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ABSTRACT

Given a linear system

Ax  =  b,

where x  is an m -vector, direct numerical
methods , such as Gaussian elimination,
take time O(m3 ) to find x.

Iterative numerical methods, such as
the Gauss-Seidel method or SOR, reduce
the system to the form

x  =  a + Hx,

whence x  = ∑r=0
∞ ּHr a;

and then apply the iterations

x0   =  a, xs+1  =  a + Hxs,

until sufficient accuracy is achieved;
this takes time O (m 2 ) per iteration.
They generate the truncated sums

xs   = ∑r=0
s ּHr a.

The usual plain Monte Carlo
approach uses independent “random
walks,” to give an approximation
to the truncated sum xs, taking time O(m)
per random step.

Unfortunately, millions of random
steps are typically needed to achieve
reasonable accuracy (say, 1% r.m.s. error).
Nevertheless, this is what has had to be
done, if m  is itself of the order
of a million or more.

The alternative presented here,
is to apply a sequential Monte Carlo
method, in which the sampling scheme
is iteratively improved.  Simply put, if

x  =  y + z,

where y  is a current estimate of x , then
its correction, z, satisfies

z  =  d + Hz,

where d  =  a + Hy – y.

At each stage, one uses plain Monte Carlo
to estimate z, and so, the new estimate y.
If the sequential computation of d is itself
approximated, numerically or stochasti-
cally, then the expected time for this
process to reach a given accuracy is again
O (m ) per random step; but the number
of steps is dramatically reduced
[improvement factors of about 5,000, 26,000,
and 700 have been obtained in preliminary
tests].
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A.   THE MONTE CARLO METHOD

The Monte Carlo method, which uses statistical sampling
and estimation techniques, applied to synthetically constructed random
populations with appropriate parameters, to evaluate the solutions
to mathematical problems (whether they have a probabilistic background
or not), is very ancient in its origins; but its systematic use dates back
essentially to the 1940s.1   The author’s survey paper2  gives definitions,
explanations, history, and references.  The method is used as a last resort
for solving many very large and computationally intractable problems,
in such areas as the design of nuclear reactors, radiation shielding, nuclear
fission and fusion bombs; studies of percolation and diffusion; quantum
chemistry of atoms, molecules, polymer chains, and ferromagnets; complex
illumination, reflectance, and shadowing problems in high-quality computer
graphics; the design of VLSI chips and PC boards (routing and placement
problems); economic models, cell population and epidemiological studies;
and a variety of problems in optimization, operations research, and systems
analysis.

The underlying mathematical concept is simple.  We consider
the problem of numerically evaluating a finite Lebesgue-Stieltjes integral,

θ  =  ∫
S

ּ ּf(s)dω(s), (A1)

where f is an integrable function in a measure-space (S, S, ω).  If we can derive
a random variable (r.v.) g  in a probability space (M , M , µ ), such that
the expected value of g is

E [ g ]  =  ∫
M

ּּg(t)dµ(t)  =  θ, (A2)

also, then repeated independent sampling of τ1, τ2, . . . , τw from M  yields

independent values g(τu) of the “unbiased primary estimator” g  of θ ,
and hence “secondary estimators”

1 See, e.g., BU S L E N K O  et al. (1), ERMAKOV (10), HAMMERSLEY  and HA N D S C O M B  (47) , KA L O S

and WHITLOCK (50), KLEIJNEN, (51) and (52), RUBINSTEIN (65), SOBOL’ (66), SPANIER and GELBARD

(67), and YAKOWITZ (78)—such numbers refer to the Bibliography.
2 HALTON (29).
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Gw(τ1, τ2, . . . , τw)  =  
1
w  ∑

u=1

w

ּgּ(τu); (A3)

for which

E [ Gw ]  =  E [ g ]  =  θ    and    Var [ Gw ]  =  
1
w  Var [ g ]  =  

σּ2

w   . (A4)

Furthermore, the Kolmogorov Strong Law of Large Numbers, indicates that3

Gw  →  θ   
 



 

ּ(q.m.)ּ

(ּp.)ּ

(ּa.s.)ּ
  as  w  →  ∞. (A5)

More generally,4  if [K w ]∞
w =1 is any sequence of random variables

and we are given that the r.v. Kw converge stochastically, in some way, to θ,

then we call the sequence [Kw]∞
w=1 a Monte Carlo process5  for θ.  Thus, we see

that it is possible to estimate the solution θ  to our problem by random
sampling.

For our purposes, it suffices to consider the problem of evaluating
a finite sum

θ  =  ∑
t=1

N

ּ ּf(t). (A6)

We can arbitrarily select a probability function p(t) ≥ 0 in the index set6

N N = {1, 2, . . . , N}, (A7)

such that ∑
t=1

N

ּ ּp(t)  =  1, (A8)

with the further proviso:7

if    f(t)  ≠  0,    then    p(t)  >  0; (A9)

3 The abbreviation “a.s.” denotes “almost sure” convergence (also termed convergence
“with probability one”); “p.” denotes convergence “in probability”; “q.m.” denotes convergence
“in quadratic mean.”

4 See HALTON (17), (21), (22), (24), (26), and (29).
5 These K

w
, also, are then referred to as secondary estimators for θ.

6 Here, M = N
N

, M = 2
N N, the power set of N

N
, and µ is defined by µ({t}) = p(t).

7 This is very important, but is usually omitted in discussions elsewhere.
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and randomly sample index-values τ from N N with probability p(τ), yielding
a primary estimator of the form

g(τ)  =  

 



 

ּ

f(τ)
p(τ)

ּ ּifּ ּp(t)ּּ>ּּ0ּ

ּ0ּ ּifּ ּp(t)ּּ=ּּ0ּ

. (A10)

By (A6)–(A10), E [ g ]  =  ∑
t=1

N

ּ ּg(t)p(t)  =  ∑
t:f(t)≠0

ּ ּ ּ ּf(t)  =  θ, (A11)

as required for (A2); so (A3)–(A5) follow.  Note that the choice
of the probability p , and, indeed, of any preliminary transformation
of the function f  that preserves the sum—more generally,
the Lebesgue-Stieltjes integral—θ, has yet to be made.

Apart from the search for ever broader and subtler applications,
Monte Carlo research has two main branches.  The first is the development
of Monte Carlo algorithms in general, and of variance-reduction techniques
in particular, to yield estimators of ever-increasing efficiency and breadth
of application; the second is the design and analysis of random generators
to use in applying these techniques.  The author has had extensive
experience, with considerable success, in both of these main areas of research,
over the last  thirty-six years.

By (A4), the r.m.s. error of the secondary estimator G w  behaves

like w–1/2, as w → ∞.  While this rate of convergence is adequate, it is hardly
satisfactory—to get one additional decimal place of accuracy in our estimate,
we are compelled to sample a hundred times as many values of the primary
estimator g !  If we use this straightforward approach, it is therefore
important—in order to maximize efficiency—to make the s.d., σ, of g as small
as possible.  The problem of variance reduction is a central one in the theory
of the Monte Carlo method.8   The author has contributed results
on correlated and importance sampling,9  including the problem of negative

8 See, e.g., BUSLENKO et al. (1) §II.2 [the techniques are given non-standard names, but most of them
are mentioned], HALTON (29) §2.2, HAMMERSLEY and HANDSCOMB  (47 ) §5.3–5.9 and 6.1–6.4, KALOS

and WHITLOCK  (50) §§4.1–4.5, KLEIJNEN (51) Chap. III, and SPANIER   and GELBARD (67) Chap. 3.
9 These two very widely used techniques depend on the use of an “easy function” ϕ (t)

to approximate the summand f(t) in (A1):  in correlated sampling, a difference estimator
of the form A  + f(τ) – ϕ(τ) is used, usually with uniform sampling; in importance sampling ,
a probability p (t) proportional to ϕ(t) is adopted, thus yielding a quotient estimator of the form
B  f(τ)/ϕ(τ).  In both cases, the variance is diminished.  See HALTON, (23) and (25), and HALTON,
M AYNARD, and RAGHEB (32).
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probabilities in importance sampling, and on smoothing transformations,1 0

including general antithetic variates and stratified sampling.

In order to sample index-values τ randomly from N N with probability

p(τ), we must use some physical device (usually, but not always, a program
installed in computer) called a random generator, which yields successive
sample values of the r.v. τ.  Almost always, what we are provided with
is a canonical random generator, a specialized device or algorithm,
which yields successive sample values ξ of independent random variables,
uniformly distributed in the interval11  [0,ּ1).  In practice, these random
generators are pseudo-random  and quasi-random  generators, which are,
in fact, deterministic in nature, unlike truly random generators (such as dice,
roulette wheels, radioactive phenomena, and the like).  From this, it can be
demonstrated12 that suitable independent samples of τ can be generated
by taking τ such that13

∑
t=1

τ–1

ּ ּp(t)  ≤  ξ  <  ∑
t=1

τ
ּ ּp(t). (A12)

In the case of “crude Monte Carlo,” when τ is uniformly distributed

in N N , we take p(t) = 1/N , and it is clear that, given a canonical random

variable (c.r.v.) ξ, we may put14

τ  =  Nξ  + 1. (A13)

The author has done some work on the generation of arbitrarily distributed
random variables,15  but has mainly concentrated on the generation
of canonical r.v., both pseudo-random [deterministic sequences exhibiting

10 Here, the summand f(t) is suitably folded upon itself to reduce the variance.  This work originates
in the papers of HA M M E R S L E Y  and MA U L D O N  (45) , HA M M E R S L E Y  and MORTON ( 4 6 ) ,

and is generalized and extended in HALTON and HANDSCOMB (15), HANDSCOMB (48), LAURENT (53),

and HA L T O N  (33) .  Other kinds of smoothing transformations are discussed by FROLOV

and CHENTSOV (14), and by HALTON and ZEIDMAN, (28) and (30).
11 This is the set of real x such that 0 ≤ x < 1.  In practice, it is restricted, in a computer, to the set

of binary fractions of the form p  × 2–q, where p  and q are integers, with q > 0 and 0 ≤ p ≤ 2 q  – 1.
12 See LÉVY (55) and HALTON (40).
13 The probability that ξ  lies in the interval (A12) is just the difference of the extreme values

in the inequality—namely, p (τ)—as required.

14 x  will denote the floor function  of x , i.e., the integer infimum of x—the greatest integer

not greater than x—this is also sometimes called the integer part of x  and is often denoted by [x]

 or by x .  Similarly, x  will denote the roof  (or ceiling ) function of x , i.e., the integer supremum

of x—the least integer not smaller than x—this is also often denoted by x .
15 See HALTON, (18), (29), (36), and (41).
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many of the statistical properties of truly random sequences], in parallel and
tree-structured series,16 and quasi-random [deterministic sequences having
near-optimal uniformity properties].17

B.   LINEAR SYSTEMS

A very prominent problem in numerical computation is that
of solving linear systems of equations, of the general form

AX  =  B; (B1)

where the (m  ×  m ) matrix A  and the (m  ×  n ) matrix B  are known,
while the (m  ×  n) matrix X  is the unknown quantity to be determined.
We limit our consideration to situations in which the columns of A
are linearly independent and a solution of (B1) exists for all choices
of the matrix B.  It is then well-known that the solution is unique.

There are many classical numerical methods for solving
an (m  ×  m  ×  n ) system (B1) of linear algebraic equations.1 8

The direct methods, such as the Gaussian  and Gauss-Jordan  elimination,
and LU and Cholesky decomposition techniques, take time

TDIRECT(m, n)  =  O(m3) + O(m2n); (B2)

while the iterative methods, such as the Jacobi, Gauss-Seidel, and various
relaxation techniques, take time

TITER(m, n, s)  =  O(m2ns), (B3)

if there are s iterations.  Even if s and n are relatively small (say, e.g., n = 1,
with s = 300, or even s = 5), this becomes too laborious if m is large (say, e.g.,
m = 1,000,000, or even m = 20,000).

16 This work—see HALTON, (34), (35), (37), and (38)—is an extension to more complicated structures,
of the pioneering pseudo-random sequence work of LEHMER (54), FRANKLIN (13), COVEYOU (4),
ROTENBERG (64), and, later, of AHRENS, DIETER, MARSAGLIA, and  many others.  Prior to (34),
the new concept of random trees has only been investigated empirically, to a slight extent.
Further theoretical research on this is both badly needed and ripe for development.
One promising area in which research should certainly be done is that of the development
and analysis of corresponding quasi-random trees.

17 See FAURE (11), HALTON, (16), (20), and (31), HALTON and SMITH  (19), HALTON and ZAREMBA (27),
NIEDERREITER , (59)–(61), PEART (63).

18 See any standard text on linear numerical analysis, e.g., DAHLQUIST and B JÖRCK (8), ISAACSON  and
KELLER (49), STEWART (68), VARGA (69), or W ILKINSON (75).



—    JOHN H. HALTON   —   SEQUENTIAL MONTE CARLO FOR LINEAR SYSTEMS   —

— 7 —

In addition, algebraic equations of the form (B1) often arise
from discretizations of differential and/or integral equations, such as

 



 



λ(ξ,ּη)ּ
∂2

∂ξ2 ּ ּ+ּּµ(ξ,ּη)ּ
∂2

∂η2ּ X(ξ, η, ω)  =  B(ξ, η, ω) (B4a)

or ∫
a

b

ּּA(ξ,ηּ)Xּ(η,ּω)ּdη  =  B(ξ, ω), (B4b)

and the corresponding algebraic solutions (X, i.e., Xjk) are, essentially, only

useful as approximations to the continuous solutions—e.g., X (ξ , η , ω )
or X(η, ω)—of the original differential and/or integral equations.  Thus, while
a relatively coarse discretization of the continuous solution  may be
completely adequate, a similarly coarse discretization of the differential
and/or integral equations  may well lead to gross differences between
the algebraic approximation and the continuous solution.  However,
a fine-grained discretization of the problem, requiring large values of m ,
usually becomes prohibitively laborious, and effectively entails
the computation of the entire, fine-grained algebraic solution with m
components, even when most of these components are of no appreciable
interest.

We shall see that, by contrast, the Monte Carlo techniques presented
here take time

TMC(m, c, n, s, w)  =  O( )(m ּ+ּcn)s w (B5)

(or less), if there are, on average, w  samples, involving random walks
of average length s, to determine the nc components in a subset of c rows
of X .19  In comparison with iterative methods, we have w  replacing mn ;
and cw replacing m2.  Thus, since c < m ; so long as w  < m , this is far more
efficient than the classical methods.  In addition, it will be seen that, unlike
the traditional sampling methods, in which the expected errors are of order
w –1/2, requiring large numbers, w , of samples for acceptable accuracy;
the sequential methods, which form the main thrust of this paper, converge
much more rapidly, with errors of order κw, for some constant κ such that
κ < 1.

To solve the (m  × m  × n) system (B1) for X , we select a non-singular
(m × m) matrix G (so that the reciprocal matrix G–1 exists) and put

19 Since the n  columns of B  and of X  are entirely unrelated, there is no point in mentioning
any columns whose components are not needed for the solution.
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L  =  GB    and    H  =  I – GA, (B6)

where I is the (m × m) unit matrix.  This yields

X  =  L + HX. (B7)

Now X is a solution of (B1) if and only if it is a solution of (B7).  Furthermore,

X  = ∑
r=0

∞

ּ ּHrL  =  L + HL + H2L + . . . + HrL + . . . , (B8)

whenever the Neumann series (B8) converges.  This is the case if the spectral
radius ρ(H)20 of the matrix H ּsatisfies

ρ(H)  <  1. (B9)

The theory of iterative processes for solving equations of the form (B1)
now tells us that, if ρ(H) < 1, the sequence of matrices X0, X1, X2, . . . , satisfying

Xs+1  =  L + HXs, (B10)

converges to the solution matrix X.

Furthermore, if Y is an estimate of X, and

X  =  Y + Z, (B11)

then Z  =  D + HZ, (B12)

where D  = L + HY – Y. (B13)

Comparison of the equations (B7) and (B12) shows that Z satisfies the same
form of equation as X does, with the same factor-matrix H, but with L replaced
by the error, D, made when (B7) is applied to Y.

It should also be noted that, in many cases, what is required is not
the complete solution X, but a (possibly vector) functional of the form

U(φ, ω)  =  
 ⌡

⌠

a

b

ּּ
ּ
ּdξ 

 ⌡

⌠

a

b

ּּ
ּ
ּdη  F(φ, ξ, η) X(ξ, η, ω) (B14a)

20 ρ(H ) = max {λ:  (∃v ≠ 0) Hv = λv}  is the maximum absolute value of the eigenvalues of H .
For any vector x, if ρ(H ) < 1, then H rx → 0 as s  → ∞.
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or U(φ, ω)  =  
 ⌡

⌠

a

b

ּּ
ּ
dּη  F(φ, η) X(η, ω), (B14b)

which reduces to the algebraic form

U  =  FX, (B15)

with F  a (d  ×  m ) matrix [often, d  = 1].  This is tantamount to taking c = d
above.  The case in which we require only one row, X j• , of X  corresponds
to d = 1 and

(F)1h  =  δjh  =  
 



 

ּ1ּּ ּ ּifּּ ּ ּh ּ ּ=ּּjּ

ּ0ּּ ּ ּifּּ ּ ּh ּ ּ≠ ּ ּj ּ
. (B16)

Now, by (B8),

U  =  FX   =  ∑
r=0

∞
ּ ּFHrL  =  FL + FHL + FH2L + . . . + FHrL + . . . . (B17)

The simplicity of the form (B17) and its close similarity to (B8) allows us
to omit explicit mention of the functional forms in much of what follows.

C.   MONTE CARLO FOR LINEAR SYSTEMS

An area of intense, long-standing activity by Monte Carlo researchers
and practitioners has been the application of statistical sampling methods
for solving linear systems of equations.

If we expand (B8) for a specific component, we see that

Xik  =  ∑
r=0

∞
ּ
ּ∑j1=1

m
ּ
ּ ∑

j2=1

m
ּ
ּ  . . . ∑

jr–1=1

m
ּ
ּ    ∑

jr=1

m
ּ
Hּij1

Hj1j2
 . . . Hjr –1jr

Ljrk 
, (C1)

so that the result is an infinite sum of finite sums.  If we apply the ideas of §A
to these sums, we can develop a variety of Monte Carlo estimators
for the X ik ּ, and this has been widely exploited for many years.2 1

21 See CARTER and CASHWELL (2), COURANT, FRIEDRICHS and LEWY (3), CURTISS , (5) and (6), CUTKOSKY

(7), EDMUNDSON (9), FORSYTHE  and LEIBLER (12) , HA L T O N , (22) , (29) , (39) , (42) , and (43) ,
 MULLER, (57) and (58), PAGE (62), SPANIER and GELBARD (67), and WASOW , (71)–(74).
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In particular, we shall note what are called direct, and adjoint, homogeneous
random walk estimators using the augmented index set.

First, define a stochastic (m × m) matrix P, such that

(∀j, j')    Pjj'  ≥  0,    and,    if    Hjj'  ≠  0,    then    Pjj'  >  0, (C2)

and (∀j )    ∑
j'=1

m

ּ Pּjj'  =  1, (C3)

and a stochastic m-vector R, such that

(∀j')    Rj'  ≥  0,    and,    if    (∃i)    Hij'  ≠  0,    then    Rj'  >  0, (C4)

and ∑
j'=1

m

ּ ּRj'   =  1. (C5)

We can now define a Markov process, or random walk,

Γ  =  [γ1, γ2, γ3, . . . , γr, . . . ], (C6)

in which, first, γ1  ∈  N m  is sampled with probability R γ1
, and then,

for r = 1, 2, . . . , when γ1, γ2, . . . , γr have already been sampled, γr+1 ∈ N m
is sampled with probability Pγrγr +1

.  This process yields an index-sequence

[γ1, γ2, γ3, ... , γr] with probability

 Prob [γ1, γ2, γ3, . . . , γr]  =  Rγ1
Pγ1γ2

Pγ2γ3
 . . . Pγr –1γr

 ; (C7)

and hence, in the spirit of (A10), we can, for r = 0, 1, 2, . . . , generate a direct
unbiased primary estimator of the r-term of the infinite series in (C1),
of the form22

g
DIR
r i k (Γ)  =  

Hiγ1
Hγ1γ2

Hγ2γ3
ּ. ּ.ּ.ּHγr –1γr

Lγrk

Rγ1
Pγ1γ2

Pγ2γ3
ּ. ּ.ּ.ּPγr –1γr

 . (C8)

If we replace (C2) and (C4) by

(∀j, j')    Pjj'  ≥  0,    and,    if    Hj'j  ≠  0,    then    Pjj'  >  0, (C9)

and (∀j ')    Rj'  ≥  0,    and,    if    (∃k)    Lj'k  ≠  0,    then    Rj'  >  0, (C10)

22 Of course, g
DIR
rik (Γ) = g

ADJ
rik (Γ) = L

ik
ּ, which is a constant.
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we effectively run the random walk “in reverse” and obtain
the corresponding adjoint estimator

g
ADJ
r i k (Γ)  =  

Hiγr
Hγrγr –1

Hγr –1γr –2
ּ. ּ.ּ.ּHγ2γ1

Lγ1k

Rγ1
Pγ1γ2

Pγ2γ3
ּ. ּ.ּ.ּPγr –1γr

 . (C11)

In the case of functionals,23 we take an initial extra step; the random
walk becomes

Γ  =  [γ0, γ1, γ2, . . . , γr, . . . ], (C12)

in which, first, γ0 ∈  N m is sampled with probability Rγ0
, and then, when

γ0 , γ1 , γ2 , . . . , γr  have already been sampled, γr+ 1  ∈  N m  is sampled
with probability Pγrγr +1

, as before.  This process yields an index-sequence

[γ0, γ1, γ2, ... , γr] with probability

 Prob [γ0, γ1, γ2, . . . , γr]  =  Rγ0
Pγ0γ1

Pγ1γ2
 . . . Pγr –1γr

; (C13)

and we can generate both direct and adjoint estimators, of the form

g
DIR–F
r h k (Γ)  =  

Fhγ0
Hγ0γ1

Hγ1γ2
ּ. ּ.ּ.ּHγr –1γr

Lγrk

Rγ0
Pγ0γ1

Pγ1γ2
ּ. ּ.ּ.ּPγr –1γr

 (C14)

and g
ADJ–F
r h k (Γ)  =  

Fhγr
Hγrγr –1

Hγr –1γr –2
ּ. ּ.ּ.ּHγ1γ0

Lγ0k

Rγ0
Pγ0γ1

Pγ1γ2
ּ. ּ.ּ.ּPγr –1γr

. (C15)

In theory, we can now estimate Xik or Uhk by the infinite sum of such
estimators.24  In practice, what has usually been done, to make the methods
workable in finite time, has been to truncate  the series, such as (C1)—
and the underlying series (B8)—at a point where the residual sum
can be predicted to be negligible.  However, it is possible to proceed otherwise,
in an easier and more elegant manner.

First, we note that the index set N m = {1, 2, . . . , m} of the summations
in (C1) can be augmented to size

m j  =  m + 1, (C16)
by adding an index 0, yielding

23 See (B14)–(B15).
24 The appropriate rigorous limit theorems have been derived by the proposer; see HALTON, (17),

(26), (39), (42), and (43).
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N j
m  =  {0, 1, 2, . . . , m}, (C17)

and we adopt the convention that, in any “augmented matrix”—marked
by the superscript j— any element with the index 0 is made to vanish;

i.e., if 1 ≤ i ≤ m  and 1 ≤ j ≤ m , and if M  denotes any (m  ×  m ) matrix,
such as H, A, or G, then

(Mj)ij  =  Mij,      (Mj)i0  =  (Mj)0j  =  (Mj)00  =  0; (C18)

while if 1 ≤ k ≤ n, and if N denotes any (m × n) matrix, such as B, X, L, Xs, Es,
Y, Z, or D, then25

(Nj)jk  =  Njk,      (Nj)0k  =  0. (C19)

It is then readily apparent that the augmented matrices satisfy relations
identical in form to (B1), (B6)–(B13), (B15), and (B17), when every matrix
symbol is decorated with the superscript j.  We may define a stochastic
(m j ×  m j) matrix P<  and a stochastic m j-vector R< , satisfying conditions
analogous to (C2)–(C5),26 and generate random walks Γ j of the form (C6),

but on the augmented index-set N j
m ּ, and estimators analogous to (C8), (C11),

(C14), or (C15).  We now observe that, if27

γ1  =  γ2  =  γ3  =  . . .  =  γs–1  >  0,     γs  =  0, (C20)

in the sampled random walk Γ j, then (C18) ensures that a vanishing factor
will occur in the numerator of every estimator (C8), (C11), (C14), or (C15),
with r  ≥ s .  This ensures that all terms with r  ≥ s . in the infinite-series
estimators for all the Xik will vanish; so that the series effectively terminate

after s terms, making them computable without truncation.

We shall henceforth assume that the index set has been augmented
in this manner, and omit the superscripts j and <, for simplicity, wherever
they occur.

The concept of automatic stopping, by way of an augmented index set

N j
m  = {0, 1, 2, . . . , m }, as outlined in (C16)–(C20), has not been found

25 For functionals, we correspondingly put (Fj)
hi

 = F
hi

,  (Fj)
h0  = 0.

26 This is for the direct estimator; for the adjoint estimator, we take  (C3), (C9), (C5), and (C10).
Note that, here, we do not require the conditions (C14)–(C15).

27 For functionals, we begin with γ0  > 0.
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in the literature;28 it is a simple, elegant, and effective technique, and should
be utilized much more frequently, and further investigated.  It has been
found in practice that short random walks (i.e., large stopping probabilities ϖ)
can give accurate estimates of series with slow convergence.  The relation
between the selection of ϖ and the choice of the stochastic matrices R and P
in general [see (C2)–(C5)] is unclear; it, too, merits further investigation.

We note that all the methods used hitherto to solve linear systems (B1)
or (B7), however ingeniously devised, reduce to variations on the above
theme, and finally lead to timings of the form (B5);29 while the r.m.s. errors
are firmly pegged at a rate of the form A w –1/2 , as w  →  ∞, where w
is the number of random walks.  This is painfully slow.  As with other
problems of variance reduction, there is a limited degree of improvement
that can be obtained by subtlety of sampling, and the “easy functions” used30

are constructed in ways based more on hunches and experience than
on rigorous analysis.

D.   SEQUENTIAL MONTE CARLO FOR LINEAR SYSTEMS

The simple observation, that information obtained during statistical
sampling can be used to improve the sampling scheme, is familiar
to statisticians in the theory of estimation.31   The idea of applying
this concept in a limited way to the Monte Carlo computation of simple
integrals was originally proposed by Marshall;32 though he did not carry it
very far, limiting himself to a single sequential improvement
of an importance-sampling scheme.  The concept was greatly expanded
and analyzed mathematically by the author.33  His methods were devised

28 This concept is quite different from the absorption probability occurring in particle-transport
computations, because the random walk occurring in the Monte Carlo treatment need not have
any direct relation to the history of any physical or semi-physical particle.

29 The second term in (B5), O(cnsw), is due to the computation of the needed estimators (C8) or (C11).
The first term, O (msw), is due to the determination of sw random indices; the method assumed
is the successive  computation of the partial sums of probabilities in (A12).  The precomputation

of all these sums takes time O(m 2), which is prohibitively laborious, for large m .  If only q
 of the probabilities in any row of P are non-zero, the first term of (B5) becomes O (qsw).  If one can,
instead, use a simple formula, as in the case of uniform sampling [see (A13)], then this contributes
a time only O(sw), for a total time O (cnsw), but this is not always possible.

30 See Footnote9 .
31 See WALD  and WOLFOWITZ (70), and WOLFOWITZ, (76) and (77).
32 See MARSHALL (56).
33ּ See HALTON, (17), (21), (22), (24), (26), (29), (39), and (42)–(44).
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for solving systems of linear equations like (B1) or (B7).  The “First Sequential
Method” used ideas analogous to (unbiased) importance sampling;
the “Second Sequential Method” used ideas analogous to biased importance
sampling (a new concept); and the “Third Sequential Method” used ideas
analogous to correlated sampling .  We shall limit ourselves here
to considering a generalization and modification of what the author termed
the Third Sequential Method; the convergence bounds obtained by him
for this (and for his First and Second Sequential Methods), as well as a limited
amount of computational experience, indicate that this Third Method
is the fastest-converging and most easily applied of the three.

The method is based on the results (B11)–(B13).  It is iterative in nature
and proceeds in sequential stages, denoted by the superscript (ν), taking
ν = 0, 1, 2, . . .  Initially, for simplicity, we can take

Y(0)  =  O. (D1)

Thereafter, we put X  =  Y(ν) + Z(ν). (D2)

and D(ν)  =  D(ν)(Y(ν))  =  L + HY(ν) – Y(ν)  =  Z(ν) – HZ(ν). (D3)

Note that, initially, D(0) =  L. (D4)

 Now, we use the Monte Carlo technique described in §C to obtain a random

walk Γ (ν) on the augmented index set N j
m  = {0, 1, 2, . . . , m }, and hence

unbiased augmented homogeneous estimators  [see (C8), (C11), (C14),
and (C15)]34

g
DIR,(ν)
i k (Γ(ν))  =  ∑

r=0

∞

ּ
H iγ1

Hγ1γ2
Hγ2γ3

ּ. ּ. ּ. ּHγr –1γr
D

(ν)
γrk

Rγ1
Pγ1γ2

Pγ2γ3
ּ. ּ.ּ.ּPγr –1γr

(D5)

or g
ADJ,(ν)
i k (Γ(ν))  =  ∑

r=0

∞

ּ
H iγr

H γrγr –1
Hγr –1γr –2

ּ.ּ.ּ.ּHγ2γ1
D

(ν)
γ1k

Rγ1
Pγ1γ2

Pγ2γ3
ּ. ּ.ּ.ּPγr –1γr

 (D6)

for the corrections Z
(ν)
i k  to our approximations Y

(ν)
i k .  By taking, at stage ν ,

wν independent random walks Γ
(ν)
u  (u  =1, 2, . . . , w ν), we can generate

unbiased secondary estimators, respectively

34 Estimators entirely analogous to these can also be constructed, by way of (C14) and (C15),
for functionals.
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G
DIR,(ν)
wν

  =  
1

wν
  ∑

u=1

wν

ּgDIR,(ν) ּ(Γ
(ν)
u ) (D7)

or G
ADJ,(ν)
wν

  =  
1

wν
  ∑

u=1

wν

ּgADJ,(ν)ּ(Γ
(ν)
u ), (D8)

and take Y(ν+1)  =  Y(ν) + G
(ν)
wν

 ,    whence    Y(ν)  =  ∑
µ=0

ν–1

ּG
(µ)
wµ

 . (D9)

with the appropriate superscript DIR  or A D J .  Clearly, for each matrix
component,

Var [ Y
(ν+1)
i k ּ Y(ν) ]  =  Var [ G

(ν)
wνikY(ν) ]  =  

Varּ[ּg(ν)
i k Y(ν) ּ]

wν
 . (D10)

E.   THE ESTIMATION OF VARIANCE—DIRECT ESTIMATORS

We prove the following results in the context of sequential Monte

Carlo; but all the results apply equally to plain Monte Carlo, by taking ν = 0,
when D (ν ) reverts to L .  The results derived here apply to any single
sequential stage.

Let us first consider the direct augmented homogeneous estimator,35

which, for r ≥ 1, takes the form

g
DIR,(ν)
r i k (Γ)  =  

Hiγ1
Hγ1γ2

Hγ2γ3
ּ. ּ.ּ.ּHγr –1γr

D
(ν)
γrk

Rγ1
Pγ1γ2

Pγ2γ3
ּ. ּ.ּ.ּPγr –1γr

 . (E1)

Write G
(ν)
0 (Γ)  =  G

(ν)
0γ1

  =  0 (E2)

and, for r ≥ 1, G
(ν)
r (Γ)  =  G

(ν)
rγ1

  =  
Hγ1γ2

Hγ2γ3
ּ. ּ.ּ.ּHγr –1γr

D
(ν)
γrk

Pγ1γ2
Pγ2γ3

ּ.ּ.ּ.ּPγr –1γr

 ; (E3)

35 See (C8) and (D5).  We shall return to the three other types of estimators—adjoint
and functional and both—in §F.
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so that, for all r ≥ 0, g
DIR,(ν)
r i k (Γ)  =  δr0D

(ν)
i k  + 

H iγ1

Rγ1
 G

(ν)
rγ1

. (E4)

Given a random walk

Γ  =  Γ(γ1)  =  [γ1, γ2, γ3, γ4, . . . ] (E5)

starting at index γ1 and using the Markov probabilities Pjj' ,
36 write

Γּ-  =  Γּ-(γ2)  =  [γ2, γ3, γ4, . . . ] (E6)

for the “continuation walk,” starting at the second index, γ2 , of Γ .
Then we have that

Γ(γ1)  =  [γ1, Γּ-(γ2)], (E7)

and we see that Γ ּ- is exactly the same kind of random walk as Γ, but starting at
index γ2 instead of index γ1.37

Returning to (E3), we easily observe, for all r  ≥ 2, the recurrence
relation

G
(ν)
r (Γ(γ1))  =  

Hγ1γ2

Pγ1γ2
 G

(ν)
r–1(Γ-(γ2)), (E8)

and, since the statistical properties of Γ and Γ- are the same, we can safely
abbreviate this to the form

G
(ν)
rγ1

  =  
Hγ1γ2

Pγ1γ2
 G

(ν)
(r–1)γ2 . (E9)

Now, let us define the series

M
(ν)
γ1k  =  ∑

r=1

∞

ּG
(ν)
rγ1

, (E10)

36 Note that, here, in the walk Γ, the starting index γ1  is arbitrarily given; earlier, we took the first index
itself to be random, with probability Rγ1

.

37 That is, both Γ and Γ ּ- are samples of random walks from the space of all Markov processes
starting and moving in {1, 2, . . . , m} and controlled by the stochastic matrix P.
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which clearly converges, since we assume that the estimator series (D5)
converges in a stochastic sense38.  Then, by (E9),

M
(ν)
γ1k  =  D

(ν)
γ1k + 

H γ1γ2

Pγ1γ2
 ∑

r=2

∞

ּG
(ν)
(r–1)γ2

  =  D
(ν)
γ1k + 

H γ1γ2

Pγ1γ2
 ∑

r=1

∞

ּG
(ν)
rγ2

 ;

i.e., M
(ν)
γ1k  =  D

(ν)
γ1k + 

H γ1γ2

Pγ1γ2
 M

(ν)
γ2k . (E11)

By (D5) and (E4), we correspondingly get that

g
DIR,(ν)
i k (Γ)  =  D

(ν)
i k  + 

H iγ1

Rγ1
 M

(ν)
γ1k . (E12)

We now adopt a usefully concise notation.  For any square matrix M ,
if I – M is invertible39, we can write

(I – M)–1  =  Mt , (E13)

and if furthermore ρ(M) < 1, then

Mt   =  ∑
s=0

∞
ּ
ּM

s (E14)

(see (B7)–(B9)).  We observe that, since (I – M)(I – M)–1 = I = (I – M)–1(I – M),
it follows that

(I – M)Mt   =  I  =  Mt(I – M), (E15)

whence M Mt   =  Mt  – I  =  MtM . (E16)

Also, by the usual rule about transposing products of matrices, namely,

(M1M2)T  =  M2
TM1

T; (E17)

and with (E14) (applied both to M and to MT), we get that

(Mt)T =  (Mt)T(I – MT)(MT)t   =  (Mt)T(I – M)T(MT)t

=  ((I – M)Mt)T(MT)t  =  IT(MT)t  =  I (MT)t  =   (MT)t ;

38 See HALTON, (39), and (42)–(44).  In (42) §12, it is shown that the convergence is very strong
(almost sure, in probability, in mean, and in distribution), provided only that ρ(H +) < 1,
where H+  is the matrix of absolute values of the corresponding components of H .

39 This holds, for instance, if ρ(M) < 1.
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i.e., (Mt)T  =  (MT)t . (E18)

Now, by (E3), (E10), and (E14),

E [ M
(ν)
γ1kY(ν) ]  =  (HtD(ν))γ1k. (E19)

From (E12), we now deduce that

E [ g
DIR,(ν)

ּi k Y(ν) ]  =  D
(ν)
i k  + (HHtD(ν))ik ;

i.e., by (E16), E [ g
DIR,(ν)
ּi k Y(ν) ]  =  (HtD(ν))ik . (E20)

and this leads, by the analog of (B8) applied to (B11)–(B13) with (E14),
to the well-known fact that

E [ g
DIR,(ν)
ּi k Y(ν) ]  =  (HtD(ν))ik   =  Z

(ν)
i k . (E21)

When we take the mathematical expectation of the s q u a r e s
of the two sides of (E11), and apply (E16) and (E21), we obtain something
much less well-known:

E [ (M
(ν)
γ1k)

2Y(ν) ]  =  E 

 




 




ּ
 



 



D
(ν)
γ1k ּ+ ּ

H γ1γ2

Pγ1γ2
ּM

(ν)
γ2k

2

ּ ּY(ν) ּ

=  E 

 


 
ּ (D

(ν)
γ1k)

2
ּ+ּ2D

(ν)
γ1k ּ

H γ1γ2

Pγ1γ2
ּM

(ν)
γ2k ּ+ּ

Hγ1γ2
2

Pγ1γ2
2 ּ(M

(ν)
γ2k)

2
ּ ּY(ν) ּ

=  (D
(ν)
γ1k)

2
 + 2D

(ν)
γ1k ∑

β=1

m

ּHγ1β E [ M (ν)
βk Y(ν) ] +∑

β=1

m
Hγ1β

2

Pγ1β
ּE ּ[ּ(M (ν)

βk )2Y(ν)

]

=  (D
(ν)
γ1k)

2
 + 2D

(ν)
γ1k (HH tD(ν))γ1k + ∑

β=1

m

ּKγ1β E [ (M(ν)
βk )2Y(ν) ]

=  2D
(ν)
γ1k Z

(ν)
γ1k  – (D

(ν)
γ1k)

2
 +  ∑

β=1

m

ּKγ1β ּE ּ[ּ(M (ν)
βk )2Y(ν) ּ] , (E22)
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where we define (K)αβ  =  Kαβ  =  
Hαβ

2

Pαβ
 . (E23)

Hence, if we define new matrices N(ν) and J(ν) by

(N (ν))αk  =  N
(ν)
α k   =  E [ (M(ν)

α k )2
 ] (E24)

and (J(ν))αk  =  J
(ν)
α k   =  2D

(ν)
α k  Z

(ν)
α k   – (D

(ν)
α k )2

, (E25)

then (E22) gives the matrix equation [compare (B7) and (B12)]

N(ν)  =  J(ν) + KN(ν), (E26)

whence, if ρ(K) < 1, (E27)

we can put N(ν)  =  KtJ(ν). (E28)

Now, take the expectation of the squares of both sides of (E12); then,
by very similar manipulations, with (E19), (E21), and (E24), we get that

E [ (g
DIR,(ν)

ּi k ) ּ2
Y(ν) ]  =  E 

 



 



ּ
 



 



D
(ν)
i k ּ+ּ

H iγ1

Rγ1
ּM

(ν)
γ1k

2

ּ ּY(ν) ּ

=  E 

 


 
ּ (D

(ν)
i k ) ּ2 ּ+ּ2D

(ν)
i k ּ

H iγ1

Rγ1
ּM

(ν)
γ1k ּ+ ּ

H iγ1
2

Rγ1
2 ּ(M

(ν)
γ1k)

2
ּ ּY(ν) ּ  ;

=  (D
(ν)
i k ) ּ2 + 2D

(ν)
i k  ∑

α=1

m

ּH iα E  [ M (ν)
α k Y(ν) ] + ∑

α=1

m

ּH iα
2

Rα
 E  [ (M (ν)

α k )2Y(ν)

];

=  (D
(ν)
i k ) ּ2 + 2D

(ν)
i k  ∑

α=1

m

ּH iα (H t D(ν))αk + ∑
α=1

m

ּK†
iα  N

(ν)
α k

=  2D
(ν)
i k  Z

(ν)
i k  – (D

(ν)
i k ) ּ2 + (K†N(ν))ik, (E29)

where we have defined [compare (E23)]

(K†)iα  =  K
†
iα  =  

Hiα
2

Rα
 . (E30)
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Therefore, by (E29), with (E16) and (E20),

Var [ g
DIR,(ν)
ּi k Y(ν) ]  =  E [ (g

DIR,(ν)
ּi k )ּ 2

Y(ν) ] – 
 



 



ּE ּ[ּg
DIR,(ν)

ּi k Y(ν) ּ] ּ
ּ2

=  2D
(ν)
i k  Z

(ν)
i k  – (D

(ν)
i k ) ּ2 + (K†N(ν))ik  – (Z

(ν)
i k )2ּ

=  (K†N(ν))ik – (Z
(ν)
i k  – D

(ν)
i k )

2
, (E31)

or, in matrix form, V(ν)  =  K†N (ν) – W (ν), (E32)

when we define (V (ν))ik  =  V
(ν)
i k   =  Var [ g

DIR,(ν)
ּi k Y(ν) ] (E33)

and (W (ν))ik  =  W
(ν)
i k   =  (Z

(ν)
i k  – D

(ν)
i k )

2
. (E34)

With the definitions given in (E1)–(E3), (E10), (E14), (E23)–(E25), (E30),
(E33), and (E34); and the conditions (B9), (E27), and40

ρ(H+)  <  1; (E35)

it now follows from (E28) and (E32), that

V(ν)  =  K†KtJ(ν) – W (ν). (E36)

We have thus verified the following theorem.

THEOREM 1.  Given the “infinite-series”ּestimator g
D I R ,(ν )

i k (Γ)
of the “direct augmented homogeneous” type, as defined in (D5), satisfying
the convergence conditions (B9), (E27), and (E35); the variances
of these estimators are given by the formula (E36); or, in detail,

Var [ g
DIR,(ν)
ּi k Y(ν) ]   =  ∑

α=1

m
ּ
ּ∑

β=1

m
ּ
ּ
H iα

2

Rα
 (Kt)αβ [2D

(ν)
βk  Z

(ν)
βk   – (D

(ν)
βk )2]

– (Z
(ν)
i k  – D

(ν)
i k )

2
. (E37)

40 See Footnote38.  Note that it can be proved [see (42) and (43)] that (E39) implies (B9).
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Now, consider the following mathematical expectations, obtained from
(B7), (D2), (D3), and (D9),

 

Y(ν) ּ ּ=ּּY(ν–1) ּ+ּG

(ν–1)
wν–1

,ּ

E ּ[ּY(ν)Y(ν–1) ּ] ּ ּ=ּּY(ν–1) ּ+ּZ(ν) ּ ּ=ּּX ּ, ּ
(E38)

 

Z(ν) ּ ּ=ּּX ּ–ּY(ν),ּ

E ּ[ּZ(ν)Y(ν–1) ּ] ּ ּ=ּּO,ּ
(E39)

 

D(ν) ּ ּ=ּ ּL ּ+ּHY(ν) ּ–ּY(ν),ּ

E ּ[ּD(ν)Y(ν–1) ּ] ּ ּ=ּּL ּ+ּHX ּ–ּX ּ ּ=ּּO,ּ
(E40)

and L + HX – X  =  O; (E41)

so E  


 
ּ2D

(ν)
βk ּZ

(ν)
βk ּ ּ–ּ(D

(ν)
βk )2

ּ ּY(ν–1) ּ

=  E 
 



ּ2

 



 



ּLβk ּ+ּ∑
γ= 1

m

ּHβγY
(ν)
γ k ּ–ּY

(ν)
βk ּ (ּ )ּXβk ּ ּ–ּY

(ν)
βk ּ

– 
 


 



 



ּLβk ּ+ּ∑
γ= 1

m

ּHβγY
(ν)
γ k ּ–ּY

(ν)
βk ּ

2

ּ ּY(ν–1) ּ

=  E 
 
(ּ )ּXβk ּ ּ–ּY

(ν)
βk ּ

2
ּ

ּ

 
ּ –ּ∑

γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּHβγHβδ( )ּXγk ּ ּ–ּY

(ν)
γ k ּ ( )ּXδk ּ ּ–ּY

(ν)
δk ּ ּ ּY(ν–1) ּ

=  Var [ Y(ν)
βk Y(ν–1) ]

– ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּHβγHβδ Cov [ Y(ν)

γ k , Y
(ν)
δk Y(ν–1) ]. (E42)
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and, by (E38),

E  



 



ּ(Z
(ν)
i k ּ–ּD

(ν)
i k )

2
ּ ּY(ν–1) ּ    =  E 

 


 


ּ
 



 

∑

γ= 1

m

ּH iγZ
(ν)
γ k

2

ּ ּY(ν–1) ּ

=  E 
 


 


ּ
 



 

∑

γ= 1

m

ּH iγ(Xγk ּ– ּY
(ν)

γ k )

2

ּ ּY(ν–1) ּ

=  E 
 



 



ּ∑
γ= 1

m

ּH iγ(Xγk ּ– ּY
(ν)

γ k )ּ∑
δ=1

m

ּHiδ(Xδk ּ–ּY
(ν)

δk )ּ ּY(ν–1) ּ

=  ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּH iγH iδ Cov [ Y(ν)

γ k , Y
(ν)
δk Y(ν–1) ]. (E43)

Therefore, by (E37), (E42), and (E43),

Var [ g
DIR,(ν)
ּi k Y(ν–1) ]

=  ∑
α=1

m
ּ
ּ∑

β=1

m
ּ
ּ
H iα

2

Rα
 (Kt)αβ E  


 
ּ2D

(ν)
βk ּZ

(ν)
βk ּ ּ–ּ(D

(ν)
βk )2

ּ ּY(ν–1) ּ

– E  



 



ּ(Z
(ν)
i k ּ–ּD

(ν)
i k )

2
ּ ּY(ν–1) ּ

=  ∑
α=1

m
ּ
ּ∑

β=1

m
ּ
ּ
H iα

2

Rα
 (Kt)αβ 

 



Var ּ[ּY(ν)
βk Y(ν–1) ּ]

ּ
ּ

– 
 

∑

γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּHβγHβδ ּCov ּ[ּY(ν)

γ k ,ּY
(ν)
δk Y(ν–1) ּ] ּ

– ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּH iγH iδ Cov [ Y(ν)

γ k , Y
(ν)
δk Y(ν–1) ]. (E44)
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Now, by the well-known statistical form of Cauchy’s inequality,

Cov [ Y(ν)
γ k , Y

(ν)
δk Y(ν–1) ]

≤  ( )Varּ[ ּY
(ν)

γ k Y(ν–1) ּ]Varּ[ ּY
(ν)

δk Y(ν–1) ּ] ּ
1/2

, (E45)
whence

Cov [ Y(ν)
γ k , Y

(ν)
δk Y(ν–1) ]  ≤  max1≤j≤m { }Varּ[ ּY

(ν)
jk Y(ν–1) ּ] ּ . (E46)

It now follows from (D10), (E44), and (E46) that, if we write

V
(ν+1,ν–1)
k   =  max1≤i≤m 

 



 

Varּ[ּY(ν+1)

i k ּ Y(ν–1) ּ]ּ , (E47)

then

V
(ν+1,ν–1)
k ּ   =  max1≤i≤m 

 



 

Varּ[ּY(ν+1)

i k ּ Y(ν–1) ּ]ּ   =  
max1≤i≤m ּ{ }ּVarּ[ּg(ν)

i k Y(ν–1) ּ]ּ

wν

=  
1

wν
  max1≤i≤m 

 



ּ∑
α=1

m
ּ
ּ∑

β=1

m
ּ
ּ
H iα

2

Rα
ּ(Kt )αβּ

 


Var ּ[ּY(ν)

βk Y(ν–1) ּ]
ּ
ּ ּ

– 
 

∑

γ= 1

m
ּ
ּ∑

δ=1

m
ּ
ּHβγHβδ ּCov ּ[ּY(ν)

γ k ,ּY
(ν)
δk Y(ν–1) ּ] ּ

– 
 

∑

γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּH iγH iδ ּCov ּ[ּY(ν)

γ k ,ּY
(ν)
δk Y(ν–1) ּ]

ּ
ּ

≤  
1

wν
  
 



ּ∑
α=1

m
ּ
ּ∑

β=1

m
ּ
ּ ּ
max1≤i≤m ּ{ ּHiα

2 ּ}
Rα

ּ(Kt )αβּ
 



 



1ּ+ּ∑
γ= 1

m
ּ
ּ∑

δ=1

m
ּ
ּHβγHβδ ּV

(ν,ν–1)
k ּ

+
 



ּ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּmax1≤i≤m ּ{ּHiγHiδ ּ}V

(ν,ν–1)
k ּ ּ

=  
1

wν
  
 



ּ∑
α=1

m
ּ
ּ∑

β=1

m
ּ
ּ ּ
max1≤i≤m ּ{ ּHiα

2 ּ}
Rα

ּ(Kt )αβּ
 



 



1ּ+ּ∑
γ= 1

m
ּ
ּ∑

δ=1

m
ּ
ּHβγHβδ

+
 



ּ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּmax1≤i≤m ּ{ּHiγHiδ ּ} ּ  V

(ν,ν–1)
k ּ . (E48)
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It is clear that the upper bound in (E48) is probably often a gross over-estimate;
but it is finite, and this suffices.  If we put

C  =  ∑
α=1

m
ּ
ּ∑

β=1

m
ּ
ּ 
max1≤i≤m ּ{ ּHiα

2 ּ}
Rα

 (Kt)αβ 
 



 



1ּ+ּ∑
γ= 1

m
ּ
ּ∑

δ=1

m
ּ
ּHβγHβδ

+ ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּmax1≤i≤m { HiγHiδ }, (E49)

where we note that the constant C  is not dependent on the parameters
k and ν, we see that (E47) can be written as

V
(ν+1,ν–1)
k   ≤  

C
wν

 V
(ν,ν–1)
k . (E50)

Now take the expectations of both sides of (E48) or (E50) over
all Y (ν –1) .  Then the corresponding unconditional variances  satisfy
the inequality

V
(ν+1,0)
k   ≤  

C
wν

 V
(ν,0)
k . (E51)

Finally, we observe, therefore, that, if we take constant wν—

(∀ν)   wν  =  w (E52)

and write λ  =  
C
w      and    V

(ν)
k   =  V

(ν,0)
k ; (E53)

then (E51) yields V
(ν)
k ּ   ≤  λν V

(0)
k ּ . (E54)

F.   THE ESTIMATION OF VARIANCE—OTHER ESTIMATORS

As well as the basic direct estimator, we now also consider the other
three cases of augmented homogeneous estimators—the basic adjoint
estimator and the direct and adjoint functional estimators—which take
the respective forms41

41 Compare (E1); see (C11), (C14), and (C15), and (D6)—also Footnote35.
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g
DIR,(ν)
r i k (Γ)  =  

Hiγ1
Hγ1γ2

Hγ2γ3
ּ. ּ.ּ.ּHγr –1γr

D
(ν)
γrk

Rγ1
Pγ1γ2

Pγ2γ3
ּ. ּ.ּ.ּPγr –1γr

 , (E1) ≡ (F1a)

g
ADJ,(ν)
r i k (Γ)  =  

Hiγr
Hγrγr –1

Hγr –1γr –2
ּ.ּ.ּ.ּHγ2γ1

D
(ν)

γ1k

Rγ1
Pγ1γ2

Pγ2γ3
ּ. ּ.ּ.ּPγr –1γr

 , (F1b)

g
DIR–F
rh k (Γ)  =  

Fhγ0
Hγ0γ1

Hγ1γ2
ּ. ּ.ּ.ּHγr –1γr

D
(ν)
γrk

Rγ0
Pγ0γ1

Pγ1γ2
ּ. ּ.ּ.ּPγr –1γr

 , (F1c)

and g
ADJ–F
rh k (Γ)  =  

Fhγr
Hγrγr –1

Hγr –1γr –2
ּ.ּ.ּ.ּHγ1γ0

D
(ν)

γ0k

Rγ0
Pγ0γ1

Pγ1γ2
ּ. ּ.ּ.ּPγr –1γr

 . (F1d)

We proceed in a manner exactly parallel and analogous to that used
for the derivations for direct estimators.  By analogy with (E2) and (E3),
we take away the initial factors in the numerator and denominator,
and respectively put:

for DIR and ADJ and r = 0, G
(ν)
0 (Γ)  =  G

(ν)
0γ1

  =  0; (E2) ≡ (F2a/b)

for DIR and r ≥ 1,

G
(ν)
r (Γ)  =  G

(ν)
rγ1

  =  
Hγ1γ2

Hγ2γ3
ּ. ּ.ּ.ּHγr –1γr

D
(ν)
γrk

Pγ1γ2
Pγ2γ3

ּ.ּ.ּ.ּPγr –1γr

 ; (E3) ≡ (F3a)

for ADJ and r ≥ 1,

G
(ν)
r (Γ)  =  G

(ν)
rγ1

  =  
H iγr

Hγrγr –1
Hγr –1γr –2

ּ.ּ.ּ.ּHγ2γ1

Pγ1γ2
Pγ2γ3

ּ.ּ.ּ.ּPγr –1γr

 ; (F3b)

for DIR–F and r ≥ 0,

G
(ν)
r (Γ)  =  G

(ν)
rγ0

  =  
Hγ0γ1

Hγ1γ2
ּ. ּ.ּ.ּHγr –1γr

D
(ν)
γrk

Pγ0γ1
Pγ1γ2

ּ.ּ.ּ.ּPγr –1γr

  ; (F3c)

and,ּfor ADJ–F and r ≥ 0,

G
(ν)
r (Γ)  =  G

(ν)
rγ0

  =  
Fhγr

Hγrγr –1
Hγr –1γr –2

ּ.ּ.ּ.ּHγ1γ0
Pγ0γ1

Pγ1γ2
ּ.ּ.ּ.ּPγr –1γr

 . (F3d)
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Thus, as in (E4),42 g
DIR,(ν)
r i k (Γ)  = δr0D

(ν)
i k  + 

H iγ1

Rγ1
 G

(ν)
rγ1

, (E4) ≡ (F4a)

g
ADJ,(ν)
r i k (Γ)   =δr0D

(ν)
i k  + 

D
(ν)
γ1k

Rγ1
 G

(ν)
rγ1

, (F4b)

g
DIR–F ,(ν)
r h k (Γ)  =

Fhγ0

Rγ0
 G

(ν)
rγ0

, (F4c)

g
ADJ–F ,(ν)
r h k (Γ)  =

D
(ν)
γ0k

Rγ0
 G

(ν)
rγ0

. (F4d)

The recurrence (E9) applies to both direct estimators:43

G
(ν)
rγ1

  =  
Hγ1γ2

Pγ1γ2
 G

(ν)
(r–1)γ2 . (E9) ≡ (F9a/c)

For the adjoint estimators, we similarly get

G
(ν)
rγ1

  =  
Hγ2γ1

Pγ1γ2
 G

(ν)
(r–1)γ2 . (F9b/d)

By analogy with (E10), define:

for DIR, M
(ν)
γ1k  =  ∑

r=1

∞

ּG
(ν)
rγ1

; (E10) ≡ (F10a)

for ADJ, M
(ν)
iγ1

  =  ∑
r=1

∞

ּG
(ν)
rγ1

; (F10b)

for DIR–F, M
(ν)
γ0k  =  ∑

r=0

∞

ּG
(ν)
rγ0

; (F10c)

for ADJ–F, M
(ν)
hγ0

  =  ∑
r=0

∞

ּG
(ν)
rγ0

; (F10d)

42 With the corresponding forms of G, as defined in (F3a)–(F3d).
43 In this section, the numbering of equations is not consecutive ; instead, it parallels the numbering

of corresponding equations in §E.
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Thus the corresponding recurrences are easily verified to be

M
(ν)
γ1k  =  D

(ν)
γ1k + 

H γ1γ2

Pγ1γ2
 M

(ν)
γ2k . (E11) ≡ (F11a)

M
(ν)
iγ1

  =  H iγ1
 + 

Hγ2γ1

Pγ1γ2
 M

(ν)
iγ2

 . (F11b)

M
(ν)
γ0k  =  D

(ν)
γ0k + 

H γ0γ1

Pγ0γ1
 M

(ν)
γ1k . (F11c)

M
(ν)
hγ0

  =  Fhγ0
 + 

Hγ1γ0

Pγ0γ1
 M

(ν)
hγ1

 . (F11d)

Hence, corresponding to (E12), using (F4a)–(F4d), we get

g
DIR,(ν)
i k (Γ)  =D

(ν)
i k  + 

H iγ1

Rγ1
 M

(ν)
γ1k , (E12) ≡ (F12a)

g
ADJ,(ν)
i k (Γ)  =D

(ν)
i k  + 

D
(ν)
γ1k

Rγ1
 M

(ν)
iγ1

 , (F12b)

g
DIR–F ,(ν)
h k (Γ)  =

Fhγ0

Rγ0
 M

(ν)
γ0k , (F12c)

g
ADJ–F ,(ν)
h k (Γ)  =

D
(ν)
γ0k

Rγ0
 M

(ν)
hγ0

 . (F12d)

As for (E19), by (F3a)–(F3d) and (F10a)–(F10d), we now get:

for DIR, E [ M
(ν)
γ1kY(ν) ]  =  (HtD(ν))γ1k ; (E19) ≡ (F19a)

for ADJ,44 E [ M
(ν)
iγ1

Y(ν) ]  =  (Ht)iγ1
 – δiγ1

 ; (F19b)

for DIR–F, E [ M
(ν)
γ0kY(ν) ]  =  (HtD(ν))γ0k ; (F19c)

44 We get ((HT)tH T)γ1i
 = (HH t )

iγ1
 = (Ht  – I)

iγ1
, by (E14), (E16), and (E17).
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for ADJ–F,45 E [ M
(ν)
hγ0

Y(ν) ]  =  (FHt)hγ0
 . (F19d)

Of course, the equation (E21) will become

E [ g
DIR,(ν)
ּi k Y(ν) ]  =  (HtD(ν))ik   =  Z

(ν)
i k , (E21) ≡ (F21a)

E [ g
ADJ,(ν)
ּi k Y(ν) ]  =  (HtD(ν))ik   =  Z

(ν)
i k , (F21b)

E [ g
DIR–F ,(ν)
ּh k Y(ν) ]  =  (FHtD(ν))hk   =  (FZ(ν))hk  , (F21c)

E [ g
ADJ–F ,(ν)
ּh k Y(ν) ]  =  (FHtD(ν))hk   =  (FZ(ν))hk  . (F21d)

When we take the mathematical expectations of the squares of both
sides of (F11a)–(F11d), we can clearly proceed as in (E22), mutatis mutandis,
and get, in each case, an equation of the form (E26).  The definitions
corresponding to (E23)–(E25) are respectively:

for DIR and DIR–F,46 (K)αβ  =  Kαβ  =  
Hαβ

2

Pαβ
 , (E23) ≡ (F23a/c)

(N (ν))αk  =  N
(ν)
α k   =  E [ (M(ν)

α k )2
 ], (E24) ≡ (F24a/c)

(J(ν))αk  =  J
(ν)
α k   =  D

(ν)
α k  [ ]2Z

(ν)
α k ּ–ּD

(ν)
α k ; (E25) ≡ (F25a/c)

for ADJ and ADJ–F, (K)αβ  =  Kαβ  =  
Hβα

2

Pαβ
 ; (F23b/d)

for ADJ,47 (N (ν))iα  =  N
(ν)
iα   =  E [ (M(ν)

iα )2
 ], (F24b)

(J(ν))iα  =  J
(ν)
iα   =  Hiα [ ]2(Ht)iα ּ ּ–ּH iα ּ–ּ2δiα ; (F25b)

for ADJ–F, (N (ν))hα  =  N
(ν)
hα  =  E [ (M(ν)

hα)2
 ], (F24d)

(J(ν))hα  =  J
(ν)
hα  =  Fhα [ ]2(FHt)hα ּ ּ– ּFhα . (F25d)

45 We get ((HT)tFT)γ0h
 = (FHt )

hγ0
.

46 (E25) ≡ (F25a/c) comes from (E16) and (E21) ≡ (F21):  (HH tD (ν))αk
 = (HtD (ν))αk

 – D
(ν)
αk  = Z

(ν)
αk  – D

( ν)
αk .

47 (F25b) comes from two applications of (E16):  (HHtH )
hα = (HtH )

hα – H
hα = (Ht )

hα – δ
hα – H

hα .
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Now, when we take expectations of the squares of both sides
of (F12a)–(F12d), proceeding as in (E29) and (E31), we get an equation
of the form (E32).  The definitions corresponding to (E30) are respectively:

for DIR, (K†)iα  =  K
†
iα  =  

Hiα
2

Rα
 ; (E30) ≡ (F30a)

for DIR–F, (K†)hα  =  K
†
hα  =  

Fhα
2

Rα
 ; (F30c)

for ADJ and ADJ–F, (K†)αk  =  K
†
αk  =  

(D
(ν)
α k )2

Rα
 . (F30b/d)

The equation (E33) applies to all the estimators:

(V (ν))ik  =  V
(ν)
i k   =  Var [ g

(ν)
ּi k Y(ν) ]. (F33)

Finally, the equations corresponding to (E34) are:

for DIR and ADJ, (W (ν))ik  =  W
(ν)
i k   =  (Z

(ν)
i k  – D

(ν)
i k )

2
, (E34) ≡ (F34a/b)

for DIR–F and ADJ–F, (W (ν))hk  =  W
(ν)
h k   =  ((FZ(ν))hk )

2
. (F34c/d)

From all this, it follows that, if the conditions (E27) and (E35) apply,
then the equation (E36) will apply in all four cases.  Consequently, we can
expand Theorem 1 to include all four cases.  This is done below.

THEOREM 2.  Given the four “infinite-series”ּestimators g
DIR ,(ν)
i k (Γ),

g
ADJ,(ν)
i k (Γ), g

DIR–F ,(ν)
h k (Γ), and g

ADJ–F ,(ν)
h k (Γ ), of the “augmented homogeneous”

type,48 satisfying the convergence conditions (E27) and (E35); the variances
of these estimators are given by the formula (E36); or, in detail,

Var [ g
DIR,(ν)
ּi k Y(ν) ]   =  ∑

α=1

m
ּ
ּ∑

β=1

m
ּ
ּ
H iα

2

Rα
 ((KDIR)t)αβ D

(ν)
βk  [ ]2Z

(ν)
βk ּ–ּD

(ν)
βk  – (Z

(ν)
i k  – D

(ν)
i k )

2
,

................................... (E37) ≡ (F37a)

Var [ g
ADJ,(ν)
ּi k Y(ν) ]   =  ∑

α=1

m
ּ
ּ∑

β=1

m
ּ
ּ
(D

(ν)
α k )2

Rα
 ((KADJ)t)αβ Hiβ [ ]2(Ht)iβ ּ ּ–ּHiβ ּ–ּ2δiβ  – (Z

(ν)
i k  – D

(ν)
i k )

2
,

....................................................... (F37b)

48  These are defined in terms of (F1a)–(F1d), by analogy with (D5) and (D6).
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Var [ g
DIR–F ,(ν)
ּh k Y(ν) ]   =  ∑

α=1

m
ּ
ּ∑

β=1

m
ּ
ּ
Fhα

2

Rα
 ((KDIR)t)αβ D

(ν)
βk  [ ]2Z

(ν)
βk ּ–ּD

(ν)
βk  – ((FZ(ν))hk )

2
,

........................................................ (F37c)

Var [ g
ADJ–F ,(ν)
ּh k Y(ν) ]   =  ∑

α=1

m
ּ
ּ∑

β=1

m
ּ
ּ
(D

(ν)
α k )2

Rα
 ((KADJ)t)αβ Fhβ [ ]2(FHt)hβ ּ ּ–ּFhβ  – ((FZ(ν))hk )

2
.

....................................................... (F37d)

We can now proceed as in (E38)–(E43), evaluating the expectations
conditional on Y(ν–1) instead of Y(ν).  Just as we got (E44) for the basic direct
estimator, we can obtain

Var [ g
DIR,(ν)
ּi k Y(ν–1) ]  =  ∑

α=1

m
ּ
ּ∑

β=1

m
ּ
ּ
H iα

2

Rα
 ((KDIR)t)αβ

× 
 



 



Var ּ[ּY(ν)
βk Y(ν–1) ּ] ּ–∑

γ= 1

m
ּ
ּ∑

δ=1

m
ּ
ּHβγHβδ ּCov ּ[ּY(ν)

γ k ,ּY
(ν)
δk Y(ν–1) ּ] ּ

– ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּH iγH iδ Cov [ Y(ν)

γ k , Y
(ν)
δk Y(ν–1) ], (E44) ≡ (F44a)

Var [ g
ADJ,(ν)
ּi k Y(ν–1) ]  =  ∑

α=1

m
ּ
ּ∑

β=1

m
ּ
ּ

1
Rα

 ((KADJ)t)αβ Hiβ [ ]2(Ht)iβ ּ ּ–ּHiβ ּ–ּ2δiβ

× 
 



Var ּ[ּY(ν)
α k Y(ν–1) ּ] ּ–ּ2∑

γ= 1

m
ּ
ּHαγ ּCov ּ[ּY(ν)

α k ,ּY
(ν)
γ k Y(ν–1) ּ]

 
 



+∑
γ= 1

m
ּ
ּ∑

δ=1

m
ּ
ּHαγHαδ ּCov ּ[ּY(ν)

γ k ,ּY
(ν)
δk Y(ν–1) ּ] ּ

– ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּH iγH iδ Cov [ Y(ν)

γ k , Y
(ν)
δk Y(ν–1) ], (F44b)
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Var [ g
DIR–F ,(ν)
ּh k Y(ν–1) ]  =  ∑

α=1

m
ּ
ּ∑

β=1

m
ּ
ּ
Fhα

2

Rα
 ((KDIR)t)αβ

× 
 



 



Var ּ[ּY(ν)
βk Y(ν–1) ּ] ּ–∑

γ= 1

m
ּ
ּ∑

δ=1

m
ּ
ּHβγHβδ ּCov ּ[ּY(ν)

γ k ,ּY
(ν)
δk Y(ν–1) ּ] ּ

– ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּFhγFhδ Cov [ Y(ν)

γ k , Y
(ν)
δk Y(ν–1) ], (F44c)

Var [ g
ADJ–F ,(ν)
ּh k Y(ν–1) ]  =  ∑

α=1

m
ּ
ּ∑

β=1

m
ּ
ּ

1
Rα

 ((KADJ)t)αβ Fhβ [ ]2(FHt)hβ ּ ּ–ּFhβ

× 
 



Var ּ[ּY(ν)
α k Y(ν–1) ּ] ּ–ּ2∑

γ= 1

m
ּ
ּHαγ ּCov ּ[ּY(ν)

α k ,ּY
(ν)
γ k Y(ν–1) ּ]

 
 



+∑
γ= 1

m
ּ
ּ∑

δ=1

m
ּ
ּHαγHαδ ּCov ּ[ּY(ν)

γ k ,ּY
(ν)
δk Y(ν–1) ּ] ּ

– ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּFhγFhδ Cov [ Y(ν)

γ k , Y
(ν)
δk Y(ν–1) ]. (F44d)

Clearly, we can now apply (E46), with the notation (E47) for each estimator,
to get, as in (E48):

for DIR,

V
(ν+1,ν–1)
k ּ   ≤  

1
wν

  
 



ּ∑
α=1

m
ּ
ּ∑

β=1

m
ּ
ּ ּ
maxi{Hiα

2}
Rα

ּ((KDIR)t )αβּ
 



 



1ּ+ּ∑
γ= 1

m
ּ
ּ∑

δ=1

m
ּ
ּHβγHβδ

+
 



ּ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּmaxi{HiγHiδ} ּ  V

(ν,ν–1)
k ּ ; (E48) ≡ (F48a)
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for ADJ,

V
(ν+1,ν–1)
k ּ   ≤  

1
wν

  

 


ּ

ּ
∑
α=1

m
ּ
ּ∑

β=1

m
ּ
ּּ

1
Rα

ּ((KADJ )t)αβ ּmaxi  



 

ּ Hּiβּ[ ]2(Ht)iβ ּ ּ–ּHiβ ּ–ּ2δiβ ּ

× 

 


 



 



1ּ+ּ∑
γ= 1

m
ּ
ּHαγ ּ

2

ּ+ּ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּmaxi{HiγHiδ} ּ V

(ν,ν–1)
k ּ ; (F48b)

for DIR–F,

V
(ν+1,ν–1)
k ּ   ≤  

1
wν

  
 



ּ∑
α=1

m
ּ
ּ∑

β=1

m
ּ
ּ ּ
Fhα

2

Rα
ּ((KDIR )t)αβּ

 



 



1ּ+ּ∑
γ= 1

m
ּ
ּ∑

δ=1

m
ּ
ּHβγHβδ

+
 



ּ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּmaxh{FhγFhδ} ּ  V

(ν,ν–1)
k ּ ; (F48c)

for ADJ–F,

V
(ν+1,ν–1)
k ּ   ≤  

1
wν

  
 



ּ∑
α=1

m
ּ
ּ∑

β=1

m
ּ
ּּ

1
Rα

ּ((KADJ )t)αβ ּFhβ ּ [ ]2(FHt)hβ ּ ּ–ּFhβ

× 

 


 



 



ּ1ּ+ּ∑
γ= 1

m
ּ
ּHαγ ּ

2

ּ+ּ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּmaxi{FhγFhδ} ּ V

(ν,ν–1)
k ּ . (F48d)

Now, we can define constants analogous to (E49):

CDIR  =  ∑
α=1

m
ּ
ּ∑

β=1

m
ּ
ּ 
maxi{Hiα

2}
Rα

 ((KDIR)t)αβ 
 



 



1ּ+ּ∑
γ= 1

m
ּ
ּ∑

δ=1

m
ּ
ּHβγHβδ

+ ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּmaxi{HiγHiδ}, (E49) ≡ (F49a)
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CADJ  =  ∑
α=1

m
ּ
ּ∑

β=1

m
ּ
ּ 

1
Rα

 ((KADJ)t)αβ maxi 



 

ּ Hּiβּ[ ]2(Ht)iβ ּ ּ–ּHiβ ּ–ּ2δiβ ּ

× 
 



 



1ּ+ּ∑
γ= 1

m
ּ
ּHαγ ּ

2

 + ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּmaxi{HiγHiδ}, (F49b)

CDIR–F   =  ∑
α=1

m
ּ
ּ∑

β=1

m
ּ
ּ 
Fhα

2

Rα
 ((KDIR)t)αβ 

 



 



1ּ+ּ∑
γ= 1

m
ּ
ּ∑

δ=1

m
ּ
ּHβγHβδ

+ ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּmaxh{FhγFhδ}, (F49c)

CADJ–F   =  ∑
α=1

m
ּ
ּ∑

β=1

m
ּ
ּ 

1
Rα

 ((KADJ)t)αβ Fhβ [ ]2(FHt)hβ ּ ּ–ּFhβ

×  
 



 



ּ1ּ+ּ∑
γ= 1

m
ּ
ּHαγ ּ

2

 + ∑
γ= 1

m
ּּּ
ּ ∑

δ=1

m
ּ
ּmaxi{FhγFhδ}. (F49d)

With these constants, we see that all four cases give rise to the inequalities
(E50), (E51), and (E54), if we suitably define the wν and λ, as in (E52) and (E53).

We have therefore proved the following powerful theorem.

THEOREM 3.  Given the four “infinite-series”ּestimators g
DIR ,(ν)
i k (Γ),

g
ADJ,(ν)
i k (Γ), g

DIR–F ,(ν)
h k (Γ), and g

ADJ–F ,(ν)
h k (Γ ), of the “augmented homogeneous”

type, satisfying the usual convergence conditions (E27) and (E35);
and given that the corresponding constants C are defined as in (F49a)–(F49d),

with wν  and λ  defined as in (E52) and (E53); then their variances satisfy
in each case the relation (E54).

This is the very favorable order of convergence κw alluded to in §B.49

49 Choose λ < 1 such that C/λ  = C/λ.  The total number of walks after ν sequential stages is then

w = C(ν+1) /λ, and the r.m.s. error (s.d.) is less than a multiple of λ( ν+1)/2 = λ( λ/2C)w.  Take κ = λλ/2 C;
then, clearly, 0 < κ < 1.
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G.   COMPUTATIONAL RESULTS

Preliminary computations on some simple examples have been very
encouraging.  Our first example is the (4 ×  4 ×  3) linear system (B1),
with matrices

A  = 1.04 0.02 –0.03 0.01  ,  B  = 1.03 8.35 0.05  ,  X  = 1 8 0 .
–0.04 0.99 –0.02 0.01 1.92 3.61 1.01 2 4 1

–0.02 0.03 0.97 –0.05 2.75 1.85 –0.94 3 2 –1

0.00 0.02 0.04 1.07 4.44 1.23 –0.02 4 1 0

...............................................(G1)

We take L = B and H = I – A.  The results of three independent runs, to obtain
sample estimates, with less than 0.1% relative s.d.,50 for all components of X,
both by the standard (“plain”) Monte Carlo method described in §C
and by the sequential method described above (with all w ν  = 4),
with “stopping probability” ϖ =  0.25,51 are tabulated below.  w is the total
number of random walks in each run, “STEPS” is the overall number
of random steps, which is proportional to the Monte Carlo work required
(both in finding random indices and in computing the corresponding
estimators), and ε is the greatest actual absolute error, among all components.

PLAIN MONTE CARLO SEQUENTIAL MONTE CARLO WORK RATIO

w STEPS1 ε ν w STEPS2 ε STEPS1/STEPS2

69,564 276,668 0.004 953 3 16 47 0.003 211 5,886.55

69,739 279,883 0.001 200 3 16 67 0.004 533 4,177.36

69,651 277,938 0.001 605 3 16 59 0.005 969 4,710.81

50 Since all components of X  are either 0 or not less than 1, we take the regular sample s.d.,
if the sample mean is less than 0.1 in magnitude; otherwise, we divide by the sample mean.

51 This is the probability R0  (more properly, R
<
0 ) or P

j0  (i.e., P
<
j0) of going to index 0.  In the present

sampling scheme, these all equal ϖ = 0.25, and all other R
j'
 and P

jj'
 = (1 – ϖ)/m.
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Our second example is the (6 × 6 × 4) linear-system (B1) with matrices

A  = 10.04 –0.06 0.03 –0.05 0.06 –0.04  ,  B  = 9.98 –10.28 –0.11 9.32  ,  X  = 1 –1 0 1 .
–0.06 9.96 –0.02 0.11 –0.08 0.15 10.06 10.38 10.68 24.18 1 1 1 2

0.03 –0.02 10.10 0.15 0.12 0.07 10.45 –10.05 21.46 45.75 1 –1 2 4

–0.05 0.11 0.15 10.12 0.03 0.02 10.38 10.12 30.99 82.85 1 1 3 8

0.06 –0.08 0.12 0.03 9.90 –0.03 10.00 –10.16 39.70 158.06 1 –1 4 16

–0.04 0.15 0.07 0.02 –0.03 9.95 10.12 10.12 49.98 318.62 1 1 5 32

...............................................(G2)

We now take q  =  
1

10.49 , L  = qB , and H  = I  – qA .  The results

of three independent runs, carried out exactly as for the first example,
are tabulated below.  The notation is the same.

PLAIN MONTE CARLO SEQUENTIAL MONTE CARLO WORK RATIO

w STEPS1 ε ν w STEPS2 ε STEPS1/STEPS2

478,447 1,911,350 0.002 666 3 16 47 0.003 004 40,667.02

476,542 1,907,739 0.006 363 3 16 67 0.001 938 28,473.72

479,328 1,918,531 0.002 150 4 20 73 0.000 049 26,281.25

Further experimentation (not shown here) indicates that one should work
with minimal values of wν (we take wν = 4 here) and rather large stopping

probabilities (we have ϖ  = 0.25).  The worst-of-three estimate, from
the above results, of the work ratio STEPS1/STEPS2 is greater than 4,710
for the first example, and greater than 26,281 for the (larger) second example.

The improvement in efficiency derived from the use of the sequential
method is quite remarkably impressive.

By (B3), TITER(m, n, s0)  =  O(m2ns0), (G3)

Since we use uniform probabilities,33  the time needed to determine
any random index γr is O(1);52 so the time to determine Γu is O(s).  The time
for computing each component estimate by summing (C8) or (C11) over s

52 We use (A13).  If we use the general formula (A12), the time is O(m ) instead.  See Footnote29.
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steps of Γ u  is also O (s).53    Thus, for plain MC, over cn  components
and w random walks, the total time is54

TMC,PLAIN(m, c, n, s1, w1)  =  O(cns1w1)  =  O(cn STEPS1). (G4)

For sequential MC, most of this is the same.  The estimates for one sequential
stage take time O (m n s w ) = O (mn STEPS ), because we are now forced
to take c = m , so as to have the complete matrix Y(ν) available to compute
the matrix D(ν).55  This computation takes time O(m2n).  Thus, the total time
for the sequential process with ν improvements is36

TMC,SEQ(m, c, n, s2, w2, ν) =  O(mnν(m + s2w2))

=  O(mn(νm + STEPS2)). (G5)

H.   APPROXIMATIVE SEQUENTIAL MONTE CARLO

When one considers problems with large values of m —
those for which [by (G3) and (G4), even if c = m] the Monte Carlo method
is more efficient than the classical methods—it becomes difficult to make (G5)
competitive, because of the first term, which is due to the computation
of D(ν).

There are two  ways to reduce the necessary labor:

(i) We can use Monte Carlo sampling to estimate the sums
in HY (ν ), which, by (D3), are the principal contributors to the labor
of computing D (ν).  The question is then whether the number of samples
required can be kept to o(m), thus effecting a saving.

53 Consider the direct estimate (the adjoint estimate is entirely analogous).  We begin with SUM = L
ik

and TERM  = 1.  At the step γ
r–1γ

r 
, we multiply TERM by Hγr–1γr

/ Pγr–1γr
 [Note:  if r  = 1, the factor

 is H
iγr

/Rγr
 instead] and store TERM.  Then we multiply TERM  by Lγrk

 and add the product to SUM .

On termination of the random walk, SUM  is the required estimate.  This takes two multiplications,
one division, and one addition per random step.

54 Since we use the infinite series expansion with automatic termination through the augmented
index set, the length s1  or s2  of our random walks is not necessarily related to the number
of classical iterations s0 .

55 Since the r  = 0 term of the (i , k) component estimate is D
{ν}
ikּ , this alone suffices to ensure

that all components of D {ν} have to be computed for each sequential stage.
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(ii) When the problem (B1) is a discretization of a continuous
problem [such as (B4a) or (B4b)], the solution X will also be a discretization
of a continuous function [such as X (ξ , η , ω ) or X (η , ω )].  The continuity
and differentiability of the solution—and therefore of the estimates Y(ν)—
and the analytic properties of the operator H  allow us to approximate

each column of Y(ν) on the basis of the components in relatively few (say c)
of the m  rows, by any of the usual methods of numerical approximation,
such as classical interpolation, piecewise-polynomial splines, or least-square
fits.  The computing labor will then be reduced from O(mn(νm  + STEPS2))
to O(cn(νc + STEPS2)), since we no longer need c = m, but with the additional

labor, Jν, of approximating, at each sequential stage, n full columns of Y(ν),
each from c values.  Clearly, whatever is the chosen formula, there will be
a constant K1 (denoting setting-up labor at each of the c rows where Y(ν)

is known) and another constant K2 (denoting work at each of the m  – c
interpolated rows), such that

J  =  n[c(K1 – K2) + mK2], (H1)

whence T
APPROX
MC,SEQ(m, c, n, s2, w2, ν)  =  O(n[ν(m + c2) + c STEPS2]). (H2)

Some recent calculations by the author, using method (i)—
MC sampling—have been very successful.  Our third example has arbitrary
m, and n = 1.  Where possible, we used c = 20.  We begin with the matrices H
and X:

Hij  =  
 


 
1.12ּ–ּ0.72ּ

i ּ–ּ1
m ּ ּ 


 
1.12ּ–ּ0.72ּ

j ּ–ּ1
m ּ

m  (H3)

and Xi  =  
1

2.25ּ–ּ1.45ּ
i ּ–ּ1

m

 , (H4)

and compute the corresponding matrix L   by (B7), for any given m .  This
yields a family of comparable linear systems.  These were solved, for m = 500,
m = 1,000, and m = 2,000, with the same accuracy of 0.1% as before, using the
Jacobi and Gauss-Seidel iterations, plain MC, exact sequential MC, and the
sampling method (i) above.  The tabulated criteria were the CPU times used
on a Cray Y-MP supercomputer to obtain the solutions.  The results are
tabulated below.
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METHOD m = 250 m = 500 m = 1,000 m = 2,000

J ACOBI 1.5979 sec. 6.1276 sec. 23.9797 sec. 96.0721 sec.

GAUSS-SEIDEL 1.0979 sec. 4.1595 sec. 16.2632 sec. 64.8932 sec.

PLAIN MC 21.4261 sec. 25.1242 sec. 21.3617 sec. 22.3789 sec.

EXACT SEQUENTIAL MC 0.5382 sec. 1.5106 sec. 4.8386 sec. 17.0154 sec.

SAMPLING SEQUENTIAL 0.4310 sec. 0.8305 sec. 1.6382 sec. 3.2796 sec.

The agreement with the asymptotic forms of (G3)–(G5) and (H2) is remarkably
good, as is illustrated by the quadratic and linear least-square fits shown
in the graph below.

250 500 1000 2000 3000
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220

Time (sec.)

Jacobi

Gauss-Seidel

Plain MC (c = 20)

Exact Seq.MC

Sampled Seq.MC

m

Both of the algebraic (iterative) methods take time O(m2).  For every m,
J a c o b i ’ s  m e t h o d  converged in  s 0  =  13  i tera t ions
and the Gauss-Seidel method in s0 = 9.  Plain MC, with c = 20 and stopping
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probability56 0.02, took about the same number of steps for all three values of
m , and therefore took approximately constant time (in accordance
with (G4)).  Exact sequential MC (as used for the two earlier examples) worked
best with stopping probability57  0.33 and all w ν  = 100.  For every m ,
convergence was achieved in ν  = 3 sequential improvements.  The time
is again O(m2) (as predicted by (G5)).  Finally, sampled sequential MC takes
time O(m), for fixed c = 20 (comparable to (H2)).

The advantage of the sampled sequential MC method over the exact
sequential method is evident, even for m  ≤ 2,000.  For larger m , it becomes
increasingly apparent.  If we take c = m, as we did for the first two examples,
then the time required by plain MC is multiplied by m / c ; and when
we compare the sampled sequential method with plain MC, we get
a work-ratio of 682.37 for this problem.

The main questions remaining here are (a) when  (i.e., under what
conditions  on the matrices L  and H ) is sampling of the terms of HY (ν )

effective, and (b) how  should we adjust the number of terms sampled
at each stage to maximize the efficiency of the sampled sequential MC
scheme.  Since the sequential schemes are essentially iterative methods,
which tend to adapt to errors in each iterate by only slowing down the overall
convergence, so long as the approximations are good enough; we have
to investigate both the extent of the region of stability  of the method
and the possibility of optimizing any stable scheme.

Earlier calculations by the author, using method (ii) above with very
rough approximations, indicate that it is quite effective.58  This should
certainly be followed up.  Here we have much less detailed information,
so far, but the concept is very promising, and we know that very many
practical applications (being intrinsically s m o o t h  problems, usually
with solutions in Cr, with r ≥ 2) will lend themselves to this approach.
It is important to develop more mathematical control of the situation,
and to devise stable, efficient, optimally convergent schemes.  Any progress
will require an examination of various schemes for the interpolation

of all the components of the m-vector Y(ν) from only c known component,
and the corresponding approximation of the matrix H.

56 See Footnote50.  For plain MC, it was found that larger probabilities were counter-productive,
since they required more computer time.

57 See Footnote50.  Note that large values of ϖ were effective for the first two examples (though note
that ϖ = 0.25 is comparable to 1/m , in these cases, with m = 4 andm  =  6), and also for the sequential
schemes applied to the third example; but ϖ = 0.02 worked better there for plain MC  (but note
that, in this case, we had m  = 250, m = 500, m  = 1,000, and m  = 2,000).

58 See HALTON, (17) and (26).
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We do not know the exact criteria for the applicability of the two
approximative sequential methods to linear problems.  This needs
to be investigated before valid recommendations can be made.  Furthermore,
in the important special case of radiation diffusion (particle transport)
with reactions (e.g., fission and fusion reactions), further analysis is needed
to get accurate time estimates, since the matrix H takes the form of a product
of matrices corresponding to free flight between collisions and to reactions
on collision.

I.   SEQUENTIAL MONTE CARLO FOR NON-LINEAR SYSTEMS

It is of interest to investigate the extent to which the same approaches
can be applied to non-linear problems.  It would seem to be a relatively easy
extension.  There is a flavor of Newton’s method to it.  First, a local
linearization yields an approximation.  Unlike the classical Newtonian
iterations, the Monte Carlo estimates will (and need) not be exact solutions
of the linearized problem.  Each step leads us to a new location (by going
from Y(ν) to Y(ν+1)), where the local linearized problem is essentially a change
in the values of the matrices L and H.  There, we obtain a new Monte Carlo
iterate; and so on.
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