3. Image-Based Reconstruction Error Comparison

In this chapter, images produced with three reconstruction filters are compared to
reference images rendered without reconstruction. Animage error metric is defined to
guantify the comparison results. The data used to produce the test and reference images
are designed to highlight differences in reconstruction accuracy by incorporating features
of varying scale. The concept of features existing in spatial and scale dimensionsis
borrowed from the vision literature and summarized in the next section (83.1). The
image error measurements in this chapter are reinforced in chapter four with analytical
reconstruction error bounds expressed as a function of feature scale. Numerical error
analysis expresses error bounds as a polynomial function of the original signal, its
derivatives, and the sampleinterval. Expressing the error bound in terms of feature scale
and the sample interval is shown to be an alternative representation.

3.1. Feature Scale

While the Fourier domain conveys information about signals asawhole, it is not very
intuitive or descriptive for relating the properties of alocal region of asignal. A domain
more descriptive of local signal propertiesisthat of scale space. Signal regions are
classified as features of a particular scale based on the response of an operator with some
aperture, positioned over that region. A useful operator isthe Laplacian of the Gaussian,
A = 0%(G(o, d)), where

G(o, d) = (2ro?) Y2 exp(-d? 202) (3.1)

with the operator aperture defined as 0. Figure 3.1 illustrates a one-dimensional signal
f(x) and the responses of operators A of three different apertures. At point p the response
is highest for the operator with aperture 0;. In the Fourier domain we say asignal has an
energy spectrum over arange of frequencies. The operator response at different apertures
isanaogously the energy spectrum over arange of scales - but in this case the spectrum
describes only alocal region of the signal, not the whole thing. A single feature may
cause an isolated peak at asmall scale level and also be part of alarger structure at a
higher scalelevel. A multiscale hierarchy is used in some advanced interactive
segmentation techniques [Pizer88] that have been applied to volume rendering [Y 00™91].

If scale spectra were known for the whole data set, it might be used to adaptively sample
the datato maintain atolerable error. A similar ideafor adaptive sampling is applied to
volumes by David Laur and Pat Hanrahan [Laur91]. Their approach measures error by
comparing the true values of aregion of points with their approximate representation at
different levels of hierarchy. The highest level (i.e.: least-detail ed) representation
allowed by avariable error bound is used to render the region. The utilization of feature
scale information to determine an error metric and corresponding sample rate has not
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Fig. 3.1 - Multiscale operator response function

been tried. This problem is outside the scope of thiswork, but is an areafor future
exploration.

3.2. Test Data

Volume data, for the purposes of this research, will be ascalar field in 03, Thefield
function may be encoded or represented in a variety of ways. For example, it could be
described by an explicit function f(x, y, z) or an array of samplesF; ; . The array of
samples representation is most commonly encountered when the data is acquired from the
real world or asimulation of the real world. Medical images or results from afinite
element analysis are examples of volumes represented by arrays of samples. The explicit
function representation is useful in modeling. One approach to modeling objectsin a
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volumeisto use multiple field generator primitives [Blinn82] [Muraki9l]. The scalar
field at any point in the volume is the sum of the effects of all the generators. To produce
an image from either data format, we must be able to sample the data on the image space
lattice. The accuracy of this sampling process is greatly influenced by the representation.
Only the explicit function may be sampled anywhere with arbitrary precision. Practical
considerations limit the sampling accuracy when using the array-of-sampl es representation.

Perfect reconstruction is theoretically possible with an infinite-extent filter kernel. In
practice, limited-extent filters are used to make computation tractable.

3.2.1. Explicit Volume Data

In this study an explicit representation of volume data is created as a standard against
which to compare reconstruction methods. It isbased on Gaussian point and line
generators. A point generates aradially symmetric field G(o, d) parameterized by o, the
feature scale, which determines the distribution of the field about itsorigin. A small o
corresponds to atightly packed distribution while alarge o yields a broadly distributed
field. For any o value the total energy of the field is normalized so that the path integral
through the center point always yields unity. Onetest volume (called "points*) has an
array of forty-eight point generators organized as six rows with eight points per row.
Within any row o is constant while each row has adifferent 0. The point coordinates
[, j, kCare givenin figure 3.2. They are defined to occupy avolume of dimension
64x64%x64. Figure 3.4aisanimage of the points data when viewed down the k-axis.

A second test data set (called "mixed") consists of line segments and points. Theline
segments generate afield with Gaussian decay as a function of the minimum distance to
the segment. Figure 3.3 lists the lines and points in the mixed data while figure 3.4b isan
image of it viewed down the k-axis. Only one coordinate islisted for line segments since
they all share acommon endpoint at [32, 32, 320J Thetotal volume occupied by the
mixed data is 64x64x64 units.

c=05
9.0,7.0,9.0
12.0,7.34, 10.4
15.6 7.68, 10.4
20.0, 8.0, 11.2
25.18.3611.9
30.8,8.7,12.7
37.2,9.04,13.4
44.4,9.38, 14.2

oc=0.7
9.0, 16.0, 14.0
12.0, 16.3, 14.7
15.6, 16.6, 15.4
20.0, 17.0, 16.2
25.1,17.3,16.9
30.8,17.7, 17.7
37.2,18.0, 184
44.4,18.3,19.2

c=0.9
9.0, 25.0, 19.0
12.0, 25.3, 19.7
15.6, 25.6, 20.4
20.0, 26.0, 21.2
25.1, 26.3, 21.9
30.8, 26.7, 22.7
37.2,27.0,234
44.4,27.3,24.2

c=11
9.0, 34.0, 24.0
12.0,34.3, 24.7
15.6, 34.6, 25.4
20.0, 35.0, 26.2
25.1,35.3, 26.9
30.8,35.7, 27.7
37.2,36.0,284
44.4,36.3,29.2

c=13
9.0, 43.0, 29.0
12.0,43.3, 29.7
15.6, 43.6, 30.4
20.0, 44.0, 31.2
25.1,44.3, 319
30.8,44.7, 32.7
37.2,45.0,33.4
44.4,45.3,34.2

oc=15
9.0, 52.0, 34.0
12.0,52.3, 34.7
15.6, 52.6, 35.4
20.0, 53.0, 36.2
25.1,53.3, 36.9
30.8,53.7, 47.7
37.2,54.0,38.4
44.4,54.3,39.2

Fig. 3.2 - Points test data generator coordinates
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Point coords o Point coords o
20.7,42.3,325 2.44 24.4,29.4,27.4 1.86
37.5,35.4,40.9 1.28 41.7,24.4,23.2 1.77
38.7,43.0, 30.4 0.64 26.4,38.6, 41.0 0.76
22.0,28.8,29.4 3.07 37.5,35.5,29.9 2.16
24.6,22.9,35.6 1.48 26.0,22.8,42.3 0.56
25.6,30.4, 42.2 251 24.0,22.8,42.3 0.56
31.3,26.0, 28.9 1.03 38.8,27.1,26.8 2.93
40.9, 35.3,23.3 3.32 32.7,30.6,34.2 0.59
Line endpoint o Line endpoint o
12.9, 25.2,53.0 0.89 12.6, 45.0, 37.3 0.85
18.6,13.7, 31.4 0.77 33.2,40.8, 27.0 0.75
26.0, 34.0,52.7 0.92 17.4,44.0,35.4 0.79
53.0, 15.0, 47.7 0.91 33.3,26.5,13.9 0.61
45.9,36.1, 31.1 0.58 51.1, 23.0, 51.7 0.55
33.6,28.4, 23.4 0.64 48.9, 47.8, 36.8 0.99
27.8,21.9,20.1 0.97 16.4,18.4, 165 0.76

Fig. 3.3 - Mixed test data generator coordinates

a- points b - mixed

Fig. 3.4 - Test data sets viewed down the k-axis

3.2.2. Sampled Volume Data and Prealiasing

The test volumes defined above may a so be represented by arrays of samples. Point
sampling the explicit functions on a 64x64x64 regular grid in [ 3 produces the sampled
data sets that we will consider. Sampling theory dictates that such samples capture
spectral features of the original function that are below one-half the sampling frequency
(the Nyquist limit); higher frequency components will cause prealiasing. This section
shows what proportion of afeature’ s spectrum causes prealiasing. The proportion of the
spectral content above the Nyquist limit is called the prealiasing error. A comparison
can be made between the reconstruction error and prealiasing error. In chapter four the
reconstruction error is shown to be larger than the prealiasing error; this demonstrates
that the reconstruction filter is generating error in addition to that present in the samples
themselves.
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The Fourier spectrum of a Gaussian is known to be
F(G(o, d)) = exp(-2(Tov)?) (3.2)

Rewriting thisin the form of another Gaussian and normalizing it for unit total energy we
obtain

F(G(o, d)) = ((2mY20)? exp(-(2ro®v)? (26%) Y (3.3)
= G(o, 2Mo™V) (3.4)

This shows that the Fourier spectrum of a Gaussian can be obtained by simply scaling the
horizontal axis. We determine the prealiasing error P(o) by using the erf(z) function to
evaluate the integral of a portion of a Gaussian.

Po)= 1-erf(z)= 1-2(t"3) [ Zexp(tz) dt (3.5)
0

where  t=z/(2Y%0) (3.6)

Z = 210%V (3.7)

The sample frequency is 1.0 if we use the sample grid for spatial measurement. The
Nyquist frequency isthenv =0.5. The energy above the Nyquist frequency is

P(c) = 1 - erf(Tio?) (3.9)

A graph of this prealiasing error is shown in Fig. 3.5. For al but the smallest feature, the
test-data features have o = 0.7, and their prealiasing error isvery low. It isimportant to
note that prealiasing error does not derive from sample error, each sample value is
accurate. Prealiasing error manifests itself during reconstruction. Even by applying an
arbitrarily-good reconstruction filter, the prealiasing error limits the reconstruction

0.5
0.45
04

) 0.35
Normdized 0.3
Prediasing '

Error 0.25
0.2

0.15
01
0.05

0
04 05 06 07 08 09 1 Feature Scaeo

Fig. 3.5 - Predliasing error P(0)
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accuracy.

3.3. Image Comparison Metric

One approach to evaluating reconstruction methods is to compare rendered images
against astandard. We have an explicit form of volume data that may be precisely
evaluated anywhere in the volume and the sampled form that requires reconstruction.
Images rendered using the reconstructed data are compared against images rendered
using the explicit form. If all steps but the resampling are the same, any differencesin
the images must be due to errors in reconstruction.

The question arises as to how to measure error between two volume rendered images.
Whilethisis ultimately an observer-perception issue and perceptual error isdifficult to
guantify, thereis arationale for employing a simple metric. The observer normally does
not view the reconstructed volume directly - it is usually classified and shaded by an
arbitrarily-nonlinear process. Because of this nonlinearity, it is important that
reconstruction produce low numerical error. The assumption isthat greater numerical
error ismore likely to produce more perceptually-significant artifacts. Minimizing the
numerical error should minimize perceived errorsin the final image. Since the shading
and classification functions are omitted during test image rendering, the image
differences are a measure of the reconstruction errorsonly. A guantitative metric of the
difference between images is obtained by treating each image as a single vector and
normalizing its magnitude; the inner product of two normalized image-vectors produces
ascaler that is ameasure of how closely the images match. Each pixel’s attributes are an
element of the image vector. In addition to pixel intensity, the gradient vector computed
with a 3x3 Sobel kernel is aso used as apixel attribute. Since the human vision system
issensitive to intensity gradients, it it logical to include this attribute in the comparison
metric. Image are compared by computing the inner product of the intensity, gradient,
and both attributes of each pixel. Let A and B each be normalized image-vectors with p
pixels. Theinner product IP isascalar defined as

IP=A)Bg+AB;+..+ Ap-l[Bp-l (3.9
When only the pixel-intensity attributes are considered, elements A; and B; are scalar
intensity values. When the pixel-gradient attributes are used, Aj and B; are tuples whose
elements are the x and y-components of the gradient vector: A; = [Ajax, Ajay[Jand
B;j = Bjox, Bjay[] When using the pixel-gradient attributes the IP product-terms are
computed as

AiBj = AjoxBjox + AjoyBjay. (3.10)

Similarly, A; and B; may be three-tuples containing the pixel intensity and gradient
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components: Aj = [Aji, Ajox, Ajoylland B; = [B;;, Bjax, BjoyLl In this casethe IP
product-terms are computed as

Aij = Aji[Bji + Ajax[Bjax + Ajay[Bjay. (3.11)

Admittedly, thisinner product approach by itself is not a strong evaluator of the
reconstruction methods. Any single measure of how much difference exists between the
pixel attributes ignores the spatial distribution of that error. Viewing the images can
compensate for this by enabling our visual systems to assess the distribution, but
observations are subjective, and a more rigorous measure of quality isdesirable.
Therefore, the feature scale approach which gives an error bound is employed in chapter
four. Those results are intended to complement the image based approach. An error
bound alone does not fully evaluate a reconstruction method either, the distribution of
error isalso important. The image comparisons provide a measure of the average error
since many reconstructed values contribute to each pixel of the images.

3.4. Rendering Methods

Before presenting the comparison results, some description of the volume renderers
used for these tests is appropriate. Several functions are common to any rendering
approach. Primarily these have to do with creating view matrices. We will adopt the
convention that these matrices are 3x4 arrays and points are four-element column
vectors. All transformations will be affine for ssimplicity’s sake. Two coordinate systems
are of interest, object space and image space. Object space has right-hand coordinates
[, j, kDwhere point samples lie on integer lattice points. Screen space has right-hand
coordinates [X, y, z[Owhere pixels fall on integer coordinate pointsin the x,y plane.

For any axis of rotation n, defined by a, B, and y, [Rogers'76] and angle of rotation 8
about n, arotation matrix [Rot] can be constructed (Fig. 3.6). For volume datato be
rotated about its center, a translation matrix [ Trang] is constructed that will shift the

\

Fig. 3.6 - Specifying aview (adapted from Rogers and Adams pp. 56)
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origin to the center of the volume. A matrix [Screen] is also created that transforms a
rotated object space lattice to image lattice coordinates; thisis at most a scaling and
trandation. For each of these matrices, an inverseis also computed. Concatenated as

[Mat] = [Screen] [Trans] ™ [Rot] [Trang] (3.12)

[Mat] will transform points from object space into image coordinates. When
concatenated as

[Mat]™ = [Trans]™* [Rot] ™ [Trans] [Screen] ™ (3.13)
[Mat]™* will transform points from image coordinates into object space.

Regardless of reconstruction method, all renderers must composite their resampled data
valuesin view order. The common practice of using eight-bit integer representations of
segment values leads to large relative errors when compositing [Wilhelms'91]. Inthe
test implementations, all representations and computations use single-precision floating
point format which is more than sufficient to maintain accuracy during compositing.

3.5. Experimental Results

The explicit data representation is used to render images that require no reconstruction.
These images, shown in figure 3.7, are 128x128 pixelsin size and considered to be
references for making comparisons in the next sections. All test images are computed for
aview specified by a = 6.75°, = 16.5°, y=3.375°, and 6 = 18.0°. A sequence of
images with varying views of the points data set are also produced for visually illustrating
view dependencies.

3.5.1. Ray Casting with Pyramid Filter
Ray casting is an image order rendering method which resamples reconstructed data

at points along rays cast into the volume. Sample values are computed by trilinear
interpolation of the eight nearest object lattice values. It is possible to decrease the

a- points b - mixed

Fig. 3.7 - Reference images
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amount of computation by subsampling, thus creating a coarser image lattice. Using a
step size of two and casting rays through aternate pixels doubles the spacing between
image lattice points and reduces the number of samples computed by afactor of eight.
Images of the test data sets rendered with sample step sizes of one, two, four, and six
along the screen space z-axis, and rays cast every 1x1, 2x2, and 4x4 pixels, are shownin
figure 3.8 and 3.9. Pixels between rays are bilinearly interpol ated.

By taking the inner product of the test images with the reference images, we produce the
graphs shown in figure 3.10. These graphs show that the imagesin figures 3.8 and 3.9
that were obtained by sampling more densely than the object | attice show only slight
variations in their correlations to the reference images (i.e.: the cases with 1x1 or 2x2
pixels per ray and astep size of 1 or 2). The differences are not visually apparent in
figures 3.8 and 3.9. In this case, resampling at densities above the object lattice density is
not worth the effort. Thisis also the case for the other two rendering testsin the
remainder of this chapter. The graphsin figure 3.10 also indicate that trilinear
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Fig. 3.8 - Ray casting with pyramid filter reconstruction
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step size

1x1 2%x2 4x4 Pixels per ray

Fig. 3.9 - Ray casting with pyramid filter reconstruction

interpolation produces low overall error when the image lattice is at |east as dense as the
object lattice. Thelow inner product measured for sparse image lattice densities (4x4
pixels per ray, or step size > 2) is not due to reconstruction error, but rather due to
subsampling of the reconstructed signal which is asource of postaliasing. It isinteresting
to note the anisotropy in subsampling along different axes. The image error measure is
less sensitive to subsampling the z-dimension than the x and y-dimensions. Thisis dueto
the integration along the z-axis which effectively averages the errors and thereby
minimizestheir effect. We can exploit this characteristic by using alow image lattice
density in the z-dimension without causing artifacts in the image.

Figure 3.11 shows a reference animation sequence of eight images rendered using the
explicit dataform and no reconstruction. Figure 3.12 shows the same sequence rendered
by ray casting with trilinear interpolation using a high density (128°) image lattice. The
absence of visually-apparent view-dependant artifacts offers some assurance that the test
results are generalizable to view transformations other than the one used in these tests.
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Fig. 3.10 - Inner Product of references with test images made with pyramid filter reconstruction
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Fig. 3.11 - Reference animation of points

Fig. 3.12 - Points animation using pyramid filter reconstruction

3.5.2. Splatting with Projected Gaussian

Splatting is an object-order rendering method. In principle, itisa3D filtering
method, but for efficiency it has only been used in a 2D form as described in section
2.1.2. Pointswithin adlice of the data are filtered with a Gaussian to reconstruct a 2D
image of the slice. The dliceis projected under the view matrix and resampled at each
pixel. Successive slices are composited to produce afinal image. Zero-valued data
points need not be filtered since they do not contribute to theimage. The amount of
computation may be decreased by using a coarser image lattice. Since splatting does not
resample along the image z-axis, we may only decrease the lattice density in the x and
y-dimensions. Figure 3.13 showsimages of the points datafor various filter kernel sizes
with lattice samples every 1x1, 2x2, and 4x4 pixels. Figure 3.14 shows similar images
for the mixed data. Pixels between lattice samples are bilinearly interpolated. Asinthe
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pyramid filter test, resampling more densely than the object lattice has arelatively small
effect on image quality compared to the rather large increase in the number of resampling
points and the computation required to compute their values.

The inner products of the test and reference images are shown in figure 3.15. The graphs
suggest that the lowest error is produced with afilter o between 0.5 and 0.6. The
animation sequence in figure 3.16 is produced with afilter o = 0.5 and 128x128x64
image lattice samples.

1x1 2%2 4x4  pixels per sample

Fig. 3.13 - Splatting with Gaussian filter reconstruction
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Fig. 3.14 - Splatting with Gaussian filter reconstruction
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Fig. 3.15 - Inner Product of references with test images made with a Gaussian filter
Horizontal axisis Gaussian kernel o (datataken at 0 = 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9)



Fig. 3.16 - Points animation rendered by splatting with Gaussian filter o = 0.5

3.5.3. Volume Shearing with Separable Cubic Filter

The images in this section are produced by volume shearing in two passes as opposed
to the usual three pass method. Reconstruction and resampling is done along the image x
and y-axis only; omitting the third pass saves over one-third of the computation time so
itisworth doing. Asin splatting, no resampling along the z-axisis performed. In fact,
this method is similar to splatting in that two-dimensional images are reconstructed on
the object lattice and projected onto the screen, but here a separable cubic filter is used
instead of aGaussian. Theintegration along the z-axis compensates for the view-dependent
distance between samples by using the "K" coefficient that is computed from the view
matrix and normally used during the third (z-axis) pass [Hanrahan90]. Chapter four
details the computation savings for this method.

The cubic filters used are of the two parameter family described in [Michell*88] and
section 4.3. The parameters are called B and C, and range over [0, 1]. Test images are
computed for the nine possible combinations with B and C taking on the values {0, 0.5,
1.0}. Three sets of nine images are tested, corresponding to image | attice densities of
1x1, 2x2, and 4x4 pixels per sample point. Only the density of the x and y-axes of the
image lattice are variable. The number of samples along the image lattice z-axisis fixed
by the dimensions of the object lattice, which in this case is sixty-four points. Aswith
splatting and ray casting, increasing the resampling density above the object-lattice
density produces relatively minor increases in the IP results. Figure 3.17 shows images
of the points data, figure 3.18 shows the mixed data. The inner products for the
parameters producing the best and worst images are shown in figure 3.19. The remaining
seven parameter combinations were omitted from the graphs for clarity. These graphs
illustrate that the Catmull-Rom cubic spline with B = 0 and C = 0.5 has the lowest image
error in al cases. This coincides with previous analysis of cubic filters [Keys31]
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1 pixel per sample 2%2 pixels per sample
C=0 C=05 c=1 C=0 C=05 c=1

C=0 C=05 Cc=1
4x4 pixels per sample

Fig. 3.17 - Volume shearing with separable cubic filter reconstruction

[Park*83] [Michell*88]. Figure 3.20 shows the eight frame animation of points data
using the Catmull-Rom filter.
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1 pixel per sample 2x2 pixels per sample
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Fig. 3.18 - Volume shearing with separable cubic filter reconstruction
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Fig. 3.19 - Inner product of references and test images made with separable cubic filters
Horizontal axisis number of pixels per sample points (datataken at 1x1, 2x2, and 4x4)
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Fig. 3.20 - Animation sequence made with Catmull-Rom cubic reconstruction filter
3.5.4. Filter Comparison

A comparison of the inner product resultsis shown in figure 3.21 for 128x128 and
64x64 pixel images. The best IP results (using gradient and intensity) for each filter are
averaged over the mixed and points data. The ray casting step size isfixed at two to
egualize the image lattice density for al filters. The Gaussian splat kernel has o = 0.6
and the cubic filter is the Catmull-Rom spline.

In the experiment described in this chapter, the rendering methods, the dimension of the
filter, and the resampling point are all varied in addition to the filter kernels. It was
implicitly assumed that the filter kernel was the dominant factor affecting image quality.
Additional tests are run to verify this assumption. The splatting rendering method is used

100
99.5
ST Volume shearing with cubic filter
Inner Product 99 | o TSI
% 100 - Splatting with cubic filter =
985 "= ==
—~—_ Ray casting with pyramid filter ~
% \\\\\ Splatting Wlth
975 | \\\\p\y\ram|d filter ~~
o7 | T
Splatting with Gaussian filter ~~-~-__
96.5 -
1 sample per 1x1 pixels 1 sample per 2x2 pixels

Fig. 3.21 - Inner product comparison
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with a selectable 2D filter to render images with the three filters used in the previous
tests. a) a2D Gaussian filter with o = 0.6, b) a 2D pyramid filter, ¢) a2D Catmull-Rom
cubic spline. Thistest varies only the choice of filter kernels - the rendering method,
dimension of the filter, and location of resampling points are kept constant. The IP
results (using gradient and intensity) for 128x128 and 64x64 images are averaged for the
mixed and points data. The results are shown in figure 3.21 and confirm the assumption
that the filter kernel isthe major determinant of image quality. These results support the
thesis statement, " A separable cubic filter provides more accurate volume reconstruction
than a pyramid filter or a Gaussian filter." Further evidence of thisis provided in
chapter four.
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