
1. Introduction

Volumes of data are created and analyzed in many scientific endeavors. Often their
analysis is augmented by viewing the data in its true spatial distribution as opposed to a
printed array of numbers or condensed data in the form of charts and graphs. Medical
images, for example, are data that are almost-exclusively analyzed by direct viewing.
Two-dimensional slices of data are readily obtained from CAT or MRI scanners. These
are useful in their own right for direct viewing. A stack of two-dimensional data slices
form a volume data set which has the advantage that it may be viewed from an arbitrary
vantage point and shows spatial relationships in three dimensions. As another example,
consider a finite-element analysis that computes temperature or stress through a three
dimensional structure. In many of these applications the data at each point in the volume
is a scalar or a vector of values. To display this data, some mapping must be applied to
convert the volume of values to intensity or color. The issue of occlusion is also
confronted; are the rear portions of the volume occluded by the front, and if so how? The
answers to this question is often application-dependent. For some purposes, extracting
and viewing an iso-valued surface is desirable. In such cases, the occlusion of data by the
isosurface representation is often desirable. In other cases, three-dimensional spatial
structure is important, so all structures should be represented transparently. Volume
rendering applications should be flexible enough to accommodate these and other
presentation styles. The viewer should be able to select the style most appropriate to the
task. Renderers usually allow arbitrary mappings from scalar volume-data to color and
opacity. Also, complex pre-processing methods may be applied to emphasize regions of
interest by modifying opacity and color values. If the viewer’s interactions with the
system produce partially-transparent objects, the final image contains contributions from
the entire volume. This is a worst-case condition from the perspective of computation. If
volumes are very large and the entire volume contributes to an image, proportionally
large amounts of computation are required to render that image.

The high cost of volume rendering is the motivation for this research. It focuses on two
issues of concern to designers and implementers of volume rendering applications:

• finding the most efficient rendering-method that provides the best image possible, and
• parallelizing the computation on multicomputers to render images as quickly as
 possible.

The solutions proposed here are software-solutions suitable for general-purpose
workstation and multicomputer architectures. Researchers designing volume-rendering
applications for such systems should find this work useful. Those doing research into
hardware architectures for volume rendering may also benefit from the cost and
parallel-algorithm analysis of the problem.

1

Three volume-rendering methods are compared with respect to their accuracy and
computational expense. Two error-measurement methods are used. The first is
image-based and uses a heuristic metric for measuring the difference between rendered
images and reference images. The second is analytical and uses a scale-space measure of
feature-size to compute an error bound as a function of feature size and sampling density.
The computational expense of each rendering method is modeled and measured on
several workstations. The fastest rendering-method is shown to be splatting which
performs reconstruction with a two-dimensional filter. The most-accurate reconstruction
is shown to be obtained with a separable cubic filter.

Parallel volume-rendering algorithms may be classified and described by the partitioning
of tasks and data within the system. A taxonomy of algorithms is presented and analyzed
in terms of their communications requirements. A 2D mesh network-topology is shown
to be sufficient for scalable performance with the object-partition class of algorithms.
Furthermore, we show that the network-channel bandwidth-requirement actually
decreases as the problem is scaled to a larger system and volume data size.

The following two sections (1.1 and 1.2) present analytical and algorithmic models for
volume rendering. Following those, two more sections (1.3 and 1.4) introduce
multicomputers and parallel volume-rendering algorithms. The last section (1.5) states
the thesis of this work and summarizes its main contributions.

1.1. Volume Rendering Model

Volume rendering is the term that describes the viewing of volume data as a material
of variable transparency and color. Its advantages are that much or all of the volume may
be visible to the observer at one time and there is no need to introduce intermediate
geometry that doesn’t really exist in the data. The following three-step analytical model
of the volume rendering process is based on previously published derivations that model
the attenuation of light as it passes through a medium of varying transparency and color
{Westover91] [Drebin+88] [Blinn82] [Kajiya+84]. Let the real-world volume be a scalar
field G which is sampled at the vertices of a three-dimensional regular grid - a situation
often encountered in medical and simulation data. The samples f are used to reconstruct a
function F which may be resampled to produce images from arbitrary view points.
Reconstruction is performed by convolving the samples f with a filter kernel K in the
spatial domain. (Note that the term filter will be used to denote both the spatial-domain
kernel and its equivalent frequency-domain filter.) In general, the reconstructed function
F is not identical to G for any practical filter K. This difference is the issue of concern in
the first part of this work and will be explored further in the next chapter. The rendering
operations are summarized below.

2

1 - Reconstruct the continuous 3D scalar function F by convolving each sample point f
with a reconstruction filter kernel K.

F = ∑ fi,j,k ∗ K (1.1)
 i,j,k

2 - Apply an opacity O and shading S function to the continuous scalar field. These user
definable transfer functions yield a differential opacity Ω = O(F) and color emittance
E = S(F) at each point in the volume as a function of the scalar field properties at that
point.

3 - Integrate an intensity and transparency function along sample viewing-rays through
the volume. The integrals may be taken toward or away from the viewer. When taken
towards the viewer, the accumulated transparency T and intensity I along the sample ray
over [0, p] (p is closest to the viewer) is

 p

T(p) = exp(−∫ Ω(ν) dν) (1.2)
 0

 p

I(p) = T(p) ∫ E(ν) / T(ν) dν (1.3)
 0

The intensity function (Eq. 1.3) has a closed form solution only if E and Ω are constant or
multiples of each other over the interval. This is not generally the case, so numerical
methods are used to approximate the whole integral by breaking the path into small
segments each of which are themselves approximated with constant Ω and E function
values. For a segment with interval [0, p], the approximate T and I values become

T(p) = exp(−Ωp) (1.4)

I(p) = E / Ω (1 − exp(−Ωp)) (1.5)

The segments are then composited together to produce the integral of the entire path.
Compositing combines the segments consistent with the model expressed by equations
1.2 and 1.3 [Drebin+88]. It is a sequential, associative operation that combines segments
in front-to-back or back-to-front order. The back-to-front method is the simpler of the
two and presented first. Segmenti and segmenti-1 each have a 〈color, alpha〉 associated
with them where color = I and alpha = 1− T. If segmenti is closest to the viewer,
compositing yields a new combined segment with

color = colori + colori-1 (1 - alphai) (1.6)

This proceeds recursively until all segments are composited producing a color for the
entire path. If segmenti is closest to the viewer and compositing proceeds front-to-back,

3

the combined segment’s color and opacity (or alpha value) must be maintained to allow
recursion; the combined segment becomes the new front segment and the opacity of the
front segment (alphai) must be known.

alpha = alphai + alphai−1 (1 - alphai) (1.7)

color = colori + colori-1 (1 - alphai) (1.8)

There are three parameters that affect the approximation accuracy for each segment: the
interval or segment size, the function which approximates a constant Ω and E over each
interval, and the method of approximating the exponential terms. Wilhelms and Gelder
[Wilhelms+91] analyze these issues and show some results obtained by varying these
parameters. Several options are possible for evaluating the exponential terms of
equations 1.4 and 1.5 quickly. If Ω is encoded as an integer of relatively few bits
precision, a lookup table can compute the exponential term. We may simplify the
exponential by approximating e-Ωp with min(1,Ωp). This has the added benefit of setting
the range of the opacity function to [0, 1]. Similarly, the emittance function S may be
considered to embody the division by Ω simplifying equation 1.5 to

 I(p) = E (1 − T(p)) (1.9)

Both of these latter approaches are extensively used in actual implementations. Due to
the nature of the study being conducted here, we will not complicate the rendering error
measurements by allowing arbitrary O and S functions. These functions are application
specific and frequently nonlinear. To isolate and focus on the reconstruction errors, we
will consider O to be the identity function and S to always yield a constant value of one.
These definitions for O and S equate to considering the data as glowing in proportion to
its value. We are rendering the data as directly as possible. Any error in the rendering
process can only be attributed to the reconstruction and resampling process. This is the
part of the rendering process on which we focus.

1.2. Volume Rendering Algorithms

In addition to the above analytical model, an algorithmic approach is presented that
focuses more on the computing process involved in rendering an image of a volume from
an arbitrary view point. For simplicity, we’ll consider a scalar field that is sampled on a
regular grid in ℜ3. The small points connected by dark dashed lines in figure 1.1
correspond to such an array of samples. Their lattice is called the object lattice.
When viewing the data, we embed another lattice in the volume which is aligned with the
view direction. These image-space lattice points lie on pixel coordinates at multiple
depths. The grey-line grids in figure 1.1 represent this image lattice. Each grid is shown
as a plane of constant depth although this is not a necessary constraint. In fact, there may

4

be a different number of image lattice points along the view direction behind each pixel,
and they may be different distances from each other.

The data field values on the object lattice are known. As the first step in rendering an
image, we must calculate the field values on the image lattice points. This requires
reconstructing the continuous 3D field from the object lattice data and resampling it at the
image lattice points. It is in this step that volume rendering algorithms differ the most.
Different algorithms use different reconstruction techniques and compute the image
lattice values in different orders. These differences are explored in the first part of this
work (Chapter’s 3, 4, and 5). The accuracy of the reconstruction methods are compared
and contrasted with their relative cost. The results allow a more informed choice among
the methods and their trade-offs.

The second rendering step is to shade and classify the new sampled values on the image
lattice. These functions are the emittance E and opacity O functions previously
described. Shading and classification are functions of the local properties of the field;
among these are its value, gradient magnitude and gradient vector. Classification assigns
an opacity (alpha) value to each image lattice point. These opacity values are derived
from a user-defined function that maps the resampled field values to an opacity. Alpha
values range over [0, 1] and are a measure of the attenuation of any light passing through
that point’s local region. Shading may use the gradient vector at each point as a normal
vector and apply diffuse and specular lighting models to derive a color. Since these
functions are application specific and user-controlled, and we are only interested in
comparing reconstruction techniques, we will use the identity function for opacity O and
the unit constant function for emittance E. The important result of this second step is that
each point of the image lattice will now have a four-tuple 〈R, G, B, A〉 of color and
opacity associated with it. This tuple may also be written as 〈color, alpha〉.

The final rendering step is to composite the image-lattice tuples along the image z-axis to

5

Fig. 1.1 - Embedded image and object lattices

View
Direction

Image
 Lattice

Object
Lattice

arrive at a final color for each pixel in the image-plane. The image lattice tuples
represent the light emission and attenuation in the local region about each point.

There are three common approaches to performing the above steps in actual
implementations. These three rendering methods utilize the reconstruction filters we will
compare. They are introduced here and will be described in greater detail in later
sections.

Ray Casting - The volume is resampled along view rays [Levoy88] [Sabella88]
[Upson+88]. Typically, reconstruction is done by trilinear interpolation of the eight
neighboring object lattice values. The Ω and E functions are applied to the new sample
points along the rays. Successive samples along a ray are composited to produce the final
ray color which corresponds to the color of one pixel in the final image. Affine and
perspective projections are computed with approximately the same cost.

Splatting - This approach computes the effect of each object lattice point on the pixels
near the point to which it projects. Object lattice slices are sorted in depth order and
reconstructed by convolution with a 2D Gaussian filter kernel [Westover89]. The
reconstructed 2D function is projected, resampled, and accumulated on an image lattice
plane. Successive image lattice planes are composited to produce the final image. With
splatting, affine projections are more efficient to compute than perspective projections.

Volume Shearing - An affine view transformation is decomposed into three sequential
volume shear operations. Each shear is affected by a 1D transformation of the form
x′ = Ax + B [Drebin+88] [Hanrahan90]. Since these transformations require only a 1D
reconstruction filter, cubic splines are commonly used to facilitate the resampling. After
three shears, the volume lies on the image lattice ready for compositing. Perspective
projections are produced by performing two additional shear operations.

1.3. Multicomputer Architectures

Multicomputers are a source of the computation power and memory size that volume
rendering requires. In this work, any system with multiple computing elements or nodes
is considered a multicomputer. Each node is assumed to have some physically local
memory. We distinguish between multicomputers by the communication model and
hardware topology of the network between the nodes. These issues are orthogonal and
form a useful classification for this work.

The major distinction with respect to an application’s view of the network is the model
for how non-local memory is accessed. In one model called message passing, each node
considers its local memory to be the only directly addressable memory available. Remote
memory accesses are explicitly controlled by the application program. If one node

6

requires data from another node’s local memory, explicit operating system calls are made
to send and receive messages containing that data. As an example, node A sends a
message to node B requesting some data. Node B receives the request, interprets it,
formats the requested data and sends it to node A. Node A receives the data and places it
into its local memory. In the alternative model, communication is invisible to the
application and occurs under the control of the operating system and hardware as an
indirect result of the memory accesses made at each node. In this approach, nodes
directly address all the memory in the system regardless of where it physically resides;
this model is referred to as shared memory. At this point in the evolution of multicomputer
systems, many of them use a message-passing model [Delta] [Paragon] [Pxpl5] [CM5].
Several experimental systems are evolving based on the shared-memory model [Dash]
[JMach] [Mosaic]. Some commercial shared-memory systems have been built (BBN and
Sequent), and are available at this time [Kendall]. A major difference between these two
models is the latency with which remote memory is accessed. A system using a
shared-memory model will have up to two orders of magnitude lower latency when
accessing remote memory even when the communication channels have the same
bandwidth. This arrises from differences in the low-level communication hardware and
firmware, neither of which are modifiable by a user’s program. This has important
ramifications in terms of the reconstruction method and parallel algorithm suitable for
such a system.

It is possible to implement a shared-memory model in software on top of a message-passing
model (and vice-versa). A minimal requirement for a shared-memory system is the
presence of memory management hardware to trap the remote accesses and re-map local
memory. Once an access causes a trap, hardware and firmware mechanisms perform the
actual data transfers. The class that a particular system is in depends on the operating
system provided by the manufacturer. It is assumed that the manufacturer makes
optimal use of the hardware capabilities in the system.

The network topology is the other distinguishing feature of a multicomputer. Common
topologies are 2D and 3D meshes and tori [Delta] [Paragon] [Dash] [JMach] [Mosaic]. A
mesh that wraps around in each dimension becomes a torus. These are both popular due
to the property that each node has a constant valence, or number of network ports, for all
system sizes. Examples of other topologies are fat-trees [CM5], and rings [Pxpl5]
[Kendall]. Because of the commercial popularity and amount of published analysis done
for meshes, the volume rendering algorithms are analyzed in the greatest detail for them.

Of greatest concern, from our standpoint, is the time spent on communication instead of
productive computing. To the extent that a node expends its cycles on communications
overhead or waiting for messages, the node is not rendering an image. This is one of the
costs or penalties of a parallel algorithm. One goal of this work is to find the lowest cost
partition for a mesh or torus topology. Rather than exhaustively test the cross-product of
all rendering methods with all parallel algorithms, we treat them as orthogonal issues and

7

optimize each separately. The algorithm cost is related to the quantity of data
communicated per-frame; the partition with the smallest communication requirement is
likely to perform best when coupled with the fastest rendering method. In this work, an
analysis of parallel algorithm costs for mesh and toroidal topologies is performed. The
results show that if the image size is kept constant, meshes scale well for object partition
algorithms. For an algorithm to scale well, its communication time on a given network
topology must remain constant as the number of nodes and the volume size is increased
proportionally. For object-partition algorithms on mesh topologies, when the image size
is held constant as the volume and system sizes increase, the communication time
actually decreases.

The writing of final image values into a frame buffer is not accounted for in the algorithm
costs. It is assumed that frame buffer update is a constant-cost operation for all
algorithms. Most multicomputers do not incorporate a frame buffer directly into their
architecture, making it difficult to analyze the actual cost of this operation. The
assumption that sufficient I/O bandwidth is available to allow frame buffer update is
justified by the fact that the required network bandwidth for frame buffer update is
usually a small fraction of that required by the rendering algorithm.

1.4. Parallel Algorithms

Since volume rendering is computationally expensive and data sets may be very
large, it is only natural to turn to parallel methods. In designing a parallel algorithm, the
tasks and data are distributed among the system resources in a fashion that minimizes the
undesirable side-effects of parallelization. The four major considerations are outlined
below.

1 - Duplicating computations on multiple nodes wastes computing cycles.

2 - Communication is expensive. In most message passing systems, latency and
per-message overhead is high so algorithms that produce flurries of small messages
should be avoided. It is usually more efficient to send fewer but larger messages.

3 - Volume data is often large. It is impractical or impossible to store a complete copy of
the data at each node. The data must be distributed over the memory spaces in the
system.

4 - Load imbalance can reduce the speedup we hope to obtain by parallelization. Since
volume rendering is a view-dependent computation, load balancing should be done
dynamically.

The space of parallel algorithm design choices is very large. To cope with the

8

complexity and systematically consider all the alternatives, the problem is broken into
several orthogonal design alternatives. The selection of alternatives is helped by
considering the parallelism inherent in the volume rendering process. Volume rendering
algorithms offer primarily data parallelism in the following tasks:

1 - The reconstruction and resampling step may be performed in parallel for all image or
object lattice points.

2 - The classification and shading may be performed in parallel for all image lattice
points.

3 - The compositing task may be performed in parallel for all image pixels.

From this analysis of the problem, it is apparent that mapping lattice points to processing
nodes is a good approach to the problem. There are, however, many choices as to which
lattice points to map to which nodes. There are two ways to approach this mapping.

Image Space Task Partition - In this partition, a fixed, contiguous, sub-volume of image
lattice points is mapped to each node. The object lattice data needed to reconstruct a
node’s assigned image lattice values must be communicated as the view changes.
Classification, shading, and compositing can be performed for the entire sub-volume at
that node without further communication. Compositing between nodes may be necessary
if one node’s sub-volume occludes another.

Object Space Task Partition - In this approach the mapping of image lattice points to
nodes is a function of the view transformation. A fixed, contiguous, sub-volume of
object lattice points is mapped to each node, and we compute the image lattice points that
are embedded in them under the view transformation. Classification, shading, and
compositing can then be performed for the entire sub-volume on that node without
further communication. Compositing between nodes will be required since the occlusion
relation is complex making it likely that one node’s sub-volume partially occludes
another’s.

One assumption that has already been made is that the sub-volumes mapped to nodes are
always contiguous. In many parallel algorithms load balance is achieved by interleaving
data. Interleaving in three dimensions does not work well for volume rendering since
compositing must be done in view order. Interleaved data would cause a large
communications penalty. Two and one dimensional interleaving of the image lattice has
been used with ray casting [Corrie+92] and found inefficient relative to contiguous
sub-volumes which take advantage of the coherence in data access patterns. One
dimensional interleaving has been used with splatting where it also caused increased
communications cost [Westover91]. For this and other reasons to be discussed in chapter
six, contiguous sub-volumes are usually desirable and other load balancing techniques

9

must be employed.

The data dependencies arising from a task partition must be examined since they give rise
to communication between nodes and communication costs are a primary concern. For a
given task partition, communication costs are a function of the sub-volume topology.
The topology is related to the parallelism grain size. Sub-volume topologies are
classified as slabs, shafts, and blocks. Slabs are distinguished by their spanning the total
volume in two dimensions, while shafts span the whole volume in just one dimension. A
block does not span the volume in any dimension. Opposite faces of slabs, shafts, and
blocks are always parallel and aligned with the lattice in which they exist. This last
condition is imposed to simplify array index computation.

There is structure to the communication involved in each step of the rendering process.
During the resampling step, each image lattice point reconstructs its field value from
multiple object lattice points that transform to nearby locations. The transformation is
linear and therefore causes communication patterns that are regular; neighboring object
points will be needed by neighboring image points. This regularity can be exploited to
help minimize the communications costs of some algorithms.

The compositing step involves collapsing columns of image lattice points along the
z- axis. This produces a regular communication pattern, if any at all, and the routing
regularity again aids in the optimization of this step.

The classification and shading functions are application dependent. Depending on the
selected approach, this step may or may not involve communication. The communication
costs arising from complex classification functions are not considered in this work.
Complex classification can be viewed as a batch process performed periodically but not
necessarily within each frame.

1.5. Thesis and Contributions

1.5.1. Thesis

Volume rendering algorithms are distinguished by their reconstruction methods. The
accuracy of the volume reconstruction directly determines the quality of the image.
• A separable cubic filter provides more accurate volume reconstruction than a pyramid
filter or a Gaussian filter.
• Splatting is a more efficient volume reconstruction method than ray casting or volume
shearing.

Parallel algorithms for volume rendering on multicomputers differ in how the tasks and
data are partitioned over the architecture.

10

• An object partition has the lowest communication costs and, for a constant image-size,
scales well on 2D mesh network topologies. The network-channel bandwidth-requirement
actually decreases as the problem is scaled to larger systems and volume data sets.

1.5.2. Contributions

• Image comparisons and analytical techniques are used to compare the accuracy of
three reconstruction filters used in volume rendering. The results demonstrate that a
separable cubic filter is the most accurate of the three.

• Implementations on four workstations and analysis confirm that splatting with a 2D
filter kernel is more efficient per reconstructed-point, than ray casting or volume
shearing.

• A taxonomy of parallel algorithm task and data partitions is presented. Three
algorithms are presented as optimal in their class, and their communication requirements
are parameterized. Two of the three optimal algorithms are presented for the first time.

• The class of object partition algorithms is shown to scale better than image partitions
on mesh and toroidal networks. Simulations and tests on the Touchstone Delta verify
that the communication time decreases as the system and data size increase if the image
size remains constant.

• Implementations on Pixel-Planes 5 and the Touchstone Delta demonstrate the
performance of a new object partition algorithm.

• A new load balancing method for object partition algorithms is demonstrated.

• The third pass of the the three pass volume shear rendering method is shown to be
unnecessary. This resulting in a thirty-percent savings of computation and memory.

11

