
–1–

Transforming High-Level Data-Parallel
Programs into Vector Operations†

Jan F. Prins and Daniel W. Palmer
Department of Computer Science, University of North Carolina

Chapel Hill NC 27599-3175 (919)-962-1913
{prins,palmerd}@cs.unc.edu

Abstract
Fully-parallel execution of a high-level data-parallel language based on nested sequences,
higher order functions and generalized iterators can be realized in the vector model using a
suitable representation of nested sequences and a small set of transformational rules to
distribute iterators through the constructs of the language.

1. Introduction
Currently, development of parallel programs often takes place in low-level machine-specific
programming languages since these are typically the only languages supported on parallel
machines. In this setting, prototyping is a painful process, since small changes in the high-
level approach precipitate a flood of changes in low-level details. To make things worse, little
or none of this effort may be portable to other settings.

Proteus1 is a high-level language designed for the prototyping of parallel computations
[MNP+91, NP92] . A Proteus program specifies parallelism in a high-level and machine-
independent fashion. The parallel semantics of such a program can be simulated
sequentially, to observe and assess its behavior. Actual parallel execution on a parallel
machine, or class of machines can be obtained by directed transformation of the prototype to
place it in a restricted form that can then be translated directly to a low-level (possibly
machine specific) programming language. The transformation and translation are managed
by the KIDS [Smith90] interactive program development system. In this fashion, a high-level
prototype parallel computation can be experimentally developed and subsequently evolved
into a parallel program executing on a parallel machine.

In this paper, we are concerned with the directed transformation of data-parallel Proteus
programs. The data-parallel constructs of Proteus permit the construction and manipulation
of aggregate values (sets or sequences) and, in particular, include the ability to apply a
function in parallel to all elements of an aggregate value to yield an aggregate result.

High-level programming languages like APL [Iver62] and SETL [Schw70] pioneered the
inclusion of data-parallel constructs to gain expressive power by bringing the languages
closer to familiar and powerful mathematical notations. The aggregate in the original APL
language was the flat array, an array whose elements are all scalar values. To obtain fully
general data-parallelism, in which any function can be applied in a data-parallel fashion,
requires nested aggregates, in which elements may themselves be aggregates. A nested array

† This work supported in part by DARPA/ISTO Contract N00014-91-C-0114.
1The Proteus language is a component of the DARPA CPL (Common Prototyping Language) effort.

–2–

foundation for APL was described by [More79], and can be found in NIAL, APL2, J, SETL
and FP [Back78]. Although data-parallel programs are conveniently specified in these
languages, they can only be executed sequentially due to the complex and fine-grain
synchronization requirements in a parallel implementation of general data-parallelism. Thus
these languages are not parallel programming languages.

Languages in which data-parallelism is the mechanism used to specify actual parallel
computation such as *Lisp, MPL, and DAP-Fortran have historically targeted specific SIMD
parallel computers. More recent languages like CMFortran and C* are portable across
various SIMD and MIMD machines. The aggregates in these languages are restricted to flat
arrays distributed in a regular manner over processors in an effort to predict and minimize
communication requirements in execution [KLS+90, Prin90]. Because aggregates are flat,
only a limited class of arithmetic and logical operations may be applied in a data-parallel
fashion.

Consequently, using these languages, it is not possible to directly express nested parallelism
–the data-parallel application of a function which is itself data-parallel. For example, a data-
parallel sort function can not be applied in parallel to every sequence in a collection of
sequences. Yet this is the key step in any parallel divide-and-conquer sorting algorithm.
Indeed, there is extensive evidence that nested data-parallelism is an important component in
the compact expression of efficient parallel computations [Blel90, Skil90, MNP+91]. The
difficulty is not in the languages, since general data-parallel languages can easily express
nested parallel computations. Rather the problem lies in the difficulty of translating nested
parallelism to achieve fully-parallel execution.

A major step in this direction was developed in [Blel90] where it was shown that for nested
sequence aggregates subject to a restricted set of operations, an equivalent vector model
program operating on partitioned (segmented) flat sequences can be derived. The vector
model is efficiently executed on a wide class of parallel machines. Building on these
techniques, the transformations presented in this paper give a simple mechanism to transform
the fully general data-parallelism available in Proteus programs into the vector model.

Related work

Many researchers have addressed the problem of deriving parallel programs by
transformation. In this paper, we are concerned specifically with the translation of data-
parallelism, so we restrict our review of related work to that concerned with the
implementation of nested parallelism.

CM Lisp [SH86] and Paralation Lisp [Sabo88] are fully-general data-parallel languages
implemented as high-level programming languages for the Connection Machine. However,
implementations of these languages apply nested data-parallel operations in a serial fashion.
McCrosky [McCr87] describes a way to represent the nested arrays of APL and gives
implementations for APL primitives on a SIMD execution model, but nested parallel
execution is also not addressed. Philippsen [PTH91] describes an implementation of nested
parallelism in Modula-2* for a SIMD computer, but Modula-2* has no data-parallel nested
aggregates. So while nested parallel operations may be applied, the programmer must

–3–

orchestrate their parallel access to the appropriate portions of a shared global variable. This
requires extensive bookkeeping and use of low-level facilities; thus, we believe that the
expressive utility of nested parallelism in this setting is limited.

In [BS90] it is shown how to compile a subset of Paralation LISP into vector model code.
More recently, the nested vector model language NESL [Blel92] has used similar techniques
to yield vector model code. Compared to these approaches, the translation of Proteus
includes translation of function values (which are critical elements of the higher-order data-
parallel style), and a more general definition of the iterator construct (it includes reference
indexing) than that found in Paralation LISP. A key contribution of this paper, consistent
with our aims for parallel program development by refinement, is the transformational
approach to the translation.

The remainder of this paper is organized as follows. The next section gives a subset of
Proteus notation. Section 3 describes the representation of nested sequences in the vector
model and their basic operations. Section 4 gives the transformation and translation rules.
Section 5 applies the rules to a simple example. We conclude with implementation status.

2. Data-Parallel Expression Language
We describe a subset P of Proteus that can be transformed for fully-parallel execution. This
subset is restricted in two ways. First, the types of values and operations in Proteus are
restricted to simplify the exposition. For example, set-valued aggregates are not considered,
the set of scalar types is limited, and only a small number of operations on sequences are
provided. Extension of these restrictions is straightforward. Second, the subset is purely
functional; hence the Proteus notion of state is not addressed. To achieve programs that meet
this restriction, prior directed transformation steps may be required. These restrictions,
however, are not overly limiting because the subset is highly expressive.

The types of P consist of scalar types, arbitrarily nested sequences, tuple types and function
types. More precisely the types in P are generated by the following CFG:

Τ ::= Int | Bool | Seq(Τ) | (Τ × ... × Τ) | (Τ → Τ)

In contrast to data-parallel languages that do not distinguish between tuples and sequences,
the sequences in P are homogeneous. This homogeneity allows expressions in the Proteus
subset to be fully typed up to the level of parametric polymorphism and the translation of
nested parallelism. Expressions in P are composed using the constructs in Table 1.

construct meaning

(e1)(e2) application of function value e1 to argument e2

fun (x) e λ−abstraction of body e with parameter x

let x = e1 in e2 value of e2 with x bound to value of e1

if b then e1 else e2 yields e1 if b is true else yields e2

Table 1. Basic constructors of P

A small number of basic functions predefined in P are given in Table 2; other functions can
be constructed in terms of these basic functions.

–4–

name notation signature

scalar functions +, –, ==, etc. α → β (where α, β ∈{Bool, Int})
tuple_cons (e1, ..., en) α1 × ... × αn → (α1 × ... × αn)

tuple_extract e.i (α1 × ... × αn) × Int → αι
seq_cons [e1, ..., en] α × ... × α → Seq(α)

seq_extract e1[e2] Seqk(α) × Intk → α
seq_upd update(e1, e2, e3) Seqk(α) × Intk × α→ Seqk(α)

length #e1 Seq(α) → Int

range [e1 .. e2] Int × Int → Seq(Int)

restrict restrict(e, b) Seq(α) × Seq(Bool)→ Seq(α)
combine combine (b, e1, e2) Seq(Bool) × Seq(α) × Seq(α)→ Seq(α)

Table 2. Basic functions of P

The index origin for sequences is 1, hence V[1] is the first element in sequence V. The
operation restrict (V,M) with #V = #M yields V with all elements corresponding to false
values in M removed. If R = combine (M,V,U) where #M = #V + #U, then restrict (R,M) = V

and restrict (R, ~M) = U (here ~M denotes the elementwise complement of M).

Global function definitions are written funּf(x)ּ= eּ. A function definition with multiple
parameters such as fun f(x1,..., xn) = e is a syntactic abbreviation for the definition

fun f(x) = let x1 = x.1, ..., xn = x.n in e

where x has the appropriate tuple type. Note that the data-parallel version of a multiple
parameter function also expects a tuple as input. The tuple is made of sequences of the
proper types. To simplify issues with non-local references, we restrict function values to be
fully parameterized λ-abstractions.

The remaining constructor in P is the iterator which is the source of all data-parallelism. Its
form is:

[x ← d: e]

where x is an identifier, d is a sequence valued expression of type Seq(α), and e is an
expression of type β with the assumption that free occurrences of identifier x have type α.
The result is a value of type Seq(β) defined as follows:

∀k ∈1..#d: [x←d: e][k] ≡ e()d[k]
x

This definition gives the value of an arbitrary element of the result independent of the values
of the other elements, hence a natural implementation is to evaluate all elements of the result
in parallel.

It is often convenient to restrict the set of values for which e will be evaluated to elements
from d satisfying a predicate b in which there are free occurrences of x. Thus we define

[x ← d | b : e] ≡
let T = restrict(d, [x ← d : b]) in [t ← T: e

x
t]

–5–

The subset P is a flexible and comprehensive notation that can be used to express arbitrary
functions, data-parallel functions and generalized data-parallel functions:

fun odd(a) = (1 == (a mod 2))

fun sqs(n) = [i ← [1..n]: i*i]

fun concat(V,W) =
[i ← [1..(#V+#W)]: if (i ≤#V) then V[i] else W[i–(#V)]]

fun reduce(f,V) =
if (#V = 1)
then V
else let W = [i ← [1..(#V) div 2]:f(V[(2*i)-1],V[2*i])]

i n
 if (odd(#V))

then reduce(f, concat(W,[V[#V]]))
else reduce(f,W)

3. Vector-Model Representation and Operations
Expressions formed using the data-parallel notation P of the previous section will be
transformed and then translated to an implementation of vector-model parallelism [Blel90]
such as C with the C Vector Library of [BCS+90]. Here we characterize such an
implementation V as a flat, low-level data-parallel notation with the following types and
operations.

The types of V are scalar types, flat sequence types, tuple types and function types that are
generated by the following CFG:

Τ ::= Int | Bool | Seq(Int) | Seq(Bool) | Seq(Τ → Τ) | (Τ× ... × Τ) | (Τ → Τ)

The basic constructors of V include the constructors given in Table 1. Note that V does not
contain the iterator construct. The predefined functions of V include the following:

 • elementwise arithmetic and logical operations (which we denote as the primed
version of the scalar function, e.g. +' for elementwise addition).

 • reduction operations over vectors using associative scalar primitives with types of
the form α × α → α such as logical or, addition and maximum.

 • parallel prefix versions of the reduction operations above that compute a reduction
of each of the n prefixes of a vector of length n.

 • segmented parallel prefix operations that perform parallel prefix operations on each
component of an arbitrarily segmented vector.

 • parallel permutation and other rearrangement operations on vector values.

All values of P with the exception of sequences of tuples and nested sequences can be directly
represented in V. For the remaining values, we use the following representations.

A sequence value in P with type Seqd(α) for some scalar type α in P and d ≥ 1 is said to
have depth d and is represented in V as follows. A value vector is used to hold the actual
values and d descriptor vectors are used to represent the nesting structure of the sequence.
This nesting tree representation is shown in figure 1 in the appendix. Note that empty

–6–

sequences and sub-sequences are easily handled in this representation with a zero index at the
appropriate level.

A sequence of tuples in P is represented in V by a tuple of (same length) sequences. For
example, a value of type S e q(In t× S e q(In t)) is represented as a value of type
Seq(Int)×Seq(Seq(Int)). In this fashion all values can be reduced to tuples whose components
have scalar types and types of the form Seqd(α) for some scalar type α that are represented as
shown above.

Operations on Nested Sequence Representations

The transformed code will use three fundamental operations on the representation of nested
sequences. To summarize informally the meaning of these operations, let V, R, and T denote
representations of a nested sequences of depth d+k, 1+k , and d+m respectively, while M and
L represent flat sequences.

The Extract(V,k) operation flattens the top d nesting levels of V, so that all depth k items
appear consecutively in the resulting sequence of depth k+1. The Insert(R,T,d) operation is
the inverse operation that restructures R into a depth d+k sequence using the top d levels of
nesting structure provided by T. Both of these operations can be implemented by simply
associating and dissociating the index levels appropriately. The Expand(M,L) operation
replicates the elements of M according to the corresponding values in L. This operation can
be implemented using a single operation from V . The three operations are illustrated in
figure 2 in the appendix using the nesting tree representation.

4. Translation to Vector Model
An overview of the complete translation is shown in the figure 3 in the appendix. The high-
level transformations and translations are being implemented using the KIDS system to yield
C code with calls to the CVL library. The resulting program can be compiled for execution
on any of a number of different platforms.

The power of the iterator construct comes from its ability to give a per-element recipe for the
computation of a result value. In this view, the iterator sits at the head of a syntax tree that is
repeatedly evaluated with different bindings for the iterated variable. To extract data-
parallelism, we distribute the iterator through the constructs of the language towards the leaves
of the syntax trees using some simple identities. With the iterators closer to the leaves, the
values manipulated by the transformed expression are sequences rather than elements of a
sequence, and this corresponds to data-parallel execution.

Consider, for example, the expression

[i ← [1..N]: g(i)]

The iterator specifies that for each choice of i, an arbitrary function g should be applied to i.
To introduce data-parallelism, we distribute the iterator through the application of g to yield:

g'([i ← [1..N]: i])

For this transformation to be meaning-preserving we require that g' be a data-parallel version
of g, that is, a function that returns a sequence of results given a sequence of arguments to g.

–7–

If g is a basic function of P , then g' has to be explicitly implemented in terms of operations
of V . The data-parallel versions of the scalar arithmetic functions are immediately provided
by the corresponding elementwise scalar operations of V. For each remaining function f in
Table 2 with signature α→β, we must provide a function f ' with signature Seq(α)→ּSּeq(β)
using the operations provided by V operating directly on the representation of the arguments
in V . We state without further proof that this can be done for the set of operations in Table
2.

If g is a defined function funּg(x) = e, with arbitrary body e, the following definition
specifies the semantics of g' operating on a sequence V of arguments to g to yield a sequence
of results:

funּg'(V) = if #V==0 then []:seq(β) else [x ← V: e]

The body of g' is precisely the body of g enclosed by an iterator that specifies that e should
be evaluated for each item in the argument sequence. The transformations described below
can now be applied to distribute the iterator through the syntax tree of e to introduce data-
parallelism.

Transformation Rules

We now present a set of five transformation rules that can be used to rewrite any P expression
e into an equivalent P expression ê such that iterators only encompass simple scalar constants
or an occurrence of a variable bound in the surrounding iterator. A subsequent translation
replaces the iterator subtrees in expressions with operations to create sequence representations
of the result using the operations of V . The resultant program, expressed in V , can be
executed in parallel.

We first transform a program so that each iterator is in a canonical form. An iterator is in
canonical form if the bound variable ranges over an index set that is a range of integers
starting with 1. An arbitrary iterator can be placed in this form using the rule

[x ← e1: e2] ≡ (R1)
let V = e1
i n

[i ← [1..#V]: (e2)
x
V[i]

]

To distribute the iterators through expressions we give a transformation rule to distribute an
iterator through each of the basic constructors of P given in Table 1.

To distribute an iterator through an application of function f, we replace f by its data-parallel
version f ' .

[x ← V: f (e)] ≡ f'([x ← V: e]) (R2)

Note that if two iterators are distributed through a function application, then the result calls
for the application of a function f '' . In fact, if k iterators are distributed through a function
application the result calls for the application of a function f k. In the translation section we
show that all f k for k ≥ 1 can be implemented with f ' . If f is a function-valued parameter to a
function g, it is necessary to pass f in invocations of g as a pair (f, f '), so that the correct
version can be used in a given context.

–8–

To distribute an iterator through a let construct we must create a sequence of bound values
that are indexed in the result expression

[i ← d: let t = e1 in e2] ≡ (R3)
let T = [i ← d: e1]
i n

[i ← [1..# T]: (e2)
t
T[i]]

To distribute an iterator through a conditional expression, we partition the index set into
indices for which the conditional is true and indices for which it is false. The two arms are
evaluated with the corresponding index set and the results are merged:

[i ← [1..n]: if b then e1 else e2] ≡ (R4)
let

M = [i ← [1..n]: b]
T = let J = restrict([1..n], M)

 in
[i ← J: e1]

E = let J = restrict([1..n], not'(M))
 in

[i ← J: e2]
i n

combine(M,T,E)

Since all function definitions are fully parameterized, a function definition is independent of
any surrounding iterators. Therefore, an iterator surrounding a function definition is the case
of an iterator surrounding a simple constant, and no transformation is needed to distribute the
iterator through the construct. Additionally, since all functions have a single tuple parameter,
a transformation for an iterator surrounding a tuple is needed. This rule changes a sequence
of tuples into a tuple of sequences:

[i ← d: (x , y)] ≡ ([i ← d: x], [i ← d: y]) (R5)

Translation Rules

A single function f with type α → β may be called in various contexts that differ in the
number of surrounding iterators. In the transformation rules, we generated an application of
function f k with signature seqk(α)→seqk(β) in a context with k surrounding iterators. Since
the surrounding iterators simply enumerate a depth k "frame" of arguments in such a context,
it suffices to generate f ' the simple data-parallel version of f, to be used in all contexts. To
achieve the effect of f k (e), we flatten the frame around values in e, apply f ' , and restore the
frame around the result of this application. A pictorial representation is located in figure 4 in
the appendix.

f k(e) ≡ (T1)
let V = e
i n

Insert(f' (Extract(V,(depth(V)-(k -1))),V, k -1)

When the Extract operation is applied to a tuple, it is actually applied to each member of the
tuple individually, yielding a tuple of sequences of lesser depth.

Since function sequences can be constructed in P, there may exist function applications in an
expression to be translated in which a sequence of functions are to be applied to a sequence

–9–

of arguments. This case can not be executed in a fully parallel fashion in the vector model,
since the functions in the sequence may be arbitrarily different. However, we can be assured
that there are at most a bounded number of distinct functions in such a sequence. Hence the
translation is to apply the data-parallel version of each distinct function in turn to all the
arguments corresponding to its occurrence in the function sequence.

The final step in translation is to replace all iterator expressions directly by values of V . In
general, we have the expression

[i1 ← [1.. e1]: [i2 ← [1.. e2(i1)]: ... [in ← [1.. en(i1,...,in-1)]: e] ...]]

where e is a constant or ik for 1 ≤ k ≤ n. Each successively nested iterator requires that we
repeat the values taken on by the outer iterator. The translation becomes

let (T2)
I 1 = [1.. e1]

i n
let L = e

'
2(I 1)

I 2 = extract(range1'(L),1)
I 1 = extract(expand(I 1,L),1)

i n
...

let L = e
'
n(I 1,...,I n-1)

I n = extract(range1'(L),1)
I n-1 = extract(expand(I n-1 ,L),1)

 ...
I 1 = extract(expand(I 1,L),1)

i n
τ(e, I 1,..., I n)

where τ(e,I1,...,In) yields Ik if e is ik and yields #In copies of e if e is constant. The
function range1 (n) yields [1.. n] and range1' is its data-parallel version. As applied in
this rule, extract is flattening nested sequences for use in the next step of the translation.

5. Example
We will give a specific example of the transformations applied to a function. Only portions
of the functions that are modified by the application of a rule are shown.

[i ← [1..5]: sqs(i)]

with the definition for sqs from section 2.

fun sqs(n) = [i ← [1..n]: i*i]

1. Rewriting top-level expression

[i ← [1..5]: sqs(i)]

≡ { R2 applied to sqs}

sqs'([i ← [1..5]: i])

2. Definition of sqs' .

fun sqs'(V) = if #V == 0 then []:seq(int)
else [i ← V: [j ← [1..n]: j*j]]

–10–

≡ {R1: applied V} { for simplicity, only the else clause will be displayed }
else let R = V

i n
[i ← [1..#R]: ([j ← [1..n]: j*j])

n
R[i]]

≡ {Results of substitution and switching to infix notation using only the in clause}
i n

[i ← [1..#R]:[j ← [1..R[i]] :mult((j,j))]]

≡ {R2: applied to mult}
[i ← [1..#R]:mult’([j ← [1..R[i]]:(j,j)])]

≡ {R2: applied to mult'}
mult’’([i ← [1..#R]:[j ← [1..R[i]]:(j,j)]])

≡ {R5: applied twice to the tuple}
mult’’([i ← [1..#R]:[j ← [1..R[i]]:j]],

 [i ← [1..#R]:[j ← [1..R[i]]:j]])

≡ {T1 applied to mult''}
let K = ([i ← [1..#R]:[j ← [1..R[i]]:j]],

 [i ← [1..#R]:[j ← [1..R[i]]:j]])
i n

insert (mult’(extract (K,1),K,1))

≡ {T2 applied to one of the nested iterators}
let K = (let I 1 = [1..#R]

i n
 let L = index’(R,I 1)

I 2 = extract(range1’(L),1)
I 1 = extract(expand(I 1,L),1)

i n
τ(j,I 1,I 2) , ...)

Now the data-parallel version of sqs has been fully defined in terms of operations in V, and
can be executed in parallel.

6. Discussion
Status

An early, problem-specific form of the transformations was implemented in KIDS and was
used to transform a simple data-parallel computation [MNP+92], although the final
translation step was performed manually. We are currently implementing the general
transformation rules and constructing CVL versions of the basic data-parallel operations.

Optimizations

Because they are so frequently applied, it is critically important that the insert/extract
operations have minimal overhead. The selection of the tree vector structure for nested
sequences was chosen specifically because those operations on this representation can be
implemented with a pointer re-assignment.

Through early evaluation of expressions, collisions normally incurred by using expanded
(replicated) indices as fetch targets, can be avoided. Each expression within a generator that
depends on bound variables can be evaluated as soon as those values are bound and the
results can then be expanded, making them readily available for subsequent operations.

–11–

Conclusions

We have generated a simple transformational framework for achieving fully parallel
execution of a surprisingly large class of high-level, data-parallel programs. The efficiency
of our approach remains to be established, but with careful choice of nested sequence
representation, we believe that efficient parallel execution is achievable. In view of the
simplicity of the transformation rules, we also believe it will be easy to use the rules in
conjunction with other, possibly orthogonal, directed transformations.

Bibliography
[Back78] Backus, J., "Can Programming be Liberated from the VonNeumann Style? A Functional Style and

its Algebra of Programs", Communications of the ACM, 1978.

[BCS+90] Blelloch, G., Chatterjee, S., Sipelstein, J., Zahga, M., "CVL: A C Vector-Library", Draft
Technical Note, Carnegie Mellon University, 1990.

[Blel90] Blelloch, G., Vector Models for Data-Parallel Computing, MIT Press, 1990.

[Blel92] Blelloch, G., “NESL: A Nested Data-Parallel Language”, Technical Report CMU-CS-92-103,
Carnegie Mellon University, January 1990.

[BS90] Blelloch, G., Sabot, G., "Compiling Collection-Oriented Languages onto Massively Parallel
Computers", Journal of Parallel and Distributed Computing, 8(2), February 1990.

[CBZ90] Chatterjee, S., Blelloch, G., Zagha, M., "Scan Primitives for Vector Computers", Proceedings
Supercomputing '90, IEEE , 1990.

[HQ91] Hatcher, P., Quinn, M., Data-Parallel Programming on MIMD Computers, MIT Press, 1991.

[Iver62] Iverson, K., A Programming Language. Wiley, New York, 1962.

[KLS+90] Knobe, K., Lukas, J., Steele, G., "Data Optimization: Allocation of Arrays to Reduce
Communication on SIMD Machines", Journal of Parallel and Distributed Computing 8, 1990.

[Magó79] Magó, G., "A Network of Computers to Execute Reduction Languages." International Journal of
Computer and Information Sciences, 1979.

[McCr87] McCrosky, C., "Realizing the Parallelism of Array-based Computation", Parallel Computing 10
1989.

[MNP+91] Mills, P., Nyland, L., Prins, J., Reif, J., Wagner, R.,"Prototyping Parallel and Distributed
Programs in Proteus", Proceedings Symposium on Parallel and Distributed Processing 92. 1992.

[MNP+92] Mills, P., Nyland, L., Prins, J., Reif, J., "Prototyping N-body Simulations in Proteus" ,
Proceedings IPPS 92, IEEE, 1992.

[More79] More, T. "The Nested Rectangular Array as a Model of Data" APL79 Conference Proceedings.
ACM 1979.

[NP92] Nyland, L., Prins, J., "Prototyping Parallel Programs", Proceedings 1992 Dartmouth Institute for
Advanced Graduate Studies in Parallel Computing Symposium, 1992.

[Prin90] Prins, J., "A Framework for Efficient Execution of Array-Based Languages on SIMD Computers",
Proceedings Frontiers 90, IEEE 1990.

[PTH91] Philippsen, M., Tichy, W., Herter, C., "Modula-2* and its Compilation", Proceedings Austrian
Conference on Parallel Computing, 1991.

[Sabo88] Sabot, G., The Paralation Model : Architecture-Independent Parallel Programing. MIT Press,
1988.

[Schw70] Schwartz, J, "Set Theory as a Language for Program Specification and Programming" Technical
Report Computer Science Department, Courant Institute of Mathematical Sciences, New York
University, 1970.

[Skil90] Skillicorn, D., "Architecture-Independent Parallel Computation" IEEE Computer 11, Vol.23 No.
12 (Dec. 1990) pp.38-50.

[Smit90] Smith, D., "KIDS - A Semi-automatic Program Development System", IEEE Transactions on
Software Engineering Special Issue on Formal Methods in Software Engineering Vol 16, No.9,
1990.

[SH86] Steele, G. L., Hillis, W., "Connection Machine LISP: Fine-grained Parallel Symbolic Processing
" Proceedings 1986 ACM Conference on Lisp and Function Programming ACM
SIGPLAN/SIGACT/SIGART, 1986.

–A–

Appendix

[[[2,7], [3,9,8]], [[3], [4,3,2]]]Sequence of depth 3:

2 7 3 9 8 3 4 3 2values

1st level index

2nd level index

3rd level index

Nesting Tree Representation
1

11

11

0

0

0

0

0 00 1 2 2

value vector

3rd level index

2nd level index

1st level index

Vector Tree Representation

2 7 3 9 8

2 2

2 3 1 3

3 4 3 2

2

Figure 1.

Extract(V,k)

d

1

k

k

V

Extract Operation

R

d

1

k

m

Insert(R, T, d)

T

d

k

Insert Operation

L
1

M

1

.
Expand(M,L)

1

1

... ...

L1 L n
.

Expand Operation

M
1

.

M
2

M
n

L 1 L
2

L
n

M
1

M
1 M

n
M

n

 Figure 2.

–B–

Proteus

Functional
data-parallel
Proteus

Func. D-P Proteus
with iterators at
the leaves

Vectors and Vector
Operations (CVL)

translation

By calls to data- parallel
functions implemented
with vector operations

interpretation

Through calls to the
C-Vector Library

Transformation & Translation of Proteus Programs to the Vector Model

transformation

Manual manipulations to
functional subset of
Proteus

VPP

transformation

Automatic rules
to localize the data-
parallel operations

 Figure 3.

V

k

 W

Extract(V, k -1)

 R

 S

f'(W)

Insert(R, V, k-1)

f (V)

 Figure 4.

