
8. Parallel Implementations

This chapter presents experimental verification of the network behavior predicted in
chapter seven for object partitions. Tests are run on the Touchstone Delta running the
NX/M message-passing kernel. A range of mesh sizes are tested and the data confirm the
expected growth in redistribution size and shrinkage of redistribution time. Additionally,
the object-partition algorithm described in chapter seven is implemented and tested on the
Touchstone Delta and Pixel-Planes 5. There has been no other reported implementation
of this algorithm to date. The algorithm’s performance on Pixel-Planes 5 is compared to
VVEVOL [Yoo+91], a volume rendering program for Pixel-Planes 5 that has evolved
over some time and reports the fastest performance for a message-passing system to date.

8.1. System Overview

Pixel-Planes 5 and the Touchstone Delta both have i860 compute-nodes with
relatively large memories and computation power. These are often classified as
coarse-grain multicomputers. They both have message-passing communication models
which make remote-memory accesses costly relative to local-memory accesses. Their
network topologies are different. Pixel-Planes 5 uses an eight-channel ring while the
Delta uses a two-dimensional mesh. There are major differences in how the systems
incorporate frame buffers. Pixel-Planes 5 frame buffers interface directly to the ring
network through one or two ring-channel ports. Pixel messages to a frame buffer are
copied at the full ring-channel bandwidth. Messages must be formatted to cover all or
part of a 128 × 128 pixel screen-region. The Delta frame-buffer interface is through a
HIPPI port serviced by one of the I/O nodes which are on the edge of the computing
mesh. Driver software for the I/O node may be customized to handle pixels in any
format. Although the HIPPI bandwidth is reasonably high, feeding pixels to the I/O node
is limited by the bandwidth of the mesh channels. Other characteristics of these two
systems are tabulated below.

Feature Pixel-Planes 5 Touchstone Delta

Memory per-node 8 Mbyte 16 Mbyte
Processor nodes 64 × 40 MHz i860 512 × 40 MHz i860

Network topology 8 Channel token ring 2D Mesh
 CPU Message overhead send=20 µs recv=70 µs send+recv=60 µs (min)

Network to memory-buffer send = 51 Mbytes/sec send = 16 Mbytes/sec
bandwidth recv = 62 Mbytes/sec recv = 16 Mbytes/sec

Peak channel-bandwidth 80 Mbytes/sec 20 Mbytes/sec

Messages costs are characterized by per-message CPU overhead and channel bandwidth

95

(given above for 4K byte message). Contention for a network path or a receiving node
increases the latency of any transfer. Operating-system support for message passing is
very similar in both systems. Transmitting nodes may use blocking or non-blocking send
calls. Blocking sends enforce strict ordering of all messages by forcing a send call to
wait for the message to completely enter the network before returning; thus any network
contention effectively increases the CPU’s message sending overhead. If a non-blocking
send is used, contention increases the CPU’s sending overhead only slightly, but the
message itself is delayed by an arbitrary period of time. Pixel-Planes 5 and the Delta
provide both blocking and non-blocking sends for flexibility of programming. Unlike the
Delta however, Pixel-Planes 5 enforces the strict ordering of non-blocking sends to
different nodes; all messages leaving a node are transmitted in the order the program
issues them. The Delta allows non-blocking messages to different nodes to enter the
network in arbitrary order; all messages to the same node are strictly ordered. These
subtle differences in message-passing semantics are important to consider when porting
applications from one system to another.

8.2. Mesh Redistribution Time

In chapter seven, an expression is derived (Eq. 7.9) for the redistribution time for
object partitions on 2D mesh (and torus) topologies. In this section, the Delta mesh is
used to experimentally verify the claim that for a fixed screen-size, the redistribution time
decreases as the number of nodes increases. A test program is used that does no actual
rendering of an image, but computes the number of pixels in each node’s local-image and
redistributes the pixels according to a randomly-interleaved static-assignment of screen
regions. The pixels are received and ignored by the destination nodes so compositing
times are not included in the test times. Region assignments are varied to test for
sensitivity to any pattern of assignment. Twenty different assignments are tested and the
resulting variations in redistribution time are small (< 20%) and not repeatable. These
variations are likely to be due to network I/O-traffic through the test partition from other
user’s programs; the Delta supports multiple users in separate mesh-partitions. The
sensitivity to region assignments appears negligible.

Redistribution time for three screen-sizes is plotted in figure 8.1. A 3D block-partition of
the object lattice is mapped onto the smallest "square" 2D mesh with sufficient nodes. A
square, or near-square mesh-partition is used to maintain the largest bisection possible.
The 3D to 2D mapping is done by enumerating the blocks in x, y, z-order and assigning
them to the corresponding partition node-number. For example, a 2×2×2 block-partition
fits into a 3×3 mesh with blocks 〈0,0,0〉, 〈0,0,1〉, 〈0,1,0〉, … , 〈1,1,1〉 assigned to nodes 0,
1, 2, …, 7, respectively. In this example case, the last node (node 8) is unused and
doesn’t contribute to the test. Figure 8.2 shows the redistribution sizes for the test cases
used for figure 8.1. These two graphs verify the behavior predicted in chapter seven - as
n increases, the redistribution size also increases, but the redistribution time decreases.

96

8.3. Touchstone Delta Implementation

This section describes a volume-renderer implementation for the Touchstone Delta.
The algorithm is an object partition with a dynamic contiguous block distribution of the
object lattice, and a static contiguous slab distribution of the image lattice. The
image-lattice distribution differs from the optimal object-partition algorithm described in

97

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

512x512 image

256x256 image

128x128 image

2x2x2 3x3x3 4x4x4 5x5x5 6x6x6 Object block partitions

3x3 6x5 8x8 12x11 15x15 Mesh dimensions

R
e
d
i
s
t
r
i
b
u
t
i
o
n

S
i
z
e

Fig. 8.2 - Redistribution sizes for tests on the Touchstone Delta

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2x2x2 3x3x3 4x4x4 5x5x5 6x6x6 Object block partitions

512x512 image

256x256 image

128x128 image

3x3 6x5 8x8 12x11 15x15 Mesh dimensions

R
e
d
i
s
t
r
i
b
u
t
i
o
n

T
i
m
e

Fig. 8.1 - Redistribution times measured on the Touchstone Delta (in seconds)

chapter seven. The contiguous image-lattice distribution is used to simplify the frame
buffer update which requires all pixels to be sent in one message. (Subsequent to these
tests, the I/O-driver software was modified to accept a variety of pixel formats.) The
image-lattice distribution is unlikely to impact the performance since the performance
figures shown below indicate the redistribution time is not a bottleneck. Based on the
data from section 8.2, the frame rates attained by this implementation are well-below the
redistribution rate that the network can support. Software rendering-time on the nodes is
the limiting factor. The performance of this implementation is tabulated below as the
frame rate achieved for various data and system sizes. In all cases the screen size is 2562

and the data set is the mixed data (sampled at different densities) used for the image
quality tests.

The image rendered in all the performance tests is shown in figure 8.3. Although a
complete image is assembled in one node, it is not sent to the HIPPI I/O node during
these tests since updating the frame buffer limits the frame rate to about four updates
per-second at this screen size.

98

Fig. 8.3 - Isosurface rendering of mixed data set

Data size System size = 23 33 43 53 63

643 1.8 2.9 2.7 5.0
1283 1.6 2.6 2.5 4.2 5.1
1923 2.3 4.1 4.9

Performance is very nonlinear due to the effects of the ray casting speedups. Note the
slower frame rate of the 43 system relative to the 33 system size. This implementation
uses ray casting with adaptive sampling, adaptive ray-termination, and an octree
encoding of the minimum and maximum data-value in each octant [Wilhelms+90]. The
effectiveness of the speedups vary for different data-block sizes and numbers. The nodes
perform adaptive sampling with the isosceles-triangle recursive-subdivision method
[Shu+91] to render their local image. Each node constructs a unique octree for its data
block. The octree "fit" of the features in the data will vary with the block dimensions and
placement. Adaptive ray-termination only effects local-image rendering; as the depth
complexity of the partition goes up and the data blocks get smaller, the effectiveness of
adaptive ray-termination diminishes.

Isosurface rendering is used since it is often faster than "cloud" rendering; rays terminates
on the first surface they hit. The isosurface rendering method checks the minimum and
maximum octree cell-values to decide whether a surface could lie in the current cell. If a
surface could be in the currently-sampled cell, its position is estimated by linear
interpolation of the ray’s cell entry and exit values. At the intersection point, the gradient
is computed by trilinear interpolation of the gradients at the eight cell corner-points. A
Phong lighting model in then applied to produce the pixel’s intensity. Although larger
data sets have correspondingly larger numbers of cells, the octree hierarchy helps to
maintain the number of cells traversed and tested fairly constant; thus, data size does not
proportionally affect performance.

8.3.1. Load Balancing

Load balancing is performed by storing larger blocks of data at each node than are
strictly required by the partition and adjusting the partition boundaries between nodes.
This is a grid-computation load balancing method that has not previously been applied to
volume rendering. This implementation replicates data near partition boundaries so that
moving the partition boundary does not require communicating any data. The amount of
replication determines the extent to which a load imbalance can be corrected. The test
cases documented here were run with a replication factor of about two, each node had
about twice the data size required by the initial partition-boundaries.

The load balancing task is distributed in order to prevent a single node from becoming a
bottleneck in large systems. All rendering nodes communicate their rendering times for
the last frame to a dedicated set of load-balancing nodes. These load-balancing nodes use
a three-dimensional variant of a summed-area table [Crow84] to compute the average
load on both sides of any partition plane. If the difference in the average load on both
sides of a plane is greater than some threshold, then the boundary is moved to shift work
to the more lightly-loaded side. This process is repeated for boundary planes
perpendicular to each dimension. Once the new boundary-plane positions are
established, their coordinates are communicated to the rendering nodes along with other

99

data that defines the next frame. The load balancing process is concurrent with the
redistribution and global compositing so it adds no sequential task to slow the rendering
rate. This method does not ensure perfect load-balance, but it improves it considerably in
most situations. The table below shows some examples of the effects of load balancing
on the Delta implementation. The load values are the times consumed to render a node’s
local-image. The slowdown percentage is 100 (Max. load − Avg. load) / Avg. load. All
times are in seconds.

8.4. Pixel-Planes 5 Implementation

This program is basically the same as the Delta program described above including
the load balancing method. The major differences are due to the different frame buffer
organization which causes the image-lattice distribution to be changed from slabs to
shafts. By replacing the rendering loop with a simple block-fill of the local image, the
performance of the ring network allows redistribution for 2562 images to occur at > 15
Hz. for the largest test system with 40 processing nodes. This result indicates that
network performance is not a bottleneck. Frame rates for 2562 images are tabulated
below. These performance figures are predictably similar to those for a comparable Delta
configuration due to the similarity of the CPU performance in both systems.

100

Balance Sys/ Data Avg. load Max. load Min. load Frame rate Slowdown

Off 23 / 643 0.48 0.72 0.32 1.3 48%
On 23 / 643 0.52 0.63 0.36 1.8 20%

Off 33 / 643 0.15 0.96 0.06 1.2 531%
On 33 / 643 0.16 0.34 0.06 2.9 112%

Off 43 / 643 0.086 0.47 0.03 2.0 454%
On 43 / 643 0.085 0.35 0.03 2.7 314%

Off 43 / 1283 0.093 0.56 0.03 1.8 498%
On 43 / 1283 0.091 0.40 0.02 2.5 341%

Off 43 / 1923 0.098 0.51 0.03 1.5 421%
On 43 / 1923 0.096 0.34 0.02 2.3 255%

Data size System size = 23 33 4×4×2

643 2.0 3.1 2.9
1283 3.1 2.7
1923 2.9 2.5

This performance is comparable to that achieved by VVEVOL. VVEVOL is also an
object-partition algorithm and is described in section 2.2.2. With 20 nodes rendering the
mixed data at a ray density of 320×256, VVEVOL achieves about 2 frames per-second.
At a ray density of 160×128, about 9 frames per-second are achieved. Both of these
applications are processor-bound for high resolution images where the efficiency of the
parallel algorithm’s use of the network is not that important. However, for the lower
resolutions and as more nodes are employed, the network does limit the frame rate and
efficient network-utilization becomes important.

101

