# THE SHOELACE PROBLEM 

by
JOHN H. HALTON
The University of North Carolina at Chapel Hill
Sitterson Hall, CB 3175, Chapel Hill, NC 27599-3175, USA


#### Abstract

The problem is to find the order of lacing a shoe, with two parallel rows of equally-spaced lace-holes (eyelets), which requires the least total length of lace. This paper determines the total length required by the three most popular styles of lacing (for any shoe parameters), and optimizes over all possible lacings.


## INTRODUCTION

In a number of discussions of how shoes should be laced, it became apparent that no one seemed to have the definitive answer. Shoes were laced and re-laced, passions flared, and shoes were even thrown.... The author decided that an appeal to mathematics was indicated.

This problem is a restriction of the Traveling Salesman Problem. We are given a set of $2(n+1)$ points (the lace-holes oreyelets) arranged in a bi-partite lattice, as shown in Figure 1 below.


Figure 1
The shoe...
The problem is to find the shortest path from $A_{0}$ to $B_{0}$, passing through every eyelet just once, in such a way that points of the subsets

$$
\begin{equation*}
A=\left\{A_{0}, A_{1}, A_{2}, \ldots, A_{n}\right\} \quad \text { and } \quad B=\left\{B_{0}, B_{1}, B_{2}, \ldots, B_{n}\right\} \tag{1}
\end{equation*}
$$

alternate in the path.

Three standard lacing strategies are shown in Figures 2-4 below.


Figure 2
American, zig-zag, lacing.

Here, if $n$ is odd, as in Figure 2, the lacing is
$\begin{array}{lllllllll}A_{0} & B_{1} & A_{2} & B_{3} & A_{4} & \ldots & A_{n-1} & B_{n}\end{array}$

$$
\begin{array}{lllllllll}
A_{n} & B_{n-1} & A_{n-2} & B_{n-1} & \ldots & A_{3} & B_{2} & A_{1} & B_{0} ; \tag{2}
\end{array}
$$

if $n$ is even, the lacing is, similarly,
$\begin{array}{lllllllll}A_{0} & B_{1} & A_{2} & B_{3} & A_{4} & \ldots & A_{n-2} & B_{n-1} & A_{n}\end{array}$

$$
\begin{equation*}
B_{n} \quad A_{n-1} \quad B_{n-2} \quad \ldots \quad A_{3} \quad B_{2} \quad A_{1} \quad B_{0} ; \tag{3}
\end{equation*}
$$

and it is easily verified that, in either case, the total length used is

$$
\begin{equation*}
L_{\mathrm{AM}}=L_{\mathrm{AM}}(n, v, w)=w+2 n \sqrt{v^{2}+w w^{2}} \tag{4}
\end{equation*}
$$



Figure 3
European, straight, lacing.

Here, when $n$ is odd, as in Fig. 3, the lacing is

$$
\begin{align*}
& \begin{array}{llllllll}
A_{0} & B_{1} & A_{1} & B_{3} & A_{3} & \ldots & A_{n-2} & B_{n}
\end{array} \\
& \begin{array}{lllllllll}
A_{n} & B_{n-1} & A_{n-1} & B_{n-3} & \ldots & B_{2} & A_{2} & B_{0} ;
\end{array} \tag{5}
\end{align*}
$$

when $n$ is even, the lacing is, similarly,

$$
\begin{array}{rlllllllllllll}
A_{0} & B_{1} & A_{1} & B_{3} & A_{3} & \cdots \\
& & & A_{n-1} & B_{n} & A_{n} & B_{n-2} & A_{n-2} & B_{n-4} & \ldots & B_{2} & A_{2} & B_{0} ; \tag{6}
\end{array}
$$

and, with a little more thought, we see that, in both cases, the $t$ length of lace is

$$
\begin{equation*}
L_{\mathrm{EU}}=L_{\mathrm{EU}}(n, v, w)=n w+2 \sqrt{v^{2}+w^{2}}+(n-1) \sqrt{4 v^{2}+w^{2}} . \tag{7}
\end{equation*}
$$



Figure 4
Shoe-shop, quick, lacing.

Here, the lacing is

$$
\begin{array}{llllllllllllll}
A_{0} & B_{n} & A_{n} & B_{n-1} & A_{n-1} & \ldots & B_{3} & A_{3} & B_{2} & A_{2} & B_{1} & A_{1} & B_{0} \tag{8}
\end{array}
$$

and we find that the total length is

$$
\begin{equation*}
L_{\mathrm{SS}}=L_{\mathrm{SS}}(n, v, w)=n w+n \sqrt{v^{2}+w^{2}}+\sqrt{n^{2} v^{2}+w^{2}} . \tag{9}
\end{equation*}
$$

We can generalize the situation as follows. andepdenote permutations of $\{1,2,3, . . ., n\}:$

$$
\left.\begin{array}{lll}
\alpha=\left\{\alpha_{1}, \alpha\right. & 2^{2}, \ldots, \alpha & { }_{n} \tag{10}
\end{array}\right\}, ~ 子
$$

To them will correspond the lacing

$$
\begin{equation*}
A_{0} \quad B_{\beta_{1}} A_{\alpha_{1}} B_{\beta_{2}} A_{\alpha_{2}} B_{\beta_{3}} \ldots A_{\alpha_{n-1}} B_{\beta_{n}} A_{\alpha_{n}} B_{0}, \tag{11}
\end{equation*}
$$

and this will have total length

$$
\begin{align*}
L= & \sqrt{\beta_{1}^{2} v^{2}+w^{2}}+\sqrt{\left(\alpha_{1}-\beta_{1}\right)^{2} v^{2}+w w^{2}}+\sqrt{\left(\beta_{2}-\alpha_{1}\right)^{2} v^{2}+w^{2}} \\
& \quad+\backslash \mathbf{R}\left((\alpha-\alpha)^{2} v^{2}+w^{2}\right)+\ldots \backslash \mathbf{R}\left(\left(\beta_{n}-{ }_{n} \underline{\alpha}_{1}\right)^{2} v^{2}+w^{2}\right)+\backslash \mathbf{R}\left(n_{n}^{2} v^{2}\right. \\
+ & \left.w^{2}\right) . \tag{12}
\end{align*}
$$

For the three special lacings shown above, the particula permutations are:
$\left.\begin{array}{l}\alpha_{\mathrm{AM}}=\{\text { allevennumbersincreasing;thenalloddnumbersdecreasing\}, } \\ \beta_{\mathrm{AM}}=\{\text { alloddnumbersincreasing;thenallevennumbersdecreasing\}; } \\ \alpha_{\mathrm{EU}}=\{\text { alloddnumbersincreasing;thenallevennumbersdecreasing\}, } \\ \beta_{\mathrm{EU}}=\{\text { alloddnumbersincreasing;thenallevennumbersdecreasing\}; }\end{array}\right\}$

$$
\left.\begin{array}{l}
\alpha_{\mathrm{SS}}=\{\text { allnumbersdecreasing }\},  \tag{15}\\
\beta_{\mathrm{SS}}=\{\text { allnumbersdecreasing }\} .
\end{array}\right\}
$$

The simplicity of these permutations is indeed remarkable.

## THE THREE STANDARD LACINGS

Theorem 1. If $v=0$ or $w=0$, for all positive $n$,

$$
\begin{equation*}
L_{\mathrm{AM}}=L_{\mathrm{EU}}=L_{\mathrm{SS}} . \tag{16}
\end{equation*}
$$

If $v \neq 0$ and $w \neq 0$,

$$
\begin{equation*}
L_{\mathrm{AM}}(1, v, w)=L_{\mathrm{EU}}(1, v, w)=L_{\mathrm{SS}}(1, v, w) ; \tag{17}
\end{equation*}
$$

and, if $v>0$ and $w>0$,

$$
\begin{equation*}
L_{\mathrm{AM}}(2, v, w)<L_{\mathrm{EU}}(2, v, w)=L_{\mathrm{SS}}(2, v, w) . \tag{18}
\end{equation*}
$$

Finally, if $v>0$ and $w>0$ and $n>2$,

$$
\begin{equation*}
L_{\mathrm{AM}}<L_{\mathrm{EU}}<L_{\mathrm{SS}} . \tag{19}
\end{equation*}
$$

Proof. We use (4), (7), and (9), and successively prove (16)-(19).
(i) First, by direct substitution, we see vtkat, ofow = 0, respectively,

$$
\begin{equation*}
L_{\mathrm{AM}}(n, 0, w)=L_{\mathrm{EU}}(n, 0, w)=L_{\mathrm{SS}}(n, 0, w)=(2 n+1) w \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{\mathrm{AM}}(n, v, 0)=L_{\mathrm{EU}}(n, v, 0)=L_{\mathrm{SS}}(n, v, 0)=2 n v, \tag{21}
\end{equation*}
$$

proving the equation (16).
(ii) Again, for all non-negative $v$ and $w$,

$$
\begin{equation*}
L_{\mathrm{AM}}(1, v, w)=L_{\mathrm{EU}}(1, v, w)=L_{\mathrm{SS}}(1, v, w)=w+2 \sqrt{v^{2}+w^{2}} \tag{22}
\end{equation*}
$$

proving the equation (17).
(iii) Similarly, for all non-negative $v$ and $w$,

$$
\begin{equation*}
L_{\mathrm{AM}}(2, v, w)=w+4 \sqrt{v^{2}+w^{2}} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{\mathrm{EU}}(2, v, w)=L_{\mathrm{SS}}(2, v, w)=2 w+2 \sqrt{v^{2}+w^{2}}+\sqrt{4 v^{2}+w^{2}} \tag{24}
\end{equation*}
$$

Now, if $v>0$ and $w>0$, we get the following succession of true inequalities.

$$
\begin{align*}
& \left\{v^{2} w^{2}>0\right\} \Leftrightarrow\left\{\left(4 v^{4}+5 v^{2} w^{2}+w^{4}\right)-\left(4 v^{4}+4 v^{2} w^{2}+w^{4}\right)>0\right\} \\
& \Leftrightarrow\left\{4 v^{4}+5 v^{2} w^{2}+w^{4}>4 v^{4}+4 v^{2} w^{2}+w^{4}\right\} \\
& \Leftrightarrow\left\{\left(v^{2}+w^{2}\right)\left(4 v^{2}+w^{2}\right)>\left(2 v^{2}+w^{2}\right)^{2}\right\} \\
& \Rightarrow\left\{\sqrt{\left(v^{2}+w^{2}\right)\left(4 v^{2}+w^{2}\right)^{>}} 2 v^{2}+w \quad 2\right\} \quad \text { [take square root] } \\
& \Leftrightarrow\left\{2 v^{2}+w^{2}-\sqrt{\left(v^{2}+w^{2}\right)\left(4 v^{2}+w^{2}\right)}<0 \quad\right\}  \tag{25}\\
& \Leftrightarrow\left\{w^{2}>w{ }^{2}+4\left[2 v^{2}+w^{2}-\sqrt{\left(v^{2}+w^{2}\right)\left(4 v^{2}+w^{2}\right)}\right]\right\} \\
& \Leftrightarrow\left\{w^{2}>\left(4 v^{2}+w{ }^{2}\right)-4 \sqrt{\left(v^{2}+w^{2}\right)\left(4 v^{2}+w^{2}\right)}+4\left(v^{2}+w{ }^{2}\right)\right\} \\
& \Rightarrow\left\{w>2 \sqrt{v^{2}+w^{2}}-\sqrt{4 v^{2}+w^{2}}\right\} \quad \text { [take square root] } \\
& \Leftrightarrow\left\{2 w+2 \sqrt{v^{2}+w^{2}}+\sqrt{4 v^{2}+w^{2}}>w+4 \sqrt{v^{2}+w^{2}}\right\},
\end{align*}
$$

which, with (23) and (24), yields the relation (18).
Having proved the special cases of our theorem, henceforth, we assume that $n>2, v>0$, and $w>0$.
(iv) We first prove, for this general case, that

$$
\begin{equation*}
L_{\mathrm{EU}}<L_{\mathrm{SS}} . \tag{26}
\end{equation*}
$$

We proceed much as before, beginning with the true result (25), remembering that $n>2$.

$$
\left.\begin{array}{rl}
\left\{2 v^{2}+w\right. & \left.2-\sqrt{\left(v^{2}+w^{2}\right)\left(4 v^{2}+w^{2}\right)}<0 \quad\right\} \\
& \Leftrightarrow\left\{2(n-1)(n-2)\left(2 v^{2}+w^{2}\right)-2(n-1)(n-2) \sqrt{\left(v^{2}+w^{2}\right)\left(4 v^{2}+w^{2}\right)}<0 \quad\right\} \\
& \Leftrightarrow\left\{(n-2)^{2}\left(v^{2}+w^{2}\right)-2(n-1)(n-2) \sqrt{\left(v^{2}+w^{2}\right)\left(4 v^{2}+w^{2}\right)}\right. \\
& \left.+(n-1)^{2}\left(4 v^{2}+w^{2}\right)<n n^{2} v^{2}+w^{2}\right\}
\end{array}\right\} \begin{aligned}
& \Leftrightarrow\left\{(n-1) \sqrt{4 v^{2}+w^{2}}-(n-2) \sqrt{v^{2}+w^{2}}<\sqrt{n^{2} v^{2}+w^{2}}\right\} \quad \text { [take square root] } \\
& \Leftrightarrow\left\{n w+2 \sqrt{v^{2}+w^{2}}+(n-1) \sqrt{4 v^{2}+w^{2}}<n w \quad+n \sqrt{v^{2}+w^{2}}+\sqrt{n^{2} v^{2}+w^{2}}\right\},
\end{aligned}
$$

which, with (7) and (9), proves the inequality (26).
(v) Finally, we prove that

$$
\begin{equation*}
L_{\mathrm{AM}}<L_{\mathrm{EU}} . \tag{27}
\end{equation*}
$$

Again, we begin with (25) :

$$
\begin{aligned}
\left\{2 v^{2}+w\right. & \left.2-\sqrt{\left(v^{2}+w^{2}\right)\left(4 v^{2}+w^{2}\right)<0}\right\} \\
\Leftrightarrow & \left\{4\left(v^{2}+w^{2}\right)-4 \sqrt{\left(v^{2}+w^{2}\right)\left(4 v^{2}+w^{2}\right)}+\left(4 v^{2}+w \quad 2\right)<w \quad 2\right\} \\
\Rightarrow & \left\{2 \sqrt{v^{2}+w^{2}}-\sqrt{4 v^{2}+w^{2}}<w\right\} \quad \text { [take square root] } \\
\Leftrightarrow & \left\{(n-1)\left[2 \sqrt{v^{2}+w^{2}}-\sqrt{4 v^{2}+w^{2}}\right]<(n-1) w\right\} \\
\Leftrightarrow & \left\{w+2 n \sqrt{v^{2}+w^{2}}<n w+2 \sqrt{v^{2}+w^{2}}+(n-1) \sqrt{4 v^{2}+w^{2}}\right\}, \\
& w+2 n \sqrt{v^{2}+w^{2}}<n w+2 \sqrt{v^{2}+w^{2}}+(n-1) \sqrt{4 v^{2}+w^{2}} ;
\end{aligned}
$$

which, with (4) and (7), proves the inequality (27), thus completi the inequality (19), and the proof of our theorem. 0

## THE LATTICE REPRESENTATION

Let us make a lattice of alternating parallel, equidistant : $A$ and $B$, as shown in Figure 5. Given anyLla@ingean represent
i t,
for our three standard examples, by a polygonal [piecewise straigh linel moving always downward across the new lattice, visiting the eyelet points only once each.


Figure 5
Lattice-representation of the three standard lacings

The first line segment in the order of lacing, iA $B$ unchanged;
the next, $\beta_{\beta_{1}} A_{\alpha_{1}}$, is replaced by its mirror-image in the $B$-original line;
the next, $A_{\alpha_{1}} B_{\beta_{2}}$, is moved downward by two lattice-intervals, parallel
to itself (ie., it is a twice-repeated mirror-image); and so or last segment, $A_{\alpha_{n}} B_{0}$, returns to the image of $B_{0}$ in-王hee displaced downward by $2 n$ intervals. Clearly, the total length of representation $\quad L$ wi 11
equal the original total length $L$ of the lacing $L$ itself.

That the American [AM] lacing is better than the European [EU] lacing is now immediately apparent, by a straightforwarc application of the triangle inequality (see Figure 6).


Figure 6
Comparison of AM and eU lacing

The two representations, $L_{A M}$ ahnd coincide $\operatorname{tn}$ severiral places. Where they differ, replicas of a tPiQngdecur, and it is clear th h t $P \quad R \quad<\quad P \quad Q \quad+\quad Q \quad R \quad$, so that (27) follows, without further algebra!

That themed lacing is better thansshmacing is a little harder to prove (see Figure 7).


Figure 7
Comparison of eU and ss lacing

First, we observe that both representationand $L_{s s}$ have in $L$ common just two diagonal segments, moving by one lattice interval in both directions (slopes $-w / v$ ) $n$ afrertical) segments, moving by one vertical lattice interval $w$ only. If we omit all of C 0 mmon
intervals,
$s h i f t i n g$ the separated lower segment upwards (and in the first two cases, sideways also), parallel to themselves, to rejoin the upper segmer and thus subtracting equal lengths from each representweion obtain reduced representations $\underset{E}{*}$ and $L_{S S}^{*}$. The result is shown below in Figure 8. Each representation now consists of a singly broken line (just two successive line-segments a zig and a zig).


## Figure 8 <br> Comparison of EU and ss lacing reduced representations

Now perform the reflection trick again, this time in the horizc coordinate direction, so that the leftward segment of each representation
is reflected about the vertical. The resulting representation : are denoted by ${\underset{E U}{I N}}^{* *}$ and ${\underset{S S}{S}}^{* *}$ (see Figure 9).


Figure 9
Comparison of EU and ss lacing reflected representations

We can now simply observe that ${ }_{E U}^{*}$ it is just a single straight segment $U V$, while ${ }_{S}^{*} L^{*}$. consists of two straight segments, $U W$ and
W V ,
s o
that,
a gain by the triangle inequality, (26) clearly holds.

## OPTIMIZATION

We adopt the lattice representation described above (see Figures 5-7), and apply the reflection trick to the part of the f r 0 m

B $n$
t o $B_{0}$. The form of the path corresponding to an a typical general lacis is illustrated in Figure 10. $\mathrm{Th}_{\mathrm{AM}} \mathrm{p}$ atohrespondIng to them lacing is also shown.


Figure 10
General lacing reflected representations

In this particular example, as before, $n=7$ and the lacing is

$$
\begin{array}{llllllllllllllll}
A_{0} & B_{2} & A_{7} & B_{4} & A_{6} & B_{1} & A_{1} & B_{3} & A_{3} & B_{6} & A_{5} & B_{5} & A_{4} & B_{7} & A_{2} & B_{0} . \tag{28}
\end{array}
$$

Its length is［compare（12）］

$$
\begin{align*}
L= & \sqrt{4 v^{2}+w^{2}}+\sqrt{25 v^{2}+w^{2}}+\sqrt{9 v^{2}+w^{2}}+\sqrt{4 v^{2}+w^{2}}+\sqrt{25 v^{2}+w^{2}}+w \\
& +\sqrt{4 v^{2}+w^{2}}+w+\sqrt{9 v^{2}+w^{2}}+\sqrt{v^{2}+w^{2}}+w+\sqrt{v^{2}+w^{2}} \\
& +\sqrt{9 v^{2}+w^{2}}+\sqrt{25 v^{2}+w^{2}}+\sqrt{4 v^{2}+w^{2}} \\
=3 w & +2 \sqrt{v^{2}+w^{2}}+4 \sqrt{4 v^{2}+w^{2}}+3 \sqrt{9 v^{2}+w^{2}}+3 \sqrt{25 v^{2}+w^{2}} . \tag{29}
\end{align*}
$$

In general，let the lacing have total length

$$
\begin{equation*}
L=\sum_{k=-n}^{n} N_{k} \sqrt{k^{2} v^{2}+w^{2}} \tag{30}
\end{equation*}
$$

where，clearly，

$$
\begin{equation*}
\sum_{k=-n}^{n} N_{k}=2 n+1 \tag{31}
\end{equation*}
$$

is the net total number of downward displacements（i．e．，the number of steps，since each step has a downward displacement by one lattice interval w），and

$$
\begin{equation*}
\sum_{k=-n}^{n} k N_{k}=2 n \tag{32}
\end{equation*}
$$

is the net total number of rightward displacements by one lattic interval v．For the AM lacing，it is clear that

$$
\begin{equation*}
N_{0}=1, \quad N_{1}=2 n, \quad \text { all other } N_{k}=0 . \tag{33}
\end{equation*}
$$

Theorem heorem Tham l⿴囗十ing has the shortest possible total length $L$ ，and it is the unique optimum lacing．

Proof．Let $L$ be the reflected rbpresentation of an arbitrary $1 \quad a \quad c \quad i \quad n \quad g$
and let $L$ be its total length．
（i）$\quad \mathrm{N}_{0} \neq 1$ ，let us remove any one corresponding（vertical）
step
from $L$ ，and let us remove the sole vertical step from $L_{A M}$ rejoini the separated pieces of the representations by paralle］ displacement，
as before; then the two new representations, $L$ am anstimal shard their
end points, and both lengths are just $w$ less than they were. No $L_{\text {AM }}$
is clearly minimal, being the straight line connecting these points. Therefore, for all $L$,

$$
\begin{equation*}
L_{\mathrm{AM}} \leq L \tag{34}
\end{equation*}
$$

(ii) Suppose now that $N_{0}=0$. This is illustrated in Figure 11.


Figure 11
Case of $N_{0}=0$ no vertical segment

It cannot be that $N_{k}>0$ only for positive valuessorofthen, by (31)
and (32), we would have that

$$
\begin{equation*}
\sum_{k=1}^{n} k N_{k}-\sum_{k=1}^{n} N_{k}=N_{2}+2 N_{3}+\ldots+(n-1) N_{n}=-1, \tag{35}
\end{equation*}
$$

which is impossible, sinceN ${ }_{k} a \not \# 10$. Therefore, that there is at least one step with a negatilfard) horizontal displacement, and thus there is a first leftward step, $S T$, in the downward ord It obviously can bot either the first or the last step of the representation. Hence, it preceded
by a rightward step, $R S$, forming an angle pointing to the right.

Now (see the enlarged detail of Figure 12)F, ahelt $G$ be the respective lattice points in which the vertical lines throu and $T$ meet the horizontal line through $S$. Then

$$
\begin{equation*}
|F R|=|G T|=w \tag{35}
\end{equation*}
$$

and there will be positive integers $p \neq 1$ and $q \neq 1$, such that

$$
\begin{equation*}
|F S|=p v \geq v \text { and }|G S|=q v \geq v \tag{36}
\end{equation*}
$$



Figure 12
Magnified detail of Figure 11

If we take an arbitrary phimt the horizontal line FGS, to the left of $S$, and if we let the vertical lineZ tdutoulg ix and $S T$ in $Y$, then

$$
\begin{align*}
|X Y| & =|Z X|+|Z Y|=\frac{|Z S|}{|F S|}|F R|+\frac{|Z S|}{|G S|}|G T| \\
& =|Z S|\left(\frac{1}{|F S|}+\frac{1}{|G S|}\right) w=|Z S|\left(\frac{1}{p}^{1} \frac{1}{\bar{q}}\right) \frac{w}{v} . \tag{37}
\end{align*}
$$

It follows that we can solve the equation

$$
\begin{gather*}
|X Y|=\mathbf{w}  \tag{38}\\
|Z S|=\frac{v}{\frac{1}{p^{+}} \bar{q}}=\left(\frac{p q}{p+q}\right) v . \tag{39}
\end{gather*}
$$

by

If we put

$$
\begin{equation*}
\alpha=\min \{p, q\} \quad \text { and } \quad \beta=\max \{p, q\} \tag{40}
\end{equation*}
$$

then we see that $|Z S|=\left(\frac{\alpha \beta}{\alpha+\beta}\right) v=\left(\frac{\alpha}{\frac{\alpha}{\beta}+1}\right) v \leq \alpha v$,
so that $Z$ is closer to $S$ than EitheG, and $X$ lies inside $R S$ and $Y$ lies inside $S T$.

Thus we can replace the polygonal segmenst of the representation by the poly耳onal segment RXYTBy the triangle inequality,

$$
\begin{equation*}
|X Y|<|X S|+|S Y| \tag{42}
\end{equation*}
$$

so that the modified representationsay, ishorter than. But $L$ $\mathrm{n} 0 \quad \mathrm{w} \quad L^{\perp} L$ has a vertical segment of length $w$; so, by the same argument as i c a s e ( i ) the inequality (34) applies.

NOTE: The representative polygonal $\quad$ IfineisL generally, not a representation of any lacing, since it does not, in general, lattice points; bhtis does not mattersince, at this stage of the argument,
we are only concerned with the length of the line.
We have now proved that, if $L_{M I N}$ is any lacing of minimal length,
then it and its (horizontally reflected) reprekentatibh have $L$ a total length equal to that of the AM lacing, i.e., by (4),

$$
\begin{equation*}
L_{\mathrm{MIN}}=L_{\mathrm{AM}}=w+2 n \sqrt{v^{2}+w^{2}} \tag{43}
\end{equation*}
$$

(iii) Finally, we provenfqeeness of the optimal lacing $L_{\mathrm{MIN}}{ }^{\circ}$.

The arguments presented in (i) and (ii) above show that any minima: lacing $L_{\text {min }}$ will satisfy (33); that is, its (horizontally refl representation $M_{M N}$ will haven 2 straight segments, moving $L$ diagonally down-and-to-the-right by one lattice interval, and one vertical segment. However, $t$ position
of this vertical segment in the chain does not matter to the tot length $L_{\text {MIN }}$ as is indicated in (43).

Nevertheless, $\operatorname{sinch}_{\text {min }}$ is not just any latticerpolygon, but the representation ofaaing, it must pass through the vertical lattice line corresponding to indjesst twice (corresponding to t h e $\quad$ e $y$ e let s $A_{n}$ and $B_{n}$ ), and this is the only lattice line muticdupilsicated by the reflection transformation, since tilte reflection-line. Therefore, since the representation moves monotonely right (i.e.
 the solitary vertical segment is constrained to be precisely in index-n position, asidn This completes the proof of Theorem 2.

0

