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Abstract

Thiswork focuses on two issues of concern to designers and implementers of
volume-rendering applications - finding the most efficient rendering method that provides
the best image possible, and efficiently parallelizing the computation on multicomputers
to render images as quickly as possible.

Three volume rendering methods: ray casting, splatting, and volume shearing, are
compared with respect to their reconstruction accuracy and computational expense. The
computational expense of the rendering methods is model ed and measured on several
workstations. The most-efficient rendering method of the threeisfound to be splatting.
Three reconstruction-filter kernels are evaluated for their accuracy. Two error
measurement methods are used. Thefirst isimage-based and uses a heuristic metric for
measuring the difference between rendered images and reference images. The second
method is analytical and uses a scale-space measure of feature size to compute an error
bound as afunction of feature size and sampling density. Of the three filter kernels
tested, the separable cubic filter to found to produce the most-accurate reconstruction of
the volume function.

Parallel volume-rendering algorithms may be classified and described by the partitioning
of tasks and data within the system. A taxonomy of algorithmsis presented and the
members are analyzed in terms of their communication requirements. Three optimal
algorithm-classes are revealed: image partitions with both static and dynamic data
distributions, and object partitions with contiguous dynamic block data distributions.
Through analysis and experimental tests, a 2D mesh network-topology is shown to be
sufficient for scalable performance with an object-partition algorithm when the image
sizeis kept constant. Furthermore, the network-channel bandwidth-requirement actually
decreases as the problem is scaled to alarger system and volume data size.

Implementations on Pixel-Planes 5 and the Touchstone Delta demonstrate and verify the

scalability of object partitions. As part of these implementations, a new load balancing
approach is demonstrated for object-partition algorithms.
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