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ABSTRACT

The problem is to find the order of lacing a shoe, with two parallel

rows of equally-spaced lace-holes (eyelets), which requires the least

total length of lace.  This paper determines the total length required by

the three most popular styles of lacing (for any shoe parameters), and

optimizes

over all possible lacings.
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INTRODUCTION

In a number of discussions of how shoes should be laced, it became
apparent that no one seemed to have the definitive answer.  Shoes were laced
and re-laced, passions flared, and shoes were even thrown....  The author decided
that an appeal to mathematics was indicated.

This problem is a restriction of the Traveling Salesman Problem.

We are given a set of 2(n  + 1) points (the lace-holes or eyelets) arranged
in a bi-partite lattice, as shown in Figure 1 below.

A  0 A  1 A  2 A  n

B  1 B  2 B  3 B  n

A  3

B  0

w

v

Figure 1

The shoe...

The problem is to find the shortest path from A0to B0, passing through every

eyelet just once, in such a way that points of the subsets

A  =  {A0, A1, A2, . . . , An}    and    B = {B0, B1, B2, . . . , Bn} (1)

alternate in the path.
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Three standard lacing strategies are shown in Figures 2—4

below.

A  0 A  1 A  2 A  n

B  1 B  2 B  3 B  n

A  3

B  0

Figure 2
American, zig-zag, lacing.

Here, if n is odd, as in Figure 2, the lacing is

A0ÝB1ÝA 2ÝB3ÝA 4Ý …ÝAn–1ÝBnÝ

AnÝBn–1ÝAn–2ÝBn–1Ý …ÝA3ÝB2ÝA 1ÝB0; (2)

if n is even, the lacing is, similarly,

A0ÝB1ÝA 2ÝB3ÝA 4Ý …ÝA n–2ÝBn–1ÝAnÝ

BnÝAn–1ÝBn–2Ý …ÝA 3ÝB2ÝA 1ÝB0; (3)

and it is easily verified that, in either case, the total length of lace

used is

LAM  =  LAM(n, v, w)  =  w + 2n√v2ּ+wּ 2. (4)
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A  0 A  1 A  2 A  n

B  1 B  2 B  3 B  n

A  3

B  0

Figure 3
European, straight, lacing.

Here, when n is odd, as in Fig. 3, the lacing is

A0ÝB1ÝA 1ÝB3ÝA 3Ý …ÝA n–2ÝBnÝ

AnÝBn–1ÝAn–1ÝBn–3Ý …ÝB2ÝA 2ÝB0; (5)

when n is even, the lacing is, similarly,

A0ÝB1ÝA 1ÝB3ÝA 3Ý …

ÝAn–1ÝBnÝAnÝBn–2ÝAn–2ÝBn–4Ý …ÝB2ÝA 2ÝB0; (6)

and, with a little more thought, we see that, in both cases, the total

length

of lace is

LEU  =  LEU(n, v, w)  =  nw + 2√v2ּ+wּ 2 + (n – 1)√4v2ּ+wּ 2. (7)
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A  0 A  1 A  2 A  n

B  1 B  2 B  3 B  n

A  3

B  0

Figure 4
Shoe-shop, quick, lacing.

Here, the lacing is

A0ÝBnÝAnÝBn–1ÝAn–1Ý …ÝB3ÝA 3ÝB2ÝA 2Ý B1ÝA 1ÝB0 (8)

and we find that the total length is

LSS  =  LSS(n, v, w)  =  nw + n√v2ּ+wּ 2 + √n2v2ּ+wּ 2. (9)

We can generalize the situation as follows.  Let α and β denote
permutations of {1, 2, 3, . . . , n}:

 

α ּּ=ּּ{α1,αּ 2,ּ.ּ.ּ.ּ,αּ n},ּ

β ּּ=ּּ{β1,βּ 2,ּ.ּ.ּ.ּ,βּ n}.ּ
(10)

To them will correspond the lacing

A0ÝBβ1
ÝAα1

ÝBβ2
ÝAα2

ÝBβ3
Ý...ÝAαn–1

ÝBβn
ÝAαn

ÝB0, (11)

and this will have total length

L  =  √β1
2v2ּ+wּ 2 + √(α1ּ–βּ 1)2v2ּ+wּ 2 + √(β2ּ–αּ 1)2v2ּ+wּ 2

+ \R((α2 — β2)
2v2 + w2) + ... + \R((βn — αn—1)

2v2 + w2) + \R(αn
2v2

+ w2). (12)
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For the three special lacings shown above, the particular

permutations are:

 

αAM ּּ=ּּ{ּallּevenּnumbersּincreasing;ּthenּallּoddּnumbersּdecreasingּ},ּ

βAM ּּ=ּּ{ּallּoddּnumbersּincreasing;ּthenּallּevenּnumbersּdecreasing ּ};ּ
(13)

 

αEUּּ=ּּ{aּllּoddּnumbersּincreasing;ּthenּallּevenּnumbersּdecreasingּ},ּ

βEUּּ=ּּ{aּllּoddּnumbersּincreasing;ּthenּallּevenּnumbersּdecreasing ּ};ּ
(14)

 

αSSּּ=ּּ{aּllּnumbersּdecreasing}ּ,ּ

βSSּּ=ּּ{aּllּnumbersּdecreasingּ}.ּ
(15)

The simplicity of these permutations is indeed remarkable.
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THE THREE STANDARD LACINGS

THEOREM 1.    If v = 0 or w = 0, for all positive n,

LAM  =  LEU  =  LSS . (16)

If v ‡ 0 and w ‡ 0,

LAM(1, v, w)  =  LEU(1, v, w)  =  LSS(1, v, w); (17)

and, if v > 0 and w > 0,

LAM(2, v, w)  <  LEU(2, v, w)  =  LSS(2, v, w). (18)

Finally, if v > 0 and w > 0 and n > 2,

LAM  <  LEU  <  LSS . (19)

Proof. We use (4), (7), and (9), and successively prove (16)—(19).

(i)  First, by direct substitution, we see that, for v = 0 or w =

0, respectively,

LAM(n, 0, w)  =  LEU(n, 0, w)  =  LSS(n, 0, w)  =  (2n + 1)w (20)

and LAM(n, v, 0)  =  LEU(n, v, 0)  =  LSS(n, v, 0)  =  2nv, (21)

proving the equation (16).

(ii)  Again, for all non-negative v and w,

 LAM(1, v, w)  =  LEU(1, v, w)  =  LSS(1, v, w)  =  w + 2√v2ּ+wּ 2, (22)

proving the equation (17).

(iii)  Similarly, for all non-negative v and w,

 LAM(2, v, w)  =  w + 4√v2ּ+wּ 2 (23)

and LEU(2, v, w)  =  LSS(2, v, w)  =  2w + 2√v2ּ+wּ 2 + √4v2ּ+wּ 2. (24)

Now, if v > 0 and w > 0, we get the following succession of true inequalities.
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{ v2w2  >  0 } ⇔   { (4v4 + 5v2w2 + w4) – (4v4 + 4v2w2 + w4)  >  0 }

⇔   { 4v4 + 5v2w2 + w4  >  4v4 + 4v2w2 + w4 }

⇔   { (v2 + w2)(4v2 + w2)  >  (2v2 + w2)2 }

⇒   { }ּ√(v2ּ+wּ 2)(4v2ּ+wּ 2) ּּ>ּ2ּv2ּ+wּ 2ּ     [take square root]

⇔   { }ּ2v2ּ+wּ 2ּ–√ּ(v2ּ+wּ 2)(4v2ּ+wּ 2)ּּ<ּּ0ּ (25)

⇔   
 



 



ּw 2ּּ>ּwּ 2ּ+ּ4[ּ ]2v2ּ+wּ 2ּ–√ּ(v2ּ+wּ 2)(4v2ּ+wּ 2) ּ

⇔   { }ּw 2ּּ>ּּ(4v2ּ+wּ 2)ּ–ּ4 √(v2ּ+wּ 2)(4v2ּ+wּ 2)ּ+ּ4(v2ּ+wּ 2)ּ

⇒   { }ּw ּּ>ּּ2√v2ּ+wּ 2ּ–√ּ4v2ּ+wּ 2ּ     [take square root]

⇔   { }ּ2w ּ+ּ2√v2ּ+wּ 2ּ+√ּ4v2ּ+wּ 2ּּ>ּwּ ּ+ּ4√v2ּ+wּ 2ּ ,

which, with (23) and (24), yields the relation (18).

Having proved the special cases of our theorem, henceforth, we

assume that n > 2, v > 0, and w > 0.

(iv)  We first prove, for this general case, that

LEU < LSS . (26)

We proceed much as before, beginning with the true result (25),

remembering that n > 2.

{ }ּ2v2ּ+wּ 2ּ–√ּ(v2ּ+wּ 2)(4v2ּ+wּ 2)ּּ<ּּ0ּ

⇔   { }ּ2( n ּ–ּ1)( nּ–ּ2)(ּ2 v2ּ+wּ 2)ּ–ּ2( n ּ–ּ1)( nּ–ּ2) √(v2ּ+wּ 2)(4v2ּ+wּ 2)ּּ<ּּ0ּ

⇔   { ּ( n ּ–ּ2) 2(ּ v2ּ+wּ 2)ּ–ּ2( n ּ–ּ1)( nּ–ּ2) √(v2ּ+wּ 2)(4v2ּ+wּ 2)ּ

+ }ּ
ּ
ּ (n ּ–ּ1) 2(ּ4 v2ּ+wּ 2)ּּ<ּּn 2v2ּ+wּ 2ּ

⇒   { }ּ( n ּ–ּ1) √ּ4v2ּ+wּ 2ּ–ּ( n ּ–ּ2) √ּv2ּ+wּ 2ּּ<ּ√ּn2v2ּ+wּ 2ּ       [take square root]

⇔   { }ּnwּ+ּ2 √v2ּ+wּ 2ּ+ּ(n ּ–ּ1) √4v2ּ+wּ 2ּּ<ּnּw ּ+nּ√v2ּ+wּ 2ּ+√ּn2v2ּ+wּ 2ּ ,
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which, with (7) and (9), proves the inequality (26).
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(v)  Finally, we prove that

LAM < LEU . (27)

Again, we begin with (25):

{ }ּ2v2ּ+wּ 2ּ–√ּ(v2ּ+wּ 2)(4v2ּ+wּ 2)ּּ<ּּ0ּ

⇔   { }ּ4( v2ּ+wּ 2)ּ–ּ4 √(v2ּ+wּ 2)(4v2ּ+wּ 2)ּ+ּ(4v2ּ+wּ 2)ּּ<ּּw 2ּ

⇒   { }ּ2√v2ּ+wּ 2ּ–√ּ4v2ּ+wּ 2ּּ<ּwּּ       [take square root]

⇔   
 



 



ּ( n ּ–ּ1)ּ [ ]2√v2ּ+wּ 2ּ–√ּ4v2ּ+wּ 2 ּּ<ּּ(n ּ–ּ1) w ּ

⇔   { }ּw ּ+ּ2n √v2ּ+wּ 2ּּ<ּnּw ּ+ּ2√v2ּ+wּ 2ּ+ּ(n ּ–ּ1) √4v2ּ+wּ 2ּ ,

w + 2n√v2ּ+wּ 2 <  nw + 2√v2ּ+wּ 2 + (n – 1)√4v2ּ+wּ 2;

which, with (4) and (7), proves the inequality (27), thus completing

the inequality (19), and the proof of our theorem. o
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THE LATTICE REPRESENTATION

Let us make a lattice of alternating parallel, equidistant sets

A and B, as shown in Figure 5.  Given any lacing L, we can represent
i t ,  a s  i s  s h o w n

for our three standard examples, by a polygonal [piecewise straight]

line L moving always downward across the new lattice, visiting the
eyelet points only once each.

A

A

v

w

Index of eyelet

0 1 2 3 n

A

B

A

A

A

A

A

B

B

B

B

B

B

Boriginal set

original set

ÒAmericanÓ lacing

ÒEuropeanÓ lacing

ÒShoe-shopÓ lacing

Figure 5
Lattice-representation of the three standard lacings
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  The first line segment in the order of lacing, A 0ÝBβ 1
, is

unchanged;

the next, Bβ1
ÝAα1

, is replaced by its mirror-image in the original B-

line;

the next, Aα1
ÝBβ2

, is moved downward by two lattice-intervals,

parallel

to itself (i.e., it is a twice-repeated mirror-image); and so on; the

last segment, Aαn
ÝB 0, returns to the image of B 0 in the B-line

displaced downward by 2n intervals.  Clearly, the total length of the

r e p r e s e n t a t i o n  L  w i l l  e q u a l

the original total length L of the lacing L itself.

That the ÒAmericanÓ [AM] lacing is better than the ÒEuropeanÓ

[EU] lacing is now immediately apparent, by a straightforward

application

of the triangle inequality (see Figure 6).

ÒAmericanÓ lacing

ÒEuropeanÓ lacing

P

Q R

Figure 6
Comparison of AM and EU lacing
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The two representations, LAM and LEU coincide in several places.

Where they differ, replicas of a triangle PQR occur, and it is clear

t h a t  P R  < P Q  + Q R ,

so that (27) follows, without further algebra!
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That the EU lacing is better than the SS lacing is a little harder

to prove (see Figure 7).

= ÒEuropeanÓ lacing

= ÒShoe-shopÓ lacing

L EU

SSL

Figure 7
Comparison of EU and SS lacing

First, we observe that both representations LEU and LSS have in

common just two diagonal segments, moving by one lattice interval

in both directions (slopes –w/v), and n (vertical) segments, moving

by one vertical lattice interval w  only.  If we omit all of these

c o m m o n  i n t e r v a l s ,  s h i f t i n g

the separated lower segment upwards (and in the first two cases,

sideways also), parallel to themselves, to rejoin the upper segment,

and thus subtracting equal lengths from each representation, we

obtain reduced representations, L
*
EU
 and L

*
SS
.  The result is shown

below in Figure 8.  Each representation now consists of a singly-

broken line (just two successive line-segmentsÑa zig and a zag).
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L*EU

SSL*

Figure 8
Comparison of EU and SS lacing—reduced representations

Now perform the Òreflection trickÓ again, this time in the horizontal

coordinate direction, so that the leftward segment of each

representation

is reflected about the vertical.  The resulting representation lines

are denoted by L
**

EU
 and L

**
SS

 (see Figure 9).

L**EU

SSL**

U

V

W

Figure 9
Comparison of EU and SS lacing—reflected representations

We can now simply observe that L
* *
EU

 is just a single straight

segment UV, while L
* *
SS

 consists of two straight segments, UW and
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W V ,  s o  t h a t ,  a g a i n

by the triangle inequality, (26) clearly holds.
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OPTIMIZATION

We adopt the lattice representation described above (see

Figures 5—7), and apply the Òreflection trickÓ to the part of the path

f r o m  B n  t o  B0.

The form of the path corresponding to an a typical general lacing

is illustrated in Figure 10.  The path LAM corresponding to the AM

lacing

is also shown.

01 2 3n0 123

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

L

L AM

Figure 10
General lacing—reflected representations

In this particular example, as before, n = 7 and the lacing is
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A0ÝB2ÝA 7ÝB4ÝA 6ÝB1ÝA 1ÝB3ÝA 3ÝB6ÝA 5ÝB5ÝA 4ÝB7ÝA2ÝB0. (28)
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Its length is [compare (12)]

L =  √4v2ּ+wּ 2 + √25v2ּ+wּ 2 + √9v2ּ+wּ 2 + √4v2ּ+wּ 2 + √25v2ּ+wּ 2 + w

+ √4v2ּ+wּ 2 + w + √9v2ּ+wּ 2 + √v2ּ+wּ 2 + w + √v2ּ+wּ 2

+ √9v2ּ+wּ 2 + √25v2ּ+wּ 2 + √4v2ּ+wּ 2

=  3w + 2√v2ּ+wּ 2 + 4√4v2ּ+wּ 2 + 3√9v2ּ+wּ 2 + 3√25v2ּ+wּ 2. (29)

In general, let the lacing have total length

L  =  ∑
k=–n

n

ּּNkּּ √k2v2ּ+wּ 2, (30)

where, clearly, ∑
k=–n

n

ּּNk
ּ
ּ
  =  2n + 1 (31)

is the net total number of downward displacements (i.e., the number

of steps, since each step has a downward displacement by one

lattice interval w), and

∑
k=–n

n

ּּkN k
ּ
ּ
  =  2n (32)

is the net total number of rightward displacements by one lattice

interval v.  For the AM lacing, it is clear that

N0  =  1,    N1  =  2n,    all other Nk  =  0. (33)

THEOREM 2.    The AM lacing has the shortest possible total

length L, and it is the unique optimum lacing.

Proof. Let L be the reflected representation of an arbitrary

l a c i n g  L,
and let L be its total length.

(i)  If N0 ‡ 1, let us remove any one corresponding (vertical)

step

from L, and let us remove the sole vertical step from LAM, rejoining

the separated pieces of the representations by parallel

displacement,
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as before; then the two new representations, L  and L
 

AM
 still share

their

end points, and both lengths are just w less than they were.  Now

L
 
AM

is clearly minimal, being the straight line connecting these end

points.  Therefore, for all L,

LAM  ≤  L. (34)

(ii)  Suppose now that N0 = 0.  This is illustrated in Figure 11.

01 2 3n0 123

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

L

L AM

R

S

T

Figure 11
Case of N0 = 0—no vertical segment

It cannot be that Nk > 0 only for positive values of k; for then, by

(31)

and (32), we would have that
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∑
k=1

n

ּּkN k
ּ
ּ
  –∑

k=1

n

ּּNk
ּ
ּ
  =  N2 + 2N3 + . . . + (n – 1)Nn  =  –1, (35)

which is impossible, since all Nk ‡ 0.  Therefore, that there is at

least one step with a negative (leftward) horizontal displacement,

and thus there is a first leftward step, ST, in the downward order.

I t  o b v i o u s l y  c a n n o t  b e  e i t h e r

the first or the last step of the representation.  Hence, it is

preceded

by a rightward step, RS, forming an angle pointing to the right.
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Now (see the enlarged detail of Figure 12), let F and G

be the respective lattice points in which the vertical lines through 

and T  meet the horizontal line through S.  Then

FR  =  GT  =  w (35)

and there will be positive integers p ‡ 1 and q ‡ 1, such that

FS  =  pv  ≥  v    and    GS  =  qv  ≥  v . (36)
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Figure 12
Magnified detail of Figure 11

If we take an arbitrary point Z on the horizontal line FGS, to the left

of S, and if we let the vertical line through Z cut RS in X and ST in Y,

then
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It follows that we can solve the equation

XY  =  w (38)

by ZS  =  
v

1
pּּ+ּּ

1
q

  =   


 
pq

pּ+qּ  v . (39)

If we put α  =  min {p, q}    and    β  =  max {p, q}, (40)

then we see that ZS  =  
 

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ּ  v  =  
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ּ+ּ1

ּ  v   ≤  αv, (41)

so that Z is closer to S than either F or G, and X lies inside RS and Y

lies inside ST.

Thus we can replace the polygonal segment RST of the

representation L by the polygonal segment RXYT.  By the triangle

inequality,

XY < XS + SY; (42)

so that the modified representation, L⊥ say, is shorter than L.  But
n o w  L⊥

has a vertical  segment of length w; so, by the same argument as in

c a s e  ( i ) ,

the inequality (34) applies.

NOTE:  The representative polygonal line L⊥ is, generally,

not a representation of any lacing, since it does not, in general, join

lattice points; but this does not matter, since, at this stage of the

argument,

we are only concerned with the length of the line.

We have now proved that, if L MIN is any lacing of minimal

length,

then it and its (horizontally reflected) representation LMIN will have

a total length equal to that of the AM lacing, i.e., by (4),

LMIN = LAM  =  w + 2n√v2ּ+wּ 2. (43)

(iii)  Finally, we prove the uniqueness of the optimal lacing

LMIN˚.
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The arguments presented in (i) and (ii) above show that any minimal

lacing L MIN will satisfy (33); that is, its (horizontally reflected)

representation L M I N  will have 2n straight segments, moving

d i a g o n a l l y  d o w n - a n d - t o - t h e - r i g h t

by one lattice interval, and one vertical segment.  However, the

position

of this vertical segment in the chain does not matter to the total

length LMIN, as is indicated in (43).
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Nevertheless, since L MIN is not just any lattice-polygon,

but the representation of a lacing, it must pass through the vertical

lattice line corresponding to index n just twice (corresponding to

t h e  e y e l e t s  An
and Bn), and this is the only lattice line which is not duplicated

by the reflection transformation, since it is the reflection-line.

Therefore, since the representation moves monotonely right (i.e.,

n e v e r  t o  t h e  l e f t ) ,

the solitary vertical segment is constrained to be precisely in the

index-n position, as in LAM˚.  This completes the proof of Theorem 2.
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