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ABSTRACT

The problem is to find the order of lacing a shoe, with two parallel
rows of equally-spaced lace-holes (eyelets), which requires the least
total length of lace. This paper determines the total length required by
the three most popular styles of lacing (for any shoe parameters), and
optimizes
over all possible lacings.
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INTRODUCTION

In a number of discussions of how shoes should be laced, it became
apparent that no one seemed to have the definitive answer. Shoes were laced
and re-laced, passions flared, and shoes were even thrown.... The author decided

that an appeal to mathematics was indicated.

This problem is a restriction of the Traveling Salesman Problem.
We are given a set of 2(n + 1) points (the lace-holes oreyelets) arranged
in a bi-partite lattice, as shown in Figure 1 below.

Figure 1
The shoe...

The problem is to find the shortest path from Ayto B, passing through every
eyelet just once, in such a way that points of the subsets

A = {Ao, Al’ Az, e ,An} and B = {Bo, Bl, Bz, e ooy Bn} (1)

alternate in the path.



— JOHN H. HALTON — THE SHOELACE PROBLEM —

Three standard 1lacing strategies are shown in Figures 2—4
below.

Figure 2

American, zig-zag, lacing.

Here, if n is odd, as in Figure 2, the lacing is
Ay By Ay By A, .. A, B,
A, B,y A, 5 B, 1 .. A By, Aj By (2)
if n is even, the lacing is, similarly,
Ay By Ay By Ay, ... A, , B, | A,
B, A, 1 B,, .. Ay B, Ay By (3)

and it is easily verified that, in either case, the total 1length

used 1is

Lay = Lay(n, 0, w) = w + ZT[V?)Z_:w 2, 4)
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AU

Figure 3
European, straight, lacing.

Here, when n is odd, as in Fig. 3, the lacing is
AO B1 Al B3 A3 cee An_z BT’l
when n is even, the lacing is, similarly,
Ayq By Ay By Ayp By oo By Ay By (6)

and, with a 1little more thought, we see that, in both cases, the t
length
of lace is

Lyy = Lgy(n, v, w) = nw + 2w 2+ (n - DV do+w 2. (7)
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/ I

Figure 4
Shoe-shop, quick, lacing.

Here, the lacing is
AO Bn An Bn_l An—l e B3 A3 B2 AZ Bl Al BO (8)

and we find that the total length is

Leg = Leg(n, v, w) = nw + mf 02w 2 +nZo2tw 2. 9)

We can generalize the situation as follows. andiefidenhote
permutations of {1, 2, 3, . . . , n}:

a={a,a ,,..,Q n},a

0 (10)
ﬁ:{B]/B 2/"'/B 1’1}' E
To them will correspond the lacing
Ay Bg Aq Bp Ay Bg - Ay Bg Ay By (11)

and this will have total length

+ \R((g — B)2v? + w?) + .. \R((B, — £,)2V% + w?) + \R(Fv?
+ W) . (12)
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For the three special 1lacings shown above, the particula

permutations are:

a sy =tallevennumbersincreasing;thenalloddnumbersdecreasing},
(13)

Banv=talloddnumbersincreasing;thenallevennumbersdecreasing};

agy={alloddnumbersincreasing;thenallevennumbersdecreasing},
(14)

NN min[mmin

Bpy=talloddnumbersincreasing;thenallevennumbersdecreasing};

agg={allnumbersdecreasing}, H
O (15)

Bsg=tallnumbersdecreasing}. H

The simplicity of these permutations is indeed remarkable.
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THE THREE STANDARD LACINGS
THEOREM 1. If v=0or w=0, for all positive n,
Lam = Lpy = Less- (16)
If v+ 0 and w % 0,
Loy, 0, w) = Lgy(1,0,w) = Leg(1,0, w); (17)

and, if v > 0 and w > 0,

Lop(2, 0, w) < Lgy(2,0,w) = Lgg(2, 0, w). (18)
Finally, ifv>0and w>0andn> 2,
Ly < Lgy < Lgg- (19)
Proof. We use (4), (7), and (9), and successively prove (16)—(19).

(i) First, by direct substitution, we see vtka®, ofow =
0, respectively,

Loy, 0, w) = Lgy(, 0, w) = Lgg(n, 0, w) = (2n + Nw (20)
and Lyy(n,0,0) = Lyy(n,v,0) = Lgg(n, v,0) = 2no, (21)
proving the equation (16).
(ii) Again, for all non-negative v and w,
Loy, 0,w) = Lgy(1,v,w) = Leg(1,0,w) = w + 20w 2, (22)
proving the equation (17).
(iii) Similarly, for all non-negative v and w,

L2 0, w) = w+&/o2w 2 (23)

and Lgy(2,0,w) = Leg(2,0,w) = 2w + 2 oZ+w 2 + 4w 2. (24)

Now, if v > 0 and w > 0, we get the following succession of true inequalities.



— JOHN H. HALTON — THE SHOELACE PROBLEM —

(2?2 > 0} = {(4v*+50%u? + w?) — (4o + 402w? + w?) > 0)
= {40* + 50202 + wt > 4v* + 40%w? + wh)

(02 + W?) (402 + w?) > (202 + w?)? )

2024w 2 (04w 2)(@o+w 2)<0 } (25)

o {w 2>4P+w )4 V(@Prw DA +w 2)+40+w 2)}

O {w >2 V24w 2—'\7_ 4v?+w 2 } [take square root]

- {Zw w2V 02w 2+ 40w w  +4\ v2rw 2 },

which, with (23) and (24), yields the relation (18).

Having proved the special cases of our theorem, henceforth, we
assume that n > 2, v > 0, and w > 0.

(iv) We first prove, for this general case, that
LEU<LSS' (26)

We proceed much as before, beginning with the true result (25),
remembering that n > 2.
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which, with (7) and (9), proves the inequality (26).
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(v) Finally, we prove that
L <Lgy-
Again, we begin with (25):

i {2'V_Uz_+_w 2—'\7_71772:-5) 2<w } [take square root]
n| —_—— —_——— O
= gn—l) [2\/?}2+w 2—\7_ 4v%+w 2]<(n -1) wg
Lo van Voo 2emo +2v 750 24(n —1) Vadam 2 |,

w+2mJo*+w 2 < nw + 2702w 2+ (n- 1)V 4w 2

which, with (4) and (7), proves the inequality (27),
the inequality (19), and the proof of our theorem. fo)

(27)

thus

completi
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THE LATTICE REPRESENTATION

Let us make a lattice of alternating parallel, equidistant
A and B, as shown in Figure 5. Given anyL]lae&ngcan represent
it , a s is s h own
for our three standard examples, by a polygonal [piecewise straigh
lineL moving alwags downward across the new lattice, wvisiting the
eyelet points only once each.

original sex ___7FC)\\\\rA i
original seR il ‘ A)
Americ 4ac1ng
a 2;:::£é=§~{ / O
: =N &
A /;N ;;;::3 ﬁ)
B )
A ] —
s Eurppean |lacing O gi
A Shoe-shop| lacing () "¢f”\
B O C
A (? Zi 2; I
B (
A
B
A
B

Index of eyelet

Figure 5
Lattice-representation of the three standard lacings



— JOHN H. HALTON — THE SHOELACE PROBLEM —

The first 1line segment in the order of lac%ﬂg, ia, B

unchanged;
the next,Bﬁ1 Aa1’ is replaced by its mirror-image in theB-original

line;
the next,Aa1 Bﬁz’ is moved downward by two lattice-intervals,

parallel
to itself (i.e., it is a twice-repeated mirror-image); and so or
last segment,A, B,, returns to the image of B, iBA-thee

n

displaced downward by 2n intervals. Clearly, the total length of
representation L will equal

the original total length L of the lacing L itself.

That the American [AM] lacing is better than the European
[EU] lacing is now immediately apparent, by a straightforwarc
application
of the triangle inequality (see Figure 6).

American lacincg

\
European |lacing z

Ve
C
J
C
Figure 6

Comparison of aM and EU lacing

— 12—
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The two representations, LAM d%% coincide In sevekal places.

Where they differ, replicas of a tPi¥hgdecur, and it is clear
that P R < P 0 + Q R /
so that (27) follows, without further algebra!
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That theEu lacing is better thansthéacing is a little harder
to prove (see Figure 7).

|
&

o
Oy

x]
oo

\J\
\?
L, = Eupropean lacing O J\\f
: O :i

L, = Shoe-shop lacing ~ f/

X S

0O

O —0

Figure 7
Comparison of EU and ss lacing

First, we observe that both representafjgnand L, have in L

common Jjust two diagonal segments, moving by one lattice interval
in both directions (slopes -w/v)n apiertical) segments, moving
by one wvertical 1lattice interval w only. If we omit all of
common intervals, shifting
the separated lower segment upwards (and in the first two cases,
sideways also), parallel to themselves, to rejoin the upper segmer
and thus subtracting equal lengths from each representw¢ion

* *
obtain reduced representationEU, ahd LSS. The result is shown

below in Figure 8. Each representation now consists of a singl
broken line (just two successive line-segments a zig and a zag).

— 14—
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*
I'EU

— \ ”

Ss

—o— -
=

Figure 8
Comparison of EU and ss lacing reduced representations

Now perform the reflection trick again, this time in the horizc

coordinate direction, so that the 1leftward segment of each
representation

is reflected about the vertical. The resulting representation
*

* % *
are denoted by E‘% and J':s's (see Figure 9).

"ol |y

/
)fL
.

d
/

* %
I'EU

Figure 9
Comparison of EU and ss lacing reflected representations

* *
We can now simply observe thai'i:U L is just a single straight
* *

segment UV, whilesgy consists of two straight segments, UW and

— 15—
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74 \4 , s o that, again
by the triangle inequality, (26) clearly holds.

— 16—
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OPTIMIZATION

We adopt the lattice representation described above (see
Figures 5-7), and apply the reflection trick to the part of the

from B n t o By.

The form of the path corresponding to an a typical general lacii
is illustrated in Figure 10. The, ,paxirresponding to thm

lacing

is also shown.

n 3 2 1 0

A
B

T —
2 =0
s <
R ~o

L
B
i AN
N N\
. x
™~ \ L,

j \
] AN
N - \m\
B k\\
. —
5 |

Figure 10
General lacing reflected representations

In this particular example, as before, n = 7 and the lacing is
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Ay By A, B, Ag B A By Ay B, As B A, B, &, By  (28)

— 18—
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Its length is [compare (12)]

L = Varrsw 2+ V2502w 2+ V90w 2 +\aoktw 2 + V2502w 2 + w

+ V42w 2+ w+ V9oktw 2+ Vor+w 2 +w + o2 Hw 2
VS 24 Va4 ViR 2

3w + 2V 24w 2 + 44vlrw 2 + 3y 902w 2+ 3\/2502+w 2. (29)

In general, let the lacing have total length

n
L= >N, Vi 2, (30)
k=—n
n
where, clearly, ZN r = 2n+1 (31)
k=—n
is the net total number of downward displacements (i.e., the numbe:

of steps, since each step has a downward displacement by one
lattice interval w), and

ZkN L = 2n (32)

is the net total number of rightward displacements by one lattic
interval v. For the aM lacing, it is clear that

Ny =1, N; = 2n, allother N = 0. (33)

THEOREM HRQRENM TheM 138cing has the shortest possible total
length L, and it is the unique optimum lacing.

Proof. Let L be the reflected répresentation of an arbitrary
1 a c i n g L,
and let L be its total length.

(1) N% ¥ 1, let us remove any one corresponding (vertical)
step
from L, and let us remove the sole vertical step from L,,, rejoini

the separated pieces of the representations by parallel
displacement,

— 19—
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as before; then the two new representations, L AMansltJ‘L]Il shard,

their
end points, and both lengths are just w less than they were. No

L
aM

is clearly minimal, being the straight 1line connecting these
points. Therefore, for all L,

Lyy < L. (34)

(ii) Suppose now that N, = 0. This is illustrated in Figure 11.

n 3 2 1 0
: =
: if :
: BN
1
A ":L-__“_. KX»/ L
B ___:=" N AM
A | <
, ——e &
. N
a N
s |

Figure 11
Case of N, = 0 no vertical segment

It cannot be that N, > 0 only for positive v&lueorofhen, by
(31)
and (32), we would have that

— 20—
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n

n
Zka— N, = N,+2Nj+...+(n-1N, = -1, (35)

which is impossible, sinceN,a}¥l 0. Therefore, that there is at

least one step with a negatieftward) horizontal displacement,
and thus there is a first leftward step, ST, in the downward ord

It obviously c anan ot be either
the first or the last step of the representation. Hence, it
preceded

by a rightward step, RS, forming an angle pointing to the right.

— 21—
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Now (see the enlarged detail of Figure 12)F, ahdt G
be the respective lattice points in which the wvertical lines throu
and T meet the horizontal line through S. Then

OFRO = OGTO = w (35)
and there will be positive integers p ¥+ 1 and g ¥+ 1, such that

OFSO =pv 2v and OGSO =gv 2 0. (36)

L

L, . _‘:/ °

Figure 12
Magnified detail of Figure 11

If we take an arbitrary pgbiort the horizontal line FGS, to the left

of S, and if we let the vertical lineZ tdqirtouRH iXi and ST in Y,
then

(zs0 zs0
(XY = 0ZX0+ [ZY0 = OFRO+ —>— 0GTO
0 0GSO
- ozsod DZSDE]r 37
Horsot oeso ﬁw Dv (37)
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It follows that we can solve the equation

XY = w (38)
v
by Zs0= ;= %fj] 3 (39)
L
P 4
If we put a = min{p,q} and f = max/{p,q}, (40)
then we see that [ZS0 = %aﬁﬁv _Ua [L < av, 41)
a+p [b []

s O
so that Z is closer to S than EBibhef, and X lies inside RS and Y

lies inside ST.

Thus we can replace the polygonal segmé®®T of the
representationl by the polyhonal segment RXYTBy the triangle

inequality,

XY < OXSO+ OSYH, (42)
so that the modified representatﬂ%nsaj, ishorter thad. But L
n o w - L
has a vertical segment of length w; so, by the same argument as i
c a s e ( i ) /

the inequality (34) applies.

NOTE: The representative polygonal ﬂgJuisL generally,
not a representation of any lacing, since it does not, in general,
lattice points; bhis does not mattersince, at this stage of the
argument,
we are only concerned with the length of the line.

We have now proved that, if L, is any 1lacing of minimal
length,
then it and its (horizontally reflected) repreBgntawibh have L

a total length equal to that of the aM lacing, i.e., by (4),

N

Lyun = Layy = @ + 2102w 2, (43)

(iid) Finally, we provaniy§eeness of the optimal lacing

MIN® *

— 23—
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The arguments presented in (i) and (ii) above show that any minima.

lacing LMIN will satisfy (33); that is, its (horizontally refl
representationL,,,, will have n2 straight segments, moving L
diagonally down-and-to-the-right

by one 1lattice interval, and one vertical segment. However, t

position
of this vertical segment in the chain does not matter to the tot
length L, ., as is indicated in (43).

24
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Nevertheless, sinck,;, is not Jjust any latticedrpolygon,
but the representation ofaaing, it must pass through the vertical
lattice 1line corresponding to nndepst twice (corresponding to

t h e e y el e t s A,

and B ), and this is the only lattice line ndticHupilsicated

by the reflection transformation, sinece the reflection-line.
Therefore, since the representation moves monotonely right (i.e.
never t o t he left),
the solitary vertical segment is constrained to be precisely in
index—-n position, ad,jn This completes the proof of Theorem 2.

o

— 25



