
2.  Previous Work

In the next two sections (2.1 - 2.2), the previous research on rendering volumes is 
discussed and grouped into uniprocessor methods and parallel algorithms.  The last 
section (2.3) focuses on reconstruction error studies.  

The Introduction presented an algorithmic model of volume rendering;  many existing 
rendering algorithms deviate from that model for motivations of simplicity and 
efficiency.  The object lattice data is often shaded and classified prior to resampling.  In 
this case, the resampling process interpolates the color and opacity of the object lattice 
points rather than the scalar field.  Because of the nonlinearity of the shading and 
classification process, this approach is more likely to produce errors and artifacts in the 
final images.  This is analogous to the choice between using Gouraud or Phong lighting 
of polygons.  Shading before resampling is more efficient since the normal vectors used 
in lighting may be precomputed and used for any view direction and because a change in 
view direction does not require recomputing the classification function for the whole 
volume.  Although the result is a lower image quality, shading before resampling is a 
common trade-off in volume renderer implementations.  Rather than dwell on the merits 
of either approach, shading and classification before resampling is regarded as a speedup 
technique that can be applied to any of the algorithms discussed here.  To be consistent, 
all rendering approaches are introduced in the form with resampling performed before 
classification and shading.

2.1.  Uniprocessor Methods

The Introduction outlined three common methods for viewing volumes:  ray casting, 
splatting, and volume shearing.  These methods are reviewed here focusing on how the 
reconstruction and resampling process is performed.  There are other approaches to 
volume rendering.  These usually involve a polyhedral decomposition of the volume 
[Max+90] [Shirley+90] [Upson+88] [Wilhelms+91] and are frequently used for irregular 
mesh data sets and to leverage polygon rendering hardware.  Reconstruction in these 
approaches is performed by linear interpolation, so the results are no different than those 
obtained with direct rendering.  There is no advantage to using these methods with 
general purpose computers since the intermediate polygonal representation is costly to 
produce and to render.  

2.1.1.  Ray Casting

Ray casting is perhaps the most commonly used volume rendering method [Levoy88] 
[Sabella88] [Upson+88].  Rays are sent into the volume from the view point passing  
through each pixel in the image plane.  The scalar field’s value along each ray is usually 
sampled at a regular interval.  Figure 2.1 depicts the object lattice as dark, dashed lines 

12



and the image lattice as gray solid lines.  Four typical rays are shown passing through 
image lattice points in the volume.  

Trilinear interpolation is used to reconstruct the field data at the image lattice points.  The 
computation proceeds ray-by-ray as shown in the program fragment below.  New sample 
points are shaded, classified, and composited (front-to-back) with the accumulated color 
along the ray to that point.  

for each pixel {
    for each z-step along ray {
        reconstruct field F at new sample point by trilinear interpolation;
        shade and classify new sample to obtain Ω and E;
        compute new segment I and T from averaged Ω and E of new and last sample;
        composite new ray segment I and T behind accumulated ray color;
}  }

This code sequence computes Ω and E values from the reconstructed field value F at the 
new sample points along the rays.  This approach is used by Upson and Keeler 
[Upson+88] and for the comparison tests in this work.  Other implementations evaluate 
the the Ω and E functions on the object lattice points and reconstruct those values on the 
image lattice [Levoy88], thereby gaining efficiency by using a precomputed data gradient 
when shading the object lattice.  This approach trades some image quality for efficiency, 
but it may be appropriate in some applications.  The shade-before-reconstruction 
computation sequence is shown below to contrast the reconstruct-before-shade approach 
shown above.

shade and classify object lattice data f to obtain Ω and E;
for each pixel {
    for each z-step along ray {
        reconstruct Ω and E at new sample point by trilinear interpolation;
        compute new segment I and T from averaged Ω and E of new and last sample;
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        composite new ray segment I and T in front of accumulated ray color;
}  }

There is a compromise between these two extremes.  To keep the efficiency high, the 
normals are precomputed on the object lattice, while as much processing as possible is 
deferred until after reconstruction.   The object lattice points are shaded in every frame 
based on the precomputed normals, the current view, and light direction.  If the 
classification is deferred until after reconstruction, the benefit of more accurate 
classification is obtained with little or no additional expense.  This compromise approach 
is shown below and has been used here at UNC by Timothy Cullip and others with 
dramatically better results than those obtained with the pre-classification method;  in 
particular, surfaces are clearer and more well-defined than the blurry surfaces often 
obtained with the pre-classification method.

shade object lattice data f to obtain E;
for each pixel {
    for each z-step along ray {
        reconstruct field F and emittance E at new sample by trilinear interpolation;
        classify the reconstructed F value to obtain Ω;
        compute new ray segment I and T as averaged Ω and E of new and last sample;
        composite new ray segment I and T in front of accumulated ray color;
}  }

2.1.1.1.  Ray Casting Speedups

Many techniques exist to speed up ray casting of volumes.  The shade-before-reconstruction 
technique was described above.  Others are adaptive ray termination, adaptive sampling, 
progressive refinement, hierarchical data structures, and distance transformations.  This 
abundance of optimizations is unique to ray casting due to its pixel-by-pixel processing 
order.  This processing sequence is known as an image order algorithm.

Adaptive ray termination [Upson+88] [Levoy90] [Danskin+92] may only be applied when 
ray samples are computed and composited front-to-back.  As samples are taken along a 
ray, the ray accumulates color and opacity.  When the opacity exceeds a threshold, 
further samples are not taken since their contribution to the final ray color is occluded by 
the opaque material already accumulated.  For images that are rendered with a 
classification function that produces high opacity, this technique can save significant 
work.

Adaptive sampling is the technique of sampling only a subset of the screen pixels unless 
the variance of neighboring samples is above a threshold [Whitted80].  In the areas of 
high variance, additional pixels are sampled.  This is recursively done until either the 
variance is below the threshold, or the sampling has progressed to the pixel level.  The 
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color of pixels not sampled in low variance areas is interpolated from neighboring 
sampled pixels.  Pixel sampling is done in a recursively applied pattern.  Marc Levoy 
used a rectangular subdivision whose recursion is similar to that in quadtrees [Levoy90b]. 
 Shu and Liu show that recursive triangular subdivision patterns are generally more 
efficient than rectangular patterns since such patterns adapt more locally and thus result 
in fewer total pixels sampled [Shu+91].

Progressive refinement is the technique of producing "rough" images at high frame rates 
when a user is modifying view parameters and progressively better images when user 
input ceases [Bergman+86].  With this technique users get the benefit of high frame rates 
while navigating the data and high quality images when users stop to inspect an image in 
more detail.  With a ray casting renderer, a rough image is computed quickly by 
undersampling the image lattice.  Undersampling may be done in several ways:  

1 - regular but sparse sampling in all three dimensions,
2 - raising the threshold on the variance allowed in adaptive sampling,
3 - lowering the alpha cutoff threshold of accumulated opacity.

Any or all of these may be used to lower the number of ray samples computed.  Image 
pixels that are not sampled directly have their colors interpolated from neighboring 
computed pixels.  To minimize aliasing artifacts, the object data should be low-pass 
filtered proportionally with the degree of undersampling.  By precomputing a pyramid of 
multiple resolution filtered data sets, the most appropriate set can be rendered for a given 
level of undersampling.  By using the filtered data sets, the undersampled images will 
appear blurry but contain fewer aliasing artifacts.  It is a subjective argument as to which 
a user finds more desirable.  Marc Levoy and Ross Whitaker used pyramidal data to 
subsample a volume based on the gaze direction of the user [Levoy+90].

Another ray casting speedup involves the use of octrees.  Octrees are hierarchical spatial 
decomposition graphs.  Each parent node has eight children representing the eight octants 
of space into which a volume is decomposed.  Volume data is preprocessed so that its 
associated octree representation contains a descriptor at each node.  The descriptor 
conveys a summary of the data in the object lattice subvolume associated with the octree 
node.  At sample points along a ray, the octree is traversed to access the descriptors for 
the point to be sampled.  The descriptors allow empty subvolumes to be skipped since 
they will not contribute to the image [Levoy90].  They may also indicate the appropriate 
sample density for a subvolume [Danskin+92].  

A distance function may be used to speed up ray casting [Zuiderveld+92].  This method 
computes a volume that contains the radial distance from each point in the data volume to 
the closest "interesting" point, where "interesting" means above a threshold.  This 
distance value allows sample points in empty regions to be skipped - just as an octree 
does.  This technique also helps avoid sub-sampling artifacts that occur with adaptive 
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sampling since small features will not be missed. 

2.1.2.  Splatting 

This method, in its general form, convolves each object lattice point with a 3D 
reconstruction filter and accumulates the contribution of the filtered points on the image 
lattice.  In practice, this is not done due to the computational expense of three-dimensional 
convolution.  Implementations prior to this date have approximated the ideal by limiting 
the spatial domain of the convolution to two dimensions [Westover91].  Using this 
approximation, object lattice slices are projected onto image lattice planes.   The object 
lattice is cut into slices along the plane most perpendicular to the view direction.  The 2D 
slice image is reconstructed from the points in each object lattice slice and projected onto 
an image lattice plane.  The reconstruction is often done with a truncated Gaussian filter 
since its bandwidth × area product is minimal.  This property means that for a given 
spatial extent, a Gaussian low pass filter passes the least possible high frequency energy.  
This is desirable since it minimizes aliasing during the reconstruction process.  The slice 
image is resampled and accumulated on a plane of the image lattice.  Figure 2.2 
illustrates two points in a slice projecting onto an image lattice plane.  The textured 
ellipses in the figure represent the projected filter kernels.  The kernels shown here have a 
radial extent of one object lattice coordinate.  Typical filter extents range from one to two 
so their overlap is considerable, resulting in each image lattice pixel accumulating energy 
from many object lattice points.  Since the filter is position-invariant for affine 
transformations, software lookup table methods are often used to quickly approximate it 
[Westover89].   Polygon rendering hardware can generate filter kernels for perspective 
projections [Laur91] [Neumann92].  The reconstructed field values on the image lattice 
are shaded and classified prior to being composited to produce an image.  This method 
constrains the number of image lattice planes to be equal to the number of object lattice 
slices.  Each image lattice plane is a reconstructed, shaded, classified, and projected 
image of a single slice of data.  A volume image is created by compositing the projected 
slice images together.  Since each slice image is independent, as the view direction 
changes, the slices just "slide" relative to each other.  Both ray casting and splatting 
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produce multiple two-dimensional images and composite them.  In ray casting the images 
lie perpendicular to the view direction.  In splatting the images lie in a plane of the object 
lattice and are projected onto the image plane.  Both methods are equally valid 
approaches to approximating samples along the intensity integral of equation 1.3.  The 
resample-before-shade sequence of the splatting approach is given below.

for each slice of the object lattice {
    for each point in a slice {
        filter and project a point (f * K) onto an image lattice plane;
        accumulate energy at image lattice points to produce F;
    }
    shade and classify image lattice points to obtain Ω and E;
}
compute segment I and T from averaged Ω and E of two adjacent slices;
composite all segment I and T values to produce final image;

The shade-before-resample variation of splatting is shown below.  It was used by 
Westover, Laur and Neumann in their implementations.

shade and classify object lattice points to obtain Ω and E;
for each slice of the object lattice {
    for each point in a slice {
        filter and project a point (Ω * K and E * K) onto an image lattice plane;
        accumulate energy at image lattice points to incrementally produce Ω and E;
}  }
compute segment I and T from averaged Ω and E of two adjacent slices;
composite all segment I and T values to produce final image;

Little has been discovered to enhance the speed of this technique.  Most effort has gone 
into optimizing the reconstruction process.  There are no analogous methods to those 
available with ray casting.   Splatting is an object-order method due to the algorithm’s 
sequential traversal of the data set.  Object-order approaches do have one important 
optimization - data values below a threshold of interest may be ignored.  For many data 
sets, more than fifty percent of the data points are uninteresting.  This percentage is 
clearly dependent on the data and classification; data sets with eighty and ninety percent 
of their points below the threshold of interest are not uncommon.

One efficiency enhancement for splatting that uses a hierarchical representation of a 
volume was presented by David Laur and Pat Hanrahan [Laur+91].  The method 
constructs an octree representation of the volume where each node contains I and T 
values that approximate all that node’s children and the error associated with the 
approximation.  This structure is recomputed every time the classification changes.  The 
shading function is restricted to be view-independent.  The octree is traversed in 
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view-order to generate an image.  At each node the node representation error is compared 
to an allowable error threshold.  If the threshold is greater than the node representation 
error, the node is splatted and none of that node’s children are visited.  If the threshold 
error is exceeded, then the node’s children are recursively visited, to the leaf nodes if 
necessary.

2.1.3.  Volume Shearing

This approach applies a sequence of three 1D transformations to the object lattice, 
transforming it one dimension at a time into the image lattice.  An affine view 
transformation may be decomposed into three sequential 3D shear operations 
[Hanrahan90].  Perspective may be applied through two additional 1D transformations.  
A 3D shear is effected by a 1D transformation of the form x′ = Ax + B where A and B 
are constant for points along the transformation axis.  Since these transformations may 
use only a 1D reconstruction filter, cubic splines are commonly used to facilitate the 
resampling.  Once resampled, the volume lies on the image lattice and is ready for 
shading, classification, and compositing.  Figure 2.3 illustrates the shearing steps.  The 
gray grid is a plane of the image lattice.  The image lattice x-axis is oriented roughly left 
to right and the y-axis runs roughly vertically.  The object lattice starts out unaligned with 
respect to the image lattice.  The first shear in this example resamples the data along the 
object axis that lies closest to parallel to the image x-axis.  The result is that all the new 
object lattice points now lie on integer image lattice x-coordinates.  The second shear is 
along the object axis closest to parallel to the image y-axis resulting in the new object 
lattice points lying on integer image x and y-coordinates.  The final shear fully aligns the 
points with the image lattice by resampling along the object axis closest to parallel to the 
image z-axis.  In practice the sequence of shears is determined by view direction such 
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that minimal signal degradation occurs.  For further detail, the reader is referred to Pat 
Hanrahan’s ample description of the technique and its practical application [Hanrahan90].

The following code fragment conveys the simple sequencing of this method in the 
reconstruct-before-shade form.  Its other forms are simple extensions of those shown for 
ray casting and splatting, and thus are not included here.  We assume the appropriate 
order of shearing is the same as used in the previous example.  

shear volume f along x-axis;
shear volume f along y-axis;
shear volume f along z-axis;
shade and classify resampled volume to obtain Ω and E;
computer I and T as the average of successive points along the image lattice z-axis;
composite I and T of all segments along the image z-axis;

Volume shearing, like splatting, is an object order technique which can test points against 
a threshold of interest.  To date there are no other published methods of optimizing this 
technique.  In the implementation described in the next chapter, we show that images 
may be rendered by performing only two volume shears.  This saves over one-third of the 
transformation and reconstruction time, and about one-half of the compositing time 
without incurring additional cost elsewhere in the algorithm.

2.2.  Parallel Algorithms

Many previously published parallel approaches to direct volume rendering target 
application-specific hardware.  Recently, work has been done for general purpose 
multicomputers.  Where possible, these works are grouped according to two issues:  
whether an image or object-partition parallel algorithm is used, and whether an image or 
object-order rendering method is used.  These distinctions are refined further in chapters 
three and five.

2.2.1.  Object Partition, Object-Order Rendering

In the only comparative study of parallel volume rendering algorithms published to 
date, Judy Challinger compares the performance of a cell projection rendering method to 
ray casting on a BBN TC2000 multicomputer [Challinger91].  This system uses the 
shared memory communications model with a network that essentially provides a full 
N-to-N crossbar interconnection of the nodes and their local memory.  The cell projection 
results are described here.  Section 2.2.4. describes the ray casting results.  The cell 
projection method [Max+90] [Wilhelms+91] is an object-order rendering method which 
integrates through projected volume cells.  The integration at each pixel is based on front 
and rear cell-face values interpolated from the cell vertex values.  The algorithm uses an 
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object partition where interleaved cells are assigned to nodes on demand.  Here increased 
communication costs arise from the need to composite into a globally accessible frame 
buffer for each pixel of each cell.  This increased cost is not directly reported by the 
author, but it is consistent with the increased total projection cost measured as the the 
number of nodes increases.  

2.2.2.  Object Partition, Image-Order Rendering

An algorithm implemented on Pixel-Planes 5 introduced a two-level node 
organization where node groups, or clusters, act as a single "logical node" in a partition 
[Yoo+91].  Considering each cluster as a single node makes this algorithm an object 
partition.  Clusters are each assigned slab subsets of the data and are responsible for 
rendering a complete image of their data.  Nodes within a cluster all have private copies 
of the same subset of data.  The final images from each cluster are sent to a separate set 
of processors that composite them in the proper order and update the frame buffer.  
Within each cluster any partition may be used; in this case, an interleaved image partition 
with image order rendering by ray casting is used.  Within a cluster, scan lines are 
distributed on demand to the nodes for ray casting.  This provides dynamic load 
balancing within clusters.  The load balance among clusters is set by the slab data 
distribution which is fixed in this implementation.  There is no communication penalty 
for the interleaved image lattice since nodes only reference volume data within their local 
memory.  This rendering program, called VVEVOL, will be referred to in later chapters.

In another Pixel-Planes 5 implementation called VOL, nodes produce a local image of 
their block data subsets by ray casting [Yoo+91].   The local images are sent to the SIMD 
pixel-processors for compositing and transmission to the frame buffer.  This algorithm’s 
lack of a load balancing mechanism limited its performance.  In later chapters a similar 
algorithm is described with a load balancing method which overcomes the performance 
limitations.

2.2.3.  Image Partition, Object-Order Rendering

Lee Westover introduced two parallel splatting algorithms.  The earlier design was 
implemented using multiple processors to traverse and shade their slab subset of data.  
The resulting interesting tuples are sent to a central "splat-server" where they are 
composited into a final image [Westover89].  As the number of traversal processors 
increases, the single splat-server becomes a bottleneck.  The proposed later algorithm 
addresses this problem by having each node traverse a block of the volume and act as a 
splat-server for a subset of scan lines [Westover91].  Other nodes collect the splatted scan 
lines for compositing and writing to a frame buffer.  The image lattice is interleaved in 
one dimension (scan lines) for load balancing.  This interleaving raises the communication 
cost by a factor equal to the number of scan lines covered by the splat kernel.  The target 
system has a shared memory communications model provided by a global-access bus.
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A Pixel-Planes 5 implementation uses the SIMD pixel-processor arrays to generate the 
splat kernel as a "graphic primitive".  Multiple MIMD traversal processors feed 
interesting points from their slab data subsets to the SIMD splat renderers [Neumann91].  
Message passing communications support is provided by the operating system over an 
eight channel ring.  This is an image partition algorithm using separate traversal and splat 
processors.  In this algorithm the slabs are interleaved in one dimension (as slices) with 
no increase in communication cost.  This shows that an image partition may interleave 
the object lattice without incurring a penalty.  The converse of this is also true - an object 
partition algorithm may interleave the image lattice without penalty.  This issue is 
explored further in chapters five and six.

2.2.4.  Image Partition, Image-Order Rendering

The first volume rendering method implemented on Pixel-Planes 5 uses multiple 
SIMD shaders and MIMD ray casting processors interconnected by a ring network 
[Levoy89] [Yoo+92].  This is an image partition algorithm unique in its use of SIMD 
processor arrays to preform the classification and shading.  Ray casting nodes are 
statically assigned interleaved image regions.  The SIMD arrays store interleaved data 
blocks.  High latency for data access is introduced by the message passing communication 
model and the decision to perform the shading in the SIMD arrays.  The resulting latency 
of up to 4 ms. per data block access limits the performance and speedup attainable by this 
implementation. 

Jason Nieh and Marc Levoy implemented an interleaved image partition with an 
optimized ray casting algorithm on the Stanford DASH [Nieh+92] .  This system has a 
shared memory model and a mesh network topology [Dash].  The ray casting renderer 
uses adaptive termination, adaptive sampling, and an octree hierarchy to optimize the ray 
casting.  The image lattice is interleaved in two dimensions with square screen regions to 
provide load balancing.  The low latency communications network (~3µs per remote 
access) keeps the memory access overhead in the range of twenty to thirty-eight percent 
of the rendering time.  For a 48 node system, speedups of forty and thirty are given for 
non-adaptive and adaptive sampling, respectively.

As the second part of a comparison study, ray casting was done on a BBN TC2000 
multicomputer [Challinger91] using an image partition algorithm with interleaved scan 
lines or pixels assigned to nodes on demand.  Since the image lattice is interleaved, a 
communications penalty for accessing data values from multiple nodes is exacted.  This 
effect is not directly reported but may be inferred from the data presented in the case 
where interleaving is on a pixel basis.  One conclusion drawn from this work is that ray 
casting scales better than projection methods on shared memory systems, demonstrating 
almost linear speedup from ten to one-hundred nodes when scan line interleaving is used.
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Brian Corrie and Paul Mackerras use ray casting with an interleaved image partition 
algorithm on a Fujitsu AP1000 multicomputer with a two-dimensional torus network 
topology [Corrie+92]. A shared virtual-memory system is built on top of the message 
passing library provided by Fujitsu.  They compare pixel, scanline, and rectangular-region 
image lattice interleaving methods and conclude that rectangular-region interleaving is an 
effective method of load balancing and incurs minimal communications penalty.

An algorithm implemented on an nCUBE-2 model 6410 also uses the notion of node 
clusters [Montani+92].  The nCUBE has a message passing network model and a 
hypercube topology.  Clusters are assigned interleaved scan lines of the image, making 
this algorithm an interleaved image partition.  Within each cluster any partition may be 
used, and in this case the authors use an object partition with image order rendering by 
ray casting.  Within a cluster a complete copy of the data set is distributed among the 
nodes.  Each cluster node ray-casts its slab subset of the volume.  Rays that pass into 
neighboring slabs are passed to the corresponding node within the same cluster for 
continuation.  Rays stay within their cluster until completion when the final color is sent 
to a global access frame buffer.  The hierarchical partitions localize communication 
within a cluster.  This removes the penalty for the interleaved image lattice and provides 
a statically set load balance between clusters.  Load balance within clusters is achieved 
by moving the slab boundaries between nodes based on a statistical sampling of the 
work-load from a subset of the rays to be traced.  Results indicate a speedup of 102 for a 
128 node system with a cluster size of two.  Efficiency drops sharply as the cluster size 
increases due to greater communication and synchronization within each cluster.

2.2.5.  SIMD, Vector,  and Custom Hardware Approaches

Tim Cullip recently implemented a volume renderer using the SGI RealityEngine 
[Cullip93].  This system has custom VLSI pixel-processors that are capable of mapping 
3D textures onto polygons.  The volume is defined as a two-component 3D texture.  One 
component is the original data value, and the other is a pre-computed shading intensity.  
Equally spaced polygons are embedded in the texture.  The sampled textured data value 
at each polygon pixel is passed through classifier lookup tables to produce intrinsic color 
and opacity.  Intrinsic color is multiplied by the shading intensity texture value to 
produce a final color.  The colors and opacities of successive polygons are composited to 
produce the final image.  This method is limited to using fixed, object-space lighting, and 
texture memory size is limited to one mega-point data sets.  Larger data sets must be 
partitioned and loaded into texture memory in chunks, at the expense of about 0.1 
seconds per load.  A one mega-point data set is rendered on a 5122 screen at about ten 
frames per second - the fastest performance reported for a commercially available 
system.  This performance illustrates the benefit of fast reconstruction and resampling 
and will likely inspire further research into other VLSI methods of accelerating 
reconstruction.
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One of the first published direct volume rendering algorithms uses a four-channel SIMD 
processor to project a volume by sequential 2D image transformations and compositing 
[Drebin+88].  Each channel operates on a separate element of a data point’s 
〈R,G,B,Alpha〉 tuple and has simultaneous access to a portion of a shared memory 
[Levinthal+84].  The reconstruction method is similar to that described for volume 
shearing.  Each 2D transformation is performed by two 1D cubic interpolations.  The 
per-tuple-element parallelism is uniquely suited to the CHAP hardware but not 
extendable to larger numbers of processors.

Peter Shröder and James Salem demonstrate a data-parallel volume shearing method on 
the Connection Machine CM2 [Shröder+91].  This algorithm scales well on the CM2 
class of machines, but, as presented, it is limited to affine projections and rotation-only 
transformations.  

Peter Shröder and Gordon Stoll used a line drawing algorithm to do ray tracing on the 
CM2 and Princeton Engine [Shröder+92].  The Princeton Engine is a special purpose ring 
of 2048 DSP processors.  It is remarkably fast at performing this algorithm;  the system 
achieves speeds in excess of thirty frames per second for 1283 volumes.

The MasPar MP-1’s indirect addressing is used with a modified volume shearing 
algorithm to  perform arbitrary perspective transformations [Vénzia+92].  The authors 
demonstrate linear speedup for 1K and 16K node systems.  A 1283 volume is rendered in 
under 0.5 seconds using linear interpolation during the shearing reconstruction.

Vector and parallel processors are used to perform affine transformations efficiently on 
volumes [Machiraju+92].  Example implementations are compared on the Cray/Y-MP, 
the IBM Power Visualization System, and a Silicon Graphics multiprocessor workstation.

Several custom hardware systems utilize multiple traversal processors, each responsible 
for a sub-volume of data [Goldwasser+85] [Yazdy+90].  However, these schemes rely on 
a single compositing processor which becomes a bottleneck as more projection 
processors are added.  

2.3.  Reconstruction Methods

Reconstruction is the process of applying a filter to discrete sampled signal points, 
thereby creating a  continuous function.  There are numerous good references on the 
signal processing theory of reconstruction [Castleman] [Jain].  A simplified, 
one-dimensional illustration of signal processing in volume rendering is shown in figure 
2.4.  Using the notation of section 1.1, the original signal G is a real-world continuous 
function.  It is uniformly sampled at a rate at least twice the highest frequency component 
in G.  The discrete samples f are filtered by a reconstruction filter K to produce a 
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continuous function F which ideally should 
be equivalent to G.  Figure 2.4 shows recon-
struction by a triangle filter (linear interpola-
tion) in the lower image.  The reconstructed 
function F is then resampled as necessary.  

There are two possible error sources in this 
process.  Real world signals are not infinite 
in extent; they are truncated or windowed to 
a size suitable for processing.  This effective-
ly adds high frequency energy to the signal 
spectrum.  Realizable filters are not ideal.  
They always leak some energy beyond their 
cut-off point.  Even if the windowed G 
function is filtered, it will contain some 
energy at frequencies beyond one-half the 
sample rate.  Therefore the discrete samples 
will contain some aliased energy.  This 
source of aliasing has been called prealiasing 
[Mitchell+88].  The second source of error, 
called postaliasing, is due to a poor choice 
of reconstruction filter.  Since the 
reconstructed signal F will be resampled, it 
must contain no high frequencies that are 
above one-half the resampling rate.  It is 
desirable to have a reconstruction filter K 
that minimizes these high frequencies while 
reconstructing G as accurately as possible. 
 Three filter functions are compared in 
chapters three and four for their accuracy in reconstructing G.  Below are summaries of 
previous efforts in evaluating the reconstruction errors produced by these filters.

Mitchell and Netravali published a comparative study of separable cubic filters applied to 
2D image reconstruction [Mitchell+88] in which a family of two-parameter filters were 
subjectively evaluated by a test group.  The use of the signal derivative to minimize 
postaliasing is also presented.  Based on prior work by Robert Keys [Keys81], a 
one-parameter subset of the two-parameter family is shown to have quadratic 
convergence of the error (F - G) with respect to the sampling rate.  This family of filters 
contains the Catmull-Rom spline which actually has cubic convergence and is one of the 
filters compared in chapters three and four.

Robert Keys derives the Catmull-Rom filter as the only exact-matching cubic filter with 
cubic convergence [Keys81].  He also shows that fourth-order convergence is the highest 
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order possible from piecewise cubic polynomials but only obtained by increasing the 
support of the filter to six sample points.  In his implementation timing tests, the cubic 
filter required approximately twice the computation time of linear interpolation.  The 
Catmull-Rom filter has also been shown to be the optimal cubic filter by analysis in the 
Fourier domain [Park+83]. 

Roy Hashimoto compares the two-parameter family of separable cubic filters applied to 
3D volume reconstruction [Hashimoto90].  Using isosurface rendering, he concludes that 
blurring and ringing produced by cubic filters produce more objectionable artifacts than 
those produced by trilinear interpolation.  He also points out the inaccuracies of linearly 
interpolating gradients during shading; he recommends cubic interpolation of those 
instead.

A method of projecting rectilinear cells and a comparative study of applicable 
reconstruction and integration methods was published by Wilhelms and Gelder 
[Wilhelms+91].  This work also showed the effects of varying precision in the 
compositing process.  
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