
c�����
Suresh Rajgopal

All Rights Reserved

ii

SURESH RAJGOPAL� Spatial Entropy � A Uni�ed Attribute to Model
Dynamic Communication in VLSI Circuits �Under the direction of Kye S�
Hedlund and Akhilesh Tyagi�

Abstract

This dissertation addresses the problem of capturing the dynamic communi	
cation in VLSI circuits� There are several CAD problems where attributes
that combine behavior and structure are needed
 or when function behavior is
too complex and is best captured through some attribute in the implemen	
tation� Examples include
 timing analysis
 logic synthesis
 dynamic power
estimation
 and variable ordering for binary decision diagrams �BDDs�� In
such a situation
 using static attributes computed from the structure of the
implementation is not always helpful� Firstly
 they do not provide su�cient
usage information
 and secondly they tend to exhibit variances with imple	
mentations which is not desirable while capturing function behavior�
The contribution of this research is a new circuit attribute called spa�

tial entropy� It models the dynamic communication e�ort in the circuit by
unifying the static structure and the dynamic data usage� Quantitatively

spatial entropy measures the switching energy in a physical �CMOS� imple	
mentation� A minimumspatial entropy implementation is a minimumenergy
implementation� For the purposes of this dissertation we restrict our scope
to combinational circuits� We propose a simple procedure to estimate spatial
entropy in a gate level circuit� It is characterized in extensive detail and we
describe why it is di�cult to compute spatial entropy accurately� We show
how it can also be de�ned at other levels of abstraction�
We illustrate applications of spatial entropy in BDD variable ordering

a problem that has traditionally relied on static attribute based solutions�
We also show empirically that spatial entropy can track function behavior
through implementations
 by using it to measure gate	count complexity in
boolean functions�

iii

Acknowledgments

I would like to take this opportunity to express my sincere gratitude towards
my advisor Kye Hedlund and co	advisor Akhilesh Tyagi� This research would
have been impossible without their advice
 encouragement and guidance� I
would like to thank them for the time that they have spent with me and the
hours of discussions that we have had� Their comments and suggestions have
gone a long way in helping me produce a comprehensive dissertation� They
have taught me the essence of patience in research and the need to present
ideas clearly and simply� Doing research under them has been exciting and
challenging�
I am indebted to my committee member Doug Reeves whose advice and

comments helped me keep this research in perspective� I gratefully acknowl	
edge his patience
 encouragement and willingness to help� I would also like
to thank Don Stanat and David Plaisted for serving on my committee and
for their suggestions and encouragement� I appreciate the assistance of Sujit
Dey �of NEC Research Labs
 Princeton� and Kris Kozminski of the OASIS
group at MCNC during this research�
I am grateful to Yuki Watanabe for his support throughout my stay at

UNC� I would also like to thank Peter Reintjes of DASIXIntergraph for his
help and encouragement during my graduate career
 and my o�ce mates at
UNC
 Jim Symon and Don Stone for making the department a better place
to livework in�
Finally
 I would like to thank my wife Uju for her endless patience and

support� Her strength and encouragement have been invaluable during hard
times�

iv

Contents

� Introduction �
��� Overview �
��� Motivation �
��� Thesis �
��� Research Contributions �
��� Dissertation Outline ��

� Related Work ��
��� Static and Dynamic Attributes � � � � � � � � � � � � � � � � � ��
��� Communication Complexity Prediction � � � � � � � � � � � � � ��
��� Entropy Based Attributes ��

����� Background ��
����� The Entropy function in CAD � � � � � � � � � � � � � ��
����� Entropy as a basis for Computation � � � � � � � � � � ��

� Spatial Entropy � A Circuit Attribute ��
��� Introduction and De�nitions ��
��� Spatial Entropy Computation � � � � � � � � � � � � � � � � � � ��
��� Algorithm ��
��� Spatial Entropy Vectors ��
��� Factors a�ecting Spatial Entropy Computation � � � � � � � � ��

����� Logic Minimization and Spatial Entropy � � � � � � � � ��
����� Wire Length and Spatial Entropy � � � � � � � � � � � � ��
����� Reconvergent Fanout and Spatial Entropy � � � � � � � ��

� Spatial Entropy Based BDD Ordering ��
��� Introduction and Motivation ��

v

����� Binary Decision Diagrams � � � � � � � � � � � � � � � � ��
����� The Variable Ordering Problem � � � � � � � � � � � � � ��
����� Motivation ��

��� Variable Ordering using Spatial Entropy � � � � � � � � � � � � ��
��� Experiment� Objectives and Criteria � � � � � � � � � � � � � � ��

����� Assumptions and Limitations � � � � � � � � � � � � � � ��
����� Data Set ��

��� Experiment Outline ��
����� Software Construction and Variables Measured � � � � ��

��� Results and Observations ��
����� Spatial Entropy and BDD Sizes � � � � � � � � � � � � � ��
����� Spatial Entropy Approximations and BDD Sizes � � � ��
����� Spatial Entropy Vector Combination Strategies � � � � ���

��� Conclusions ���

� Spatial Entropy as a Measure of Area�Complexity ���
��� Motivation ���
��� Background ���

����� De�nitions ���
��� Information Content ���

����� k	decomposition and Two	level Minimization � � � � � ���
��� Decision Tree ���
��� Spatial Entropy and Information Content � � � � � � � � � � � ���
��� Experiment ���

����� Assumptions ���
����� Data Set ���

��� Experiment Outline ���
��� Results and Observations ���

����� Results ���
����� Observations ���

��� Conclusions ���

� Conclusions ��	
��� Summary ���
��� Future Research Directions ���

Bibliography �
�

vi

List of Tables

��� ISCAS �� Benchmark Circuit Characteristics � � � � � � � � � ��
��� Multi	level Circuit Characteristics from Logic Synthesis ��

Benchmarks ��
��� Two	level Circuit Characteristics of Logic Synthesis �� Bench	

marks ��
��� OASIS generated Structured Circuit Characteristics � � � � � ��
��� Comparative BDD sizes for Logic Synthesis �� Benchmarks � ��
��� Comparative Statistics for Logic Synthesis �� Benchmarks � � ��
��� BDD sizes for Logic Synthesis �� Benchmarks relative to asyl�� ��
��� Comparative BDD sizes for ISCAS �� Benchmarks � � � � � � ��
��� Spatial entropy based ordering vs static	attribute based ap	

proaches ��
���� Normalized Mean and Standard Deviation of sizes for IS	

CAS�� Benchmarks ��
���� BDD Sizes for OASIS	generated circuits � � � � � � � � � � � � ��
���� Mean and Standard Deviation of sizes for OASIS	generated

circuits ��
���� Percentage improvement for OASIS circuits with wire length ��
���� E�ect of wire length and the SIS scripts on the Logic Synthesis

Benchmarks ��
���� j V j and � of sizes for Logic Synthesis �� circuits �with mini	

mization and wl approximations� � � � � � � � � � � � � � � � ��
���� E�ect of wire length and the SIS scripts on the ISCAS ��

Benchmarks ��
���� Mean � Standard Deviation of sizes for ISCAS�� circuits �for

wire length and minimization approximations� � � � � � � � � ���

vii

���� Reconvergent Fanout Information for Logic Synthesis ��
Benchmarks ���

���� Comparision of �S combination strategies for Logic Synthesis
�� Benchmarks ���

���� Comparision of �S combination strategies for ISCAS �� Bench	
marks ���

��� �
� and � input randomly generated functions � � � � � � � � � ���
��� �
� and � input randomly generated functions � � � � � � � � � ���
��� Two	level Functions from the Logic Synthesis �� Benchmarks ���
��� S
 I�f�Dk� and GC for random circuits �Set �� � � � � � � � � ���
��� S
 I�f�Dk�
 and GC for random circuits �Set �� � � � � � � � � ���
��� S
 I�f�Dk� and GC for random circuits �Set �� � � � � � � � � ���
��� Spatial Entropy and Information Content for Logic Synthesis

�� benchmarks ���
��� Mean and Variance of Spatial Entropy �S� and Information

Content �I� ���
��� Correlation Coe�cients for �S vs I� � � � � � � � � � � � � � � ���
���� Correlation Coe�cients for �GC vs I� � � � � � � � � � � � � � ���
���� Correlation Coe�cients for � data sets �Gate Count vs S� � � ���

viii

List of Figures

��� An Example Circuit and its Digraph Model � � � � � � � � � � ��
��� The Entropy Function Hw ��
��� Spatial Entropy Computation for a Simple Circuit � � � � � � ��
��� Spatial Entropy Vector Computation � � � � � � � � � � � � � � ��
��� Example Spatial Entropy Calculation � � � � � � � � � � � � � ��
��� E�ect of Minimization on Spatial Entropy � � � � � � � � � � ��
��� A Node w with Multiple Fanouts � � � � � � � � � � � � � � � ��
��� Reconvergent Fanout 	 An Example � � � � � � � � � � � � � � ��
��� A Circuit with a Supergate SG���� � � � � � � � � � � � � � � ��
���� The Supergate SG���� denoted as one Large Gate Node � � ��

��� OBDD of f � a��b� � a��b� � a��b� with ordering
fa�� b�� a�� b�� a�� b�g ��

��� OBDD of f with ordering fa�� a�� a�� b�� b�� b�g � � � � � � � � ��
��� Example Spatial Entropy Calculation � � � � � � � � � � � � � ��
��� Spatial Entropy Distribution for a �	output function �Maxi	

mum� ��
��� Spatial Entropy Distribution for a �	output function

�Weighted Multiply� ��
��� Two implementations of the same function with di�ering Spa	

tial Entropy ��
��� The tradeo� between redundancy and wire length � � � � � � ��
��� Mapping of Gate Level Circuits at the Layout Level � � � � � ��
��� Experimental Setup ��
���� E�ect of Minimization Scripts on the Logic Synthesis Bench	

marks ��
���� E�ect of Minimization Scripts on the ISCAS �� Benchmarks ���
���� E�ect of Wire Length on the Logic Synthesis Benchmarks � � ���

ix

���� E�ect of Wire Length on the ISCAS �� Benchmarks � � � � � ���
���� �S Combining Strategies for Logic Synthesis Benchmarks � � � ���
���� �S Combining Strategies for ISCAS �� Benchmarks � � � � � � ���

��� A Cube Space Representation of a � Variable Function � � � ���
��� Example functions of � variables a� b� c � � � � � � � � � � � � � ���
��� Monochromatic Cube Decomposition for �	Variable Functions ���
��� Two di�erent Minimum Decompositions for a Function � � � � ���
��� Minimum �	decomposition of f � ab� cd � � � � � � � � � � � ���
��� Decision Tree for D��f� with ordering a� b� c� d � � � � � � � � � ���
��� Decision Tree for D��f� with ordering a� c� b� d � � � � � � � � � ���
��� Implementation for f��c�a�b��abd� � � � � � � � � � � � � � � ���
��� Cube Space Distribution for f � ac� bc� abd � � � � � � � � ���
���� Implementation Constructed from Decision Tree in Figure ���� ���
���� Decision Tree for f � ac� bc� abd with � � c� d� a� b � � � � � ���
���� Decision Tree for f � ac� bc� abd with � � d� c� a� b � � � � � ���
���� Experiment Outline ���
���� Regression Lines and Data plots �S vs I� � � � � � � � � � � � ���
���� Regression Lines and Data plots �S vs I� � � � � � � � � � � � ���
���� Regression Lines and Data plots �GC vs I� � � � � � � � � � � ���
���� Regression Lines and Data plots �GC vs I� � � � � � � � � � � ���
���� Regression Lines and Data plots �GC vs S� � � � � � � � � � � ���
���� Regression Lines and Data plots �GC vs S� � � � � � � � � � � ���

x

Chapter �

Introduction

The increasing complexity of VLSI circuit design has continually motivated
research in VLSI Design Automation and Computer	Aided	Design�CAD�
tools for VLSI� The task of these CAD tools is to help automate and speed
up the design process� Unfortunately almost all the problems that these
tools attempt to solve are NP	complete� As a result many tools and their
underlying algorithms can only achieve approximate solutions via heuristics�
The quality of these solutions is often dictated by the information the algo	
rithm can extract from the circuit
 in the form of attributes� These circuit
attributes can be broadly classi�ed into static attributes and dynamic at	
tributes� Static attributes are usually computed by examining the topology
or static structure of the circuit� For example
 the gate count attribute used
in logic synthesis is a static attribute� Dynamic attributes on the other hand
are computed by applying input data to the circuit� They capture circuit be	
havior or dynamic usage
 in contrast to static attributes that capture circuit
structure� Examples of dynamic attributes include �	probability
 observabil	
ity
 and controllability
 used in test generation algorithms� This dissertation
illustrates the use of a uni�ed attribute that captures dynamic circuit usage
and static circuit structure� As a physical attribute it provides a quantitative
measure of switching energy in the circuit�
Static attributes
 by themselves
 do not always provide su�cient informa	

tion for algorithms to make good decisions� Since they are computed by stat	
ically examining the circuit structure they are unable to estimate how various
parts of the circuit get used over di�erent input combinations� In addition

these attributes often use information from one implementation to capture

the behavior of a function over all implementations� This over	reliance on
the static structure can result in signi�cant variations in the value of the
attribute over di�erent implementations� While this may seem desirable for
some purposes
 it is not helpful when the attribute is trying to capture a
property of the function common to all implementations� In contrast to this

an attribute that can capture usage over all the input assignments is likely
to show less variation over di�erent implementations� This is because this
usage is common to all implementations of a function� When an attribute
can combine this dynamic usage information along with the static structure
�in an implementation�
 it can answer questions about the function and the
implementation�
We have quantitatively de�ned and characterized a circuit attribute called

spatial entropy that can capture static structure and dynamic behavior in a
circuit� We propose an e�cient method to compute this attribute in a given
circuit� We comprehensively analyze the attribute
 describe the di�culties
in computing it
 the factors a�ecting its accuracy
 and the e�ects of various
approximations� In CMOS circuit implementations spatial entropy yields a
measure of switching energy in the circuit by capturing the switching ac	
tivity during dynamic power consumption� We illustrate its use in BDD
variable ordering
 a problem that has traditionally relied on static attribute
based solutions� We also show that it can be used to capture function be	
havior through implementations by measuring of gate	count complexity in
boolean functions� In this chapter we begin with an overview followed by an
introduction to the problem and the motivation behind it� Then we state
our thesis outlining its scope and assumptions� Finally
 major contributions
of the dissertation are outlined along with a description of the rest of the
chapters�

��� Overview

VLSI circuit design is the process of transforming a high	level behavioral
description into mask geometry that is mapped onto silicon� Due to the com	
plexity of the design process
 this task is typically performed by re�ning the
initial behavioral description over several levels of abstraction� At each level
of abstraction the circuit is described with increasing detail� This hierarchy
of levels corresponds to phases in the design process� architectural level
 reg�

�

ister transfer or boolean function level
 logic gate level
 and physical level or
layout level�
The objective of research in CAD for VLSI is to develop tools to help

automate the design tasks performed at the various levels of abstraction� A
partial list of research problems in CAD includes� high�level synthesis 	 com	
piling behavioral HDL descriptions into RTL structures
 logic minimization

and logic synthesis 	 minimizing two	level and multi	level boolean function
descriptions to generate factored forms of the function
 netlist optimization
and technology mapping 	 mapping the factored boolean descriptions into
gates belonging to a technology while performing areatime optimizations to
the gate level netlist
 timing and critical path analysis 	 estimating delay in
circuit
 simulation 	 propagating binary vectors through logic gates and tran	
sistors to verify function and timing
 veri�cation 	 using formal or symbolic
techniques to verify function and timing across abstraction levels
 test gen�
eration
 and testability analysis 	 generating test vectors for the circuit and
estimating its testability
 placement� layout
 and routing 	 placing the netlist
of gates on a two	dimensional plane and connecting the nets with constraints
of minimum area and delay�
Several of the research areas cited above use static circuit attributes to

derive solutions� A static attribute is a structural attribute that is derived
from a static examination of the circuit topology� It does not require the
circuit to be exercised with data� For example
 consider logic minimization
and logic synthesis� The attribute used to guide two	level and multi	level
logic minimization �BRSVW��� is minimum literal count �or gate count� that
can be obtained by static examination of the boolean function description or
the circuit topology� The phases of technology mapping �LBK��� and netlist
optimization �TSB��� also use a static attribute �gate depth� for critical
path removal and delay reduction� Timing analyzers �Ous��� work similarly�
Placement
 layout and routing �LP��� tools also use static attributes such
as layout area
 active area
 net length
 wire length and number of vias� In
variable ordering for binary decision diagrams �BDDs�
 the level or depth of
a node in a circuit has been used as a static attribute in various heuristics
to generate orderings �BRM����
All these CAD tasks are similar in that they are solved using static at	

tributes de�ned at a given level of abstraction� These attributes do provide
useful information about circuit structure and structural connectivity
 and
they are fairly easy to compute� but they have their drawbacks� They lack

�

dynamic usage information
 that is
 information about how the various parts
of the circuit get used over the di�erent input combinations� and this is essen	
tial to solve some problems� For instance
 the dynamic power consumption in
a circuit is a function of the amount of switching that takes place in the cir	
cuit as the nodes change states �� � �� �� ��
 by charging and discharging
capacticances� This is di�cult to capture when the circuit is not exercised
over di�erent input combinations�
It is also di�cult to capture function behavior with a static attribute� The

number of input combinations that in�uence a node is usually a measure of
the minterms �or cubes� associated with that node
 and it is unlikely that a
static attribute can capture su�cient information about the �n minterms of
a given function� A static attribute is computed on the circuit topology
 and
as a result its value is often in�uenced by the implementation itself� Two
di�erent implementations of the same function may often exhibit signi�cant
variances in their static attribute measures� When discriminating amongst
implementations this may be bene�cial� But this becomes a drawback when
the attribute is trying to capture a fundamental characteristic of the function
that is expected to remain invariant over di�erent implementations of the
function� In this situation such swings in the value of the static attribute are
not desirable�
There are some areas of CAD like simulation �gate	level
 switch	level
 and

fault�
 test generation and testability analysis
 where the approach is inher	
ently dynamic and the circuit is exercised for many input assignments� They
use dynamic attributes like simulation vectors
 signal probabilities
 control	
labilities
 observabilities
 and testability� But most of the other CAD tasks
that require structure manipulation have restricted themselves to solutions
based on static attributes� They have done so primarily because of e�ciency
considerations and because information from the static circuit structure is
essential to solving several of these problems� Dynamic attribute computa	
tion requires the circuit to be exercised for several input assignments
 and
this usually requires more �time and space� resources than static attribute
computation�
We believe that an attribute that can capture dynamic usage over var	

ious parts of the circuit along with static circuit structure can be useful in
providing more information about the function and the implementation� We
motivate the need for such an attribute in the next section�

�

��� Motivation

Why is such an attribute needed� Almost all problems in CAD are NP	
complete �LP���� It is computationally intractable to �nd an exact optimal
solution for all but the smallest problems� The problem of two	level and
multi	level logical minimization is NP	complete �BHMSV��
 Law���� Place	
ment and layout tools face an NP	complete problem in trying to embed a
non	planar graph on a plane with minimum arc crossing �GJ���� Complete
gate level or transistor level simulation over all the input assignments takes
exponential time� The best known deterministic algorithm to arrive at an
optimal variable ordering for a BDD is O��n� �FS���� This means that e�	
cient solutions to all these problems are heuristics or approximate strategies
that use information derived from the circuit to achieve desired criteria�
CAD problems that have relied on static attributes to achieve these solu	

tions do not always capture su�cient information about the circuit to be able
to make informed decisions� Typically
 static attributes try to capture infor	
mation about the behavior of a function from one particular implementation
of the function� Since the attributes are derived from the static structure
of the implementation they may fail to provide accurate information about
the function as a whole� Consider timing analysis� The static sensitization
process used to identify critical paths can erroneously identify false critical
paths in the implementation that in reality may never be able to propagate
a signal under any input combination� Variable ordering for BDDs is an	
other area that relies on some �still unknown� fundamental attribute of the
function for its solution� The use of static node depths or node levels �in an
implementation� to discriminate between inputs and generate orderings is an
attempt to capture function behavior from an implementation� But this may
not always be accurate since an implementation represents only one of sev	
eral possible interpretations of the given boolean function� Our hypothesis
is that an attribute that can capture usage over various input combinations
along with static circuit structure will be able to provide more information
to help algorithms like these make better decisions�
Information about the structure and behavior of an implementation is also

very helpful when computing �or estimating� the energy consumption in a
circuit� With increasing circuit performance
 energy and power consumption
are becoming serious concerns for a designer� They are important metrics
of circuit performance� The switching energy for a device �MC��� is equal to

�

the power consumed by the device �at maximum clock frequency� multiplied
by the device delay� In CMOS implementations
 the switching power Psw
at a node is a direct function of the clock frequency and the charging and
discharging of circuit capacitances at a node
 Psw � CswV �fclk� In order
to measure this dynamic power consumption the switching activity over all
the nodes in the circuit needs to be estimated� This requires dynamic usage
information� The delay in a circuit is a function of the switching capacitance
Csw determined by the logic and the wires in the circuit� The time taken
for the gate to charge or discharge the switching capacitance determines the
delay� Estimating this requires structure and connectivity information of the
logic and wires� Switching energy of a circuit is thus a complex function of
not just the static structure and connectivity of the implementation
 but also
the dynamic behavior of the function being implemented� A single attribute
that can unify these characteristics will be able to provide a quantitative
estimate or measure of the energy consumption in a circuit�
Dynamic usage not only refers to the di�erent combinations that the

inputs can take
 but also to the manner in which these combinations can
cause data to combine and communicate through the circuit� Static structure
on the other hand requires information about the gates
 their arrangement

and the wires that connect the gates� What makes it di�cult to de�ne an
attribute that can unify these two features� An important factor is the
di�erent levels of abstraction that distort the estimates needed to capture
dynamic usage and static structure� The boolean function level estimates
circuit usage in terms of cubes and minterms while the logic level might
estimate it in terms of the logic gates� This is further complicated by the
fact that information at one level of abstraction may be totally �or partially�
absent at another� For instance distance estimates are absent at the boolean
function level� Some level or depth information is present at the the logic
gate level
 but wire length information is absent� Usage estimates change
again at the layout level when wire lengths are also included�
Another factor that makes it di�cult to de�ne such an attribute is the

di�erent levels of abstraction that distort the �ow of information across the
levels� This makes it di�cult to unify the costs of the logic gates and the
wiring together� Logic cost is estimated by attributes such as gate count
 lit	
eral count
 and cell area estimates
 while wiring cost is provided by attributes
such as wiring area
 net length
 number of nets
 etc�� These costs span across
di�erent levels of abstraction �gate and layout� making it di�cult to unify

�

them�
The problems get more complicated for random logic than for regular

logic� This is because the design	space in regular logic �like datapath circuits�
is fairly well structured and can be explored in a methodical fashion� Circuit
usage over various inputs is also quite regular� Hence
 asymptotic area	time
bounds can be derived for such circuits
 e�g� adders
 shifters
 and multipliers�
This helps simplify the task of modeling circuit usage and wiring� On the
other hand the design space for random logic is very discontinuous and lacks
structure� This makes it di�cult to talk about dynamic usage or wiring
complexity without tracking the logic and the wires together�
Finally there is also the fundamental problem that capturing dynamic

usage of a circuit over all input combinations requires an exponential number
of combinations to exercise the circuit�
In this dissertation we propose a new circuit attribute called spatial en�

tropy that is capable of capturing the dynamic data movement and usage
in a circuit along with the static circuit structure� In the next section we
provide some background information and then state our thesis and describe
its scope along with our goals and assumptions�

��� Thesis

The concept of spatial entropy is not new� It was �rst introduced by Carver
Mead �MC��� to capture the communication activity in any physical com	
puting system� He distinguishes between logical entropy and spatial entropy
in the following way� while logical entropy is a measure of the e�ort needed
to transform data from one form to another �computation�
 spatial entropy
is a measure of the e�ort needed to transmit data from one place to another
�communications��
Our thesis is that �spatial entropy can be quantitatively de�ned and char�

acterized as a dynamic circuit attribute� and it can be applied to CAD prob�
lems that have relied on static�attribute based solutions���
We defend this statement in three phases 	 de�nition
 analysis
 and appli	

cation� In the �rst phase
 our goal is to introduce the spatial entropy concept
to the circuit domain� We de�ne spatial entropy intuitively as the dynamic
communication e�ort in a circuit� This intuitive de�nition is then followed by
a quantitative de�nition of spatial entropy as a circuit attribute computable

�

at every node in a circuit� This is then used to compute spatial entropy val	
ues over all nodes in the circuit� We describe its relation to a physical circuit
attribute 	 switching energy� The objective here is to be able to compute and
compare spatial entropy values for di�erent circuits and obtain measures of
their switching energies� This will help answer questions like� what does it
mean for one circuit to have greater spatial entropy than another� What is
the reason that a given circuit has high or low spatial entropy�
In the second phase we propose to analyze and further characterize the

spatial entropy attribute� Our goal here is to study the problems faced in
computing this attribute so that we can answer questions such as� How is
spatial entropy best computed� How accurate is the computed value� What
are the factors that a�ect this and how can they be controlled�
As a further characterization we plan to show that the de�nition of spatial

entropy at a node can be extended by describing it as an accumulation of
spatial entropy contributions from primary inputs a�ecting that node� We
de�ne this quantitatively so that it can be computed e�ciently� This will
help compare and contrast the communication e�ort of a pair of nodes at a
�ner granularity 	 in terms of the contributions of the primary inputs to the
two nodes�
Finally we illustrate the usefulness of spatial entropy as an attribute that

can capture function behavior and as an attribute that provides a quanti�ed
measure of the switching energy in a circuit� We compare the spatial entropy
based approach with approaches that use static attribute based solutions to
capture circuit behavior� Since spatial entropy models dynamic usage we
hope to show that it captures a characteristic of a function that is invariant
over its di�erent implementations� This way spatial entropy will be able to
track function properties through implementations� Our objective is to show
that we can compute the spatial entropies of the implementations of two
di�erent functions and then use these values to contrast the two functions
themselves�
Along with the e�ectiveness of spatial entropy as an attribute in CAD we

also intend to study empirically the e�ects of the various approximations on
spatial entropy computation and their in�uence on the quality of the solution�
We would like to be able to determine whether spatial entropy is indeed a
useful circuit attribute for solving CAD problems� What kind of problems
is it best suited for and how does the accuracy of its calculation a�ect the
quality of the solution�

�

The scope of circuit descriptions for this thesis is limited to combinational
circuits� Circuit descriptions at the boolean function level and the gate level
are acceptable� We assume a circuit model made up of the standard logic gate
primitives� and� or� not� xor� nand
 and nor� Transistors and lower	level
structures are not treated� This thesis does not propose spatial entropy as
a universal solution to CAD problems
 at these levels of abstraction� What
it does say is that there are several occasions where algorithms can bene�t
from information about dynamic usage in the function along with the static
structure in the implementation� In such cases spatial entropy would be a
useful attribute
 and CAD tools that have traditionally used purely static
attributes could bene�t from this additional information on dynamic usage�
The next section discusses the major contributions of the dissertation

along with implications of this research�

��� Research Contributions

We brie�y summarize the major contributions of this dissertation�

�� We have introduced the concept of spatial entropy to the VLSI domain
as a circuit attribute�

�� We have de�ned it and characterized it as a measure of the switching
energy �in CMOS implementations�� An e�ective approach to compute
it on VLSI circuits at di�erent levels of abstractions is described�

�� We have illustrated its applicability in CAD�

�� We show that the spatial entropy of an implementation captures func	
tion behavior by modeling the dynamic communication e�ort needed
to compute the function�

We have introduced spatial entropy as a circuit attribute that is capable
of unifying the structure and behavior in a circuit� An intuitive de�nition
has been re�ned to formulate a quantitative de�nition of spatial entropy as
the information�distance product in the circuit� Information captures the
dynamic switching of logic states at a node in the circuit� The distance
that information has to travel is captured by the switching capacitance at
the node� With this information	distance model spatial entropy measures the

�

switching energy in a circuit implementation� A circuit with minimumspatial
entropy is a minimum energy implementation that minimizes the dynamic
power consumption and the delay over all the nodes in the circuit�
We have proposed a simple
 e�cient algorithm to compute spatial entropy

for primitive gates and for an entire circuit� But it is di�cult to compute
spatial entropy accurately for a given implementation� Hence approxima	
tions that a�ect this accuracy have been identi�ed and their implications
were studied in detail
 at di�erent levels of abstraction� These e�ects were
also studied empirically in the context of an application of spatial entropy

where we used spatial entropy to generate variable orders for binary decision
diagrams �BDDs�� We demonstrate that the spatial entropy based approach
can generate variable orders competitive with existing static attribute based
approaches
 for the smaller benchmark circuits� But when the circuits get
larger the e�ect of approximations made in computing the attribute become
more signi�cant leading to poor sizes� They have been outlined in detail with
empirical results�
Simultaneously
 we also explored a theoretical basis to connect spatial

entropy and variable ordering� The BDD of a function depends on the char	
acteristics of its minterms� If the spatial entropy of an implementation is
indeed capable of generating good variable orders for the BDD of the un	
derlying function then it must capture some characteristic of the function�
But we observed that di�erent implementations of the same function could
di�er signi�cantly in their spatial entropy values due to di�erent degrees of
logic minimization in each implementation
 i�e� minimality had a signi�cant
in�uence on spatial entropy�
So this posed the question� what is the best implementation to capture

this function behavior and generate spatial entropy based variable orders
and why� In a physical implementation spatial entropy is the switching
energy expended by the circuit while computing the function� Over all im	
plementations of a given function
 the one with minimum spatial entropy
has minimum switching energy and describes the minimum communication
e�ort needed to compute the function� This minimum spatial entropy imple	
mentation is like a signature for the function since it provides a lower bound
over all implementations of that function� But generating an implementation
with minimum spatial entropy is di�cult since it requires minimizing logic
gates and wires
 which the existing logic synthesis tools are not capable of
doing� As an approximation to a minimal spatial entropy implementation

��

we use a minimal gate count implementation� In order to study how spatial
entropy on a minimal gate count implementation captures function behavior

we started by de�ning minimality and spatial entropy computation in cube
space� This work also led to the second application of spatial entropy
 its use
as a gate	count complexity measure for boolean functions�
We �rst proposed an entropy based de�nition of the gate	count complex	

ity of boolean functions called information content� Since the complexity of a
function is a measure that provides a lower bound on some physical attribute
over all implementations of that function this captures a fundamental char	
acteristic of function behavior� We also show that the information content

which is de�ned over a minimal Karnaugh decomposition of the function

captures minimality of two	level function representations� This is because
the minimal Karnaugh decomposition is equivalent to a minimized prime
and irredundant two	level representation of the function� Minimality for
multi	level function representations was then de�ned using a notation called
decision tree to relate a function to its implementation� An implementation
is constructed bottom up from a decision tree
 and a minimal implementa	
tion corresponds to a minimal decision tree� Spatial entropy in cube space
was then de�ned as the incremental contribution to the information content

over all nodes in an implementation derived from the decision tree� This def	
inition of spatial entropy captures the communication between the minterms
in the implementation�
We then empirically veri�ed that spatial entropy of a minimal implemen	

tation does track function behavior in the form of the information content
of the function� While it is computationally intractable to compute the cube
space de�nition of spatial entropy
 we showed that the gate	level spatial en	
tropy computation procedure can be used as an approximation to it� We
showed statistically that there is a strong correlation between the spatial
entropy of a minimized implementation �as computed by the gate	level pro	
cedure� and the information content of the function� Our de�nition of cube
space spatial entropy and information content was only de�ned for single	
output completely speci�ed functions� So we handled multi	output functions
in our experiments by treating each of them as individual single	output func	
tions�
The information content of the function is de�ned over a minimal Kar	

naugh decomposition and is thus an indicator of minimality in two	level
functions� We showed that the information content also estimates the gate	

��

count complexity of a multi	level implementation of the function
 in terms of
the logic gates required to implement it� An empirical correlation between
the information content and the gate count �in a multi	level implementation�
is shown for several single output functions�
The high degree of correlation between spatial entropy and information

content shows us that spatial entropy can be used to measure the gate count
of a multi	level implementation of the function� We also found a strong cor	
relation between spatial entropy and gate count for our experimental data
set� There is an explanation for this� Given that we limit our scope to
only combinational circuits
 the switching energy in these circuits is a func	
tion of the switching of states at the nodes and the delays at the nodes� In
most combinational circuits this switching energy is equivalent to the circuit
area since almost the entire circuit is switching as the circuit computes dy	
namically� since spatial entropy measures switching energy we �nd the high
correlation between spatial entropy and circuit area� This correlation would
probably be absent in sequential circuits where the switching energy is not a
direct function of circuit area
 or in other combinational circuits where only
a fraction of the area is switched�
Spatial entropy is a unique attribute
 since it is capable of capturing the

structure in an implementation and the behavior of the function being imple	
mented� One can use the structural aspect of spatial entropy to discriminate
between two implementations of the same function
 where an implementation
with lesser spatial entropy has lesser switching energy� Since a minimum spa	
tial entropy implementation acts as a signature of the underlying function

one can compute this for two di�erent functions and compare the minimum
switching energies of these two functions� The fact that spatial entropy can
measure information content
 a characteristic of the function that is invari	
ant over di�erent implementations
 further lends credence to our hypothesis
that spatial entropy
 if computed accurately
 can generate good variable or	
ders for BDDs
 on even the larger circuits� This is because BDDs too are a
characteristic of the function de�nitions and not of its implementations�

��� Dissertation Outline

In the next chapter we describe work that is related to our research� This
is discussed along three directions� We �rst describe traditional static and

��

dynamic attributes in CAD and highlight the circuit properties that they
capture� Then we discuss approaches that estimate complexity in terms of
information �ow or wiring area when data has to be communicated between
various places in a circuit� Finally we discuss entropy based attributes in
CAD�
In Chapter � we introduce the spatial entropy concept to the circuit

domain� It is �rst de�ned intuitively
 and then quantitatively as a dynamic
circuit attribute that measures the switching energy in a circuit� We show
that spatial entropy can be computed using existing circuit attributes
 and
we propose an algorithm to compute spatial entropy for primitive gates and
for an entire circuit� In the remainder of this chapter we characterize the
attribute thoroughly
 explain why it is di�cult to compute it accurately
 and
outline the approximations that a�ect its accuracy�
The subsequent chapters illustrate applications of spatial entropy� In

Chapter �
 we begin by introducing the variable ordering problem for bi	
nary decision diagrams �BDDs�� After a short survey of related research we
describe our approach of using spatial entropy vectors to generate variable
orders� The rest of the chapter describes our experiment to study spatial en	
tropy based variable ordering empirically� The objectives are two	fold� First
we study the e�ectiveness of spatial entropy in generating variable orders

and compare it with several existing approaches� Then we study the e�ect
of the various factors and approximations and how they a�ect the accuracy
of spatial entropy�
Chapter � draws on the conclusions in Chapter �� It explains minimality

and spatial entropy in cube space� It also illustrates empirically how spatial
entropy can measure the area	complexity in boolean functions in terms of
the multi	level gate implementations of these functions�
Finally we summarize conclusions and future directions in Chapter ��

��

Chapter �

Related Work

The spatial entropy attribute has three characteristics 	 its ability to unify
static circuit structure and dynamic usage
 its ability to capture function
complexity
 and its information theoretic basis� We discuss related work in
this chapter by developing it along these three directions�
First we brie�y describe traditional attributes that capture either static

structure or dynamic usage and discuss how they have been used to solve
CAD problems� Our purpose here is to illustrate circuit properties that are
captured by these attributes in order to contrast them later to the properties
captured by the spatial entropy attribute� In the second part of this chapter
we discuss approaches that estimate the complexity involved when data has
to communicate from various points in the circuit� The objective here is
to illustrate how these approaches have been used to derive indicators such
as information �ow
 wiring area etc� to estimate this complexity� This will
help us contrast them with the use of spatial entropy to capture wiring com	
plexity and boolean function complexity which we discuss in later chapters�
Finally we describe other entropy based attributes that rely on an informa	
tion theoretic de�nition �like spatial entropy�
 and outline their application
to problems in CAD�

��� Static and Dynamic Attributes

We begin by brie�y contrasting static and dynamic circuit attributes� Static
attributes are computed by examining the circuit structure or topology� In

contrast dynamic attributes are computed by exercising a circuit represen	
tation such that the circuit computes over a distribution of input values�
While static attributes capture circuit connectivity or structure
 dynamic
attributes capture usage of various parts of the circuit over a distribution
of input data values� Static attributes can be usually computed quickly�
dynamic attributes on the other hand can be expensive to compute� We
now consider a subset of CAD problems and describe in turn
 the role static
and dynamic attributes play in solving them� We also highlight the circuit
properties captured by these attributes�
Static attributes are typically used when information about the circuit

connectivity or structure is essential to solving the problem� Consider the
problem of timing analysis� The objective here is to identify the critical
�or longest sensitizable� path in the circuit to estimate the worst	case delay�
Since the actual delay along a path in the circuit depends on the propagation
delay and the number of gates in the path
 classical static timing analysis
�Ous��� uses attributes like static gate depth and fanout along with propa	
gation delay to arrive at an estimate of the worst	case delay� But this is not
always a true estimate� This is because some paths in the circuit are gener	
ated with sub	paths that require input combinations that can never occur�
These logically incompatible paths are called false paths and accumulating
gate delays along such paths would be erroneous� On the other hand an
exact estimate of the critical path delay in the circuit would require simu	
lating the circuit over all possible inputs to examine the e�ects of all input
combinations� Since this is expensive the static attributes are used to ob	
tain a quick approximation of the actual delay in terms of gate connectivity
and gate depth� A lot of the work in timing analysis now concentrates on
eliminating false paths �BI��
 MK��
 DYG��
 BMCM��
 PCD����
Logic minimization and logic synthesis is another area of CAD where

solutions are guided by static circuit structure information� One of the ob	
jectives here is to map a two	level boolean function representation into a set
of gates �from some library� that occupies minimumarea �BHMSV��
 BM��

BRSVW��
 LKB��
 LBK���� Ideally one would like to achieve this objective
of minimum area with respect to not just the gates in the circuit but also the
wiring between them �Sau���� But since the notion of wires is absent at the
logic level of abstraction the objective is restricted to minimum gate area�
The static circuit attribute of literal count becomes an approximation to the
gate area� Hence algorithms in logic minimization and logic synthesis use

��

minimum literal count as the area criterion� Literal count is not only used
as a measure of performance of the algorithm
 but it is also used to guide
the algorithm during the minimization process� It assists in searching and
selecting candidate factors for substitution while decomposing and factoring
the boolean function�
Finally let us look at static attributes at the physical layout level� CAD

tools in the area of placement and routing are faced with the goal of placing
circuit components on a �	dimensional plane and connecting nets between
them such that area and delay of the resulting circuit layout is minimized
�LP���� Again static structure and connectivity information play an impor	
tant role here� They are captured by attributes like wire length
 component
dimensions
 user	de�ned or pre	routed obstructions etc�� These yield mini	
mization criteria such as minimum total net length
 minimum circuit area

minimum number of vias
 routeability for all nets
 prior routing of selected
�power and ground� nets etc�� The algorithms are guided towards desired
solutions by a suitably weighted version of these criteria�
Dynamic attributes are typically used when circuit behavior over all pos	

sible inputs needs to be captured to solve a problem� Simulation is one such
instance� Regardless of the kind of simulation �function
 gate
 switch
 circuit

fault�
 it is complete only when the circuit behavior for all possible inputs is
studied� In such a case the input vectors that represent various input combi	
nations are dynamic attributes that capture circuit usage as they propagate
through the various nodes�
Testability analysis �BPH��
 SDB��
 JA��
 LBdGG��� which is some	

times viewed as an alternative to fault simulation
 is another problem that
relies on a dynamic attribute� The objective here is to project the cost of
testing by predicting the number of random test patterns needed to achieve
high fault coverage� High fault coverage is usually de�ned by predicting a
large percentage ��� � �� � of faults in the circuit with a high probability
����� � ������ To solve this problem the probability of detecting a fault is
expressed as a function of two probability based attributes� observability and
controllability� Controllability is computed by assigning signal probabilities
at the inputs to the circuit and propagating them forward through all the
nodes in the circuit� Observability is computed similarly except that it is
computed backwards from the output� These probability based attributes
are dynamic because they capture circuit usage over di�erent input combi	
nations� In this particular instance they are being used to detect a given

��

list of stuck	at faults �at nodes in the circuit� by looking at the value of
the node over all possible input combinations� We now look at research in
communication complexity�

��� Communication Complexity Prediction

With VLSI design being performed in sub	micron technology with smaller
feature sizes there is a realization that the area	time and power performance
of a circuit will be dominated less by the logic or the gates in the circuit
and more by the wires and the communication between the logic� This has
resulted in e�orts to estimate communication complexity by the wiring area
or information �ow in a circuit�
In ���� Thompson introduced a model �Tho��� for computing lower

bounds on the complexity of VLSI implementations of functions� The com	
plexity of the computation was measured in terms of bounds �AT �
 A�T ��
on chip area and computation time� The model highlighted the di�culty of
communicating information across the surface of a chip� Given any partition
of the input set into two equal halves on two disjoint regions of the chip
 these
area	time bounds de�ned lower bounds on the communication complexity of
the function�
The notion of communication complexity across a partition was intro	

duced by Yao to provide lower bounds on the worst case information complex	
ity of many functions �Yao���� Yao!s model assumed a particular partitioning
of the input set into two equal halves �as against the VLSI complexity model
that assumes any partition�� This captured a local information �ow across
the partition� The communication complexity was de�ned as the number of
bits of information that needed to cross the partition to correctly compute
the function� These bits of information were computed by a two	way proto	
col that dictated how the bits would be exchanged by the two input halves�
The maximum number of bits exchanged over all input values for computing
the function f was de�ned as the communication complexity c�p� for a given
protocol p� The worst	case complexity was then de�ned as the minimum
two�way communication complexity over all protocols for that partition�
More recently Hwang
 Owens and Irwin �HOI��
 HOI��� have used com	

munication complexity for multi	level logic synthesis� They have also pro	
vided ways to compute the communication complexity whose bounds were

��

estimated in �Yao���� In their approach the �decomposition and factoring�
operations in multi	level logic minimization are performed by partitioning
the boolean function f into three functions ft� fl� fr such that

f�X� � ft�fl�Xl�� fr�Xr��

whereXl and Xr denote a disjoint partition of the input setX �Xl�Xr � X��
The partition is generated using heuristic partitioning techniques that try to
minimize the communication complexity or the number of interconnections
between the functions �ft� fl� and �ft� fr�� The communication complexity
for a given partition
 which acts as a cost function for their partitioning al	
gorithm
 is computed by computing the number of compatible classes �Ris���
of a given function� Two approaches were illustrated� The �rst approach uses
a communication matrix while the second approach
 which is more e�cient

uses cubes and cube overlaps �BHMSV����
Another partially related approach is discussed in �ASSP���� Here wiring

complexity in a synthesized circuit is minimized by controlling input depen	
dency with lexicographic expressions of a boolean function� A lexicographic
expression of a boolean function is a sum of product terms in which the input
literals �that every product term depends upon� conform to an ordering called
the reference order� This ordering is used to extract a set of lexicographically
compatible kernels �BM���� Kernel �ltering computes the intersection of the
extracted kernels to �nd shared parts amongst the functions� By tightly
controlling this �ltering process the logic cones can be prevented from inter	
secting with each other� The objective is to reduce the wiring between logic
cones that manifests itself as wires in the layout�
We now discuss the application of entropy based attributes in CAD�

��� Entropy Based Attributes

����� Background

We begin with some background on the concept of entropy� There are two
popular de�nitions of entropy� Information theory �SW��� de�nes it as the
measure of information content in a system� Thermodynamic �Sea��� de�nes
it as the thermodynamic probability of the internal particles of a system
while holding the external properties constant� We consider each de�nition

��

in turn and show how they both view entropy as 	 � the measure of disorder
in a system��
Consider a system with N possible output events� In information theory

this is usually a communication system where the N events are messages to
be communicated to a receiver� Suppose each event i has a certain probability
of occurrence pi with respect to its inputs� Then the information	theoretic
de�nition of entropy is the measure of information produced when one event
is chosen from this set N �SW���� It is de�ned as

X
i�N

pi log
�

pi

When all the events are equally likely
 i�e� pi �
�
N

 the expression reduces to

logN �
As an example consider a system where the messages are represented

by a bit string of length n� The set of output events N is the set of all
possible messages that can be represented by the n	bit string� If all bit
combinations are assumed likely then the n	bit string can represent at most
N � �n di�erent messages� On the other hand suppose we insisted that only
a single bit combination
 that of all �s in the string
 is possible� Then only
one message �N � �� will be possible� In the former case the information
content �entropy� of the bit	string is log��n� � n
 while in the latter case
it is log��� � �� Thus if greater number of bit combinations �or messages�
are possible this implies greater disorder in the system� This in turn implies
greater entropy or information content�
In the same vein a bit	string that is twice as long � of length �n� will

have an information content �or entropy� equal to �n� This conforms to our
intuitive notion that a message that is twice as long should be able to contain
twice as much information�
In thermodynamics
 entropy is de�ned as being proportional to the log	

arithm of the number of ways of arranging the particles in a system while
maintaining external conditions constant� As an intuitive example �MC���

consider a system with two containers holding a total of �� red and �� blue
molecules� If we do not distinguish between containers there is only one way
in which the molecules can be arranged so that all the �� blue ones are in one
container
 and all the �� red ones in the other� On the other hand there are
a large number of ways of arranging � of each color in each container� The

��

second arrangement of molecules has much more disorder than the �rst
 and
therefore has much more entropy than the �rst� The actual de�nition �Sea���
of this entropy S is in terms of the thermodynamic probability of the internal
particles in the system� It is de�ned as S � k logW
 where k is Boltzman!s
constant
 and W is the thermodynamic probability�
Thus in both information theory and thermodynamics
 entropy captures

the measure of disorder in a system� The information	theoretic de�nition of
entropy has found applications in a few areas of CAD� We begin by reviewing
work in these areas�

����� The Entropy function in CAD

One of the �rst applications of information theory was to use the information	
theoretic de�nition of entropy to predict boolean function complexity� The
relationship between function complexity and entropy was �rst conjectured
by Cook and Flynn �CF���� The complexity of a boolean function is expressed
by the cost of implementing the function as a combinational network� Cook
and Flynn demonstrated empirically that the average cost behavior of a single
output combinational network could be modeled by a formula that captured
the entropy of the boolean function implemented by the network� It was
de�ned as

H�f� �
u

�n
log�

�n

u
�
�n � u

�n
log�

�n

�n � u

where n is the number of input variables and u is the number of ON	terms
in the cube space� Subsequently Hellerman �Hel��� proposed a de�nition
of computational work based on the entropy function� Suppose a function
f � X � Y performed some computation over a domain of inputs X and a
range of outputs Y � fy�� � � � � yng� Then for Xi � X and Xi � f���yi�
 the

work done by the function was expressed as
Pn

i��
j Xi j log jXj

jXij
where j X j

denotes the number of elements in the set�
The relationship between the works of Hellerman and Cook � Flynn

was later observed by Mase�Mas���� He showed that the complexity of a
boolean function can be expressed in terms of an entropy	based de�nition of
�computational� work performed by the combinational network�
In ���� Pippenger further re�ned this entropy de�nition to handle don!t

cares in the function �Pip���� More recently in �CA���
 the entropy formu	
lation was generalized to multi	output functions
 both completely speci�ed

��

functions and partially speci�ed ones� They also showed statistically that
using the literal count as a measure of circuit area a linear relationship can
be observed between entropy and average number of literals in a multi	level
implementation�
Information theory has also found application as a testability measure�

This was �rst proposed by Dussault �Dus���� He presented observability and
controllability measures based on information theory for gate level circuits�
In �TA���
 Thearling and Abraham extended this idea to estimate testability
at the function level� They use a measure called the information transfer co	
e�cient �ITC� �Koo��� to enable relative testability measures to be computed
as against the absolute measures computed by Dussault �Dus���� Agrawal
�Agr��� has also applied information theory to test pattern generation� He
shows that by choosing test patterns that maximize the information at the
output the probability of fault detection can be maximized�

����� Entropy as a basis for Computation

In �MC���
 Carver Mead proposed the idea of computation based on entropy�
This has formed the basis for our de�nition of spatial entropy in the circuit
domain that we discuss in Chapter ��
He begins by suggesting that computation can be viewed as a process

that reduces the disorder �or entropy� in the solution space while arriving
at a result� Every computation �nds an answer by making decisions on a
solution space� With each decision the usually huge initial solution space
is cut down to some fraction of its former size� The number of decisions
required to specify one correct answer in the solution space is the entropy
of the computation
 de�ned as log jTotal Solnsj

jAnswerj � This de�nition is analogous

to the information	theoretic de�nition of entropy where the solution space is
all possible messages with a given length and bit	string format� The correct
answer is one such message and the entropy is the number of bits required
to specify this correct answer�
The description of entropy outlined above captures algorithmic compu	

tation and Mead terms this as logical entropy� This is because it depends on
the logical operations required to perform the computation� The objective of
a computation is to reduce the logical entropy of the data to zero� The study
of algorithm complexity analysis is the study of these logical operations mod	
eled by logical entropy� Mead also proposes another form of entropy
 called

��

spatial entropy
 that is usually seen in situations when the computation has
to be mapped onto a domain where data travels over a physical distance� The
contrast between the two forms of entropy is best captured by the following
quote from �MC��� �

� In any physical system� the logical entropy treated by classical
complexity theory is only part of the story� There is also a spatial
entropy associated with a computation� Spatial entropy may be
thought of as a measure of data being in the wrong place� just
as logical entropy is a measure of data being in the wrong form�
Data communications are used to remove spatial entropy� just as
logical operations are used to remove logical entropy��

Entropy is the measure of disorder in a system� So spatial entropy is
the measure of spatial disorder in a system� This spatial disorder �or spatial
entropy� in a system captures a form of spatial distance between the inputs
and the outputs in a system� The spatial entropy S of a system quanti�es
the spatial e�ort needed to bring the data at the input location to the output
location� When a system computes
 the data communications in the system
are carrying data from the input to the output� This reduces the spatial
distance between them
 or removes spatial entropy in the system�
One scenario that illustrates spatial entropy is a communication network�

Here messages or communication events are transmitted over communica	
tion pathways that remove spatial entropy by routing data between various
spatially distributed source and destination sites� Another example is circuit
computation� Here the input data travels through the wires in the circuit�
These wires remove spatial entropy in the circuit by carrying the input data
to the outputs� It is this latter model that is of interest to us� In the next
chapter we characterize the spatial entropy concept in the circuit domain and
de�ne a quantitative measure that relates it to the switching energy in the
circuit� We describe an algorithm that computes spatial entropy for a gate	
level circuit implementation
 and study the factors a�ecting the accuracy of
this computation�

��

Chapter �

Spatial Entropy � A Circuit

Attribute

In the previous chapter we introduced the concept of spatial entropy�
In this chapter we illustrate how spatial entropy can be characterized as a
dynamic attribute in the circuit domain� We de�ne spatial entropy quan	
titatively
 and show how it can be computed on primitive gates and over
an entire circuit� We also explain how it measures the switching energy in
a physical implementation� Computing the attribute accurately is unfortu	
nately a di�cult task
 and there are di�erent factors that a�ect its accuracy�
In the latter part of this chapter we discuss these factors in detail and explain
how they result in various approximations while computing the attribute�
We begin with an intuitive notion of circuit spatial entropy followed by

a quantitative de�nition� In Section ��� the technique to compute spatial
entropy for gate level primitives is described� This becomes the basis for an
algorithm to compute circuit spatial entropy
 which we outline in Section ����
Section ��� further characterizes the attribute by introducing spatial entropy
vectors� In Section ��� we talk about the di�culties in computing this at	
tribute accurately
 and how these factors force approximations to be made
during spatial entropy computation�

��� Introduction and De�nitions

Spatial entropy can be intuitively de�ned as the communication e�ort re	
quired to compute the circuit function� In a circuit both the logic gates
and the wires contribute e�ort towards computing the circuit function� The
gates compute boolean values or bits and the wires transmit these bits� Spa	
tial entropy models the dynamic communication taking place in the circuit
versus the static communication modeled by the wires� Over all the input
combinations
 it tries to capture the distribution of bits at the gate outputs

and the communication of these bits from one gate output to another� While
the wires determine how far the bits have to travel
 the gate types determine
the distribution of boolean values that these bits take at the various nodes
in the circuit� Together they determine the dynamic communication e�ort in
the circuit� We use an information	theoretic de�nition to capture this e�ort
through the circuit�
We start with a description of our circuit model� A circuit is represented

as a directed weighted graph G � hV�E�Li� Each primary input
 primary
output
 and logic gate in the circuit is represented by a node v � V in the
graph� An edge �v�w� � E represents a wire in the circuit� Each such edge
has a length attribute l�v�w� � L that is the length of the wire� L � E � R

where R is the set of real numbers� The direction of the edge
 from v to w

represents the direction in which the bits travel in the wire� v is the source
node and w is the destination node for the edge� The directed edges from v
to other nodes are called fanout edges� v is the source node of these edges
and the bits leave from v along these edges to go to destination fanout nodes�
The directed edges that come into node v are called fanin edges� v is the
destination node of these edges and the bits enter v along these edges from
source fanin nodes� The primary input nodes have no fanin edges and the
primary output nodes have no fanout edges� The number of fanin edges of a
gate node is equal to the number of inputs to the gate� A path in the graph is
a sequence of vertices from a source node to a destination node� The support
set of a node v is the set of all primary inputs from which there is a path to
node v� Figure ��� illustrates a simple circuit and its corresponding directed
graph model� �The edge lengths are not shown��
We now re�ne the idea of dynamic communication e�ort by quantifying it

with circuit attributes� To capture the distribution of boolean values at the
node
 we use the classical entropy function H�fpig� from information theory

��

i

i

i

1 n

n

n
3

2

1

4
n

2

3

AND

AND

OR
NOT

i

i

i

n

n

n

n

1

2

3

2

1

3

4

Figure ���� An Example Circuit and its Digraph Model

��

�SW���H�fpig� �
PN

i��
pi log�

�
pi
�� N represents the number of possible values

�or events� in a given system� Since there are only two values possible in a
digital circuit we can model the distribution of boolean values computed at
a node w by the binary entropy function H�fp�

w
� p�

w
g� at the node

H�fp�
w
� p�

w
g� � p�

w
log�

�

p�
w

� � p�
w
log�

�

p�
w

�

where p�
w
is the �	probability of a node w
 and p�

w
� �� � p�

w
� is the �	

probability of the node� The probability of a node gives the distribution
of � and � values computed by the node� This binary entropy function
H�fp�

w
� p�

w
g� denotes the information computed at the node over this proba	

bility distribution� We shall denote this function as Hw�
The function Hw quanti�es the dynamic communication e�ort con	

tributed by the node� Consider its plot shown in Figure ���� As we look
at the extremities of this function we observe that the information Hw is a
minimumwhen the �	probability or �	probability of a node is � or �
 while it
is a maximum when p�

w
� p�

w
� ���� Assuming all inputs are equally likely

a �	probability of ��� at a node w implies that for half the input values the
node will have a value of � and for the other half the node will have a value
of �� This means that a gate modeled by this node will have to expend more
e�ort in order to distinguish the ON	terms from the OFF	terms in order
to compute the output value for a given input�s�� On the other hand
 a
�	probability of ��� implies that the node will have a value of � for all input
values� This means that the gate does not have to expend any e�ort to com	
pute the output since
 given an input value
 the gate automatically knows
that it belongs to the ON	set� Thus the function Hw plotted in Figure ���
captures the e�ort expended by the gate in computing the boolean value at
its output�
The distance traveled by the boolean values computed at a node is quan	

ti�ed by the length of a fanout edge from that node� The edge lengths in the
graph quantify the wire lengths in the circuit in a straightforward manner�
Long edge lengths imply long wires indicating more e�ort is expended in
carrying the information from the gate� We now de�ne the spatial entropy
S for a circuit as follows�

De�nition � The spatial entropy S at the output node of a single output

��

H

1.0

0.0
p=0.0 p=1.0

p=0.5
w

Figure ���� The Entropy Function Hw

circuit is the information�distance product over all the nodes in the circuit�

S �
X
v�V

X
w�V

Hv � l�v�w�

Hv is the information computed at the node v over its input probability dis�
tribution� and l�v�w� is the length of the fanout edge �v�w� � E� from node v
to node w�

The spatial entropy S of a multi	output circuit is expressed as S �Pm
i��

Soi
 where m is the number of outputs and Soi is the spatial entropy at
output oi�
At each node v
 the spatial entropy is computed by multiplying the in	

formation computed at v by the distance it has to travel along all the fanout
edges from v� With this de�nition the intuitive notion of communication
e�ort is captured by the total information �ow in the circuit� The nodes
compute the information while the edges communicate this information�
How does spatial entropy capture dynamic circuit usage� Spatial entropy

is a dynamic circuit attribute in the sense that its value
 computed from
the entropy function H
 is a function of the probability distribution at the
primary inputs of the circuit� Thus H captures circuit usage de�ned by this
probability distribution� Since it is symmetric it gives an accurate model
of circuit usage capturing the propagation of both � and � probabilities� A
circuit that propagates mostly �s in its internal nodes could still be per	
forming useful computation� but this would not be captured well with only
�	probabilities�

��

This de�nition of spatial entropy as the information	distance product is
a good model to measure the switching energy in a physical circuit imple	
mentation� The switching energy of a device is de�ned as the dynamic power
consumed by the device multiplied by the delay associated with the device�
It gives a measure of the dynamic work performed by the device� In CMOS
implementations the switching power Psw depends on the frequency at which
the circuit runs
 and the number of times the switching capacitance Csw gets
charged and discharged while the nodes switch logic states �� � �
� � ���
The delay is the time taken to charge or discharge the capacitance associ	
ated with a node
 and it is a function of the resistance and capacitance of
the device and the wiring associated with it�
In a physical implementation
 the information at a node �computed by

the entropy function Hw� captures the dynamic switching of logic states at
the node� A node with high information has equal likelihood of acquiring
a value of � or � �p � ����� This also implies that such a node is likely to
undergo more switching of states ��� �
�� �� during dynamic computation
and thus expend more switching energy� The distance information has to
travel is a measure of the switching capacitance that needs to be charged
and discharged
 since this determines the delay incurred before the node
changes state� Long edge lengths imply high switching capacitances causing
longer delays for a node to change state and longer delays for information
to travel to the next node� This de�nition of spatial entropy thus provides a
quantitative measure for the switching energy in a physical implementation�
In the next section we describe a way to estimate spatial entropy in a

circuit� It is di�cult to compute spatial entropy accurately
 and we only
illustrate how to compute approximations to the spatial entropy de�nition
in De�nition �� We begin by describing this process for individual primitive
gates that then evolves into a procedure to compute spatial entropy for an
entire circuit�

��� Spatial Entropy Computation

We restrict our treatment of spatial entropy computation to the domain of
combinational circuits at the gate level� Spatial entropy of sequential circuits
can be computed by expressing their next state and output functions as
blocks of combinational logic� In this case the spatial entropy computation

��

will capture the information �ow through the circuit for only a single clock
cycle� This would have to be repeated over successive clock cycles with new
probability values to capture the entire computation of the sequential circuit�
The circuits are multi	level implementations and technology mapping may
or may not have taken place�
We begin by describing spatial entropy computation for implementations

of single output boolean functions� Subsequently we extend our procedure
to compute the spatial entropy of multi	output implementations� In order to
compute spatial entropy for circuits at the gate level
 the spatial entropy for
primitive logic gates needs to be de�ned� Spatial entropy is a function of the
information Hw at a node
 and the fanout edge length at the node� But edge
lengths are absent at the gate level� We currently assume unit edge length in
our graph
 i�e� unit wire length in our circuit
 and compute an approximation
to the spatial entropy of the circuit� Later in this chapter we describe ways
to re�ne this approximation by obtaining estimates of the edge length�
The local spatial entropy at a gate node g � V is de�ned as�

�Sg �
X
g��V

Hg � l�g�g��

where Hg is the information computed at the gate node g
 and l�g�g�� is the
length of the fanout edge from node g to node g�� Since we have assumed
l�g�g�� � � we can only compute an approximation �Sg � Hg� We illustrate
this for some simple �	input gates�
Consider a �	input AND gate with �	probabilities of p�

x

p�
y
at its inputs

x� y� The �	probability at the output of the AND gate is p�
and

� p�
x
� p�

y

since the only event yielding a � at the output is p�
x
� p�

y
� The local spatial

entropy at the AND gates
 �Sand
 is equal to the information at the gate
Hand � p�

and
log �

p�
and

� p�
and
log �

p�
and

�

For a �	input XOR gate the �	probability p�
xor
� p�

y
��� p�

x
� � p�

x
��� p�

y
�

since there can be a � at the output only if x � � and y � � or y � � and
x � �� The local spatial entropy �Sxor � Hxor
 where Hxor � p�

xor
log �

p�xor
�

p�
xor
log �

p�xor
�

For a �	input OR gate the �	probability p�
or
� � � �� � p�

x
���� p�

y
�� This

is obtained by subtracting from �
 the probability of the event that would
yield a � at the output� Similarly the local spatial entropy �Sor � Hor
 where
Hor � p�

or
log �

p�or
� p�

or
log �

p�or
�

��

For a NOT gate the �	probability p�
not
is equal to � � px
 and the �	

probability p�
not
is equal to px� The local spatial entropy �Snot � Hnot is

p�
not
log �

p�not
�p�

not
log �

p�not
� The local spatial entropy values for �	input NAND

NOR and other ��
��multi	input �AND
OR
EXOR� gates can be computed
similarly�
To see what these de�nitions mean let us assume for the moment that

the �	probabilities at the inputs of all the above gates are ���
 that is
 � and
� are equally likely at the inputs� Then the �	probabilities ��	probabilities�
at the outputs of the above gates are AND	����������
 OR	����������
 XOR	
��������
 and NOT	��������� Computing the information content H of these
probability distributions we discover that the AND and OR gates will have
the same amount of information� This is because both have the same distri	
bution of �� events at the output� In the AND
 three input events yields
a � and one input event yields a � at the output� It is exactly the reverse
in the OR gate� In the case of NOT and XOR gates
 assuming an input
probability of ���
 both gates have the same amount of information H � ��
This implies maximum information� The reason for this is that both gates
have equal probabilities for output events of � and �
 and thus the output
has as much chance of being a � as being a ��
We now have rules to compute the spatial entropy for the primitive gates

in our circuit� What is now needed is a way of accumulating these spatial en	
tropy values over the various nodes in the combinational circuit� This would
give us the spatial entropy at the output of the circuit� We illustrate this
with a simple example �rst and then describe a simple algorithm for spatial
entropy computation� As we indicated before
 this computes an approxima	
tion to the actual spatial entropy since we assume unit edge lengths� In a
physical implementation
 such an approximation to spatial entropy will yield
a measure of the dynamic power consumed in a circuit� It captures the rate
at which the switching capacitance at each node charges and discharges as
the logic states change at the nodes
 without capturing the delay associated
with the node�
Consider the example combinational circuit in Figure ���� The circuit has

� inputs and � output� We assume the input values are distributed such that
each input has equal probability of being a � or �� So the circuit is initialized
by assigning all primary inputs with a probability of ���� This initializes
the spatial entropy of every primary input to ��� �p � ��� �� H � ��� ��

��

For all inputs

p = 0.5, S =1.0

S = 1.693

p=0.25 p=0.9375

S = 3.255 S =6.051

i

i

i

1

n

n

n
3

2

1

4
n

2

3

i
4

p = 0.5

S = 2.562

p = 0.25

Figure ���� Spatial Entropy Computation for a Simple Circuit

S � ��� �for unit edge length��� The spatial entropy computation process
begins with a breadth �rst search from the input nodes of the circuit� The
probability of each node in the graph is calculated using the primitive gate
rules� The spatial entropy at each gate!s output node Sg is the local spatial
entropy at that node plus the cumulative sum of the spatial entropy values
at the fanin nodes of the gate� This is calculated as follows for a k	input gate
g�

Sg �
kX
i��

Sgi � �Sg

where �Sg is the local spatial entropy at the output node of the gate g and
Sgi is the spatial entropy value at fanin node gi of gate g�
In the example in Figure ��� the spatial entropy at node n� is calculated

as Sn� � Si��Si���Sn� � Since i� and i� are primary inputs with probabilities
of ���
 their spatial entropies Si� and Si� are ���� The local spatial entropy

��

at n�
 �Sn�
 is calculated using the formula for an AND gate to yield �Sn� �
����log� �

���	
������log� �

��
	
� � ������ Similarly Sn� � Si���Sn� � ������ The

spatial entropy at the internal node n� is calculated as Sn� � Sn��Si���Sn��
In this case while Si� � ���
 Sn� � ������ �Sn� is calculated as it is calculated
for n�� Therefore
 Sn� � ��� � ����� � ����� � ������ Finally the spatial
entropy at the output node n� is calculated to obtain a value for the total
spatial entropy of the circuit� Sn� � ����� � ����� � �Sn�� The local spatial
entropy at n� is calculated as ������ � log� �

����
	
�� ����� � log� �

�����	
� � ������

This gives Sn� � ������
In the next section we describe an algorithm to compute spatial entropy

for a given combinational circuit�

��� Algorithm

The following algorithm computes the spatial entropy for a given combi	
national circuit� The computed spatial entropy is an approximation to the
spatial entropy in De�nition � since we have assumed unit edge lengths in the
circuit� The same algorithm can also be used to compute spatial entropy if
the actual edge lengths or edge length estimates are available� We illustrate
this later when discussing di�erent estimates of the edge length�
We �rst describe the procedure informally and then outline the algorithm�

The input is a logic gate level description of a combinational circuit modeled
as a connected directed graph �V�E�� The algorithm itself can �t in the
framework of any event	driven system� It performs a breadth	�rst traversal
of the graph by visiting nodes in successive levels� At the outset the level
is �
 and the only nodes visited are the primary input nodes� These are
initialized with their probability and spatial entropy values� The procedure
then collects all nodes that are reachable from them� This makes up the
nodes at the next level� A gate node is added to a level only if all its fanin
nodes have been visited� The spatial entropy and probability values for these
nodes �at the next level� are calculated and the nodes are merged with the
existing set of visited nodes� The search then proceeds to the next level to
collect the next set of gate output nodes� This continues till all the nodes in
the graph have been visited �or reached�� This indicates breadth	�rst	search
is complete� At this point the spatial entropy and probability values of all
the nodes have also been calculated� Shown below are some de�nitions and

��

the outline of the algorithm�

Total NodeSet� This is the set of all nodes �V � in the graph� It is un	
changed over all levels�

Reached Set� This is the set of all nodes reached till a particular level� At
level � the Reached Set is the set of primary inputs nodes �Inputs��

NewAffected Set� This is the set of new nodes generated at each level�

In the following algorithm
 ��� are used to distinguish the inputs and
outputs respectively
 to the individual procedures�

Procedure Compute Spatial Entropy��Network� �Inputs	

begin
collect all nodes��Network� �Inputs� �Total NodeSet	�
collect input nodes��Network� �Inputs� �Start NodeSet	

Reached Set � Start NodeSet

initialize attributes��Reached Set	

Level � �

while �Reached Set 	� Total NodeSet	 do
begin

Level � Level � �

collect new affected set��Reached Set� �NewAffected Set	

compute attributes��NewAffected Set	

Reached Set � Reached Set � NewAffected Set

end while�
end Compute Spatial Entropy

The algorithm begins �Level��� by initializing the Reached Set to the
set of primary input nodes Inputs� These nodes are assigned initial prob	
ability and spatial entropy values� Then the search proceeds to the next
level �Level��� in the graph� It collects all nodes that are reachable from
the existing Reached Set� This makes up the set of newly a�ected nodes
NewAffected Set at this level� For each node v in the NewAffected Set the
attributes probability �pv�
 and spatial entropy �Sv� are calculated by proce	
dure compute attributes� The NewAffected Set is then merged with the
current Reached Set to obtain an updated Reached Set� This starts the next

��

level of the breadth	�rst	search� This process repeats till the Reached Set

contains all the nodes in the graph �Total Node Set� indicating that breadth	
�rst	search in the graph is complete�
The run time of the algorithm depends on the number of nodes n in the

combinational circuit� Since the entire graph is connected
 in the worst case

the breadth �rst search will add at least one new node for each iteration of
the while loop� Thus there will be at most n iterations of the loop�
The frontier nodes Fl of the Reached Set at some level l consist of

all nodes that were added at level l � �� In order to generate the
NewAffected Set at level l we examine the fanout nodes F �f� from each
frontier node f � Fl� Only a subset of nodes F ��f� � F �f� are eligible to
enter the NewAffected Set� Nodes whose fanins are not in the Reached Set

are discarded from F �f�� For a pair of frontier nodes f� g � Fl
 the eligible
fanout sets F ��f�� F ��g� are not necessarily disjoint� Two nodes can fanout
to the same node at the next level� Hence we need a union to compute the
NewAffected Set� At level l
 NewAffected Set � �f�Fl

F ��f�� In the worst
case an F ��f� can be the entire set of nodes n� So the NewAffected Set is
collected as an ordered set �without duplicates�
 and the union operation �
is implemented as an ordered set union whose total cost is the cost of sorting
�to order the sets�
 followed by the cost of merging the two ordered sets�
While the sorting requires O�n log n� time
 the merging can be done in time
proportional to the sum of the sizes of the two ordered sets �O�n��� Since
the union is invoked for each level of the breadth �rst search
 the algorithm
has a worst	case run time complexity of O�n� log n��
The above algorithm computes an approximation to the spatial entropy

of a combinational circuit� The same algorithm can be used to compute the
actual spatial entropy as de�ned in De�nition �
 if edge length information
were available� The only change would be to the compute attributes pro	
cedure that computes the local spatial entropy at each node in the circuit�
In the next section we introduce spatial entropy vectors by extending the ba	
sic spatial entropy computation algorithm to further characterize the spatial
entropy attribute�

��

��� Spatial Entropy Vectors

The spatial entropy of a circuit is a measure of the communication e�ort
required to compute the circuit function� We obtained this amount by accu	
mulating the spatial entropy at the internal nodes in the circuit� We can go
one step further and characterize the spatial entropy of the circuit and the
spatial entropy at the internal nodes of the circuit in terms of spatial entropy
contributions of the primary inputs� This will give us the e�ort contributed
by each primary input in computing the circuit function� In Chapter � we
use this idea to study the problem of variable orderings for binary decision
diagrams �BDDs��
We begin with an outline of the approach� The extension to the spatial

entropy computation procedure to capture spatial entropy contributions of
the primary inputs is implemented by adding another attribute
 called the
spatial entropy vector to each node in the network� The spatial entropy vector
at any node is an n	element vector containing the spatial entropy contribution
of each of the n primary inputs to the spatial entropy at the node� The same
algorithm outlined in ��� is used to compute the spatial entropy vector at the
circuit outputs� The value of this vector at any internal node w is computed
by adding the spatial entropy vectors at the node inputs to the local spatial
entropy �Sw at the node� Since �Sw is a single value it is distributed amongst
all the primary inputs in proportion to the spatial entropy contribution of
each primary input at the fanins of node w� The spatial entropy contribution
of each primary input at node w!s fanins can be computed from the spatial
entropy vector at each of these fanins� We now express this idea formally�
For a circuit with n primary inputs the spatial entropy at a node w
 Sw

and the spatial entropy vector at the node
 �Sw
 are related as follows

Sw �
nX

j��

�Sw�xj�

The spatial entropy at the node is the cumulative sum of the spatial entropy
contributions of each primary input at the node�

The spatial entropy vector at each primary input xj

�
Sxj
 consists of �s

at all input positions in the vector
 except for position j
 which contains a
�� This indicates that the spatial entropy at this node is entirely contributed
by the primary input xj�

��

.
. . .

.

.
.

.
.

w..

Sw
1

Swi

Swk

Sw

Figure ���� Spatial Entropy Vector Computation

How is the spatial entropy vector �S computed at a node w� The spatial
entropy vectors at the k fanins of a node w �Figure ���� can be accumulated

by adding them together to obtain
��

Sinw�
Pk

i��
�Swi
� This yields a single

accumulated vector consisting of the spatial entropy contributions of the
primary inputs to all the fanins of node w� Since the local spatial entropy at
w
 �Sw
 is a single value it needs to be distributed as contributions over all
the primary inputs� This is accomplished by distributing �Sw amongst each

primary input in proportion to its value in the accumulated vector
��
Sinw� If

the total spatial entropy contribution of primary input xj over all the fanins

of node w is
��
Sinw �xj�
 and Sinw �

PN
j��

��
Sinw �xj�
 is the total spatial entropy

over all the fanins of node w
 then the local spatial entropy contribution of
primary input xj is given by

�Sw �
��

Sinw �xj�

Sinw

The intuitive justi�cation behind this step is as follows� The local spatial
entropy at node w ��Sw� is a measure of the e�ort required to compute the
value at w� We distribute this e�ort amongst the primary inputs using the
reasoning that a primary input that has contributed more e�ort to the inputs
of w will be rewarded by receiving a greater contribution of the local spatial
entropy� This gives us the equation for computing the spatial entropy vector

��

at node w�

�Sw �
��
Sinw ��

�SwPN
j��

��

Sinw�xj�
�� ��
Sinw �����

If we now extend the algorithm so that it computes the spatial entropy
vectors during the breadth �rst search
 we can obtain spatial entropy vectors
at the outputs that re�ect the spatial entropy contributions from the pri	
mary inputs� The following example will illustrate this extended algorithm
on a simple gate	level network� It must be mentioned again that since we
have assumed unit edge lengths
 only an approximation to the actual spatial
entropy vectors is being computed in this example�
Consider the combinational network shown in Figure ��� The circuit has

� inputs and � output� We assume that the input values are uniformly
distributed
 i�e� all inputs have �	probability of ��� The spatial entropy
values at all the input nodes Si�� Si�� Si�� Si� � ����
The spatial entropy vector at each input is initialized to a vector that has

zeros at all positions and a ��� at that input position� �Si� � ����� ���� ���� ����

�Si� � ����� ���� ���� ����

�Si� � ����� ���� ���� ����

�Si� � ����� ���� ���� ����

The �rst level of the breadth	�rst	search yields nodes n	 and n in the
New Affected Set� So we compute the �	probabilities and spatial entropy
values at these nodes� n	 is the output of an OR node
 hence the �	probability
at n	 is �� �� 	 ��"���� The �	probability at n is ��
 since it is the output
of an inverter node� At n	 the spatial entropy value is calculated as follows

Sn� � Si� � Si� � �Sn�

The terms Si� and Si� provide the spatial entropy value from the inputs
i� and i�
 which in this case is ���� �Sn� provides the local spatial entropy
contribution at the OR node n	� This works out to ������ Hence Sn� � ������
Similarly
 Sn� � ������
The spatial entropy vector at node n	 is

�Sn� �
�Si� � �

�Sn�
Si� � Si�

� � �Si� �
�Si� � �

�Sn�
Si� � Si�

� � �Si�

Here �Si� �
�Si� are the initialized input vectors
 since i� and i� are inputs�

The other terms are calculated as follows� The term
�Sn�

Si��Si�
is the proportion

��

i

i

i

1

n

n

n

n

2

3

i
4

5

S

8

9

n
10

11

S = [1.281, 1.281, 0, 0]

S = 2.562

p = 0.75

p = 0.375

S = 4.224

S = [1.519, 1.519, 1.186, 0]

p = 0.5

S = 1.693

S = [0, 0, 1.693, 0]

p = 0.25

S= 3.256

S = [0, 0, 2.047, 1.209]

p = 0.5312

S = 8.17

= [1.66, 1.66, 3.53, 1.32]

Figure ���� Example Spatial Entropy Calculation

 ij j � �� �� pij � ���� Sij � ����

�Sij is a vector of

zeros� with a ��� at position j

��

in which the local spatial entropy at n	 will be distributed amongst i� and
i�� This is ������ When multiplied by �Si� � ����� ���� ���� ����
 and

�Si� �
����� ���� ���� ���� it gives the local spatial entropy vector contribution due to
i�
 and i� respectively
 which are ������� ���� ���� ���� and ����� ������ ���� ����
respectively� Updating this with the spatial entropy vector values at i�� i� we
have the spatial entropy vector at n	 � ������� ������ ���� �����
At the next level of the breadth	�rst	search the New Affected Set con	

sists of nodes n�� and n�
 both outputs of AND nodes with two fanin edges�
The probability at nodes n�� and n� is pn�� � ����� �� � ��� � ����

and pn� � ����
 ��

�
� ��� � ����� The spatial entropy at the nodes are�

Sn�� � Sn� � Si� � �Sn��
 which is ������ Sn� � Sn� � Si� � �Sn�
 which is
������

�Sn�� is the local spatial entropy contribution at the AND node n��� The
spatial entropy vector at node n�� is computed as�

�Sn�� �
�Sn� � �

�Sn��
Sn� � Si�

� � �Sn� �
�Si� � �

�Sn��
Sn� � Si�

� � �Si�

This yields a contribution of

������� ������ ���� ���� � ������ � ������� ������ ���� ���� � ������� ������ ���� ����

from n	
 and a contribution of

����� ���� ���� ���� � ������ � ����� ���� ���� ���� � ����� ���� ������� ����

from i�
 making �Sn�� � ������� ������ ������� �����

A similar exercise at node n� yields �Sn� as ����� ���� ������ �������
Finally
 the last level in the breadth	�rst	search yields the output node

n��
 which is the output of an OR node with two fanin edges� We have
pn�� � ��������������
 Sn�� � Sn�� � Sn� � �Sn��
 which is ����� � ����� �
����� � ������ The spatial entropy vector at n�� is�

�Sn�� � ������� ������ ������� ���� � ������� ������ ������� ���� � ������
� ����� ���� ������ ������ � ����� ���� ������ ������ � ������

This evaluates �nally to ������� ������ ������ ������� Adding these up gives
us ����� � ����� � ����� � ����� � �����
 the spatial entropy at the output

��

Sn�� � An inspection of the individual contributions of the primary inputs

�in �Sn��� to the spatial entropy at n�� shows that input i� has the largest
contribution �������� i�� i� have identical contributions ������� and i� has
the least ��������
In the next section we discuss in detail
 the factors that a�ect the accuracy

of spatial entropy computation�

��� Factors a	ecting Spatial Entropy Compu

tation

Computing spatial entropy accurately at the gate level is di�cult� As we
have seen
 in the absence of wire length information
 we have already had to
make the approximation of using unit lengths while computing spatial en	
tropy� In this section we discuss the e�ects of three factors that make spatial
entropy computation di�cult� logic minimization
 wire length
 and reconver�
gent fanout� The e�ect of logic minimization on spatial entropy is discussed
at length in a later chapter where we de�ne the information content of a
boolean function in cube space and relate this to the spatial entropy of such
functions when minimized in the two	level and multi	level form� Therefore
we treat minimization only brie�y here showing intuitively how minimization
can a�ect spatial entropy values� The e�ects of wire length and reconvergent
fanout will be handled in more detail here�

����� Logic Minimization and Spatial Entropy

In a gate level circuit the spatial entropy is computed by accumulating the
information	distance product over all the nodes in the circuit� Suppose the
spatial entropy of a given circuit C
 as computed with our unit wire length
approximation
 is SC � Let C � be a functionally equivalent version of the
same circuit C that has not been minimized and thus has more gate nodes
than C� Since the spatial entropy accumulates over all nodes and is non	
decreasing
 SC� may be greater than SC � Figure ��� shows how the spatial
entropy can increase� The implementation that is not minimized will have a
greater spatial entropy
 due to the excess spatial entropy contribution from
the additional gate� Excess spatial entropy is not desirable since it arti�cially

��

S =2.562

S=4.223 S =2.562

f = a+a’c f = a+c

a’

c

a

a

cS=1.0

Figure ���� E�ect of Minimization on Spatial Entropy

increases the spatial entropy of some nodes over others� Hence we require
our circuits to be minimal in literal count before performing spatial entropy
computation� In practice since minimization is a heuristic we only have
approximately minimal circuits� The connection to switching energy can be
seen here too� In an implementation with more gates there is likely to be
more dynamic switching of states contributing to greater switching energy�
We now discuss the relationship between wire length and spatial entropy
computation�

����� Wire Length and Spatial Entropy

Computing exact spatial entropy as we have seen requires wire length infor	
mation� Since a gate level netlist does not have length information
 to this
point
 we have been approximating spatial entropy computation by using a
unit wire length estimate� The problem here is that the �ow of information
across the di�erent levels of abstraction in the VLSI design process make it
di�cult to compute spatial entropy accurately� These abstraction levels do
not provide su�cient detail to compute the attribute� For instance at the
gate level of abstraction one can compute � and � probabilities
 and hence
information Hw
 but wire length information is absent� Actual wire lengths
exist only at the layout level� But there are ways in which this length estimate
can be improved at the gate level�
One approach is to estimate wire length at the gate level by using the

number of fanouts at a node as the wire length at the node� Another approach

��

is to use the static levels in the circuit for wire length information� The
nodes in the circuit can be marked with levels corresponding to the gates
 in
a breadth	�rst prepass� Then the wire length at a node can be approximated
by the cumulative sum of the level numbers of all its fanout nodes� So if one
of the fanouts has a large level number
 then the approximated wire length
will be large signifying that a long wire was needed to get to that fanout
node�
One can also visualize the extraction of length information from the

schematic of a gate level netlist� These lengths can be computed as follows�
Embed the netlist on a planar grid with the gates or nodes represented as
points on the grid
 and the wires or edges represented as Manhattan lines on
the grid� �All input nodes would enter from one end and output nodes would
appear at the other end�� Place the nodes so as to minimize edge crossing
and edge length� Compute the Manhattan wire lengths between grid points�
This placement problem itself is NP	complete �GJ���
 but approximations
can be obtained�
Sometimes instead of point�to�point lengths between nodes only a lumped

length value may be available at the node� Lumped wire lengths introduce
inaccuracies at multiple fanout nodes� When boolean functions share logic
it is captured in an implementation by fanouts from the shared portion of
logic� Consider Figure ���� Suppose the logic at the output of a k	input gate
w is shared by � output functions This will be re�ected by a node w with k
fanins and � fanouts �f�� f�� and f���
The local spatial entropy at w
 computed exactly
 is expressed below

�Sw �
�X

j��

Hw � l�w�fj�

It is equal to the information Hw at the node multiplied by the distance
traveled by the information along each fanout edge �w� fj�� Since the edge
length from node w to each of its � fanout nodes will usually vary
 each fanout
node fj is receiving a local spatial entropy contribution proportional to the
length of the fanout edge �w� fj�� The reasoning here is that for a fanout
edge with greater length the information Hw has to travel a longer distance
to reach the fanout node�
The spatial entropy at each fanout node fj �Sfj� is computed as follows�

The cumulative sum of the spatial entropies at the fanins of node w �
Pk

i��
Swi
�

��

...

1

k

f

fw

1

2

f
3

Figure ���� A Node w with Multiple Fanouts

represents the total e�ort required to compute the spatial entropy at the
inputs to w� Since this represents the e�ort prior to reaching w it is divided
equally amongst the three fanout nodes f�� f�
 and f�� On the other hand

the local spatial entropy contribution at each fanout node is proportional to
the length of the fanout edge from w to fj� So Sfj is expressed below as

Sfj �

Pk
i��

Swi

�
�Hw � l�w�fj� �����

where l�w�fj�
 is the edge length between w and fj�
With unit edge lengths or lumped edge lengths
 instead of point	to	point

edge lengths
 we can only obtain approximate values for the spatial entropy
at each fanout node� Consider the switching energy analogy� The switching
energy at a multiple fanout node w is a function of the individual switching
capacitances at each fanout node of w contributing to the delay at w� A
lumped value will only yield an approximation� There are di�erent ways in
which to perform this approximation�

Option �� We can compute the local spatial entropy at w as �Sw �P�
i��

Hw � l�w�fi�
 where l�w�fi� is either equal to � or is the lumped

��

wire length at w� This amount can then be divided equally amongst
the � fanouts just as we divided the spatial entropy at the fanins of w
�Si�� This is shown below�

Sfj �
�

�
� �

kX
i��

Sni � �Sn� �����

But there is a disadvantage to doing this� It assumes that the informa	
tion Hw travels an equal distance to each fanout node and each fanout
node should get an equal fraction of the e�ort� This may not be the
case� By dividing the local spatial entropy at w equally � �Sw� � instead of
determining it to be in proportion to the edge length
 one fanout node
may receive a greater proportion than it should actually get� Similarly
another node may receive a smaller proportion than what it is enti	
tled to receive� In single output functions this does not hurt because
the fanouts are going to reconverge in the end into one single output�
so even if we divide the spatial entropy at w disproportionately
 they
are going to recombine at the output� But the same is not true of
multi	output functions� By dividing the spatial entropy at w dispro	
portionately we are draining away some of the spatial entropy �e�ort�
used to compute one function and attributing it to another�

Option �� Another option is to �rst compute the local spatial entropy as
above
 �Sw �

P�
i��Hw�l�w�fi�
 and then obtain the total spatial entropy

at w as ��Sw�
Pk

i�� Swi
�� This is then replicated at all the fanout nodes�

So

Sfj �
kX
i��

Swi
� �Sw �����

Replicating the �rst term
Pk

i��
Swi

changes the Equation ��� by an
equal amount at every fanout node and this does not a�ect the accu	
racy� Replicating the second term ��Sw� however
 is an approximation
to distributing it in proportion to the edge lengths amongst the di�er	
ent fj� On the one hand
 this does not drain away the spatial entropy
meant for one function into another
 because the entire amount �com	
puted at node w� is replicated along each of the fanout edges� On the
other hand
 this approach can a�ect circuits with heavy reconvergent

��

fanout� This is because when fanout nodes reconverge their spatial en	
tropies get added� In this process we have arti�cially �created� more
spatial entropy at the reconvergent node than necessary�

Option �� A third option
 which is a combination of the above
 is to perform
a prepass and compute for each output �of a multi	output function� the
cone of logic that supports it� Then we perform spatial entropy com	
putation on each output cone independently
 either by equally dividing
the spatial entropies at fanout nodes or by replicating them� This still
is not an ideal solution� We are computing the spatial entropy over
each output of a multi	output function
 but with a unit edge length
or lumped edge length estimate the local spatial entropy at the nodes
are still being approximated Nevertheless performing a cone�based spa	
tial entropy computation helps us concentrate on one output at a time
preventing spatial entropy contributions meant for one output from
getting drained away into another�

By combining lumped wire length information along with static level
structure information one can further approximate the proportionate distri	
bution of �Sw� Fanout nodes with greater level numbers will now receive a
greater share of the lumped wire length� In Chapter �
 we use lumped wire
lengths from an extracted layout to compute the spatial entropy at the gate
level� This is used in the problem of spatial entropy based variable ordering
for binary decision diagrams �BDDs�� We also empirically study the e�ects
of some other length estimates� Since all these estimates still yield only ap	
proximations to the spatial entropy we are interested in determining how
useful they are and how they a�ect spatial entropy computation�

����� Reconvergent Fanout and Spatial Entropy

Reconvergent fanout a�ects the exact calculation of �	probabilities at the
nodes� Since the information Hw at a node w is a function of the � and �
probability at the node
 an error in the probability computation will a�ect
Hw and consequently the spatial entropy� Exact �	probability computation
in circuits with reconvergent fanout has been extensively studied in the ar	
eas of fault simulation �BPH��
 MJ��
 AS���
 test generation �HM���
 and
testability analysis �SDB��
 SPA��
 JA����

��

b

a

c

f = ab+ac

ab

[abc’,abc]

[ab’c,abc]

a

b

c ac

bcAND

AND
OR

f =ab+ac

[abc,ab’c,abc’]

2/8

2/8

(3/8)7/16ac

Figure ���� Reconvergent Fanout 	 An Example

We begin by reviewing the idea of reconvergence� This is illustrated with
a simple example in Figure ���� The gate	level implementation and a simple
digraph model of a � input function is shown� A path in the graph is a
sequence of vertices from a source node to a destination node� Two paths
are said to be reconvergent if their source and destination nodes are the
same� The paths are said to fanout at the source node and reconverge at the
destination node� The destination node is called the reconvergent node� In
the example the output of the OR gate
 which is also the output node of the
function
 is a reconvergent node for two reconvergent paths that fanout from
the source node a�
Let us see how reconvergence a�ects the calculation of �	probabilities�

The �	probability at a node is the fraction of onterms at that node� Figure ���

��

identi�es the onterms at the two internal nodes and their �	probabilities as
fractions� The �	probability at the OR node is obtained by combining the �	
probabilities �and hence the onterms� at its inputs
 using the rule de�ned for
an OR gate� But due to reconvergent fanout the two internal nodes share a
common onterm abc� As a result the �	probability at the reconvergent node
no longer combines independent �	probabilities �or onterms� at its inputs

as assumed by our probability rules for primitive gates� While the actual
�	probability at the OR node obtained by computing the fraction of onterms
at the node is ���
 the primitive gate rule calculates it incorrectly as �����
Since �	probabilities a�ect the number of information bits
 error in the

probability computation will be re�ected as error in the spatial entropy ex	
pression S� But in addition to this error reconvergent fanout can introduce
another form of error at fanout nodes depending on how the local spatial
entropy at a node is attributed to its fanouts� For instance
 if the spatial
entropy and spatial entropy vector at a node is replicated amongst its fanouts
�instead of dividing it equally or proportionately�
 then the replicated spa	
tial entropy values add up at the reconvergent node� In the process the
cumulative spatial entropy at the reconvergent node is arti�cially boosted�
In this section we discuss approaches to remove these errors� We begin by
brie�y discussing existing approaches in the literature to compute exact �	
probabilities� We then extend this idea to removing error in the spatial
entropy at a reconvergent node�
One of the ways to avoid the error in �	probability computation due to

reconvergent fanout is to apply a random patterns to the circuit and compute
�	probability at the internal nodes� A similar approach has been used in
fault simulation and random test pattern generation �AS��
 SB���
 where a
circuit is simulated with a sampling of random patterns until it is capable of
detecting a high percentage ��� � 	 of faults with a high probability � � ��
Typically 	
 �
�
 ������ In this particular instance
 if the distribution
of probabilities at the inputs to the circuit are known
 then it is possible to
generate a sample of input patterns where each input is randomly selected
to be a � with its known �	probability� This statistical sample can then be
applied on the circuit to generate �� values at the internal nodes conditional
to each input assignment� A weighted sum of these values would yield the
�	probability at the internal node� The main drawback is that to compute
the probability exactly an exponential number of input patterns is required�
As mentioned earlier
 exact �	probability computation in reconvergent

��

fanout circuits has been studied extensively� �BPH��
 MJ��
 AS��
 HM��

SDB��
 SPA��
 JA���� Parker and McCluskey �PM��� described an algo	
rithm for exact computation of �	probabilities in circuits with or without
reconvergent fanout� But the exact procedure can require exponential space
and time� Since then several approximate algorithms have been proposed for
computing the �	probability at reconvergent nodes� In all these approaches
�SPA��
 JA��
 SDB��� there is a trade	o� between accuracy of the probabil	
ity computation and computational e�ciency� This implies that in circuits
with reconvergent fanout we again compute only an approximation of the
spatial entropy in the circuit�
In the rest of this section we examine one of the approaches to com	

pute �	probability at reconvergent nodes in greater detail
 and discuss how
it can be extended to remove errors in spatial entropy� In �SPA���
 Seth et�al
propose a simple and elegant procedure to trade e�ciency with accuracy
in the probability computation phase� The procedure constructs supergates
for reconvergent nodes and then recomputes the correct probability at the
reconvergent node from the supergate� Informally a supergate SG�v� for a
reconvergent node v is a subgraph of the circuit that includes the edges and
nodes on all paths that originate from nodes with independent probabilities�
Figure ��� shows a simple circuit and one of its supergates� The procedure for
�	probability computation at the reconvergent node consists of the following
steps�

�� Identi�cation of reconvergent nodes�

�� Determining the supergate for each reconvergent node�

�� Calculating the probabilities at the supergate outputs�

We brie�y elaborate on these steps�

Reconvergent Node Identi�cation� Reconvergent nodes in a circuit are
identi�ed via a quick preprocessing step that sweeps through the graph
in a breadth	�rst manner� This step labels each node v in the graph
with a label set Iv of primary inputs occurring in its cone of in�u	
ence� To check if v is a reconvergent node the procedure then examines
fanin�v�
 the set of fanin nodes of v� v is not reconvergent if and only
if the following is true�

x� y � fanin�v� Ix � Iy � fg

��

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

7

8

5 9

12

11

Figure ���� A Circuit with a Supergate SG����

��

So the label sets for all fanin nodes of v must be mutually disjoint for
v to be non	reconvergent�

Supergate Construction� This step constructs a supergate for every iden	
ti�ed reconvergent node� Working backwards from the reconvergent
node
 in a breadth	�rst manner
 all nodes that make up the supergate
are collected� The procedure stops when all inputs to the supergate
are independent
 i�e� their label sets are disjoint� It returns two mu	
tually exclusive sets of nodes� The �rst is a set of frontier nodes that
are input nodes to the supergate� The second is the set of interior
nodes that are internal nodes of the supergate� There are two kinds of
frontier nodes� fanout input nodes
 and non�fanout input nodes� The
fanout input nodes are supergate inputs from which reconvergent paths
originate� Figure ��� has one fanout input node
 �
 in SG����� There
are three non	fanout input nodes 	 �� �� and ��

Supergate ��Probability Computation� The procedure to compute the
�	probability of the reconvergent node v of a supergate SG�v� has been
described in �SPA���� Values are assigned to the fanout and non	fanout
input nodes of the supergate which is then simulated to factor out de	
pendent events generated due to reconvergent fanout� The non	fanout
inputs are assigned their existing �	probability values� The fanout in	
puts are assigned a binary vector of assignments� ����� ���� � � ��
 where
each fanout input is assigned a value of � or �� If the number of fanout
inputs is too large
 then either only a sample of all the possible vector
assignments is chosen
 or a smaller supergate is constructed by limiting
the number of fanout inputs it can have� In the latter case all the un	
expanded nodes �which could have lead to fanout inputs� are marked
as non	fanout inputs of the supergate�

The supergate is then simulated with the vector assignment to the
fanout inputs and the probabilities at the non	fanout inputs� For each
individual simulation the �	probability at the reconvergent node v is
calculated conditional to the given fanout input vector assignment�
These conditional probability values are then weighed with the proba	
bility of the event corresponding to the fanout input vector assignment�
Suppose p�

v
��a� was the conditional probability at v for the binary as	

signment �a � ���
 for fanout inputs x� y and z respectively� Then

��

p�
v
��a�� �p�

x
�p�

y
�p�

z
� is the weighted conditional probability at the recon	

vergent node for event ���� This weighted sum over all fanout input
assignments yields the exact �	probability at the reconvergent node�

The tradeo� between computational e�ciency and probability accuracy
arises when the fanout node set is too large� In such a situation when
simulating with the set of all possible fanout input assignments becomes
impractical
 a sample subset is used� Accordingly
 the �nal probability
is also scaled by the size of this sample set�

Spatial Entropy Computation with Supergates�
While removing errors in the spatial entropy at a reconvergent node the

steps of reconvergent node identi�cation and supergate construction outlined
above do not change� But having constructed the supergate and computed
the �	probability at the reconvergent node
 its spatial entropy and spatial en	
tropy vector must also be calculated� Informally this task can be described as
follows� To start with
 the constructed supergate is treated as an independent
circuit� The existing spatial entropy S and spatial entropy vector �S values at
its frontier nodes are saved� In Figure ���� this happens to non	fanout nodes
�� � and �� and fanout node �� Since the frontier nodes of the supergate are
primary inputs of an independent circuit
 these are now initialized with a su	

pergate spatial entropy Ssg and spatial entropy vector
�
Ssg� So Ssg

 S
sg
�
 S

sg
��

and Ssg

 are initialized
 and the entropy vectors are initialized similarly� Then

the local spatial entropy ��Ssg� and spatial entropy vector ��
�
Ssg� values for

the supergate are computed using the normal spatial entropy computation
procedure� At the end of this the supergate can be viewed as one large gate
similar to the other �AND
 OR
 NAND� gates� Figure ���� shows this� These
local �supergate� spatial entropy and spatial entropy vector values are com	
bined with the saved spatial entropy and spatial entropy vector values at the
supergate inputs to yield a cumulative expressions for the spatial entropy Sv
and spatial entropy vector �Sv at the reconvergent node� We now elaborate
on these steps�
The procedure to calculate the spatial entropy Ssg local to the supergate is

not as straight forward as the procedure to calculate the exact �	probability�
This is because the spatial entropy �and the spatial entropy vector� are ag	
gregate concepts de�ned over a collection of input assignments or an entire
probability distribution� A node with an assigned value of � or � has a spatial

��

1

2

7

5

− Fanout Input Node

− Non Fanout Input Node

8
11

9

12Supergate SG(12)

Figure ����� The Supergate SG���� denoted as one Large Gate Node

��

entropy of � since its information content H is �� Hence the spatial entropy
of the supergate cannot be calculated while simulating the supergate with
binary ����� values� It can be done only after the exact �	probability is
computed at the reconvergent node�
The procedure to compute the spatial entropy at the reconvergent node

consists of the following steps�

�� Compute exact �	probability of the reconvergent node�

�� Compute spatial entropy and spatial entropy vector local to the super	

gate �Ssg and
��

�Ssg�

�� Add these values to the spatial entropy and spatial entropy vector
values saved at the inputs of the supergate to obtain Sv and �Sv at
the reconvergent node�

We discuss each of these individually�

Step �� This step is identical to the supergate �	probability calculation pro	
cedure discussed earlier�

Step �� Having computed the exact �	probability at the reconvergent node
another pass is made through the supergate to compute the spatial

entropy �Ssg and spatial entropy vector
��
�Ssg local to the supergate� For

this the fanout inputs of the supergate are �rst initialized to a spatial
entropy of �� The non	fanout inputs are initialized to their local spatial
entropy �H ��� which is computed from their �	probabilities� Since the
supergate is being treated as an independent circuit the spatial entropy
vector for the supergate has as many components as the number of
frontier nodes in the supergate �fanout inputs � non	fanout inputs��
As in the normal spatial entropy computation procedure the spatial
entropy vector at a frontier node xi is initialized with a zero at all
positions except at position i�

Next a breadth	�rst traversal of the nodes in the supergate is per	
formed
 and spatial entropy and spatial entropy vector values are cal	
culated at all the nodes inside the supergate to �nally obtain a value

for �Ssg and �
��
Ssg�

��

Step �� In this step the local spatial entropy and spatial entropy vector val	
ues at the supergate are combined with the existing spatial entropy and
spatial entropy vector values at the supergate inputs to obtain the spa	
tial entropy and spatial entropy vector at the reconvergent node� We
express this formally as follows� Suppose we have an n	input circuit

with a reconvergent node v whose supergate has m inputs
 and super	

gate spatial entropy and spatial entropy vector values of �Ssg and �
��
Ssg�

The spatial entropy and spatial entropy vector of the reconvergent node
v can be expressed as follows

Sv �
mX
i��

Sxi � �Ssg �����

�
Sv�

mX
i��

��
Sxi ��

��
Ssg �����

where Sxi and
�Sxi are the saved spatial entropy and spatial entropy

vector values at the frontier node xi of the supergate�

The vector
��

Sxi is n	elements long while �
��

Ssg is m elements long
 since
the former is in terms of the primary inputs of the circuit
 while the
latter is in terms of the inputs of the supergate� n and m can be

di�erent� So the values in �
��
Ssg have to be distributed proportionately

in terms of the primary inputs of the circuit� A supergate input xi will
have a saved spatial entropy and spatial entropy vector of Sxi and

�Sxi�

It will also have a contribution �
��

Ssg�xi� in the local spatial entropy
vector of the supergate� So if we distribute this contribution amongst
the primary inputs in the vector �Sxi
 we can obtain the local spatial
entropy contribution for a given primary input j as

�
��

Sxi�j��

��

Sxi�j�

Sxi
� �

��

Ssg�xi�

Since we have now expressed the supergate spatial entropy contribu	
tions in terms of the primary inputs
 we can write Equation ��� as

�
Sv�

mX
i��

�
��
Sxi ��

��
Sxi�

��

At the end of this third step
 the probability
 spatial entropy and spatial
entropy vector at the reconvergent node have been calculated�

To summarize
 we have introduced the spatial entropy concept as a dy	
namic attribute in the circuit domain and de�ned it quantitatively using the
entropy function in information theory� We explained how spatial entropy
can provide a quantitative measure of the switching energy in a physical
circuit implementation� A simple algorithm to estimate spatial entropy in
gate	level circuits was described� The spatial entropy attribute was extended
to describe spatial entropy vectors� Computing spatial entropy accurately is
di�cult� We discussed the various factors that a�ect the accuracy of its com	
putation� The e�ects of minimization
 wire length and reconvergent fanout
are not necessarily independent� For instance
 minimization reduces literal
count but does not necessarily reduce wire lengths
 and hence spatial entropy�
Since minimization can also alter the structure of reconvergence in a circuit
this too can a�ect spatial entropy� All this makes it all the more di�cult
to characterize the e�ects of each factor independent of the other� In the
next chapter we discuss an application of spatial entropy to the problem of
variable ordering for binary decision diagrams �BDDs�� This application also
helps us evaluate the various approximations in computing spatial entropy
and their e�ects on the solution�

��

Chapter �

Spatial Entropy Based BDD

Ordering

In this chapter we study an application of spatial entropy 	 using it to
generate input variable ordering for binary decision diagrams�BDDs�� The
problem of generating an ordering for the primary input variables of a boolean
function in order to build small BDDs is an important one and has been stud	
ied extensively �MWBV��
 FFK��
 MIY��
 Ber��
 ISY��
 JPHS��
 BRM��

MKR���� The ordering strategies in most of the literature rely on a static
examination of the circuit topology� In this chapter we propose a dynamic
approach to generate variable orders that uses spatial entropy to capture the
aggregate dynamic data movement in the circuit� We begin by introducing
BDDs and motivating the variable ordering problem� After a short survey of

related research we outline our approach of using spatial entropy vectors

��

S

to generate variable orders� In Section ��� we describe the experimental set	
up to test our approach� After we state the objectives and assumptions we
describe the data set
 the software
 and the experimental apparatus� Then in
Section ��� we present our results followed by observations and conclusions�

��� Introduction and Motivation

In this section we begin with an introduction to binary decision diagrams and
ordered binary decision diagrams� Then we introduce the variable ordering
problem
 motivate it and summarize related research in this area�

����� Binary Decision Diagrams

A binary decision diagram �BDD� �Bry��� is a directed acyclic graph �DAG�
representation �V�E� of a Boolean function f � I � f�� �g� The input vari	
ables
 I
 of the function are represented by nodes in the graph � The node
set V of the graph contains two types of nodes� non�terminal nodes and ter�
minal nodes� A non	terminal node corresponds to a boolean input variable
and is labeled by the name of the variable� A terminal node corresponds to
the boolean constants � or � and is labeled T �true� or F �false� respectively�
A fanout edge of a nonterminal node x � V is labeled with a � or �� This
label �� or �� denotes the value that is assigned to the boolean variable x
along this path� The fanout edge �x� y� � E leads from x to y
 where y is
either another nonterminal node or a terminal node� In the latter case y is
labeled T or F � The node y is called the child of x �child�x� � y� and x
is called the parent of y� The value of the function for a given assignment
to the input variables is determined by traversing the digraph �V�E� from
the root down to a terminal node
 following a � or � edge depending upon
the value assigned to the boolean variable at that node� The value of the
function equals � if the terminal node is T
 and � if the terminal node is F �
Binary decision diagrams were �rst introduced in �Lee���
 and further

popularized by Akers �Ake���� In �Bry���
 Bryant introduced ordered binary
decision diagrams �OBDDs�
 a restriction on the class of binary decision
diagrams� In an ordered BDD a strict ordering � is imposed on the input
variables� The labeling of the nodes along any path from the root to the
terminal node must follow the order given by �� This ordering can be formally
de�ned as follows� Suppose we are given a boolean function f with a set of
input variables I
 where each variable in I is assigned an index according to
the ordering function � � I � f�� � � � � j I jg� A BDD for the function f under
an ordering � has to satisfy the following constraint� Given non	terminal
nodes w� x and y
 ��x�
 ��y� if and only if the following relation holds�

��child�x� � y�� ��x� ��y�� ���child�w� � y � ��x�
 ��w�� � ��x� ��y��

Figure ��� shows an example OBDD for the function a��b� � a��b� � a��b�

with the ordering � � a� b� a� b� a� b�� Informally this ordering is
speci�ed by the sequence of variables in ascending order
 fa�� b�� a�� b�� a�� b�g�
Since we are only interested in ordered binary decision diagrams the rest of
our discussion shall use the term BDDs to refer to ordered BDDs�

��

T F

0
1

1

T1

0

0

0

0

1

1 0

T

F

1

a1

a2

a3

b 3

b 1

b 2

Figure ���� OBDD of f � a��b� � a��b� � a��b� with ordering
fa�� b�� a�� b�� a�� b�g

��

The variable ordering restriction on BDDs has several desirable properties
for symbolic boolean manipulation� In particular
 for a given variable order	
ing � the smallest BDD for a function is unique� Any BDD can be reduced
to yield this unique representation by a simple e�cient algorithm �Bry����
Furthermore many Boolean functions have e�cient
 polynomial size BDD
representations making it e�cient to manipulate such functions and perform
operations on them� This in turn yields e�cient algorithms �Bry��
 BBR���
for tasks such as� determining if an input assignment satis�es a function
�satis�ability testing�
 testing the equivalence of two functions �tautology
checking�
 and combining two functions with a boolean operation� These
properties led to the early use of BDDs in combinational logic veri�cation
�Bry���� Since then they have been applied in several other areas of design
automation research� sequential veri�cation
 test pattern generation
 logic
synthesis
 and optimization� This is not surprising since the boolean func	
tion representation constitutes an important level of abstraction in the VLSI
design process and an e�cient representationdata structure bene�ts all the
algorithms employed at this level of abstraction�

����� The Variable Ordering Problem

A key issue that determines BDD size is the input variable ordering� The
BDD for a function can be very sensitive to the variable ordering� Figure ���
shows a BDD of the function represented in Figure ���
 but with a di�er	
ent ordering
 � � fa�� a�� a�� b�� b�� b�g� The size of the BDD has increased
substantially�
Bryant �Bry��� has shown that while for certain classes of Boolean

functions �integer multipliers� an e�cient �polynomial size� BDD repre	
sentation does not exist regardless of variable ordering
 there are still a
large class of boolean functions that have e�cient BDD representations�
The problem then becomes one of �nding a good input ordering that
will yield an e�cient BDD representation� Since there are an exponen	
tial number �n#� of possible orderings for n input variables
 it is hard
to exhaustively determine the smallest BDD for a given function� The
best algorithm so far to arrive deterministically at an optimal ordering
for a function has a time complexity of O�n��n� �FS���� Several e�orts
�Ber��
 MWBV��
 FFK��
 MIY��
 ISY��
 JPHS��
 MKR��� have been de	
voted to developing heuristics or approximate strategies for �nding a good

��

0 1

0
1

0
1

F

F
T

0 1

0

0

1

T

0
1

0

1
0

1

0
1

F
T

0
1

T

1

T
0

0
1

T
F

1

T

0

a 1

a2

a 3

a 2

a3 a3 a3

b1 b 1 b 1 b1

b 2 b 2

b 3

Figure ���� OBDD of f with ordering fa�� a�� a�� b�� b�� b�g

��

ordering to build small BDDs�
There are two broad directions along which these heuristics to solve the

BDD ordering problem can be classi�ed� In the �rst category are the ap	
proaches �MWBV��
 Ber��
 MIY��
 JPHS��
 FFK��
 BRM��� that rely
broadly on the idea that an input node further away from the output has a
greater in�uence on the BDD size than an input node closer to the output�
These approaches perform a static analysis over the topology of a multi	
level implementation of the function� They de�ne one or more attributes to
capture the depth of nodes in the static structure
 and then generate the
orderings using these attribute�s�� For instance
 �MWBV��� uses node levels
and transitive fan	in �TFI� depths as static attributes on a multi	level graph
model of the implementation� The decreasing fanout count in the graph is
used �FFK��� as a heuristic in an approach that generates orderings with the
objective of minimizing the number of crossings of a net� An observability
based approach is used in �MIY���� Other approaches use techniques based
on algebraic structure theory �JPHS��� and register allocation �Ber���� All
these strategies typically require a breadth or a depth �rst traversal of the
network
 and can consequently generate orderings in a short time� But on
the other hand
 they do not seem to be able to generate consistently good
orderings� Butler et al� �BRM��� believe that a single algorithm might be
inadequate for this purpose� so they use a suite of heuristics to solve the
problem�
The second category consists of approaches that are more recent �FMK��

ISY��
 MKR���� They formulate the ordering problem as an optimization
problem� For a given ordering a cost function is de�ned to estimate BDD
sizes� Then starting with an initial ordering
 and with the objective of min	
imizing the cost function
 optimization techniques like simulated annealing
and variable exchanging within a window are used to generate improved or	
ders� These techniques are more exhaustive and they spend a lot more time
examining di�erent orderings before generating the best one� Thus they
trade computation time for a more thorough search of the space of variable
orderings� Consequently
 they have yielded better BDD sizes than all the
approaches in the �rst category�
In �PAS��� a slightly more fundamental approach is discussed where the

variable ordering strategy is part of the factorization process� Starting with a
two	level irredundant sum of primes form of the function
 a procedure called
lexicographic factorization is adopted� This procedure imposes a partial or	

��

dering on the input variables of the function while generating the multi	level
factored form� The intuition behind using this factorization strategy is that
if excessive factorization can be controlled by controlling input dependency

then it yields a structured logic cone implementation that prevents the wiring
complexity from increasing across di�erent cones in the implementation� The
partial ordering of the input variables in the structured logic cone becomes
the variable order for the BDDs� This ordering is further optimized with
variable exchanging and then used to build the BDDs� We categorize this
approach as more fundamental than the others because the variable orders
are generated while keeping in mind how the �n cubes of the function com	
bine with each other during the factorization� The approach has encountered
problems while generating orderings for the larger
 more complex benchmark
circuit functions� This could possibly be due to the use of a greedy algorithm
to generate the factors�
Our approach is similar to the �rst set of techniques in that it requires an

existing circuit topology to �nd an ordering� But it di�ers from them in that
it uses a dynamic attribute
 spatial entropy
 as a discriminator for variable
ordering instead of a static circuit attribute� Such an attribute
 we believe

can be related to a fundamental characteristic of the function� We elaborate
on this in Chapter ��

����� Motivation

Why do we think that spatial entropy can help generate good variable orders�
A BDD is a representation for a boolean logic function� Its size is in�uenced
by some characteristics of the literals and the minterms of the function and
not by the implementation of the function� So when static attributes such as
fanout depth or level �computed on an implementation of the function� are
used to generate input variable orderings what characteristics of the literals
and the minterms are they trying to capture and how do they use the im	
plementation of the function for this purpose� The number of onterms and
the spatial distribution of these onterms in the cube space of the function
will in�uence the implementation of the function� The spatial distribution
in�uences the degree to which the onterms can be combined to yield larger
cubes� For instance in the multi	level �factored form� implementation of
f � a�b� dc�e� h�g�� � bi the literal a belongs to several onterms
 not all of
which can be combined� Hence it typically appears at the outermost position

��

in the factored form representation of the function� In contrast
 the few on	
terms that literal g belongs to can be combined easily and it is nested deep
inside the factored form� Since a factored form closely resembles a multi	level
implementation of the function
 the level or depth of nodes helps serve as a
discriminator between input literals� So the depth or level of the nodes in
the implementation is actually capturing some characteristic of the literals
and minterms of the function that in�uence the BDD size� But the precise
manner in which these literals and minterms in�uence the BDD size is still
not clear� Hence this approach acts as a heuristic�
Ordering variables on static depth or distance �from the output� may

not always help� This is because while the distance or depth measure in
a static attribute may provide some information to discriminate between
literals in a minterm
 it may not capture su�cient information about how all
the �n minterms of a given function combine with each other� Furthermore

when implementations fail to provide clear depth information it makes it
more di�cult to use static depth to discriminate between literals in di�erent
minterms� This is seen in a parallel	pre�x adder where the least signi�cant
input bit that in�uences the maximum number of onterms is at the same
static distance O�log n� from the output as the most signi�cant input bit�
The spatial entropy attribute tries to capture the spatial distribution of

the minterms in the cube space of the function� Like the other static at	
tributes
 it too is computed on an implementation of the boolean function�
The attribute has two components� It relies on the entropy function Hw for
information about the �n minterms of a function� Hw is probability based and
it provides dynamic usage information that helps determine the in�uence of
individual literals on the minterms� It relies on the distance attribute l�w�w��
to capture the spatial distribution of these minterms in the cube space� When
minterms �or cubes� are too far apart in cube space they cannot be combined
to create larger cubes� The literals that make up these mintermscubes also
cannot be shared� As a result implementations of these mintermscubes that
are spatially apart in cube space will require wires or fanouts to bring them
together in order to combine them� We also notice that in an implemen	
tation
 wires are needed to bring together blocks of unevenly sized logic�
This will also happen when unevenly sized cubes have to be combined� If
the cubes themselves cannot be shared then wires would be needed in the
implementation to stretch the output of the larger cube!s implementation
to combine it with the smaller cube� This issue and other issues related to

��

function complexity are treated in further detail in Chapter ��
Spatial entropy is attempting to capture the spatial distances that the

cubes and minterms have to travel using its l�w�w�� attribute� By combining
usage with Hw and distances with l�w�w�� the spatial entropy attribute is com	
puting dynamic distances of the input nodes over all possible minterms� This
we feel will yield a stronger discriminatory measure than static depth� For
instance consider the addition function� Two static attributes 	 depth and
area of di�erent implementations �carry	ripple
 carry	skip
 carry	select and
parallel	pre�x� of an adder have a broad range of values� On the other hand
the dynamic information about these circuits
 such as average case delays to
the output nodes
 have a smaller variance �Tya��b�� This indicates that an
attribute like spatial entropy that captures both the static structure and dy	
namic usage may have lesser possible variations for di�erent implementations
of the same function� Hence it might be a better discriminator for variable
ordering than a static circuit attribute� In the next section we describe our
approach of using spatial entropy to generate variable orderings�

��� Variable Ordering using Spatial Entropy

In Chapter � we described a procedure to compute the spatial entropy at
the output nodes of a combinational logic function� Then in Section �����
we extended this procedure by characterizing the total spatial entropy of
the circuit in terms of spatial entropy contributions of the primary inputs�
This was done by adding an attribute called spatial entropy vector �S to
every node in the network� For a circuit with n primary inputs the spatial

entropy vector at any node w

�
Sw
 is an n	element vector that re�ects the

contribution of each primary input to the spatial entropy value at node w�
The spatial entropy at the node w is the cumulative sum of the spatial entropy
contributions of each primary input�

Sw �
nX

j��

�

Sw �xj�

In the case of primary inputs
 the spatial entropy vector at each input xj

�Sxj
 consists of �s at all input positions
 except for position j
 which contains
a �� This indicates that the spatial entropy at this node is � which is entirely
contributed by the primary input xj�

��

The spatial entropy vector at an internal node w is computed by dis	
tributing the local spatial entropy computed at the node amongst the pri	
mary inputs in the support set of every fanin of node w� For a node w with
k fan	ins
 w�� w�� � � � � wk
 the spatial entropy contribution of primary input
xj at node w can be expressed as�

��

Sw�xj��
��

Sinw�xj� �
�Sw
Sinw

�
��

Sinw�xj�

where �Sw is the local spatial entropy at node w

��
Sinw �xj� is the total

spatial entropy contribution of primary input xj at the fanins of node w
 and

Sinw �
Pn

j��

��
Sinw �xj�
 i�e� the total spatial entropy over all the fanins of

node w� This expression was discussed in detail in Section ������
In order to generate an ordering for the primary inputs of a function using

the spatial entropy vector ��S � at the output nodes
 let us review the example
in Section ������ The �gure is reproduced in Figure ��� for easy reference� The
circuit has a single output node n��� The spatial entropy at this node is S �
������ This is expressed as the spatial entropy contribution of primary inputs
i�� � � � � i� in the spatial entropy vector at n�� ���������������������������

It may be recalled from Chapter � that spatial entropy was de�ned as
the total information �ow through the function
 giving us a measure of the

e�ort required to compute the function� The spatial entropy vector
�
S at

an output node contains the spatial entropy contributions of the primary
inputs �at that node�� This gives a measure of the e�ort required to compute
the output function in terms of the primary input contributions� So from
the vector ������������������������we �nd that inputs i�� i� contribute
equal amounts to the spatial entropy at n��
 i� contributes the most and i�
contributes the least�
All our ordering strategies are based on the following premise� A primary

input that contributes less e�ort 	or spatial entropy
 towards the output func�
tion is less likely to in�uence the size of the BDD for the function� Likewise
an input that contributes the most e�ort 	or spatial entropy
 is most likely
to in�uence the size of the BDD� A node that appears earlier in the ordering
for a BDD has a greater in�uence on the size of the BDD� Hence an input
with the highest spatial entropy contribution is given the highest position in
the input order� Similarly an input that has less spatial entropy contribution

��

i

i

i

1

n

n

n

n

2

3

i
4

5

S

8

9

n
10

11

S = [1.281, 1.281, 0, 0]

S = 2.562

p = 0.75

p = 0.375

S = 4.224

S = [1.519, 1.519, 1.186, 0]

p = 0.5

S = 1.693

S = [0, 0, 1.693, 0]

p = 0.25

S= 3.256

S = [0, 0, 2.047, 1.209]

p = 0.5312

S = 8.17

= [1.66, 1.66, 3.53, 1.32]

Figure ���� Example Spatial Entropy Calculation

 ij j � �� �
 pij � ���� Sij � ���
 �Sij is a vector of zeros

with a ��� at position j

��

will appear lower down in the orderings� In Chapter � we develop a stronger
basis for this premise�
For a single output function we can generate variable orderings by order	

ing the primary inputs in descending order of their spatial entropy contribu	

tions in the spatial entropy vector

�

S
 at the output node� But how does one
generate variable orderings in a multi	output function� Consider a function
with n inputs and m outputs� The e�ort contributed by primary input xi in
computing a given output function
 oj
 is expressed by the spatial entropy

vector at that output node
�

Soj �xi�� So in order to determine the e�ort con	
tributed by primary input xi in computing all the m output functions
 the

m output spatial entropy vectors
�
Soj �j � ��m� need to be combined� There

are several ways in which this can be done� We have tested three approaches
that we describe below�

Maximum� This approach is based on the intuition that an output with the
highest spatial entropy will have maximum say in the variable ordering
process� This is because the logic cone for the output node �with high
spatial entropy� is contributing the maximum percentage of the total
information �ow over all the output functions� Hence the variable or	
dering required to build a BDD for this output function should have
the maximum in�uence on the variable ordering required to build the
BDD for all the output functions� Consider Figure ��� which illustrates
an �	input �	output function with the distribution of spatial entropy
values at each output� The spatial entropy or total information �ow
for the �	output function is the cumulative sum of the spatial entropies
of each output function� Since o� has the maximum contribution to
this total information �ow the spatial entropy vector associated with
it should have the maximum in�uence on the ordering� This approach
has also been used by some of the static attribute based heuristics to
generate variable orderings� the di�erence is that instead of a dynamic
attribute like spatial entropy
 static depths and levels of the nodes in
the logic cone were used�

The details of this strategy are as follows� First the primary output oj
with maximum spatial entropy �Soj � is considered� The input variables
are ordered in descending order of their spatial entropy contributions

��

o1

o

o

i

i

i

i

i

i

i

i

2

3

1

2

3

4

5

6

7

8

Figure ���� Spatial Entropy Distribution for a �	output function �Maximum�

at oj using the spatial entropy vector �Soj � So

x� y � I x y iff
�

Soj �x��
�

Soj �y� �����

In the above example the spatial entropy vector at output o� is ex	

amined �rst� This vector
�
So� will not order input variables that have

equal spatial entropy contribution or zero spatial entropy contribution�
The latter can happen when the input variables are not in oj!s support
set
 as is seen with i
� i in the above �gure� As a result
 the above
ordering is really a partial ordering that partitions the input variable
set I into a set Eoj of ordered disjoint equivalence classes� For output

oj
 Eoj � f�ji� � �ji� � � � �jilg l � n where each �jik consists of
either a single input variable or a set of input variables such that

x� y � �jik

�

Soj �x��
�

Soj �y�

and

x � �jik �
y � �jik� �Soj �x� � Soj �y�� � ��jik �jik� �

These classes
 �jik � Eoj
 are then re�ned by consulting the spatial
entropy vector of the output with the next	highest spatial entropy� In

��

i 1

i 2

i 8

i 7

i6

i5

i3

i 4

o2

o
1

o 3

Figure ���� Spatial Entropy Distribution for a �	output function �Weighted
Multiply�

Figure ���

�
So� is consulted and the ordering criteria in Equation ��� is

used to generate a re�ned set of equivalence classes Eo� � This process

continues until either all the input variables are ordered
 i�e j �jik j�
��
�jik � Eoj
 or the spatial entropy vectors of all the output nodes
have been examined� In the latter case
 if the input variables still
appear together in an equivalence class �j �ik j� �� then this indicates
that the relative order of the elements in �ik is not important�

Weighted Multiply� In the previous approach we generated orderings by
giving maximum importance to the spatial entropy contributions of
one output� This was the output with the maximum spatial entropy�
The �nal ordering is thus very largely determined by this output func	
tion and its logic cone� But not all functions exhibit this scenario�
For instance in some multi	output functions
 an input that contributes
heavily to one output may contribute very sparingly to all the other
outputs� Consider Figure ���� Suppose
 in the cone of output o�
 the
spatial entropy contribution of input i� is greater than that of i	
 i�e�

�

So��i���
�

So��i	�� We notice that while i� does not contribute to any other
output function
 i	 contributes to output functions o� and o� also� In
such a situation
 with respect to the multi	output function as a whole

input i	 could be contributing greater cumulative e�ort than input i��

��

Hence a more global variable ordering strategy is needed�

While the spatial entropy vector at the output node with the highest
spatial entropy must have a high in�uence on the �nal variable order	
ings
 the spatial entropy vectors from the other outputs must also be
able to in�uence the orderings� To do this for a given output oj
 every

element in the spatial entropy vector

�

Soj �xi�
 is weighted by multiply	
ing it by the proportion of the spatial entropy that its output node

oj contributes to the total circuit spatial entropy

SojP
Soj
� Then the

weighted spatial entropy vectors for all the outputs are added �in vec	

tor form� to obtain one single cumulative spatial entropy vector �S��
The contribution of input xi in this vector is given by

��

S��xi� �
mX
j��

�
��

Soj �xi� �
SojPm
k��

Sok

�

This strategy thus weighs the spatial entropy vector at each output in
terms of the percentage contribution of that output!s spatial entropy
to the total circuit spatial entropy
 and then accumulates the weighted
vectors� The descending order of the contributions in this weighted
vector determines the order of primary input variables for the BDD�

Weighted Divide� This strategy is similar to the weighted multiply except
for the fact that instead of multiplying the elements of the spatial en	
tropy vector by the output spatial entropy
 we divide them by the out	
put spatial entropy� Dividing each spatial entropy vector by its output
spatial entropy normalizes all the spatial entropy vector contributions
to the ��� �� range� This suppresses the amount of in�uence that each
output spatial entropy value can exert due to its magnitude
 since all
the weighted vectors have a maximum value of �� Thus it treats every
output spatial entropy vector with equal importance� The e�ect of this
is that a primary input that contributes a consistently high percentage
to all the outputs of a multi	output function may appear higher in the
ordering than an input that contributes a very high percentage to one
output and negligible amounts to others� For example
 given a pair of
inputs where input i contributes a spatial entropy percentage of ���� ���
and ��� towards output functions o�� o�
 and o� respectively
 and input

��

j contributes a spatial entropy of ���� ��� and ��� respectively
 the input
j gets chosen as being more important ���� � �����

In the next section we describe our experiment to study the use of spatial
entropy vectors to generate variable orderings for BDDs�

��� Experiment� Objectives and Criteria

The primary objective of this experiment is to study the e�ectiveness of
spatial entropy in generating good variable orders for BDDs� The criteria
for good variable orders is determined by the size of the resultant BDD 	 the
smaller the BDD size
 the better the ordering� We compare the BDD sizes
generated by the spatial entropy approach with those generated by other
heuristics �Bra��
 BRM��
 ISY��
 MKR��
 PAS���� The accuracy of the
spatial entropy attribute
 as de�ned in Chapter �
 is a�ected by factors such
as logic minimization
 wire length and reconvergent fanout� The study of the
e�ect of some of these factors on variable orderings is another objective of
this experiment� Finally we also study the di�erent strategies that combine
spatial entropy vectors� The results from this experiment will help evaluate
the e�ectiveness of this attribute in generating good variable orders� In
addition it will help characterize how the inaccuracies in computing this
attribute a�ect variable orderings� We also hope that a study of the factors
a�ecting spatial entropy will provide us with a better characterization of the
spatial entropy attribute to assist its application in other areas� We begin by
discussing our assumptions and limitations after which we describe the data
set used for the experiment�

����� Assumptions and Limitations

Our �rst assumption is with respect to logic minimization� Computing the
spatial entropy and the spatial entropy vector at the output nodes of a func	
tion requires an implementation� An unminimized implementation can a�ect
the spatial entropy � Figure ��� shows how the spatial entropy can increase�
The implementation that is not minimized will have a greater spatial entropy

due to the excess spatial entropy contribution from the additional gate� Even
legitimate reasons for introducing redundancy
 like delay reduction
 are not

��

S =2.562

S=4.223 S =2.562

f = a+a’c f = a+c

a’

c

a

a

cS=1.0

Figure ���� Two implementations of the same function with di�ering Spatial
Entropy

desirable in this particular case since it arti�cially increases the spatial en	
tropy of some nodes over others� Hence we require our circuits to be minimal
in literal count before performing spatial entropy computation� In practice

since minimization is a heuristic we only have approximately minimal cir	
cuits� Minimizing the circuit by removing redundant literals will help reduce
the spatial entropy
 but the relationship between spatial entropy and logic
minimization is not entirely straightforward� In larger complex functions the
role of wire lengths becomes signi�cant� Let us see how�
Given a two	level or a multi	level representation of a logic function
 it

can be minimized �for literal count� using logic	minimizers like espresso

�BHMSV��� along with one of the minimization scripts in the UC
 Berkeley
MISIISIS �Sequential Interactive System� system �BRSVW���� But since
exact multi	level logic minimization requires exponential time �Law���
 most
minimizers use heuristics to �nd �near	optimal� solutions� The optimality of
such a solution is usually measured with respect to the minimal literal count
in the multi	level implementation� The number of literals in�uences the
number of nodes in the implementation� Since spatial entropy is computed
over all the nodes in the implementation it is a function of this literal count
measure�
But minimizing literal count does not necessarily imply that the excess

spatial entropy �due to logic that is not minimized� is being removed� This is
because wire lengths in the layout of such an implementation can reverse this
e�ect� Figure ��� illustrates this in a very simpli�ed form� Version � factors

��

out the expression c�d
 and uses an extra fanout with a long wire to achieve
the function� In contrast Version � avoids the factoring and replicates the
gate implementing c � d� In the process it saves on the long wire� While
the redundant logic will contribute to the spatial entropy in Version �
 its
absence in Version � is o�set by the long wire� This makes it di�cult to
evaluate the e�ectiveness of the multi	level logic minimizers and minimization
scripts in completely solving the problem of generating implementations with
minimum spatial entropy� With this scenario we assume for the present that
minimizing literal count does remove excess spatial entropy
 and we adopt
the minimization script that does the best job in minimizing the literal count
wherever possible�
Our next assumption deals with reconvergent fanout� In Chapter � we

had characterized the e�ect of reconvergent fanout on spatial entropy
 and
outlined approaches to remove errors in spatial entropy due to reconvergent
fanout� Almost all VLSI circuits are reconvergent� Removing errors in spatial
entropy values in such circuits is an exponential time procedure� Hence
 for
most of the data in our experiments we elect to compute spatial entropy by
ignoring the e�ect of errors due to reconvergent fanout�
Finally we discuss wire lengths� The e�ects of wire length on spatial en	

tropy were described earlier in Chapter �� We had �rst discussed inaccuracies
due to the absence of wire lengths and then followed it by discussing inac	
curacies in the distribution of the lumped wire length along multiple	fanout
nodes� What role do wire lengths play in variable ordering� In Section �����
we had conjectured that the length attribute in the spatial entropy de�nition
captures the spatial distance that cubes and sets of cubes have to travel in
the implementation while computing the function� This distance is re�ected
in the implementation by wires that connect one set of gates �cubes� with an	
other� One way of computing this wire length is to extract lengths from the
schematic of a gate level netlist� But schematic generation for large netlists
is non	trivial
 and such tools are not easily available� The problem of gate
placement and interconnection in a netlist schematic has similarities with the
placement of cells in a layout synthesis system� We had access to a standard
cell place and route system called VPNR �vanilla place	and	route� as part of
the MCNC OASIS Silicon Compiler �KB���� So we decided to use layouts
from VPNR to extract our wire length estimates� This decision needs some
justi�cation�
A netlist at the gate level can be realized at the layout level by a large set

��

c d

e a b

c d

Version 1 Version 2

c d

e a bf g f g

Figure ���� The tradeo� between redundancy and wire length

��

L
Admissable Set A

Layouts

Cg
Gate level circuit

Figure ���� Mapping of Gate Level Circuits at the Layout Level

of layouts� All the layouts in this set will be functionally the same as the gate
level implementation and will have the same set of nodes and gates� But the
physical layouts will di�er in other characteristics� The layout styles used
to realize the gates �standard cell
 full custom
 gate array� may be di�erent�
The layouts may di�er in the total area
 the placement and routing between
the cells
 the number of layers in which routing is done
 the number of wires

and the the length of these wires� These di�erences arise due to the di�erent
layout methodologies and styles available and the di�erent criteria that they
use while realizing the layout �minimize total area
 total wire length
 total
number of vias etc��� We are only interested in a subset of the set of all
feasible layouts called the admissible set
 A� This is the set of layouts that
yield a placement and interconnection pattern that is similar to our ideal
schematic placement� Figure ��� captures this scenario� The experiment
proposes to use the wire lengths extracted from one such admissible layout
L � A of the gate level circuit Cg�
We also assume that the wire lengths of internal nodes in a layout cor	

��

relate well with those in a gate	level schematic� By this we mean that for
layouts L�� L� � A
 lL�

w
� lL�

v
� lL�

w
� lL�

v

 where lL�

w
is the length of wire

w in layout L�� It is this relative ordering that we wish to capture� This is
also argued with some empirical evidence� In �RT��� the VPNR place	and	
route system was used to generate layouts for regular data path functions like
adders
 and shifters� It was shown �with statistical regression analysis � that
VPNR generated layouts were a good �t to the expected analytical area of
these functions� The coe�cient of variance between the analytical curve and
the area plots was within �� for most cases� Since area is a function of wire
length
 this correlation ought to hold with respect to wire lengths too� This
correlation can be generalized to random	logic circuits because the VPNR
place	and	route system performs its placement and generates its wires with	
out any knowledge of the circuit function� Hence its behavior should not
be expected to change with circuit function� It must be emphasized here
that extracted wire lengths from a layout are not necessary for this experi	
ment� They just happen to be a convenient source for obtaining wire length
estimates between gates in a circuit�
The next assumption we make is with respect to the process of wire length

extraction itself� The layout synthesis system and the extraction software
force us to make approximations� While the errors due to these approxima	
tions will not give us the exact wire length in the layout
 our hope is that
they are small enough not to a�ect the relative wire length distribution�
The �rst approximation is with respect to point�to�point versus lumped

wire lengths� Since we are primarily interested in interconnect length we wish
to obtain length estimates for only the wires used in the routing between cells
in a layout� Wire lengths of layers inside a standard cell �gate� are not of
interest to us� For a node that fans out to several other nodes ideally we wish
to obtain point�to�point interconnect lengths for each individual fanout wire�
This is di�cult to do because of two reasons� Firstly multi	point nets in a
layout are usually routed using a minimal Steiner tree that inserts additional
points in the route that do not belong to the net� This makes point	to	point
estimates di�cult� This also makes it di�cult for the the extraction software
to extract wire lengths between nodes or points on a net� As a result we
substitute point	to	point lengths by estimates of total lumped wire length at
a node�
Our second approximation is with respect to the layers that constitute the

lumped wire length estimate� The extraction software extracts area and not

��

wire length� Dividing this area estimate by a constant factor should give us
length information
 since most rectangles in the layout have a fairly uniform
width ��	���� The extractor generates the area of the rectangles by extracting
the areas of all the di�erent layers at a given node� This includes contacts�
metal�� metal�
 poly� �n and p	 diff etc�� Assuming we can suppress
area extraction inside a cell
 we would still be including areas of several
contacts in the inter	cell routing� We assume that retaining these areas along
with the areas of the layers actually used for routing will not perturb the wire
length estimate enormously� To summarize
 our three main assumptions are

� We assume that aggressive literal count minimization helps reduce ex	
cess spatial entropy in redundant circuits�

� Reconvergent fanout removal is ignored�
� An estimate of the point	to	point interconnect wire length in a gate
level netlist is obtained by using the lumped area of all inter	cell lay	
ers electrically connected at a given node in a �VPNR� layout of that
netlist�

The primary limitation of our experimental set up is that it is di�cult to
evaluate the magnitude of our approximations in spatial entropy computa	
tion� The only way to determine if an approximation in the spatial entropy
computation is good or bad is by generating variable orders
 building BDD
sizes
 and comparing them� The fact that many approximationsassumptions
�like redundancy and wire length� are interdependent also makes it di�	
cult to isolate an approximation and characterize it separately� Two other
limitations are the di�culty of computing exact spatial entropies in highly
reconvergent circuits with large supergates
 and the lack of more precise
point	to	point wire lengths between nodes� The e�ect of redundancy on spa	
tial entropy is also not very clear� The spatial entropy is a function of wire
lengths� Although the e�ect of di�erent minimization scripts on wiring area
was documented in �Sau���
 it is is not clear how the use of minimization
scripts to remove redundancies will a�ect the wire length and what e�ect
that has on spatial entropy�

��

����� Data Set

The requirements of the data set for this experiment are as follows� Firstly
the data set should consist of benchmark circuits that can be used to com	
pare the performance of the spatial entropy based BDD ordering with other
approaches� The data set should also contain circuits that represent regular
structured logic and random combinational logic to evaluate BDD sizes in
these two domains� Finally it must contain small and large circuits� small
circuits where the e�ects of the factors a�ecting spatial entropy can be stud	
ied more closely and large circuits to ensure that orderings for non	trivial
circuit examples can also be obtained�
To satisfy these requirements
 our data set consists of three classes of

circuits� In all three classes we use the MCNC VPNR format �KB��� to
represent the multi	level netlist as input to the spatial entropy computation
procedure
 spent� The VPNR format is a circuit description format that
describes a technology mapped netlist in terms of the standard cells in the
MCNC standard cell library�

ISCAS
� Circuits� This data set consists of multi	level circuits from the
ISCAS �� benchmarks� There are several large circuits here which can
have signi�cantly di�ering BDD sizes highlighting good and bad order	
ings� The circuits have well	de�ned characteristics 	 number of nodes

number of inputs
 number of outputs� There is also a mix of circuit
functions 	 adder
 priority encoder
 random logic
 ALUs etc�� These
circuits have also been used as the primary data set for comparing var	
ious BDD ordering strategies for combinational circuits� We use the
UC Berkeley MISIISIS system �BRSVW��� to further minimize these
circuits and then translate them into the VPNR format� Table ���
illustrates some characteristics of these circuits�

LgSynth	� Circuits� These are benchmark circuits compiled at the
MCNC Logic Synthesis Workshop �in May ������ These circuits are
in two	level and multi	level form� The circuits are a lot smaller than
the ISCAS�� circuits giving us an opportunity to study the e�ects of
factors a�ecting spatial entropy� They have also been used to compare
BDD ordering strategies� They too consist of a mix of random and
structured logic� The �	level form of the circuits gives us an opportu	
nity to study the e�ect of the di�erent minimization scripts in SIS on

��

Circuit Circuit Total
Name Function Inputs Outputs Gates

C��� Priority Decoder �� � ���

C���� ECAT� �� �� ���

C��� ALU and Control �� �� ���

C����� ECAT �� �� ���

C���� ECAT �� �� ���

C���� ALU and Control �� �� ����

Table ���� ISCAS �� Benchmark Circuit Characteristics
�ECAT stands for Error Correcting and Transmission�
�Circuits C��� and C���� are functionally equivalent�

spatial entropy computation and variable ordering� The �nal netlist
form is obtained by using SIS to minimize the circuit and then trans	
lating it to the VPNR format� The circuit characteristics are described
in Table ��� and Table ���� The functions of the two	level circuits are
unknown�

OASIS Generated Circuits� These are circuits generated using the OA	
SIS silicon compiler tool set �KB���� They are primarily circuit de	
scriptions of regular structured circuits in various sizes� This in	
cludes adders
 decoders
 encoders
 multiplexors
 multipliers
 shifters

and counters
 with bit widths varying from � to ���� The circuits were
described in LOGIC	III and OASIS was used to generated the VPNR
gate	level netlist� The multi	level minimization strategy used here was
MCNC!s DECAF �LKB���
 and not the Berkeley SIS scripts� This is
because DECAF is part of the OASIS system� This data set helps
characterize the behavior of the spatial entropy procedure on regular
structured circuits� Their characteristics are described in Table ����

��

Circuit Circuit Total
Name Function Inputs Outputs Gates
alu� ALU �� � ���
alu� ALU �� � ���
count Counter �� �� ���
f��m Arithmetic � � ��
frg� Logic �� � ���
z�ml �	bit Add � � ��

Table ���� Multi	level Circuit Characteristics from Logic Synthesis �� Bench	
marks

Circuit Product
Name Inputs Outputs Terms
�xp� � �� ��
bw � �� ��
clip � � ���
duke� �� �� ��
misex� � � ��
misex� �� �� ��
rd�� � � ��
rd�� � � ���
rd�� � � ���
sao� �� � ��
vg� �� � ���

Table ���� Two	level Circuit Characteristics of Logic Synthesis �� Bench	
marks

��

Circuit Circuit Total
Name Function Inputs Outputs Gates
mux�� ��	to	� Mux �� � ���
mux�� ��	to	� Mux �� � ���
dec�� �	to	�� Dec � �� ��
dec�� �	to	�� Dec � �� ���
bshift�� ��	bit Barrel shifter �� �� ���
bshift�� ��	bit Barrel shifter �� �� ���
ctr�� ��	bit Counter �� �� ���
ctr�� ��	bit Counter �� �� ���
ctr�� ��	bit Counter �� �� ���
enc�� ��	to	� Encoder �� � ���
enc�� ��	to	� Encoder �� � ���
mult� �	bit Multiplier � � ���
mult� �	bit Multiplier �� �� ���

Table ���� OASIS generated Structured Circuit Characteristics

��

To summarize
 the data set consists of about �� example circuits more
than ��rds of which are benchmark circuits� The remainder are structured
circuits
 generated by OASIS
 that exhibit a more regular communication
behavior� The circuits vary widely in size� The inputs range from � to ��
and the outputs range from � to ��� This yields a wide range of possible BDD
sizes
 from �	 to ���
 in the worst	case� The circuit sizes range from �� gates to
approximately ���� gates� The circuit function is also well distributed� There
are datapath structures like ALUs
 shifters
 counters
 multipliers
 etc�� bus	
like structures for select
 transmitting and encoding data
 like multiplexors

decoders
 and encoders� Finally there is random glue logic of varying size�

��� Experiment Outline

Our objectives are three	fold� Firstly we would like to see how the spatial
entropy attribute performs in generating variable orders for BDDs� For this
we compare it with the other approaches� those based on static attributes
and those based on optimization techniques� Secondly we would like to ana	
lyze the e�ect of some of the factors a�ecting spatial entropy by computing
spatial entropy with di�erent approximations� Finally we would like to com	
pare the various strategies of combining the output spatial entropy vectors
in multi	output functions� All these goals require the generation of BDDs
using the spatial entropy approach� The experimental set up described in
Figure ��� shows how this is done� The oval boxes indicate software while
the rectangular boxes indicate data� The orderings generated by the spatial
entropy computation procedure
 spent
 are fed to a BDD builder
 vpnr�bdd

to generate BDD sizes� The orderings that we wish to compare with are also
built using the same BDD builder� This is done in order to remove implemen	
tation dependent discrepancies in BDD sizes of the di�erent approaches� We
now describe the software construction for the experiment
 and then outline
the variables measured�

����� Software Construction and Variables Measured

As Figure ��� indicates the experiment required � pieces of software� The
spatial entropy computation program spent was written to accept the input
circuit description
 compute the spatial entropy and spatial entropy vector for

��

Variable Orderings

vpnr2bdd

Other Orderings
Other Orderings

from Spent

spent

len_extract

Input Data Set

Choose Ordering

Input Data Set

BDD Size

Wire Length

Figure ���� Experimental Setup

��

the nodes in the circuit
 and generate variable orders for the primary inputs
of the circuit using the di�erent strategies discussed in Section ���� In order
to incorporate wire length information during spatial entropy computation

wire lengths were extracted by len extract and then fed to spent� Finally a
program called vpnr�bdd was employed �Ree��� to build BDDs for the input
circuit descriptions in VPNR using either the generated variable orderings
from spent
 or orderings contributed from other sources�
The criteria used to measure performance in this experiment was the size

of the built BDD� Hence it was the main variable measured for the di�erent
circuits in the data sets�

��� Results and Observations

We present our results in three phases along the lines of the three objectives
of the experiment� In the �rst phase we compare spatial entropy based BDD
ordering with static attribute based approaches and optimization	intensive
strategies� The same BDD builder
 vpnr�bdd
 was used to build BDDs for
all the orderings� The BDD sizes are expressed as number of nodes� In
the second phase we present results that illustrate the e�ects of some of
the approximations 	 redundancy
 wire length and reconvergent fanout
 on
BDD sizes� Results for all the � data sets are discussed here� Finally we
present results comparing the three di�erent strategies of combining spatial
entropy vectors of multi	output functions to generate variable orders� All the
experiments were run on a DECStation ���� ��� MB� running Ultrix Version
���A�

����� Spatial Entropy and BDD Sizes

We illustrate our results with respect to two data sets� Table ��� compares
BDD sizes generated by spent
 for the MCNC Logic Synthesis �� benchmark
circuits
 with � other sources� These sources were chosen because they are
representative of related approaches to BDD variable ordering� They were
also the only sources known to us that had generated orderings for this set
of benchmarks� Finally these ordering sources are very recent giving us an
opportunity to compare spent with the latest results�

��

minwid��� Uses the optimization intensive approach described in �ISY����
Optimization is performed by improving an initial ordering with vari	
able exchanges while using the BDD width as a cost function� Ordering
source 	 �Min����

asyl��� Uses the approach in �PAS��� where lexicographic partial ordering
is followed by optimization via variable exchanging within a window to
improve the size� Ordering source 	 �BA����

spent� This is the spatial entropy based approach� Here we show the
best sizes achieved over all approximations� In Section ����� and Sec	
tion ����� we describe the e�ect of the various approximations in com	
puting spatial entropy and the di�erent strategies of combining the
spatial entropy vector �

We have selected only those circuits from the Logic Synthesis �� benchmarks
for which orderings were available from both minwid�� and asyl�� sources�

Observations

We begin by comparing the optimization intensive approaches �minwid���
asyl��� to the spatial entropy based approach for the Logic Synthesis ��
benchmarks� In addition to Table ��� that illustrates the actual BDD sizes

in Table ����page ��� we study the mean BDD size j V j �of these circuits�
where V is the number of nodes in the BDD� For each of the three approaches
we compare j V j with j V jsmallest
 where j V jsmallest is computed by taking
the smallest BDD size for each circuit and averaging it over all the ����
circuits� The standard deviation ��
���j V j� of the sample is also shown�
We note that the average BDD size obtained from the asyl�� approach

is very close to the average obtained from the smallest BDD size� This is also
borne out by the fact that the asyl�� approach yields the best �smallest�
BDD sizes in almost all the circuits� The midwid�� and spent approaches are
comparable to each other since they yield approximately the same number
of nodes on the average �������� �������� The standard deviation values also
re�ect this observation� The other observation that we can make from the
standard deviation values is that the distribution of the BDD sizes about the
mean is not very wide� This is a re�ection of the circuit characteristics in the
data set� For asyl�� the smallest BDD has �� nodes while the largest has

��

Circuit $ of Nodes
Name minwid�� asyl�� spent

alu� ��� ��� ���
alu� ���� ��� ���
count ��� ��� ���
f��m �� �� ��
frg� ��� �� ���
z�ml �� �� ��
�xp� �� �� ��
bw ��� �� ���
clip ��� ��� ���
duke� ��� ��� ���
misex� �� �� ��
misex� ��� �� ���
rd�� �� �� ��
rd�� �� �� ��
rd�� �� �� ��
sao� �� �� ���
vg� ��� �� ���

Table ���� Comparative BDD sizes for Logic Synthesis �� Benchmarks

Mean and Standard Deviation of BDD sizes
Statistic minwid�� asyl�� spent smallest

jV j
������ ������ ������ ������

����j V j� ������ ������ ������ ������

Table ���� Comparative Statistics for Logic Synthesis �� Benchmarks

��

��� nodes� In fact
 if alu� is excluded then the range of BDD sizes drops
further ���� �����
While the asyl�� approach de�nitely has the best performance for this

data set
 we would now like to see how the spent and minwid�� approaches
compare with it� Table ����page ��� shows the normalized BDD sizes for
the spent and minwid�� approaches computed as a fraction of the sizes
generated using asyl��� To analyze this better we compare average perfor	
mance and standard deviation of these approaches with respect to that of
asyl��� Since the BDD sizes are normalized with respect to asyl�� sizes

we are comparing against a mean of ��� and a standard deviation of ����
The minwid�� approach has an average normalized BDD size of ����
 while
spent has an average normalized BDD size of ����� The standard deviations
are ����� for minwid��
 and ���� for spent� While this indicates that these
approaches yield about ��� �� poorer sizes
 we also notice that the circuit
with the worst size in each of these approaches has a signi�cant in�uence on
these statistics� If we dropped alu� from minwid�� and vg� from spent
 the
average normalized sizes drops for minwid�� ����� � �����
 and for spent
����� � ������ The standard deviation values drop too ����� � ���� and
���� � ���� respectively�� So we can conclude that for the Logic Synthe	
sis benchmarks
 the spatial entropy approach yields sizes that are within
��� �� of the best size� Some of the circuits for which the spatial entropy
approach yields poor sizes
 viz� vg�� frg� are examined in greater detail
when we study approximations in the spatial entropy computation� We now
look at results for the ISCAS �� benchmarks� Since we do not have compar	
ative sizes for the OASIS generated circuits from other approaches we do not
show results for them here� We will however discuss the BDD sizes for these
circuits when we study the e�ects of spatial entropy approximations on BDD
sizes�
Table ��� shows the BDD sizes for the ISCAS �� benchmark circuits with

orderings generated from � sources described below� The � other sources that
spent was compared with with were chosen because
 amongst the orderings
that we had access to
 they represented the most recent results on variable
ordering for the ISCAS �� benchmark circuits� Also some of them represent
the best achieved orderings so far� In addition we were unable to obtain
orderings for the asyl�� approach � that did so well in the Logic Synthesis

�We were informed that they did not have good sizes for the ISCAS �� circuits

��

Circuit Normalized w�r�t� asyl��
Name minwid�� spent

alu� ���� ����
alu� ���� ����
count ���� ����
f��m ��� ����
frg� ���� ����
z�ml ���� ���
�xp� ��� ����
bw ���� ����
clip ���� ����
duke� ���� ����
misex� ���� ����
misex� ���� ����
rd�� ��� ���
rd�� ��� ���
rd�� ��� ���
sao� ���� ����
vg� ���� ����

Table ���� BDD sizes for Logic Synthesis �� Benchmarks relative to asyl��

��

Circuit $ of Nodes
Name cmu�� uta�� minwid�� uta�� spent

c��� ��
��� �
��� �
��� �
��� �
���
c��� ��
��� ��
��� ��
��� ��
��� ��
���
c��� �
��� �
��� �
��� �
��� �
���
c���� ��
��� ��
��� �
��� ��
��� ��
���
c���� ��
��� ��
��� ��
��� ��
��� ��
���
c���� � ���� ��� ���
��� ��
��� ��
��� ���
���

Table ���� Comparative BDD sizes for ISCAS �� Benchmarks

benchmark set� The � sources are�

cmu��� Orderings from static attribute based heuristics discussed in
�BBR���� �Source 	 �Bra�����

uta��� Orderings using a collection of several static attribute based heuris	
tics �BRM���� �Source 	 �Kap����� The orderings in uta�� are the best
known orderings based on static	attribute sources�

minwid��� Orderings generated using an optimization intensive approach
discussed above�

uta��� Orderings also generated using an optimization intensive approach�
In this case ordered partial decision diagrams OPDDs �RBKM��� were
used as cost functions and simulated annealing was used to conduct
the optimization �MKR���� � Source 	 �MKR�����

spent� Spatial entropy based ordering�

We do not show the time to generate the spatial entropy based orderings
for the individual circuits because they are not critical� As an example
 for
the largest circuit c���� the spatial entropy based approach took ��� seconds
to generate orderings�

��

Observations

For these much larger ISCAS �� benchmark circuits we note that the op	
timization intensive approaches minwid��� uta�� are clearly superior and
yield the smallest BDD sizes� The exponential manner in which the size
of a BDD grows makes these e�ects markedly visible� The primary advan	
tage that the optimization intensive approaches minwid��� uta�� have over
the static attribute based approaches cmu�� uta�� and the spatial entropy
based approach �spent� is the fact that they generate their orderings while
the BDD is being built� On the other hand the other two approaches rely on
an implementation for information about the function
 making approxima	
tions in the process� The static attribute based approach uses node levels and
depths as approximations
 while the spatial entropy based approach makes
approximations while computing the spatial entropy attribute� These ap	
proximations are responsible for the poorer orderings and poorer sizes� On
the other hand
 the drawback with the optimization approaches is that they
take a lot longer to run since they make a through search of the space of
n# orderings� To cite a comparison
 the spatial entropy approach took �����
seconds
 on a DEC Station ����
 to generate an ordering for the ISCAS cir	
cuit c���� In contrast the minwid�� approach was documented �ISY��� as
taking approximately ��
��� seconds on a SPARC Station ���
We now compare the static attribute based approaches with the spatial

entropy based approach� In Table ��� �page ��� we show how the the static
attribute based approaches compare with the the spatial entropy approach
by expressing the BDD size for each approach as a fraction of the best size
generated for that circuit� The entries with a ��� indicate the best size
for that circuit� The approaches uta�� and spent yield better sizes for all
but one circuit� Table ���� �page ��� illustrates the mean and standard
deviation of these normalized BDD sizes� These are being compared with
a mean of ��� and a standard deviation of ���� We note that while the
approach cmu�� does poorly
 the static based approach uta�� and spent

are quite comparable� Their average normalized BDD sizes ����
 ���� are
within � of each other indicating comparable performance� The standard
deviations too re�ect this� uta�� is an approach that uses a collection of
static attribute based heuristics and this seems to help it do better� They use
a combination of breadth	�rst and depth	�rst traversal options on topological
circuit representations
 with a combination of several heuristics �MWBV��

��

Circuit Normalized $ of Nodes
Name cmu�� uta�� spent

c��� ����� ���� ���
c��� ����� ��� ����
c��� ���� ���� ���
c���� ��� ���� ����
c���� ����� ��� ����
c���� 	 ��� ����

Table ���� Spatial entropy based ordering vs static	attribute based ap	
proaches

FFK��
 MIY���� This smorgasbord of strategies gives this approach greater
applicability than cmu��
 which does not have such uniform results�
The spatial entropy based approach appears to have the ability to cap	

ture the characteristics and communication pattern of several function types
within the single uni�ed framework of spatial entropy vectors� For instance
it was observed that the distribution of spatial entropy amongst the out	
put functions was di�erent in each of these circuits� While c��� showed an
almost uniform spatial entropy distribution at its respective output func	
tions
 c���� c��� showed a gradual progression of spatial entropy values
�from low to high� over the individual outputs
 and c���� had some outputs
with uniform spatial entropy values and others with a progression of values�
While this single algorithm yields competitive results while the BDD sizes
are small
 the approximations performed in computing spatial entropy un	
fortunately get more and more signi�cant with larger circuits� With BDD
sizes increasing exponentially for poor orderings
 the sizes rapidly deteriorate�
This leaves very little margin for inaccuracy� We now study the e�ects of
some of these approximations on spatial entropy computation
 the orderings

and the consequent BDD sizes�

����� Spatial Entropy Approximations and BDD Sizes

Wirelength�
Table ���� illustrates the e�ects of wire length approximation� For this we

��

Mean � Standard Deviation of Normalized sizes
Statistic cmu�� uta�� spent

jV j
���� ���� ����

�	�j V j� ��� ���� ���

Table ����� Normalized Mean and Standard Deviation of sizes for ISCAS��
Benchmarks

show BDD sizes for OASIS generated circuits� The orderings were generated
using the spatial entropy approach with three wire length approximations
described by three columns in the table� The �rst describes sizes generated
without using wire length in spatial entropy computation� The second uses
lumped wire length
 while the third uses a level�based approach to distribute
the lumped wire length at a node in proportion to the levels of the fanout
nodes� We also illustrate the average BDD size and standard deviation in
BDD size for each of the three wire length approximation strategies �Ta	
ble ����
 page ����
The BDD sizes for each of the circuits and the average size statistics in	

dicate that wire length information is bene�cial� While lumped wire length
does not have a signi�cant e�ect
 the level based wire length approach im	
proves the average BDD size from � ���� to � ���� nodes� The standard
deviation values also improve with wire length information
 but they are
relatively high� This is because of the characteristics of the data set� The
�	bit multiplier has a signi�cant e�ect on this statistic� Computed without
the mult� sizes the standard deviations reduce by almost a factor of �
 from
���� � ���� for no wire length
 ���� � ���� for lumped wire length
 and
���� � ��� for level based wire length� The means sizes drop too� From
���� � ��� for no wire length
 ���� � ��� for lumped wire length
 and
���� � ��� for level based wire length� Thus in the absence of the �	bit
multiplier this collection of circuits builds medium sized BDDs
 upto about
���� nodes�
While we observe that for most of these structured circuits wire length

approximation in the spatial entropy computation does help improve the or	
derings
 the amount of improvement varies from circuit to circuit� Table ����
�page ��� shows the percentage improvement using wire length approxima	

��

Circuit $ of Nodes
Name No Wlength Lumped Wlength Level based Wlength
mux�� �� ��� ��
mux�� ��� ���� ���
dec�� �� �� ��
dec�� ��� ��� ���
bshift�� ��� ��� ���

bshift�� ��� ���� ����

ctr� �� �� ���

ctr�� ��� ��� ����

ctr�� ���� ���� ����

ctr�� ���� ���� �����

enc�� �� ��� ��
enc�� ��� ��� ����

mult� ��� ��� ����

mult� ��
��� ��
��� ��
����

Table ����� BDD Sizes for OASIS	generated circuits
�� Best Sizes

Mean � Standard Deviation of BDD sizes�$ of Nodes�
Statistic No Wlength Lumped WLength Level based Wlength

jBDDj
������� ���� �������

����j BDD j� ������� ������� �������

Table ����� Mean and Standard Deviation of sizes for OASIS	generated cir	
cuits

��

Circuit improvement
Name in BDD Sizes
mux�� �
mux�� �
bshift�� ��
bshift�� ��
ctr� ��
ctr�� ��
ctr�� ��
ctr�� ��
enc�� �
enc�� ���
mult� �
mult� ���

Table ����� Percentage improvement for OASIS circuits with wire length

tion for the OASIS generated circuits� Circuits like the barrel shifter and the
counter bene�t from using wire length approximation in the spatial entropy
computation� But other circuits like the multiplexor
 encoder and multiplier
do not gain from this additional information� In the latter case the BDD
sizes show less than �� improvement� The cases in which wire length in	
formation does help
 the level based wire length distribution approach seems
to do better than using lumped wire lengths�
Some of the reasons for the varied responses to wire length information

hinge on the communication pattern in these functions� In the case of a
counter the communication of data from one bit slice to another is usually
along one dimension� As a result the inputs enter the circuit at di�erent
locations� Thus some inputs end up traveling a longer distance to get to a bit
slice� this skew is captured by the wire length information� In a barrel shifter
the n data inputs typically enter together and then travel through log n levels
communicating with each other before reaching the outputs� Thus input data
communicates down and across
 in two dimensions� The log n control inputs
that determine the shift amount exhibit a di�erent communication pattern
since they only �ow in one dimension 	 across the circuit� The wire length

��

information captures some of this variation in the communication pattern
between the control inputs and the data inputs� Multiplexors and encoders
are variations of the selection function� In the multiplexor one of �n input
combinations gets selected with the help of log n bits of select lines� In
the encoder one of �n input combinations gets selected and encoded into
log n output lines� These functions require two dimensional communication�
Since all the �n input combinations are involved in each output function

the in�uence of each input variable is equal� They all end up traveling an
approximately equal amount to get to the output causing wire lengths to be
a nonfactor� Multipliers are also functions with two	way communication and
with equal participation from each input variable
 causing wiring skew to be
absent� In addition the family of �integer� multiplier functions have been
proven to have exponential BDD sizes regardless of ordering �Bry���� So the
changes caused by wire lengths can only be minor perturbations�
Let us now look at decoders� Table ���� �page ��� shows that decoders

are immune to any kind of wire length approximation� Their BDD sizes
are the same regardless of wire length information� The reason for this is
fundamental to the nature of the decoding function� In a completely speci�ed
n input
 �n output decoder each output of the decoder is speci�ed by exactly
one minterm of the n variable function� For example in a � to � decoder
o� � a�b�� o� � a�b� o� � ab�
 and o� � ab� Hence the BDD for every output
function oi requires an ordering on the input variables in a single minterm�
In such a situation the size of the BDD will be the same regardless of how
the variables in the minterm are ordered
 since every variable appears once�

Minimization�
Now we illustrate the e�ects of redundancy on spatial entropy based BDD
ordering� As discussed in our assumptions earlier
 since the e�ects of mini�
mization and wire length approximations are not independent
 we study them
together� Table ���� �page ��� shows BDD sizes for the Logic Synthesis ��
benchmarks using di�erent wire length approximation strategies� There are
two rows for each circuit� The �rst row represents sizes when the benchmark
circuits were minimized using the SIS script algebraic �� The second row
represents BDD sizes when the benchmark circuits were minimized using the
SIS script rugged �� In both cases no reconvergent fanout removal was per	

�this script uses algebraic division while generating kernels and common cubes in the
factoring process�

�This is a more aggressive form of minimization using don�t care extraction of various

��

formed� Table ���� �page ��� illustrates the same results for the much larger
ISCAS �� benchmark circuits� The average BDD size and the standard devi	
ation in BDD sizes for the two sets of benchmarks is illustrated in Table ����
and Table �����
In order to try and analyze the e�ects of wiring and minimization sep	

arately we illustrate some additional plots� These e�ects are studied in the
following order�

A� Minimization with and without wire length for the Logic Synthesis ��
benchmarks �LgSynth����

B� Minimization with and without wire length for the ISCAS �� benchmarks�

C� Wire length with and without minimization for the Logic Synthesis ��
benchmarks�

D� Wirelength with and without minimization for the ISCAS �� bench	
marks�

Minimization e�ects are analyzed by comparing the e�ects of the algebraic
script vs the rugged script� Wire length e�ects are analyzed by comparing
the e�ects of no wire length
 lumped wire length
 and level�based wire length�
Minimization with and without wirelength LgSynth	���
We begin by studying the e�ect of minimization with and with out

the use of wire length in spatial entropy computation� This is illustrated in
Figure ���� �page ��� for the Logic Synthesis �� circuits� �For space reasons

the X axis uses Circuit Id numbers instead of circuit names�� The two plots
depict percentage improvement �positive or negative� in BDD sizes when
the spatial entropy computation was run on circuits minimized with the
algebraic script versus circuits minimized with the rugged script� Wire
length information was not used in one plot
 while it was used in the second
plot�
Let us look at Figure ���� �page ��� �rst� For the smaller Logic Synthesis

benchmarks we observe that overall there seems to be little change in BDD
size �for the better or for the worse� when using circuits minimized with the
algebraic script versus circuits minimized with the rugged script� This is

also seen in Table ���� �page ��� where the average BDD size varies by
�� ��

kinds to reduce literal count�

��

Circuit Circuit $ of Nodes
Id Name No Wlength Lumped Wlength Level based Wlength
� alu�a ���� ��� ���

alu�r ��� ���� ���
� alu�a ���� ����� ����

alu�r ��� ���� ����
� counta ��� ��� ����

countr ��� ��� ����
� f��ma ��� �� ��

f��mr �� �� ���
� z�mla �� �� ��

z�mlr �� �� ��
� �xp�a �� ��� ��

�xp�r �� ��� ���
� bwa ��� ��� ����

bwr ��� ��� ����
� clipa ��� ��� ���

clipr ��� ���� ���
� duke�a ��� ���� ���

duke�r ��� ���� ���
�� misex�a �� �� ���

misex�r �� �� ���
�� misex�a ���� ��� ���

misex�r ���� ��� ���
�� sao�a ���� ���� ���

sao�r ���� ��� ���
�� vg�a ��� ��� ����

vg�r ��� ���� ���

a � algebraic script� r � rugged script

Table ����� E�ect of wire length and the SIS scripts on the Logic Synthesis
Benchmarks

��

Mean � Standard Deviation of BDD sizes�$ of Nodes�
Statistic No Wlength Lumped WLength Level based Wlength

j V ja ��� ��� ���
�a
��
�j BDD j� ������ ����� ���

j V jr ����� ��� ���
�r
��
�j BDD j� ��� ����� �����

Table ����� j V j and � of sizes for Logic Synthesis �� circuits �with mini	
mization and wl approximations�
a� algebraic script
 r� rugged script

Circuit $ of Nodes
Name No Wlength Lumped Wlength Level based Wlength
c���a ��
��� ��
��� ��
���
c���r �
��� �
��� �
���
c���a ��
��� ��
��� ��
���
c���r ��
��� ��
��� ��
���
c���a ��
��� ��
��� ��
���
c���r �
��� �
��� ��
���
c����a ��
��� ��
��� ��
���
c����r ��
��� ��
��� ��
���
c����a ���
��� ���
��� ���
���
c����r � ���� ��� ���
��� ���
���

Table ����� E�ect of wire length and the SIS scripts on the ISCAS �� Bench	
marks
a � algebraic script� r � rugged script

��

��

����

���	

���

����

�

���

��

��	

���

�

� � �
 � 	 � � �� �� �� ��

Fraction
Change

in
BDD
Size

Circuit Ids

Spatial Entropy Computation without Wirelength

Sizerugged�Sizealgebraic
Sizealgebraic

��

����

���	

���

����

�

���

��

��	

���

�

� � �
 � 	 � � �� �� �� ��

Fraction
Change

in
BDD
Size

Circuit Ids

Spatial Entropy Computation with Wirelength

Sizerugged�Sizealgebraic
Sizealgebraic

Figure ����� E�ect of Minimization Scripts on the Logic Synthesis Bench	
marks

��

��

����

��

����

�

���

�

c
�� c
�� c��� c���� c��
�

Fraction
Change

in
BDD
Size

Circuit Names

Spatial Entropy Computation without Wirelength

Sizerugged�Sizealgebraic
Sizealgebraic

��

����

��

����

�

���

�

c
�� c
�� c��� c���� c��
�

Fraction
Change

in
BDD
Size

Circuit Names

Spatial Entropy Computation with Wirelength

Sizerugged�Sizealgebraic
Sizealgebraic

Figure ����� E�ect of Minimization Scripts on the ISCAS �� Benchmarks

���

Mean � Standard Deviation of BDD sizes�$ of Nodes�
Statistic No Wlength Lumped WLength Level based Wlength

jBDDja
���
��� ���
��� ���
���

�a���j BDD j� ���
��� ���
��� ���
���

jBDDjr
���
��� ���
��� ���
���

�r
��
�j BDD j� ���
��� ���
��� ���
���

Table ����� Mean � Standard Deviation of sizes for ISCAS�� circuits �for
wire length and minimization approximations�
a � algebraic script� r � rugged script

nodes
 while going from the algebraic script to the rugged script� The main
reason for this could be that since the circuits are small
 little improvement is
gained �in literal count� when using the more aggressive minimization script�
With the inclusion of wire length information in spatial entropy compu	

tation there seems to be more overall perturbation in the sizes �as compared
to the case when no wire length information was used�� Circuits whose sizes
improved with the use of the rugged script improved a little more when wire
length information was used� At the same time circuits whose sizes deterio	
rated with the use of the rugged script worsened some more when wire length
information was used� The standard deviation in Table ���� which captures
the distribution of sizes about the mean �uctuates accordingly
 increasing
���� � ���� when lumped wire length is used but decreasing ���� � ����
when level based wire length is used� With no wire length the standard devi	
ation reduces from ������ to ��� when the rugged script is used� This e�ect
could likely be due to the fact that the biggest circuit alu� yields a smaller
size with the rugged script ����� � ����
 thus reducing the variance�
Minimization with and without wire length ISCAS
���
Now let us turn our attention to Figure ���� �page ����� This shows the

results of minimization for the ISCAS �� circuits� For the larger ISCAS ��
benchmarks the e�ects of minimization are more signi�cant�
When wire length information is not used there seems to be a de�nite

and substantial improvement in BDD sizes after minimizing with the rugged
script� This is because with larger circuits there is a greater likelihood of

���

performance improvement �in literal count� when the rugged script is used
for minimization instead of the algebraic script� This is not re�ected in the
average and standard deviation values in Table ���� �page ���� because of
the dominating e�ect that circuit c���� has on these statistics� Discounting
its e�ect from the computation j V ja � j V jr goes from ���� ��� � ���� ���
to ��� ��� � ��� ���
 indicating a clear improvement�
When wire length information is used the bene�ts of running spatial

entropy computation on the rugged script minimized circuits appear mixed�
While the lower plot of Figure ���� �page ���� shows sizes improving with
wire length information this is not always the case� In Table ���� �page ���
we notice that for circuit c��� minimized with the rugged script
 the sizes
improve when lumped wire length information is used
 but they deteriorate
when level�based wire lengths are used� Similarly in circuit c���� minimized
with the rugged script
 the sizes improve when level�based wire lengths are
used but deteriorate when lumped wire length is used� The statistics in
Table ���� �page ���� on the other hand show that there is an improvement in
average BDD size while going from the algebraic script to the rugged script

regardless of whether lumped wire length is used ����� ��� � ���� ����
 or
level based wire length is used ����� ��� � ���� ����� This implies that on the
average the BDD sizes improved more than they deteriorated� The standard
deviation does not show much change ����� ��� � ���� ����
 ����� ��� �
���� ����� because of the dominating e�ect of c�����
The mixed size improvement results for minimization with wire length

con�rms our earlier hypothesis that the e�ects of minimization and wire
length are not independent� While the rugged script does a better job of
removing redundant literals it also alters the wire length distribution in the
circuit with the excessive levels generated during factoring� This could a�ect
the spatial entropy distribution in the circuit for the better or for the worse�
Wire length with and without minimization LgSynth	���
We now try to analyze the e�ect of wire length on BDD sizes for cir	

cuits minimized with the algebraic script and circuits minimized with the
rugged script� Figure ���� �page ���� shows two plots for the Logic Synthe	
sis benchmarks� The �rst plot in the �gure compares BDD sizes for circuits
minimized with the algebraic script
 when spatial entropy computation is
performed with and without wire length information� The second plot does
the same comparison for circuits minimized with the rugged script�
For the Logic Synthesis benchmarks minimized with the algebraic script

���

���

���

���

��

���

	��

��

���

���

����

� � �
 � 	 � � �� �� �� ��

BDD
Sizes

Circuit Ids

Minimization using algebraic script

without wirelength
with wirelength

���

���

���

��

���

	��

��

���

���

����

� � �
 � 	 � � �� �� �� ��

BDD
Sizes

Circuit Ids

Minimization using rugged script

without wirelength
with wirelength

Figure ����� E�ect of Wire Length on the Logic Synthesis Benchmarks

���

�����

�����

�����

����

�����

	����

����

�����

�����

������

c
�� c
�� c��� c���� c��
�

BDD
Sizes

Circuit Names

Minimization using algebraic script

without wirelength
with wirelength

�����

�����

�����

����

�����

	����

����

�����

�����

������

c
�� c
�� c��� c���� c��
�

BDD
Sizes

Circuit Names

Minimization using rugged script

������

WLumped

WLevel

WLevel

WLumped

without wirelength
with wirelength

Figure ����� E�ect of Wire Length on the ISCAS �� Benchmarks

���

�Figure �����
 wire length information appears to be useful only when the
BDD sizes get bigger �see Circuit Ids �� �� �� ���� As Table ���� �page ��� in	
dicates the average BDD size improvement is quite minimal for these circuits
with wire length information ���� � f���� ���g�� The standard deviation
varies accordingly ������� � f������ ���g�� When the same circuits are min	
imized with the rugged script even this bene�t seems to disappear� The
average BDD size values also indicate this ������� f���� ���g��
Wire length with and without minimization ISCAS
���
Figure ���� shows the same set of results for the ISCAS �� circuits� �The

sizes for circuit c���� have been scaled to ���K nodes to help present results
clearly� This should not a�ect the results here since we are only interested
in comparative numbers��
For the ISCAS benchmarks �Figure ����� minimized with the algebraic

script
 except for one circuit �c����
 the wire length information does seem
to bene�t
 but in varying amounts� Table ���� �page ���� con�rms this
 as
sizes improve from ���� ��� to f���� ���� ���� ���g�
When minimized with the rugged script
 the results are again mixed�

but due to the improvement in size of the c���� circuit
 the overall aver	
age BDD size shows in improvement in Table ����� As mentioned earlier
while wire length information does bene�t the lumped and the level�based
approximations
 both fare di�erently�

Reconvergent Fanout
Finally we discuss the errors due to reconvergent fanout� As discussed

in Chapter � the procedure to remove these inaccuracies in spatial entropy
computation is very expensive and is exponential in the number of fanout
inputs in the supergate� We implemented the procedure to construct super	
gates and remover errors in spatial entropy and �	probability computation�
But our results were unfortunately not very conclusive� For circuits with
small supergates and a small number of fanout inputs
 where reconvergent
fanout removal was tractable
 we found that there was not a need to apply
the procedure since the spatial entropy computation already yielded good
sizes� For the circuits where the BDD sizes were poor
 it was very expensive
to apply this procedure because the supergate sizes and fanout inputs were
large in number� We tabulate in Table ���� the supergate sizes and number
of fanout inputs for circuits in the Logic Synthesis �� benchmark set� In the
table we indicate the number of reconvergent nodes and the largest supergate
size for each circuit� We also indicate the largest number of fanout nodes

���

Circuit Total Reconv� Largest Max $ of $ of Fouts
Name Nodes Nodes Sg Size Fout Nodes �� ��
alu� ��� �� ��� �� ��
alu� ���� ��� ��� �� ���
count ��� ��� �� �� �
frg� ��� �� ��� �� ��
�xp� ��� �� �� � �
bw ��� �� �� � �
clip ��� �� ��� � �
duke� ��� �� ��� �� ��
misex� �� �� �� � �
misex� ��� � �� � �
rd�� ��� �� ��� � �
sao� ��� �� �� �� �
vg� ��� �� ��� �� ��

Table ����� Reconvergent Fanout Information for Logic Synthesis �� Bench	
marks

found in a supergate� This is an indication of how wide the supergate is and
how expensive it would be to simulate such a supergate� The last column
is another indicator of reconvergent fanout removal expense� It counts the
number of supergates that have �� or more fanout nodes� A supergate with
�� fanout nodes requires ���� simulations to compute the exact �	probability
and spatial entropy at its reconvergent node� Hence this is a measure of how
many such large supergates exist in the circuit�
We observe from Table ��� �page ��� that some of the circuits for which

spent had trouble in generating good BDD sizes were vg�� sao�� frg��

count and alu�� From Table ���� �page ���� we also notice that these
are the circuits that have high reconvergent fanout with several supergates
that have �� or more fanout nodes� So it is likely that the errors due to the
reconvergent fanout in these circuits is contributing to the poor orderings�

���

����� Spatial Entropy Vector Combination Strategies

We study three approaches to combining output spatial entropy vectors in
multi	output functions� maximum �max�
 weighted�multiply �wmult�
 and
weighted�divide �wdiv�� These were discussed in detail in Section ���� Our
results are presented in Table ���� and Table ���� for the two benchmark
circuits with and without wire length approximations� Figure ���� and Fig	
ure ���� plot the BDD sizes for the di�erent spatial entropy vector combining
strategies
 generated with and without wire length approximation� �The sizes
for circuit c���� have again been scaled to ���K nodes��
Let us look at the plot for the Logic Synthesis benchmarks �rst �Fig	

ure ������ For most of the small circuits there seems little to choose between
one combining strategy versus the other� For a couple of the bigger circuits
�Circuit Id $s �
��
 there seems to be a slightly clearer choice of the best
strategy
 though this is true only when wire length information is also pro	
vided� The choice of the strategy seems to vary from circuit to circuit� This
is also illustrated in the following situation� Looking at Table ���� we observe
that for the �arithmetic� circuits in the benchmark 	 alu�� alu�� count

the weighted divide strategy wdiv does not appear to yield good sizes� It
may be recalled that wdiv is the approach where the spatial entropy vector
values are combined such that the cumulative spatial entropy at every out	
put node is normalized to the range ��� ��� All the above arithmetic circuits
probably have adder	like computing elements in them where the individual
outputs have disproportionate contributions to the total circuit spatial en	
tropy� As a result giving equal importance to all the output spatial entropy
vectors using the wdiv approach does not seem to be the right thing to do�
On the other hand if we look at circuits sao�� duke�� clip and vg�
 in Ta	
ble ����
 they seem to bene�t by the wdiv approach� One of the reasons for
this could be the following� These are circuits with high reconvergent fanout�
Since we ignore reconvergent fanout removal the errors in the computation
process may make the spatial entropy at some output nodes unrealistically
high� Using the weighted divide approach forces every output to be treated
with equal importance
 thus supressing errors that reconvergent fanout might
have introduced�
Now let us look at Figure ���� that shows plots for the ISCAS �� bench	

marks� Here we notice that there is more variation between sizes generated
by one strategy versus sizes generated by another� But the choice of a par	

���

Circuit �S Combining $ of Nodes �with Wire Length Approx��
Id Name Strategy No Wlen Lumped Level

max ��� ��� ���
� alu� wmult ��� ��� ���

wdiv ��� ��� ���
max ��� ���� ����

� alu� wmult ���� ���� ���
wdiv ���� ���� ����
max ��� ��� ���

� count wmult ��� ��� ���
wdiv ��� ��� ���
max �� �� ��

� f��m wmult �� �� ��
wdiv �� �� ��
max ��� ��� ���

� clip wmult ��� ��� ���
wdiv ��� ��� ���
max ��� ��� ����

� duke� wmult ��� ��� ���
wdiv ��� ��� ���
max ��� ��� ���

� misex� wmult ��� ��� ���
wdiv ��� ��� ���
max ��� ��� ���

� sao� wmult ��� ��� ���
wdiv ��� ��� ���
max ��� ��� ���

� vg� wmult ��� ��� ���
wdiv ��� ��� ���

Table ����� Comparision of �S combination strategies for Logic Synthesis ��
Benchmarks

���

Circuit �S Combining $ of Nodes � with Wlength approx��
Id Name Strategy No Wlen Lumped Level

max ����� ���� �����
� c��� wmult ���� ���� �����

wdiv ���� ���� �����
max ����� ����� ������

� c��� wmult ����� ����� �����
wdiv ����� ����� �����
max ���� ���� �����

� c��� wmult ���� ���� ������
wdiv ����� ����� �����
max ����� ����� �����

� c���� wmult ����� ����� �����
wdiv ����� ����� �����
max ����
��� ������ ������

� c���� wmult ����
��� ������ ������
wdiv ����
��� ������ ����
���

Table ����� Comparision of �S combination strategies for ISCAS �� Bench	
marks

���

���

���

���

��

���

	��

��

���

���

����

� � �
 � 	 � �

BDD
Sizes

Circuit Ids

Spatial Entropy Computation without Wirelength

Max
Wmult
Wdiv

���

���

���

��

���

	��

��

���

���

����

� � �
 � 	 � �

BDD
Sizes

Circuit Ids

Spatial Entropy Computation with Wirelength

Max
Wmult
Wdiv

Figure ����� �S Combining Strategies for Logic Synthesis Benchmarks

���

�����

�����

�����

����

�����

	����

����

�����

�����

������

c
�� c
�� c��� c���� c��
�

BDD
Sizes

Circuit Names

Spatial Entropy Computation without Wirelength

Max
Wmult
Wdiv

�����

�����

�����

����

�����

	����

����

�����

�����

������

c
�� c
�� c��� c���� c��
�

BDD
Sizes

Circuit Names

Spatial Entropy Computation with Wirelength

Max
Wmult
Wdiv

Figure ����� �S Combining Strategies for ISCAS �� Benchmarks

���

ticular strategy is unclear� The max and wmult approaches seem to perform
equally well� We also observe that circuit c���
 an ALU�control circuit
 does
badly with the weighted divide approach� This appears to con�rm our earlier
observations about using this approach on circuits with uneven contributions
from the di�erent outputs�

��� Conclusions

We are now ready to draw some conclusions� For the smaller circuits the spa	
tial entropy approach generates BDD sizes competitive with the optimization
intensive approaches and the static attribute based approaches� But as the
circuits become larger the e�ectiveness of the optimzation intensive strategies
becomes markedly apparent while both the static attribute based approach
and the spatial entropy based approach do poorly but for di�erent reasons�
The e�ectiveness of the optimization approach comes from the fact that they
work directly with the BDDs� In contrast
 the other approaches make ap	
proximations while working with an implementation� The static attribute
based approaches use level and depth based heuristics
 while the spatial en	
tropy based approach makes approximations to simplify the computation of
the attribute� The e�ect of this is apparent as the circuits get larger� With
larger circuits there is a greater chance that static attribute based heuristics
may make wrong decisions� Similarly the e�ect of spatial entropy approxi	
mations such as reconvergent fanout
 wire length
 and redundancy is more
signi�cant in larger circuits� This results in poor orderings� The e�ect of a
poor ordering on the BDD sizes is more signi�cant in large circuits� This is
because a BDD size can grow exponentially at successive levels in the graph

and a wrong variable choice at one level �in a large circuit� could explode
into a huge BDD within a few levels� The optimization intensive approaches
directly search the space of orderings while building the BDDs
 thus avoiding
the need to examine an implementation�
But optimization intensive approaches pay a big price in the time they

spend searching for a good ordering� Most static attribute based approaches
require a simple �breadth �rst or depth �rst� traversal through the network
that consumes a few minutes� For instance
 the spatial entropy approach
took ����� seconds on a DEC Station ���� to generate an ordering for the
ISCAS circuit c���� In contrast the minwid�� approach was documented

���

�ISY��� as taking approximately ��
��� seconds on a SPARC Station ���
How do inaccuracies in computing the spatial entropy attribute a�ect

variable orderings and BDD sizes� We �nd that for regular structured cir	
cuits
 where the communication pattern is well	de�ned
 the e�ects of wire
length can be observed clearly� These e�ects are a function of the commu	
nication behavior in these circuits� Consequently some circuits bene�t from
this information generating smaller BDDs while others do not� For the more
irregular circuits �as in the benchmark sets� the e�ect of wire length is mixed�
For the smaller benchmark circuits computing spatial entropy without wire
length information does not hurt BDD sizes� For the larger circuits wire
length information helps improve sizes
 but not always� The degree of mini	
mization in the circuit and the communication pattern in the circuit control
this e�ect�
Lack of minimization a�ects spatial entropy computation and BDD sizes

signi�cantly in the larger circuits� Hence
 in such circuits minimization is
bene�cial and improves BDD sizes� But when wire length information is
also used in these minimized circuits
 the approximations made in distribut	
ing wire lengths in�uence the e�ects of minimization� We had stated in
an earlier section that the factors of logic minimization and wire length are
interdependent and these results con�rm it�
Reconvergent fanout seems to have a de�nite in�uence on spatial entropy

computation for larger circuits
 as we found a correlation between poor oder	
ings and heavy reconvergent fanout in some of these circuits� But the extent
of its e�ect cannot be clearly estimated� This is because it was computa	
tionally too expensive to remove the errors in spatial entropy computation
�due to reconvergent fanout� in these large circuits� Since minimization can
change the structure and organization of the gates in the circuit
 it is likely
that the minimization process can introduce or remove reconvergent nodes
in the circuit� This also makes it di�cult to attribute the cause of poor
orderings in these circuits entirely to reconvergent fanout errors�
With respect to the spatial entropy vector combining strategies
 the max

and wmult approaches do not perform very di�erently from each other� This
could be because both approaches combine output spatial entropy vectors in
proportion to the output spatial entropy values� The wdiv approach forces
every output node to contribute equally� Since this may not always be the
case this approach does not do well in some circuits� On the other hand it
does help yield good orderings in cases where excess spatial entropy contri	

���

bution gets generated due to reconvergent fanout or wire length distribution
approximations�
On the whole the spatial entropy computation approach does use approx	

imations that a�ect the accuracy of the attribute� But the e�ects of these
approximations are felt more signi�cantly in the variable ordering problem

especially on large circuits
 than they might be in other applications of this
attribute� The �rst reason is the �ne granularity with which the attribute is
being handled� Orderings are generated on spatial entropy vectors and not
spatial entropies themselves� Thus inaccuracies get further distributed from
the spatial entropies on the nodes to the spatial entropy contributions in the
vectors� The second reason is the extreme sensitivity of BDDs to variable
orderings� A small error in spatial entropy computation that yields a di�er	
ent ordering can translate into a BDD that is several thousand nodes larger
in size when the circuit is large�
Due to the approximations in spatial entropy computation
 the exper	

imental evidence for spatial entropy based variable ordering has not been
conclusive� We simultaneously explored a theoretical basis for using the spa	
tial entropy of an implementation to generate BDD variable orders� The size
of a BDD is a characteristic of the function and is invariant over di�erent
implementations� Then how can the spatial entropy of an implementation
of the function be capable of generating variable orders for the BDD� This
can only be possible if the spatial entropy of an implementation captures
a fundamental characteristic of the function� This is the focus of the next
chapter�

���

Chapter �

Spatial Entropy as a Measure of

Area�Complexity

This chapter draws on some of the conclusions in Chapter �� In order to ex	
plain a theoretical basis for using spatial entropy to generate BDD variable
orders an important question that needed to be answered was� If a BDD is
a characteristic of the function
 then how can the spatial entropy of some
implementation of the function generate variable orders� In this chapter we
show empirical evidence that the spatial entropy of an implementation is ca	
pable of measuring the gate	count complexity of the function� This provides
empirical evidence that spatial entropy is capable of capturing function be	
havior� We also show that our de�nition of gate	count complexity in boolean
space
 called information content
 does a good job in estimating actual logic
gate cost
 and there is strong correlation between information content and
gate count�
We begin with some motivation for the work in this chapter and then

provide background information on boolean functions and complexity� In
Section ��� we de�ne our estimate of gate	count complexity in boolean space�
In order to show that spatial entropy can be used to measure gate	count com	
plexity we introduce a notation called the decision tree
 in Section ���� This
is an intermediate representation relating a function and its implementation�
We then illustrate in Section ��� how the spatial entropy of an implementa	
tion can be computed using the decision tree
 and how this computation is
approximated by the gate	level spatial entropy procedure discussed in Chap	
ter �� Section ��� discusses experimental results to correlate spatial entropy

and information content and gate	count complexity and information content�

��� Motivation

In the previous chapter we demonstrated empirically that the spatial entropy
based approach can generate variable orders for binary decision diagrams�
We also observed that factors that a�ect the accuracy of spatial entropy
computation �in a given implementation�
 like reconvergent fanout and poor
estimates of wire length
 have a signi�cant e�ect on BDD sizes� Spatial
entropy is also in�uenced by logic minimization� Di�erent implementations
of the same function can di�er signi�cantly in their spatial entropy values
due to di�erent degrees of minimization in each implementation�
Along with the experimental work
 we explored a theoretical basis to

connect spatial entropy and BDD variable ordering� The size of a BDD
is a characteristic of the function� it is invariant over di�erent implemen	
tations� Then how can the spatial entropy of an implementation generate
variable orders for the BDD� In order to do so
 the spatial entropy of the
implementation must be able to capture some characteristic of the function!s
minterms� But our experiments in Chapter � showed that there can be wide
variations in the spatial entropies of the same function
 when computed on
di�erent implementations� So this raised the question� what should be the
best implementation to capture this function behavior and why�
Spatial entropy is the dynamic communication e�ort required to compute

the function� In a physical �CMOS� implementation this becomes the switch	
ing energy expended by the circuit while computing the function� Over all
implementations of a given function
 the one with minimum spatial entropy
has minimum switching energy and describes the minimum communication
e�ort needed to compute the function� Thus the minimum spatial entropy
over all implementations of a function acts like a signature of the function
since it provides a lower bound on the switching energy over all implemen	
tations of that function� Minimum spatial entropy in an implementation
implies simultaneously minimizing the logic gates and the wires in the im	
plementation� This yields minimum switching energy because the switching
activity at the gates �that contribute to the power consumption� is mini	
mized due to lesser gates
 and the delay at each gate is minimized due to
reduced switching capacitance and shorter wires� So comparing a pair of

���

implementations with minimum spatial entropy is equivalent to comparing
the behavior of the underlying functions �in the two implementations��
But as we noticed in Chapter �
 generating minimum spatial entropy im	

plementations is di�cult with existing logic minimization tools� These tools
only perform logic minimization and ignore the e�ect of wires� As Figure ���
showed
 minimizing gate count can generate longer wires yielding greater
spatial entropy �and switching energy�� In such a situation
 an approxima	
tion can be made� A minimal gate count implementation
 on which spatial
entropy is computed with unit wire length
 can be used as an approximation
to a minimum spatial entropy implementation computed with actual wire
lengths� This minimal gate count implementation also acts like a signature
of the function� This is because even this approximate spatial entropy �com	
puted with unit wire length� provides a lower bound on a physical attribute

the gate count
 over all implementations of that function�
How does the spatial entropy of a minimal gate count implementation

capture minterm characteristics and boolean function behavior� We answer
this question in this chapter by studying minimality and spatial entropy
in boolean space in the context of boolean function complexity� The com�
plexity of a boolean function is a measure that provides a lower bound on
some physical attribute over all implementations of that function� Thus it
is a fundamental characteristic of function behavior� Depending upon the
physical attribute that it bounds
 the complexity can be de�ned di�erently
	 wiring	complexity layout	area complexity
 active	area complexity
 energy	
complexity etc�� We are interested in the gate�count complexity
 the cost of
gates in an implementation� In this chapter we de�ne information content
 an
estimate of the gate	count complexity of boolean functions over its minterms

and illustrate empirically that spatial entropy is a linear function of informa	
tion content� While this does not give us a theoretical basis for using spatial
entropy for BDD variable ordering
 it yields empirical evidence that such
a basis can exist
 by demonstrating that spatial entropy can track function
behavior� We also show that information content and spatial entropy can act
as measures of actual gate	count complexity�
We begin with some background on boolean functions and then discuss

related work in function complexity�

���

��� Background

����� De�nitions

We start by de�ning some frequently used terms� A boolean variable is a
variable that takes a value from the set f�� �g� A literal is a �boolean� variable
or its negation� For example a and a� are literals� A single�output boolean
function of n input variables f�x�� � � � � xn�
 is of the form�

f � f�� �gn �� f�� �g

When the function f is of the form

f � f�� �gn �� f�� �gm

then we have a multi	output boolean function �n	input
 m	output�� We shall
restrict ourselves to single output functions for the present�
A product term is a conjunction �logical AND� of input literals� For

example ab�c is a product term with implicit conjunction� A minterm is a
product term where every input variable is represented in its complemented
or uncomplemented form� The ON�set of a function is the set of minterms
for which the function has a value of �� The OFF�set of a function is the set
of minterms for which the function has a value of �� The DON�T CARE�set
of a function is the set of minterms for which the function can have a value
of � or �� A completely speci�ed function f is one in which each minterm is
assigned a unique value
 either a � or �� In an incompletely speci�ed function
there are minterms that may be a � or �
 i�e�
 the DON!T CARE	set is not
empty�
A sum�of�products expression is a boolean function representation ex	

pressed as a disjunction of product terms� Here is an example�

f � ac� ad�e� bc� bde

This is also called a two�level expression because it has two levels of logic
�AND	OR�� A function can also be represented as a multi�level expression
with more than two levels of logic� For example the above function f would
appear as

f � �a� b��c� de�

���

A minimal expression is a multi	level expression with the fewest number of
literals�
An alternative way to view an n	variable boolean function is as an n	

dimensional hypercube �f�� �gn�� Figure ��� shows a boolean function of �
variables a� b� c represented as a �	dimensional hypercube� The vertices of the
hypercube denote the minterms� For example the vertex ����� represents the
minterm a�bc�� A cube is a collection of minterms of an n	variable function
where the number of minterms is a power of �
 �m
 for some m � n� If
m � �
 then the cube has only � minterm which is a vertex of the hyper	
cube� If � � m � n then for each of the �m minterms
 the literals have the
same value in n � m positions and one of �m combinations in the other m
positions� Algebraically
 a cube is a product term� for example the cube with
the minterms f���� ���g is the product term b�c�� Viewed on a hypercube a
cube is a projection of the hypercube along one or more dimensions
 where
each dimension corresponds to an input literal� This yields an m dimensional
rectangular subspace of the hypercube f�� �gn� For example projecting the
�	dimensional hypercube along the dimension of literal b
 yields a cube of
dimension � with �� � � minterms f���� ���� ���� ���g whose algebraic prod	
uct term equivalent is b� A cube c is a subset of another cube c�
 if all the
minterms in c are contained in the minterm set of c�� For example the cube
f���� ���g is a subset of the above cube�
The Shannon expansion of a boolean function f on the variable xi is

f�x�� x�� � � � � xn� � x�
i
�f�x�� � � � � xi � �� � � � � xn� � xi�f�x�� � � � � xi � �� � � � � xn�

where f�x�� � � � � xi � �� � � � � xn� and f�x�� � � � � xi � �� � � � � xn� are partial func�
tions that represent the values of f when the input variable xi has value of
� and � respectively� These partial functions are called boolean cofactors or
Shannon cofactors of the function
 with respect to x�

We now brie�y summarize related work in function complexity� The
complexity of boolean functions has been de�ned over the years with bounds
on di�erent physical attributes
 depending on the implementation technology�
It was �rst investigated by Shannon �Sha��� while studying two	terminal
switching networks with relay contacts� Muller �Mul��� then applied his
result to networks with logical elements and showed that an upper bound on
the complexity of single output networks was of the order of �n

n
where n is

the number of input variables� Then Kellerman �Kel��� derived an empirical

���

(000)
(100)

a

b

c

(110)

(111)

(101)
(001)

(011)

(010)

Figure ���� A Cube Space Representation of a � Variable Function

formula to estimate the average cost of a combinational logic network as a
function of the number of ON	terms in the cube space of the function� He
illustrated his results for single	output networks using diodes and modules
as the implementation technology� This was followed by work on entropy
based de�nitions of complexity by several researchers �Hel��
 CF��
 Mas��

Pip��
 CA��� with bounds on attributes like diode counts
 gate counts and
literal counts� These were discussed in detail in Chapter �� Yao �Yao���
used a communication model to to formulate lower bounds on the worst case
information complexity of a boolean function f
 and this was also discussed
in Chapter ��
How does our work relate to the above research� In the next section
 we

de�ne the gate	count complexity of a boolean function by its information
content� This de�nition di�ers from the existing de�nitions in that it em	
phasizes on the spatial distribution of the �s and �s in the cube space rather
than just the number of �s and �s in the cube space� One of the motivations
for doing so is to be able to predict the cost of implementing the function not
just in terms of the literal count or gates but also in terms of the communica	
tion between the gates through wiring� Our de�nition is entropy based and
is de�ned for completely speci�ed single	output functions� The de�nition
ensures minimality for two	level function representations and is an estimate
of gate	count complexity in a multi	level implementation�

���

��� Information Content

We begin this section with an intuitive development of our idea� Our objec	
tive is to de�ne the gate	count complexity of a boolean function in terms of
the spatial distribution of minterms ��s and �s� in the cube space� This will
give us an estimate of the cost of implementing the function�
Let us start by trying to understand the spatial embedding of minterms

and see how it contributes to the complexity of the function� Consider a set
of completely speci�ed
 single	output
 �	variable functions� Figure ��� illus	
trates an example collection of such functions and their minterm distribution
in cube space� The ON	terms or �s are marked with a � at the cube vertex�
The unmarked vertices represent the OFF	terms or �s� The minimized ex	
pressions for these functions are also shown� Let us assume for the sake of
these examples that the cost of the implementation is measured by the literal
count in the minimized two	level expression� Consider functions A and F �
Both are �	variable functions that have exactly four �s in their cube space�
But the cost of implementingA is more than the cost of implementing F
 us	
ing the literal count measure� The reason for this is the spatial arrangement
of the �s in the cube space� This was also observed in �Kel��� and �CF����
Their experimental data showed that the maximum	cost data point �for a
function of n variables with u �s in the cube space� appeared when none of
the �s could be covered
 while the minimum	cost data point appeared when
all the �s were optimally covered�
On a �ner grain consider functions C and D� Both have exactly two �s in

their cube space� But the spatial arrangement of the �s permitsD to achieve a
cheaper implementation
 though this would require a �ner cost discriminator
than the simplistic measure of two	level literal count� Functions B and E
exhibit a di�erent feature� Here the number of �s outnumber the number of
�s� The function E contains six �s and two �s
 and the two OFF	terms are
in almost identical spatial positions as the two ON	terms of function C� So
with respect to spatial distribution the two functions �E and C� look very
similar� Their implementations too have the same cost�
Now that we have an intuitive idea of why spatial embedding of minterms

can a�ect gate	count complexity of functions we can formally de�ne our
measure for completely speci�ed single	output functions� We begin with a
few de�nitions�

���

A = a’b’c’ + a’bc+ab’c + abc’

B = b + ac’

F = ac + a’c’

E = a’b’ + bc + ac’

D = a(bc + b’c’)C = ab’c’ + a’bc

c

 b

a

Figure ���� Example functions of � variables a� b� c

���

De�nition � A monochromatic cube c of a function f is a cube such
that
m � c �f�m� � �� � �f�m� � ��� where m is a minterm of the
function f that belongs to cube c� and f�m� is the value of the function f for
the minterm m� When f�m� � � then the cube is termed a one�cube� c��
When f�m� � � the cube is termed a zero�cube� c��

De�nition � The size of a cube j c j is the number of minterms in the cube�

De�nition � A k�decomposition Dk of a boolean function is a union�
O � Z� of a set of one�cubes O� and a set of zero�cubes Z such that k �j O j
� j Z j and O � Z is a partition of the function�s cube space�

De�nition � A minimum k�decomposition of a boolean function is a k�
decompositionDk with the smallest k such that for any other k��decomposition
Dk� of the same boolean function� either k
 k�� or if k � k�� then the sum
of the cube sizes in k is greater than the sum of the cube sizes in k��

X
ci�fOk�Zkg

j ci j �
X

c�i�fOk��Zk�g

j c�
i
j

Since cubes can overlap
 the sum of the cube sizes in a minimum k	
decomposition does not have to be bounded by the number of minterms �n�
The monochromatic cubes de�ned here are an n	dimensional equivalent of

the monochromatic rectangles used by Yao in his communication complexity
model �Yao���� A monochromatic cube is a collection of minterms �in the n	
dimensions� for which the function value is constant �� or ��� The monochro	
matic rectangle de�ned by Yao also describes a collection of minterms with
a constant function value� But the rectangle is de�ned di�erently� The input
n bits are partitioned into bn��c and dn��e halves� The set M consists of
the �bn��c values in one half
 while N consists of the �dn��e values in the other
half� The rectangle is a cross product P � Q � M �N
 where P � M and
Q � N �
Before we move further let us review the examples in Figure ��� �on

page ����� The minimum k�decomposition of the functions into monochro	
matic onezero	cubes is shown in Figure ��� �on page ����� In function A
all the one	cubes and zero	cubes are of size �� The rearrangement of the
ON	terms in the cube space of function F results in larger cubes �of size ���
Functions C and D di�er in that the arrangement of minterms in D!s cube

���

space yields a zero	cube of size �
 while the minterm distribution in C only
permits zero	cubes of size �� This contributes to the sharing in the imple	
mentation of D� The other observation of note is that the monochromatic
decomposition of cubes for C and E are similar
 except for the one	cube and
zero	cube distribution being reversed�
In the following subsection we show how the minimum k	decomposition

of cubes relates to results in two	level logic minimization�

����� k�decomposition and Two�level Minimization

Two	level logic minimization addresses the problem of minimizing the num	
ber of literals in a two	level representation of a boolean function� The ob	
jective is to generate a minimal form of the function that is prime and ir�
redundant� A function is irredundant if and only if no product term can be
deleted without changing the function� Conversely
 redundant terms can be
removed without changing the function� A product term is prime if and only
if all literals in the term are necessary� Any non	prime term can be expanded
by removing one or more literals without a�ecting the logic function� Thus
there are two basic strategies� expansion and redundancy removal�
In the early years of logic design
 two	level logic minimization was

performed with the use of Karnaugh	maps �Koh���� The monochromatic
onezero	cubes in our de�nition bear a resemblance to them� Subsequently
Quine and McCluskey �McC��� introduced more sophisticated techniques for
two	level minimization
 like prime implicant generation
 and minimumprime
cover extraction that have formed the basis for almost all of two	level logic
minimization today�
Regardless of the technique
 the objective in two	level minimization is to

generate a minimal form of the function that is prime and irredundant� We
now show that a minimum k	decomposition of a function into monochro	
matic onezero	cubes guarantees a prime irredundant minimized form of the
function�

Lemma � A minimum k�decomposition guarantees an irredundant cover of
the function�

Proof by contradiction� Suppose there exists a minimum k�decomposition
that has a redundant product term in it� A product term corresponds to a one�
cube� and since it is redundant� we can remove it� This implies removing the

���

A F

B E

C D= ab’c’ + a’bc = a(bc + b’c’)

= a’b’c’ + a’bc + ab’c + abc’ = ac + a’c’

= a’b’ + bc + ac’= b + ac’

Zero Cube

One Cube

Figure ���� Monochromatic Cube Decomposition for �	Variable Functions

���

cube from the decomposition set� giving us a decomposition 	of the function

that is smaller than what we started with� This contradicts our assumption
that we had a minimum k�decomposition initially�
�

Lemma � A minimum k�decomposition guarantees that all the literals in
the two�level minimized form of the function are necessary�

Proof by contradiction� If a literal were not necessary in a minimum k�
decomposition� then it means that it can be expanded out from its minterm�
This would mean that we have just doubled the size of the one�cube containing
that minterm� If the sum of the cube sizes before expansion was �� and if
literal expansion does not introduce a redundant cube then the sum of the
cube sizes after expansion will be at least �� �� This is because the smallest
cube is of size and it will produce an increase in size of when doubled�
But if the cube size did increase then this implies that we did not start with
a minimum k�decomposition 	see De�nition �
�
�

Lemma � A minimum k�decomposition of a boolean function guarantees a
minimized two�level representation that is prime and irredundant�

Proof� From the Lemma on irredundancy� and Lemma � on primality�
�

Generating a minimum k	decomposition of monochromatic cubes for a
given function is an NP	complete problem �GJ��� just as problems in tra	
ditional two	level logic minimization are NP	complete� generating all prime
implicants is O��

n

n
� �BHMSV���
 while extraction of a minimum prime cover

is NP	complete �GJ����
For a given function
 the minimum k	decomposition need not be a unique

decomposition� For example
 Figure ��� shows a decomposition of a function
into monochromatic onezero	cubes in two distinct ways�
Before we de�ne a formal expression to estimate gate	count complexity

in terms of these monochromatic cubes
 we describe certain characteristics
of these cubes and intuitively motivate their role in de�ning this complexity�
We will also use the examples in Figure ��� to illustrate the importance of
some of these characteristics�
To start with we need to strengthen the simplistic two	level literal count

measure that we assumed as the gate cost of an implementation� Ideally
 the

���

a

b

c

E = a’c + b’c’ + ab E = a’b’ + bc + ac’

Figure ���� Two di�erent Minimum Decompositions for a Function

implementation cost should include the gate	count and the total wiring area
between the gates� We examine cube characteristics by studying both these
costs but our formal de�nition is only in terms of gate	count complexity� In
the following discussion we intuitively explain how cube characteristics can
contribute to gate	count complexity and wiring complexity�

Distribution of One�Zero�cubes� Consider the distribution of the one
and zero cubes in the minimum k	decomposition of a function� Since
the one	cubes determine the onterms in the function and the zero	cubes
determine the o�terms
 the distribution of one	cubes versus zero	cubes
has a direct e�ect on the sizes of the ON and OFF sets of the function�
This in turn can in�uence implementation cost� Suppose the number
of one	cubes is much larger than the number of zero	cubes� This skew
in the distribution will mean that there is a good chance that the on	
terms can be minimized to yield a cheap implementation� At the same
time there is also a good chance that because there are few zero	cubes

implementing the OFF set of the function and inverting its output
will also yield a cheap implementation� A more uniform distribution of
onezero	cube will make both these tasks more di�cult� Thus a skewed

���

cube distribution reduces the complexity of the function�

Sizes of One�Zero�cubes� The second factor is the sizes of the cubes in
the minimum k	decomposition of a function� The sizes of the cubes
determine the number of literals in a minimized form of the function�
The number of literals in the minimized form in turn in�uences the
gate count and thus the cost of the implementation� For instance
 in
the earlier examples
 we notice that the literal count in B is less than
that in A� While A has cubes that are very small in size
 B has larger
cubes� in fact one cube is of size � contributing only one literal to the
minimized form�

Number of One�Zero�cubes� The third cube characteristic is the number
of cubes in the minimum k	decomposition of a function� This is di�er	
ent from the issue of one	cube versus zero	cube distribution� We are
concerned here about the total number of one	cubes and zero	cubes�
Take functions A and F in the above example� Both have an equal
ratio of one	cubes��zero	cubes 	 � �� �� � �� �� But A has � one	cubes

while F has only � one	cubes� This is a consequence of the spatial
distribution of minterms in cube space� The number of one	cubes is a
re�ection of the degree of sharing that is permissible between parts of
logic in an implementation� The greater the number of one	cubes the
more spatially distributed are the minterms of the function� As a result
there is less sharing possible not only between cubes but also between
the literals in the cubes� For instance in function A the cubes ab�c� and
abc can share the literal a in the implementation a�bc� b�c��� but the
gain is not as much as compared to F where the single one	cube �con	
sisting of ab�c� and abc�� yields ac� in the implementation� The lesser
sharing permitted also implies more cost in combining the cubes and
literals to implement the function� This means more gates or wires in
the implementation to perform the combining�

Variance of One�Zero�cube Sizes� Finally we consider the e�ect of the
size distribution of cubes in a minimum k	decomposition of the func	
tion� A function in which there is a greater variance in the sizes of the
one	cubes �or zero	cubes� will tend to exhibit greater wiring complex	
ity in the implementation� This complexity arises due to the spatial
distances between gate implementations of di�erently sized cubes� The

���

function B above has one	cubes of sizes � and �
 but it is too small an
example to capture the e�ect� Consider a �� variable function with a
wide variance in the one	cube sizes ��� �� �� ���� ���� � � �� of its minimum
k	decomposition� In order to implement a cube of size � �c�� one would
require � of the �� literals to be present in the implementation� On
the other hand a cube of size ��� �c�	�� would only require � literals in
its implementation� Regardless of how the � literals in c� are factored
and implemented there is likely to be some disparity in the size of the
logic required to implement c� versus c�	�� Sharing amongst cubes and
literals may reduce some of this disparity� But for the implementation
as a whole
 there is likely to be a need for more wiring when di�erently
sized cubes are combined� This wiring e�ect will not be as evident in
a function with a lesser variance on cube sizes� Whether the cube sizes
are small or big
 the cones of logic implementing them will approxi	
mately be of the same size� Again
 sharing and factoring can change
this to an extent�

While we have discussed each cube characteristic individually
 it needs to
be emphasized that the actual implementation cost is the result of a com	
plicated interaction of all these factors along with variations introduced by
multi	level logic minimization and technology mapping� We have tried to ex	
plain intuitively how cube characteristics can in�uence implementation cost
in terms of gate	count and wiring� We now de�ne a formal estimate for gate	
count complexity
 called information content
 that captures the e�ects of fac	
tors �
 � and � above in the implementation cost� Since the de�nition does
not capture the e�ect of factor � �variance in cube sizes�
 which contributes
signi�cantly to wiring	complexity
 we only de�ne gate	count complexity here�

De�nition � Given a minimum k�decomposition Dk of a boolean function
f into a set of one�cubes O� and a set of zero�cubes Z� where j O j � j Z j� k�
the information content I�f�Dk� of the function is de�ned by�

I�f�Dk� �
h

jOj
jOj�jZj � log�

�
jOj�jZj
jOj

�
� jZj

jOj�jZj � log�
�
jOj�jZj
jZj

�i
�hP

c��O
jc�j
�n
� log�

�
�n

jc�j

�
�
P

c��Z
jc�j
�n
� log�

�
�n

jc�j

�i

where c� is a one�cube and c� is a zero�cube�

���

We have de�ned information content as the product of two entropy func	
tions� The sizes of one�zero�cubes are captured by the �log� sub terms in the

entropy expression jc�j
�n
log��

�n

jc� j
� and jc�j

�n
log��

�n

jc�j
�� The number of one�zero�

cubes is captured by accumulating these sizes over
P

c��O and
P

c��Z� The
distribution of one�zero�cubes is captured by the two binary entropy func	
tions in the de�nition�
Why were the two entropy functions multiplied� In information theory

the entropy of two systems is usually expressed as the sum of their individual
entropies� For instance suppose we wished to combine the entropies of a pair
of bit strings
 n	bits long and m	bits long respectively� If we denote an event
by a combination of bits in a bit string
 then there are �n possible events in
the n	bit string and �m possible events in the m	bit string� Since entropy is
expressed as the logarithm of the number of possible events
 the individual
entropy in the former case is n and in the latter case is m� Since the events in
the n	bit string are independent of those in the m	bit string
 taken together
there are �n�m events in all and the entropy of the combined string pair is
log��n�m� � n � m� In our de�nition
 the �rst entropy function describes
the distribution of onezero	cubes only in terms of the number of cubes

while the second entropy function describes their distribution in terms of
the minterms in the cubes� These are not independent of each other� The
distribution of the minterms amongst the cubes also in�uences the number
of cubes
 irrespective of whether they are one	cubes or zero	cubes� Since the
two entropy functions have a combined e�ect on the gate	count complexity
of the function
 we take their product�
The entropy based de�nition of information content in cube space is an

indicator of minimality in two	level function descriptions� This is because
it is de�ned over a minimum k	decomposition of the cubes� and we proved
that this is equivalent to the minimized �prime
 irredundant� two	level rep	
resentation of the function� In fact
 the literal count in a two	level function
description is part of the de�nition of information content in De�nition ��
The term log��

�n

jc�j� represents the number of literals in the minimized cube

c�� Suppose n � �
 and the cube had � minterms
 i�e� j c� j� �
 then the
number of literals in the minimized cube would be �� For example if a� b� c
were the three variables in the function and the minterms were abc and abc�

then the minimized cube is ab
 which has � literals� This can be determined
from log��

��

�
��

���

As mentioned earlier
 the objective of this de�nition was to capture the
e�ects of the various cube characteristics that in�uence gate	count complex	
ity in multi	level implementations� We experimented with various other es	
timates
 before settling upon this de�nition as an estimate of gate	count
complexity� Some of these estimates are shown below�

�� Literal count in a minimized two	level expression�

log��
�n

j c� j� � log��
�n

j c� j�

�� Entropy function of onezero cube sizes�

X
c��O

j c� j
�n

� log�
�
�n

j c� j

�
�
X
c��Z

j c� j
�n

� log�
�
�n

j c� j

�

�� Entropy function of number of onezero cubes�

j O j
j O j � j Z j � log�

�j O j � j Z j
j O j

�
�

j Z j
j O j � j Z j � log�

� j O j � j Z j
j Z j

�

�� Weighted entropy function of cube sizes�

I�f�Dk� �
h
log�

�
jOj�jZj
jOj

�
�Pc��O

jc� j
�n
� log�

�
�n

jc�j

�i
�h

log�
�
jOj�jZj
jZj

�
�Pc��Z

jc�j
�n
� log�

�
�n

jc�j

�i

In order to study minimality in multi	level functions and de�ne spatial
entropy in cube space we introduce a notation called the decision tree in
the next section� It is an intermediate representation that we use to bring
together a function and its implementation� The information content is a
characteristic of the function and its minterm distribution� In Section ��� we
use the decision tree to establish a relation between the spatial entropy of a
given implementation and the information content of its underlying function
and show how spatial entropy can capture function behavior�

���

��� Decision Tree

Given a k	decomposition for a function how does one construct an imple	
mentation for such a function� Before we answer this question let us try
and visualize what the implementation must do� An implementation accepts
as input a minterm m whose literals are spatially distributed� Its task is
to decide if the given minterm m is an onterm
 or if m is an o�term� If
a naive approach is adopted this would require all the onterms or all the
o�terms to be examined� But since several onterms and o�terms share lit	
erals and cubes
 the implementation!s task can be simpli�ed� It would be
su�cient if the implementation is able to decide that m � c� or m � c�

where c� is a one	cube and c� is a zero	cube� One can intuitively see that
such a decision would be easier to make when the function has a large num	
ber of onterms �j ONset j��j OFFSet j� or a large number of o�terms
�j ONset j

j OFFSet j�� The di�culty in making such a decision is
captured by the complexity of the function� In Section ��� we de�ned
the gate	count complexity as the information content de�ned over the k	
decomposition of the onezero	cubes� As we shall see later
 spatial entropy
is de�ned as the e�ort required to make such a decision
 thus capturing the
measure of di�culty
 or the measure of information content�
Suppose we are given a k	decomposition of the onezero	cubes of a func	

tion� We are now interested in understanding how an implementation uses
this k	decomposition to make decisions of the above nature with respect to
an input mintermm� We introduce a representation called decision tree that
illustrates this decision process� The decision tree also gives us an insight into
constructing an implementation for the function from its k	decomposition�
We �rst illustrate the decision process for a simple example
 following

which we formally de�ne it� Consider a � variable function f � ab � cd�
Figure ��� shows the k	decomposition for this function
 where k � �� The
arrows indicate the one and zero	cubes �k � �� which are numbered below�

�� a�d� 	 zero	cube�

�� b�d� 	 zero	cube�

�� b�c� 	 zero	cube�

�� a�c�d 	 zero	cube�

���

a

b

c

f = ab + cd

d=0 d=1

#2−b’d’

#5 − ab

#6 − cd

#1 − a’d’

#3 − b’c’

a

c

b

#4 − a’c’d

Figure ���� Minimum �	decomposition of f � ab� cd

�� ab 	 one	cube�

�� cd 	 one	cube�

Using the cube numbers to identify them
 we have a one	cube set O �
f�� �g and a zero	cube set Z � f�� �� �� �g�
The decision that we would like to make is� given an input minterm m

with an assignment of boolean values to the literals a� b� c and d which of these
� cubes does it belong to� More speci�cally
 we are interested in determining
a subset M of monochromatic cubes
 where M � O or M � Z such that the
input minterm m � M � At the outset the input decision space of onezero	
cubes is represented by the �	decomposition D� � f�� �� �� �� ��� ��g
 where
the one	cubes are marked with a �� With successive assignments to the
input literals a� b� c and d we can start making decisions to generate smaller
sets of current candidate cubes� Suppose we started with the literal a� The
assignment a � � tells us that the variable a is a � in the input m� From

���

Figure ��� this tells us that the inputmmust lie in one of the cubes �� �� ��� ���
Similarly
 if a � � then m must lie in cubes �� �� �� �� ��� Thus the candidate
cube sets now are f�� �� ��� ��g and f�� �� �� �� ��g� Since neither of them is
a monochromatic cube set we continue making assignments� This process is
illustrated in Figure ���� We now consider assignments to the literal b� For
a � �� b � �
 we discover that the input must lie in cubes ��� ��� Since we now
have a monochromatic cube set the decision process terminates along this
path� This tells us that if the input m is assigned a � �� b � � then it is part
of some minterm in the one	cubes �� or �� in the ON	set� The assignments
a � �� b � �� a � �� b � � and a � �� b � � all yield subsets of D� none
of which are monochromatic� Hence the literal assignment continues along
these paths� The decision process completes when every path terminates in a
monochromatic cube setM
 whereM � fO�Zg� As Figure ��� indicates
 this
yields a tree that has captured the decision process� This is called the decision
tree� For a given k	decomposition Dk the decision tree is not always unique�
A di�erent sequence of literal assignments can yield a di�erent decision tree�
Figure ��� illustrates the decision tree for the assignment sequence a� c� b� d
for the same �	decomposition of f � ab� cd� This is di�erent from the one
in Figure ��� which used the assignment sequence a� b� c� d�
We are now ready to state some de�nitions� We �rst de�ne an ordering �

on the input variable set I� The ordering function � generates a permutation
on the indices of the input variable set I by assigning an index to each
variable in I� Given a set of onezero	cubes representing the k	decomposition
Dk for a function
 and an ordering � on the input variable set I
 a decision
tree T �Dk� �� is denoted by a directed acyclic graph �V�E�� Every node
�v � V � in the tree is associated with a set of cubes
 Cv � Dk� We shall
call this the cube set Cv� For the root node vroot
 the cube set is the k	
decomposition itself
 Cvroot � Dk� There are two types of nodes in the tree�
internal nodes and leaves� Every internal node v is labeled with a boolean
input variable� The leaf nodes are not labeled� A directed edge e � �v�w� �
E corresponds to an assignment of � or � to labelv� Every internal node v has
two children 	 a one	child childv�
 which is the node along the edge that has
labelv � �
 and a zero	child childv�
 which is the node along the edge that has
labelv � �� The leaves of the tree do not have any children and correspond
to monochromatic cube subsets of the k	decomposition Dk� That is
 if O
and Z are the monochromatic one and zero	cube sets respectively for the
decomposition Dk �O � Z � Dk�
 then a leaf v of the tree is represented by

���

a=1 a=0

b=1 b=0 b=1 b=0

c=1 c=0

c=1

c=0 c=1 c=0

d=1 d=0

d=1 d=0 d=1
d=0

d

c

b

a

{1,2,3,4,5*,6*}

{2,3,5*,6*} {1,2,3,4,6*}

{5*,6*} {2,3,6*} {1,4,6*} {1,2,3,4,6*}

{2,6*} {2,3}

{1,26*} {1,2,3,4}

{6*} {2}
{6*} {1} {6*} {1,2}

{1,4}{1,6*}

Monochromatic zero−cube set (leaf)

Monochromatic one−cube set (leaf)

Set of one−cubes/zero−cubes (internal node)

Figure ���� Decision Tree for D��f� with ordering a� b� c� d

���

a=1 a=0

d=1 d=0

d=1 d=0 d=1 d=0 d

a

c

b

c=1 c=0 c=1 c=0

b=1 b=0

b=1 b=0

{1,2,3,4,5*,6*}

{2,3,5*,6*} {1,2,3,4,6*}

{2,5*,6*} {2,3,5*} {1,2,6*} {1,2,3,4}

{5*,6*} {2,6*} {5*} {2,3}

{6*} {2}
{6*} {1}

{6*} {1,2}

{1,26*}{1,6*}

Monochromatic zero−cube set (leaf)

Monochromatic one−cube set (leaf)

Set of one−cubes/zero−cubes (internal node)

Figure ���� Decision Tree for D��f� with ordering a� c� b� d

���

a set of monochromatic cubes M
 where M � Cv
 and �Cv � O� � �Cv � Z��
The permutation of indices generated by the the function � for each

variable in the input set I can be used to order the input variables� Thus in
Figure ��� ��a� � �
 ��b� � �
 ��c� � � and ��d� � �� For convenience we
shall denote the imposed ordering a � b � c � d by � � ha� b� c� di� Since
internal nodes in the decision tree are labeled with input variable names � I

the ordering � also imposes a partial order � of levels l on the node set V
and the cube sets Cv associated with them� The levels in the node set are
distances from the leaves� The leaf nodes are at level � and the root node
is at level n
 where n is the number of input variables
 j I j� This creates a
set of ordered partitions of the node set V � fVn � Vn�� � � � � � V� � V�g�
Each element of the partition is a set Vi consisting of all nodes at level i�
Since each node v � Vi is associated with a cube set Cv
 we interchangeably
refer to the elements of the set Vi as nodes �v� or cube sets �Cv�� We de�ne
a partition set
 PVi as the set consisting of the cube sets associated with each
node in Vi� Therefore PVi � �v�ViCv� Thus a partition set PVi is a set of
sets� We can now de�ne a maximal partition set�

De�nition � Given a set of nodes Vi at level i� the maximal partition set
Pmax
Vi

at this level is de�ned as

Pmax
Vi

� �v�ViCv such that �Cv � Pmax
Vi
� iff Cv 	� Cw for w � Vi�

It contains all the cube sets in Vi such that no cube set is completely contained
inside another� For every cube set Cv � Pmax

Vi

 the cube sets Cw that are

subsets of Cv are said to be covered by Cv�
Before we look at an example we make one other observation� Since every

node v � Vi is labeled with the same input variable xj
 we can associate each
element of the partition V � fVn � Vn�� � � � � � V� � V�g with a unique
input variable� This means we can rewrite Pmax

Vi
as Pmax

i�xj
	 the maximal

partition set associated with an input variable xj � I at level i� in a decision
tree T �Dk� ��� To avoid confusion
 we shall adopt the convention of using the
subscript j for input variables and i for levels as far as possible�
Let us now go back to the decision tree in Figure ���� The maximal

partition sets at each level i associated with each variable in � � ha� b� c� di
are shown below�

Pmax
��a � f��� �� �� �� ��� ���g

���

Pmax
��b

� f��� �� ���� ��� �� �� �� ���g
Pmax
��c

� f��� �� �� �� ���g
Pmax
��d

� f��� �� ���g
The maximal partition set at a level consists of a set of cube sets at that

level� Every cube set in the maximal partition set has the characteristic that
the subtree below it generates monochromatic leaf cube sets that are unique
�i�e� not generated by any other element of the maximal partition set at this
level� and maximal �i�e� it generates the largest possible monochromatic leaf
cube set��
We now de�ne the signature S of a decision tree as follows�

De�nition
 The signature S of a decision tree T �Dk� �� is the union of the
maximal partition sets associated with each input variable in the tree�

S � �
xj�I

Pmax
i�xj

where i is the level associated with variable xj� The size of a signature j S j
is the cardinality of the set S�
The signature of a decision tree is a set of all the internal nodes that make

decisions to generate monochromatic cube sets at the leaves
 such that the
cube set Cv associated with each such node v is unique and covers all other
cube sets Cw that lie at the same level�
The signature for the decision tree in Figure ��� is given by S �

f��� �� �� �� ��� ���� ��� �� ���� ��� �� �� �� ������ �� ���g
 and S � �Dk �
Having introduced the decision tree we now return to the question ad	

dressed at the beginning of this section� Rephrasing it
 we ask how can an
implementation for a function be constructed
 given a decision tree T �Dk� ���
Before we describe the procedure to construct this implementation some as	
sumptions about our implementation model are necessary� We assume that
the implementation is derived from a multi	level minimal expression repre	
senting a boolean function� The implementation assumes primitive technol	
ogy mapping and uses only �	input ANDORNOT gates corresponding to
the operators in the minimal expression of the function� A node in the im	
plementation represents the output of a collection of gates that implement a
partial function� The nesting depth in the minimal expression creates levels

���

in the implementation� Level � consists of the input literals
 and the levels
are numbered in increasing order moving from nodes �or partial functions�
formed at the innermost level to the output node that has the maximum
level number� Thus these levels impose a partial ordering on the nodes in
the implementation� Given a pair of nodes v�w belonging to levels i
 i� re	
spectively
 if i
 i� then node v is closer to the inputs than node w� The
implementation for the minimal expression

f � �c�a� b� � abd�

is shown in Figure ��� along with its partial functions�
We now describe the procedure to construct an implementation from a

given decision tree T �Dk� ��� The procedure starts bottom up from the leaves
�or monochromatic cube sets� of the tree� Using the ordering of the variables
speci�ed by �
 the procedure examines the cube sets Cv associated with each
node v at level i� Every cube set Cv at level i is replaced by a partial function

�f i�Cv� � xj��f
i���childv�� � x�

j
��f i���childv��

where xj is the input variable associated with the node v
 �f i���childv�� is
the partial function from the �	child of v at level i� �
 and �f i���childv�� is
the partial function from the �	child of v at level i� �� Since the childv� is
a node where the value of xj � � and the childv� is a node where the value
of xj � �
 we can rewrite the partial function as

�f i � xj��f
i��
xj
� x�

j
��f i��x�

j
�����

This is like the Shannon expansion of the function at level i except that
it is built bottom up from Shannon cofactors �with respect to xj� x�j� that
already exist at the level below� The value of this partial function at any level
i is governed by a few rules� These rules are just manifestations of simple
boolean optimizations�

�� At the leaves of the tree �level �� there are only monochromatic one	
cube sets and monochromatic zero	cube sets� If the leaf is a monochro	
matic one	cube set then the partial function �f� has the value �� If the
leaf is a monochromatic zero	cube set then the partial function �f� has
the value �� This corresponds to optimizations of the form x��� � x�

or x��� ��

���

a b c a b d

a.ba+b

(a+b).c a.b.d

c.(a+b)+abd

L=1

L=2

L=3

L=4

Figure ���� Implementation for f��c�a�b��abd�

���

�� For any level i � �
 suppose Cchildv�
is the cube set at the one	child of

v and Cchild
v�
is the cube set at the zero	child of v� Then the partial

function �f i de�ned in Equation ��� can be reduced to

�f i � �f i��
xj
� x�

j
��f i��x�j

provided
c�� �c� � Cchild
v�

� c� � Cchild
v�
�

This says that if all the one	cubes that belong to Cchild
v�
are contained

in Cchild
v�

 then the literal xi is not making any useful decision and

hence is not part of the function� This corresponds to an optimization
of the form b� � bd � b� � d� Similarly
 if it is true that every �c� �
Cchildv�

� � �c� � Cchildv�
� then the partial function �f i reduces to

�f i � xj��f
i��
xj
� �f i��x�

j

Here literal x�
j
is not making any useful decision in the tree and hence

does not appear in the partial function� The corresponding optimiza	
tion is b� b�d� b� d�

�� For any level i � �
 if the cube set at the one	child of v
 Cchild
v�
is

identical to the cube set Cv at v
 then �f i � �f i��
xj

If the cube set at

the zero	child of v
 Cchild
v�
is identical to the cube set Cv at v
 then

�f i � �f i��x�
j
This performs the optimization b�cd � bcd � cd
 saying

that neither xj nor x�j are making any useful decisions�

�� For any level i � � if Cchild
v�
	� Pmax

i���xk
then �f i can be reduced to

�f i � x�
j
��f i��x�

j

Similarly if Cchild
v�
	� Pmax

i���xk
then �f i can be reduced to

�f i � xj��f
i��
xj

This says that if the cube sets at the one	child or zero	child of v are
not elements of the maximal partition set at that level
 then the partial
functions associated with them can be ignored� Since there will be max	
imal partition set elements that covers these cube sets �Cchildv�

Cchildv�
�

the partial functions associated with these elements will cover �f i��x�
j

and �f i��
xj

 and hence they can be ignored here� This corresponds to

the optimization �ab� b�cd� � cd� �ab� cd��

���

In order to construct an implementation from the decision tree the partial
functions computed at each level need to be replaced by gates� But our simple
�	input ANDORINVERTER gate model will not su�ce for this purpose�
This is because the partial function constructed at a level may sometimes
require more than one such primitive gate� This happens in two instances�

�� If every component of the partial function �f � x��fx�x���fx� is making
a contribution to the decision process
 then a pair of AND gates and
an OR gate would be needed�

�� Similarly when the partial function is of the form �f � x��fx��fx� one
AND and one OR gate would be needed�

So we extend our implementation model to include a �	input AND	OR gate
AOR� and a �	input AND	OR gate AOR�� Given that such complex gates do
exist in practical implementations this extension does not seem unreasonable�
We can now construct the implementation bottom	up from the decision

tree by replacing the partial function at every node by a gate in the im	
plementation� Thus the implementation is built incrementally� The set of
gates corresponding to the partial function at the root node is the multi	level
implementation of the entire function� The internal nodes in the implemen	
tation correspond to maximal partition sets in the decision tree at all levels
� �� This is because it is only these nodes in the decision tree that contribute
to the decision process
 and thus do not get optimized only during construc	
tion� The correspondence between input nodes in the implementation and
inputs in the decision tree is di�cult to establish because of the decision
tree structure that forces the inputs to enter sequentially
 in contrast to an
implementation where the inputs enter in parallel� So we shall restrict our
attention to the internal nodes of an implementation� Let us look at an
example�
Figure ��� shows the cube space distribution for the function f � ac �

bc � abd implemented in Figure ���� It has � onezero cubes �not shown��
The one	cube set O and zero	cube set Z in the minimum �	decomposition
are numbered below�

�� ac 	 one	cube�

�� bc 	 one	cube�

���

�� abd 	 one	cube�

�� c�d� 	 zero	cube�

�� b�c� 	 zero	cube�

�� a�b� 	 zero	cube�

�� a�c� 	 zero	cube�

Figure ���� shows the decision tree with the ordering � � hc� d� a� bi
 along
with the constructed partial functions� Consider the nodes at the level �
associated with d� For cube set f��� ��� ��� �g
 the partial function is computed
as follows� Since the �	child of this node has the same cube set f��� ��� ��� �g

by rule �
 the partial function at this node is the same as the partial function
at its �	child a�b� The partial function associated with the other cube set at
level � f��� �� �� �� �g is computed as follows� Since the �	child of this node is
a monochromatic cube set
 rule � applies
 and �f i � xj�f i��xj

 �f � d�ab� The

factored form representation of the function at the root node yields the multi	
level implementation for this decision tree� The nodes in the implementation
correspond to the partial functions at the maximal partition sets at each level
of the decision tree� Figure ���� illustrates the constructed implementation�

Since the implementation is derived from the decision tree
 a di�erent
ordering �� will possibly yield a di�erent decision tree and a di�erent im	
plementation� Figure ���� illustrates this for the ordering �� � hd� c� a� b� i�
Even though each ordering yields a di�erent decision tree the trees may be
similar in other respects� For instance we can de�ne cost�equivalent decision
trees as follows�

De�nition 	 Two decision trees T �D�f�� ���� T �D�f�� ��� have the same
cost if their signatures S� and S� have the same sizes�

For the class of implementations that are derived from decision trees
 we
can state the following�

Lemma � If a pair of decision trees T �D�f�� ���� T �D�f�� ��� have the same
cost� then the respective implementations I�� and I�� derived from them have
the same number of nodes�

���

a

b

c

d=0 d=1

a

b

c

f = ac+bc+abd

Figure ���� Cube Space Distribution for f � ac� bc� abd

���

AOR
3

a b c a b d

a.b
a+b

(a+b).c

a.b.d

c.(a+b)+abd

Figure ����� Implementation Constructed from Decision Tree in Figure ����

���

1*,2*,3*,4,5,6,7

1*,2*,3*,6 3*,4,5,6,7

1*,2*,3*,6 1*,2*,6 3*,5,6,7 4,5,6,7

1*,2*,3* 2*,6 1*,2* 2*,6 3*,5 5,6,7

6 6 52* 2* 3*

c=1 c=0

d=1 d=0 d=1 d=0

a=1 a=0 a=1
a=0

a=1
a=0

b=1 b=0 b=1 b=0 b=1 b=0

b

ab

abd

b

a+b

b

a+b

a+b

(a+b)c+abd

Monochromatic zero−cuboid set (leaf)

Monochromatic one−cuboid set (leaf)

Set of one−cuboids/zero−cuboids (internal node)

Figure ����� Decision Tree for f � ac� bc� abd with � � c� d� a� b

���

1*,2*,3*,4,5,6,7

1*,2*,3*,6

1*,2*,6

3*,5,6,7 4,5,6,7

1*,2*,3* 2*,6 3*,5 5,6,7

6 5
2*

3*

a=1 a=0
a=1 a=0

b=1 b=0

b=0

b=1
b=0

b

ab

a+b

b

a+b

1*,2* 2*,6

62*

a=1
a=0

b=1

b

d=1 d=0

1*,2*,3*,5,6,7 1*,2*,4,5,6,7

c=1 c=0
c=1

c=0

c(a+b)+ab

d(c(a+b)+ab)+c(a+b)

c(a+b)

Monochromatic zero−cuboid set (leaf)

Monochromatic one−cuboid set (leaf)

Set of one−cuboids/zero−cuboids (internal node)

Figure ����� Decision Tree for f � ac� bc� abd with � � d� c� a� b

���

Proof� By construction� Since the implementations are derived from the
decision tree the number of nodes in the implementation is equal to the
number of maximal partition sets in the decision tree �by construction�� Since
the decision trees have the same cost their signatures have the same number
of maximal partition sets and hence their implementations have the same
number of nodes�
�

We now re�ne this cost measure between a pair of implementations �or
decision trees� to talk about cost	equivalence with respect to sub	trees in a
pair of decision trees�
Consider an ordering � � hxj� � � � � � xjni� By moving backwards in

the ordering
 we can create a series of partitions P �
i
that are subsets of

the input variable set
 consistent with the ordering �� The �rst parti	
tion P �

� corresponds to ffxjng� fxjn��
� � � � � xj�gg
 the second corresponds to

ffxjn � xjn��
g� fxjn��

� � � � � xj�gg and so on until the last partition P �
n
equals

ffxjn � xjn��
� � � � � x�g� fgg�

Consider two decision trees with orderings �� and �� such that �k where
P ��
k � P ��

k � That is
 the subset of inputs in both these partitions is the same

even though the order in which they entered their respective partitions may
be di�erent� The k in the partition P ��

k P ��
k corresponds to the level k in the

implementation and is referred to as the join level�

De�nition �� Given a pair of partitions P ��
k � P ��

k de�ned as above� with
P ��
k � P ��

k � their associated implementations I�� and I�� have the same
cost with respect to this partition Pk if the total number of nodes in all the
partial functions in I�� is equal to the total number of nodes in all the partial
functions in I�� computed till join level k�

In Figure ���� and Figure ���� the two implementations derived from the
respective decision trees have the same cost with respect to the partition
ffa� bg� fc� dgg of the input set fa� b� c� dg�
We note that the partial functions at the join level k are functions of

variables in the set fxjk � � � � � xjng� They represent the cofactors of the original
function f with respect to the set fxj� � � � � � xjk��

g� Regardless of the order in
which the inputs fxj�� � � � � xjk��

g were cofactored
 we would �nally arrive with
the same set of partial functions and the same number of maximal partition
sets at the join level�

���

Unfortunately
 our current notion of equivalence between implementa	
tions is much tighter than what we would ideally like� It needs to be ex	
panded� If we can relax the assumption that identical partitions are needed
at the join level
 it will help us derive a class of compatible implementations
at the join level giving us a broader notion of equivalence�

��� Spatial Entropy and Information Content

In the previous section we introduced the decision tree as an intermediate rep	
resentation to relate a function with a broad class of implementations� The
top	down reduction of the k	decomposition of the function into monochro	
matic cube sets generates the nodes and the leaves in the decision tree� The
bottom	up construction of the k	decomposition from the leaves of the deci	
sion tree generates the implementation for the function�
We have de�ned the information content I�f�Dk� of a function f in terms

of its k	decomposition Dk that appears at the root of all decision trees for
f � In order to establish a relationship between the spatial entropy of an
implementation of f and its information content I�f�Dk� we �rst de�ne the
spatial entropy of a decision tree
 in terms of the one	cubes and zero	cubes in
the decision tree� Since a decision tree corresponds to an implementation we
can then relate this to the spatial entropy of an implementation as described
in Chapter ��
The spatial entropy of an implementation was de�ned in Chapter � as the

dynamic communication e�ort required to compute a value �of � or �� for a
function� In the previous section we showed that the task of computing this
�� or �� value is equivalent to the task of reducing the k	decomposition at the
root of the decision tree to the monochromatic cube sets at the leaves� The
paths from the root to each leaf with a monochromatic one	cube set describe
the input onterms �� values� that belong to this one	cube set� Similarly
 the
paths from the root to each leaf with a monochromatic zero	cube set describe
the o�terms �� values� that belong to this zero	cube set� The e�ort required
to generate all these monochromatic cube leaf sets from the root node is the
spatial entropy of the decision tree�
How can we express this e�ort formally� For this we use the notion of in	

formation content de�ned in De�nition �� The spatial entropy of the decision
tree is the reduction in the information content I�f�Dk� of the function over

���

all the levels in the decision tree� At the root node
 I�froot�Dk� � I�f�Dk�

which we reproduce below
 expresses the information content over the entire
function�

I�f�Dk� �
h

jOj
jOj�jZj

� log�
�
jOj�jZj
jOj

�
� jZj

jOj�jZj
� log�

�
jOj�jZj
jZj

�i
�hP

c��O
jc�j
�n
� log�

�
�n

jc�j

�
�
P

c��Z
jc�j
�n
� log�

�
�n

jc�j

�i
At the leaf node
 since there are only one	cubes or only zero	cubes
 the

�rst entropy function is �
 because either j O j or j Z j is �
 or the log
expression reducing to log��� equals �� As a result of this the information
content at a leaf node v I�fv�Dk� is �� At every level i � � in the decision tree
the nodes v � Vi denote cofactors of the original function f with respect to
all literal assignment�s� along the paths from the root to each of these nodes�
We are only interested in those nodes whose cube sets Cv are elements of the
maximal partition Pmax

i�xj
at that level� This is because a cube set Cv � Pmax

i�xj

is a cube set whose onezero	cube decomposition covers the onezero	cube
decomposition of other cube sets that might appear at this level� Hence
any decisions made with respect to this cube set would be a superset of
the decisions made with respect to all the others it covers� For example
in Figure ��� �Page ����
 the cube set f�� �� �� �� ��g � Pmax

��c
at the level

corresponding to input variable c is a cube set that covers cube sets f�� �� ��g
and f�� �� ��g� This node represents the cofactors of the function f � ab� cd
with respect to � literal assignments
 �a � �� b � ��
 �a � �� b � ��
 �a � �� b �
��
 all of which yield cd�
Given that we are only interested in nodes v � Pmax

i�xj
we start by de�ning

the information content with respect to such a node v as

I�fv�Dk� �
h

jOvj
jOvj�jZvj

� log�
�
jOvj�jZvj

jOvj

�
� jZvj

jOvj�jZvj
� log�

�
jOvj�jZvj

jZvj

�i
�hP

c��Ov

jc�j
�n � log�

�
�n

jc�j

�
�
P

c��Zv
jc�j
�n � log�

�
�n

jc�j

�i
where Ov is the one	cube set at v while Zv is the zero	cube set at v� c�

is a one	cube that belongs to Ov and c� is a zero	cube that belongs to Zv�
This de�nes the contribution of this node in making decisions to generate a
monochromatic onezero cube set at the leaves� It also estimates the cost of
implementing the partial function at this node
 its gate	count complexity�
We use this de�nition to de�ne the cumulative information content at a

level i in the decision tree�

���

De�nition �� The cumulative information content I�fli�Dk� at a level i in
a decision tree T �Dk� �� is de�ned as

I�fi�Dk� �
X

Cv�Pmax
i�xj

I�fv�Dk�

where I�fv�Dk� is the information content with respect to a node that belongs
to the maximal partition set at that level�

The cumulative information content at a level de�nes the gate	count complex	
ity of the function f with respect to the inputs in the set fx�� � � � � xj��g � I�
All the elements of the set fx�� � � � � xj��g precede xj in ��
Going down the decision tree
 the change in information content from level

i to level i� � with a literal assignment xi or x�i tells us the contribution of
that literal in reducing the information content� This is expressed as

%I�fi�Dk� � I�fi�Dk�� I�fi���Dk�

We are now ready to de�ne the spatial entropy of the decision tree�

De�nition �� The spatial entropy of a decision tree T �Dk� �� for a function
f with k�decomposition Dk and ordering � is

S�T �Dk� ��� �
X

Pmax
i�xj

�S

%I�fi�Dk�

where� S is the signature of the decision tree� Pmax
i�xj

is a maximal partition

set � S at level i corresponding to variable xj in ��

We have thus expressed the e�ort required to generate monochromatic
onezero cube sets at the leaves of a decision tree
 as a cumulative sum of
the change in information content over the maximal partitions at each level
in the decision tree�
We now try and relate the spatial entropy of an implementation
 as de	

scribed in Chapter �
 to the spatial entropy of a decision tree� We use the
fact that an implementation can be constructed bottom	up from the decision
tree to establish this relationship� Since the decision tree representation does
not capture wire length we assume that we are computing spatial entropy
in the implementation with unit wire lengths� The monochromatic leaf cube

���

sets correspond to spatially distributed input sources in the implementation�
Every node in the implementation denotes a partial function computed by
the implementation and corresponds to only those internal nodes in the de	
cision tree whose cube sets belong to some maximal partition set� The root
node
 which is the output of the implementation
 corresponds to the entire
function� The e�ort required to reduce the k	decomposition at the root node
to the monochromatic cube sets at the leaves can be expressed in reverse�
On doing so we obtain the spatial entropy of an implementation� This is the
e�ort required for the monochromatic leaf cube sets to combine with each
other while constructing the k	decomposition of the function�
How can we express this e�ort formally� The spatial entropy of an imple	

mentation can also be expressed using information content similar to way we
de�ned the spatial entropy of a decision tree� We de�ne the spatial entropy
of the implementation as the incremental contribution to the information
content I�f�Dk� of the function over all the nodes in the implementation�
At the leaf nodes the information content is �� The root node expresses the
information content over the entire function� Every internal node v in the im	
plementation denotes a partial function� The information content I�fv�Dk�
at this node v is computed from the cube set Cv� It indicates the e�ort con	
tributed by the partial function at this node in combining the onezero cubes
of the original function� The node!s contribution is computed by the increase
in information content from the previous level in the implementation�
Thus we can express the spatial entropy of an implementation I �con	

structed from a decision tree T � using the expression

S�I�T �� �X
v�I

%I�fv�Dk�

where %I�fv�Dk� represents the increase in information content from one
node in the implementation to its immediate fanout node�

Lemma � The spatial entropy of an implementation constructed from a
decision tree S�I�T �� is equal to the spatial entropy of a decision tree
S�T ���Dk�� computed from the k�decomposition at the root�

Proof This is true by construction� The only nodes that contribute to the
spatial entropy of a decision tree are nodes whose cube sets belong to the
maximal partition� By construction
 every node in the implementation cor	
responds to a cube set belonging to some maximal partition� Hence the

���

contributions to the spatial entropy of the implementation and the decision
tree come from the same sources�
�

It should be noted that while a broad class of implementations can be
constructed from the decision tree
 they are restrictive in that they do not
have logical reconvergent fanout and technology mapping issues are ignored�
We now turn our attention to the spatial entropy as we have de�ned it in

Chapter � to see how it relates to this de�nition� When a multi	level imple	
mentation is constructed for a function its k	decomposition is usually known�
This is because the k	decomposition of the function corresponds to a minimal
�irredundant
 prime� two	level representation of a function� and multi	level
logic minimization and synthesis often starts with such a minimized two	
level expression� We have seen that while computing the spatial entropy of
the decision tree S�T ���Dk�� and while computing the spatial entropy of an
implementation S�I�T �� from the decision tree
 we have knowledge of the
one	cubes and zero	cubes and the function!s k	decomposition�
On the other hand suppose we were interested in computing the spatial

entropy of an implementation that was already constructed� In such a case
its spatial entropy computation will have to be done without knowledge of
the onezero cube distribution and the k	decomposition of the function� This
is precisely what happens in the gate	level spatial entropy computation pro	
cedure� In Chapter � we had de�ned the local spatial entropy at a node v as
as�

�Sv �
X
v��V

Hv � l�v�v��

where Hv is the information computed at the gate node v
 and l�v�v�� is the
length of the fanout edge from node v to v�� With a unit length assumption
�Sv � Hv� Now let us look closely at the expression

Hv � p�
v
log�

�

p�
v

� � p�
v
log�

�

p�
v

�

p�
v
is the �	probability of a node v
 and p�

v
is the �	probability of the node�

The � �or �� probability at the node is the fraction of onterms �or o�terms�

in the cube space of the partial function being computed at the node�
If we had used the expression for the information content at a node v in an

implementation derived from the decision tree
 we would have the expression

���

I�fv�Dk� de�ned earlier� The expression Hv is really an approximation to
the expression I�fv�Dk�� Let us see how� In a constructed implementation
we do not know the k	decomposition of the function� As a result we do not
know how the minterms of the partial function at each node contribute to the
onezero cubes of the original function� So a simplistic assumption would be
to assume that all the onterms of the partial function at that node contribute
to the ON set of the function f
 and the all the o� terms contribute to the
OFF set� This yields one big one	cube and one big zero	cube at the node�
This means that j Ov j and j Zv j are �
 since there is only one	cube and one
zero	cube� The expression I�fv�Dk� reduces to the following

I�fv�Dk� �
�

�
���

� log�
�
���
�

�
� �

���
� log�

�
���
�

��
��

jc�j
�n log�

�
�n

jc�j

�
� jc�j

�n log�
�
�n

jc�j

��
��
�
� �

�
� �

�
jc�j
�n
log�

�
�n

jc�j

�
� jc�j

�n
log�

�
�n

jc�j

��

The size of the cubes j c� j and j c� j is equal to the number of minterms
in the cube� In j c� j this is the number of onterms while in j c� j this is the
number of o�terms� So the expression jc�j

�n
becomes the �	probability of the

node �p�
v
�
 and I�fv�Dk� reduced to Hv� AccumulatingHv over all the nodes

v � V yields the spatial entropy of the implementation�
To summarize
 we began by de�ning the gate	count complexity of a

boolean function by its information content� We showed that the infor	
mation content
 which is computed on a minimum k	decomposition of the
function
 captures minimality in two	level function representations� We then
showed how a class of multi	level implementations for a given function could
be derived from the decision tree representation� Minimality of multi	level
implementations was de�ned on the decision tree� We then de�ned the spa	
tial entropy of an implementation
 computed bottom	up from the decision
tree
 as the cumulative sum of the incremental information content over all
the corresponding nodes in the implementation� This gives a cube space
de�nition of spatial entropy that captures the communication between the
minterms in the implementation� In the next section we verify empirically
that the spatial entropy of an implementation tracks function behavior� We
also show empirically that the information content and spatial entropy can
be used as estimates of the gate	count complexity of a function�

���

��� Experiment

The �rst objective of this experiment is to study the e�ectiveness of spa	
tial entropy in measuring information content� Since information content
depends on the minterm characteristics of the function
 this will tell us how
e�ective spatial entropy is in capturing function behavior� As it may be
recalled
 this was one of our objectives in establishing a theoretical basis
for using spatial entropy to generate BDD variable orders� Earlier in this
chapter
 we de�ned an estimate for the gate	count complexity of a boolean
function
 over a minimum k cube decomposition of the function� This es	
timate
 called the information content I�f�Dk� of the function
 was de�ned
over cube characteristics that captured the gate cost in an implementation of
the function� We then showed that the spatial entropy of an implementation
�derived from a decision tree� can be de�ned as a function of the informa	
tion content� Computing the spatial entropy of an implementation this way
is expensive because the size of a decision tree is exponential in the worst
case� In the previous section we also motivated the idea that the polynomial	
time gate level spatial entropy computation of Chapter � could be used as
an approximation to the spatial entropy computation over a decision tree�
We verify this empirically in this experiment by using this polynomial	time
procedure to measure information content� Our objective is to determine if
there is su�cient correlation to use spatial entropy as a discriminator �or
measure� of information content� For instance
 would we able to compare
spatial entropies of a pair of functions and have the con�dence that we are
comparing their information content�
In order to test our hypothesis we use the following criteria� We com	

pute the sample correlation coe�cient r for the values of spatial entropy S
and information content I for a sample of circuits� �For convenience
 the
information content expression I�f�Dk� is denoted as I�� The sample corre	
lation coe�cient r
 which is a sample estimate of the population correlation
coe�cient
 is given by �Sto���

r �
CISp
CIICSS

r measures the degree of correlation between information content I and spa	
tial entropy S� Values of r near �� indicate a strong positive correlation
between S and I�S increases
 as I increases�� values of r near �� indicate

���

a strong negative correlation between S and I�S decreases
 as I increases��
while if r � �
 then there is no correlation between S and I� We also deter	
mine the lines of regression �Sto��� of S on I and I on S� If there is perfect
correlation r � �� then the two lines will coincide with each other
 and all
the experimental points will lie exactly on the common line of regression�
For uncorrelated values the lines will be at right angles to each other�
The second objective of this experiment is to study the e�ectiveness of

information content in estimating gate count complexity� As described ear	
lier
 our de�nition of information content indicates minimality in two	level
functions� Since it captures cube characteristics that contribute to logic cost

we would like to use it to estimate the gate	count complexity in a multi	level
implementation� To verify our hypothesis
 we use the same criteria as above�
We compute the correlation coe�cient for information content I and gate
count GC for a sample of circuits
 where GC is the gate count in a technol	
ogy mapped circuit implementation�

��	�� Assumptions

Our assumptions are along the lines of the quantities that we wish to compute
	 spatial entropy �S�
 information content �I� and gate	count �GC�� With
respect to spatial entropy computation
 our assumptions involve the three
factors discussed in Chapter �� redundancy
 wire length and reconvergent
fanout� As mentioned in the previous section we would like to measure the
spatial entropy on on a decision tree with the smallest signature size� Since
this also corresponds to the spatial entropy of a minimized implementation
we assume redundancy is removed in the implementation
 by minimizing for
literal count� We use a unit wire length assumption for spatial entropy com	
putation� This is because the de�nition of information content that we wish
to track does not capture wiring complexity� In addition we have not been
able to explain the role of wire lengths in the decision tree representation�
Finally we assume that errors in probabilities and spatial entropy due to
reconvergent fanout are ignored�
With respect to information content I we assume the following� Our es	

timate is de�ned for single	output completely speci�ed functions� We ignore
the e�ect of don�t cares
 when functions are incompletely speci�ed� Since
we have not de�ned information content for multi	output functions we cur	
rently use a naive approach� The information content of a multi	output

���

function is computed by computing the information content for a minimum
k	decomposition of each of the outputs individually� So the information con	
tent I�f� for an m	output function would be computed as

I�f� �
X
i���m

I�f�oi��Dk�oi��

This is actually an overestimate of the multi	output function!s complexity
because the k	decompositions for each output function overlap �due to shar	
ing of cube spaces between individual output functions�� Consequently the
overall information content would in most cases be less than the sum of
the information contents of the individual functions� In order to remain
consistent in our comparisons
 when we compute the spatial entropy of such
multi	output functions we use the cone�based approach �discussed in Chapter
�� that computes the spatial entropy of each output function independently�
Like the information content
 this too will be an overestimate of the spatial
entropy of the multi	output function since the spatial entropy contribution
of shared logic is not discounted�
It was proved earlier in this chapter that the k	decomposition of a func	

tion is equivalent to its two	level prime irredundant representation� Since
computing the information content requires a k	decomposition of onezero	
cubes we use the output of a two	level minimizer espresso �BHMSV��� to
generate these onezero	cubes� The program espresso consists of a collec	
tion of heuristic algorithms for two	level minimization
 and does not always
guarantee a minimum two	level form� Thus for some functions our infor	
mation content estimate does not use a minimum k	decomposition but an
approximately minimal k	decomposition�
The gate count GC in an implementation is obtained by counting the

number of gates in a technology mapped multi	level implementation of the
function� Like the assumption for spatial entropy
 we assume a minimized im	
plementation while computing gate count� Since we compute the information
content for multi	output functions by computing the information content for
each function separately it would be inappropriate to compare this with the
gate count in multi	output implementations� This is because multi	output
functions share logic and the gate count in their implementations would be a
lot lesser than if they were implemented separately as single	output functions�
So we compute gate count only only for single output implementations�

���

��	�� Data Set

The data set for the experiment is made up of two kinds of circuits
 both
described as boolean functions in the PLA format �BHMSV���� The �rst
set consists of several randomly generated single	output completely speci	
�ed boolean functions of �� �� �� �� � and � input variables� The number of
minterms in each of these functions and their positions in cube space was
randomly generated� This data set satis�es the requirement of a wide range
of boolean functions from � input functions to � input functions with di�er	
ent cube sizes� Table ��� describes the characteristics of the �� � and � input
randomly generated functions
 while Table ��� does the same for �� � and �
input functions�
The second set of data consists of two	level boolean functions from the

MCNC Logic Synthesis �� benchmarks� This data set consists of single	
output and multi	output functions
 some of which are incompletely speci�ed�
These functions are shown in Table ���� The functions here are larger
 and
more irregular in their distribution of inputoutput sizes
 minterm count
and cube sizes� With this data set we get an opportunity to estimate and
measure the complexity of boolean functions that have �presumably� useful
implementations
 as against those of the randomly generated functions in the
�rst data set set�
In the �rst part of the experiment we determine the spatial entropy mea	

sure S
 information content estimate I
 and the gate count GC for � sample
sets of randomly generated functions
 with varying input sizes
 extracted
from the data sets in Table ��� and Table ���� Each sample of �� functions
is made up of a uniform mix of �� �� �� �� � and � input functions� This gives
us � separate data sets on which to correlate spatial entropy and information
content� In the second part of the experiment we generate spatial entropy
 in	
formation content
 and gate count for the the Logic Synthesis �� benchmark
circuits�

�� Experiment Outline

Figure ���� shows the software construction and the experiment outline for
computing the information content I for each function and the spatial en	
tropy S and gate count GC for a minimized implementation� Computing

���

Circuit Product One Zero
Name Inputs Terms Cubes Cubes
f� � � �� � �
f� � � � � �
f� � � � � �
f� � � �� � �
f� � � �� � �
f� � � � � �
f� � � � � �
f� � � �� � �
f� � � � � �
f� �� � � � �
f� � � �� �� �
f� � � �� � �
f� � � �� � �
f� � � � � �
f� � � � � �
f� � � �� � �
f� � � �� � �
f� � � �� � �
f� � � �� � �
f� �� � �� �� �
f� � � �� �� ��
f� � � �� �� ��
f� � � �� �� ��
f� � � �� �� ��
f� � � �� �� ��
f� � � �� �� ��
f� � � �� � �
f� � � �� � ��
f� � � �� �� �
f� �� � �� �� ��

Table ���� �
� and � input randomly generated functions

���

Circuit Product One Zero
Name Inputs Terms Cubes Cubes
f� � � �� �� ��
f� � � �� �� ��
f� � � �� �� ��
f� � � ��� �� ��
f� � � �� �� ��
f� � � �� �� ��
f� � � �� �� ��
f� � � �� �� ��
f� � � �� �� ��
f� �� � ��� �� ��
f� � � �� �� ��
f� � � ��� �� ��
f� � � �� �� ��
f� � � ��� �� ��
f� � � ��� �� ��
f� � � ��� �� �
f� � � ��� �� ��
f� � � ��� �� ��
f� � � �� �� ��
f� �� � ��� �� ��
f� � � ��� �� ��
f� � � ��� �� ��
f� � � ��� �� ��
f� � � ��� �� ��
f� � � ��� �� ��
f� � � �� �� ��
f� � � ��� �� ��
f� � � ��� �� ��
f� � � ��� �� ��
f� �� � ��� �� ��

Table ���� �
� and � input randomly generated functions

���

Circuit Product
Name Inputs Outputs Terms
con� � � �
xor� � � ��
misex� � � ��
rd�� � � ��
sao� �� � ��
m�xp� � �� ��
m�sym � � ��
rd�� � � ���
z�sym � � ���
t��� �� � ���
rd�� � � ���
clip � � ���
misex� �� �� ��
duke� �� �� ��
bw � �� ��

Table ���� Two	level Functions from the Logic Synthesis �� Benchmarks

���

the information content estimate requires measuring the following variables�
number of ontermso�terms
 number of onezero cubes and sizes of onezero
cubes� As the �gure indicates
 each PLA representation is minimized at the
two	level for its ON set and OFF set to obtain the onezero cube set that
makes up the k	decomposition� This is then used to compute the informa	
tion content measure� The spatial entropy S is computed along the lines
of the experiment in Chapter �� First the two	level PLA representation is
minimized via SIS �BRSVW��� and a multi	level technology mapped imple	
mentation in VPNR �KB��� is generated� This is then used by the spatial
entropy computation program spent to generate spatial entropy measures�
The spatial entropy measures for both the ON and OFF set implementations
of the PLA are obtained and the lesser of the two is selected� This is because
we are interested in the spatial entropy of a minimized implementation
 and
there are several occasions where implementing a function as its OFF set
� inverted� yields an implementation with lesser spatial entropy� Since the
multi	level minimization program SIS does not always detect this scenario
we perform this task explicitly�
The spatial entropy of an implementation is computed with unit wire

length
 and no reconvergent fanout removal� On encountering multiple fanout
nodes the spatial entropy is divided equally amongst the fanout nodes� This
ensures that the overall spatial entropy is preserved when fanout nodes re	
converge� The gate count GC is computed from the VPNR implementations�
The information content for multi	output functions
 is calculated by com	

puting the ono� terms and the onezero	cubes for each individual output
functions
 by factoring out the common cubes� These values of I�foi� are then
accumulated over all the output functions foi The spatial entropy for multi	
output functions is calculated in two steps� In the �rst step the logic cone for
each output function foi is computed by traversing backward from the out	
put oi� This determines the logic that contributes to the output function foi�
The spatial entropy Sfoi with respect to this cone is then calculated� After
performing this task over all output functions the spatial entropy values over
all cones are accumulated to obtain the spatial entropy of the multi	output
function Sf � For m outputs we have

Sf �
X
i���m

Sfoi

���

PLA Input

SIS
Multi−level Minimization

espresso
Generate D k

VPNR Netlist

spent gen_infcontent

Spatial Entropy (S) Information Content (I(f,D))k

GateCount(GC)

One−cubes
Zero−cubes

Figure ����� Experiment Outline

���

��� Results and Observations

��
�� Results

Tables ���
 ���
 and ��� illustrate the results of spatial entropy
 gate
count and information content for three sets of randomly generated func	
tions� Table ��� tabulates spatial entropy and information content for the
Logic Synthesis �� benchmarks� As mentioned earlier
 the gate count was
not computed for these implementations since they are multi	output imple	
mentations that share logic
 while the information content computation does
not assume sharing� The spatial entropy measures shown here are obtained
after computing the spatial entropy for minimized implementations of the
ON	set and the OFF	set and then taking the lesser of the two� The gate
count is obtained similarly�

��
�� Observations

Table ��� �page ���� shows the mean and variance of spatial entropy and
information content values for the random function data sets and the Logic
Synthesis �� benchmarks� We observe that the variance of the random func	
tion �for both spatial entropy and information content� is not as high as it
is for the benchmark circuits� This is because the benchmark circuits are far
more diverse with a wider range of features� The individual functions are
much further apart from each other in terms of their complexity and infor	
mation content� There are functions with inputs ranging from � to ��
 and
outputs ranging from � to ���
The other observation that we make with respect to the spatial entropy

and information content is that spatial entropy values show a higher vari	
ance than the information content values for all data sets� The reason for
this is that the implementations of two functions can di�er in a lot more
ways than the speci�cations of the same two functions� There are a lot more
variables involved 	 gates
 gate types
 their connectivity and arrangement

etc�
 probabilities
 when spatial entropy is being computed at the implemen	
tation level� On the other hand the information content is computed on the
function speci�cation in terms a few �xed variables� So �uctuations are less
drastic�
We study correlation between spatial entropy and information content

���

Circuit Gate
Name Inputs S I�f�DK� Count
f� � � ����� ���� �
f� � � ���� ���� �
f� � � ���� ���� ��
f� � � ����� ����� ��
f� � � ����� ����� ��
f� � � ����� ���� �
f� � � ����� ����� ��
f� � � ����� ����� ��
f� � � ����� ����� ��
f� � � ����� ����� ��
f� � � ����� ����� ��
f� � � ����� ����� ��
f� �� � ����� ����� ��
f� � � ����� ����� ���
f� � � ����� ����� ���
f� �� � ����� ����� ��
f� � � ����� ����� ���
f� � � ����� ����� ���
f� � � ������ ����� ���

Table ���� S
 I�f�Dk� and GC for random circuits �Set ��

���

Circuit Gate
Name Inputs S I�f�DK� Count
f� � � ����� ���� �
f� � � ����� ����� ��
f� � � ����� ����� �
f� � � ����� ���� ��
f� � � ����� ����� ��
f� � � ���� ���� �
f� � � ����� ����� ��
f� � � ����� ����� ��
f� � � ����� ����� ��
f� �� � ����� ����� ��
f� � � ����� ����� ��
f� � � ������ ����� ��
f� � � ����� ����� ��
f� � � ����� ����� ���
f� � � ����� ����� ���
f� � � ����� ����� ���
f� � � ����� ����� ���
f� � � ����� ����� ���
f� �� � ����� ����� ���

Table ���� S
 I�f�Dk�
 and GC for random circuits �Set ��

���

Circuit Gate
Name Inputs S I�f�DK� Count
f� �� � ����� ����� ��
f� � � ����� ���� ��
f� � � ����� ���� ��
f� � � ����� ���� ��
f� � � ����� ����� ��
f� � � ����� ���� ��
f� � � ����� ����� ��
f� � � ������ ����� ��
f� � � ������ ����� ��
f� � � ����� ����� ��
f� � � ����� ����� ��
f� � � ����� ����� ��
f� � � ����� ����� ��
f� � � ����� ����� ��
f� � � ���� ����� ���
f� � � ����� ����� ���
f� � � ����� ����� ���
f� � � ����� ����� ���
f� � � ����� ����� ���

Table ���� S
 I�f�Dk� and GC for random circuits �Set ��

���

Circuit
Name S I�f�DK�
con� ������ ������
xor� ����� ���
misex� ������ ������
rd�� ����� ������
sao� ������� ������
m�xp� ������� ������
m�sym ����� ������
rd�� ������ ������
z�sym ������ ������
t��� ����� ������
rd�� ������ �������
clip ������ ������
misex� ������ ������
duke� ������ �������
bw ������ �������

Table ���� Spatial Entropy and Information Content for Logic Synthesis ��
benchmarks

Data Spatial Entropy �S� Information Content �I�
Set Mean Variance Mean Variance

Random Set � ����� ������ ���� ����
Random Set � ����� ������ ���� ����
Random Set � ����� ������ ���� ����

LgSynt�� Benchmarks ������ ��
������� ����� �������

Table ���� Mean and Variance of Spatial Entropy �S� and Information Con	
tent �I�

���

Data Set Correlation Coe�cient�r�
Random Set � ������
Random Set � ������
Random Set � ������
LgSynt�� Benchmarks ������

Table ���� Correlation Coe�cients for �S vs I�

by computing the correlation coe�cient r for each of the above � data sets�
These are shown in Table ��� �page ����� The regression lines of spatial
entropy �S� on information content �I� and information content on spatial
entropy are calculated as follows �Sto���� The correlation coe�cient r is given
by

r �
CISp
CIICSS

For the data set D
 the regression of S on I is plotted as

S � a� b � I

where b � CIS

CII

 a � S � b � I
 S �

P
i�D

Si

jDj

 and I �

P
i�D

Ii

jDj
�

The regression of I on S is given by

I � a� � b� �X

where b� � CIS

CSS

 and a� � S � b� � I�

Figure ���� and Figure ���� show plots of the regression lines and the
data points �from the Table of results� for the � data sets�
From the correlation coe�cient values and the plotted regression lines we

observe that there is a strong positive correlation between spatial entropy S
and information content I for all the data sets� The correlations appear par	
ticularly strong for the Logic Synthesis Benchmarks� This is because these
circuits have a larger varaince of spatial entropy and information content�
The inaccuracies in spatial entropy computation and the �uctuations in spa	
tial entropy across implementations are not very signi�cant relatively and
are seen as minor perturbations� This yields a stronger correlation�

���

��

��

��

�

��

	�

�

� � �
 � 	 � � ��

Spatial
Entropy

S

Information Content I

Random Set ��I vs S�

Correlation Coe�cient r � ������

regression line of S on I
regression line of I on S

�I�S� values �

�
���

� �

�

�

�

�

��

�

�
�

�

�

�
�

��

��

��

�

��

	�

�

� � �
 � 	 � � ��

Spatial
Entropy

S

Information Content I

Random Set ��I vs S�

Correlation Coe�cient r � ������

regression line of S on I
regression line of I on S

�I�S� values �

�
��

���

���
�

�

�
�

� �

�

�

�

�

Figure ����� Regression Lines and Data plots �S vs I�

���

��

��

��

�

��

	�

�

� � �
 � 	 � � ��

Spatial
Entropy

S

Information Content I

Random Set ��I vs S�

Correlation Coe�cient r � ������

regression line of S on I
regression line of I on S

�I�S� values �

�� �
�� � �

�
�

�

�
�
�

�

�
�

��
�

���

���

���

��

���

	��

�� �� � ��� ��� ���

Spatial
Entropy

S

Information Content I

Logic Synthesis 	� Benchmarks

Correlation Coe�cient r � ������

regression line of S on I
regression line of I on S

�I�S� values �

��
���

��
�
� �

�
��

�

�

Figure ����� Regression Lines and Data plots �S vs I�

���

Data Set Correlation Coe�cient�r�
Random Set � �����
Random Set � �����
Random Set � �����

Table ����� Correlation Coe�cients for �GC vs I�

The average value of the correlation coe�cient over the � random data
sets is ������
 indicating a strong correlation� This is inspite of the fact that
the random functions have a much lesser variance in information content�
This lesser variance would normally make it more di�cult to discriminate
between information contents of di�erent functions� But this correlation
shows that spatial entropy is capable of measuring information content even
in such functions�
We now study the correlation between information content and gate

count� Table ���� �page ���� shows the correlation coe�cient r for the three
random data sets� The plots are shown in Figure ���� �page ���� and Fig	
ure ���� �page �����
The correlation coe�cient values and the regression lines indicate a de�	

nite positive correlation between information content and gate count
 though
it is not as strong as the correlation between information content and spa	
tial entropy� This tells us that information content is a good estimate of
gate	count complexity in boolean functions� Some of the �uctuations can be
explained by the fact that we have used a gate count measure obtained af	
ter technology mapping� A more accurate physical attribute like active area
might have helped since it takes into account the di�erence in area occupied
between complex gates and simpler gates�
The fact that there is a high correlation between information content I

and spatial entropy S suggests that there might be a positive correlation be	
tween spatial entropy S and gate count GC in a multi	level implementation�
We study this by computing the correlation coe�cient r for spatial entropy
and gate count for the three random data sets� These are shown in Table ����
�page ����� The regression line plots are shown in Figure ���� �page ����
and Figure �����page �����
We notice that there is high degree of correlation between gate count and

���

�

	

�� ��� ��� ��� ���

Information
Content

I

Gate Count GC

Random Set ��GC vs I�

Correlation Coe�cient r � �����

regression line of I on GC
regression line of GC on I

�GC�I� values �

�

�
�

�
�

�

�
�
�

�
�
��

�

�

�

�

�
�

�

	

��� ��� ���
�� ��� 	�� ��

Information
Content

I

Gate Count GC

Random Set ��GC vs I�

Correlation Coe�cient r � �����

regression line of I on GC
regression line of GC on I

�GC�I� values �

�

�

�

��

�

���
�

��
�

�
�
�

���

Figure ����� Regression Lines and Data plots �GC vs I�

���

�

	

��� ��� ���
�� ��� 	�� ��

Information
Content

I

Gate Count GC

Random Set ��GC vs I�

Correlation Coe�cient r � �����

regression line of I on GC
regression line of GC on I

�GC�I� values �

�

��

�

��

��

�

�
�
�
�

�

�
�

�� �

Figure ����� Regression Lines and Data plots �GC vs I�

Data Set Correlation Coe�cient�r�
Random Set � �����
Random Set � ����
Random Set � �����

Table ����� Correlation Coe�cients for � data sets �Gate Count vs S�

���

��

��

��

�

��

	�

�

�� ��� ��� ��� ���

Spatial
Entropy

S

Gate Count GC

Random Set ��GC vs S�

Correlation Coe�cient r � �����

regression line of S on GC
regression line of GC on S

�GC�S� values �

�

��
���

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

��

�

��

	�

�

��� ��� ���
�� ��� 	�� ��

Spatial
Entropy

S

Gate Count GC

Random Set ��GC vs S�

Correlation Coe�cient r � ����

regression line of S on GC
regression line of GC on S

�GC�S� values �

��

�

���

���
�

�
�

�

�

��

�

�

�

Figure ����� Regression Lines and Data plots �GC vs S�

���

��

��

��

�

��

	�

�

��� ��� ���
�� ��� 	�� ��

Spatial
Entropy

S

Gate Count GC

Random Set ��GC vs S�

Correlation Coe�cient r � �����

regression line of S on GC
regression line of GC on S

�GC�S� values �

���

���
�
�

�

�
��

�

�
�
�

��
�

Figure ����� Regression Lines and Data plots �GC vs S�

spatial entropy for all the data sets� Thus spatial entropy gives us a measure
of circuit area� In earlier chapters we explained how spatial entropy captures
the switching energy in an implementation� How do these two relate� Given
that we limit our scope to only combinational circuits
 the switching energy in
these circuits is a function of the switching of ���� states at the nodes and the
switching delays at the nodes in the implementation� In most combinational
circuits this switching energy is equivalent to the circuit area since almost
the entire circuit switches while the circuit computes� This explains the high
correlation between spatial entropy and circuit area measured by gate count�

��� Conclusions

From the experimental results of the previous section we can conclude that
spatial entropy is a good measure for the information content of the function�
Even when the functions are much closer in cube space as in the case of
the random data sets
 we observe that there is strong positive correlation
�������� between spatial entropy and information content� In Chapter � we
studied the use of spatial entropy for variable ordering of BDDs� We observed

���

that due to the sensitivity of the BDD construction process and the �ne
granularity of usage of the spatial entropy attribute �individual contributions
in a spatial entropy vector�
 approximations and inaccuracies in the spatial
entropy computation were quite signi�cant� This in turn had an adverse
e�ect on the resultant orderings and BDD sizes� In this chapter we observe
that since we did not have to deal with sensitivity and spatial entropy values
at such a �ne level
 the approximations in spatial entropy computation did
not a�ect the quality of the solution� This is an important observation� It
informs us that while the results of applying spatial entropy may not be as
rewarding in one case
 they might be a lot better in another�
The information content of a function is a characteristic of the function

and its cube space distribution
 independent of the myriad of implementa	
tions that might be generated to compute this function� The fact that the
spatial entropy computed on a minimized implementation of the function is
capable of measuring such a characteristic makes it a very useful measure
to study functions over an entire class of implementations� This lends more
credence to our work in Chapter �
 on using spatial entropy for BDD variable
ordering and provides empirical evidence that there is some basis to using
spatial entropy for BDD variable ordering� The decision tree for a given in	
put ordering can be very easily transformed into a BDD for that ordering� it
is quite likely that this might yield a more formal relationship between BDD
sizes and spatial entropy� We intend to pursue work in this direction�
We can also conclude that information content
 our de�nition of gate	

count complexity
 does estimate logic gate cost well� We observed a de�nite
positive correlation between information content
 an abstract attribute de	
�ned in cube space
 and the gate count obtained from the implementation�
The high correlation between spatial entropy and information content showed
that it too can be used to estimate circuit area� Since we have not been able
estimate wiring at the cube space level
 wiring complexity is not captured in
our results� Variances in cube sizes was not modeled in our de�nition of infor	
mation content
 neither did we use any kind of distancelength information
while de�ning the spatial entropy of the decision tree or computing spatial
entropy on a gate level implementation in the experiments� The variance in
cube sizes a�ects the distance cubes need to travel before getting combined

and this might have an in�uence on the wiring factor� The recent work on
using lexicographic ordering �PAS��
 ASSP��� to minimize the routing factor
in multilevel synthesis further supports this� We elaborate on this brie�y�

���

In their research
 Saucier et�al adopt a lexicographic factorization strat	
egy to generate the multi	level factored form of a function
 and show that
this strategy reduces wiring complexity in the layout� A lexicographic fac	
torization generates factors for a function
 all of which are compatible with
a reference order on the input variables� For example
 the factors ab�ce� d�
and ce�d�f� are compatible with the reference order b � a � c � e � d f �
This idea can be related to the decision tree and its nodes� The factors

and their sub	factors are partial functions at the cube sets that are members
of maximal partition sets in a decision tree� The reference order determines
the ordering of variables in the decision tree�
Suppose we had two decision trees built on two orderings
 where one of

the orderings is a reference order for a lexicographic factorization� The num	
ber of nodes in the decision tree built with lexicographic factorization will
be lesser than the the number of nodes in the decision tree built without
lexicographic factorization� The reference order for the lexicographic fac	
torization generates compatible factors� These factors correspond to nodes
or cube sets that make independent decisions about generating monochro	
matic onezero	cubes� For example
 in the factor ab�ce�d� with the ordering
b a c e d
 the path a � �� b � � will immediately yield a monochro	
matic zero	cube set at the level corresponding to c� Meanwhile
 all the other
a� b combinations will yield exactly one cube set belonging to a maximal par	
tition set at the level corresponding to c� Now the factor �ce � d� can act
independently to generate its monochromatic zero cube set for c � �� e � �

at level c and below� Thus several cube sets in the decision tree get merged
into maximal partition sets yielding decision trees with lesser nodes� An
ordering like b e d a c will not be able to achieve such similar
sharing� This implies larger nodes due to more number of maximal partition
sets� A formal treatment of this with the spatial entropy expressions at the
nodes of the decision tree could yield some useful results with respect to
wiring complexity� The fact that the lexicographic factorization strategy has
also been used to generate BDD variable orders further indicates a possible
fundamental relationship between spatial entropy and BDD sizes�

���

Chapter �

Conclusions

In this dissertation we have introduced spatial entropy to the VLSI domain
as an attribute that captures the dynamic communication e�ort in a circuit�
Its quantitative de�nition uni�es static structure and dynamic usage in a
circuit� In a physical implementation �for CMOS circuits�
 this de�nition
is a good model for measuring the switching energy in a circuit� We have
shown how to compute spatial entropy at di�erent levels of abstraction and
have characterized it in extensive detail� We illustrated its use by applying
it to a CAD problem that has traditionally relied on static attribute based
solutions� We also showed that it can be used to capture function behavior
through implementations�

��� Summary

There are several problems in CAD where function behavior needs to be
captured through an implementation� Using static attributes computed from
the topology of the implementation is not always helpful for this purpose�
Firstly they do not provide su�cient usage information
 and secondly they
tend to exhibit variances with implementations which is not desirable while
capturing function behavior� There is also a need for an attribute that can
unify behavior and structure in order to answer questions about the function
and the implementation�
We have introduced a circuit attribute capable of meeting some of these

requirements using a concept called spatial entropy� Intuitively
 it is the dy	

namic communication e�ort �or work done� in the circuit while computing
the underlying function� We have de�ned the attribute quantitatively
 using
the entropy function from information theory� This de�nition is computable
at di�erent levels of abstraction and it uni�es the static structure and dy	
namic usage in a circuit� On a physical �CMOS� implementation spatial
entropy computes the switching energy in a circuit� This quanti�es the in	
tuitive notion of spatial entropy in the form of a physical attribute that is of
relevance to designers�
It is di�cult to compute spatial entropy accurately� The levels of ab	

straction hide information needed to compute it
 and other factors like re	
convergent fanout a�ect its accuracy� On applying spatial entropy to the
problem of generating variable orders in BDDs
 we found that it performs
competitively with earlier static attribute based approaches� But as circuits
get larger
 the inaccuracies in computing spatial entropy have a signi�cant
e�ect on the quality of the solution�
We have shown that spatial entropy is capable of capturing function be	

havior through an implementation� An implementation with minimum spa	
tial entropy has minimum switching energy and describes the minimum com	
munication e�ort required to compute the function� Such an implementation
is like a signature for the function since its measures of spatial entropy �and
switching energy� provide a lower bound over all implementations of that
function� Since it is di�cult compute a minimal spatial entropy implemen	
tation we approximate it by using a minimal gate count implementation
and show that the spatial entropy computed on such an implementation can
capture function behavior� We characterize function behavior by de�ning
information content
 the gate	count complexity of a function in cube space�
We then show that there is a strong correlation between the spatial entropy
of a minimal gate count implementation and the information content of a
function� Moreover inaccuracies in spatial entropy computation do not have
the signi�cant e�ect they had in BDD variable ordering� There is also em	
pirical evidence that information content �in cube space� is a good estimator
of actual gate	count complexity�
What can we conclude about spatial entropy!s role in CAD from this

research� The empirical evidence that spatial entropy tracks function be	
havior suggests that there is a fundamental basis for using spatial entropy
to generate BDD variable orders� A BDD is strictly a characteristic of the
function and its minterms� A decision tree for a function depends on its

���

input variable ordering� and it is easy to transform one into a BDD for that
ordering� The cube space de�nition of spatial entropy over a decision tree
gives us a mechanism for distinguishing one tree �or BDD� from another and
consequently one ordering from another� This can give us a theoretical basis
for connecting spatial entropy and variable ordering�
The quantitative de�nition of spatial entropy provides a good model for

switching energy in a physical implementation� Switching energy and dy	
namic power consumption are of concern to every designer� and spatial en	
tropy provides a quantitative comparison of these measures between di�erent
circuit implementations� Generating a minimumspatial entropy implementa	
tion is a desirable goal for a designer
 since minimum spatial entropy implies
minimum switching energy� But existing synthesis and layout tools that gen	
erate physical implementations are incapable of generating implementations
with minimum spatial entropy
 since they are unable to minimize wires along
with logic gates� Minimizing wires is also of concern in performance driven
logic and layout synthesis
 and minimum spatial entropy can become a useful
metric of performance in these areas too�
Depending on the level of abstraction �boolean function
 gate
 or layout�

at which the implementation is viewed there are di�erent interpretations to
spatial entropy� in all of them spatial entropy captures a notion of dynamic
e�ort� For an implementation denoted by a multi	level function
 it is the
incremental contribution in cube space to compute the information content
of the function� For an implementation denoted by a gate level netlist
 it
is the information �ow computed as the information	distance product over
all the nodes in the implementation� For an implementation at the physical
layout level
 it models the switching energy in the implementation� This
indicates the generic applicability of the spatial entropy concept�
While trying to track function behavior from a gate level implementation

we observed that spatial entropy can be e�ciently computed
 but computing
it accurately is a di�cult task� This inaccuracy in spatial entropy compu	
tation can a�ect some problems �BDD variable ordering� more than others
�measuring gate	count complexity�� The primary drawback here is poor es	
timates of wire length at the gate level� This lack of wiring information
is also tied in to the goal of achieving minimum spatial entropy� An im	
plementation with minimum spatial entropy is di�cult to achieve currently

because existing logic synthesis tools only minimize for gate count ignoring
wire length information� Since we could not capture wiring estimates in the

���

form of variances in cubes sizes in our information content de�nition
 we
could not extend our estimate of gate	count complexity to include wiring
complexity� Improved estimates of wire length will not only help us do this
but also achieve minimal spatial entropy implementations and more accurate
measures of spatial entropy at the gate level�

��� Future Research Directions

As discussed above
 using decision trees to demonstrate that there is a theo	
retical basis for using spatial entropy for BDD variable ordering is one of the
more immediate problems that has spawned from this research� The problem
of estimating wiring complexity at the cube space level and using it to re�ne
the information content de�nition I�f�Dk� is another issue that has direct
relevance�
In addition to these issues we see spatial entropy being applicable in other

areas of CAD
 primarily those where static structure and dynamic usage can
together provide more information to solve a problem� A partial list of these
areas is discussed below�

Spatial Entropy for Logic Synthesis� Logic synthesis involves several
phases that repeatedly make area	time tradeo� decisions� At almost
every stage in the synthesis process when data is needed in two di�er	
ent places at the same time
 the logic computing it needs to be reused�
The issue then is� should it be replicated �recomputed� at the desired
location
 or should it be factored out and transmitted �via a fanout or
wire� to the desired location� Spatial entropy can capture the area	time
tradeo� in this decision elegantly� We have seen that the wire lengths
in spatial entropy computation can provide a measure of dynamic com	
munication e�ort by modeling the distance traveled by information� At
the same time they can also be used to model the wiring complexity in
a circuit to study trade o�s in circuit area minimization� Using spatial
entropy �along with an active area measure� to control the extraction
of kernel intersections during logic synthesis could lead to a new metric
to measure the quality of synthesized circuits that captures active area
and the wiring area�

Device��tting� The logic	wire unifying property of spatial entropy and its

���

ability to measure function complexity can also help address problems
in device �tting software design for FPGA and PLDs� The software
that maps two	level logic equations into complex cells in FPGAs and
PLDs has to tackle problems of design partitioning via boolean function
decomposition
 minimization and technology mapping
 followed by sig	
nal place and route� These are quite often iterative tasks
 where literal
complexity and wiring complexity trade o� with each other� Spatial
entropy could be used as a cost measure here to assist in global deci	
sions�

Design Space Parsing� Spatial entropy is currently being used as a tool
to perform high level design	space parsing and exploration �Tya��a��
The design	space of di�erent area	time implementations of datapath
functions can be characterized into primitive models on the basis of
the communication pattern exhibited by these functions� Due to sim	
ilar communication behavior the spatial entropy values for di�erent
area	time implementations of these functions will show a similar distri	
bution� This structures the task of design space exploration�

State Transition Graph Discrimination� The distribution of spatial en	
tropy values at the outputs of a sequential circuit helps discriminate
the structure of state transition graphs� This is useful information for
algorithms that perform state machine traversal during sequential cir	
cuit veri�cation and test generation
 since it gives an indication of the
graph structure� whether it is deep or shallow
 broad or narrow� This
in turn can help state transition graph traversal algorithms�

���

Bibliography

�Agr��� V� Agrawal� An Information Theoretic Approach to Digital
Fault Testing� IEEE Transactions on Computers
 pages ���&
���
 August �����

�Ake��� S� B� Akers� Binary Decision Diagrams� IEEE Transactions on
Computers
 C	���������&���
 June �����

�AS��� K� J� Antreich and M� H� Schulz� Accelerated Fault Simulation
and Fault Grading in Combinational Circuits� IEEE Transac�
tions on Computer�Aided�Design
 CAD	��������&���
 Septem	
ber �����

�ASSP��� P� Abouzeid
 K� Sakouti
 G� Saucier
 and F� Poirot� Multilevel
Synthesis minimizing the routing factor� In ��th ACM�IEEE
Design Automation Conference
 pages ���&���
 June �����

�BA��� H� Bouzouzou and P� Abouzeid� Personal Communication�
MCNC Logic Synthesis �� Benchmarks 	 BDD Orderings
 May
�����

�BBR��� K� S� Brace
 R� E� Bryant
 and R� L� Rudell� E�cient Im	
plementation of a BDD Package� In Proceedings of the ��th
ACM�IEEE Design Automation Conference
 June �����

�Ber��� C� Leonard Berman� Circuit Width
 Register Allocation and
Ordered Binary Decision Diagrams� IEEE Transactions on
Computer�Aided�Design
 CAD	����������&����
 August �����

�BHMSV��� R� K� Brayton
 G� Hatchel
 C� McMullen
 and A� Sangiovanni	
Vincentelli� Logic Minimization Algorithms for VLSI Synthesis�
Kluwer Academic Press� Boston
 �����

�BI��� D� Brand and V� S� Iyengar� Timing Analysis uusing Functional
Relationship� In IEEE ICCAD ��� Digest of Technical Papers

pages ���&���
 November �����

�BM��� R� K� Brayton and C� McMullen� The Decomposition and Fac	
torization of Boolean Expressions� In International Symposium
on Circuits and Systems
 pages ��&��
 May �����

�BMCM��� J� Benkoski
 E� V� Meersch
 L� J� M� Claesen
 and H� D� Man�
Timing Veri�cation using Statically Sensitizable Paths� IEEE
Transactions on Computer�Aided�Design
 CAD	����������&
����
 October �����

�BPH��� Franc� Brglez
 P� Pownall
 and R� Hum� Applications of Testa	
bility Analysis� In Proceedings of the IEEE International Test
Conference
 pages ���&���
 �����

�Bra��� K� Brace� Personal Communication� BDD Orderings
 June
�����

�BRM��� K� M� Butler
 D� E� Ross
 and M� R� Mercer� Heuristics to Com	
pute Variable Orderings for E�cient Manipulation of Ordered
Binary Decision Diagrams� In Proceedings of the IEEE�ACM
Design Automation Conference
 pages ���&���
 June �����

�BRSVW��� R� K� Brayton
 R� Rudell
 A� Sangiovani	Vincentelli
 and
A� Wang� MIS� A Multiple	Level Logic Optimization Sys	
tem� IEEE Transactions on CAD
 CAD	������&����
 Novem	
ber �����

�Bry��� R� E� Bryant� Graph based algorithms for Boolean function
manipulation� IEEE Transactions on Computers
 C	���������&
���
 August �����

�Bry��� R� E� Bryant� On the Complexity of VLSI implementations and
Graph Representations of Boolean functions with applications

���

to Integer Multiplication� IEEE Transactions on Computers

C	���������&���
 Feb �����

�CA��� K	T Cheng and V� D� Agrawal� An Entropy Measure for
the Complexity of Multi	Output Boolean Functions� In ��th
ACM�IEEE Design Automation Conference
 pages ���&���

June �����

�CF��� R� W� Cook and M� J� Flynn� Logical Network Cost and
Entropy� IEEE Transactions on Computers
 C	������&���

September �����

�Dus��� J� Dussault� A Testability Measure� In Proceedings of the ���
Semiconductor Test Conference
 pages ���&���
 October �����

�DYG��� D� H� C� Du
 S� H� C� Yen
 and S� Ghanta� On the General
False Path Problem in Timing Analysis� In Proceedings of the
��th IEEE�ACM Design Automation Conference
 �����

�FFK��� M� Fujita
 H� Fujisawa
 and N� Kawato� Evaluation and im	
provements of Boolean comparison method based on binary
decision diagrams� In Proceedings of the IEEE International
Conference on Computer�Aided Design
 November �����

�FMK��� M� Fujita
 Y� Matsunaga
 and T� Kakuda� On variable ordering
of Binary Decision Diagrams for the application of multi	level
logic synthesis� In Proceedings of the European Conference on
Design Automation
 pages ��&��
 February �����

�FS��� S� J� Friedman and K� J� Supowit� Finding the Optimal Variable
Ordering for Binary Decision Diagrams� IEEE Transactions on
Computers
 C	���������&���
 May �����

�GJ��� M� R� Garey and D� S� Johnson� Computers and Intractability�
A Guide to the Theory of NP�Completeness� Freeman Press�
New York
 �����

�Hel��� L� Hellerman� AMeasure of Computational Work� IEEE Trans�
actions on Computers
 C	������&���
 May �����

���

�HM��� K�S� Hwang and M� R� Mercer� Derivation and Re�nement of
Fan	out Constraints to Generate Tests in Combinational Logic
Circuits� IEEE Transactions on Computer�Aided Design
 CAD	
�����&���
 October �����

�HOI��� T� Hwang
 R� M� Owens
 and M� J� Irwin� Communication
Complexity Driven Logic Synthesis� In Proceedings of the ���
International Workshop on Logic Synthesis
 �����

�HOI��� T�T� Hwang
 R� M� Owens
 and M� J� Irwin� E�ciently Com	
puting Communication Complexity for Multilevel Logic Syn	
thesis� IEEE Transactions on Computer�Aided Design
 ������&
���
 May �����

�ISY��� N� Ishiura
 H� Sawada
 and S� Yajima� Minimization of Binary
Decision Diagrams based on Exchange of Variables� In Proceed�
ings of the International Conference of Computer�Aided Design

pages ���&���
 November �����

�JA��� S� K� Jain and V�D� Agrawal� STAFAN� An Alternative to
Fault Simulation� In Proceedings of the �st Design Automation
Conference
 pages ��&��
 �����

�JPHS��� S� W� Jeong
 B� Plessier
 G� D� Hatchel
 and F� Somenzi� Vari	
able ordering for FSM Traversal� In International Workshop on
Logic Synthesis
 May �����

�Kap��� R� Kapur� Personal Communication� BDD Orderings for a
collection of heuristics
 July �����

�KB��� G� Kedem and F� Brglez� OASIS� Open Architecture Silicon
Implementation System� Technical Report TR��	��
 Micro	
electronics Center of North Carolina
 Feb �����

�Kel��� E� Kellerman� A Formula for Logical Network Cost� IEEE
Transactions on Computers
 C	������&���
 September �����

�Koh��� Z� Kohavi� Switching and Finite A Auto Theory� McGraw	Hill

�����

���

�Koo��� G� Koob� An abstract Complexity Theory for Boolean Func�
tions� University of Illinois at Urbana	Champaign
 �����

�Law��� E� J� Lawler� An Approach to Multilevel Boolean Minimization�
Journal of the ACM
 pages ���&���
 �����

�LBdGG��� R� Lisanke
 F� Brglez
 Aaart J� de Geus
 and David Gre	
gory� Testability	Driven Random Test Pattern Genera	
tion� IEEE Transactions on Computer�Aided Design
 CAD	
���������&����
 November �����

�LBK��� R� Lisanke
 F� Brglez
 and G� Kedem� McMAP� A Fast Tech	
nology Mapping Procedure for Multi	Level Logic Synthesis� In
Proceedings of the IEEE International Conference on Computer
Design
 October �����

�Lee��� C� Y� Lee� Representation of switching circuits by Binary De	
cision Programs� Bell Systems Technical Journal
 ������&���

July �����

�LKB��� R� Lisanke
 G� Kedem
 and F� Brglez� DECAF� Decomposi	
tion and Factoring for Multi	Level Logic Synthesis� Technical
Report TR��	��
 Microelectronics Center of North Carolina

August �����

�LP��� M� Lorenzetti and B� Preas� Physical Design Automation
of VLSI Systems� Benjamin	Cummings Publishing Company

�����

�Mas��� K� Mase� Comments on �A Measure of Computational Work�
and �Logical Network Cost and Entropy�� IEEE Transactions
on Computers
 C	�����&��
 January �����

�MC��� C� Mead and L� Conway� Introduction to VLSI Systems
 chapter
Physics of Computational Systems
 pages ���&���� Addison	
Wesley Publishing Company
 �����

�McC��� E�J� McCluskey� Introduction to the Theory of Switching Cir�
cuits� McGraw	Hill
 �����

���

�Min��� S�	I Minato� Personal Communication� BDD Orderings using
minimum width method for ISCAS�� and Logic Synthesis ��
Benchmarks
 May �����

�MIY��� S�	I� Minato
 N� Ishiura
 and S� Yajima� Shared Binary Decision
Diagram with Attributed Edges for e�cient Boolean function
manipulation� In Proceedings of the IEEE�ACM Design Au�
tomation Conference
 pages ��&��
 November �����

�MJ��� F� Maamari and J�Rajski� A Method of Fault Simulation based
on Stem Regions� IEEE Transactions on Computer�Aided De�
sign
 CAD	�����&���
 February �����

�MK��� P� C� McGeer and R� K�Brayton� E�cient Algorithms for Com	
puting the Longest Viable Path in a Combinational Network�
In Proceedings of the ��th Design Automation Conference
 June
�����

�MKR��� M� Ray Mercer
 R� Kapur
 and D� E� Ross� Functional Ap	
proaches to Generate Orderings for E�cient Symbolic Repre	
sentations� In Proceedings of the ��th ACM�IEEE Design Au�
tomation Conference
 pages ���&���
 June �����

�Mul��� D� E� Muller� Complexity in Electronice Switching Circuits�
IRE Transactions on Electron� Comput�
 EC	����&��
 Mar
�����

�MWBV��� S� Malik
 A� R� Wang
 R� K� Brayton
 and A� S� Vincentelli�
Logic Veri�cation using Binary Decision Diagrams in a Logic
Synthesis Environment� In Proceedings of the IEEE Interna�
tional Conference on Computer�Aided Design
 November �����

�Ous��� J� K� Ousterhout� Crystal� A Timing Analyzer for nMOS VLSI
Circuits� In Proceedings of �rd Caltech Conference on VLSI�
Computer Science Press
 �����

�PAS��� F� Poirot
 P� Abouzeid
 and G� Saucier� Lexicographic Factor	
izations minimizing the critical path and the routing factor� In
IFIP Working Conference on Logic and Architecture Synthesis

June �����

���

�PCD��� S� Perremans
 L� Claesen
 and H� DeMan� Static Timing Anal	
ysis of Dynamically Sensitizable Paths� In Proceedings of the
��th Design Automation Conference
 June �����

�Pip��� N� Pippenger� Information Theory and the Complexity of
Boolean Functions� Mathematical Systems Theory
 ������&���

�����

�PM��� K� P� Parker and E� J� McCluskey� Probabilistic Treatment
of General Combinational Networks� IEEE Transactions on
Computers
 C	������&���
 June �����

�RBKM��� D� E� Ross
 K� M� Butler
 R� Kapur
 and M� R� Mercer� Fast
Functional Evaluation of Candidate OBDD Variable Orderings�
In Proceedings of the European Conference on Design Automa�
tion
 pages �&��
 February �����

�Ree��� D� Reeves� Personal Communication� vpnr�bdd information

July �����

�Ris��� R� H� Risch� Staggered Input Networks� An Approach to Auto	
matic Logic Decomposition� In Proceedings of the International
Symposium on Circuits and Systems
 pages ��&��
 �����

�RT��� A� Rajanala and A� Tyagi� A New Area	Based Figure of Merit
for Layout Synthesis Systems� In Proceedings of the ��� Inter�
national Workshop on Layout Synthesis� MCNCACM SIGDA

May �����

�Sau��� G� Saucier� Analysis of the Trends in Logic Synthesis� In Pro�
ceedings of the Synthesis and Simulation Meeting and Interna�
tional Interchange 	SASIMI

 pages �&��
 April �����

�SB��� M� Schulz and Franc Brglez� Accelerated Transition	Fault Sim	
ulation� In Proceedings of the ��th Design Automation Confer�
ence
 pages ���&���
 �����

�SDB��� J� Savir
 G� S� Ditlow
 and P� H� Bardell� Random Pattern
Testability� IEEE Transactions on Computers
 C	�����&��

January �����

���

�Sea��� F� W� Sears� Thermodynamics� the kinetic theory of gases� and
statistical mechanics� Addison	Wesley Publishing Company

Inc�
 �����

�Sha��� C� E� Shannon� The Synthesis of Two	terminal Switching Cir	
cuits� Bell Systems Technical Journal
 pages ��&��
 January
�����

�SPA��� S� C� Seth
 L� Pan
 and V� D� Agrawal� PREDICT� Probabilistic
Estimation of Digital Circuit Testability� In Proceedings of the
�th Annual Symposium on Fault�Tolerant Computing
 pages
���&���
 �����

�Sto��� K� Stoodley� Applied and Computational Statistics� Ellis	
Horwood Limited
 �����

�SW��� C� E� Shannon and W� Weaver� The mathematical theory of
communication� The University of Illinois Press� Urbana
 �����

�TA��� K� Thearling and J� Abraham� An easily computed Functional
Level Testability Measure� In Proceedings of the ��� Interna�
tional Test Conference
 pages ���&���
 �����

�Tho��� C� D� Thompson� Area	time Complexity for VLSI� In Pro�
ceedings of the th Annual ACM Symposium on the Theory of
Computing
 pages ��&��
 �����

�TSB��� H� J� Touati
 H� Savoj
 and R� Brayton� Delay Optimization
of Combinational Logic Circuits through Clustering and Par	
tial Collapsing� In Proceedings of the IEEE International Con�
ference on Computer�Aided Design
 pages ���&���
 November
�����

�Tya��a� A� Tyagi� An Algebraic Model for Datapath design	space ex	
ploration� In International Workshop on Formal Methods in
VLSI Design
 January �����

�Tya��b� A� Tyagi� How Many Paths Classify a Function� A Study in De	
sign Space Extraction� In Proceedings of the ��th International
Symposium on Circuits and Systems� IEEE
 June �����

���

�Yao��� A� C� Yao� Some Complexity Questions Related to Distributed
Computing� In Proceedings of ACM Symposium on Theory of
Computing
 pages ���&���
 �����

���

