tugging pulls an atom, T, from one energy minimum to another. Assume atoms F 1 

and F 2 are fixed. The arrows show the direction and magnitude of the atom attractions. 

Initially (Part A) atom Tis closer to F1 and has a stronger attraction to F1 than F2. The tug 

in Part B pulls the atom towards F2. Part C shows the final resulL This example shows 

where user intervention can overcome a local energy minimum. 

T 
Ft~ 

T Tug 
Ft...........---.. Fz 
• • Ft 

• 

T 
~F2 

• 
(a) (b) (c) 

Figure 5.2: A series or figures showing a tug that pulls T between 
minima. (a) shows attractions berore the tug; (b) shows a 
tug applied to T; (c) shows attractions afterwards. 

• 

Nails let a chemist fix an atom's position to a three-dimensional position in space. Nails 

provide additional control over atom motion. Often many atoms follow the motion of one 

atom due to attraction, even though a chemist only wants to move the one atom. For 
example atom F 1 in Figure 5.2 would follow atom T if it was not nailed to its position. 

Nails fit into the mathematical model in two ways--with an equality constraint on the 

atom's position or a strong, zero-length spring between the atom and the position. 

2. Computational complexity 

This section begins a detailed analysis of the computational complexity of the minimization 

algorithm described in Chapter 3. I use big-0, or order, notation to describe the worst­

case complexity of the algorithms. Big-0 analysis is a formalism for expressing the 

.: 
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intuitive idea that the number of steps required to execute an algorithm is proportional to 

some function of the number of items processed. For instance, an O(n2) algorithm 

executes in a number of steps proportional to the square of the number of items. 

Figure 5.3 lists the computational complexity of each step in the minimizer. The remainder 

of this chapter explains how this algorithm solves the protein sculpting problem in time that 

increases linearly, O(n), with the number of variables. 

O(n) Create neighbor lists 

O{ktv X Jc.t X n) Function/derivative evaluation 

Compute Lagrange multipliers 

: I O(k,. x k.t x n) ~ 
i 

Multiply vector: b =JTVe I 
3~ 2 2 v 

O((kCv +kCvkvf) x n) :I OOctv ~7:. J 

Multiply matrix: A = J TJ I X kvf X n) ~ 

v 
I O(kf. x k:p. x n) ~ Solve for A.: A A. =b I 

. 
O(krv x n) : Compute upda1e 

O(n) Update variables 

variable Useful dcrjved guantjtjes 
n number of variables = 3 x number of atoms fc number of constraint functions ~ krvxn 

f. number of energy functions ~ krvxn 

Constants 
kv1 maximum variables in a function = 12 
krv maximum functions containing same variable 
k.p... maximum range of indices in a constraint 

Notation 
Ve gradient of energy, (n x 1) 
A. Lagrange multipliers,( fc x 1) 
J gradient of constraint functions, V c ( n x fc) 
JT ttanspose ofJ, { fc x n) 

Figure 5.3: Computational complexity of Sculpt's constrained 
minimization algorithm. 

2.1. Notation 

n. The only free parameter in the algorithm is the number of atoms. Each atom has three 

variables that specify its position. The total number of variables, n, equals three times the 

number of atoms. 
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kdomaln· The domain of the functions gives the maximum number of variables each 

function can reference, denoted kdoWUJin· The dihedral angle function uses the most 

variables-twelve, four atoms, each with three variables. 

krv- The number of functions that can reference the same variable is bound from above, 

denoted ktv (functions per variable). This comes from a property of the atoms in a protein. 

Consider how many bonded functions Oength, angle, and dihedral) can include a particular 

atom. An atom can only fonn as many bonds as it has unpaired, outer-orbit electrons-call 

this number v for valence (in proteins carbon fonns the most bonds, four). This means at 

most v length functions contain the same atom. Each of the bonded atoms is also bonded 

to at most v-J other atoms, giving at most v x (v-1) angles that can include the initial 

atom. A similar argument follows for dihedral angle functions. The section on neighbor 

lists shows that the number of non-bonded functions that can refer to one atom is also 

bounded. Therefore, there is a constant, maximum bound on the number of functions that 

refer to the same variable. This also limits the number of functions, energy or constraint, 

to 1cf11 (thus the number of energy,fe, and constraint,/c• functions is O(n)). 

kspan· The span of a row in a matrix is defined as the separation between the lowest and 

the highest nonzero column. Since one row in the Jacobian transpose represents the 

gradient of one constraint and a column represents the partial derivative of all the 

constraints with respect to one variable, the span of a row in this matrix depends on the 

separation of variable indices referenced by a constraint. The maximum separation in 

proteins is bound by a constant, kspan· This requires an atom numbering scheme so that a 

constraint only references atoms within a fixed range of indices. A scheme that I use 

sequentially numbers atoms along the protein backbone with breaks at the sidechains. 

Part A in Figure 5.4 shows the numbering scheme used for proteins. Note the only 

discontinuity in the numbering is at the sidechain. The constant, kspan• is derived by 

examining a dihedral angle function (fonned by four atoms) defined on atoms before and 

after a tryptophan sidechain. This is the worst case because a dihedral function references 

the most variables and a tryptophan sidechain contains the most atoms, ten. The right side 

of the figure derives the constant. 
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This restriction on constraint functions does not prevent interactions between arbitrary 

atoms. Constraint functions are only applied among covalently-bonded atoms. Arbitrary 

interactions between non-bonded atoms are modeled with energy functions. Separation of 

variable indices in energy functions is not restricted. Similarly, hydrogen bonds are 

modeled with energy functions. A hydrogen "bond" is actually an attraction between two 

partially charged atoms-not a bond formed with shared electrons. 

A disulfide bond violates this restriction. This covalent bond occurs between atoms in 

separate sidechains which can have indices arbitrarily separated. Most proteins do not 

contain disulfide bonds; those that do usually contain from one to ten. The complexity 

analysis remains valid when a model contains a fixed number of constraints among 

arbitrary atoms. I do not factor this into the definition of kspan but address it separately at 

the end of Section 4.2. 

2.2. Vector operations 

Function and derivative evaluation. Each function contains at most kdomain 

variables. Evaluating a function and the partial derivative with respect to each of its 

variables requires O(kdomain) operations. This is done for each of the fe+fc functions, 

resulting in O(kdomainife+fc)) = O(kdomiJi,Jcfvn) operations. 

Compute update. Section 4.3 in Chapter 3 gives the following equation for computing 

the update: d ~ -Ve + JA. + pJc. Assuming previous steps provide the function 

gradients and the Lagrange multipliers, this algorithm involves two vector sums requiring 

O(n) operations and two matrix-vector multiplications. Both multiplications involve the 

n x fc matrix of the constraint gradients and an fc x 1 vector. The multiplication requires 

multiplying each of the n rows in J by the vector. A row r contains the partial derivatives 
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of each function with respect to variable r. Since a variable is in at most ktv functions, each 

row contains at most ktv nonzero entries. Thus the multiplication of a row by a vector 

requires O(kfv) operations, assuming the location of the nonzero entries is known (a data 

structure presented in Section 4 keeps this information). The entire matrix-vector 

multiplication (and the computation of the update), therefore, requires O(kfv") operations. 

Update variables. This step just adds the update vector to the variables, involving O(n) 

operations. 

3. Neighbor lists 

The non-bonded interactions, van der Waals and electrostatic, are computed for atoms near 

one another. Sculpt keeps ~ list of the atoms within a spherical neighborhood of radius 

r neigh of each atom. This radius is different for the van der Waals and the electrostatic 

interactions, so Sculpt actually needs two neighbor lists (Sculpt does not currently compute 

electrostatic interactions, so only one list is presently computed). Chapter 2 discusses 

advantages and disadvantages for using neighbor lists; this section only presents the 

algorithm that detennines the members of the lists. 

An algorithm can compute these lists in O(n) steps by exploiting a property of atoms. Each 

atom occupies a nonzero volume, referred to as its electron shell in Chapter 2. Levinthal 

shows from this fact that only a finite number of atoms can fit within a finite volume 

[Levinthal 1966]. A conservative bound on this number is r3neigh (the neighborhood 

volume divided by the volume of the smallest atom, hydrogen, with a radius of 

one Angstrom). 

Bentley gives an algorithm with linear complexity that computes neighbor lists that have a 

bounded number of entries [Bentley 1979]. First, uniformly subdivide space into cubes 

with r neigh on each side. Second, deposit each atom into the cube at its position. Third, set 

the neighbor list for each atom to the atoms in its cube and the adjacent cubes. This 

algorithm takes O(n) steps. 

Storing all the cubes can require a lot of memory if the molecule is large and the cubes are 

small. Rather than storing a full three-dimensional grid of cubes, I use a hashing scheme 

based on the three-space coordinate. Only cells that contain atoms are stored. Collisions in 
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the hash function are not resolved, so two atoms with the same hash index are placed in the 

same cell regardless of their separation. 

The list of neighbors for each atom is initially set to the list in its cell. A final step of the 

algorithm removes those atoms in the list that have the same hash index but are far apart. 

In practice this pruning can reduce the number of interactions by forty percent 

4. Finding Lagrange multipliers 
Finding the Lagrange multipliers requires matrix multiplication and solution of linear 

equations. The system of equations is very sparse (typically more than ninety-five percent 

of the entries are zero). Exploitation of this property by data structures and algorithms 

provides drastic reduction in memory and computational requirements. The first section 

presents the data structure that holds the matrix. The second section examines the 

complexity of the algorithms that find the Lagrange multipliers. 

4.1. Data structure 
Sculpt stores the transpose of the Jacobian (gradient) of the constraints, Jf. The matrix has 

fc rows and n columns. Element (iJ) holds the first partial derivative of constraint i with 

respect to variable j. Since each constraint is defined over a small number of variables-­

much smaller than the total number of variables--most entries in the row are zero. In fact 

an average row in a small test model with 300 atoms is 98.7 percent zero. The percentage 

increases with the problem size. 

Basic structure. A new sparse-matrix data structure, optimized for this application, is 

used. The data structure is a variant of one described by Knuth [Knuth 1973, p. 300] that 

stores each nonzero element of a matrix in a node of a linked list. Knuth's node contains 

the element's value, the row and column indices, and pointers to the next row element and 

column element. Figure 5.5 shows the data structures used in this research. The structure 

does not store the row and column index at each node, but instead, stores pointers to the 

row and column headers which contain the index. Inserting a row or column requires 

changing the indices in the row and column headers rather than the matrix elements. 

Value Ptr to ColumnHeader Index Index I #Elements 

Ptr to RowHeader Ptr Down Ptr to FlrstEiement Ptr to ElementArray 

MatrixEiement ColumnHeader Row Header 
Figure 5.5: Three data structures used in the sparse-matrix definition. 
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The matrix element does not contain a pointer to the next element in the row. Since each 

row holds the partial derivatives of a specific constraint, the number and location of the 

nonzero elements is known when a constraint is created. The row header, therefore, 

contains the number and a pointer to an a"ay of nonzero elements. Figure 5.6 shows a 

full matrix in the upper-left and its associated sparse-matrix data structure. The additional 

arrays, RowDirect and ColumnDirect, provide direct access to the rows and columns, 

respectively. 
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Sparse Mabix 
Figure 5.6: Full matrix in upper-left represented in Sculpt's sparse­

matrix data structure. 

v 

Sparsity of matrix product, A=JTJ. The system also uses the data structure to store 

a second matrix, the product of the Jacobian transpose and the Jacobian, A=JTJ. The 

sparsity pattern of matrix A closely resembles the pattern in JT. 

Which elements in the A matrix are nonzero? The element a,,c is defined as the inner 

product of the ,-th row of the left matrix and the cth column of the right matrix (i.e. 

ar,c = f l:,Jt! k,c). The cth column of a matrix is also the cth row of the matrix transpose. 

Applying this to the definition of a,.c gives a,,c = f J:,Jt!~k· This indicates that the element 

is nonzero only when rows rand c in the Jacobian transpose contain a nonzero entry in the 
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same column. Comparing each row of the Jacobian transpose against its other rows for 

common, nonzero columns gives the nonzero elements of A. Since no rows (constraints) 

are inserted or removed during a program session, the sparsity pattern of JT and A remains 

constant. (Chapter 7 relaxes this assumption in limited cases.) A pre-processing step 

analyzes the sparsity pattern of JT to create the sparse matrix A. 

A matrix times its transpose, and vice versa, is symmetric. A symmetric matrix equals its 

transpose (i.e. A = AT). The maximum number of elements in a row of this mat:rlx, and 

likewise in a column, is bound by a constant. Each nonzero element with index (r,c) 

implies that constraints r and c share a common variable. A given constraint uses at most 

kdorrulin variables that are each in at most ktv functions. Therefore, a given constraint has 

common variables with at most k~ other constraints. This implies a given row in A 

has at most k~ nonzero elements. 

4.2. Algorithm 

Finding the Lagrange multipliers requires three steps: matrix-vector multiplication, 

b ~ JTVe; matrix-matrix multiplication, A~JTJ; linear equation solution for A., AA.=b. 

Each step is discussed separately. 

Matrix-vector multiplication. This step multiplies the fc x n Jacobian transpose 

matrix by anfc x 1 vector. The algorithm multiplies each row of the matrix by the vector. 

Since each row contains at most kdomaU& nonzero elements, multiplication of one row 

requires O(kdomain) operations. The entire multiplication takes O(kdomaiJc) = 

O(kj)crl.omiJinfl) operations. 

Matrix-matrix multiplication. This multiplication requires calculating the value for 

each nonzero element in matrix A. The location of the nonzero elements is determined at 

program initialization. The maximum number of entries in matrix A is the number of rows, 

fc, times the maximum number of elements per row- Oifckdomau.ktv) = O(kdomainklvn). 

Determining the value of a given entry, (r,c), requires multiplying rows rand c of the 

Jacobian transpose. This requires O(kdoma;,.) operations since the maximum number of 

nonzero entries in a row is kdomain· The computational complexity for the entire 

multiplication is O(kim.a;,.kfvfl)· 

Linear equation solution. Solving the system of equations in linear time critically 

depends on a sort of the rows in the Jacobian transpose. At program initialization the rows 
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of the Jacobian transpose are sorted relative to the smallest index (column) referenced. 

Matrix-matrix multiplication of this sorted matrix yields a band-diagonal matrix, one whose 

nonzeros lie within a constant distance (band) from the diagonal. The number of 

operations in Gaussian elimination on a banded-diagonal matrix increases linearly with row 

dimension. The remainder of this section analyzes the sparsity pattern in the matrix A and 

the complexity of Gaussian elimination applied to it. 

The worst-case structure of matrix A depends on the largest possible span of an arbitrary 

row, say i. What are the smallest and largest column numbers that are nonzero in the row? 

Column j in the row is nonzero if and only if constraints i and j reference the same variable. 

Assume constraint i references variable indices L and L+kspllll' the maximum separation of 

variable indices in a constraint. Figure 5.7 shows the arrangement of the sorted Jacobian 

transpose around constraint i that yields the largest span in A after matrix-matrix 

multiplication. 
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Figure 5. 7: Worst-case structure of the Jacobian transpose. 
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The figure shows one constraint that references variable indices L and L-kSfXJ"' and one that 

references L+kspan and L+2k:rpan. The fact that a variable appears in at most ktv functions 

limits the number of constraints that can appear between the first constraint in the figure and 

constraint i. Only ktv constraints can reference each of the variable indices between L-k:rpan 

and L. Therefore the smallest-numbered constraint that can reference a variable in 

constraint i is i - kf)cspan· Similarly, the largest-numbered constraint is i + ktvkspan· 

Therefore, row i in matrix A can only contain nonzero entries k[vk:rpan columns before and 

kf)cspan columns after the diagonal element. The same argument holds for each row in A. 

Matrix A is called band-diagonal with bandwidth kJvk:rpan· All the nonzero elements in a 

band-diagonal matrix with bandwidth b lie within b elements of the diagonal. Figure 5.8 

shows such a matrix with bandwidth b. 
b 

t;:xt;: 
Figure 5.8: Worst-case structure of the product JT J. Empty squares 

represent zeros. 

Gaussian elimination reduces a band-diagonal matrix in O(IJ2fc) operations. Figure 5.8 

highlights one block of a band-diagonal matrix. Consider the operations necessary to 

eliminate the elements under the diagonal in the left-most column of the highlighted block. 

This requires eliminating the value in the b-1 rows following the first row in the block. 

Each row elimination requires multiplying and adding b elements in the row. So 

eliminating the column elements below a diagonal element requires 0(b2) operations. 

Repeating this for each diagonal element gives the computational complexity listed. 

sJbstituting constants gives the following number of operations to solve the linear 

equations: O(IJ2fc) = 0((kf)cspan)2ktvn) = O(PrJc'/pann). In general some elements within 

a band are also zero. Equation solvers can often use this information to reduce the average 

number of operations . 
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Assume a model now contains one distance constraint, i, defined between two arbitrary 

atoms (e.g. a disulfide bond). This constraint only references variables in kcv other 

constraints, but a given constraint, j , can be arbitrarily separated from i. The nonzeros in 

this matrix are either within the original bandwidth or at a few stray places such as (iJ) . 

The computational complexity of Gaussian elimination on such a matrix does not increase, 

since only the elements in the column under these stray elements are filled. A similar 

argument proves that the complexity of Gaussian elimination remains linear when there is 

some constant number of distance, angle, and dihedral angle constraints defined among 

arbitrary atoms. However, an unbounded number of these constraints yields a general 

matrix which requires O(m3) operations. 

5. Summary of computational complexity 

This chapter proves the computation of the constrained minimization algorithm scales 

linearly with the number of atoms. Figure 5.9 lists the assumptions the preceding analysis 

makes on the underlying model. The table lists reasons for each assumption and some 

additional notes. 

Assumption Reasoa 

Nonzero object volume and fixed Bounds nwnbel' of noo-bonded 
neighluhood radius interactions per atom 

Bound number of variables in a Limits numbel' of nonzeros in 
function Jacobian 

Bound number constraints that Same as above 
reference same variable 

Bound range of variable indices in Yields block-diagonal matrix 
a constraint 

Constraints are not added or 
removed 

Allows Jacobian matrix pre­
processing 

Note 

Reasonable but prevents functions 
requiring global information 

Reduces probability of an over­
constrained model 

Gaussian elimination is cubic 
without this; relaxed in certain cases 

Relaxed in Chapter 7 

Figure 5.9: Assumptions made in analysis of Sculpt's minimization 
algorithm. 



Chapter 6 
Parallel Computation 

This chapter discusses improving system performance with parallel processing. Parallel 

computation divides data into portions that can be processed independently by different 

processors (often called processing elements). Concurrent computation divides an 

algoritlun into portions that can be processed simultaneously. The Sculpt minimization 

algorithm contains steps that can proceed in parallel and concurrently. These techniques 

reduce the constant of proportionality of the algorithm, but do not reduce the linear 

complexity. The solution of linear equations contains a property that requires O(n) 

operations regardless of the number of processors. Chapter 9 lists some timing results 

made using the techniques described in this chapter. 

Figure 6.1 presents the steps in the minimization algorithm that operate in parallel and 

concurrently. The vertical axis represents data dependencies; .a stage cannot begin until the 

previous stage completes. The horizontal axis shows parallel processing within an 

algorithm and current processing between algorithms. Boxes with round comers represent 

stages in the algorithm. Round-comer boxes beside one another (within Stages 2 and 4), 

execute concurrently. Small square boxes represent processing elements that execute in 

parallel. The figure contains three types of computation: neighbor-list determination, 

vector and function operations, and solution of linear equations. The remainder of the 

chapter discusses each of these. 
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iAcn~Am or concurrent and parallel segments or 
Sculpt's minimization algorithm. Execution or a block 
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1. Neighbor list determination 
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Function and derivative evaluation must wait until the neighbor-list computation completes 

because functions that model non-bonded interaction (Vander Waals and electrostatic) 

interactions require a neighbor-list for each atom. This dependency can be avoided if the 

neighborhood radius is enlarged. The functions that model non-bonded interactions can 

use the same neighbor-lists for multiple iterations if the neighborhood encompasses the 

maximum possible atom movement during the iterations. This approach lets computation 

of new neighbor-lists proceed concurrently with function and derivative evaluation. Sculpt 

partially implements this approach. A user can choose whether or not a list is computed on 

each iteration. However, the list is not determined concurrently with the rest of the 

algorithm. 

2. Vector and function operations 

Stage 1 evaluates the constraint and energy functions and their derivatives in parallel. 

Sculpt stores each constraint value in one element of an array and the gradient of each 
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constraint in one row of the Jacobian transpose matrix. Simultaneously writing the values 

to memory does not cause contention. Memory contention does arise when energy 

gradients are stored. Sculpt stores the sum of all the energy gradients. Since each energy 

function can reference the same variable, parallel updating of the sum can cause errors. 

Sculpt adjusts for this by computing the energy gradients on a small number (four or eight) 

of processors, each of which holds a local copy of the sum. When all the processors 

complete, a final step combines the local copies. 

Stage 5 performs a vector addition, and Stages 2 and 4 calculate a matrix-vector 

multiplication. Processors can compute the elements of the resulting vector in parallel. If 

the number of elements in a vector result equals the number of processing elements, a 

stage requires only 0(1) computations. Note that stages 2 and 4 contain algorithms that 

can proceed concurrently. 

3. Linear equation solution 

A band-diagonal matrix requires O(kn) steps to solve using Gaussian elimination. Parallel 

processing can reduce the constant of proportionality, k, but cannot lower the linear 

complexity. Before any row is reduced, all prior rows must be reduced. Consider a tri­

diagonal matrix-a band-diagonal matrix with one band above and below the diagonal. 

Eliminating the rows below a diagonal element, say (i,i), affects the next row, i+1 . This 

prevents processing row i+ 1 until completion of row i. Therefore, processing row 1 must 

complete before beginning row 2, which must complete before beginning row 3, etc. The 

dependencies between rows keep this algorithm O(n) regardless of the number of 

processors. 

Iterative solution of the system of equations holds promise for reducing the average 

computation. Iterative solutions of a band-diagonal system of equations require O(n) 

operations in the worst-case, but may require fewer on average. These methods hold 

promise for improved performance and should be considered in future research. 



Chapter 7 
Structural Hierarchy 

The sculpting process, as described so far, only allows tugs on atoms. This works well 

for changing relative atom positions and twisting backbone segments into secondary 

structures (e.g. a helix). However, moving an entire section of secondary structure as a 

unit is cumbersome with this method. Consider the steps needed to change the orientation 

of a helix without changing its internal configuration. Tugging one atom after another 

changes the internal arrangement. Instead, simultaneous tugs applied to multiple atoms are 

needed to move the entire helix simultaneously. This approach eventually orients the helix 

properly, but any variation in the relative tug strengths changes the internal arrangement of 

the helix. · 

Arbitrary atoms in Sculpt can be grouped into higher-level objects that facilitate movement 

of secondary structures. Moving the object moves the atoms it contains according to a 

programmable model. In a simple case, a translation of an object translates all of its atoms 

the same amount. Two examples help illustrate applications and benefits of higher-level 

objects. A chemist freezes the backbone of a helix, representing its atoms with a cylinder. 

When the chemist tugs the cylinder, the backbone atoms within it move with the cylinder. 

The sidechain atoms still interact with other atoms as usual, but the backbone atoms 

maintain their relative orientations. In this example the atoms move exactly the same as the 

rigid cylinder. A second application lets the chemist bend the cylinder (not yet 

implemented). Now the backbone atoms further from the cylinder center move more than 

those near the center. Mapping a change in cylinder parameters to a change in atom 

positions is programmable. Discovering and then applying individual atom tugs that solve 

the two examples is much more difficult and time-consuming than using groups. 

This chapter discusses how a hierarchical model of protein structure, coupled with arbitrary 

grouping of atoms within deformable objects, significantly improves the sculpting process. 

The first section details some advantages, including enhanced user interaction and 

performance. The second section lists conditions placed on grouped atoms. The third 

section presents modifications of the algorithm and data structures described in previous 
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chapters. Grouping atoms eliminates variables and constraints. It also introduces new 

variables that define the group and constraints that connect the group to the protein. The 

third section also discusses how these changes affect the sparse matrix and complexity 

analysis. The fourth section addresses how a non-bonded interaction between an atom in a 

group and one outside a group is handled in Sculpt. Simply eliminating grouped atoms 

from all non-bonded interactions lets grouped atoms move arbitrarily close to other atoms. 

The concepts presented in this chapter that are not implemented in Sculpt are explicitly 

noted. 

1. Motivation 

Sculpting proteins, like many assembly tasks, requires working with a model at multiple 

levels of detail. Consider the steps in assembling an automobile. At one stage, a worker 

stitches seat upholstery, and another puts screws into an alternator. At a later stage, 

someone combines these objects by placing assembled seats into the passenger 

compartment and the alternator onto the engine. At the final stage, quality control tightens 

particular screws, though not necessarily all. This process requires multiple levels of 

detail. Similarly, protein sculpting requires moving backbone atoms into a secondary 

structure, orienting the structure relative to other assembled structures, and then adjusting 

sidechain atoms for better fit between structures. At each stage of the process, a system 

should only model what is important. Therefore, Sculpt may not need to model all the 

atom positions individually while changing the relative position of secondary structures. 

1.1 Hierarchy and groups 

Sculpt maintains a hierarchical model of a protein's primary structure that is shown in 

Figure 7.1. The figure shows a protein contains a sequence of residues that each contain a 

backbone and a sidechain, each of which contains atoms. 

~T~ 
1J. A~IJ.f:!f!flf!j;! 1J. 

Figure 7.1: Protein hierarchy modeled in Sculpt. 

Sculpt lets a chemist form arbitrary groups of atoms, though in practice, particular groups 

prove more useful than others. A chemist can group any set of nodes in the structural tree 
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and all their children. A chemist can group a secondary structure by specifying each 

residue in it. However, a future version of Sculpt will facilitate this common operation by 

maintaining a data structure that keeps lists of residues that are in particular secondary 

structures. Using these lists, a chemist will first specify the secondary structure and then 

form a group with the entire structure or just its backbone. The system will then 

automatically group nodes in the structural hierarchy. Figure 7.2 shows two illustrations 

of a protein hierarchy with elements in a group represented with dashed lines. The top 

figure shows grouped residues in different segments of the chain (for example, a group of 

all the atoms in a sheet). The bottom figure shows a group composed of the backbone of a 

continuous segment of residues (for example, a group of the backbone atoms in a helix) . 

(a) 
ltq 

~ 

~ .. !1~D~il~f111 ~A-A NHC.COA...A ............... A...A .. ....._.A.-A .. ......,....A.-A ~A-A 
(b) 

Figure 7 .l: Dashed lines illustrate two examples or atom groups: (a) 
shows a group or nonadjacent residues; (b) shows a group 
or adjacent backbone segments. 

Creating the structural hierarchy and the lists of residues in secondary structures is specific 

to proteins. The frequency of operations anticipated on secondary structures justifies 

implementing the lists. The minimizer, however, only uses an application-independent 

structural hierarchy whose leaves represent variables in the minimization (in this case, atom 

positions). The minimizer is informed when sets of nodes in the hierarchy are grouped. 

Therefore, creating the protein hierarchy is application-specific; using it is not 

1.2 Performance improvement 

Grouping atoms not only makes protein sculpting easier and more natural, it can also 

dramatically improve system performance. The variables that define a group replace the 

variables for atoms within it. Similarly, functions that connect a group to the protein 
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replace functions that connect atoms within the group (bond lengths, angles, dihedral 

angles, and hydrogen bonds; non-bonded interactions are discussed later). The number of 

variables and functions introduced is smaller (usually much smaller) than the number 

removed. For example, consider replacing a helix containing 194 backbone and sidechain 

atoms and 561 bonded functions with a rigid cylinder. The group replaces 582 variables · 

(three times the number of atoms) and 561 functions with 6 variables, representing position 

and orientation, and 30 functions, connecting the cylinder to the rest of the protein. If one­

fourth of the functions in the protein model are defined within the helix, this grouping 

yields a twenty-five percent improvement in performance. Section 3 discusses adding and 

removing variables and constraints in greater detail. 

Groups reduce the number of energy and constraint functions and the dimension of the 

constraint matrix. In general this linearly decreases the evaluation time of the functions and 

the solution time for the linear equations. 

2. Requirements 
2.1. When can atoms be grouped? 
I place two requirements on atoms (elements) that are grouped. First, an atom can only 

reside in one group at a time. This prevents ambiguity about which group moves the atom. 

Second, atoms must be in an energy minimum when grouped. This prevents problems that 

can occur when the atoms are released. Without the second requirement, one could freeze 

atoms with a large repulsion among them by grouping them together. When the group is 

released later, the repulsion would cause the atoms to fly apart. 

2.2. Group representation 
The minimization module requires that a group perform the following four operations. 

First, a group must inform the minimizer how many variables define it. This lets the 

minimizer allocate internal arrays to accommodate the new set of variables. Second, a 

group must state the position of atoms within it. Third, a group must evaluate the 

derivative of those atom positions with respect to the group's variables. Fourth, a group 

must update its atom positions when the minimizer updates the group's variables. Rigid­

body movement of an object simply mat$ the same movement to the atoms. For example, 

a translation of an object translates the atoms within it the same amount. However, the 

change in atom positions that results from a general deformation (e.g. twisting a helix or 

sheet) is not as obvious. 
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I implemented a rigid cylinder to represent the grouping of a helix. The cylinder axis is 

aligned along the helix axis, and the length and radius arc set to those in the helix. The 

cylinder variables are a center and an orientation; the length and radius cannot vary. 

Additional representations arc subject of future work. In particular a deformable cylinder 

could represent bending and twisting a helix, and a thin slab that twists like a piece of paper 
could represent changing a 13-sheet. Implementing deformable models requires addressing 

two outstanding problems: deformations of geometric objects, which has been studied to 

some extent in [Barr 1984] and [Sederberg 1986], and mapping geometric deformations to 

valid changes in atom positions. Both subjects should offer fruitful research. 

3. Groups change the set of variables and functions 
3.1. Groups add new variables and functions 
Groups introduce new variables to the protein model. The variables associated with a 

fixed-length cylinder, for example, arc the location of the center and the orientation of its 

axis (the length and radius arc initialized when created, but do not vary). The atom 

positions within the group arc defined on these variables. Consider the position of atom i 

before and after it is grouped into a fixed-length cylinder. Before it is grouped, the position 

is (XJi, XJi+l> XJi+2), assuming XJt represents the x-ordinate of atom k. After it is 

grouped, the rigid cylinder defines the atom position. The position is defined by the 

position and orientation of the cylinder plus a constant offset from a reference point within 

the cylinder (e.g. the center of the cylinder axis). 

Groups also introduce new constraint and energy functions that connect the group to the 

protein. Assume a strand of backbone atoms, those between atoms i and j, are grouped 

and represented with a cylinder. Since atom i is now defined by new variables (the 

group's), a function defined with it and some atom outside the group now affects the 

position and orientation of the group. Functions defined with atoms within the group and 

atoms outside the group help keep a particular orientation of the group. 

The minimization algorithm is not affected by the new variables and functions. Even 

though the discussion of variables prior to this chapter concerned only the position 

(cartesian coordinate) of atoms, the minimization algorithm is not restricted to them. The 

minimization algorithm in Chapter 3 is based on a vector of variables, x, and a set of 

functions defined on the variables. The minimizer uses derivatives of the functions with 

respect to the variables, regardless of what they represent 
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3.2. Groups remove variables and functions 
Groups eliminate variables and constraints. Because a group solely determines the position 

of its atoms, the variables representing the atoms' positions are discarded. All functions 

defined entirely on those atoms are also removed. 

3.3. Which constraints and variables must be removed and inserted? 
The structural hierarchy shows the variables and functions that a group removes. If a node 

is grouped (e.g. a residue), the variables of the atoms under it in the tree are removed. 

Each node also contains the functions defined on the atoms under it. For example, ·a 

backbone node contains the distance and angle functions defmed among the peptide atoms 

(N, H, Ca, C, 0), and the sidechain node contains the functions defined on its atoms. The 

residue node contains the functions that connect the backbone and sidechain, and the 

protein node contains connections between the residues. Functions defined solely with 

atoms in the same group are removed. 

The tree also provides the new group and functions. Each node contains the object that 

represents its elements when grouped (currently, a rigid cylinder). The functions that 

connect the group to the protein are modifications of those functions defined with variables 

both inside and outside the group. For example, consider the distance function modeling 

the bond between the carbon in one residue and the nitrogen in the next. If the atoms in the 

first residue are grouped together, the variables for the carbon atom are removed. The 

distance function, however, is not removed. Instead it is redefined to reference a point 

defmed within the group (the carbon) and the original nitrogen. These redefinitions 

connect the group to the rest of the protein. 

3.4. Changes to the constraint matrix 

Adding and removing constraints changes the structure of the constraint matrix (the 

Jacobian transpose of the constraints). First, rows (constraints) and columns (variables) 

are eliminated as a result of the preceding discussion. Second, new variables representing 

a group are inserted. Third, rows representing redefined constraints are modified to refer 

to the new variables. 

The sparse-matrix data structure presented in Chapter 5 facilitates fast insertion and deletion 

of rows and columns. The structure stores row and column indices in headers rather than 

in matrix elements to reduce the computation for inserting and removing rows and columns 

(see Figure 5.6). 
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In practice many groups contain continuous segments of backbone and sidechains (e.g. 

atoms in a helix reside in a continuous sequence of residues). The new variables are 

insened into the gap left by removed variables. The number of variables in a group is 

smaller than the number of variables it replaces. This reduces the span of the rows in the 

Jacobian transpose and the number of operations in the matrix multiplication. Most 

imponantly, groups eliminate constraints. This reduction yields fewer linear equations 

which in general reduces the computational bottleneck in Sculpt, the solution of linear 

equations. 

The drawback of groups is possible increased bandwidth in the linear equations. The 

matrix bandwidth (defined in ChapterS) increases linearly with the maximum number of 

constraints that reference any variable. This, in tum, increases with the cube of the number 

of distance constraints defined on any variable (see Section 2.1 of Chapter S). In proteins 

the maximum number of distance constraints that reference the same variable is four-at 

most four atoms can bond to any atom. In groups, however, if c bonds connect to a 

group, then c length constraints reference the group's variables. The linear complexity 

analysis still holds when a group is added to the model (assuming the group is not 

connected to all the other atoms). However, the system performance may not improve if 

many atoms bond to the group and few constraints are removed from the model. Keep in 

mind that the computational complexity increases with the square of the bandwidth, which 

in tum increases with the cube of the number of connections. 

Groups are commonly used to model the atoms in both the backbone and sidechains of a 

helix and the atoms in just the backbone of a helix. The first case only slightly increases 

the matrix bandwidth. Only atoms at the two ends of the helix connect to the group. At 

most three atoms not in the group can connect to each of the two ends. The second case 

can significantly increase the bandwidth. A helix can commonly have ten to twenty 

residues. Grouping only the backbone atoms requires connections for each of the 

sidechains and both ends. Chapter 9 lists performance results for both cases. 

4. Non-bonded interactions 

Eliminating all the non-bonded interactions among atoms that are grouped and those not 

grouped allows inaccuracies. This lets atoms in a group move arbitrarily close to other 

atoms in a protein. Assume the atoms in a helix are grouped and then moved into the 

middle of another structure. Without the van der Waals repulsion modeled, this is not 
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prevented. When the atoms are freed, the van der Waals repulsion among the atoms in the 

helix and the other atoms explodes the protein. 

Sculpt prevents this by treating non-bonded interactions the same as bonded interactions: 

those defined solely between atoms in the same group are removed, and those defined 

between an atom inside and an atom outside a group are calculated. Since the atoms in a 

group are defined on the group's variables, a non-bonded interaction with the atom actually 

affects the group rather than the atom. Using this approach, the previous problem is 

avoided. As one moves the helix near another atom, the atoms begin to repel one another. 

The repulsion is applied to the helix and thus prevents it from interpenetrating the other 

structure. 
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Chapter 8 
System Description 

This chapter describes the implementation of the Sculpt system. The chapter describes the 

user interface and graphical display presented to a user. The system implementation 

consists of three modules: user interface, display~ and minimizer (as described in 

Chapter 3). The chapter outlines their communication and function. Implementation 

details particularly relevant to the research and the sculpting system are presented. The 

input file that specifies a protein and its bonds is described. The input file consists of a list 

. of points representing atoms and connections among them. Though the primary application 

is protein sculpting, only a small percentage of the code and input file is specific to 

proteins. Chapter 9 presents a user session and performance results. 

Sculpt runs on a Silicon Graphics 240-GTXB [Akeley 1988]. This machine contains four 

general-purpose, MIPS R3000 processors that run at 25 MHz. Sculpt uses shared 

memory for multi-processing communication. Sculpt mainly uses the vector-rendering 

capability of the machine. The machine renders 400,000, 10 pixel, depth-cued, z-buffered 

vectors per second [Akeley 1988]. The machine also renders transparent polygons using 

alpha blending [Porter 1'984]. Timing results presented in this dissertation are based on 

this system. The system also runs on Silicon Graphics XYO architectures where X 

represents the two-, three-, or four-hundred family of processors and Y represents the 

number of processors. 

1. User interface and display 

1.1. Workstation configuration and basic display 

The system displays covalent bonds with colored, depth-cued vectors. Figures 8.1 

and 8.2 show photographs of the Felix protein displayed by Sculpt. Both figures show 

the backbone bonds with cyan vectors. Figure 8.2 also shows the sidechain bonds (gray 

vectors) and marks the sulfur atoms (yellow tetrahedrons). The system differentiates two 

bonds in each peptide along the backbone: the C-0 bond is red, and the N-H bond is 

brown. Notice that the backbone winds through four helices in this protein. Hydrogen 
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bonds in each helix are displayed as purple vectors connecting the oxygen of the C-0 and 

the hydrogen of the N-H. 

Figure 8.1: Photo of Sculpt display using the Felix protein. Vectors 
represent bonds in the protein's backbone. 

The workstation consists of a liquid-crystal stereo plate attached to a monitor, a keyboard, a 

mouse, and a dialbox. The graphics are displayed in stereo to provide better three­

dimensional cues. The dials rotate, translate, and scale the model. The mouse duplicates 

these transformations in case a dial box is not available. Pop-up menus let a chemist toggle 

graphics parameters such as antialiasing, stereo, depth-cueing, and visibility of objects 

(e.g. sidechains and tetrahedrons). Menus also let a chemist toggle the modeling of non­

bonded interactions and hydrogen bonds within the minimization. 

1.2. Tugging atoms 

A chemist moves an atom by first picking and then tugging it in a desired direction. 

Picking is done by placing the cursor over an atom and pressing the left mouse button. The 

system picks the atom nearest a ray shot beneath the cursor, perpendicular to the screen. 
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Pressing a particular key on the keyboard indicates that the pick begins an atom tug (other 

keys specify display of text or other items at the atom). Subsequent movement of the 

mouse moves the cursor in a plane parallel to the screen (rotating the model gives different 

planes through the model). This moves one end of a spring attached between the cursor 

and the atom (refer to Section 1 in Chapter 5). The system displays a gold coil that 

stretches along with the spring. The constrained energy minimizer runs as the chemist 

moves the spring. This moves the atoms, which are subsequently displayed. 

When one releases the left mouse button during a tug, Sculpt leaves the spring attached to 

the current position, but no longer associates mouse movements with the spring. A gold­

colored nail marks the position (refer to Figure 8.2). A chemist can now tug another atom. 

Releasing the key that enabled tugging removes all the springs. Figure 8.2 shows the 

previous model with multiple springs attached. 

Figure 8.2: Photo of Sculpt display with tugged atoms. Gold coils 
show tugs between atoms and fixed positions in space 
(marked with a thumbtack). Cyan vectors show backbone 
bonds; gray vectors show sidechain bonds. 
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Often a user runs the minimizer for multiple steps without tugging an atom to a new 

position. This is done by either increasing the number of iterations taken in the 

minimization algorithm or by picking an atom and wiggling the cursor a small amount. In 

the latter approach Sculpt places a tug on the atom and runs the minimizer each time the 

cursor moves. Though the minimizer stays near a local constrained minimum, this 

operation lets the minimizer further settle into the minimum. This approach is most 

frequent when a user turns on van der Waals interactions after making drastic structural 

changes without the interactions modeled. The atoms move to reduce the strong repulsions 

as the user wiggles an atom. This is quite interesting to watch using the visualization 

described next. 

1.3. Visualization of non-bonded interactions 

Non-bonded interaction plays an important role in protein sculpting because a chemist 

typically wants tight-fitting contacts among internal sidechains. Unfortunately, non­

bonded interaction is not as simple to display as a covalent bond. Figure 2.14 in 

Chapter 2 plots the van der Waals potential between two atoms that Sculpt models. The 

figure shows that an attractive (negative) potential energy appears between two atoms 

separated by 3.24 Angstroms. As their separation decreases, the magnitude of the 

attraction increases nonlinearly until it reaches a maximum at an ideal separation. Further 

decreases in the separation increase the energy nonlinearly, but at a different rate than 

before. A small decrease from the ideal separation just diminishes the attraction; a greater 

decrease causes a repulsive (positive) energy. A useful display of non-bonded interactions 

should convey attractions, repulsions, their magnitudes, and the ideal separation. 

My first attempt at showing non-bonded interactions displayed a sphere at each atom with 

its ideal (van der Waals) radius. I used wireframe spheres to reduce the occlusion 

introduced by the new objects. Intersecting spheres indicated repulsion and nearby spheres 

implied attraction. However, this technique did not indicate the magnitude of an attractive 

or repulsive energy. Also the spheres cluttered the display without significantly increasing 

the content. 

Sculpt displays van der Waals interactions that have an energy magnitude greater than lJ. 

user-defined threshold. A partial spherical shell is placed around both of the interacting 

atoms and aligned along a vector between them (see Figure 8.3). Currently a shell with a 

solid angle of 0.4tr steradians (ten percent coverage) represents the weakest interaction. 

Solid angle increases with the magnitude of the interaction. Weak interactions are 
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represented by dot spheres, and strong interactions are represented by wireframe spheres. 

A dot-sphere indicates that an interaction exists without distracting the user and consuming 

as much screen space as the wireframe sphere. Blue denotes attraction, and red denotes 

repulsion. 

Figure 8.3 illustrates this visualization on a small model. Notice the wireframe shells 

around the two atoms labeled with text (one in the planar ring and the other in the 

backbone). Interpenetrating shells crush flat rather than intersecting so that the vectors in 

the two shells do not interfere visually. Intersecting wireframe shells are difficult to 

associate with their respective atoms. 

Figure 8.3: Photo of Sculpt display with shells illustrating non­
bonded interactions. Shell coverage increases with 
interaction strength. Blue denotes attraction and red 
denotes repulsion. 

1.4. Groups 

The current version of Sculpt allows specification of groups only at initialization, through 

the input file discussed in Section 3. This reduced the development effort in the user 
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interface, but future versions will allow on-the-fly creation of groups. The minimizer does 

handle groups and functions defined on atoms within groups. The sparse-matrix data 

structure correctly adds and removes rows and columns. Figure 8.4 shows two purple, 

translucent cylinders surrounding the backbone of the second and third helices in Felix. 

Each cylinder denotes a group of atoms. I use translucent objects to reduce occlusion of 

the model. 

Figure 8.4: Photo of Sculpt display with two helices grouped into 
rigid cylinders. A translucent purple cylinder represents 
each group. 

2. System structure 

Sculpt contains display, user interface, and minimization modules. Figure 8.5 shows the 

main communication paths among the modules. The user interface module monitors user 

actions (e.g. view rotations or atom tugs). Most user actions modify display parameters. 

Beginning, ending, and moving a tug, however, cause the user interface to invoke the 

minimizer. A minimization then executes, and the minimizer module passes the new 

coordinates to the display module. The minimizer also adds and removes some graphical 
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objects (e.g. shells). More details about the minimizer's implementation are given in 

Chapters 5 and 6 . 

Figure 8.5: System architecture coataios three modules. Arrows show 
main communication paths between the modules. 

Sculpt is written in C++ version 2.0 [Stroustrup 1986]. The system contains 

· approximately 28,500 lines of code divided as follows among the modules: 5,000 lines in 

the user interface, 5,700 lines in the display, 16,300 lines in the minimizer, and 1,500 lines 

in general-purpose routines. The only code specific to proteins or molecules consists of 

1,000 lines of C++. The protein-specific code builds and traverses the hierarchical tree 

used in groups. 

The minimizer uses a linear equation solver from the Harwell Sparse Matrix Library 

[Harwell1988]. The package reduced system development effort and provides very stable 

equation solving. The linear equation package uses a direct Gaussian elimination with 

partial pivoting based on [Duff 1983]. Two routines are used to solve the linear equations. 

The first determines a pivot strategy based on the sparsity structure (location of nonzero 

elements) of the matrix. That routine is only called when the sparsity structure changes, 

which is at program initialization and group creation. The second routine uses this pivot 

strategy to solve the system of equations. 

3. Input tile 

This section describes the input file that specifies the initial location of the points (atoms) 

and the topology of the model. The file lists the functions defined on the points. Each 

function contains an ideal value and an energy constant. Figure 8.6 shows an actual input 

file that specifies one glutamate residue (also drawn in the figure). An input file contains 

four parts: points, groups (not shown), bonded functions, and non-bonded functions. 

Only a small, optional section of the file is protein-specific. Text within /* .. . *! are 

comments ignored by Sculpt. Each component in the file is described next. 

.-



point a ,. ich (lC y Zl atJo rea reaf cl••• 
0 : (-5 . 36431 -1 . 06433 -11.46521 n CJlU 3 
1 : (-5 . 17301 -1.60105 -12 . 2171 hn CJlU 3 
2: (-5 . 34536 -1 . 14t22 -10 . 2221 ca qlu 3 
3 : (-5 . 12422 -10.32, -10.53921 dl CJlU 3 
4: (-5 . 91154 -11 . 2423 -t . 601561 CCJ CJlU 3 
5: C-5 . 51754 -10 . tl16 -1.13032 1 cd qlu 3 
6 : (-6.3t143 -10 . 34t3 -7.41151 oe2 qlu 3 
7 : (-4.4t645 -11.3672 - 7 . 65743 1 oe1 CJlU 3 
1 : (-4 . 24031 -1.3416!11 -t . 2t50ll c CJlU 3 
9 : (-4 . 24234 -1 . 60932 -1 . 013751 0 CJlU 3 

endpoint a 

/• • • • • • • • • • • • • • • • Bondec:l !unction a • • • • • • • • • • • • • • •/ 
!unction diatance 
!• diat CABI ideal !arcec:onat •! 

co 11 1.00 lt5: !• n hn •! 
co 21 1.47 760: 1• ll ca •/ 
C2 31 1.53 600; 1• ca dl •I 
(3 41 1.53 600; ,. dl CCJ ., 
(4 51 1.53 600; ,. CCJ cd ., 
C5 61 1.25 1300; 1• cd oe2 •1 
(5 71 1.25 1300; 1• cd oe1 •! 
(2 II 1.53 740; I• ca c •! 
(I , 1.24 1390; ,. c 0 ., 

endtunctian 

!unction anqle 
!• aftCJle CAIICI 

(2 0 ll 
(3 2 01 
(I 2 01 
(I 2 31 
(4 3 21 
(5 4 31 

" s 41 
( 7 5 41 
(7561 
(t I 2 1 

endtuaction 

ideal !arceCOilat •I 
1 . tlt II : 1• ca n hn •/ 
l.tzO 112; 1• dl ca ll • 1 
1. tzo 112: 1• c ca " •t 
1 . tlt 112: I• c ca dl •I 
1.955 112; 1• CCJ dl ca •/ 
1 . 955 115: ,. cd CCJ dl ., 
2 . 0t4 120; 1• oe2 cd CCJ •t 
2 . 094 120: 1• oe1 cd CCJ •/ 
2 . 094 120 : 1• oe1 cd oe2 •! 
2 . 112 124: I• a c ca • ! 

!unction dihedral t• fixed dihedral anqle •I 
!• anqle(AICDI ideal !arcec:onat ault •! 

0; 
1; 
2 ; 
S: 
6: 
7; 
I ; ,, 
3; 
4 ; 

oel 

(7 5 4 61 3.142 20.5 1 ; t• ae1 cd CCJ oe2 •! 
endltill 

!Uilction dihedral t• •u1tiple dihedral anqle • / 
!• &nCJle(AICDI ideal !arcec:anat 10ult •! 

(0 2 3 41 3 . 142 2.1 3 : 1• n ca dl cq •! 
(2 3 4 51 3.142 2.1 3 ; !• ca dl CCJ cd •/ 
(3 4 5 71 1.571 0 . 6 6 ; 1• dl CCJ cd oel •t 

end!Uilctioll 

!••••••••••••• Nan-bonded interaction• • • • • •••••/ 
!Uilctioll vaal 
1• claaa A 

0 : 24 . 1214 
1 : 0 . 0000 
2: 54.6507 
3: 23 . 6445 
4 : 23 . 2415 
5: 46.6241 
6 : 46 . 6241 
7 : 23 . 6445 
1: 23 . 2415 
9: 23 . 2415 

endtuncti an 

a •t 
635.4727; 

0.0000: 
4140 . 3416: 
lt7. t717 ; 
420 . 1714 ; 

2905 . 5764; 
2905.5764 : 

197 . n11 : 
421.3672; 
421.3672 ; 

!• n */ 
,. hn ., 
,. ca. ., 
,. c ., 
,. 0 ., 
,. dl ., 
/* C9 */ 
1• cd */ 
/• oe2 •/ 
t• oel •t 

., 

Glutamate 

Figure 8.6: Input file specifying atom positions and functions defined 
among them for a glutamate residue. 

3.1. Points 
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The fli'St part of the input lists the points (atoms in this application) that represent the 

variables of the model. Each line within the points ... endpoints structure lists a different 

point. The format of the line is one of the three listed in Figure 8.7. The first line in the 

figure gives the minimal information: an identifier (usually an atom number) used for later 

reference and a three-dimensional cartesian coordinate. The second and third lines list 

protein-specific information: atom name, residue name, and residue number. This 

information is used to create the structural hierarchy and to display information about the 

point when requested. The third format in the figure contains an additional field that 

associates the atom with a class of atoms. Functions modeling non-bonded interaction 

(discussed in Section 3.3) use this classification. 
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id: (real real real); 
id: (real real real) atom_name residue_name residue_number; 
id: (real real real) atom name residue name residue number atom class; 
Fl1ure 8. 7: Three formats for a point in the Sculp-t input. -

3.2. Bonded functions 
Each line within a function ... end/unction structure lists the parameters of a specific 

function. Figure 8.8 lists the syntax for the bonded functions. Valid values of 

function_type for bonded functions are distance, angle, or dihedral angle. Optional_name 

identifies the set of functions for user reference (e.g. to tum off modeling or toggle 

between energy and constraint models). Each function is defined on the points given in 

id_list whose length depends on the function type (e.g. id_list contains idl id2 id3 if 

function_type is angle). The ideal_value and spring_ constant fields are used for the 

mathematical model of the function. The system ignores spring_ constant if the function is 

constrained. 

function function_type name 
(id_list) ideal_value sprinq_constant; 
(id_list) ideal_value sprinq_constant; 

(id_list) ideal_value sprinq_constant; 
endfunction 
Fi1ure 8.8: Grammar ror a set or bonded functions in the Sculpt input. 

3.2.1. Dihedral angle 

The dihedral angle requires an additional field before the semicolon that specifies the 

multiplicity of the angle (number of ideal angles). The ideal_ value serves as the first, or 

reference, ideal angle. Figure 8.6 separates the dihedral angles into the fixed (single­

value) dihedral angles and the multiple dihedral angles. 

3.2.2. Hydrogen bond 

A hydrogen bond is specified with a distance and an angle function in the input file. 

Consider a hydrogen bond formed between the oxygen of a C-0 bond and the hydrogen of 

a N-H bond. The input file requires a distance function defmed on the 0 and H atoms ~nd 

an angle function defined between the 0, N, and H atoms. Figure 8.6 does not ~ist 
hydrogen bonds because the residue does not contain any. 
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3.3. Non-bonded functions 

Van der Waals interaction is specified in the input file with the function waal ... 

end/unction structure. Each line in the structure contains information for a class of atoms 

(refer to Section 3.1). The first field states the atom_class for the line. The remaining 

fields give constants used in the Lennard-Jones model (the A and B tenns [Schulz 1979] 

used in most molecular modeling systems). The constants are intended for the 6-12 

Lennard-Jones model. Sculpt converts them into parameters for its model of van der Waals 

interaction. 

3.4. Groups 

The input flle contains a section, not shown in Figure 8.6, that specifies groups. The 

specification states the atoms in a group and the type of group that represents them. The 

left box in Figure 8.9 shows the grammar for a group; the right box shows one particular 

instantiation. The listfrom_id to to_id specifies the identifiers of the points in the group. 

The right box groups all the points between identifiers 220 and 343. The right box uses the 

cylinder to group the atoms. Each end of the cylinder is initialized by averaging the 

coordinates of the points referenced in index( ... ) (e.g. one endpoint is the average of the 

positions with identifiers 214, 224, 233, and 239). 

group 
from_idl to to_idl 
from_id2 to to_id2 

from_idN to to_idN 

into 
particular_group 

endgroup 

group 
220 to 343 
into 

cylinder 

endgroup 

index(214 224 233 239) 
index(317 326 335 348) 

endcylinder 

Figure 8.9: The left box shows the grammar ror specifying a group. 
The right box shows the atoms or a helix grouped into a 
cylinder. 

3.5. Summary of input 

This input format is not specific to the protein application. This lets one mfiel articulated 

figures with Sculpt by specifying a list of points with functions defined among them. This 

also lets a chemist choose the ideal values and energy constants used in the protein model. 

For more practical use with molecular modeling, a pre-processor is needed that transforms 

a common protein me format into Sculpt's input ftle format Such a program could input a 
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list of residues and the initial atom positions and output the functions describing the bond 

topology . 



Chapter 9 
User Session and System Performance 

The chapter describes a modeling session in which a biochemist used Sculpt to make large 

structural changes to an existing protein model. The chemist at frrst used rigid bodies to 

move helices large distances and later modeled all the atoms (without rigid bodies) during 

subsequent fme-tuning. The chapter surveys the goals of the modeling operations and 

several attempted strategies for achieving them. The chapter presents the chemist's 

perceived contributions of Sculpt in molecular modeling; a separate paper [Surles 1992] is 

included in the Appendix that describes two other modeling sessions with Sculpt that are 

not as complex as the one described here. This chapter concludes with performance results 

based on data with and without rigid bodies from the session. The performance on several 

other data sets shows the linear decrease in performance as protein size increases. 

1. A Sculpt session 

Professors David C. and JaneS. Richardson of Duke University's Biochemistry 

Department originally conceived a system that would let a user interactively sculpt proteins. 

As members of my doctoral committee, they continually guided my research and Sculpt's 

development They redesigned a protein model with a prototype version of Sculpt. 

1.1. Problem 

The problem involved large changes to the structure of the Felix protein. The Felix model 

contains seven hundred sixty atoms in seventy-nine residues that wind through four helices 

(refer to Figure 2.5 in Chapter 2 for a hand drawing of its backbone). The schematics in 

Figure 9.1 show end-views of the helices before (left), during (middle), and after (right) 

the session. The inner circle represents the backbone of the four helices (labeled A, B, C, 

and D). The line segments attached to the backbone illustrate the sidechains. For clarity 

the sidechains in the four helices are separated more than in the actual protein. Th\ 

direction of the backbone is marked with arrow heads ( •) and tails (X); a head means the 

backbone winds out of the page and a tail means the backbone winds into the page. The 

backbone begins in the page at the bottom of helix A, winds out of the page in helix A and 

crosses to helix B. This continues until the backbone winds into the page in helix D. 
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Figure 9.1: Change in helix orientations during session. 

The pointed and rounded divots and extrusions indicate the orientation change between the 

initial and final models. Three operations change the model from the original to the final 

orientation. First, unwind (counter clockwise) helix A ninety· degrees and wind 

(clockwise) helix B ninety degrees (similar to unrolling a scroll). Second, unwind 

(counter clockwise) helix C ninety degrees and wind (clockwise) helix D ninety degrees. 

The middle figure shows this intermediate stage. Third, translate helices C and D to the 

left. The third step reverses the left and right pairs of helices. 

Three additional restrictions are placed on the structural changes allowed in the helices. 

The main helical structures cannot change. The backbone at the ends of the helices must 

have valid bond geometry. The sidechains between helices must have tight, but valid, 

packing. 

The reason such large c~anges are needed is that in doing de novo design of proteins it is 

just as important to do negative design that avoids major alternative structures as it is to do 

positive design for the desired arrangement. The transformation done here is between the 

two major alternative arrangements of a four-helix bundle such as Felix. 

1.2. Attempted solutions 

Professor Jane S. Richardson (subsequently referred to as JSR) tried to solve this 

modeling problem with these four strategies: (1) model all the atoms using only atom tugs 

to change the structure, (2) first rotate the helices with rigid bodies and then model all the 

atoms, (3) automatically rotate the helices and let Sculpt automatically move\he atoms so 

that the constraints are not violated, and (4) disconnect the segments between the helices 

before automatically rotating them and then let JSR reattach the segments while Sculpt 

maintains valid properties within the segments. The final approach worked the best. The 
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remainder of this section describes in greater detail the four strategies and their problems. 

It concludes with photographs of the resulting structure. 

1.2.1. Model all atoms throughout the session 
JSR first tried to rotate each helix by tugging individual atoms. She rotated two of the 

helices in approximately one hour. However, this approach had two drawbacks. First, 

she often changed the conformation of a helix by tugging an atom too much. Second, the 

method was frustratingly slow. During this session she used a model that only contained 

two helices. On the full Felix model Sculpt requires approximately 1.2 seconds per update. 

Given enough patience JSR probably could have completed the entire modeling task using 

this strategy. However, we decided to try strategies that rotated the helices as rigid 

structures, both for convenience and to keep their geometry ideal. 

1.2.2. Rotate helices with the rigid bodies 
With the second strategy JSR modeled the atoms in each helix with a rigid body and 

explicitly modeled the atoms in segments connecting the helices. There was very litde slack 

in the segment connecting the helices, so she rotated each helix by approximately ten 

degrees at a time (similar to unrolling a scroll). 

We believe the rigid body strategy failed for two reasons. First, helix B and C were 

overconstrained. Both of the helices had constraints defined on bonds that connected to the 

helix at the top and at the bottom. A helix would oscillate back and forth when JSR tried 

turning it Eventually, the helix would turn easily. We believe the oscillation shifted 

residues in the segments attached at each end until a degree of freedom appeared. 

Sometimes, when a helix eventually moved freely, it did not go in quite the intended 

direction. 

The second reason for the failure of rigid bodies is a poor implementation. Sculpt ignored 

some of the constraints on atoms bonded to the rigid body. JSR would manually move the 

atoms so that the constraints were satisfied, but in subsequent iterations Sculpt would 

violate them. 

1.2.3. Automatic repair after automatic rotations 

In the final two strategies JSR let Sculpt initially move each helix to its goal position and 

orientation without modeling any constraints or energies! After this automatic step, many 

of the bonds and angles were extremely far from their ideal value. The problem now 
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remained of how to adjust the residues in the connecting segments and in the first and last 

tum of each helix so that the model was physically realistic. 

JSR first tried unsuccessfully to see if Sculpt would automatically move the atoms into 

positions that satisfied the constraints. However, the initial state of the model violated a 

principle assumption from Chapter 3-the constraints are satisfied, or nearly satisfied, at 

the start of each constrained minimization. Sculpt tended to distribute the large error in a 

few constraints into small errors in all the constraints. Sculpt never did bring the model 

back to a state with all the constraints satisfied. 

1.2.4. Manual repair after automatic rotations 
The strategy that ultimately succeeded used the manual positioning strategy (Section 1.2.1) 

after an initial, automatic movement of the helices (Section 1.2.3). We divided the model 

into four pieces: helix A with the connecting segment from A to B, helix B, helix C with 

the segments from B to C and from C to D, and helix D. Sculpt automatically positioned 

each of the four pieces. JSR tugged each of the three segments back to join its unconnected 

helix (e.g. moved the segment between A and B back to join B). During this part of the 

session, Sculpt modeled the constraints and energies in the segment and kept the helices 

. fixed in space. Once JSR believed the segment end was close enough to the unconnected 

helix, she had Sculpt insert springs that pulled the final peptide into its proper position in 

the helix. Positioning each segment required approximately an hour and ended with a 

reasonably satisfactory model. 

Next we combined the coordinates from the four pieces and ran Sculpt on the new Felix 

model. JSR repositioned many internal sidechains before turning on the van der Waals 

interactions. At that stage the model contained hundreds of atoms with overlapping 

electron shells. JSR let Sculpt resolve these contacts in batch mode. The session resulted 

in a complete three-dimensional model of Felix in this alternative folding pattern. This new 

model can now be used as the starting point for redesign. 

1.3. The resulting model 

Figures 9.2 and 9.3 show photographs of the Felix backbone before and after the session. 

The helices are numbered in clockwise order beginning in the lower-left corner in 

Figure 9.2 and in counter-clockwise order beginning in the lower-right corner in 

Figure 9.3. I use several visual cues to emphasize the changes between the figures (both 

use the same graphical parameters). Helices A, B, C, and D are respectively colored 
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orange, green, blue, and magenta. The residues in the connecting segments are colored 

yellow. The residue name of sidechains that interact with another helix is placed at the first 

atom in the sidechain (the c~ atom). White text labels sidechains in the initial model that 

interact between helix A and B and between helix C and D; orange text labels those that 

interact between helix A and D and between helix Band C. Finally, the cystine residues 

in helices A and D are highlighted with white tubes. 

Two aspects of Figure 9.3 are notable. First, the interior (hydrophobic) sidechains remain 

in the interior but interact with different helices. Second, the yellow segment between each 

helix in the original model shifted position by one residue in the new model. The segment 

from helix A to B moved one residue out of A and into B, the segment from B to C moved 

into C, and the segment from C to D moved into D. 

Figure 9.4 shows a side view of the resulting model with the van der Waals repulsive 

energies ·highlighted with .red shells. The internal sidechain packing does not have 

overlapping electron shells. The only overlaps occur in the backbone turns entering ancL 

leaving the helices. The current model will now allow additional research in protein 

design. JSR can use this model as a basis to determine if other residues fit better in these 

new turns. JSR will now use the model both for negative design (i.e. to document the 

ways in which the Felix sequence suits the original model better than it suits this one) and 

also for designing minimal changes in the sequence that should make it prefer to fold into 

this alternative structure. 
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Figure 9.2: Photograph of Felix backbone before modeling session. 

Figure 9.3: Photograph of Felix backbone after modeling session. 

: 



Figure 9.4: Photograph showing atom repulsions after session. 

1.4. Comments 

1.4.1. Pros 
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JSR believes solving this modeling task with Sculpt is significantly easier and faster than 

with interactive modeling systems that only allow rotations about (<p,'\jf) angles. Such 

interactive systems let her tum the helices in one of two ways. The first way requires 

choosing appropriate rotation angles between segments. This is an extremely complex, 

inverse-kinematics problem involving hundreds of joints. The second way involves 

breaking the backbone connection between each helix, rotating each independently, and 

rejoining the connections. Rejoining the connection with proper geometry is very difficult, 

though easier than the inverse-kinematics problem. Once JSR turns the two helices she 

must then resolve hundreds of contacts among sidechain atoms. JSR tried solving this task 

manually but quit after several frustrating days and was never fully satisfied with the 

results. 

JSR also believes Sculpt provides more control over atom movements than batch 

minimizers. With a batch minimizer JSR could solve this modeling task by specifying 
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target positions for some of the atoms and running an energy minimization. The minimizer 

moves the atoms along a path towards the targets. However, certain paths can tear the 

model apart (e.g. through the middle of a structure). Instead of solving the problem with 

one set of targets and one minimization, JSR would choose subgoals along a path to the 

target and run a minimization with each subgoal. This approach requires less effort than 

the manual solution, but the turnaround time for a subgoal minimization limits the number 

of steps picked along the path. Whenever she has tried this process, it has resulted in 

distortions of helix geometry that are beyond convergence distance for the final structure, 

and in sidechains getting caught in local energy minima that are not natural. The sidechains 

can be manually fixed by moving to a geometric modeling program, but the ba~kbone could 

not be fixed that easily. Sculpt takes the successive subgoal minimization to the extreme by 

continually running minimizations as JSR moves atoms to their targets. It also combines 

the interactive geometrical manipulation with the energy minimization approach in a single 

integrated process. 

The graphical visualization of non-bonded interactions helped JSR identify close contacts 

among atoms and evaluate improvements made by moving atoms. When JSR turned on 

the van der Waals interactions after rotating the helices, she saw large red shells in the 

protein interior that illustrated strong atom repulsions. She then tugged atoms in that region 

to relieve the strain. As she tugged the atoms, the size and number of shells diminished, 

indicating more favorable contacts. 

Interactive modeling of physical properties (e.g. non-bonded interactions) combines 

benefits from batch simulations with features from interactive graphics. Chemists use 

interactive graphics to study a static structure or series of structures from either 

experime~tal data or pre-computed simulations. Interactively controlling the view and 

display parameters provides more cues about a molecule's structure and nature than does 

viewing multiple, static images. Guiding an interactive simulation while immediately 

viewing the results lets a user remain continually engaged in the modeling process. JSR 

believes this provides greater situational awareness of complex relationships within a model 

than viewing cine loops of simulations. This may improve perception of subtle 

relationships within proteins. Guiding an interactive simulation lets a user stumble upon 

unexpected reactions in the model that may go unnoticed in batch simulations (the Aha! 

phenomenon). On several occasions JSR saw unexpected reactions that, upon closer 

examination, resulted from non-bonded interactions competing against other properties 

such as bond rotations. She believes a mature Sculpt system will actually help researchers 
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gain an intuitive understanding of how molecules behave rather than just assist in a 

succession of individual modeling tasks. JSR also believes with shortened turnaround 

time, more users will experiment with protein models. 

1.4.2. Cons 
JSR's main complaint regarded the user interface. Rotating each helix when all the atoms 

were modeled required numerous tugs tangent to the helix backbone. She let the minimizer 

rotate the helix some and then replaced the tugs with ones pointing in new directions. She 

believes a high-level specification of user actions will relieve much of this burden. For 

example, turning a knob could require that the system place the tangential tugs for her. 

Similarly, the rigid bodies did not improve the user interface the way we originally thought 

it would. This drawback is probably more a fault of the primitive implementation of rigid 

bodies than an inherent flaw with the concept. With faster computers in the future, Sculpt 

may be able to model even more realistic behavior by including electrostatic interactions and 

hydrogen bonds. 

One advantage a batch simulation, viewed with cine loops, has over an interactive 

simulation is the ability to replay the simulation. Since a cine loop is a sequence of frames, 

a user can easily move backwards in the sequence to study a particular property. Unless 

Sculpt saves all user actions, a user cannot readily return to a previous state. Like an on­

going laboratory experiment, an event cannot be repeated without re-running the 

experiment from the beginning with the same steps. 

2. Performance without rigid bodies 
The following performance analysis uses four protein models without rigid bodies. The 

frrst table in Figure 9.5 lists the number of bonded and non-bonded interactions in the four 

models. Data sets (1) and (2) contain the number of length and angle springs modeling 

hydrogen bonds in the H-bond springs column. The second table summarizes the number 

of energy functions, with and without the near-neighbor interactions, and constraint 

functions. All data sets model bond lengths, bond angles, and fixed-value dihedral angles 

with constraints and model multi-value dihedral angles with energy functions. The models 

include (1) the Felix protein used in the user session, (2) two of the four helices from 

Felix, (3) a segment with ten residues (the approximate size of the segments in the 

modeling session), and (4) a small segment with four residues. The variable field equals 

the number of atoms times three (a three-dimensional coordinate) . 
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Model Atoms Variables Lengths Angles Fixed Multiple H-bond Neighbor 

1 
2 
3 
4 

dihedrals dihedrals sorinsr:s interactions 
7(1.) 2280 770 1105 330 322 106 7(1.)1 
355 1065 359 516 152 150 48 3267 
99 297 100 142 40 43 0 745 
36 108 36 51 9 18 0 198 

Model Variables Constraints Bonded enersr:ies Total enersdes 
1 2280 2205 428 8029 
2 106S 1027 198 3465 
3 297 282 43 788 
4 108 96 18 216 

Figure 9.5: Statistics ror the rour models used in perrormance 
analysis. 

I ran the performance analysis on a Silicon Graphics 240-GTXB [Akeley 1988]. The 

machine contains four general-purpose, MIPS R3000 processors that run at 25 MHz. All 

calculations use double-precision floating-point arithmetic. Figures 9.6 and 9.7 show 

performance results with the four protein models. The performance (seconds per update) 

includes the time to receive a user tug, run a constrained minimization, and re-display the 

screen (single-precision provides faster performance, but less accurate results) . I list the 

performance for simulations with and without the near-neighbor interactions modeled. The 

performance results for simulations without near-neighbor interactions modeled are given 

for one and four processors. The performance results with near-neighbor interactions use 

four processors. The code that determines the list of neighbors for each atom is new and 

not optimized (e.g. creating each list requires inserting nodes into a linked list of atoms 

rather than a fixed length array). Therefore, I split the performance results for the near­

neighbor interactions into two categories. The first uses the same neighbor list throughout 

a session while the second computes a new list on each iteration. 

Without near-neighbor With near-neighbor 
interactions interactions (4 CPUs) 

Model 1 4 orocessors Same list New list 
1 1.405 0.954 1.228 1.603 
2 0.586 0.396 0.514 0.689 
3 0.147 0.105 0.126 0.169 
4 0.045 0.048 0.047 0.054 

Figure 9.6: Perrormance (seconds per update) with rour models using 
an SGI 240-GTX. 
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Most of the computationally-intensive routines run on four processors. The bonded energy 

and constraint functions (length, angle, and dihedral angle) and their derivatives are 

evaluated on four processors. Matrix-matrix and matrix-vector multiplication also execute 

on four processors. Only one processor solves the system of linear equations. Currently 

only one processor creates neighbor lists and evaluates non-bonded interaction energy; this 

can be parallelized. 

The update rates, though far from those needed for smooth interaction, allow productive 

new research in biochemistry. The bottleneck in the minimization algorithm is the solution 

of linear equations. With four processors, approximately fifty percent of the computation 

time in model (1) is used solving the linear equations. Chapter 10 describes two areas of 

future research that may yield significant improvement in this performance. 

3. Performance with rigid bodies 

I used four models with rigid bodies for this performance analysis; two contained four rigid 

bodies and two contained ~o rigid bodies. The Felix model (1) discussed in Section 2 is 

the base model for this analysis. Models (B2) and (BS2) had two of the four helices in 

Felix rigid (helices 2 and 3). (B2) held only the backbone of the two helices rigid, and 

(BS2) held the backbone and sidechains of the two helices rigid. Models (B4) and (BS4) 

had all four of the helices rigid. Again, (B4) held only the backbone and (BS4) held the 
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backbone and sidechains rigid. In each model the atoms not in the helices and in the 

connecting residues are free variables. 

The tables in Figure 9.8 list the number of bonded and non-bonded interactions in the four 

models. The first row in both tables repeats the data for the Felix model without rigid 

bodies for comparison. The Atoms column lists the number of atoms not in a rigid body. 

The Variables column equals the number atoms times three plus the number of variables 

that define the rigid bodies (three translational and three rotational for each rigid body). 

Model Atoms Variables Lengths Ang·les Fixed Multiple H-bond Neighbor 
dihedrals dihedrals sprin2s interactions 

1 760 2208 770 nos 330 322 106 7601 
B2 598 1806 611 871 2S2 271 42 6249 
BS2 524 1584 535 770 229 227 42 5754 
B4 426 1302 441 621 168 219 0 5101 
BS4 234 726 241 352 91 121 0 3431 

Near nei2hbors 
Model Variables Constraints Bonded ener2ies In list Computed Total ener2ies 

1 2280 2205 428 7601 7601 8029 
B2 1806 1734 313 7601 6249 6562 
BS2 1584 1534 269 7601 5754 6023 
B4 1302 1230 219 7601 5101 5320 
BS4 726 684 121 7601 3431 3552 

Figure 9.8: Statistics for four models containing rigid bodies. 

Sculpt does not calculate the van der Waals interaction energy between neighboring atoms 

in the same rigid body. However, the current implementation of the algorithm that creates 

the neighbor lists does not take advantage of this. The algorithm determines all 

neighboring atoms even if they are in the same rigid body. The second table in Figure 9.8 

gives the number of neighbors placed in the lists (the In list column). Notice the number 

does not decrease as the number of grouped atoms increases. When Sculpt computes the 

van der Waals interaction energy neighboring atoms in the same rigid body are removed. 

This happens on each iteration, even if the same neighbor list is used for multiple iterations. 

The Computed column lists the number of van der Waals interactions actually computed on 

each iteration. 

Figures 9.9 a&! 9.10 show performance results with the four rigid body models and the 

Felix model for comparison. The performance with the near-neighbor interactions is 

poorer than necessary since the number of neighbors does not decrease as the number of 
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grouped atoms increases. One processor transforms (updates) the position of each grouped 

atom according to the change in the group's translation and orientation. 
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Without near-neighbor With near-neighbor 
interactions interactions (4 CPUs} 

Model 1 4 Same list New list 
1 1.405 0.954 1.228 1.603 
B2 1.164 0.851 1.169 1.511 
BS2 1.945 0.712 1.002 1.368 
B4 1.035 0.742 1.078 1.440 
BS4 0.460 0.334 0.644 0.995 . . Figure 9.9: Performance (seconds per update) wath Fehx and four 

models containing rigid bodies. 
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The performance is not solely dependent on the number of variables in these models. 

Another factor, the matrix bandwidth, is also different. Section 3.4 in Chapter 7 states 

that groups can increase the bandwidth of the linear equations. Also, rigid bodies that have 

many connections have a larger bandwidth than rigid bodies with few connections. Models 

BS2 and BS4 have groups with bonds connecting only at each end of the helices. Models 

B2 and B4, however, also have bonds connecting each sidechain. The bandwidth for BS2 

and BS4, therefore, is smaller than the bandwidth for B2 and B4. 
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Compare the performance for models B4 and BS2 (the second and third columns from the 

left in the two plots). B4 requires more computation than BS2 even though it contains 

fewer energy functions, constraint functions, and variables! More than fifty percent of the 

computation with both models is spent solving the system of equations. B4 has 1302 

equations and BS2 has 1537 equations, an increase of 235. However, the bandwidth of 

B4 is 205 and the bandwidth of BS2 is 55, a decrease of 150. The performance is linearly 

proportional to the number of equations and quadratically proportional to the bandwidth. 

In this comparison, the increase in the bandwidth outweighs the decrease in the number of 

equations. 

Both figures are on the following page 
Figure 9.11: Sparsity pattern or linear equations ror B4 (bottom), and 

BSl (top) • . 

Figure 9.11 shows the sparsity pattern for B4 and BS2. Black denotes nonzero entries 

(excluding the square border). Notice the large increase in the bandwidth for B4 compared 

to BS2. 
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Chapter 10 
Future Work 

The immediate goal for future work is to place Sculpt in a chemistry lab and gather results 

about its usefulness for solving daily protein-modeling problems. This should offer the 

best direction for future enhancements to the modeling, visualization, and user-interface 

components of the system. Below I describe five areas known to be ripe for future 

research. 

1. Enhanced molecular model 
Sculpt does not model electrostatic interaction, formation of hydrogen bonds, or interaction 

with solution. Future versions of the system should address approximate models for each 

of these, in order to offer interactivity to trade for accuracy. Current workstations are too 

slow to calculate electrostatic interactions over the commonly used ten Angstrom radius. 

However, applying electrostatic interactions to atoms in the shorter van der Waals 

neighborhood will improve the current model and not drastically degrade performance. 

The hydrogen bonds are specified in the input file at initialization; a more accurate model 

lets hydrogen bonds form and break as atoms move into each other's neighborhood. 

Surrounding solvent helps hold a protein together. I have not noticed a protein model drift 

apart even though Sculpt does not model solution. If the lack of solution becomes a 

problem, a possible approximation models a weak gravitational pull on all the atoms 

towards the center. At least supercomputer processing speed is necessary to model all the 

interactions with surrounding solution. 

Generalizing Sculpt to model molecular structures other than proteins should not require 

much effort. A protein is described in Sculpt as a list of points with length and angle 

functions defmed on them; only the hierarchical model used to ease group definitions is 

protein specific. The current performance on small proteins indicates that Sculpt can 

interactively model the mechanics of drugs and nanomachines. 
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2. Improved performance 
The bottleneck in the minimization algorithm is the solution of linear equations. With four 

processors, approximately fifty percent of the computation time with the Felix model is 

used in the solution of linear equations. Two approaches can significantly reduce this 

bottleneck. First, an iterative method, such as Gauss-Seidel or Conjugate Gradient 

[Luenberger 1973], may converge to a solution much faster than direct Gaussian 

elimination, since each time-step starts with an excellent initial approximation. Iterative 

methods can reduce the average computation but cannot reduce the linear complexity. 

Seco~ the constrained minimization can use a different Lagrange multiplier estimation that 

does not require solving a system of equations. A zero-order method estimates the 

Lagrange multipliers using previous values of the constraints rather than the first-order 

information contained in the constraint Jacobian [Gill 1981]. A zero-order estimator, in 

general, does not make as accurate a prediction as the first -order method, so the constrained 

minimization algorithm requires more iterations. However, the estimation can execute in 

parallel. A constrained minimizer using a zero-order estimator may find a solution 

significantly faster on a massively-parallel architecture than does the current 

implementation. 

3. Deformable models 

Extending the groups in Sculpt to deformable (rather than rigid) objects may ease 

specification of complex modeling operations. For example, consider the necessary 

operations for twisting the backbone of a helix using the current system. A user must tug 

each atom in a different direction, tangential to the backbone, by a different amount. The 

concept of a twist is simple, but the application is cumbersome. If a user applied a pre­

defined twist operation to a deformable coil, Sculpt could map this to a twist of the atoms. 

Properly implementing deformable models for this purpose requires research in three areas. 

First, a simple parameterization of geometric deformations is needed; for example, a 

method is needed to easily specify a bend or twist of a coil or sheet of paper. Second, a 

deformation of a geometric object must move atoms without violating constraints and must 

maintain a local energy minimum; bending a helix should not overlap atoms near the center 

of the bend. Third, a user-interface is needed for expressing common deformations, such 

as bend and twist, to different geometric objects. 

4. User interface and graphical visualization 

Sculpt's user interface needs major development. Specific areas for enhancements will 

arise as chemists use the system more. Five needed extensions are the following: 
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transforming common molecular input format into Sculpt's fonnat, inserting springs 

between two atoms, changing the stiffness of user springs, indicating protein properties 

with the highest strain energy, and model editing that lets a user insert or remove residues. 

The near-neighbor visualization discussed in Chapter 8 is adequate, though not great. 

Funher research into visualization of near-neighbor interactions is needed. Professor 

Richardson wants Sculpt to display more information about neighbor interactions in the 

region of user tugs and less information in the remainder of the model. This may provide 

better information about the sidcchain interactions and let a chemist better pack the protein 

interior. A much harder property to visualize is long-distance, electrostatic interaction. 

These interactions can extend between atoms on opposite sides of a molecule. The shells 

used in the near-neighbor visualization will not work for long-distance interactions. 

5. Other applications 
The algorithms used in Sculpt are applicable to other applications. Some of the benefits 

discussed in Chapter 9, such as removing the task of model repair after an interactive 

modeling session, will likely arise in other interactive applications that incorporate 

physically-based modeling. This section examines one application that has the same 

properties as protein sculpting and another interactive application that may benefit from 

incorporating physically-based modeling. 

5.1. Skeletal figure animation 

Sculpt should work well for animation of skeletal figures. Under one thousand lines of 

code is specific to molecules. Sculpt's input is a list of points with a set of length and angle 

functions defined on the points. Two important model assumptions allow linear 

computational complexity: there are fiXed bounds, independent of model size, on the 

number of (1) constraints that reference any one point and (2) joints in any chain attached to 

the central backbone. A vertebrate whose backbone has many more joints than does any 

limb meets these criteria. In a separate paper I discuss the same analysis from Chapter 5 of 

the constrained minimization algorithm in [Surles 1992] for general skeletal figures. 

5.2. ArcJtjtectural layout 

Simple changes in a modeling system for architectural models (e.g. blueprints) often 

require numerous operations. For example, narrowing a corridor requires moving the 

corridor walls and lengthening the walls that connect to it. A large portion of the effort in 

the Building Walkthrough project [Airey 1990] at the University of North Carolina at 
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Chapel Hill is spent fixing and maintaining databases of models (these databases contain 

approximately 4,000 to 30,000 polygons). An automated radiosity calculation followed by 

viewing uncovers modeling errors, including walls not connected to ceilings and doors 

outside the plane of their walls. Most of the errors arise from previous database edits that 

left parts of the model inconsistent. 

Applying constrained minimization to this application could reduce these burdens. In the 

corridor example, constraints can require that moving the corridor wall also moves the 

connecting walls. Additional cost functions can increase as certain goals are not met such 

as rooms containing a certain area or being a given distance from an exit. 
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Appendix 

The following paper discusses two modeling problems solved using Sculpt. The paper is 

reprinted with pennission of the Association of Computing Machinery, Inc. A full citation 

of the paper follows. 

Surles, M. (1992). "Interactive Modeling Enhanced with Constraints and Physics-With 

Applications in Molecular Modeling," Symposium on Interactive 3D Graphics Vol. 26, 

No. 2, pp. 175-182. 
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Abatr•ct 

Inr.lelive modelill& sya&a~~ that c:onlillually mainLiin 
a physically-realistic repr-&atioa of aa object 
c:ombiae Mlv~R&a~es of illl8nc:live graphics llld batch 
simulalioaa. In lhia p..- I addreu lWO Miv•ta&es of 
ilal:orporaliq physic:a in&o ScMipt, 1a iluenl:tive protaill 
IIIOdelill& syatam. Firat, time-conaumin1 mod81 
c:orrec:lion is avoided by m•illtainill& a physically-valid 
mod81 lbroupout a modelin& session. Second, 
lddilicmal - about model properties CD .U. wt.a a 
chaliat inlerctively 1uidea a simulation radler than 
views a cine loop from a pn-computacl simulati011. I 
arpa lbae benefill widl exunples from sessions widl 
ScMipt. A dwmial CD inlllnll:tively move alorftl while 
Scldpt aulOIIlalil:ally mainlaiaa proper bond topoloiY 
llld alalll separationa. Sculpt models bonded and noD­

bonded arom illlendionl for medium-llize proteins (800 
1101111) 11 0.6 updala per second on a Silicon Grapllics 
240 usia& a conavained -aY minimization melhod. 

CR Cat11orlea aad Subject Deacrlpton: 1.3.5 
[Computer Grapblcs): Computational Geometry 
and Object Modelill1; 1.3.6 [Computer Grapblcs]: 
MethodoloiY and Techniques; 1.1.2 [Computer 
Appllcatloas): Physical Sciences. 

AddltloaaJ Keywords and Phrues: Physically­
bued modelin1. interactive modelina. constraint 
sysleml, scientific visualization. 

1. Introduction 

Widlill die lut tan yean a aend ill cornpur. graphics hu been 
to increase scene realism by uaill1 physically-baaed models. 
Animall:ln use physically-baaed modeling lO create realistic 
detailed behavior. Most animations gcnerued with physically· 
bued modelin1. to date, required minutes to hours of 
computation for eKh frame. This lar1e compulation time hu 
kept physically-based modeling out of interaCtive graphics 
sysleml except with small. simple models. However, increased 

CICJIIIIIU* speeds now permit addin& physically-based models to 
ial8n&:Qve syswna. I have pic:Ud a lara• modelin& problem 
widl simple propenia to saady issues that uiJc ill modeling 
physical~ ill 1a iluenl:tive graphic:a syalall. 

Proceia modalill& sys&ellll ~ molec:ules con&ainill& one 
lnmdred to several dlouaand atoms. The syswns can be 
clusified u interKtive or batc:h (thoup some interactive 
syswns have balCh proceuill1). Moll interactive systems 
mailltlin bonded properties such u fiXed bon~ lengths and 
msies by rearic:lill,; operations to rolation of sesmenu about 
panic:u1ar bonds. The performance of interKtive systems is 
Ollly limired by tha display c:apabiliry of the graphics sys~em 
siace die ~lin& operationa are only rotations. Bateh 
simulati0111 model vlriance ill bond len1dla and an1les a11d 
ialeraclionl 11110111 non-bonded &IOIIll over relatively near and 
f• diltiiiCes. Acc:uralaly moclelill& all dlese properties requires 
bard! COIIIplllalioa. even for small proteins. 

Today an iaterctive. physically-bued modeling system, 
called Sculpt, models non-bonded atom interactions for 
medium-size proteins (800 atoms) on a Silicon Graphics 240 at 
0.6 updates per second. Sculpr leu a chemist interactively 
move atoms while automatically keepin1 correct bonded 
properties and non-bonded atom separations using a 
constrained ener1y minimizer. Compared to many other 
physically-bued modelin1 systems in computer graphics. 
ScMipr models simpler properties (e.g. ansies versus volumes) 
and minimizes swic strain ener1ies rather than functions of 
object dynunics. However, system performance now allows 
iavestilation into issues that arise when physically-based 
modelill& is applied to complex real applications. 

Cbemisll that collaborate on the project believe interactive. 
physically-baaed modeling will relieve many ~ual m~lillg 
wks, allowilla more worlt in less lime. and provtde addtuonal 
cues about protein behavior. In this paper I present two 
improvemenll the system provides that result from modeling 
physical properties interactively. First. the system removes 
the often laborious task of fiXinl a physically-invalid model 
after a modeling session. Though interactive systems such as 
Sybyl [IS] mainlain fixed bond lengths and an1les, they make 
the chemist keep non-bonded atoms at appropnate separauons. 
Second. the system provides a new medium for exploring 
protein properties by allowing interactive. guided simulation. 
This should combine benefits of interactive graphics and batch 
simulations . 



2. Related work 

Physically-baaed modelina fr_equenlly_ aids c~mputer 
animations by automatin& detailed mouon plamnna and 
<:OIIIpiex object inreractiona. Miller aeneraca realistic snake 
motions by modelinc muacle conlnl:tionl with sprinas IIIIi 
fric:Qon qailllt surfKU (9). WidtiD models the eneriY IIIIi 
-Ibm of a LWio lamp jumpina hurdles IIIIi ski jum~ (18). 
T~ models -.y in elutically deformable objec:u 
such u cloth to c:rea&a animations of flap (14). Th­
uamplu simulate the motion of objects by fils& swina 
applic:alioa-specific c:oadilions about the objecls and - llld 
then solYinl N_,_'s equa&iona of motion. 

Similar applic:alionl use cO#Uirailtls to resuic:& the allowable 
swu of objects llld exprus dependenciu · uaona objects. 
Barzel usa consuaints in animatioa to specify paths for 
objects (4). W"ukia usu pomecril: eonscrainu to assemble 
models (16), and he describel a system that leu a user 
in&er~etively connect and manipulate objects such u a 
meclwlical assembly ex &ink.er-toy (17]. Cons&raints main&ain 
constant volume in incompressible solids (12) and resaict 
peneallioa wbm a ball saika a 1ramp0line (11). 

3. Drlvlftt problem - protein modeling 

A proceiD. to a fnt appra:~~imation. concains fiud bond 
lenaw. fixed boad anales, and some planar seaments. 
Fipre1-A shows line sequential seaments in a proaein with 
veccon repr-tins boDdJ between atoms and gray areu 
daotin& pi- reaioaJ. The only depws of freedom in the 
fipre are roca1ions about the N-C llld C-C bonds &hal encer IIIIi 
leaYe eadl planar sepDeDL A linAr sequence of the sesmems 
c:ampriM lbe protein bGI!Irbolw. Auacbed to the atom becwect 
eadl sean-u (C) are sidecluJw (not shown) with additional 
filled lenath and ansle properties. Superimposed onto this 
seomecric: model are non-bonded attractions IIIIi repulsions. 
Attractions hold nearby atoms together, while repulsions 
maintain a minimal separation between all atom pairs. 

Chemists otien use brus models (Kendrew models) to study 
geomeaic properties and relationships in a protein. Brus 
models contain sesmems shown in Figure 1-A connecled with 
rocabonal joinll about the N-C and C-C bonds. Manipulating 
such a model with one's hands aids understanding of 
relationships. However, the models have two drawbacks. 
First, the model's size becomes diffiCUlt to hold md manipulate 
when dealin& with larp molecules (e.s. an 800-atom brus 
model of the protein in Color Plate 1 is 80 centime~er~ wide 
when 2 em of brau represenu 1 Anptrom, a typical bond). 
Second, brau models do not ~t attriCtive and repulsive 
in&eriCtions among non-bonded atoms. 

Chemists uae computers to model large proaeins and non­
bonded atom interKtions. lnleractive modeling systems 
resemble brus models by allowing only rotations about 
particular bonds. The limiting fa~:tor in inreractive systems is 
display rate of the sr.prlcs machine. Batch simulations model 
non-bonded atom interactions and more accurately model bond 
lengths and angles (these do vary, though by only a few 
percent). 

Protein moclelinc provides a good driving problem for research 
in in&eriCtive phyaically-bUed modeling. First. the benefits 
of interactive sraphics and batch simulations are each well 
established. Second, real uaers wmt such a system and will 
provide valuable usis&ence in its developmenL Thinl. the size 
of useful models requires improved algorithms for inleractive 
moclalin& on current m~ehines. Fourth. many aspects of 
prolein modeJiD& are similar to other problems: For eumple. 
the inbennu thr•~imensional structure requ11es addressmg 
mec:haaical modelins issues similar to those encountered in 
articula&ed-fisure motion and computer-aided design. Fifth, 
understllldin& the inlerplsy of properties in proteins during the 
modelin& requires &ood visualization paradisms. 

4. Sculpt's Interface and performance 

ScMlpt continually maintains realistic protein properties u a 
c:hemist moves an arom. ScMlpt lets a chemist move an atom 
by rnt auachins a sprins between the atom and the cursor and 
then dragin& the cursor in a desired direction. Throughout the 
drqgins proc:eu. Scalpt polls lhe cursor positi':ln and adds ~ 
strain energy of that spring to the energy m the protem. 
ScMlpt lhen finds a local minimum of the total energy that also 
maintains risid bond lenglhl. ansles. and plansr sesments. 
ScMlpt also leiS a chemist insert a spring &hal cocuinually pulls 
Ill arona towaras a siven three~ional position. 

The color plates show photoarapha of Scalpt sessions. Depth­
cued vec&on ~ bonds between atoms; cyan deuoca the 
central backbone, and ten denoca sidechains comecled to the 
backbone. Gold coils show springs attached by a chemist to 
pull atoms toward positions denoted by the gold thumbtacks. 
Color Plate 1 shows a model containins 760 atoms of a 
medium-sized protein called Felix (8). The model conllins 
220S constraints (bond length. angle, and others) and 
approximately BOOS energy functions (auraction, repulsion. 
llld others). The biCkbone in Co.lor Plate 1 winds through four 
helices (purple cylinders highlight the two on the left). Color 
Plate 2 shows a model composed of the two helices 
highlighted in Color Pille I. The model conllins 3S5 atoms. 
1027 constraints, and approximaaely 3450 energy funcuons. 
The tellt in Color Plate 2 names several of the sidechains. 

Scalpt maintains appro:~~imately 0.7 updates per second with 
the model in Color Plate I and 1.5 updates per second with the 
model in Color Plate 2. on a Silicon Graphics 240-GTX [2). 
An update includes the following steps: evaluate prolein 
properties (bond lengths, angles, attractions. and rep_ulsions) 
and their derivatiYes, minimize the energy and sausfy the 
constraints, update atom positions, and display the results. 
Though this performance is twenry times too slow for smooth 
interaction. our chemist collaborators believe the performance 
already provides euough inter~etivity on medium-size proleins 
that new, uaeful research can be accomplished that could not 
previoualy be undenalten. The sysaem is described in sreater 
detail in (13). 

5. Maintaining a consistent model 

Users of interactive modeling systems (not only molecular) 
oflen uninaentionally move objects into a configuration that 
violates required properties of the application-producing an 
invalid model database. For example: moving an endpoint so 
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!hal an ori&inally coill&rained line is no lonaer horizontal; 
movina a wall wilbout ldjustin& lhoM adjoinin& it; leavin& 
cabla cba&linl in a car enpne al1er movina the allem&IGI'; 
JDOYina atDaU c._ tb.a eleclrOil sbelb alJDw. • 

Chasin& a c:ompu111r object 10 W& it mimica 1M propctia of 
ita physieal co~ can be llbiauily complea. Most 
mocleliD& applicatiODS leaYe this tuk 10 the uaer. For 
ea-.nple. IIIIIYin& a wall in • ardlilecalr&l model requires that a 
111er rejoin Ill 1M ldj-.t walls and then f:III1IR thole clwlaa 
did not invalidate the model. Some moleculll' modelin& 
sya-. let a UMr invob a batch enerl)' minimizer 10 move 
atoma inro a valid arranaemenL However. such wromated 
poll·~l methods can clwlae the model diffenntly thm 

tbe - inlenda. 

An in~era~:ti,. moclelin& syiWII that maintains a physieally­
valici model throuahout uaer modifications eliminates the 
model re-iclealizatioa talk. This MCCioa ~ta two proceia­
modelin& eaampia 10 illUIU&Ia complaitia that can arise in 
manual md automated methods for repairina the invalid 
mocleb. 

5.1. A atmple edit requiring complex repairs 

A common operation in molec:ular modelin& requires flippina a 
plane sepnen1 (peptide) in the blckbone. surrounded closely 
by neipborin& atoma, by 180 dearea. Fipre 1 shows two 
staps of tbe flip operation. Fiaure 1-A shows the center 
sepaenl and its neipban befon a flip. Lines represent bonds 
betw- atoms and bulMd areu represent riaid planar 
sepnen11. Each- c:oaaainlm eleclrOil shell that (10 a flllt 
approaimation) cannot intersect other electron sheila. 
Fiaure 1 repraata the shelll with circla (notice the circles 
do not inlersec:t in Fipre 1-A). Most systams only allow 
rotations about 1M C-C and C-N bonds 10 that bond lenaths. 
mala and pi- 1f0111M do not chanae. This makes the flip 
diffic:ult by iiMlt sine:& one IOlatio11 affec11 all the aroms further 
alon& the chain. Fiaure 1-B shows the center seament flipped 
180 dear- after Ill appropriale sequence of rotations. The 
model now requires repairs because tbe cirela overlap. 

Manual correctloa. A chemist can manually adjust the 
atom positions to remove the intersections in Fiaure 1-8. 
Movina 111 atom requires that a chemist choose appropriate 
combinations of rotations 10 that other sqmenta do not move. 
Movina one arom usually causes interference with another. 
which then requires additional repairs. Correctly fittina tbe 
flipped sesment ofren causes small chana•• that propaaate 
throush tbe entire protein. In pr.:tice this problem is much 
harder because a chemist fita spheres rather than circles and 
approaimates non-bonded arom interactions by getting the 
spheres to much. Professor Jane Richardson. a collaborator 
from Duke University's Biochemistry Dep~rtment. usually 
ldjusts modeb mmually after operations such as this flip. This 
eaample takes on the order of fifteen minutes. 

Batcll mlahalzatloa. A chemist can also use a batch 
minimization packaae to remove the intersections. Such 
packaaes fmd a local minimum of the ensemble energy 
associated with the overiil;lPinl shells. lbese work well if the 
atom shells only sliptly overlap. Overlaps greater than. say. 
twenty pm:ent contain very lll'ge suain energy that cause 
minimization peckaga 10 make large chanaes to the model. 
Batch routines often resolve such interactions by moving 
atoms the chemist did not intend to change. Professor 
Richardson interleaves some manual interVention with energy 
minimization 10 avoid these undesirable clwlges. 

laterac:tlve mlahalzatloa. Performing this operation in 
Sculpt requires approaimately thirty seconds (depending on the 
size of the protein). A chemist tugs the atoms from one 
orientation 10 another while ScMlpt continuously adjusts 
segments alona the chain to accommodate the change. 
Throughout the operation. ScMlpt maintains a valid protein 
model. ScMlpt does nothing here that batch minimization 
systems carmot perform. The difference is the small 
minimization time in ScMlpt allows the system to continuously 
minimize the eneray rather than do it once after the user 
interaction. 

5.2. A complex task requiring exorbitant re­
ldeallzatlon 

This eaarnpl• requires changing the orientation of two helices 
between Color Plate 2 and 3 by unwinding the lower helix. 
counter-clockwise by ninety degrees. and winding the upper 



helix,- clockwise by ninety depees, similar to unrollins a 
scroll. The helical slr1IC:Uin muat remain aflCI' the operation. 
The wk flnl requira Jars• scnx:tural c:hanses 10 the model (10 
twist the helic:a) met then looal adjustments to remove 
lnmdreda of COIIIaCll unons the sidec:haina (un vecum). Color 
Plates 1 and 3 sbow the model befon and aflCI' the operation. 
Tat is IIIKbed 10 _., sidec:haias to emphuize the c:hanse 
'*-- the picturu; yellow iDci-=- narby sidechaiDs 
before. aad wbi&e indicates nearby sidec:hailu after the 
opera&ioa. 

Iaaeractl•• •l•l•lzatloa. Professor Richardson 
~formed this tult with Sculpt in approximately lhircy 
nun.utea. She spent most of the time tumins the helices by 
ipplyin1 r8dial tup to the atoms 10 1111 a unif- twisL (A 
future version of the systems will iDclude ri1id •smenu 10 
reduce lhe lime far chis operation.) The sySllllft maiDtained 
proper bond leqlhs .cl utpa throu&bou& the sessioa. She 
UMd the fmalten minutes of the session armJina sidechaiDs 
to c:Un1e the contacu unon1 their atoms. 

Maaual solulloa. Solvin1 this task manually, without 
-.Y minimizatioa. is not feuible. One em tum the helices 
in ~ ways. The fll'll way requires choosins the appropriate 
rotaUcm an1la between •smenu. Tbis is an extremely 
~plex. inven.kiDemalics problem irrvolvinl hundreds of 
JOUUS. The second way involves brealtins the connec:tion 
(backbone) between the two helices, rowin1 each helix. utd 
rejoiDinl the COIIDec:tion. Rejoinins the coMection with 
proper 1eomeuy is very diffiCUlt. thoup easier than the 
irrv-·kiMmatic:a problem. Once lhe two helices are turned. a 
c:hemilt m• resolve hundreds of COIUIClS between siclec:haiD 
atoms. Professor Ric:hardscm attempted 10 solve Ibis task 
m-uly but quit after several fruscratins days utd wu never 
fully satisfied with the raulu. 

Ba~~~~ •l•l•lzaUoa. A chemist could specify tar1et 
~liGna for - atoms (if such end positi0111 .. known) utd 
IJlYOke an eneriY minimization packase. The minimizer 
chooses a path 10 move the atoms along 10wards their targeu. 
Cenam paths can tear the model apart in order 10 reach the 
tars~t (e.g. through the middle of a structure). Instead of 
solvmg the problem with one minimization. a chemist may 
c~~·~ s~bsoals alons a path to the target Uld run 
mmmuzattons far each subgoal. This approach works better 
chan the manual solution, but the turnaround time between 
subsoaJ minimi~•rion limi11 the number of stepS picked alona 
the path. ConlUIUoualy nmnina a minimization u a chemist 
moves atoms to tarpU is the same u choosing an infmite 
sequence of subgoals .cl lUIUiinl batch minimizations on 
each. 

6. lnterectlve, guided almulatlon 

Inter~etive modeling of physical properties is essentially a 
form of interactive. pided simulation. Placing a user in the 
computation-loop of a simulation that once required hours or 
days_ we ~~ will provide greater insights 10 properties and 
relauonsbips m a model. Tbis section discusses benefits of 
interactive simulations compared to batch simulation and 
interactive graphics without simulations and discusses 
complications of scientific visualization in interactive 
simulations. 

6.1. Simulation 

Simulations can illuscrate molecular properties not easily 
incorporated into brus models such as attractions Uld 
repulsions between non-bonded atoms. Though a chemist 
understand~ iDdividual atcriCtiOIII utd repulsions between two 
ato1111, comprehension of hundrecb of simultaneous 
inlenclions becomes very diffteulL Simulalions .. typically 
UMd to eumiDe specific atom inlCI'actions in a molec:ule. A 
simulatioa requires chat a chemist chooM model parameters, 
rua the simulation. utd view the results in a cine loop. If the 
results do not show the specific interaction, the steps are 
repeated with new paramelCI's. Simulations have ~mcovered 
important molec:ular properties. but long turnaround times have 
kept Ibis from bein1 a common exploration roo! for most 
reMarchers. 

ScMlpl leu a chemist explore non-bonded interaction while 
interactively movinJ 1101111. Professor Richardson believes 
interactively explorin1 protein models with non-bonded 
inlCI'ICtions will improve pm:eption of subtle relationships 
within proteins. In several sesaions Professor Richardson hu 
seen unexpected reactions that. upon closer examination. 
raulted from non-bonded inlCI'~etions competing against other 
properties such u bond rotations. 

InteriCtive modelins of physical properties ausmenu benefits 
from batch simulations with features from inlel'active graphics. 
Today chemists use inlCI'active graphics to study a static 
struclUnl or series of sii'UClliRS from pre-computed simulations. 
lnlCI'actively controllin& the view Uld display parameters 
providcl more cues about a molecule·s struclllre and nature than 
does viewins multiple, static images. Guiding 111 inlel'active 
simulation while immediately viewin1 the results lets the user 
-m continually enaaged in the modeling proc:ess. I believe 
lbi1 provides greater situational awareness of complex 
relationships within a model than viewms cine loops of 
simulations Guiding 111 interactive simulation lets a user 
stumble upon unexpected reactions in the model that may go 
IDUIOliced in batch simulations (the Ahah! phenomenon). Also 
more users will experiment with the models as turnaround time 
is shortened. 

One ldvUitage batch simulations, viewed with cine loops, have 
over interactive simulation is the ability to replay the 
simulation. SiDce a cine loop is a sequence of frames, a user 
can euily move biCkwards in the sequence 10 study a particular 
~· U~ess a. system saves all user ~~:lions during an 
1nteracuve Sllllulatton. a uaer catmot readily return to a 
previoua state. Like 111 on-goms laboratory experiment. an 
event C&IUIOl be repeated without re-ruMing the experiment 
from the begiMing with the same Stepl. 

6.2. VIsualization of non-bonded force• 

Near-neighbor inlCI'actions among non-bonded atoms play an 
important role in protein conformations by holding those 
atoms together at fixed dislUices. A protein modeling system 
should convey these interactions to help a chemist tightly 
pack the protein's interior. These interactions, unfortunately. 
are not as simple to display as a bond (vector coMecting 
atollll). Figure 2 plots the potential energy of the v111 der 
Waal interaction between two atoms as a function of their 
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sepuation (1 Anpcrom • to·IO mclerS). The plot shows a 
maximum atlraetive (neaative) energy, E,., at a sepuation of 
R,.. The eneru deer•- nonlineuly u t.he separation 
mer-a from E,.. The encriY becomes repubive, increaaing 
at a diflenn& nonlineu raaa. u the separation decreases from 
E,.. Eadl alGal in a proc.in, on average, interacts wit.h ten 
aiOIIll within a six-Anascrom radius (the model in Color 
Plate 1 coaraiu 7J77 vm du Wul inleraetions). A useful 
vilualiu&ion of a non-bonded interaction should convey t.he 
type (aancuve or repulaive), magnitude, and ideal sepuation. 
R,.. 

Enerv (kcalhnall) 

0.4 

03 

o.2 

0.1 
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Fl1ure l: Vaa der Waal poteatlal ener&:r betweea 
two ato•~o 

ScMipt displays vm da Wul interactions that have an encriY 
magninade are- !han a uscr-defanad t.hreshold. A putial 
spherical sheU is plaead uound llot.h of the inter~~:ting uoms 
IDd aliped alona a vector becw.n them (see Color Plate 4). 
Curnmly a sMll wilh a solid anal• of 0 .4'/C steradians (ten 
percent covcrase) rcprescnll t.he weakest interac:tion. Solid 
m&l• incre- wilh t.he magnitude of the inter~~:tion. Wcalt 
interaetions ere represented by dot spheres, and strong 
interKtions ue represented by wireframe spheres. A dot­
sphere indicara t.hat an interaction exisll wit.hout discracting 
t.he user and COIISIIIDin1 u much screen spKe u the wireframe 
sphere. Blue denotes allraetion. and red denotes repulsion. 

Color Plate 4 iUustralel this visualization on a small model. 
The phocoaraph shows a sprina awched 10 a plane ring 
(hiJhlilhled with a purple tube) t.hat pulls one uom in10 
mother. Notice t.he wireframe shells UOIDid t.he two a10ms 
labeled with taL The shells bend mhcr !han interseCt so t.hat 
t.he vector in t.he two shells do not interfere visually. 
lntersectina wireframe sheila are difficult 10 usociate wit.h 
!.heir respective uoms. 

7. Adding physical modeling to Interactive 
graphlca ayatema 

The physically-based modeling module in Sculpt is inserted 
into the conlrOl flow of an interactive graphics systems wit.h 
minor modifications. The white boxes in Figure 3 list t.he 
sequence of actions in the interactive graphics system: the 
system receives a user action (e.g. mouse movement), 
interpret~ it (move an a10m by one Angsuom in a given 
direction), applies the change 10 the model database (change 
t.he coordinates of aiOm), and displays t.he next frame. The 
shaded box shows t.he additional step that modifies the user 

action ~~:cordin1 10 propenies of t.he application (e.g. also 
adjust distances 10 neighboring alOms). 

Fl1ure 3: Steps Ia aa lateractlve modella1 system 
ror proceaaiDI a user ac:tloa • 

The concrol-flow presented in t.he white boxes is similar 10 t.he 
event loop of mmy graphics systems [7]. The remainder of 
this section discusses some implementation issues addressed in 
Sc•lpt that may be useful 10 ot.hers wishing 10 incorporate 
physically-baed modeling inco inter~~:tive graphics systems . . 

7.1. Constrained minimization 

Sculpt implemenll t.he shaded box in Figure 3 wit.h a 
constrained minimizer in t.he following manner. Sculpt 
convcr~~ a user action iniO a potential eneriY function (e.g. a 
spring 10 pull uoms). Sc•lpt then fands a local minimum of the 
cotal system eneriY (from protein and user) that also satisfies 
the set of bond lengt.h u:d angle constraints. Mat.hematically. 
the minimizer solves the following problem: 

Oi"": 
ll 
EDercy(x) 
CCIUII"UIIt(ll) 

Sol""' 

mocW- (e.a. vecaor ot"""" positions) 
sum ot poccntiu enercies in modd 
v- of consuaint functions 

minimize EnVI)'(ll) 
suclllbat C-..l•l(x) • 0. 

The minim1zer fands the solution using a met.hod of Lagrange 
multipliers as discussed in [6], (17] and [13] . The minimizer 
dete:nnines chmges in uom positions. The changes are sent 10 

the next module in Figure 3 (Apply action) which then updates 
the model database. 

Ot.her constrained-minimization approaches fit within the 
framework of Figure 3. Witkin minimizes a poccntial energy 
function [16] usociated wit.h the physical state of elastic 
models. Amburn minimizes cosll associated wit.h design goals 
[3]. Phillips uses kinematic constraints 10 reduce allowable 
joint movement~ in an articulated figure while minimizing 
cosll associated the positioning goals [ 10] . 



7.2. Positioning 

Direct YeniiS IDdlrect posllloalal• Directly mavin& 
an object 10 a new location can violate constramts. For 
example, moviD& one end of a fixed-len&th line se&mcnt 
extends ill len&th if the other md cUIJIOl move. Indirect 
polilioninJ by attachin1 a sprin1 to an objec;t and tu&aing tile 
ocher cad avoid& lhil problem. If no opposin1 force prevenla 
mov~ in tile direction of tile tua. tile result is tile same u 
direct mmipuialion. Howev•. if tile object CUIJlOt move in tile 
directi- of 11M lUI, the indirection inc:reues the potential 
eneriY in tile system (because tile sprin1 stretches) but does 
not invalidate the model. 

Tuuinl objecll also lell a user move IIOl1IS from one local 
minimum 10 anolhcr. Fi1ure 4 shows sn example where user 
inl8rvenlioa over'COIMI a local eneriY minimum. Anows show 
tile directioD and strength of the anrKtions amon1 a10m T and 
the rued-position atoms F 1 snd F 2. Fi1ure 4-A shows the 
initial state with arom T anrKbd more by F1 thsn Fz . The tu& 
in Figure 4-8 (indicated with the duhed urow) pulls tile a10m 
towvds Fz. Figure 4-C shows the rma1 result. 

T T Tua 
F,~ F, Ft~--._ Fl 

• • • • 
(A) IniliallllnCtions (8) Aanaions with a IIICI' tul 

T 
F, ~ F, 

• • 
(C) Final atl1'Klians afrer !Ill 

Flaure 4: A user sprlna pulls atom T between 
eneru minima. 

Wblcb pbyslcs:> Dynamics or statics. Physically­
bued modeling. u it hu most often been used in compu&er 
graphics, aims 10 derermine physically-realistic motions and 
trajec:tories of objecll with specific physical propenies (e.g. 
blowinl flqs [14) snd jumpin1 Luxo [18)). The approach 
solves Newton's second law, F•ma, which gives the 
accderatio" of objecll. and combines this with an initial 
position snd velocity 10 determine motions. 

In this work, stable conformations, not the trajectories of 
reachin& them. U'e the concern. ScKipt achieves this by 
modelin& potential energy rather thsn forces in a model. This 
gives strtJiiiS between objects that tile system minimizes. The 
objecll never contain velocity information. Minimizing the 
potential energy (strain) moves the objects but does not induce 
momentum. This technique provides grea&er control over 
object positions and takes less computation. 

7.3. Approxlmstlng strff model components with 
constrslnts 

Sculpt malta an approximation that dramatically improves 
performuce without appreciably decreasing ~curacy . 
Properties wboM deformation requires very l~rge strain 
enerpes relative 10 others in a model •e replaced by rigid 
CODil1'ainll. For example. a bond len&th is constrained 10 its 
ideal value sinc:e the potential eneriY increase for extending a 
bond is five orders-of-mqniiUde l•ger than that associated 
with a comp~rable increase in distance between two non­
bonded IIOftiS. 

Minimizin1 functions with simi!• potential energies. subject 
10 constrainll. requires sianificantly less computation. in this 
application, than minimizing all the energies without 
constraints. Minimizin1 potential eneriY functions requires 
time-steps small enoup 10 model the stiffest propenies 
acc:unrely. The time-step must decrease u the potential energy 
separation amona the functions increases. Minimizing all the 
potential eneriY functions requires time-steps orders-of­
m&lftiwda smaller and. therefore. requires orders-of-magnitude 
more slqll p.- screen update! 

Is this approximation valid? Approximating bond-length. 
poteDtial energy functions with ri pd constrainll reduces the 
accuracy of the physical model. However, the l•ge po&cntial 
energy sipifies that bond-len&th vmability is orders-of­
mapiiUde smaller than the vmability of other properties. 
Sinc:e the bond lenaths hG'dly chanae. constrainin& them for 

· inc:reued p.-formaace is justified. Sculpt lets a chemist trade 
performance for accuracy when desired. by modeling lengths 
with potential energy func:tions. 

An imponaat principle influences this approximation-only 
compute what is sianirlcant. Sculpt follows this by only 
ICCIII'ately modelin& proper.ies that can vary significantly and 
constraining the others. This approach csn prove useful in 
other applications with wide vmability in energy magnitudes. 

8. Other applications 

Removing model re-idealization and enhancing understanding 
of model properties will most likely arise in other interactive 
applications that incorporate physically-bued modeling. The 
p..Ucul• benefits and implementations •e specific to the 
applications. However, similG'ity between the control-flow in 
ScKlpl and other spplications suuests that a generic. 
physically-bued modeling module may eventually be 
developed. For now, the system development effort may be 
overkill for simple modeling applications snd only justified 
for complex modeling applications. I conclude with two 
example applications that csn benefit from addin& physically· 
bued modelin&. 

8.1. Archltectursl lsyout 

Simple changes in a modeling system for architectural models 
(e.g. blueprinll) often require numerous operations. For 
example. narrowing a corridor requires moving the corridor 
walls alld len1thening the walls that connect to it. A large 
ponion of the effon in the Building Walkthrough project [I) at 
the University of North Carolina at Chapel Hill is spent fixing 
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and maialainina cWabuea of models (these dalabues conlain 
approximar.ely 4,000 10 30,000 polygons). An automated 
r.UO.ity calculalion followed by viewina uncovers modeling 
envn, inc:ludina walla not connected 10 ceilinp and doon 
ouuide the pl.- of their walls. Moat of lhe enon arise from 
pravioua databue edits that left parts of the model 
inconaiatanL 

Applyina c:onauaiMd minimization co !his application Rduc:es 
lhese burdaa. In the corridor example. constraints can reqW.. 
!hal movina the corridor wall also moves the connecting walls. 
Additional coat functions can inc:rease as certain goals IR not 
met such a rooms cOIIlaining a certain area or being a given 
dis&lnc:a &om an exiL 

8.2. Drafting 

Moat intar.:tive drafting and drawing systema ignore 
applic:alion-spac:ific properties to reduce computation and 
broaden produc:t applicability. They base operations (e.g. 
JIIOY&, stntc:h) on individual, geometric primitives (polygons, 
!ina, c:aaii'DI points, etc:.). Information regarding an object's 
c:onsii'Oc:tion il usually discarded. For example, MacDraw II 
leta a UMr c:aasii'Oc:t a line consuained to the horizontal, but 
dilc:arda ·the horizontal requirement after consii'Oc:tion [S]. The 
p.:ltap cloea not restrict the line to the horizontal if a user 
1arer moves Oil& of ita endpoints. Keeping information about 
an objac:t's SUUCQir8 and properties allows a system to maintain 
a c:onailcal model throughout model editing. 

I. Future work 

The immediate &oal for future work is to place Sc11lpt in a 
chemialry lab md gather results about its usefulness for 
solving daily protein-modeling problems. This should offer 
direction for fucure erthancements to the modeling and 
visualization components of the system. 

The vilualization ilsues offer large scope for future research. 
The near-neighbor visualization discussed in this paper is 
adequa&e. though not sreat- I will continue to eumine the near­
neighbor interKtions. A much harder property to visualize is 
long-distance. elecii'Ostatic interaction. These interactions can 
extend between acorns on opposite sides of a molecule. 
Visuaiizina lhese interactions will be hard. 

F"mally, I plan 10 apply the techniques described in this paper 
to other applications. The input 10 the Sclllpt system is a list 
of points with a set of length and angle functions defined on 
the points. Under one thousand lines of modeling code (out of 
ten thousand) is specific to molecules. With this framework I 
hope to examine interactive manipulation of skeletal figures 
without significant system development. 
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Plate 4: Non-bonded interactions represented 
with partial wirefrarne spheres. 
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Plate 3: Two helices after row tions . 


