
9. Summary, Conclusions, and Future Work

9.1. Summary and Conclusions

This work focuses on two major issues effecting the design and implementation of
parallel volume-rendering algorithms for multicomputers - the efficiency of reconstruction
and redistribution. Reconstruction is a dominant cost of volume rendering in
uniprocessor and parallel systems; using an efficient method is therefore important.
Splatting is shown to be the most efficient reconstruction method when compared to ray
casting and volume shearing. Redistribution is a cost incurred in all parallel
volume-rendering algorithms. Object partitions are shown to minimize the redistribution
cost and scale well.

The Introduction formulated analytical and algorithmic models of volume rendering.
The algorithmic model is based on the embedded image and object lattices. This model
is useful for deriving the reconstruction costs and classifying parallel algorithms. The
error and efficiency of three reconstruction filters is analyzed. Reconstruction error, as a
function of feature size, is analytically-derived and experimentally-measured from
rendered images. Both results show that a separable cubic reconstruction filter provides
the lowest resampling error-bound when compared to a pyramid or Gaussian filter.
Separable cubic reconstruction filters are used in the volume-shearing rendering method.
A simplified two-pass version of this method is shown to provide low error with
significant time and memory savings over the normal three-pass approach.
Implementations of splatting, volume shearing, and ray casting are tested on several
workstations. Analysis of the rendering loops, and the test timing-results show that
splatting is the most efficient rendering method in terms of computation cost per
reconstructed point. Splatting also gets increasingly efficient as the image size increases
relative to the data size. Ray casting with trilinear interpolation is neither the most
accurate, nor the most-efficient method, but is the only rendering method that supports
perspective view-transformations without considerable added cost. The many speedup
techniques that can be used with ray casting complicate an implementation considerably,
but they often lower the rendering cost to about, or below, that of splatting.

The latter part of this work considers the possible ways to parallelize volume-rendering.
 A new taxonomy is presented that enumerates the possibilities in terms of the
distribution of image-lattice and object-lattice points and the rendering method. Many of
the algorithm options have inherent disadvantages and are culled. The remaining options
are discussed and analyzed with respect to their communication costs on different
network-topologies and their suitability for multicomputers using message-passing or
shared-memory communication models. Three classes of algorithms emerge and provide
a useful grouping of algorithms in terms of their communication requirements. These
classes are a) image partitions with static data distributions, b) image partitions with

102

dynamic data distributions, and c) object partitions with contiguous block data
distributions.

Image partitions with static data distributions have been implemented by several
researchers. Image partitions with dynamic data distributions have not been reported, but
their bounded redistribution-costs and scalability make them attractive. In these
algorithms, data migrates between nodes as the view transformation changes
incrementally. If the incremental view-changes are bounded and the dimensions of the
partition and the communication network are the same, then the network utilization is
within a constant factor of that achieved for nearest-neighbor communication.

Analysis and simulations show that object-partition algorithms with contiguous block
data distributions maintain the lowest redistribution size of any algorithm, and for a fixed
screen-size, they scale well on mesh topologies as the data and system sizes increase.
Two implementations of an object-partition algorithm are presented and used to
demonstrate a solution to the previously-unsolved problem of load balancing such an
algorithm. The implementations on the Touchstone Delta and Pixel-Planes 5 perform as
well or better than any reported results for message-passing systems, but they are limited
by the reconstruction and resampling required to render images whose size is ≥ 2562 .
This strongly indicates an imbalance between the computation capabilities and network
performance of current generation multicomputers when applied to volume rendering.
Further software rendering-speedups and hardware accelerators are clearly an important
area of future research.

9.2. Future Work

For truly-interactive frame rates with large data and screen sizes, faster rendering
methods must be found. The SGI implementation described in section 2.2.5 clearly
demonstrates the possibility of applying hardware acceleration to the resampling task.
The PixelFlow system under development at the University of North Carolina at Chapel
Hill also has hardware suitable for 3D texture mapping [Molnar+92]. PixelFlow will
overcome the data-size limitation of the SGI system since subsets of the data can be
loaded into separate texture engines which operate concurrently. In the taxonomy, the
PixelFlow approach is an object partition with a contiguous static slab data distribution.
The image lattice is not distributed since the composition network is the compositor of all
the local images. Either, nodes stream their local images onto the composition network
in the view-order sequence required by compositing, or nodes may use a single
compositing-sequence with the front-to-back or back-to-front compositing-computation
applied selectively at each node as a function of the view direction.

Another approach to accelerating resampling is to use vector processing. Volume
shearing is particularly suitable for this due to its regular memory-access strides. All the

103

transformation computations are simply DDA increments. Computing the cubic filter
coefficients is feasible but costly. Linear filter coefficients could be computed and
applied more simply with some reduction in image fidelity.

Splatting is the fastest method, per reconstructed sample-point, of the three rendering
methods tested. Some new speedups, inspired by this work, are offered here for making
it even faster. Reducing the kernel extent clearly increases the reconstruction speed.
Recall that the Gaussian extent was truncated at ζ = 1.3 for the speed tests conducted in
chapter five. If a pyramid filter is used instead of a Gaussian, the extent is reduced to 1.0
with a commensurate speed increase. Isosurface rendering with ray casting is accelerated
by the use of min-max octrees to quickly locate possible surface locations. Octrees may
do the same for splatting if a 3D splat buffer and a pyramid filter is used. Instead of a
single image-lattice plane that has points splatted onto it from a single object-lattice
plane, memory is allocated for as many image-lattice planes as there are object-lattice
planes. Any point may now be splatted, in any sequence, onto its respective image-lattice
plane. The octree is traversed in any order, skipping over any node whose min-max
values do not bracket the desired threshold. Any node with min-max values bracketing
the threshold contains the surface and causes a descent to the node’s children. If a
leaf-node brackets the threshold, all data-points bounding in the octant are transformed
and splatted into their respective image-lattice planes. Some tags must be kept to prevent
splatting the points on the octant-boundaries more than once. After octree traversal is
completed, pixel values in adjacent image-planes are tested, from front-to-back, for
values bracketing the threshold. When bracketing values are found, the location of the
surface may be interpolated, and classification and shading performed for that pixel.
Further examination of image-lattice values behind the first surface encountered need not
be done.

The Delta implementation could be improved. Since it is currently CPU-bound, further
efforts at increasing the efficiency of the ray-casting code, perhaps by manual assembly
coding, could be fruitful. Splatting could also be tried as a substitute for the ray-casting
renderer.

The KSR-1 [Kendall] multicomputer nodes have large local-memories that are essentially
all cache. Since multiple read-only copies of data may exist in these caches and the
system supports a low-latency shared-memory communication model, the KSR-1 may be
an ideal candidate for the first implementation of an image-partition algorithm with a
dynamic data distribution.

The algorithms described in this work could be applied to some of the visualization
packages like AVS, Explorer, and apE currently being parallelized for multicomputers.

104

