Volume Reconstruction and Parallel Rendering Algorithms: A Comparative Analysis

by
Ulrich Neumann

A dissertation submitted to the faculty of The University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science

Chapel Hill
1993

Approved by:

Advisor: Henry Fuchs

Reader: Turner Whitted

Reader: Stephen M. Pizer

Reader: Jan F. Prins
Abstract

This work focuses on two issues of concern to designers and implementers of volume-rendering applications - finding the most efficient rendering method that provides the best image possible, and efficiently parallelizing the computation on multicomputers to render images as quickly as possible.

Three volume rendering methods: ray casting, splatting, and volume shearing, are compared with respect to their reconstruction accuracy and computational expense. The computational expense of the rendering methods is modeled and measured on several workstations. The most-efficient rendering method of the three is found to be splatting. Three reconstruction-filter kernels are evaluated for their accuracy. Two error measurement methods are used. The first is image-based and uses a heuristic metric for measuring the difference between rendered images and reference images. The second method is analytical and uses a scale-space measure of feature size to compute an error bound as a function of feature size and sampling density. Of the three filter kernels tested, the separable cubic filter to found to produce the most-accurate reconstruction of the volume function.

Parallel volume-rendering algorithms may be classified and described by the partitioning of tasks and data within the system. A taxonomy of algorithms is presented and the members are analyzed in terms of their communication requirements. Three optimal algorithm-classes are revealed: image partitions with both static and dynamic data distributions, and object partitions with contiguous dynamic block data distributions. Through analysis and experimental tests, a 2D mesh network-topology is shown to be sufficient for scalable performance with an object-partition algorithm when the image size is kept constant. Furthermore, the network-channel bandwidth-requirement actually decreases as the problem is scaled to a larger system and volume data size.

Implementations on Pixel-Planes 5 and the Touchstone Delta demonstrate and verify the scalability of object partitions. As part of these implementations, a new load balancing approach is demonstrated for object-partition algorithms.
Acknowledgments

Many thanks to my committee members and especially to Henry Fuchs for acting as my advisor and supporting me through this effort. Their suggestions were helpful in raising the quality of this work in many ways. Any remaining flaws are certainly my responsibility.

Professor Steve Taylor and Mike Palmer at Caltech supported my efforts by acting as hosts for my visit to Caltech and suppling me with information and access to the Touchstone Delta. David Ellsworth, a kindred spirit at UNC who also visited Caltech at the same time, was helpful during many discussions and fruitful late-night coding sessions (when the Delta was up and available). A special thanks goes to Terry Yoo who coordinated the Caltech visit as the UNC site-coordinator of the Graphics and Visualization Science and Technology Center in addition to helping me with countless other details.

Andre State, Qin Fang, and Tim Cullip are fellow-volume renderers who helped keep my thinking straight by participating in numerous discussions about volume rendering and parallel algorithms. Andre State also deserves special thanks for his help with the VVEVOL tests. Tim Cullip must be recognized and thanked for continuously raising the standard with respect to parallel-rendering rates.

Last, but not by any means least, I thank my wife Patricia. Over the years she has mastered the art of balancing encouragement and occasional whip-cracking. Her strength and faith always provided support along this journey. This work is dedicated to her patience and perseverance.

Financial support for this work has come from the Pixel-Planes 5 and VistaNET grants.
Table of Contents

1. Introduction .. 1
 1.1. Volume Rendering Model ... 2
 1.2. Volume Rendering Algorithms ... 4
 1.3. Multicomputer Architectures ... 6
 1.4. Parallel Algorithms ... 8
 1.5. Thesis and Contributions ... 10

2. Previous Work .. 12
 2.1. Uniprocessor Methods ... 12
 2.2. Parallel Algorithms ... 19
 2.3. Reconstruction Methods ... 23

3. Image-Based Reconstruction Error Comparison .. 26
 3.1. Feature Scale ... 26
 3.2. Test Data ... 27
 3.3. Image Comparison Metric .. 31
 3.4. Rendering Methods ... 32
 3.5. Experimental Results ... 33

4. Analytical Reconstruction-Error Comparison ... 47
 4.1. Pyramid Filter ... 47
 4.2. Gaussian Filter ... 50
 4.3. Separable Cubic Filter ... 54
 4.4. Filter Comparison ... 56

5. Rendering Cost Comparison .. 60
 5.1. Ray Casting with a Pyramid Filter ... 61
 5.2. Splatting with a Gaussian Filter .. 63
 5.3. Volume Shearing with a Separable Cubic Filter 65
 5.4. Comparison and Discussion ... 66

6. Parallel Volume-Rendering Algorithms .. 70
 6.1. Taxonomy .. 70
 6.2. Image Partitions ... 72
 6.2. Object Partitions ... 77
7. Parallel Algorithm Performance .. 80
 7.1. Network Performance Model ...80
 7.2. Image-Partition Redistribution Costs ...83
 7.3. Object-Partition Redistribution Costs ...90

8. Parallel Implementations .. 95
 8.1. System Overview ...95
 8.2. Mesh Redistribution-Time ...96
 8.3. Touchstone Delta Implementation ..97
 8.4. Pixel-Planes 5 Implementation ...100

9. Summary, Conclusions, and Future Work ..102
 9.1. Summary and Conclusions ...102
 9.2. Future Work ...103

10. References ..105
List of Figures

1.1 Embedded image and object lattices ... 5

2.1 Ray casting .. 13
2.2 Splat kernels ... 16
2.3 Volume shearing ... 18
2.4 Signal processing in volume rendering .. 24

3.1 Multiscale operator response function .. 27
3.2 Points test data generator coordinates ... 28
3.3 Mixed test data generator coordinates ... 29
3.4 Test data sets viewed down the k-axis .. 29
3.5 Prealiasing error P(σ) ... 30
3.6 Specifying a view (adapted from Rogers and Adams pp. 56) 32
3.7 Reference images .. 33
3.8 Ray casting with pyramid filter reconstruction .. 34
3.9 Ray casting with pyramid filter reconstruction .. 35
3.10 Inner Product of references with test images made with pyramid filter
 reconstruction. Horizontal axis is ray z-step size
 (data taken for step size = 1, 2, 4, 6, and 8) ... 36
3.11 Reference animation of points .. 37
3.12 Points animation using pyramid filter reconstruction 37
3.13 Splatting with Gaussian filter reconstruction .. 38
3.14 Splatting with Gaussian filter reconstruction .. 39
3.15 Inner Product of references with test images made with a Gaussian filter
 Horizontal axis is Gaussian kernel σ
 (data taken for σ = 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9) .. 40
3.16 Points animation rendered by splatting with Gaussian filter σ = 0.5 41
3.17 Volume shearing with separable cubic filter reconstruction 42
3.18 Volume shearing with separable cubic filter reconstruction 43
3.19 Inner Product of references with test images made with separable
 cubic filter. Horizontal axis is number of pixels per sample points
 (data taken at 1×1, 2×2, and 4×4) ... 44
3.20 Animation sequence made with Catmull-Rom cubic reconstruction filter 45
3.21 Inner product comparison ... 45
4.1 Linear reconstruction of 1D Gaussian ... 47
4.2 $G(x)$, $R(x)$, and $Err(x)$ as a function of x_0 .. 48
4.3 Pyramid filter error as a function of feature size ... 49
4.4 $G(x)$, $R(x)$, and $Err(x)$ with ε as a parameter 51
4.5 $Nerr1D$ for Gaussian kernel $\nu = 0.45, 0.5, 0.55,$ and 0.6 52
4.6 Gaussian filter error as a function of feature size .. 52
4.7 Normalized peak-to-peak ripple amplitude ... 53
4.8 $G(x)$, $R(x)$, and $Err(x)$ as a function of ε .. 55
4.9 Cubic filter error as a function of feature size ... 56
4.10 $Nerr(\sigma)$ for one, two, and three dimension filters 57
4.11 Isosurface renderings of mixed data .. 58
4.12 Isosurface renderings CT data ... 59

5.1 Rendering times for 64x64x64 image lattice .. 67
5.2 Rendering times for 128x128x64 image lattice ... 67

6.1 Full taxonomy of parallel volume-rendering algorithms 71
6.2 Load balancing with dynamic contiguous slabs .. 73
6.3 Dynamic contiguous shaft load balancing on scan lines 73
6.4 Image-partition task distributions .. 74
6.5 Image-partition data distributions .. 76
6.6 Image-partition options .. 76
6.7 Object-partition task options ... 78
6.8 Object-partition image options .. 79
6.9 Object-partition options .. 79

7.1 Average latency vs. normalized throughput (adapted from [Ngai89]) 81
7.2 Redistribution with slab image-lattice distribution 86
7.3 Redistribution with shaft image-lattice distribution 86
7.4 Redistribution with block image-lattice distribution 87
7.5 Redistribution with slab object-lattice distribution 90
7.6 Redistribution with shaft object-lattice distribution 91
7.7 Redistribution with block object-lattice distribution 91

8.1 Redistribution times measured on the Touchstone Delta (in seconds) 97
8.2 Redistribution sizes for test on the Touchstone Delta 97
8.3 Isosurface rendering of mixed data set ... 98
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Alpha (or Opacity)</td>
</tr>
<tr>
<td>ALU</td>
<td>Arithmetic Logic Unit</td>
</tr>
<tr>
<td>B</td>
<td>Blue</td>
</tr>
<tr>
<td>CAT</td>
<td>Computer-Aided Tomography</td>
</tr>
<tr>
<td>G</td>
<td>Green</td>
</tr>
<tr>
<td>I/O</td>
<td>Input / Output</td>
</tr>
<tr>
<td>K</td>
<td>$2^{10} = 1024$</td>
</tr>
<tr>
<td>M</td>
<td>$2^{20} = 1048576$</td>
</tr>
<tr>
<td>MIMD</td>
<td>Multiple Instruction Multiple Data</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>R</td>
<td>Red</td>
</tr>
<tr>
<td>RISC</td>
<td>Reduced Instruction Set Computer</td>
</tr>
<tr>
<td>SIMD</td>
<td>Single Instruction Multiple Data</td>
</tr>
<tr>
<td>VLSI</td>
<td>Very Large Scale Integration</td>
</tr>
<tr>
<td>1D</td>
<td>One-Dimensional</td>
</tr>
<tr>
<td>2D</td>
<td>Two-Dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three-Dimensional</td>
</tr>
</tbody>
</table>