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Abstract
Flashsort [RV83,86] and Samplesort [HC83] are

related parallel sorting algorithms proposed in the literature.
Both utilize a sophisticated randomized sampling technique
to form a splitter set, but Samplesort distributes the splitter
set to each processor while Flashsort uses splitter-directed
routing.

In this paper we present B-Flashsort, a new
batched-routing variant of Flashsort designed to sort N>P
values using P processors connected in a d-dimensional
mesh and using constant space in addition to the input and
output. The key advantage of the Flashsort approach over
Samplesort is a decrease in memory requirements, by
avoiding the broadcast of the splitter set to all processors.
The practical advantage of B-Flashsort over Flashsort is that
it replaces pipelined splitter-directed routing with a set of
synchronous local communications and bounds recursion,
while still being demonstrably efficient.

The performance of B-Flashsort and Samplesort is
compared using a parameterized analytic model in the style
of [BLM+91] to show that on a d-dimensional toroidal
mesh B-Flashsort improves on Samplesort when
(N/P)ּ<Pּ/(c1log P +c2dP1/d +c3), for machine-dependent
parameters c1, c2, and c3.  Empirical confirmation of the
analytical model is obtained through implementations on a
MasPar MP-1 of Samplesort and two B-Flashsort variants.
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1. Introduction
Considerable effort has been made by the theoretical
community in the design of parallel algorithms with
excellent and sometimes optimal asymptotic efficiency.
However, the field has had less success in demonstrating the
utility of these algorithms by actual implementations.
Ideally, the analysis of parallel algorithms should proceed
beyond asymptotic efficiency and be extended to the level of
implementations.  In practice, this is difficult to do.

For one thing, the relation between the asymptotic
complexity of an algorithm and the performance of an
implementation can be considerably more complex for
implementations of parallel algorithms than for sequential
algorithms.  For example, the number of processors or the
amount of memory available to a processor in existing
machines can easily be reached well before the
asymptotically superior performance of the algorithm is
achieved.  Hence several different algorithms and algorithm
variants must be considered to determine the ones that give
the best performance over combinations of problem and
machine sizes and machine architecture.  To be able to
compare approaches we need analytic models of the
performance of algorithms, in terms of measurable
quantities; this can sometimes require the modification of
algorithms to make them analyzable, without reduction in
efficiency if possible.  We must also validate the models
with actual implementations on parallel machines.

A careful, quantitative, effort of this kind was undertaken by
Blelloch et al. [BLM+91] in the comparison of sorting
algorithms for the TMC CM-2.  In that paper, explicit
analytical models for a variety of sorting algorithms were
developed in terms of fundamental underlying operations.
The analytical models were coupled with measured times for
the underlying operations on a CM-2 to accurately predict
performance as a function of the number of processors P
and the input problem size N.  Particular consideration was
given to the scaling behavior of the algorithms as N
becomes much larger than P, since this reflects the problem
sizes for which large parallel machines typically become



2

0

1

2

3

4

5

6

7

2 4 8 16 32 64 128 256 512 1024

Bitonic Sort

B-Flashsort

B-Flashsort with Recursive Subsampling

Samplesort

Elements per processor (N/P)

T
im

e 
(m

s/
(N

/P
))

Figure 1.  Performance of implemented algorithms on 4096 processor MP-1

useful.  Samplesort was shown to be faster than Bitonic and
Parallel Radix sort for large values of N/P, although its
general utility was limited because of large memory
requirements and poor performance at lower values of N/P.

Samplesort as described in [HC83], [BLM+91] is a
randomized algorithm that works as follows.  A sample of
the complete set of input keys distributed uniformly across
processors is extracted and sorted using some efficient
deterministic algorithm.  From the sorted sample a subset
consisting of P–1 values is extracted that partitions the
input into P bins that are similarly-sized with high
likelihood.  These P–1 splitters are then broadcast to all
processors, after which Binary Search can be used in parallel
at all processors to locate the destination processor for each
of their values.  After sending all values to their
destinations using general routing, a local sort of the values
within each processor completes the algorithm.

Although Samplesort is very fast for large N/P it does have
some important limitations.  The requirement that the
complete set of splitters be available at every processor can
be problematic for parallel machines in which the number
of processors is large but the amount of local memory is
modest.  This class includes the recently completed Mosaic
machine as well as commercial machines like the MasPar
MP-1 and the DAP.  A full-size MasPar MP-1, for
example, has 16384 processors, but each processor has only
64KB of local storage.  To Samplesort a data set consisting
of 64 bit values would require each processor to have 64P
bits or 128KB available for the splitters alone.

In this paper we propose an alternate randomized sorting
algorithm related to the algorithm described in [RV83,87]
that has become known as Flashsort (see also
Ullman[U83], Appendix B for a simplified description of

the algorithm).  In particular, in [RV83,87] two techniques
were used that were not incorporated in the Samplesort of
[HC83], [BLM+91]:

(1) splitter-directed routing
(2) recursive application of the sampling, partitioning

and routing step

We investigate both of these techniques and give a
quantitative analysis of the circumstances under which the
first is advantageous.  Our algorithm, which we call
Batched-routing Flashsort, or B-Flashsort, can be
implemented on a wide variety of architectures, including
any mesh, CCC, or hypercube network.  In this paper we
concentrate on its implementation on a low-dimensional
toroidal mesh, which admits a simple and efficient approach
to splitter-directed routing.  The algorithm takes advantage
of the toroidal interconnection topology to reduce
communication cost by a factor of 2 over the non-toroidal
mesh; this is useful in practice since the toroidal topology
is actually implemented on many current and proposed
machines.

The batched routing technique works as follows.  For each
dimension j of a d-dimensional mesh, values are moved
along dimension j  in successively smaller power-of-2
strides.  Each processor partitions its values into a set of
values to keep and a set of values to send on, based on two
splitters it holds.  All values to be sent from a processor
can be moved contention-free since all movement is the
same distance in the same direction.  Although we expect
that the general routing used in Samplesort, when
implemented in hardware, should outperform batched-
routing in B-Flashsort, the magnitude of this difference
determines the minimum size problem on which
Samplesort can be competitive.  For machines with large
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numbers of processors, limited per-processor memory, or
software routing, B-Flashsort may always be faster.  This
may be particularly true if batched routing is implemented
at a very low-level.

The virtue of B-Flashsort is that it is simple, has per-
processor storage requirements that do not scale with P, and
does not require general routing.  It is completely
analyzable, up to tight bounds on the multiplicative
constants.  In comparison, in the original Flashsort in
[RV83,87] it was difficult to exactly determine analytical
constant factors due to the use of pipelining in the splitter-
directed routing (with a goal of asymptotic bounds, only
upper bounds were determined in [RV83,87]).

With the addition of a recursive sampling strategy we can
extend the performance advantage of B-Flashsort over
deterministic sorts to much smaller values of N/P.  This
may improve the utility of B-Flashsort as a general purpose
sorting routine since it need not suffer poor behavior at low
N/P.

A great deal of previous work has been concerned with
sorting on the mesh with P processors in time O(P1/2).
The currently best bounds (smallest constant factor) known
to us are given in [KKNT91]. Their algorithm is derived
from Flashsort (with pipelined splitter directed routing) and
in addition uses many sophisticated and ingenious
techniques, but their algorithm is far too complex to yield
an efficient practical implementation. In particular, the time
bound has low order terms with large multiplicative
constants which actually dominate the performance on
existing large parallel machines.  This indicates that there is
a large gap between a theoretical result on parallel sorting
as compared to a parallel algorithm validated by an efficient
implementation on an actual parallel machine.

We develop an analytical model for the running time of
B-Flashsort, following the approach taken in [BLM+91]
and compare it with the model for Samplesort.  We derive
an expression in terms of machine-dependent parameters
characterizing the range of N/P for which B-Flashsort
outperforms Samplesort.  To validate the analytic model,
we implemented four sorting algorithms on a 4096
processor MasPar MP-1.  Figure 1 summarizes the
performance of the four sorting algorithms: (1) Bitonic sort,
the fastest deterministic sort for small N/P on the MP-1
[Prin90], (2) Samplesort, (3)ּB-Flashsort and (4)
B-Flashsort utilizing the recursive sampling strategy.

2. 1-D Algorithm
We will first explain the algorithm in the 1-D case and then
extend the description to multi-dimensional meshes.  In the
1-D case, P processors are connected in a ring and each

processor 0 ≤ i < P starts with a list Li of N/P values to be
sorted.  We assume here the values are distinct; at the end of
this section we show that this requirement can be relaxed.

B-FLASHSORT-1D(L)
     SUBSAMPLE
1. foreach i ∈ 0 .. P-1
2. Gi := select k random elements from Li
3. sort (G) using a deterministic P-processor sort
4. foreach i ∈ 0 .. P-1
5. if  i = 0  then  S

–
i  := –∞

              else  S
–
i  := Gi–1[k-1]

6. if  i = (P-1)  then  S
+
i  := +∞

             else  S
+
i  := Gi[k-1]

     BATCH-SDR
7. h := P
8. while h > 1 d o
9. h := h /2
10. foreach i ∈ 0 .. P-1
11. Li, Mi := [ v ∈ Li | τ(h,i,v)],

              [ v ∈ Li | ¬τ(h,i,v)]
12. Li := Li  ++  Mi–h
13. end
     LOCAL-SORT
14. foreach i ∈ 0 .. P-1
15. sort (Li)

The algorithm proceeds in three phases, SUBSAMPLE,
BATCH-SDR, and LOCAL-SORT.  In the first phase, we
choose k local samples without replacement at each
processor into listGּ.  Next a deterministic sort is used to
sort all kP values across P processors.  Each processor i
defines its portion of the data set as being all values v such
that S

–
i  < v ≤ S

+
i .  Since all values are distinct, every value

belongs to exactly one partition.  S
+
i  is the largest value of

the sorted sample at processor i, and S
–
i  is the largest value

of the sorted sample in processor i-1.  Note that  S
–
0 = –∞

and S
+
P-1 = +∞.

In the BATCH-SDR phase, values are moved toward their
destination in log P steps, each using two splitters.  Step
11 splits the local list Li  into a new list Li  of values to
keep and a list Mi of values to move h steps.  The predicate
τ(h,i,v) is true exactly when v belongs on a processor less
than h steps away from processor i.  Because of the ring
topology, the predicate has two cases:

τ(h,i,v) = [(i+h ≤ P) ^ (S
–
i  < v ≤ S

+
i+h-1)]  (2.1)

∨ [(i+h > P) ^ ((S
–
i <v) ∨ (v ≤ S

+
i+h–1))]

The value of S
+
i+h–1 used in τ(h,i,v) needs to be obtained

once for each iteration of the while  loop.  Step 12
corresponds to a batch routing of the values to be moved.
All values move the same distance h in the same direction,
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so that synchronous nearest-neighbor communication can
be employed.

LEMMA 1.  The predicate

∀( i, v:  0 ≤ i < P and v ∈ Li : τ(h,i,v) ) (2.2)

is an invariant of the iteration at line 8.

PROOF.  The assignment h:= P establishes (2.2) trivially.
In each iteration, as h is halved, Li is reduced on line 11 to
just those values for which (2.2) holds.  In line 14, (2.2)
holds for all values of Mi–h.  Thus (2.2) remains invariant.

THEOREM 1.  B-FLASHSORT-1D sorts its input values.

PROOF.  When the loop terminates after line 13, we have
(2.2) and h = 1.  Taken together this yields (S

–
i  < v ≤ S

+
i )

for each value v in each processor i.  Thus each processor
holds only values destined for it.  Since no values are
created or destroyed, every input value has been correctly
routed.  Consequently L is partitioned appropriately and the
sort in step 15 completes the proof.

The evaluation of τ(h,i,v) may be simplified by treating the
boolean values as integers (true = 1, false = 0):

(S
–
i  < v) + ( v ≤ S

+
i+h–1)  =  1 + ((i + h) ≤ P)

The term on the right hand side is constant within each
processor on each iteration, so that two comparisons and
two arithmetic operations suffice.  If the comparison is
carried out using unsigned comparisons, the predicate can be
evaluated with a single comparison and a single arithmetic
operation.

For simplicity, in the presentation of the algorithm we
assumed the values being sorted were distinct.  If values
may occur several times in the splitter, we must modify
predicate τ(h,i,v) to retain its interpretation in BATCH-SDR:

τ(h,i,v) =

[(i+h≤P) ^ (S
–
i  ≤ v ≤ S

+
i+h-1)]  (2.1)

  ∨ [(i+h>P) ^ (S
–
i ≠S

+
i+h–1) ^ ((S

–
i <v) ∨ (v≤S

+
i+h–1))]

  ∨ [(i+h>P) ^ (S
–
i =S

+
i+h–1) ^ ((S

–
i ≤v) ∨ (v<S

+
i+h–1))]

Now the particular destination of an element that appears
multiple times in the splitter is determined by its starting
location.  Therefore a dataset of non-distinct elements can
be sorted using B-Flashsort if the dataset is randomly
distributed.

3. Multidimensional Algorithm
The multidimensional version of B-FLASHSORT-MD
operating on P = pd processors arranged in a d-dimensional
torus can now be understood as follows.

The SUBSAMPLE step is identical to the 1-D version except
that the deterministic sort must operate on a d-dimensional
mesh.  This step creates a splitter SI  at each processor
indexed by a d-vector I, with S

ּ
ּ(p–1),...,(p-1) = +∞.

The 1D BATCH-SDR is applied in parallel to each column
(hyperplane) for each dimension 1 ≤ j ≤ d.  The splitters
used in the application to dimension j are as follows:

S
+
I  = S

ּ
Iּ[1],...,I[ j],(p-1),...,(p-1)

S
–
I  = 

 

 S

ּ
Iּ[1],...,I[ j-1],I[ j]-1,p-1,...,p-1 if Iּ [ j ] ּ>ּ0

ּ–∞ otherwise

The splitters for all of the steps can be created using d–1
spread operations from the highest indexed-elements in each
dimension (in reverse order) starting with the original
splitter SI .  BATCH-SDR step j leaves the values totally
ordered within dimension j, hence when all steps complete,
the input data set is completely partitioned.

For example, on a 2-D mesh, all columns are routed using
the splitters in the last column of processors.  Then each
row is routed using the splitters within each processor,
leaving the result partitioned in row-major order.

The LOCAL-SORT step is identical to the 1-D version and
establishes the complete ordering.

4. Analysis
Define the skew W of the list L over all processors i to be

W ּ = ּ
max

ּ
i ּ |L

ּ
i |

ּavg
ּ
i ּ |L

ּ
i |

ּ=ּ
max

ּ
i ּ |L

ּ
i |

Nּ/P

The length of a list Li can deviate from the average during
execution of the algorithm for two reasons: routing-induced
skew WR and splitter-induced skew WS.  The former occurs
because of random congestion in the routing phase, while
the latter occurs when the choice of the splitters is
imperfect so that the list on some processor ends up longer
than the average.

THEOREM 2.  For any α > 0 and N/P > (α+1) ln P, the
routing-induced skew WR satisfies
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Figure 2.  Predicted and observed routing-induced skew WR for P = 4096.

WR ≤ 1+ √3(P/N)(α+1)ּlnPּ

with probability 1 – (1/Pα).

PROOF. (Appendix)

The routing-induced skew goes up slowly with increasing
P, but decreases much more rapidly with increasing N/P.
Given P > 1 and arbitrary r we may choose α to obtain a
bound on WR  with probability 1–r  provided N/P is
sufficiently large.  Figure 2 illustrates predicted and
measured routing skew over 100 trials on a 4096 processor
2-D mesh.  Figure 3 illustrates the dependence of routing
skew on P and r.

Bounds for the expected relation between the per-processor
sample size and the maximum size of the sorted lists at
completion are given in [BLM+91] and [DNS91].  Given
P>1 and arbitrary r, the sample size k required to limit
splitter-directed skew to WS with probability 1–r  is given
by:

k = 
2ּlnּ(P/r)

(1-1/WS)2WS
(4.1)

This bound is conservative since it is independent of the
number of elements per processor.

THEOREM 3.  Let k be the number of samples chosen per
processor.  Then for any α > 0, the splitter-induced skew
WS satisfies

WS + 
1

WS
  ≤  2 + 

2(α+1)
k

 • ln P

with probability 1–(1/Pα).

PROOF. Solve (4.1) for WS  with r = 1/Pα.
Figure 4 illustrates the dependence of splitter skew on P and
the oversampling ratio k.  Since the SUBSAMPLE step
performs a sort of k elements per processor, we are
interested in keeping k small.  On the other hand, a large
WS that results from a small k causes slowdown in the
B A T C H -SDR and LO C A L -SORT stages.  Space
considerations also encourage us to bound WS < 2 with
high probability at large N/P.

A simple compromise is to let kּ=ּ4(α+1)ּlnPּ, with
αּ>ּ0, chosen to keep the probability of exceeding the
skew bounds acceptably low.  For this choice, WS ≤ 2 for
all N and P.  Since N/P ≥ k (else we degenerate to the
deterministic sort), we are guaranteed that WR ≤ 1.85 with
the same probability.  Routing-induced skew disappears in
the last stages of SDR while routing-induced skew is
introduced in these stages.  With the choice of kּ above we
can simplify the analysis by eliminating WR and bounding
skew in all stages of SDR by WS.
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If the skew bounds are exceeded the simplest recourse is to
randomize the input and rerun the algorithm.
Randomization is required because resampling may not
solve a routing congestion problem.

Performance Analysis

We analyze the algorithm in terms of the primitive
operations listed below.  Each operation is assumed to have
a relatively constant per-element time. The time for an
arithmetic operation subsumes an indirect reference of its
source and destination, as well as the time to update a
counter on each processor.

opn description
A average time for an indirect memory-to-

memory arithmetic operation
X distance-one nearest-neighbor send time
Z time to spread values along a dimension
R average random destination send time

The total running time of  B-FLASHSORT-MD is given by
the sum of the times of its three phases and is a function of
N and P.

TB-FLASH-MD(N,P)  =
TSUBSAMPLE(N,P)

  + Z•(d–1)

  + WS • 
N
P

 •TBATCHSDR(P)

  + TLOCSORT(WS•N/P)

The second term is the cost for the d–1 spread operations
used to create the splitters for the SDR in each dimension.
Of particular interest here is the TBATCHSDR portion of
this expression.  On each step it performs work
proportional to the longest list (WS•N/P).  By examination
of the B-FLASHSORT-1D algorithm we can express the time
per element as follows:

TBATCHSDR(P) =

4A log P + 
1
2
 • [X • d • (P1/d – 1)]

On each SDR step we must compare a value with the
bounding splitters and place it on one of two queues L or M
(cost 3A).  We must also move queue M which involves an
indirect access of the source and destination queue (cost 2A),
but we only charge 1/2 the per-element cost because on
average only half the elements are placed in M.  The total
distance traveled by elements in queue M is (P1/d – 1) in
each of d dimensions.  The cost X per step of this distance
is scaled by 1/2 because, again, only half the elements
move on a given step.

5. Recursive Subsampling
Since each dimension in SDR is treated in turn we can
consider an alternative approach to subsampling.  At each
SDR step we can sample a sufficient portion of the input to
generate splitters for that step only.

For example, in a 2-D mesh we need √ P splitters in the
first step.  Since we can sort using P processors, we can
divide the oversampling k obtained from theorem 3 by √ P
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Figure 4.  Dependence of oversampling on number of processors.

to determine the oversampling ratio using P processors.
This permits us to apply the algorithm to much smaller
values of N/P without degenerating to the deterministic sort
time.

In the second stage we need √ P splitters in every row, or
one splitter per processor.  Note from Figure 4 that the
required oversampling ratio to generate √ P splitters for √ P
processors for a skew WS with probability r is lower than
that required to generate P splitters for P processors with
the same WS and r .  Furthermore, the sorting of the
samples taken in each row using √ P processors will be
faster than a sort of a sample with the same size per
processor using P processors.

Thus recursive subsampling improves the performance of
B-Flashsort for small values of N/P relative to P.  As a
result the B-Flashsort algorithm using recursive
subsampling in figure 1 gives better performance at smaller
input sizes, but does not alter the performance for large
N/P.

The optimum choice for the number of recursive stages and
the sampling size at each stage is highly dependent on the
dimensionality of the mesh and the performance of the
deterministic sorting algorithm at small N/P.  The final
paper will give details of the analysis.

6 . Analytical and Empirical

Comparison of Algorithms
Here we compare the performance of Samplesort and
Multidimensional non-recursive B-Flashsort.  In the non-
recursive case the first and last steps of Samplesort and B-
Flashsort,  subsampling and local-sort respectively,  are
identical.  That is,

TSAMPLESORT(N,P)  = 
TSUBSAMPLE(N,P) + TSPLIT(N,P)
+ TLOCSORT(WS•N/P)

TB-FLASH-MD(N,P)  =
TSUBSAMPLE(N,P) + Z•(d–1)

+ WS • 
N
P

 •TBATCHSDR(P)

+ TLOCSORT(WS•N/P)

For Samplesort we have

TSPLIT(N,P) =  2A • P + 2A • N/P log P + R • N/P

because each of P splitters must be broadcast with cost
approximately 2A, each of N/P elements must be found by
binary search in the splitter table (2A per probe), and each
element must be sent to the destination queue.  For
B-Flashsort we have from section 4:

   TBATCHSDR(P) =  4A • log P + 
1
2
 • [X • d • (P1/d – 1)]

To assess the predictive utility of the model (at least in one
setting) we performed timings of the implementations of
SPLIT and BATCHSDR on a 4096 processor MasPar MP-1
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and compared the timings with those predicted by the model
when times are provided for the various primitive
operations of the model.  The timings we used for the
primitive operations of the model are shown below for 32
bit values on the MP-1.   For the MP-1, d = 2 and the
maximum value of P is 16384.

opn
MP-1
(µS) description

A 20 average time for an indirect memory-to-
memory arithmetic operation

X 3 distance-one nearest-neighbor send time
Z 8 time to spread values along a dimension
R 700 average random destination send time

The measured TBATCHSDR(P) on the MP-1 was found to
75 log P + 3 (R(P) -1) µS which agrees very well with the
predicted time.  The measured TSPLIT(N,P) was found to be
29P + 36Nּ/PּlogPּ + 740 N/P which agrees reasonably
well with the predicted time, particularly for large N/P.

To find the regime in which  B-Flashsort gives superior
performance, we examined the inequality

Z•(d–1) + WS •(N/P) •TBATCHSDR(P) < TSPLIT(N,P)

Combining N/P terms this gives

N/P • [(WS •4A) - 2A)• log P +

WS • X • (d/2)• (P1/d – 1) –  R] < 2A •P – Z•(d–1)

which, taking the average maximum skew WS ≈ 1.5, and
solving for N/P in terms of P gives

N
P

  <  
ּ2A ּ•Pּּ–Zּּ•ּ(d– 1 )

ּ4AּlogPּּ+ּ0.75X•(P1/dּ–ּ1)ּ–ּR

When we examine this relation for P = 4096 and dּ=ּ2, we
predict that for N/P ≤ 300 the B-Flashsort implementation
should be faster than Samplesort, which is indeed borne out
experimentally as is demonstrated in Figure 1.

Using the constants for the CM-2 reported with the analytic
model of [BLM+91] we obtain values of N/P in the range
320 to 560 as crossover points below which B-Flashsort
would be competitive with Samplesort on a full-size CM-2
(Pּ=ּ2048, d = 11).  The exact value depends on whether
the formula for TSPLIT is the one used here or the one
defined in [BLM+91].  However, we have not verified this
prediction experimentally.

7. Conclusions
Randomization has been demonstrably useful both in
simplifying and in improving the efficiency of sorting
algorithms on actual parallel machines.  The B-Flashsort
algorithm developed in this paper combines some of these
concepts with an efficient implementation of splitter-

directed routing that achieves the SIMD-model
communication distance bound of d•ּּ(P1/d – 1) for sorting
on the d-dimensional torus.

The algorithm presented scales well to large machines,
since its memory requirements are independent of the
machine size. The analytic model developed suggests that
the algorithm will perform well on machines with high-
speed local connections on the mesh.  Experimentally,
B-Flashsort is competitive with Samplesort on the MP-1, a
machine with good hardware routing capabilities and fast
broadcast (the characteristics that favor Samplesort).  A full-
size MasPar MP-1 (16,384 processors) sorts approximately
4 million 32-bit integers per second using our
implementation.

Appendix
THEOREM 2.  For any α > 0 and N/P > (α+1) ln P, the
routing-induced skew WR satisfies

WR ≤ 1+ √3(P/N)(α+1)ּlnPּ

with probability 1–(1/Pα).

PROOF. We use some basic probability theory in the proof
of theorem 2.  Consider n independently distributed Poisson
variables x1,.. . ,xn, with Prob(xi  = 1) = ρ  and
Prob(xiּ=ּ0)ּ= 1–ρ.  The random variable

X = ∑
i =ּ ּ 1

n
xּ i

has binomial distribution described by

Prob(X = k)  =  ( )nk  ρk (1-ρ)n-k

The distribution has size n and mean µ = n•ρ.  We will be
interested in the probability that X has a value larger than
some given value k > µ:

Prob(X ≥ k)  =  ∑
i ּ=kּ

n

(ּ )nk ρּkּ(1-ρ)n-k

which satisfies the following inequality for any
0≤ּ εּ ≤ּּ1.8µ [KKNT91] :

Prob(X ≥ µ+ε) ≤ e–ε2/3µ (A.1)

We can now proceed with the theorem. Recall we are
sorting N values using P processors.  Initially each
processor holds N/P values.  Consider the values held by an
arbitrary processor H  at the completion of SDR stage
1≤ּ iּ ≤ּּlog P.  There are a total of 2iN/P values that may
reach processor H, each with independent probability 2–i.
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We model the length of the queue at H  at stage i  as a
binomially distributed variable X with size 2iN/P and mean
µ ּ=Nּ/P.  Let q = Prob (X ≥ µ+ε) with 0≤ּεּ ≤ּּ1.8µ .
Then by (A.1) the probability that X<ּµּ+ε at H is

1–q ≥ 1–e–ε2/3µ (A.2)

Since there are P processors, all of which must satisfy
(A.2), the probability r that all queues are shorter than µ+ε
is

r = (1-q)P ≤ (1 – e–ε2/3µ)P (A.3)

Since WR = (µ+ε)/µ, we have ε = µ(WR–1).  If we rewrite
(A.3) in terms of WR we get

–3
µ  ln (1–r1/P) ≥ (WR – 1)2 (A.4)

To bound the values of r for which (A.4) holds, note that
we must have 0 ≤ ε/µ ≤ 1.8 to apply (A.1).  Since ε/µ =
(WR–1) we must have

0 ≤ 
–3
µ  ln (1–r1/P) ≤ (WR – 1)2 = (ε/µ)2 ≤ 3 <1.82

which constrains r  to satisfy  0 ≤ r  ≤ (1 – e–µ)P.  By
assumption µ ≥ (α+1) ln P, hence

(1–e–µ)P

  ≥ (1–e–(α+1)ּlnPּ)P

  = 
 


 
1–

1

Pα+1
(Pα+1/Pα)

  ≈ e–1/Pα
(since for x → ∞,  (1–1/x)x → e–1)

  ≈ 1 – 
1

Pα (since for x → ∞,  e–1/x→ּ 1–(1/x))

Therefore the conditions obtain to apply the theorem for all

0 ≤ r ≤ 1 – (1/Pα).  In particular, with r = 1ּ–ּ(1/Pα), it
may be easily verified using the identities above that

WR ≤ 1+ √3(P/N)(α+1)ּlnPּ

(End of proof.)
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