Parallel Architectures and Algorithms
for Real-Time Synthesis of High
Quality Images using Deferred Shading

TR92-034
September, 1992

Brice Tebbs
Ulrich Neumann
John Eyles
Greg Turk
David Ellsworth

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall

Chapel Hill, NC 27599-3175 :

UNC is an Equal Opportunity/Affirmative Action Institution.

Parallel Architectures and Algorithms for Real-Time Synthesis
of High Quality Images using Deferred Shading

Brice Tebbs, Ulrich Neumann, John Eyles, Greg Turk and David Ellsworth

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract

High-end graphics workstations provide us with the ability o interactively display polygonal models of high
geometric complexity. It is our hope that future graphics workstations will also provide us with shading models
that go beyond Gouraud shading of polygons, This paper describes performance improvements that result from
storing a polygon's shading parameters at each pixel and deferring the shading calculations until all the polygons
have been processed. One benefit of this approach is that the shading calculations are only performed on the pants of
a surface that are visible, which means that this method becomes more attractive as shikling models become more
complex and as the depth complexity of the scene increases. We also show how this technique maps onto different
parallel architectures for high performance rendering. In particular, we describe how this methed can be used o
produce real-time images that incorporate Phong shading and procedural texture mapping on Pixel-Planes 5. Pixel-
Planes 5 s a massively parallel SIMD machine that is under construction at UNC. Since the processing elements of
Pixel-Planes are fully programmable, new shading models can be incorporated in the sysiem without any hardware
modifications.

Introduction

Both the complexity of geometric models and the surface propertics of objects contribute 1o the visual richness
of computer generated scenes. Polygons are the most commonly used geometric elements for graphical models and
much effort has been directed wowards building hardware to rapidiy display large collections of polygons [Fuchs 83]
[Akeley B8] [Apgar B8] [Poumesil 89]. However, most of the hardware architectures developed so far are unable 1o
generale images with complex shading models in real-time.

This paper describes an approach 1o high-quality rendering thit we call deferred shading, While this approach is
not new, we would like o explore its application o the design of real-time graphics systems. To illusteate this
technique, we desceribe how we have used this approach to improve the performance of Pixel-planes 5 [Fuchs 89).

Deferred shading involves two steps: rasterization and shading. For our purposes rasterization includes scan-
conversion, visibility determination, and the loading of geometric information, such as surface normals, into each
visible pixel. Storing this information requires additional memory per pixel. This may seem impractical at first but
currently available graphics systems already have as many as 96 bits per pixel [Akeley 89] (A recently announced
machine has =200 bits per pixel but full dewils are corrently unavailable). Once rasterization is complete, the
information stored at each pixel is wsed 10 compute the pixel's color based on the shading model. We believe this
technique can be used effectively on any graphics system with the following characteristics:

= Deep frame bufler >100 bits per pixel
= High bandwidth into the frame buffer
» Pixgl-level paraliclism

Related Work

Deferred shuding is not new (o rendering software. In a scan-line polygon renderer [Watkins 707 the nearest

surface at a given pixel is found and then only the shading for thit front-most surface is computed at the pixel. Other
examples of deferred shuding include Androw Glassper's Lae-Binding Renderer [Glassner 88] and Ken Perlin's Pixel
Swream Editor [Perlin 85), in which mformation about suifaces such as surface 1D, depth and a normal vector are
saved for the entire image, The only communication between renderer and shader is the image description that
ingludes this surface information lor cach pixel.

Deferred shading was part of the triangle processor system proposed by Deering et. al. [Deering 88]. ln this
archirecture polygon rasterization is pesformed by passing a sueam of pixels through a pipeline of iriangle processor
chips that perform depth comparnisons und scanning out the closest surface at each pixel. The system defers shading
calculaon until afler scan conversion by passing the depth, a surfuce normal and color description for each pixel 1w a
collection of chips called the Normal Yecior Shaders. The Normal Vector Shaders compute the full Phong lighung
model based on the surlace normal and color, Unlorunagely, the Normal Vector Shaders were 1o be hardwired for 4
specific lighting model and would have been unable 1o take [l advaniee of some of the deferred shiding conceprs
and algorithms that we present in this paper,

Advantages of Deferred Shading

An obvious benelit of deferred shading is thit only those pixels that are visible in the final image are shaded.
Computing the Gouraud shading model is so fus1 that current graphics workstations can afford to shade all the pixels
i 4 polyzon even if many of the pixels will Luer be obscured. However, us scene depth complexity increases and as
shading models become more complex, this becomes a substantisl amount ol wasted effort.

For certain classes of parallel hardwaire, deferred shading enjoys a sccond benelil. For many scenes the shading
computation will be the same at each pixel. We call the degree 10 which this is wrue the skading coherence of the
scene, For example, a scene i which all of the surfaces are shaded esing the Phong lighting model would exhibil
high shading cobierence, Parallel machines achicve high utilizavon when performing o large number of similar
computations, This means that scenes with high shading coherence can utilize mussive parallelism at the pixel level
even if the geomelric operations required for rasterization are more dilficult o parallelize.

An additional advantage of this method has emerged as we developed the actual software for the Pixel-planes 5
machine. The separation of geometnic computabon lmm shading colculation means that we can implement new
geometric primitives without having 10 write new shading code. 11 we are able 1o load the correct surface geomeltry
information into the pixels, then all of the shaders we have wrinen for polvgons will work for other geometric
primitives such as surfaces and sphires

Architectural Considerations

We belicve thal as scene complexities increase and hegher quality shading models are used, deferred shading will
become more popular for real-time image synthesis. Our goal is o design systems which achieve 30Hz or greater
update rates with advanced lighting models and texture maps. hi this s¢ction we discuss ways this might be achieved
using different organizatons of processors lor shading computations.

The shading computation fora pisel could be done by a pipeline of processors, Bach processor would complete
on step of the shading computation for cach pixel. Unfortunately, u very deep pipeling would be required to perform
complicated shading models ona = 1M pixel frune bulTer at relvesh rutes. Such a pipeline would be difficult w design
and even harder o program for a varicty of shading algorithms, This is important since highly realistic shading
algorithms cin be implemented with many different varistions [Cook 84,

A MIMD array of processors where cach processor shades a pixel at o time would allow for greater parallelism,
We could continug 10 add more processors until we Tad enongh pet the shading rates we needed. This option would
also allow for easier programming af new shading algoricims, A MIMD architecture could achieve good performance
even for scenes with little or no shading coherence. However, we beligve that the shuding coherence m most scenes
will make the cost of multiple control units for the MIMD processors an unnegessary expense.

T

A SIMD processor armay could be used to explost high shading coherence al a lower cost than a MIMD array,
This is the architccture that has been used i both the Pisel-planes 4 and Pixel-plancs 3 designs, The SIMD
processor arrays can shade 236K pixels simulwncously. Since Pixel-planés 5 employs several STMD renderers, it can
be considered a hybrid MIMD-SIMD architeciure, This enables it e more efficiently handle images with lower
shading coherence,

Algorithms

We have been developing deferred shoding alponthins for the Pixel-Plunes 5 graphics architecwure , Pixel-Plancs
5 15 a heierogeneous multiprocessor [Fuchs 891 A Tully configured sysiem containg o MIMD set of 16 fust floating
point engines called graphics processors Tor performing gecmetrie ransformations and has 16 SIMD arrays called
renderers for performing polvgen rasterbeation. Each renderer 15 o square array of 128x128 processing elements
called pixel processors, and each of these pixel processors is o 1-bit ALU that runs at 40Mhz and has 208 bits of
memory. On Pixel-Plunes 5, deferred shuding reduces the computsiional burden on the graphics processors and lully
utilizes the quanter million pixel processors whose aggroguie computing power completely overshadows that of the
16 graphics processors,

The remainder of (his secton deseribes bwo of e deterred shading algorithms tha we have developed for Pixel-
plangs 5. They are all currently running an w seltwaee st lior,

Phong Shadi

We defer the computation of & hghung modcl by storing the surlice normal and shading parameters at cach pixel
duning rasterization, We have found that 100 bits per pdel is adequate to-siore this information. For Phong shading
the surface normals must be interpolated [Phong 73] Tlus interpolation process is simple and requires only 3 adds
per pixel using forward dilferencing,

Before the actual lighting model can be evaluated the interpolated normal vectors must be normalized. This
requires the computation of a square oot wid o divide st <ach el The noemal veclor and eyve vector are then used
1o compute the normalized reflection vector at cach pixel, Evaluation of the lighting equation may now be
performed. 1T, as is oflen done, we approximation the ove vector il light vector &5 constants across all pixels, each
pixel requires 2 dot products; 3 wlditions, 12 multiplicatons plus the exponcntiation for the specalar term.

The general lighting model additionally supports positional and spot lights with sott edges:

Intensity =[Amb + (LN} * (LoD)""* Light]* K + (Loi)™* (LeD)™™ » Light = K,

Where:
Amb = Ambient light intensily L = Darecuon o light source
Light = Light source intensily D = Spol lizht direction
Ky = Surface diffuse coeflicient N = Surfuce normal veclor
K = Surface specular coetlicient R = Relection vector
spec = Surface speculur power cone = Spot light beam concentration

While infinite distance point light sources allow simple approximations, for positiony] and spot light sources.
the correct light vectors at each pixel’s surfuce must be compuied. This can be done by applying the inverse of the
perspective ransformation 1o the screco-space coordinane of the surface sampled at cach pixel. The true eve veclor
and any number of light vectors may now be computed at cach prxel for use in the shading equation.

A Pixel-Planes 5 renderer can interpalate the three components of the surface noemal for an entiré polygon in
2.25 ps: (A complete trangle Bs rasteriacd in under-s ws) Normalization s done with a Newton iteration and
requircs 154 us. The simple case of eye my approximation and reflection ray computation requires 35 ps.

Voad

Evaluation of the shading equation for an infinite distance light source (lighy veetor is constant) requires 229 us for a
specular power of 128, Adding an ambicnt light source adids 49 js ad brings the total cost for this case to 462 ps.
For the above case, a [ully configured Piscl-Planes 5 system can compute the phong shading for an entire
1280x1024 image in 2.31 msee. (Now that cach remderer i compuling the lighting model five umes: once for each
of five pixel regions.) Performance stausues lee a Piscl-Blines § renderer (assuming spec and cong = |28) are
broken down by sk and summarnized below.

Normalize Compuite cyo und Eviluie lighting equation
surface normals reflection vector for cach tvpe of light
154 us Approx, eye vevtor = 33 ps Ainbicnt source = 44 ps
True cve veclor= 31018 Infinite point source = 229 pg

Positons] source = 504 115
Spot seureg = 640 1y

Texture Mapping

Texture mapping has been imponant 1o high-gualite smage synthesis for many years [Catmaull 74]. With the
exception of multi-million doflar Might sunulatrs, few systems have meorported the necessary hardware to do real-
time texturg-mapping. Since extensive culvulalions e necessary o remder properly lillered textures, we beliove that
deferred shading is an ideal approach for wes e mappany seenes with bigh depth complexity or for texturing any
seene with procedurally defined rextures. Chlwe surbee Cfots sucls us bump mapping can be done using deferred
shading when the lighting cakculations are ulso delemad.

The first sicp in exiere-mapping is 0 compoe e wextere coordinates. o and v Tor ¢ach pixel 1o be 1extured.
{/ and v can be expressed as the rato of two-Pivarise lincar espressions im sgreen space |[Heckben 867 [Fuchs 85):

u_.-h+['i:~-f.' II_!'J.\-17\+I'-'
Gx = Hy #1 G+ Hy + 1

With forward differencing, these equations cin be computed am o sean-line basis with 3 adds and 2 divides per
pixel. With deferred shading only the 3 adds ure perlonned dunng rusterization: the divides can be computed for the
visible pixels in paralle| after rasterizition

We have concenirated on procedural Wexiure mappin g for sovenil regsons:. Procedural texiures typically have
smail memory requirements [Perlin 8300 they ane st on our sysiem as comparzd to image 1exiures; they are casily
extended 10 3-d without a dramatic increuse m nemony usieecs ol ey cm be self-Mlering [Gardner 88]. We hope 1o
animate them o produce real-time moving seene backerounds such as waving grass, moving ¢louds, or moving
waves. Recently, procedurl textare mappog lis heen wsed 0 denerne high-guality images of intensely geometri¢
abjects such as fur [Perlin 891

Gardner has used a product of two scts of cosine waves with eross-coupled phase offsets o generate realistic-
looking textures for natural scenc generation [Cardner 83) We have implemented this technique using quadratic
approximations o the cosine functions on our current Pracl-Planes 4 prototype and developed a wol that allows the
user 1o explore the space of possible Gardner testures o real-tine. A timing analysis of Gardner textures for Pixel-
Planes 5 shows the advantage of massive parallelism ot the pixel level, Typical interesting textures require $ cosine
calculations for each of the two sets of Cosines comprisiag the wature lunction. Compuling each cosine term in g
sum requires 5 multiplies and 3 additions. Pisel-Plunes 5 can compute the complew textare for a 128x128 renderer
in about 0.5 msee. This meuns that we can do he shading caleulitions to texwre map an entire 1280x1024 display
in 2msce on a fully configwed sysienn Sioce ditierem ey ures wre compited with the same lormula we can compute
textures for sky and terrain pixels simultancousty by lombing dillerent parameters for pixels with different textures,
This allows us 10 mainuin high shading colierenue even thoneh we may have several dilferent lexture maps,

Ineractive displays are particularly sensitive o smpling aulacts, since amifacts sparkle and dance over moving
palygens. Unfortunately, simple super-simmpling i screen spnnce s nel sullcient to and-aliss texture maps
[Heckbert 86], The caloubations o perlosn (his Sherme can also be deterred if enough information is-saved in the
frame buffer wo compute an estimate ol (he b siee ol wxdure pisels and sereen pisels. This informauon could
take the form of partial derivatives or values lor o amd v o the pisel comners. Image exiwures can then be ant-
aliased using any of 4 number of swadied wohmgues [Wilkuus 83] | Craw 831 Procedural iextures can be anti-aliased

when the texiure samples arc computed by omitting the high-frequency components of the function [Gardner 83].
We have concentrated on this and hiave achieved good results anti-aliasing Gardner textures using clamping [Norton
821,

We are currently implementing image textures using the MIPMAP anti-aliasing technigue [Willams 83|, which
should give interactive speeds for small extures (33 ms for one 64x64 exture). We plan o implement a least two
other algorithms with defemed shading: bump mapping [Blinn 78] and fog.

Summary

We have described an approach to designing graphics systems for real-time high quality image generation. The
technigue has the advantage that complicated shading algorithms need only be computed for the visible pixels. We
have shown that SIMD parallel architectures work well with a deferred shading system, and show how 10 implement
Phong shading and procedural texture mapping.

References

[Akeley 88] Akeley, Kurt and T. Jermoluk, “High-Performance Polygen Rendenng,” Computer Graphics,
22(4), (Proceedings of SIGGRAPH 88), pp. 239-246.

[Apgar 88] Apgar, B., B. Bersack, A, Mammen, “A Display System for the Stellar Graphics Supercomputer
Model GS1000," Computer Graphics, 22(4), (Proceedings of SIGGRAPH '88), pp. 255-262.

[Blinn 78] Blinn, I. F., "Simulation of Wrinkled Surfaces,” Computer Graphics, 12(3), (Proceedings of
SIGGRAPH '78), pp. 286-292.

[Catmull 74] Catmull, Ed, “A Subdivision Algorithm for Computer Display of Corved Surfaces,” Ph.D.
Dissertation, Universily of Utah, December 1974,

[Cook 84] Cook, Robert L., “Shade Trees,” Computer Graphics, 18(3), (Proceedings of SIGGRAPH '84), pp.
223.232,

[Crow 84] Crow, F., “Summed-Arca Tables for Texture Mapping,” Computer Graphics, 18(4), (Proceedings
of SIGGRAPH '84), pp. 207-212.

[Dearing 88] Deering, M., 5. Winner, B. Schediwy, C. Duffy, N. Hunt, “The Triangle Processor and Normal
Vector Shader: A VLSI System for High Performance Graphics,” Computer Graphics, 22(4),
(Proceedings of SIGGRAPH '88), pp. 21-30.

[Fuchs 85] Fuchs, H., J. GoldFeather, 1.P. Huliquist, S. Spach, J. Austin; F.P, Brooks, Jr., 1. Eyles, and J.
Poulton, “Fast Spheres, Textures, Transparencies, and Image Enhancements in Pixel-Planes,” Computer
Graphics, 19(3), (Proceedings of SIGGRAPH '85), pp. 111-120,

[Fuchs 89] Fuchs, H., 1. Poulion, I. Evles, T. Greer, J. Goldfeather, D. Ellsworth, 8. Molnar, G. Turk, B,
Tebbs and L. Israel, “Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System Using Processor-
Enhanced Memonies,” Computer Graphics, 23(3), (Proceedings of SIGGRAPH 89), pp. 79-88.

[Gardner 85] Gardner, Geolfry Y., “Visual Simulation of Clouds,” Computer Graphics, 19(3), (Proceedings of
SIGGRAFH 85), pp. 297-304.

[Gardner 88] Gardner, G., "Functional Modeling of Natural Scenes, Functional Based Modeling,” SIGGRAPH
Course Notes, vol. 28, 1988, pp. 44-76.

[Glassner 88] Glassner, Andrew, " Algorithms for Efficient Enage Synthesis,” Ph.D. Dissenation, University of
Narth Carolina at Chapel Hill, 1988,

[Heckbert 86] Heckber, Paul §., “Survey of Texture Mapping,” IEEE Computer Graphics and Applications,
611}, pp. 56-67.

|Morton 82] Norton, Alan, “Clamping: A Method of Antialiasing Textured Surfaces by Bandwidth Limiting in
Object Space,” Computer Graphics, 16(3), (Proceedings of SIGGRAPH '82), pp. 1-8.

[Perlin 85] Perlin, Ken, “An Image Synthesizer," Computer Graphics, 19(3), (Proceedings of SIGGRAPH
"85), pp. 151-159.

[Perlin 89] Perlin, Ken and Eric M. Hoffert, “Hyperexture,” Computer Graphics, 23(3). (Proceedings of
SIGGRAPH "89), pp. 253-262,

[Phong 73] Phong, B.T., “lllumination for Computer-Generated Pictures,” Ph.D. Dissertation, University of

Utah, Salt Lake City, 1973,
[Patmesil 89] Potmesil, Michael and Eric M. Hoffert, "The Pixel Machine: A Parallel lmage Computer,”
Computer Graphics, 23(3) (Proceedings of SIGGRAPH '89), pp. 69-T8.
[Watking 70] Watkins, G., “A Real-Time Visible Surface Algorithm, ™ University of Utah Computer Scieace
nt, UTEC-CS5¢-70-101, June 1570, NTIS AD-762 004,
[Williams 83] Williams, Lance, “Pyramidal Parametrics,” Computer Graphics 17(3) (Proceedings of
SIGGRAPH '83), pp. 1-11.

