
6. Parallel Volume Rendering Algorithms

This chapter introduces a taxonomy of parallel volume rendering algorithms. In the
thesis statement we claim that parallel algorithms may be described by "... how the tasks
and data are partitioned over the architecture." The taxonomy of algorithms is based on
how the image and object lattices are distributed. We assume a "generic" MIMD parallel
system based on compute nodes with local memory and a communications network.
Communication costs for the algorithms are based on the quantity of data that moves over
the network every frame.

The rendering method is part of the task branch of the taxonomy. Many parallel
algorithms permit the use of either image or object order rendering methods. With such
algorithms, the choice of rendering method becomes important when considering the
communications model of the actual system. Chapter seven deals with this choice and
other issues of practical implementation.

The notation used in the remaining chapters is an extension of that used in chapter five.
The terminology will be explained as it is introduced.

n number of nodes in the system
d number of points in the object lattice
p number of screen pixels
mredist quantity of data communicated in redistribution
tredist time cost of redistribution
φ rotation angle(s) of image lattice axes from object lattice axes
bbis bisection bandwidth
blink communication-channel bandwidth

6.1. Taxonomy

The full design-space of algorithms is illustrated in figure 6.1. The primary
distinction is between image partitions and object partitions. A partition is named for
the lattice onto which computing tasks are mapped. In an image partition, a node’s task
is to compute a subset of image-lattice points while object-lattice points are communicated
as required by the view. In an object partition, each node renders an image of its local
object-lattice subset, and communicates the resulting image as necessary for compositing.

For either partition, the image and object lattices must be distributed among the nodes. In
chapter one, we defined three subsets of a volume: slabs, shafts, and blocks. The image
and object lattices are distributed as one of these. If lattice subsets are more numerous
than the number of nodes, some nodes have more than one subset of a lattice. Multiple
lattice subsets at a node may be spatially adjacent and together form a larger, contiguous

70

subset of the lattice, or they may be spatially-separate subsets which we will refer to as
interleaved. If the lattice subsets at a node remain the same over time, the lattice
distribution is static. If the subsets vary from frame to frame, or within a frame, the
distribution is dynamic.

Optimizing the distribution of the lattices among the memory and computing resources in
the system is important. The distribution should make efficient use of scarce or
expensive resources. In parallel systems today, the communications network is the most
expensive resource to use if we define "expensive" in terms of time. Current networks
are many times slower than paths to main memory. An efficient algorithm, therefore, is
one which minimizes the communication requirement imposed on the network. The
communication of lattice subsets is referred to as redistribution to distinguish it from
other communication such as control messages. Trivial distributions like fully replicating
the data set at each node are deemed too expensive as a general solution, although some
replication of lattice points is often necessary or desirable. Some lattice distributions in
the taxonomy are inherently impractical or inefficient. These will be culled in the
remaining sections, leaving the remaining algorithms for consideration in chapter seven.
Communication requirements for these algorithms will be derived and used in chapter
seven as a basis for gauging their relative efficiencies.

71

Data
(object lattice)

Tasks
(image lattice)

Slabs | Shafts | Blocks

Contiguous | Interleaved

Static | Dynamic

Image
(image lattice)

Tasks
(object lattice)

Slabs | Shafts | Blocks

Contiguous | Interleaved

Static | Dynamic

Parallel
Algorithms

Object PartitionImage Partition

Image | Object
Rendering

Image | Object
Rendering

Fig. 6.1 - Full taxonomy of parallel volume-rendering algorithms

6.2. Image Partitions

Image-partition algorithms start each frame with the redistribution phase. Rendering
tasks are distributed among the nodes by assigning them subsets of the image lattice. For
example, a node assigned an image-lattice slab would render a horizontal or vertical
screen-stripe; a node assigned an image-lattice shaft would render a rectangular screen
area. For convenience, any subset (rectangular or irregular) of screen pixels will be
refered to as a region. The resampling process must have access to all the object-lattice
data points that fall into a node’s assigned image-lattice subset under the view
transformation. Object-lattice data subsets are also distributed among nodes. The view
transformation determines where a node’s object-lattice subsets are needed. Redistribution
for image partitions is a screen-space sort of the transformed data points. The amount of
data to redistribute is mredist = f(d, n, φ), a function of data size, the number of nodes, and
the view point. The redistribution size grows as the data size, even with the assumption
that some fraction of the data set will be zeros and therefore not redistributed.

6.2.1. Image Lattice Distribution

In an image partition, the rendering task is associated with the image-lattice
distribution. Distributing the image lattice as slabs or shafts makes each node responsible
for rendering one or more rectangular regions of the final image. If the image lattice is
distributed as blocks, a final composite must be done, adding additional communication
beyond the redistribution cost. Because of this additional compositing cost, block
distributions will not be considered in any greater detail here. (In chapter seven, block
distributions are shown appropriate for 3D network topologies.) A contiguous
distribution allows each node to render a single screen region. An interleaved
distribution causes several separate regions to be rendered at each node; for example,
scan lines (slabs) could be assigned to nodes in round-robin fashion. A distribution is
static if it never changes. A dynamic distribution changes within or between frames.

6.2.1.1. Load Balancing

The load at each node is proportional to the number of image-lattice points to be
computed. To balance the load, the image-lattice distribution must either be varied or be
statistically equivalent at each node. It is not possible to balance the loads among
processing nodes by using a contiguous static distribution - there is no way to make any
adjustments. Load balancing may be performed with a contiguous dynamic distribution
by varying the screen region boundaries. This approach is simplest with slab
distributions. Figure 6.2 illustrates the advantage of rendering out from the center of the
default region to allow growth or shrinkage of the slabs in both directions. Shaft
distributions are more difficult to balance since the regions are difficult to fit together if
balancing is done in two dimensions. Figure 6.3 illustrates the work-load for a frame

72

balanced this way. Each node starts in the center of its default region and alternately
steps out left and right until it hits both neighbor pixels, or the screen edge. This
approach attempts to render whole scan lines in-step across shafts. Consecutive scan
lines are rendered as in the slab distribution approach - out from the center. Image-order
rendering is necessary with contiguous dynamic distributions since the image-region
boundaries change adaptively. No implementation of a contiguous dynamic distribution
has been reported.

Static or dynamic interleaved-distributions also support load balancing. Static
interleaved distributions attempt to achieve load balance by statistically equalizing the
loads. The image lattice is distributed as many small regions in round-robin fashion. The
benefit of this approach is its simplicity and lack of additional computation cost. The

Default Region
Boundaries

Region 0

Region 1

Region 2

Scan line
rendering sequence

for Node 0

1

2

4

3

5

6

2

1

3

6

4

2

1

3

5

Scan line
rendering sequence

for Node 1

Scan line
rendering sequence

for Node 2

Default Region
Boundaries

Region 0-2

Region 3-5

Region 6-8

Node 0 pixels Node 1 pixels Node 2 pixels

Fig. 6.3 - Dynamic contiguous shaft load balancing on scan lines

Fig. 6.2 - Load balancing with dynamic contiguous slabs

73

drawback is that to achieve good balance the region size must be small enough to assure
that each node gets many regions. As the regions get smaller the redistribution size goes
up. Many object-lattice points contribute to each image-lattice point due to the
overlapping extents of the reconstruction filters. Object-lattice points that transform near
region boundaries will be needed in multiple regions, causing many object lattice points
to be communicated to multiple nodes. Static interleaved distributions have been
implemented [Montani+92] [Westover91] using both image and object-order rendering
methods.

Dynamic interleaved distributions may
use coarse, even variable-size image
lattice regions. This approach trades a
lower redistribution penalty for an adaptive
balancing method with some computing
cost and control-message traffic. Dynamic
interleaved distributions have been
implemented [Challenger91] [Nieh+92]
[Corrie+92] and shown to be effective at
load balancing. Dynamic region-assignment
requires image-order rendering since
region size is adjusted within a frame.

Figure 6.4 illustrates the image-partition
task-distribution options with the impracti-
cal or inefficient options diminished.

6.2.2. Object Lattice Distribution

In an image partition, the data distribution is the primary determinant of the
redistribution cost. Object-lattice data moves over the network at the granularity of the
distribution. Slabs and shafts have irregular aspect ratios and are too coarse to be
efficient. Blocks are the only practical object-lattice subset. The size of the blocks is the
smallest number of lattice points moved in a single, atomic communication event. An
event is a single message in a message passing system or a single remote-access transfer
in a shared memory system. Block size is adjustable in message passing systems but
usually not in shared memory systems. The block granularity sets the trade-off between
efficient network utilization and the number of communications events. Fine granularity
blocks cause a high number of communication events, but the number of excess lattice
points moved to nodes that do not need them is low. With coarse blocks, there are fewer
communications events, but a larger number of unnecessary points are moved.

74

Tasks
(image lattice)

Slabs | Shafts | Blocks

Contiguous | Interleaved

Static | Dynamic

Image Partition

Image | Object Rendering

Fig. 6.4 - Image-partition task distributions

6.2.2.1. Static Distribution

In a static data distribution, object-lattice blocks are permanently assigned to nodes.
If there are multiple blocks per node they may be contiguous or interleaved. A
contiguous data distribution coupled with a contiguous image-lattice distribution gives
rise to a large variance in the redistribution occurring at each node. Under some
view-transformations, a node’s data will be required in its assigned image lattice, causing
little or no data to be redistributed. Under other transformations, there will be no overlap
of lattices, causing maximum redistribution. For any static contiguous data distribution,
there are worst-case views for which all data is redistributed.

If either lattice is interleaved, the variance of the redistribution size is lowered. As noted
in section 6.2.1.1, redistribution size increases when the image lattice is interleaved.
However, interleaving the object lattice in an image partition does not increase
redistribution size. Interleaving the data is also desirable since it randomizes the
redistribution accesses. As the granularity of interleaved blocks becomes finer,
redistribution becomes view independent. Jason Nieh’s implementation [Nieh+92]
combines a dynamic interleaved image-lattice and a static interleaved data distribution.

A special case arises if the view point is limited to rotations about a subset of axes, and
scaling and translation are restricted. A static-slab data and task distribution can avoid all
redistribution costs by splitting the lattices in the plane perpendicular to the axis of
rotation. Limited three-axis rotation may be achieved by replicating the data three times
and storing slabs in all three axis-orientations at each node. Perspective is even possible
if some overlap of data at the split planes is maintained. This approach severely
constrains the possible view points but may be acceptable in some applications.

6.2.2.2. Dynamic Distribution

Data blocks in a dynamic distribution migrate among the nodes in response to
view-transformation changes. There are three potential advantages to this approach over
the static data distribution:

1. By limiting the change in view point from frame to frame, the redistribution size is
bounded, potentially far below the worst case encountered with static distribution.

2. No redistribution is done when only shading or classifying parameters are changed.
3. It is possible to use only nearest-neighbor communication for redistribution in 2D

and 3D mesh topologies.

The third advantage is only achieved if the image lattice is a dynamic contiguous
distribution, or a static interleaved distribution. The neighbor relations of the nodes and
their image-lattice subsets can not change as in a dynamic interleaved image-lattice
distribution. Since data blocks migrate to image lattice subsets, an interleaved

75

image-lattice distribution produces an interleaved data distribution while a contiguous
image-lattice distribution produces a contiguous data distribution.

There is no reported implementation of an image partition using a dynamic data
distribution. The low redistribution size of a dynamic distribution is approached by
combining a static data distribution and a large data-cache [Corrie+92]. As large caches
and operating-system support for dynamically-migrating data appears in commercial
multicomputers [Kendall], dynamic data distributions become easier to implement and
are likely to become popular.

Figure 6.5 illustrates the generally useful
image-partition data distributions.

6.2.3. Combined Image Partition
Distributions

Figure 6.6 illustrates the useful image-
partition options for combining the lattice
distributions and rendering methods.
There are seven reasonable possibilities -
two using dynamic data distributions and
five using static data distributions. In
chapter seven, redistribution costs and
implementation issues are examined for
these approaches.

76

Image Partition

Tasks
(image lattice)

ContiguousInterleaved

DynamicStatic Dynamic

Slabs | Shafts

Blocks

Data
(object lattice)

Static Static DynamicDynamic

Interleaved Contiguous

Image Partition

Image
Rendering

Object | Image
Rendering

Image
Rendering

Fig. 6.6 - Image-partition options

Data
(object lattice)

Slabs | Shafts | Blocks

Contiguous | Interleaved

Static | Dynamic

Image Partition

Fig. 6.5 - Image-partition data distributions

6.3. Object Partitions

An object-partition algorithm redistributes image-lattice data. The reconstruction and
resampling tasks are performed with only the local data at each node - object-lattice data
is not communicated. Nodes compute the image-lattice points that fall in their local
data-subsets under the view transformation. After resampling, image-lattice data is
redistributed among the nodes to facilitate compositing. In an efficient object partition,
locally computed image-lattice points are shaded, segmented, and composited before
redistribution to minimize communication cost. Since rendering uses only local data,
either object or image-order rendering methods may be used. Compositing is associative
so it may be performed in two stages - a local pre-redistribution stage and a
post-redistribution stage. The latter composites can only be performed after redistribution
brings all the necessary data to a node. By using two-stage compositing, redistribution is
done for 2D images rather than 3D volumes of data. Nodes render and redistribute both
color and opacity images of their data subset(s) to facilitate the post-redistribution
composite.

6.3.1. Object Lattice Distribution

In an object partition, the task distribution is determined by the object-lattice
distribution among the nodes. Contiguous distributions are desirable since the number of
object-lattice subsets is proportional to the redistribution size. Interleaved slabs, for
example, would require multiple (possibly overlapping) images at each node to be
redistributed; a single, contiguous slab produces only one image for redistribution.

Redistribution size for object partitions is mredist = f(n, p, φ), a function of the number of
nodes, the image size, and the view-point; the data size is not explicitly a parameter. The
view-point affects the redistribution size as a function of the aspect ratio of the data
distribution. Slabs, shafts, and blocks, in order, vary from very unbalanced aspect ratios
to 1:1:1. Under rotation, these data subsets cover varying portions of the screen. In the
worst case, slabs cover the complete screen, shafts run diagonally across the screen, and
blocks are rotated 45 degrees to maximize their projected area. Of these, block
distributions have the most-consistent redistribution size.

6.3.1.1. Load Balancing

Load balancing an object partition is accomplished by modifying the object-lattice
subset size at each node, or making the subsets statistically equivalent. Static contiguous
distributions do not allow load balancing since no adjustment mechanisms exist. Static
interleaved distributions depend on a fine granularity of subsets to produce a statistically
equivalent work load at each node. Recall that an interleaved distribution has a higher
redistribution size due to the rendering of multiple images at each node. The only

77

remaining efficient option is a dynamic contig-
uous distribution. Load balance is achieved
by modifying the size of the object lattice at
each node in response to a work estimate.
The estimate may be based on a partial render-
ing of the current frame or the total load of the
previous frame. The boundaries between
adjacent object lattice subsets are adjusted to
transfer work in the direction of lower average
work load. This adjustment is done in one
dimension at a time. For slab distributions,
only one dimension may be adjusted, two
adjustable dimensions exist for shafts, and
three for blocks. This is a variant of the class
of Orthogonal, Monotonic, and Surjective
(OMS) grid-computation load-balancing
methods described by Edoardo Biagioni
[Biagioni91]. This method does not achieve
optimal balance, but significant improvement
is obtained. Chapter eight details the first
reported implementation of an object-partition algorithm using a dynamic contiguous
distribution with load balancing. Figure 6.7 illustrates the useful object-lattice
distribution options.

6.3.2. Image Lattice Distribution

The image of each node’s local data is redistributed to facilitate its compositing into
the final image. Nodes are assigned portions of the screen for compositing. Since the
image lattice is already reduced to two dimensional regions by local compositing, only
slab and shaft distributions make sense to pursue. In a slab distribution, a node is
responsible for compositing all local-image pixels on a set of scan lines. In a shaft
distribution, a node composites all pixels for a rectangular region. Not all regions of the
screen will have an equal number of local images to composite so there is some potential
for load imbalance with a contiguous static distribution. Fortunately, the amount of work
required to perform the post-redistribution compositing is usually small relative to the
rendering work load, so the imbalance is not serious. A static interleaved distribution is a
good choice for balancing the compositing load without introducing significant
processing overhead. The overhead required to use a dynamic distribution may be too
great to produce a net increase in performance. Figure 6.8 illustrates the useful
image-lattice distribution options.

78

Tasks
(object lattice)

Slabs | Shafts | Blocks

Contiguous | Interleaved

Static | Dynamic

Object Partition

Image | Object Rendering

Fig. 6.7 - Object-partition task options

6.3.3. Combined Object Partition Distributions

Figure 6.9 illustrates that all the useful object-partition options for lattice
distributions and rendering methods are compatible with each other. Chapter seven
details the redistribution costs and implementation issues associated with these object
partitions.

79

Image
(image lattice)

Static

Object Partition

Slabs | Shafts

Contiguous | Interleaved

Object Partition

Tasks
(object lattice)

Contiguous

Dynamic

Slabs | Shafts | Blocks

Object | Image
Rendering

Fig. 6.9 - Object-partition options

Image
(image lattice)

Slabs | Shafts | Blocks

Contiguous | Interleaved

Static | Dynamic

Object Partition

Fig. 6.8 - Object-partition image options

