
4.  Analytical Reconstruction-Error Comparison

In this chapter, an expression is derived for the peak relative-error bound of 
reconstructed signals as a function of feature scale.  The error bounds of pyramid, 
Gaussian, and cubic reconstruction filters are compared.  These are all separable filters 
normally applied in two or three dimensions.  The approach here is to study the 
application of these filters to one-dimensional features of known scale.  The results are 
then extended to higher dimensions.  The signal feature that we use is the normalized 
Gaussian whose scale is σ by our definition.  The results are intended to compliment the 
findings in chapter three and thereby strengthen the claim the cubic filters produce lower 
reconstruction error than pyramid or Gaussian filters.

4.1.  Pyramid Filter

The reconstruction-error bound for a pyramid filter is computed by considering a 
signal which has only one feature with an explicit representation G(x) and comparing that 
with the reconstructed signal R(x).  The maximum difference between G(x) and R(x) is 
the upper bound of the error produced at any resampling point.  Let 

G(x) = (2πσ2)-1/2  exp(−x2/ 2σ2) (4.1)

be the explicit representation where σ is the feature scale centered at zero (Fig. 4.1).  R(x) 
is defined over x  (x0 ≥ x ≥ x1) by the linear-interpolation function:

R(x) = (G(x0) (x1 − x) + G(x1) (x − x0)) / (x1 − x0) (4.2)
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Error is defined as

Err(x) = G(x) - R(x) (4.3)

 We wish to find x0 and x that maximizes Err(x) for a fixed σ and h = x1 − x0.  Let

Ers(x) = (G(x) - R(x))2 (4.4)

Let d0 = (x − x0) / h and d1 = (x1 − x) / h.  Then equation 4.4 can be expanded into

Ers(x) = G(x)2 − 2 d1 G(x) G(x0) − 2 d0 G(x) G(x1) + 
+ 2 d1 d0 G(x0) G(x1) + d1

2 G(x0)
2 + d0

2 G(x1)
2 (4.5)

The peak error is found by differentiating equation 4.5 and finding values of x0 and x that 
make the derivative zero for all σ and h.

∂Ers(x) / ∂x = ∂G(x)2/ ∂x (a)
− 2 G(x0) ∂d1 G(x) / ∂x (b)
− 2 G(x1) ∂d0 G(x) / ∂x (c)
+ 2 G(x0) G(x1) ∂(d1 d0) / ∂x (d)
+ G(x0)

2 ∂d1
2/ ∂x (e)

+ G(x1)
2 ∂d0

2/ ∂x (f) (4.6)

All six terms of equation 4.6 become zero or cancel each other when x1 = −x0 = h/2 and 
x = 0.  Terms (a) and (d) become zero.  Term (b) cancels (c), and (e) cancels (f).   This is 
where R(x) is constant and equal to G(h/2) while approximating G(x) over its region of 
maximum curvature or value of G″(x).  Figure 4.2 illustrates error for a family of x0 
positions given a fixed σ and h.  The upper curves are G(x).  The straight line segments 
adjacent to the upper curves are a family of R(x) linear approximations with fixed h 
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where x0 is different for each member of the family.  The error of the the straight-line 
approximation is the series of bumps in the lowest family of curves.  The iso-contours of 
Err(x) at the bottom illustrate the error peak at x = 0, x1 = -x0 = h/2.  The case illustrated 
is for σ = 0.5 and h = 1.0. 

The maximum normalized error for the one-dimensional case is the error bound for any 
sample and defined as

Nerr1D(σ) = Max(Err(x)) / G(0)
= (G(0) − G(h/2)) / G(0)
= 1 − exp(−(h/2)2/ 2σ2)
= 1 − exp(−h2/ 8σ2) (4.7)

Since G and R are separable, peak error in two dimensions occurs where 
x1 = y1 = −x0 = −y0 = h/2.  Because G is radially symmetric, this can be reduced to a 
one-dimensional problem with x0′ = 〈x0, y0〉, x1′ = 〈x1, y1〉, and h′ = 21/2h.

Nerr2D(σ) = (G(0)− G(21/2h/2)) / G(0)
= 1− exp(−2(h/2)2/ 2σ2)
= 1− exp(−2h2/ 8σ2) (4.8)

Similarly, in three dimensions

Nerr3D(σ) = 1− exp(−3h2/ 8σ2) (4.9)

Figure 4.3 plots equations 4.7, 4.8, and 4.9 as a function of σ for h = 1.
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4.2.  Gaussian Filter

The explicit signal representation given by equation 4.1 can be modified to allow an 
offset ε (0 ≤ ε < 1) to the feature location.

G(x) = (2πσ2)−1/2  exp(−(x − ε)2/ 2σ2) (4.10)

The Gaussian filter kernel is defined as

K(χ) = (2πυ2)-1/2  exp(−χ2/ 2υ2) (4.11)

Hold the sample rate constant at h = 1 and constrain the sample data-points to fall on 
integer x-coordinates.  The reconstructed signal is a summation of all sample points 
weighted by the filter kernel.  In practice the summation is limited to a small number (d) 
of samples on each side of the reconstructed point.

      i = t

R(x) = ∑ G(i) K(x − i)    s = x − d + 1, t = x + d (4.12)
       i = s

Substitute equations 4.10 and 4.11 into 4.3.  Square and differentiate the result to find x 
and ε that maximize error for any σ and υ.  To keep the equations manageable, we set 
d = 1, but larger values of d also yield the result that error is maximized when 
x = ε = 0.5.  Constraining x  (0 < x < 1), makes s = 0 and t = 1.

Err(x) = G(x) − G(0) K(x) − G(1) K(x − 1) (4.13)

Ers(x) = Err(x)2 
= G(x)2 − 2 G(x) K(x) G(0) − 2 G(x) K(x − 1) G(1)
+ 2 K(x) K(x − 1) G(0) G(1) + K(x)2 G(0)2 + K(x − 1)2 G(1)2 (4.14)

∂Ers(x)/ ∂x = ∂G(x)2/ ∂x (a)
− 2 G(0) ∂G(x) K(x) / ∂x (b)
− 2 G(1) ∂G(x) K(x − 1) / ∂x (c)
+ G(0) G(1) ∂K(x) K(x − 1) / ∂x (d)
+ G(0)2 ∂K(x)2/ ∂x (e)
+ G(1)2 ∂K(x − 1)2/ ∂x (f) (4.15)

All six terms of equation 4.15 become zero or cancel each other when x = ε = 0.5.  Terms 
(a) and (d) become zero.  Term (b) cancels (c), and (e) cancels (f).   Figure 4.4 illustrates 
G(x), R(x), and Err(x) for a set of feature positions where 0 ≤ ε ≤ 0.8, d = 3, and h = 1.  
The upper family of curves are G(x) and the middle curves are R(x), where ε is offset by 
0.1 for each member of a family.  The reconstruction error is shown as the lowest curve 
family.  The peak error occurs at x = ε = 0.5. 

50



The one-dimensional normalized error is

Nerr1D(σ) = Max(Err(x)) / G(ε)    ε = 0.5

= (G(0.5) − R(0.5)) / G(0.5)
   i = t

= 1 − ∑ G(i) K(0.5 − i) / G(0.5)   s = −d + 1, t = d, d ≥ 1
   i = s

= 1 − ( (G(−d + 1) K(0.5 − d + 1) + … + G(0) K(0.5) 
+ G(1) K(−0.5) + … + G(d) K(0.5 − d) ) / G(0.5) (4.16)

Due to the symmetry of G about ε = 0.5, and K about 0, equation 4.16 can be simplified.

Nerr1D(σ) = 1 − (2/ G(0.5)) (G(1) K(0.5) + … + G(d) K(d − 0.5))

=  1 − (2 (2πυ2)−1/2) (exp((0.5 − 1)2/ 2σ2) exp((0.5 − 1)2/ 2υ2) + … 
+ exp((0.5 − d)2/ 2σ2) exp((0.5 − d)2/ 2υ2) )

= 1 − (2 (2πυ2)−1/2) (exp((0.5 − 1)2 (υ2 + σ2) / 2σ2υ2) + …
+ exp((0.5 − d)2 (υ2 + σ2) / 2σ2υ2)) (4.17)

Figure 4.5 illustrates the normalized error as a function of feature size for several kernel 
shapes.  The kernel is truncated at d = 5 to produce this plot.  The kernel shape for 
υ = 0.55 gives the lowest overall error of the shapes tested.  This is consistent with the 
finding in chapter three that the best image comparisons are obtained with kernel 
υ-values between 0.5 and 0.6.
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Since G and K are both separable, the error for higher-dimensional cases is readily 
obtained by raising the one-dimensional reconstruction terms to the appropriate power.  

Nerr2D(σ) = 1 − (2 / G(0.5))2 (G(1) K(0.5) + … + G(d) K(d − 0.5))2 (4.18)

Nerr3D(σ) = 1 − (2 / G(0.5))3 (G(1) K(0.5) + … + G(d) K(d − 0.5))3 (4.19)

Figure 4.6 shows the normalized-error bounds for one, two, and three dimensions while 
holding the kernel shape constant at υ = 0.55.
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The Gaussian filter does not have a constant response to a constant-input signal.  The 
variations in output are referred to as ripple and contribute to error.  The ripple amplitude 
is a function of υ, and it produces a regular pattern that may produce a more visible 
artifact than the error induced by reconstruction.  The ripple component of the error 
should be kept low relative to the reconstruction error which is only appreciable for small 
features.  In one dimension, the ripple amplitude for a constant field f(x) = 1.0 is

Ripple(υ) = R(0) − R(0.5)
    i = t

=  ∑ K(i) − K(0.5 − i)  s = −d + 1, t = d, d ≥ 1
    i = s

    i = t

=  (2πυ2)−1/2  ∑ exp(−i2/ 2υ2) − exp(−(0.5 − i)2/2υ2) (4.20)
    i = s

The peak-to-peak ripple error, given by equation 4.20 as a function of υ, is plotted in 
figure 4.7.  It shows that the ripple for a one-dimensional kernel shape with υ = 0.55 is 
about one percent.  In the test images produced in chapter three, ripple artifacts are only 
visually-apparent for υ = 0.4.  For a volume renderer using the splatting approach with a 
two-dimensional filter, the ripple increases to about two percent.  Ripple is the 
asymptotic limit of the reconstruction error as σ increases.  For υ = 0.55, figure 4.6 shows 
that moderately small-scale features (σ ≤ 3) produce reconstruction error that is 
appreciably higher than the ripple component. 
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4.3.  Separable Cubic Filter

A general two-dimensional filter is described as K(x,y); a separable filter may also be 
written as K(x)K(y).  Separable filters are desirable since for a given filter extent τ and 
dimension δ, general filters require O(τδ) operations while separable filters require O(τ δ) 
operations.  The filters considered here are the family of piecewise-cubic polynomials 
with continuous first-derivatives.  They are constrained to have a constant flat-field 
response (i.e.: they have no ripple) and to be exact at the sample points.  The filter kernel 
K(x) is parameterized by two variables B and C whose domain is [0, 1].  The kernel is 
zero outside of the domain (−2, 2), inside of which it is given by

1/6 [ (12 − 9B − 6C) χ3 +
   (−18 + 24B + 6C) χ2 + (6 − 2B) ]   0 ≤ χ < 1

K(χ) =
 1/6 [ (−B − 6C) χ3 + (6B + 30C) χ2 +

   (−12B − 48C) χ + (8B + 24C) ]   1 ≤ χ < 2 (4.20)

Using equation 4.10 for G(x), the reconstructed signal for x  (0 < x < 1) is

R(x) = K(x − 2) G(−1) + K(x − 1) G(0) + K(x) G(1) + K(x + 1) G(2) (4.21)

Reconstruction error is

Err(x) = G(x) − R(x)

= G(x) − [ K(x − 2) G(−1) + K(x − 1) G(0) +
 K(x) G(1) + K(x + 1) G(2) ] (4.22)

Differentiate equation 4.22 to find the point of maximum error.

0 = G(−1) ∂K(x − 2) / ∂x + (a)
G(0) ∂K(x − 1) / ∂x + (b)
G(1) ∂K(x) / ∂x + (c)
G(2) ∂K(x + 1) / ∂x (d) (4.23)

Equation 4.23 is satisfied for all B and C parameters when x = ε = 0.5.  Under those 
conditions G(−1) = G(2) and G(0) = G(1).  Due to the symmetry of the kernel, the terms 
(a) and (d) cancel each other, as do terms (b) and (c).  

Other solutions to equation 4.23 exist, but they are not maximum critical-points for 
parameters of interest.  If the parameters satisfy 2C + B = 1, the filter has quadratic 
convergence and becomes exact at the sample points (i.e.: R(x) = G(x)) [Mitchell+88].  
Among these, it has been shown that the Catmull-Rom spline, obtained with parameters 
B = 0 and C = 0.5, is the filter providing the lowest error with cubic convergence 
[Mitchell+88] [Keys81] [Park+83].  Based on this evidence and the fact that in chapter 
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three it provided the best image quality, it is used in the remainder of this section.  

Figure 4.8 illustrates the error of a Catmull-Rom filter for ε = {0, 0.1, 0.2, 0.3, 0.4, 0.5}.  
The upper family of curves are G(x) for σ = 0.5.  The middle curves are R(x) and the 
lower curves are Err(x).  

The one-dimensional normalized error bound is

Nerr1D(σ) = Max(Err(x)) / G(ε)      ε = 0.5

= 1 −  1 / G(0.5) [ K(−1.5) G(−1) + K(−0.5) G(0) + 
K(0.5) G(1) + K(1.5) G(2) ]

= 1 − 2 / G(0.5) [ K(0.5) G(1) + K(1.5) G(2) ]

= 1 − 2 [ K(0.5) exp(−0.52/ 2σ2) + K(1.5) exp(−1.52/ 2σ2) ]

= 1 − 2 [ 1.8125 exp(−0.52/ 2σ2) + 0.5625 exp(−1.52/ 2σ2) ] (4.24)

Since G and K are separable, the two and three-dimensional error bounds are easily 
obtained.

Nerr2D(σ) = 1 − 4 [ 1.8125 exp(−0.52/ 2σ2) + 0.5625 exp(−1.52/ 2σ2) ]2 (4.25)

Nerr3D(σ) = 1 − 8 [ 1.8125 exp(−0.52/ 2σ2) + 0.5625 exp(−1.52/ 2σ2) ]3 (4.26)

Figure 4.9 plots the normalized error bounds as a function of the feature size.
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4.4.  Filter Comparison

Figure 4.10 compares the three reconstruction filters.  The lowest (and heaviest) line 
for each filter is the one-dimensional error, the middle-weight line is the two-dimensional 
case, and the highest (and thinnest) line is the three-dimensional case.  The most 
important difference is found in the 1% to 10% error range.  That level of error can 
produce visible artifacts.  The cubic filter is clearly superior while the Gaussian and 
pyramid filters are fairly similar.  These results qualitatively agree with the results of the 
image tests performed in chapter three.  As a result of their agreement, the thesis 
statement is considered to be verified, "A separable cubic filter provides more accurate 
volume reconstruction than a pyramid filter or a Gaussian filter."

Recall that figure 3.5 showed the proportion of a feature’s spectrum that was above the 
Nyquist limit, and this proportion was called the prealiasing error.  If the reconstruction 
errors plotted in this chapter are compared to the prealiasing error, the reconstruction 
errors are always greater showing that the filters are contributing additional error.

One ramification of the different filter performances is that lower-resolution volumes can 
be used with better filters to obtain the same reconstruction fidelity obtained with larger 
volumes rendered with lower-quality filters.  To the extent that rendering speed is a 
function of the volume size, lower-resolution data will be rendered more quickly.  The 
next chapter compares the speed of rendering methods that use these filters.

It remains to see what differences these filters make when rendering real data in an 
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application with classification and shading functions.  The images in figure 4.11 and 4.12 
are produced by using the splatting renderer with selectable filters used to obtain figure 
3.21.  The renderer is augmented with an isosurface classifier and a Phong shader.  
Resampling is performed before classification and shading.  The data gradients are 
precomputed at the object-lattice points.  Resampling with one of the three filters 
produces data and gradient values at the image-lattice points.  Isosurface intersections are 
found by testing the image-lattice values produced from adjacent data-slices.  A pixel 
whose nearest-slice value is below the surface threshold and whose farthest-slice value is 
above the threshold has intersected the isosurface.  The isosurface location along the 
image z-axis is approximated by linear interpolation between the two adjacent-slice 
image-lattice data values.  Once the isosurface position is found, the gradient at that point 
is approximated by linear interpolation of the resampled image-lattice data gradients.  
After normalization, the interpolated gradient is used in a Phong lighting-calculation to 
produce the pixel color.  There are two lights used for all these examples, one light is 
above the viewer and the other is to the lower left of the viewer.

Figure 4.11 shows the 643 mixed data rendered by splatting with a) a 2D pyramid filter, 
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b) a 2D Gaussian filter (σ = 0.6), and c) a 2D Catmull-Rom cubic filter.  The images are 
all rendered at 2562 pixels.  The main visible difference between the images appears at 
the silhouette edges of the surface.  The jagged aliasing-artifacts are more-regular with 
the cubic and Gaussian  filters; they are rougher-looking with the pyramid filter.  The 
rougher edges may suggest features that are not there.  Aliasing of the silhouette edges 
arises because the pixels are point-sampled, and edges contain much high frequency 
information - this is a form of postaliasing.  The aliasing can be eliminated be either 
modifying the classification function to produce "fuzzy" surfaces or filtering its output - 
neither approach is used here.  The efficient antialiasing of volume-rendered images is a 
difficult problem and outside the scope of this work.  The small sphere, just to the 
lower-right of center, shows differences between the filters that are more-related to 
reconstruction accuracy.  The sphere is a small feature and best reconstructed in the 
images made with the cubic and pyramid filters.  The image produced with a Gaussian 
filter shows a smaller and more-deformed sphere.
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Figure 4.12 shows 256×256 images of a 1283 volume of CT data.  These images were 
also made with the splatting renderer described above in the context of figure 4.11.  The 
images all show artifacts which are clearly not evident on an actual-child’s head.  The 
artifacts are due to noisy data and they overwhelm the differences between the filters.  It 
is difficult to determine which image is most correct since there is no standard against 
which to compare.  Real data is often noisy and in that case the choice of reconstruction 
kernels has only a secondary impact on the rendered images.
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