
5.  Rendering Cost Comparison

This chapter analyzes the efficiencies of the rendering methods associated with the 
three reconstruction filters studied in the last two chapters.  Accurate reconstruction 
produces faithful images of the data.  Efficient reconstruction is essential for fast 
rendering since resampling is the dominant computation expense.  Rendering methods are 
often associated with a particular reconstruction filter - pyramid filters are used in ray 
casting, splatting uses Gaussian filters, and separable cubic filters are used in volume 
shearing.  Rendering methods and filters may be combined in other ways as well; 
splatting can be done with any arbitrary filter, and volume shearing can use any separable 
filter.  The efficiency of a rendering method will vary in proportion to the extent of the 
filter it uses.   Although the analysis done here is for rendering methods coupled with 
their usual filters, the efficiencies are computed as a function of the filter extent.  

Resampling costs are determined by examining pseudocode for the inner loop of the three 
rendering methods.  Setup, shading, and compositing are omitted for clarity and to 
heighten the contrast between the different filtering methods.  The pseudocode operation 
count is computed based on a RISC load-store model that allows three register operands 
per-instruction.  Indexed memory access is counted as two operations: an explicit "base 
address plus offset" operation followed by a memory load or store.  All ALU operations, 
including multiply and divide, are counted equally.  Memory system and cache behavior 
are not considered because they are difficult to model in a general processor-independent 
fashion.  Instead, actual implementation timings are presented to convey overall 
rendering performance.  The performance of the rendering methods is tested by 
measuring the time required to reconstruct and resample a fixed number of image lattice 
points.  The test systems and their main memory sizes are listed below.

1 - DEC 5000/120 with 16 MB
2 - DEC 5000/200 with 256 MB
3 - IBM RS/6000-550E with 512 MB
4 - HP 9000/750 with 64 MB

All tests are run on lightly loaded systems, and times are computed with the Unix clock() 
function.  The entire rendering loop is measured excluding any once-per-image 
initialization.  Reconstruction and resampling are performed in the rendering loop, but no 
shading, classification, or compositing is done since those functions and costs vary and 
are common to all rendering methods; the objective here is to accentuate the differences 
due to reconstruction methods.  The mixed data set (size = 643) is used for all tests;  
images are rendered into 642 and 1282 screen sizes.  An affine transformation is applied 
in all tests with α = 10°, β = 20°, γ =  30°, and θ = 37.4° specifying the rotation.  All 
times are given in seconds.  The programs are written in C and compiled with the -O flag 
for all the systems.  To compare these rendering algorithms fairly across several systems, 
roughly equivalent optimization effort and techniques are applied to each method.  The 
data collected show that the relative performance of the rendering methods is fairly 
consistent across different system architectures and compilers.
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In order to derive the inner-loop costs, some useful notation and assumptions are 
introduced here.

p screen size (p1/2 × p1/2
)

d volume data size (d1/3 × d1/3 × d1/3)
mops, mloads, mstores number of operations, memory loads, and memory stores

Two ratios of screen resolution to data size are employed,  p1/2 = d1/3 and p1/2 = 2d1/3.  
This range is adequate to minimize feature subsampling from any view point and allows 
us to compare the image-order ray-casting method against the object-order methods.

5.1.  Ray Casting with a Pyramid Filter 

The pseudocode for casting one ray and using a pyramid filter is presented below.  
The number of clock cycles attributed to each statement is in parenthesis to the left of the 
line.

float fpos[3]; /* current sample position */
float del[3]; /* fractional position within cell */
float 1md[3]; /* 1 - del */
float w[8]; /* coef for each cell vertex */
float new; /* new sample value */
int ipos[3]; /* base index of cell */
int index; /* index into data array */
int out; /* index to array of output samples */

(3) for (out = 0; out < ray_length; out++) {
(3) ipos[] = (int)fpos[];  /* truncate position to get index of cell */
(6) del[3] = fpos[] - (float)ipos[];
(3) 1md[] = 1.0 - del[];
(14) w[] = f(del[], 1md[]);  /* compute eight w[] coefs */
(4) index = f(ipos[]);  /* compute cell base index in data array */
(4) new = data[index] * w[0];  /* accum weighted vertex0 */
(7) new += data[index+vertex1_offset] * w[1]; /* accum weighted vertex1 */
(7) new += data[index+vertex2_offset] * w[2]; /* accum weighted vertex2 */
(7) new += data[index+vertex3_offset] * w[3]; /* accum weighted vertex3 */
(7) new += data[index+vertex4_offset] * w[4]; /* accum weighted vertex4 */
(7) new += data[index+vertex5_offset] * w[5]; /* accum weighted vertex5 */
(7) new += data[index+vertex6_offset] * w[6]; /* accum weighted vertex6 */
(7) new += data[index+vertex7_offset] * w[7]; /* accum weighted vertex7 */
(2) ray[out] = new; /* save new sample */
(3) fpos[] += step_offset[];  /* move to next point along ray */

}
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Since ray casting uses a three-dimensional filter kernel, it is not practical to consider 
anything larger than a pyramid filter with its extent of one.  There are 91 operations, 8 
loads, and 1 store per image lattice sample point.  If samples along a ray are taken at 
intervals equal to the object lattice spacing, then the maximum number of samples that 
must be taken is p d1/3.  The costs are  

mops = 91 (p d1/3)
mloads = 8 (p d1/3)
mstores = p d1/3

Speedups exist that minimize the number of sample points computed.  Marc Levoy 
[Levoy90], John Danskin [Danskin92], and others have shown that using hierarchical 
data-structures can speed up ray tracing by about a factor of two to five.  Many fewer 
samples are computed, but each sample is more expensive due to the cost of referencing 
the hierarchy.  Karl Zuiderveld [Zuiderveld92] demonstrated speedup using a flat 
distance-transform structure rather than a hierarchy.  Better speedup is obtained since the 
cost of referencing the flat distance-structure is lower than that for accessing a hierarchy.  
Adaptive screen-sampling is possible with ray casting and speeds up image computation 
by a factor of about two to five [Levoy90] [Shu+91].  The drawback to using adaptive 
sampling is that small features may be undersampled or missed completely.  Using a 
distance transform with adaptive sampling prevents subsampling artifacts [Zuiderveld92]. 
Adaptive ray termination also yields a speedup factor of approximately two [Levoy90].  
These speedup factors do not multiply each other when combined.  In empty regions of a 
volume, for example, both a hierarchy and adaptive sampling will eliminate many of the 
same samples.  This author and others [Levoy89b] [Zuiderveld92] have found that the 
combined speedup is usually about a factor of ten with occasional cases as high as 
twenty.  Many factors affect the combined speedup achieved for any one image: the 
distribution of data values in the volume, classifier and shader parameters, and the view 
transformation.  

Times for the reconstruction and resampling of the mixed data set are given below in 
seconds for two screen sizes.  Note that no speedups are used in these tests.  The results 
are the times to compute a fixed number of image-lattice sample points using the ray 
casting rendering method with a 3D pyramid filter.

Image Lattice Size DEC 5000/120 DEC 5000/200 IBM RS/6000 HP 9000/750

64 × 64 × 64 8.49 4.82 1.68 1.02
128 × 128 × 64 34.5 19.2 6.74 4.06
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5.2.  Splatting with a Gaussian Filter

The pseudocode for splatting an i-axis row of a data slice is shown below.  The left 
column of parathesized numbers holds the number of cycles associated with each 
statement.

float scr[2]; /* screen coords of transformed point */
float step[2]; /* screen space step for each step along i-axis of data */
float *foot; /* pointer to footprint array */
float alpha, thresh;
int firstpt, lastpt; /* first and last on-screen points in row */
int index; /* index into data set */
int off[]; /* pixel address offsets for kernel loop */
int i, j, k; /* data set axes indices */
int lo[2]; /* lowest pixel coords of footprint coverage */
int ksize; /* size of kernel */
int lopix, p;

scr[] = transformed(k, j, firstpt); /* screen position of first point */
step[] = f(view_tansform); /* dda increment for each i-step */
index = f(k, j, firstpt); /* index of first point in j’th row and k’th slice */

(3) for (i = firstpt; i <= lastpt; i++) { /* do all on-screen points in row */
(3) alpha = data[index++]; /* load data point value */
(2)   if (alpha > thresh) { /* test for significant data */
(8) foot = f(scr[]); /* footprint is function of fractional screen position */
(2) lo[] = (int)(scr[] - extent); /* find lowest pixel of footprint coverage */
(3) lopix = f(lo[]); /* index to lowest pixel */
(3) for (p = 0; p < ksize; p++) {  /* loop over kernel size */
(7) image[lopix + off[p]] += alpha * foot[p];  /* accumulate contribution */

} }
(2) scr[] += step[]; /* step to position of next point on screen */

}

The loop makes use of lookup tables for the splat kernel weights and the pixel 
indexing-offsets.  An array of kernel tables is precomputed to accommodate a fixed 
resolution of fractional positions of filter kernels on the pixel grid.  The screen projection 
of the kernels is view-dependent but invariant for all points under an affine transformation. 
If we define k as the number of pixels covered by a kernel, then splatting a point costs 
23 + 10k operations, 1+ 3k loads, and k stores.

mops = (23 + 10k)d (5.1)
mloads = (1+ 3k)d (5.2)
mstores = kd (5.3)

A threshold test ensures that processing is only done on data points whose value is above 
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a threshold of significance.  This test serves the same purpose as the hierarchical 
structures do with ray casting.  Both prevent unnecessary sample processing where the 
data is zero or otherwise uninteresting.  In feed-forward or object-order resampling, this 
test is trivial and provides speedup in proportion to the fraction of samples ignored.  In 
many data sets 50-80% of the data points are zero or small enough to ignore.  In the 
above pseudocode, a point below the threshold value costs only 10 operations.  For filter 
kernel shapes around υ = 0.55, the radial filter extent ζ must be at least 1.3 - 1.5 object 
lattice points to avoid truncating the filter too severely.  Assuming a square footprint for 
simplicity, k is given by 

k = (2 ζ)2 p / d2/3 (5.4)

For the test case with ζ = 1.3, d = 643, and p = 1282, the footprint size is (6 × 6) thirty-six 
pixels.  In general, by fixing ζ at 1.3 and substituting for k, the splatting costs are:

mops = 23d + 67p d1/3 (5.5)
mloads = d + 20p d1/3 (5.6)
mstores = 6.7p d1/3 (5.7)

Test times in seconds are given below for rendering the mixed data set.  Each entry is 
given as two numbers, the first and greater time is obtained without the threshold test so 
all data points are splatted regardless of their value.  The second and lower time is 
obtained with the threshold set to 0.01 (peak data value > 8.5).  The speedup obtained 
from the threshold test ranges from about three to eight for this data set.

Image Lattice Size DEC 5000/120 DEC 5000/200 IBM RS/6000 HP 9000/750

64 × 64 × 64 6.97 / 1.20 4.32 / 0.78 1.45 / 0.27 1.37 / 0.26
128 × 128 × 64 18.9 / 2.30 11.1/ 1.44 2.38 / 0.38 3.32 / 0.56
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5.3.  Volume Shearing with a Separable Cubic Filter 

The pseudocode for the inner loop of an x-axis shearing pass is presented below with 
the cycle counts for each statement in the left column.  

float alpha, del, fp;
float A, B; /* linear transformation coefficients */
int pixindex, volindex; /* pixel and data index variables */
int i, ip;
int start, end; /* first and last on-screen data point in row */

pixindex = f(transformed(k, j, start))  /* index for first pixel in row */
volindex = f(k, j, start);  /* index for first data point in row */

(3) for (i = start; i < end; i++) {   /* do <k, j, start> to <k, j, end> */
(3)   alpha = data[volindex+i];  /* load data point */
(2)   if (alpha > thresh) {  /* test for non-zero data */
(2)     fp = A*i + B; /* transform along x-axis */
(1)     ip = (int)fp; /* ip is lower image lattice point */
(2)     del = (fp - ip) / A;   /* fractional distance of transformed point */
(4)     while (del < 1 && ip > 0) {
(10)       image[pixindex+ip] += f(alpha, del); /* accum point’s contrib */
(2)       ip--;  del+= 1/A;  /* move to next lower image pixel */

    }
(4)     while (del < 2 && ip > 0) {
(12)       image[pixindex+ip] += f(alpha, del); /* accum point’s contrib */
(2)       ip--;  del+= 1/A;  /* move to next lower image pixel */

    }
(2)     ip = (int)fp+1;  /* ip is higher image lattice point */
(2)     del = (ip - fp) / A;   /* fractional distance of xformed pt */
(4)     while (del < 1 && ip < max_pixel) {
(10)       image[pixindex+ip] += f(alpha, del); /* accum point’s contrib */
(2)       ip++;  del+= 1/A;  /* move to next higher image pixel */

    }
(4)     while (del < 2 && ip < max_pixel) {
(12)       image[pixindex+ip] += f(alpha, del); /* accum  point’s contrib */
(2)       ip++;  del+= 1A;  /* move to next higher image pixel */

} } }

Assuming an image lattice and object lattice of the same size, there are 85 operations, 5 
loads, and 4 stores per data point, per pass.   The support of the cubic filter is fixed at four 
object-lattice points so the radial filter extent ζ = 3.  The filter’s image-lattice coverage 
for arbitrary lattice sizes is given by

k = 6 p1/2 d-1/3 (5.8)
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Expressing the per-point costs in terms of the image lattice kernel coverage k produces

mops = 17 + 68p1/2 d−1/3 (5.9)
mloads = 1+ 4 p1/2 d−1/3 (5.10)
mstores = 4 p1/2 d−1/3 (5.11)

Rendering requires two passes.  The first pass (assume along the x-axis) transforms and 
resamples d points onto p1/2d2/3 image lattice points.  The second pass (along the y-axis) 
transforms p1/2d2/3 points and resamples them onto p d1/3 image lattice points.  For two 
passes the total number of operations, loads, and stores is 

mops = (17 + 68p1/2 d−1/3) (d + p1/2d2/3) (5.12)
mloads = (1+ 4 p1/2 d−1/3) (d + p1/2d2/3) (5.13)
mstores = (4 p1/2 d−1/3) (d + p1/2d2/3) (5.14)

Test times in seconds for reconstruction and resampling the mixed data are given below.  
Time with and without threshold testing for each of the two passes is given.

Image Lattice Size DEC 5000/120 DEC 5000/200 IBM RS/6000 HP 9000/750

64×64×64 (pass1)  7.27 / 1.01 4.82 / 0.64 1.36 / 0.21 1.83 / 0.26
                 (pass2) 7.15 / 0.91 4.58 / 0.66 1.28 / 0.22 1.94 / 0.33 

128×128×64 (pass1) 13.0 / 1.35 8.19/ 0.87 2.04 / 0.30 2.56 / 0.36
                     (pass2) 25.5 / 2.57 15.8 / 1.76 4.17 / 0.74 5.70 / 0.81

5.4.   Comparison and Discussion

Inner loop costs are compared below.  For p > d2/3, the operation count of the 
methods indicates that splatting is the most efficient rendering method, followed in order 
by ray casting and volume shearing.  As image size increases relative to the data size, 
splatting operations increase more slowly than ray casting operations.  This behavior is 
exhibited in the workstation-test comparison presented in the next section.
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Operation Ray Casting Splatting Volume Shearing

mops 91 (p d1/3) 23d + 67p d1/3 (17 + 68p1/2 d−1/3) (d + p1/2d2/3)
mloads 8 (p d1/3) d + 20p d1/3 (1+ 4 p1/2 d−1/3) (d + p1/2d2/3)
mstores p d1/3 6.7p d1/3  (4 p1/2 d−1/3) (d + p1/2d2/3)



5.4.1.  Workstation Timing Comparison

Figures 5.1 and 5.2 graph the test times from the previous sections.  The relative 
performance of splatting and volume shearing is not strongly influenced by the system 
used or the image-lattice size.  Ray casting performance is more sensitive to the system 
used and shows a relatively greater increase in rendering time for the larger image lattice 
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Fig. 5.1 - Rendering times for 64×64×64 image lattice
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size.  Ray casting’s sensitivity to the system architecture may arise from cache behavior 
or compiler optimizations.  I have not investigated this issue.  The relative decrease in ray 
casting’s performance for the larger image size is predicted by the inner-loop cost 
analysis.  The performance decreases because ray casting is an image-order rendering 
method and therefore has a setup time associated with each pixel’s ray.  Object-order 
methods pay a setup cost for each data point.  As the screen resolution increases relative 
to the data size, object-order methods become increasingly efficient.

The rendering times in these graphs are obtained without speedup techniques.  Splatting 
is clearly the fastest method under these conditions.  This is equivalent to rendering with 
all data contributing to the image.  Even with speedups, all data may contribute  under 
worst-case viewing parameters, but usually speedup techniques have a significant effect.  
The mixed data gives a maximum speedup of 8.2 for splatting, and 9.8 for volume 
shearing, on a 1282 screen. The speedup obtained with ray casting depends not only on 
the data but on the view and classification parameters as well.  For the mixed data 
rendered on a 1282 screen, a speedup of up to thirteen is obtained by using an octree, 
adaptive screen-sampling, and an isosurface classification.  When isosurface classification 
is not performed, the speedup drops to five.  By including the speedups, it becomes 
difficult to say which is the faster method.  The sensitivity of ray-casting speedups to the 
view point and classification makes conclusive comparison impossible.  

The timing comparison shows that when computing a fixed number of resampled points, 
splatting is the fastest reconstruction method.  This validates the second thesis statement 
that states, "Splatting is a more efficient volume reconstruction method than ray casting 
or volume shearing."  This has been shown for splatting with the Gaussian filter.  The 
claim extends to the pyramid and cubic filter as well.  In chapter four splatting is 
performed with all three different filters.  The extent of the pyramid and Gaussian filters 
are approximately the same so they are equally efficient to use.   The cubic filter has three 
times the radial extent of the pyramid filter making the footprint nine times as large.  
Splatting with the cubic footprint results in the times listed below.  They are better in all 
cases than the times achieved with the volume shearing method and the same cubic filter.

  Image Lattice Size DEC 5000/120 DEC 5000/200 IBM RS/6000 HP 9000/750

64×64×64 12.1 5.22 1.86 2.54
128×128×64 35 24.3 5.12 6.8

The choice of rendering methods is influenced by other issues besides speed.  While the 
choice of using ray casting over splatting and volume shearing is not warranted by its 
efficiency or ease of implementation, its forte is that it is the only rendering method that 
supports perspective projections without additional cost.  Volume shearing can render 
perspective projections but five passes are required - more than twice the work of the 
two-pass approach used here.  Perspective projections are theoretically possible with 
splatting, but perspective precludes the use of lookup tables for the filter coefficients and 
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lookup tables are the key to the speed of splatting.  As long as filter kernel computation 
takes longer than memory accesses, lookup tables have the advantage.  Additional 
efficiency is obtained with splatting since there is also only one setup cost per data-point 
in contrast to one setup per-point per-pass in volume shearing.  The table below 
summarizes the strengths and weaknesses of each rendering method.
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   Rendering method Strengths Weaknesses

     Ray casting Supports perspective Requires complex speedup methods
Low memory requirement Less efficient as image size increases

relative to data size

     Volume Shearing Accurate reconstruction Perspective ~doubles cost
with cubic filter Slowest resampling

Simple speedup method High memory requirement

     Splatting Fastest resampling method Perspective not supported
Simple speedup method Complex, view-dependent 
Use arbitrary 2D filter traversal of data


