
3. Image-Based Reconstruction Error Comparison

In this chapter, images produced with three reconstruction filters are compared to
reference images rendered without reconstruction. An image error metric is defined to
quantify the comparison results. The data used to produce the test and reference images
are designed to highlight differences in reconstruction accuracy by incorporating features
of varying scale. The concept of features existing in spatial and scale dimensions is
borrowed from the vision literature and summarized in the next section (§3.1). The
image error measurements in this chapter are reinforced in chapter four with analytical
reconstruction error bounds expressed as a function of feature scale. Numerical error
analysis expresses error bounds as a polynomial function of the original signal, its
derivatives, and the sample interval. Expressing the error bound in terms of feature scale
and the sample interval is shown to be an alternative representation.

3.1. Feature Scale

While the Fourier domain conveys information about signals as a whole, it is not very
intuitive or descriptive for relating the properties of a local region of a signal. A domain
more descriptive of local signal properties is that of scale space. Signal regions are
classified as features of a particular scale based on the response of an operator with some
aperture, positioned over that region. A useful operator is the Laplacian of the Gaussian,
A = ∇2(G(σ, d)), where

G(σ, d) = (2πσ2)−1/2 exp(−d2/ 2σ2) (3.1)

with the operator aperture defined as σ. Figure 3.1 illustrates a one-dimensional signal
f(x) and the responses of operators A of three different apertures. At point p the response
is highest for the operator with aperture σ1. In the Fourier domain we say a signal has an
energy spectrum over a range of frequencies. The operator response at different apertures
is analogously the energy spectrum over a range of scales - but in this case the spectrum
describes only a local region of the signal, not the whole thing. A single feature may
cause an isolated peak at a small scale level and also be part of a larger structure at a
higher scale level. A multiscale hierarchy is used in some advanced interactive
segmentation techniques [Pizer88] that have been applied to volume rendering [Yoo+91].

If scale spectra were known for the whole data set, it might be used to adaptively sample
the data to maintain a tolerable error. A similar idea for adaptive sampling is applied to
volumes by David Laur and Pat Hanrahan [Laur91]. Their approach measures error by
comparing the true values of a region of points with their approximate representation at
different levels of hierarchy. The highest level (i.e.: least-detailed) representation
allowed by a variable error bound is used to render the region. The utilization of feature
scale information to determine an error metric and corresponding sample rate has not

26

been tried. This problem is outside the scope of this work, but is an area for future
exploration.

3.2. Test Data

Volume data, for the purposes of this research, will be a scalar field in ℜ3. The field
function may be encoded or represented in a variety of ways. For example, it could be
described by an explicit function f(x, y, z) or an array of samples Fi, j, k. The array of
samples representation is most commonly encountered when the data is acquired from the
real world or a simulation of the real world. Medical images or results from a finite
element analysis are examples of volumes represented by arrays of samples. The explicit
function representation is useful in modeling. One approach to modeling objects in a

27

Fig. 3.1 - Multiscale operator response function

f(x)

p

aperture σ1

aperture σ2

aperture σ3

volume is to use multiple field generator primitives [Blinn82] [Muraki91]. The scalar
field at any point in the volume is the sum of the effects of all the generators. To produce
an image from either data format, we must be able to sample the data on the image space
lattice. The accuracy of this sampling process is greatly influenced by the representation.
Only the explicit function may be sampled anywhere with arbitrary precision. Practical
considerations limit the sampling accuracy when using the array-of-samples representation.
 Perfect reconstruction is theoretically possible with an infinite-extent filter kernel. In
practice, limited-extent filters are used to make computation tractable.

3.2.1. Explicit Volume Data

In this study an explicit representation of volume data is created as a standard against
which to compare reconstruction methods. It is based on Gaussian point and line
generators. A point generates a radially symmetric field G(σ, d) parameterized by σ, the
feature scale, which determines the distribution of the field about its origin. A small σ
corresponds to a tightly packed distribution while a large σ yields a broadly distributed
field. For any σ value the total energy of the field is normalized so that the path integral
through the center point always yields unity. One test volume (called "points") has an
array of forty-eight point generators organized as six rows with eight points per row.
Within any row σ is constant while each row has a different σ. The point coordinates
〈i, j, k〉 are given in figure 3.2. They are defined to occupy a volume of dimension
64×64×64. Figure 3.4a is an image of the points data when viewed down the k-axis.

A second test data set (called "mixed") consists of line segments and points. The line
segments generate a field with Gaussian decay as a function of the minimum distance to
the segment. Figure 3.3 lists the lines and points in the mixed data while figure 3.4b is an
image of it viewed down the k-axis. Only one coordinate is listed for line segments since
they all share a common endpoint at 〈32, 32, 32〉. The total volume occupied by the
mixed data is 64×64×64 units.

28

σ = 0.5 σ = 0.7 σ = 0.9 σ = 1.1 σ = 1.3 σ = 1.5
 9.0, 7.0, 9.0 9.0, 16.0, 14.0 9.0, 25.0, 19.0 9.0, 34.0, 24.0 9.0, 43.0, 29.0 9.0, 52.0, 34.0

12.0, 7.34, 10.4 12.0, 16.3, 14.7 12.0, 25.3, 19.7 12.0, 34.3, 24.7 12.0, 43.3, 29.7 12.0, 52.3, 34.7

15.6 7.68, 10.4 15.6, 16.6, 15.4 15.6, 25.6, 20.4 15.6, 34.6, 25.4 15.6, 43.6, 30.4 15.6, 52.6, 35.4

20.0, 8.0, 11.2 20.0, 17.0, 16.2 20.0, 26.0, 21.2 20.0, 35.0, 26.2 20.0, 44.0, 31.2 20.0, 53.0, 36.2

25.1 8.36 11.9 25.1, 17.3, 16.9 25.1, 26.3, 21.9 25.1, 35.3, 26.9 25.1, 44.3, 31.9 25.1, 53.3, 36.9

30.8, 8.7, 12.7 30.8, 17.7, 17.7 30.8, 26.7, 22.7 30.8, 35.7, 27.7 30.8, 44.7, 32.7 30.8, 53.7, 47.7

37.2, 9.04, 13.4 37.2, 18.0, 18.4 37.2, 27.0, 23.4 37.2, 36.0, 28.4 37.2, 45.0, 33.4 37.2, 54.0, 38.4

44.4, 9.38, 14.2 44.4, 18.3, 19.2 44.4, 27.3, 24.2 44.4, 36.3, 29.2 44.4, 45.3, 34.2 44.4, 54.3, 39.2

Fig. 3.2 - Points test data generator coordinates

3.2.2. Sampled Volume Data and Prealiasing

The test volumes defined above may also be represented by arrays of samples. Point
sampling the explicit functions on a 64×64×64 regular grid in ℜ3 produces the sampled
data sets that we will consider. Sampling theory dictates that such samples capture
spectral features of the original function that are below one-half the sampling frequency
(the Nyquist limit); higher frequency components will cause prealiasing. This section
shows what proportion of a feature’s spectrum causes prealiasing. The proportion of the
spectral content above the Nyquist limit is called the prealiasing error. A comparison
can be made between the reconstruction error and prealiasing error. In chapter four the
reconstruction error is shown to be larger than the prealiasing error; this demonstrates
that the reconstruction filter is generating error in addition to that present in the samples
themselves.

29

a - points b - mixed

Fig. 3.4 - Test data sets viewed down the k-axis

Point coords σ Point coords σ
20.7, 42.3, 32.5 2.44 24.4, 29.4, 27.4 1.86

37.5, 35.4, 40.9 1.28 41.7, 24.4, 23.2 1.77

38.7, 43.0, 30.4 0.64 26.4, 38.6, 41.0 0.76

22.0, 28.8, 29.4 3.07 37.5, 35.5, 29.9 2.16

24.6, 22.9, 35.6 1.48 26.0, 22.8, 42.3 0.56

25.6, 30.4, 42.2 2.51 24.0, 22.8, 42.3 0.56

31.3, 26.0, 28.9 1.03 38.8, 27.1, 26.8 2.93

40.9, 35.3, 23.3 3.32 32.7, 30.6, 34.2 0.59

Line endpoint σ Line endpoint σ
12.9, 25.2, 53.0 0.89 12.6, 45.0, 37.3 0.85

18.6, 13.7, 31.4 0.77 33.2, 40.8, 27.0 0.75

26.0, 34.0, 52.7 0.92 17.4, 44.0, 35.4 0.79

53.0, 15.0, 47.7 0.91 33.3, 26.5, 13.9 0.61

45.9, 36.1, 31.1 0.58 51.1, 23.0, 51.7 0.55

33.6, 28.4, 23.4 0.64 48.9, 47.8, 36.8 0.99

27.8, 21.9, 20.1 0.97 16.4, 18.4, 16.5 0.76

Fig. 3.3 - Mixed test data generator coordinates

The Fourier spectrum of a Gaussian is known to be

F(G(σ, d)) = exp(-2(πσν)2) (3.2)

Rewriting this in the form of another Gaussian and normalizing it for unit total energy we
obtain

F(G(σ, d)) = ((2π)1/2 σ)-1 exp(-(2πσ2ν)2 (2σ2)-1) (3.3)
= G(σ, 2πσ2ν) (3.4)

This shows that the Fourier spectrum of a Gaussian can be obtained by simply scaling the
horizontal axis. We determine the prealiasing error Ρ(σ) by using the erf(z) function to
evaluate the integral of a portion of a Gaussian.

 z
Ρ(σ) = 1 − erf(z) = 1 − 2 (π-1/2) ∫ exp(t2) dt (3.5)

 0

where t = z / (21/2 σ) (3.6)
z = 2πσ2ν (3.7)

The sample frequency is 1.0 if we use the sample grid for spatial measurement. The
Nyquist frequency is then ν = 0.5. The energy above the Nyquist frequency is

Ρ(σ) = 1 − erf(πσ2) (3.8)

A graph of this prealiasing error is shown in Fig. 3.5. For all but the smallest feature, the
test-data features have σ ≥ 0.7, and their prealiasing error is very low. It is important to
note that prealiasing error does not derive from sample error, each sample value is
accurate. Prealiasing error manifests itself during reconstruction. Even by applying an
arbitrarily-good reconstruction filter, the prealiasing error limits the reconstruction

30

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 3.5 - Prealiasing error P(σ)

Feature Scale σ

Normalized
Prealiasing

Error

accuracy.

3.3. Image Comparison Metric

One approach to evaluating reconstruction methods is to compare rendered images
against a standard. We have an explicit form of volume data that may be precisely
evaluated anywhere in the volume and the sampled form that requires reconstruction.
Images rendered using the reconstructed data are compared against images rendered
using the explicit form. If all steps but the resampling are the same, any differences in
the images must be due to errors in reconstruction.

The question arises as to how to measure error between two volume rendered images.
While this is ultimately an observer-perception issue and perceptual error is difficult to
quantify, there is a rationale for employing a simple metric. The observer normally does
not view the reconstructed volume directly - it is usually classified and shaded by an
arbitrarily-nonlinear process. Because of this nonlinearity, it is important that
reconstruction produce low numerical error. The assumption is that greater numerical
error is more likely to produce more perceptually-significant artifacts. Minimizing the
numerical error should minimize perceived errors in the final image. Since the shading
and classification functions are omitted during test image rendering, the image
differences are a measure of the reconstruction errors only. A quantitative metric of the
difference between images is obtained by treating each image as a single vector and
normalizing its magnitude; the inner product of two normalized image-vectors produces
a scaler that is a measure of how closely the images match. Each pixel’s attributes are an
element of the image vector. In addition to pixel intensity, the gradient vector computed
with a 3×3 Sobel kernel is also used as a pixel attribute. Since the human vision system
is sensitive to intensity gradients, it it logical to include this attribute in the comparison
metric. Image are compared by computing the inner product of the intensity, gradient,
and both attributes of each pixel. Let A and B each be normalized image-vectors with p
pixels. The inner product IP is a scalar defined as

IP = A0⋅B0 + A1⋅B1 + ... + Ap-1⋅Bp-1 (3.9)

When only the pixel-intensity attributes are considered, elements Aj and Bj are scalar
intensity values. When the pixel-gradient attributes are used, Aj and Bj are tuples whose
elements are the x and y-components of the gradient vector: Aj = 〈Aj∂x, Aj∂y〉 and
Bj = 〈Bj∂x, Bj∂y〉. When using the pixel-gradient attributes the IP product-terms are
computed as

AjBj = Aj∂x⋅Bj∂x + Aj∂y⋅Bj∂y. (3.10)

Similarly, Aj and Bj may be three-tuples containing the pixel intensity and gradient

31

components: Aj = 〈Aji, Aj∂x, Aj∂y〉 and Bj = 〈Bji, Bj∂x, Bj∂y〉. In this case the IP
product-terms are computed as

AjBj = Aji⋅Bji + Aj∂x⋅Bj∂x + Aj∂y⋅Bj∂y. (3.11)

Admittedly, this inner product approach by itself is not a strong evaluator of the
reconstruction methods. Any single measure of how much difference exists between the
pixel attributes ignores the spatial distribution of that error. Viewing the images can
compensate for this by enabling our visual systems to assess the distribution, but
observations are subjective, and a more rigorous measure of quality is desirable.
Therefore, the feature scale approach which gives an error bound is employed in chapter
four. Those results are intended to complement the image based approach. An error
bound alone does not fully evaluate a reconstruction method either, the distribution of
error is also important. The image comparisons provide a measure of the average error
since many reconstructed values contribute to each pixel of the images.

3.4. Rendering Methods

Before presenting the comparison results, some description of the volume renderers
used for these tests is appropriate. Several functions are common to any rendering
approach. Primarily these have to do with creating view matrices. We will adopt the
convention that these matrices are 3×4 arrays and points are four-element column
vectors. All transformations will be affine for simplicity’s sake. Two coordinate systems
are of interest, object space and image space. Object space has right-hand coordinates
〈i, j, k〉 where point samples lie on integer lattice points. Screen space has right-hand
coordinates 〈x, y, z〉 where pixels fall on integer coordinate points in the x,y plane.

For any axis of rotation n, defined by α, β, and γ, [Rogers+76] and angle of rotation θ
about n, a rotation matrix [Rot] can be constructed (Fig. 3.6). For volume data to be
rotated about its center, a translation matrix [Trans] is constructed that will shift the

32

Fig. 3.6 - Specifying a view (adapted from Rogers and Adams pp. 56)

i

j

k

n

γ

α

θβ

origin to the center of the volume. A matrix [Screen] is also created that transforms a
rotated object space lattice to image lattice coordinates; this is at most a scaling and
translation. For each of these matrices, an inverse is also computed. Concatenated as

[Mat] = [Screen] [Trans]-1 [Rot] [Trans] (3.12)

[Mat] will transform points from object space into image coordinates. When
concatenated as

[Mat]-1 = [Trans]-1 [Rot]-1 [Trans] [Screen]-1 (3.13)

[Mat]-1 will transform points from image coordinates into object space.

Regardless of reconstruction method, all renderers must composite their resampled data
values in view order. The common practice of using eight-bit integer representations of
segment values leads to large relative errors when compositing [Wilhelms+91]. In the
test implementations, all representations and computations use single-precision floating
point format which is more than sufficient to maintain accuracy during compositing.

3.5. Experimental Results

The explicit data representation is used to render images that require no reconstruction.
 These images, shown in figure 3.7, are 128×128 pixels in size and considered to be
references for making comparisons in the next sections. All test images are computed for
a view specified by α = 6.75°, β = 16.5°, γ = 3.375°, and θ = 18.0°. A sequence of
images with varying views of the points data set are also produced for visually illustrating
view dependencies.

3.5.1. Ray Casting with Pyramid Filter

Ray casting is an image order rendering method which resamples reconstructed data
at points along rays cast into the volume. Sample values are computed by trilinear
interpolation of the eight nearest object lattice values. It is possible to decrease the

33

a - points b - mixed

Fig. 3.7 - Reference images

amount of computation by subsampling, thus creating a coarser image lattice. Using a
step size of two and casting rays through alternate pixels doubles the spacing between
image lattice points and reduces the number of samples computed by a factor of eight.
Images of the test data sets rendered with sample step sizes of one, two, four, and six
along the screen space z-axis, and rays cast every 1×1, 2×2, and 4×4 pixels, are shown in
figure 3.8 and 3.9. Pixels between rays are bilinearly interpolated.

By taking the inner product of the test images with the reference images, we produce the
graphs shown in figure 3.10. These graphs show that the images in figures 3.8 and 3.9
that were obtained by sampling more densely than the object lattice show only slight
variations in their correlations to the reference images (i.e.: the cases with 1×1 or 2×2
pixels per ray and a step size of 1 or 2). The differences are not visually apparent in
figures 3.8 and 3.9. In this case, resampling at densities above the object lattice density is
not worth the effort. This is also the case for the other two rendering tests in the
remainder of this chapter. The graphs in figure 3.10 also indicate that trilinear

34

step size

1

2

4

6

 1×1 2×2 4×4 Pixels per ray

Fig. 3.8 - Ray casting with pyramid filter reconstruction

interpolation produces low overall error when the image lattice is at least as dense as the
object lattice. The low inner product measured for sparse image lattice densities (4×4
pixels per ray, or step size > 2) is not due to reconstruction error, but rather due to
subsampling of the reconstructed signal which is a source of postaliasing. It is interesting
to note the anisotropy in subsampling along different axes. The image error measure is
less sensitive to subsampling the z-dimension than the x and y-dimensions. This is due to
the integration along the z-axis which effectively averages the errors and thereby
minimizes their effect. We can exploit this characteristic by using a low image lattice
density in the z-dimension without causing artifacts in the image.

Figure 3.11 shows a reference animation sequence of eight images rendered using the
explicit data form and no reconstruction. Figure 3.12 shows the same sequence rendered
by ray casting with trilinear interpolation using a high density (1283) image lattice. The
absence of visually-apparent view-dependant artifacts offers some assurance that the test
results are generalizable to view transformations other than the one used in these tests.

 1×1 2×2 4×4 Pixels per ray

Fig. 3.9 - Ray casting with pyramid filter reconstruction

step size

1

2

4

6

35

36

80

85

90

95

100

1 2 3 4 5 6 7 8
1 ray per

pixel
1 ray per
2x2pixels

1 ray per
4x4 pixels

80

85

90

95

100

1 2 3 4 5 6 7 8
1 ray per

pixel
1 ray per
2x2pixels

1 ray per
4x4 pixels

80

85

90

95

100

1 2 3 4 5 6 7 8
1 ray per

pixel
1 ray per
2x2pixels

1 ray per
4x4 pixels

80

85

90

95

100

1 2 3 4 5 6 7 8
1 ray per

pixel
1 ray per
2x2pixels

1 ray per
4x4 pixels

80

85

90

95

100

1 2 3 4 5 6 7 8
1 ray per

pixel
1 ray per
2x2pixels

1 ray per
4x4 pixels

80

85

90

95

100

1 2 3 4 5 6 7 8
1 ray per

pixel
1 ray per
2x2pixels

1 ray per
4x4 pixels

(b) - Gradient IP (Points)

(c) - Intensity, Gradient IP (Points) (f) - Intensity, Gradient IP (Mixed)

(e) - Gradient IP (Mixed)

Fig. 3.10 - Inner Product of references with test images made with pyramid filter reconstruction
Horizontal axis is ray z-step size (data taken for step size = 1, 2, 4, 6, and 8)

(a) - Intensity IP (Points) (d) - Intensity IP (Mixed)

3.5.2. Splatting with Projected Gaussian

Splatting is an object-order rendering method. In principle, it is a 3D filtering
 method, but for efficiency it has only been used in a 2D form as described in section
2.1.2. Points within a slice of the data are filtered with a Gaussian to reconstruct a 2D
image of the slice. The slice is projected under the view matrix and resampled at each
pixel. Successive slices are composited to produce a final image. Zero-valued data
points need not be filtered since they do not contribute to the image. The amount of
computation may be decreased by using a coarser image lattice. Since splatting does not
resample along the image z-axis, we may only decrease the lattice density in the x and
y-dimensions. Figure 3.13 shows images of the points data for various filter kernel sizes
with lattice samples every 1×1, 2×2, and 4×4 pixels. Figure 3.14 shows similar images
for the mixed data. Pixels between lattice samples are bilinearly interpolated. As in the

37

Fig. 3.11 - Reference animation of points

Fig. 3.12 - Points animation using pyramid filter reconstruction

pyramid filter test, resampling more densely than the object lattice has a relatively small
effect on image quality compared to the rather large increase in the number of resampling
points and the computation required to compute their values.

The inner products of the test and reference images are shown in figure 3.15. The graphs
suggest that the lowest error is produced with a filter σ between 0.5 and 0.6. The
animation sequence in figure 3.16 is produced with a filter σ = 0.5 and 128×128×64
image lattice samples.

38

kernel σ

0.4

0.5

0.6

0.7

0.8

 1×1 2×2 4×4 pixels per sample

Fig. 3.13 - Splatting with Gaussian filter reconstruction

39

 1×1 2×2 4×4 pixels per sample

Fig. 3.14 - Splatting with Gaussian filter reconstruction

kernel σ

0.4

0.5

0.6

0.7

0.8

40

Fig. 3.15 - Inner Product of references with test images made with a Gaussian filter
Horizontal axis is Gaussian kernel σ (data taken at σ = 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9)

80

85

90

95

100

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

1 sample per
pixel

1 sample per
2x2pixels

1 sample per
4x4 pixels

80

85

90

95

100

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

1 sample per
pixel

1 sample per
2x2pixels

1 sample per
4x4 pixels

80

85

90

95

100

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

1 sample per
pixel

1 sample per
2x2pixels

1 sample per
4x4 pixels

80

85

90

95

100

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

1 sample per
pixel

1 sample per
2x2pixels

1 sample per
4x4 pixels

80

85

90

95

100

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

1 sample per
pixel

1 sample per
2x2pixels

1 sample per
4x4 pixels

80

85

90

95

100

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

1 sample per
pixel

1 sample per
2x2pixels

1 sample per
4x4 pixels

(a) - Intensity IP (Points) (d) - Intensity IP (Mixed)

(b) - Gradient IP (Points) (e) - Gradient IP (Mixed)

(c) - Intensity, Gradient IP (Points) (f) - Intensity, Gradient IP (Mixed)

3.5.3. Volume Shearing with Separable Cubic Filter

The images in this section are produced by volume shearing in two passes as opposed
to the usual three pass method. Reconstruction and resampling is done along the image x
and y-axis only; omitting the third pass saves over one-third of the computation time so
it is worth doing. As in splatting, no resampling along the z-axis is performed. In fact,
this method is similar to splatting in that two-dimensional images are reconstructed on
the object lattice and projected onto the screen, but here a separable cubic filter is used
instead of a Gaussian. The integration along the z-axis compensates for the view-dependent
distance between samples by using the "K" coefficient that is computed from the view
matrix and normally used during the third (z-axis) pass [Hanrahan90]. Chapter four
details the computation savings for this method.

The cubic filters used are of the two parameter family described in [Michell+88] and
section 4.3. The parameters are called B and C, and range over [0, 1]. Test images are
computed for the nine possible combinations with B and C taking on the values {0, 0.5,
1.0}. Three sets of nine images are tested, corresponding to image lattice densities of
1×1, 2×2, and 4×4 pixels per sample point. Only the density of the x and y-axes of the
image lattice are variable. The number of samples along the image lattice z-axis is fixed
by the dimensions of the object lattice, which in this case is sixty-four points. As with
splatting and ray casting, increasing the resampling density above the object-lattice
density produces relatively minor increases in the IP results. Figure 3.17 shows images
of the points data, figure 3.18 shows the mixed data. The inner products for the
parameters producing the best and worst images are shown in figure 3.19. The remaining
seven parameter combinations were omitted from the graphs for clarity. These graphs
illustrate that the Catmull-Rom cubic spline with B = 0 and C = 0.5 has the lowest image
error in all cases. This coincides with previous analysis of cubic filters [Keys81]

41

Fig. 3.16 - Points animation rendered by splatting with Gaussian filter σ = 0.5

[Park+83] [Michell+88]. Figure 3.20 shows the eight frame animation of points data
using the Catmull-Rom filter.

42

1 pixel per sample 2×2 pixels per sample
C = 0 C = 0.5 C = 1 C = 0 C = 0.5 C = 1

B = 1

B = 0.5

B = 0

B = 1

B = 0.5

B = 0

C = 0 C = 0.5 C = 1
4×4 pixels per sample

Fig. 3.17 - Volume shearing with separable cubic filter reconstruction

43

C = 0 C = 0.5 C = 1
4×4 pixels per sample

1 pixel per sample 2×2 pixels per sample
C = 0 C = 0.5 C = 1 C = 0 C = 0.5 C = 1

Fig. 3.18 - Volume shearing with separable cubic filter reconstruction

B = 1

B = 0.5

B = 0

44

80

85

90

95

100

1 1.5 2 2.5 3 3.5 4
B = 0

C = 0.5
B = 1
C = 0

80

85

90

95

100

1 1.5 2 2.5 3 3.5 4
B = 0

C = 0.5
B = 1
C = 0

80

85

90

95

100

1 1.5 2 2.5 3 3.5 4
B = 0

C = 0.5
B = 1
C = 0

(b) - Gradient IP (Points)

80

85

90

95

100

1 1.5 2 2.5 3 3.5 4
B = 0

C = 0.5
B = 1
C = 0

(e) - Gradient IP (Mixed)

80

85

90

95

100

1 1.5 2 2.5 3 3.5 4
B = 0

C = 0.5
B = 1
C = 0

(a) - Intensity IP (Points)

(c) - Intensity, Gradient IP (Points) (f) - Intensity, Gradient IP (Mixed)

Fig. 3.19 - Inner product of references and test images made with separable cubic filters
Horizontal axis is number of pixels per sample points (data taken at 1×1, 2×2, and 4×4)

80

85

90

95

100

1 1.5 2 2.5 3 3.5 4
B = 0

C = 0.5
B = 1
C = 0

(d) - Intensity IP (Mixed)

3.5.4. Filter Comparison

A comparison of the inner product results is shown in figure 3.21 for 128×128 and
64×64 pixel images. The best IP results (using gradient and intensity) for each filter are
averaged over the mixed and points data. The ray casting step size is fixed at two to
equalize the image lattice density for all filters. The Gaussian splat kernel has σ = 0.6
and the cubic filter is the Catmull-Rom spline.

In the experiment described in this chapter, the rendering methods, the dimension of the
filter, and the resampling point are all varied in addition to the filter kernels. It was
implicitly assumed that the filter kernel was the dominant factor affecting image quality.
Additional tests are run to verify this assumption. The splatting rendering method is used

45

Fig. 3.20 - Animation sequence made with Catmull-Rom cubic reconstruction filter

96.5

97

97.5

98

98.5

99

99.5

100

1 sample per 1x1 pixels 1 sample per 2x2 pixels

Volume shearing with cubic filter

Ray casting with pyramid filter

Splatting with Gaussian filter

Splatting with
 pyramid filter

Splatting with cubic filter

Fig. 3.21 - Inner product comparison

Inner Product
× 100

with a selectable 2D filter to render images with the three filters used in the previous
tests: a) a 2D Gaussian filter with σ = 0.6, b) a 2D pyramid filter, c) a 2D Catmull-Rom
cubic spline. This test varies only the choice of filter kernels - the rendering method,
dimension of the filter, and location of resampling points are kept constant. The IP
results (using gradient and intensity) for 128×128 and 64×64 images are averaged for the
mixed and points data. The results are shown in figure 3.21 and confirm the assumption
that the filter kernel is the major determinant of image quality. These results support the
thesis statement, "A separable cubic filter provides more accurate volume reconstruction
than a pyramid filter or a Gaussian filter." Further evidence of this is provided in
chapter four.

46

