
An Introduction to ProteusVersion 0.9Gary Marc LevinClarkson UniversityDept of Math and Computer SciencePotsdam, NY 13676(315) 268{2384Bitnet: gary@clutxInternet: gary@clutx.clarkson.edu andLars NylandUniversity of North CarolinaDept of Computer ScienceCB #3175Chapel Hill, NC 27599-3175nyland@cs.unc.eduUNC Technical Report TR95-025July 11, 1995

AbstractThe current version of Proteus is a variation of Isetl that supports thread and data-parallelism. Isetl is aninteractive implementation of setl1, a programming language built around mathematical notation and objects,primarily sets and functions. It contains the usual collection of statements common to procedural languages, but aricher set of expressions.The objects of Proteus include: integers,
oating point numbers, funcs (sub-programs), strings, sets, and tuples(�nite sequences). The composite objects, sets and tuples, may contain any mixture of Proteus objects, nested toarbitrary depth.This introduction is intended for people who have had no previous experience with Proteus, but who are reason-ably comfortable with learning a new programming language. Few examples are given here, but many examples aredistributed with the software.

Copyright 1991, 1992, 1993.Duke University,University of North Carolina.Portions of this manual and the accompanying software are derived Isetl, which was released with the following copyright restrictions.Copyright 1987, 1988, 1989.Gary Levin.Clarkson University.This manual and the accompanying software may be freely copied, subject to the restriction that it not be sold for profit. (This wouldpermit bulk copying and sale at cost.) The software is offered as-is, but we will attempt to correct errors in our code.Portions of this manual and the accompanying software are derived from the Interactive Line Editor, which was released with the followingcopyright restrictions. COPYRIGHT 1988Evans & Sutherland Computer CorporationSalt Lake City, UtahAll Rights Reserved.THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS ACOMMITMENT BY EVANS & SUTHERLAND. EVANS & SUTHERLAND MAKES NO REPRESENTATIONS ABOUT THE SUITABILITYOF THIS SOFTWARE FOR ANY PURPOSE. IT IS SUPPLIED \AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY.IF THE SOFTWARE IS MODIFIED IN A MANNER CREATING DERIVATIVE COPYRIGHT RIGHTS, APPROPRIATE LEGENDS MAYBE PLACED ON THE DERIVATIVE WORK IN ADDITION TO THAT SET FORTH ABOVE.Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted,provided that the above copyright notice appear in all copies and that both the copyright notice and this permission notice appear insupporting documentation, and that the name of Evans & Sutherland not be used in advertising or publicity pertaining to distribution ofthe software without specific, written prior permission.Written by: Robert C. Pendleton Evans & Sutherland, Interactive Systems Division, Salt Lake City, Utah.Modified for ISETL by Gary Levin1setl was developed at the Courant Institute, by Schwartz. See Schwartz, J.T., et al. Programming with sets: Anintroduction to SETL. Springer-Verlag, 1986.

CONTENTS 1Contents1 Introduction 31.1 Obtaining a copy of the Proteus System : 31.2 Additional Information : 31.3 Contributors : 32 Running Proteus 43 Characters, Keywords, and Identi�ers 53.1 Character Set : 53.2 Keywords : 63.3 Identi�ers : 64 Simple Data Types 64.1 Integers : 64.2 Floating Point Numbers : 64.3 Booleans : 74.4 Strings : 74.5 Atoms : 74.6 Files : 74.7 Unde�ned : 85 Compound Data Types 85.1 Sets : 85.2 Sequences : 85.3 Tuples : 95.4 Maps : 96 Funcs 107 The Proteus Grammar | Annotated 127.1 Terminology : 127.2 Input at the Prompt : 127.3 Program : 127.4 Statements : 127.5 Iterators : 167.6 Formers : 177.7 Selectors : 177.8 Left Hand Sides : 187.9 Expressions : 197.10 Function Constants : 228 Pre-de�ned Functions 248.1 Functions on Integers : 248.2 Functions on Floating Point Numbers : 248.3 Functions on Sets : 248.4 Functions on Maps : 248.5 Functions on Sequences (and Tuples) : 248.6 Standard Mathematical Functions : 258.7 Type Testers : 258.8 Input/Output Functions : 26

2 CONTENTS8.9 Miscellaneous : 269 Precedence Rules 2810 Directives 2910.1 Brief Descriptions : 2910.2 !allocate and !memory : 3010.3 !watch and !unwatch : 3110.4 !record : 3110.5 !system : 3111 Editors 3311.1 Interactive Line Editor (ILE) : 3312 Parallel Execution 3812.1 Data Parallelism : 3812.2 Thread Parallelism : 3813 Runtime Errors 3913.1 Fatal Errors : 3913.2 Operator Related Messages : 3913.3 General Errors : 4014 The Proteus Grammar | Compressed 4114.1 Input at the Prompt : 4114.2 Program : 4114.3 Statements : 4114.4 Iterators : 4114.5 Selectors : 4214.6 Left Hand Sides : 4214.7 Expressions and Formers : 4214.8 Function Constants : 43

31 IntroductionThis manual provides reference material for release 0.9 of Proteus, a programming system designed speci�callyto support a prototyping capability in the development of parallel software.Such a capability is critically needed because the impact of design alternatives in parallel software iscomplex and poorly understood. Yet the languages currently used to program parallel computers are low-leveland often architecture-speci�c. Using these languages small changes in design require extensive and tediouslow-level programming, leading to extremely lengthy prototype development times and yielding prototypeswith limited utility across diverse architectures. For e�ective prototyping of parallel computations we needthe means to specify concurrency at a high-level and in an architecture-independent fashion. This is the goalof the Proteus programming language.Expressibility on its own is not su�cient, however. Failure to carry the prototype over into subsequentdevelopment steps is the principal barrier to the adoption of prototyping-based methodologies. In particular,the cost of rewriting a high-level prototype into a low-level program, either for more detailed analysis ofperformance, or for transition to a "product", can be prohibitive. Hence an e�ective prototyping systemmust provide automated support for evolving a prototype into speci�c low-level languages and target parallelarchitectures. This is the goal of the Proteus program transformation engine.The current release of the Proteus programming system only contains an interpreter for Proteus. Theinterpreter supports rapid experimentation with Proteus programs but does not transform them to low-levelparallel codes suitable for speci�c parallel computers or computer architectures. The program transformationengine, based on Kestrel's Datatype Re�nement System (DTRE) is still under active development.1.1 Obtaining a copy of the Proteus SystemCompiled and executable versions of the interpreter for various architectures are available in via anony-mous FTP from cs.duke.edu in directory pub/proteus/bin. In case you do not �nd an executable for yourarchitecture, you can build an executable from the source which can be found in pub/proteus/src.1.2 Additional InformationThis is the reference manual for Proteus. A full set of papers releated to Proteus is available in PostScriptform via anonymous FTP to cs.duke.edu, directory pub/proteus/papers. A bibliography is included inthe same directory. Sample programs can be found in the directory pub/proteus/examples.1.3 ContributorsThe design and implementation of Proteus Prototyping System is a collaborative e�ort between researchersat Duke University, the Kestrel Institute of Palo Alto, CA. and the University of North Carolina at ChapelHill. The following individuals have contributed to the design and/or implementation of the system: (atDuke) Mike Landis, Peter Mills, John Reif, Robert Wagner, (at Kestrel) Allen Goldberg, Richard Jullig,Stephen Westfold, (at UNC-CH) Rik Faith, Lars Nyland, Dan Palmer, Jan Prins, James Riely, Quan Zhou.The isetl system and manual were developed by Gary Levin while at Clarkson University.

4 2 RUNNING PROTEUS2 Running ProteusProteus is a language for prototyping parallel algorithms. It is currently based upon the programminglanguage Isetl. Isetl is an interpreted, interactive version of the programming language setl. Proteus isinvoked by typing a command line with the executable name, say proteus, along with optional �le namesthat are discussed below.There is no compiler for Proteus. When Proteus is running, it prompts for input with the character\>". Input consists of a sequence of expressions (each terminated by a semicolon \;"), statements, andprograms. Each input is acted upon as soon as it is entered. These actions are explained below. In the caseof expressions, the result includes its value being printed. If you have not completed your entry, you willreceive the prompt \>>", indicating that more is expected.1. Proteus is exited by typing \!quit". It may also be exited by ending the standard input. In Unix,this is done by typing ctrl-D. Proteus may also be exited by calling either of the prede�ned functionsexit or quit.2. A common mistake is omitting the semicolon after an expression. Proteus will wait until it gets asemicolon before proceeding. The doubled prompt \>>" indicates that Proteus is expecting moreinput.3. Proteus can get its input from sources other than the standard input.(a) If there is an initialization �le2 in the current directory, then the �rst thing Proteus will do isread this �le.(b) Next, if the command line has any �le names listed, Proteus will read each of these in turn.Thus, if the command line reads,proteus file.1 blue greenProteus will �rst read from \proteus.ini" if it exists, and then from \file.1", then \blue",and then \green". Finally, it is ready for input from the terminal.(c) Intermixed with the �les may be commands to execute. These are speci�ed with the -e
ag. Theargument following the
ag will be executed by the interpreter in the order it appears on thecommand line.Thus, if the command line reads,proteus file.1 -e "main();" blue -e "exit(0);"Proteus will �rst read from \proteus.ini" if it exists, and then from \file.1", then executethe function call main() (note the semi-colon), then \blue", and then the function call exit(0),terminating the execution.(d) If there is a �le available | say \file.2" | and Proteus is given (at any time), the followingline of input, !include file.2then it will take its input from \file.2" before being ready for any further input. The materialin such a �le is treated exactly as if it were typed directly at the keyboard, and it can be followedon subsequent lines by any additional information that the user would like to enter.Consider the following (rather contrived) example: Suppose that the �le \file.3" contained thefollowing data:2Initialization �les are called either .proteusrc or proteus.ini. The �le is looked for in:i. the current directoryii. the home directory (Unix)Only one initialization �le is read. The same pattern is searched for the ile initialization �le.

55, 6, 7, 3, -4, "the"Then if the user typed, > seta := f>> !include file.3!include file.3 completed>> , x g;the e�ect would be exactly the same as if the user had entered,> seta := f5, 6, 7, 3, -4, "the", xg;The line \!include file.3 completed" comes from Proteus and is always printed after an\!include".4. Comments. If a double-dash --, an ellipsis \..." or a dollar sign \$" appears on a line, then theremainder of the line is a comment which is ignored.5. After a program or statement has executed, the values of global variables persist. The user can thenevaluate expressions in terms of these variables. (See section 6 for more detail on scope.)6. Other command line arguments (which must all appear prior to any �le names or -e commands) are:� -s | Run silently, that is, do not print the introduction.� -d | Run with direct input, do not run an editor interface. This is useful inside of emacs.3 Characters, Keywords, and Identi�ers3.1 Character SetThe following is a list of characters used by Proteus.@ [] ; : = | { } () . # ? * / + - _ " ' ^ < > % ~ ,a | z A | Z 0 | 9In addition, the following character-pairs are used.:= .. ** /= <= >= -> ||There is one character triplet used (for comments). ...The characters \:" and \|" may be used interchangably.

6 4 SIMPLE DATA TYPES3.2 KeywordsThe following is a list of Proteus keywords.and break choose continue div do elseexists exit false for forall fromfromb frome func if iff impl ininter less merge mod newatomnot notin of om OM optor print printf prog program quit readreadf return shared subset take then totrue union value var where while withwrite writeln3.3 Identi�ers1. An identi�er is a sequence of alphanumeric characters along with the underscore, \ ", caret, \^", andsingle quote, \'". It must begin with a letter. Upper or lower case may be used, and Proteus preservesthe distinction. (I.e.: a good thing and A Good Thing are both legal and are di�erent.)2. An identi�er serves as a variable and can take on a value of any Proteus data type. The type of avariable is entirely determined by the value that is assigned to it and changes when a value of a di�erenttype is assigned.4 Simple Data Types4.1 Integers1. There is no limit to the size of integers.32. An integer constant is a sequence of one or more digits. It represents an unsigned integer.3. On input and output, long integers may be broken to accommodate limited line length. A backslash(\n") at the end of a sequence of digits indicates that the integer is continued on the next line.> 123456\>> 789;123456789;4.2 Floating Point Numbers1. The possible range of
oating point numbers is machine dependent. At a minimum, the values will have5 place accuracy, with a range of approximately 1038. When possible, double-precision
oating-pointnumber representation is used.2. A
oating point constant consists of digits with a decimal point. There must be at least one digit,either before or after the decimal point. Thus, 2.0, .5 and 2. are legal.A
oating point constant may be followed by an exponent. An exponent consists of one of the charac-ters \e", \E", \f", \F" followed by a signed or unsigned integer. The value of a
oating point constantis determined as in scienti�c notation. Hence, for example, 0.2, 2.0e-1, 20.0e-2 are all equivalent.As with integers, it is unsigned.3No practical limit. Actually limited to about 20,000 digits per integer.

4.3 Booleans 73. Di�erent systems use di�erent printed representations when
oating point values are out of the ma-chine's range. For example, when the value is too large, the Macintosh prints \+++++" and the Sunprints \Inf".4.3 Booleans1. A Boolean constant is one of the keywords true or false, with the obvious meaning for its value.4.4 Strings1. A string constant is any sequence of characters preceded and followed by a double quote, \"". A stringmay not be split across lines. Large strings may be constructed using the operation of concatenation.Strings may also be surrounded by single quotes, \'".The backslash convention may be used to enter special characters. When pretty-printing, these con-ventions are used for output. In the case of formatted output, the special characters are printed.nb backspacenf formfeed (new page)nn newline (prints as CR-LF)nq double quotenr carriage return (CR)nt tabnoctal character represented by octalRefer to an ASCII chart for meaning.nother other | may be any characternot listed above.In particular, "nn" is a single backslash. You may type, "n"" for double quote, but the pretty printerwill print as "nq". ASCII values are limited to 'n001' to 'n377'.> %+ [char(i): i in [1..127]];"\001\002\003\004\005\006\007\b\t\n\013\f"+"\r\016\017\020\021\022\023\024\025\026"+"\027\030\031\032\033\034\035\036\037 !"+"\q#$%&'()*+,-./0123456789:;<=>?@ABCDEF"+"GHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijk"+"lmnopqrstuvwxyz{|}~\177";4.5 Atoms1. Atoms are \abstract points". They have no identifying properties other than their individual existence.2. The keyword newatom has as its value an atom never before seen in this session of Proteus.4.6 Files1. A �le is a Proteus value that corresponds to an external �le in the operating system environment.2. They are created as a result of applying one of the pre-de�ned functions openr, opena, openw to astring naming a �le. (See section 8.8.)

8 5 COMPOUND DATA TYPES4.7 Unde�ned1. The data type unde�ned has a single value | OM. It may also be entered as om.2. Any identi�er that has not been assigned a value has the value OM.5 Compound Data Types5.1 Sets1. Finite sets may be represented in Proteus. The elements may be of any type, mixed heterogeneously.Elements occur at most once per set.2. OM may not be an element of a set. Any set that would contain OM is considered to be unde�ned.3. The order of elements is not signi�cant in a set and printing (or enumerating) the value of a set twicein succession could display the elements in di�erent orders.4. Zero or more expressions, separated by commas and enclosed in braces (\f" and \g") evaluates to theset whose elements are the values of the enclosed expressions.Note that as a special case, the empty set is denoted by f g.5. There are syntactic forms, explained in the grammar, for a �nite set that is an arithmetic progressionof integers, and also for a �nite set obtained from a set former in standard mathematical notation.For example, the value of the following expression{ x+y : x,y in {-1,-3..-100} | x /= y };is the set of all sums of two di�erent odd negative integers larger than �100.5.2 Sequences1. A sequence is an in�nite sequence of components, of which only a �nite number are de�ned. Thecomponents must all be of the same type. The values of components may be repeated.2. OM is a legal value for a component.3. The order of the components of a sequence is signi�cant. By treating the sequence as a function overthe positive integers, you can extract individual components and contiguous subsequences (slices) ofthe sequence.4. Zero or more expressions, separated by commas and enclosed in square brackets (\[" and \]") evaluatesto the sequence whose de�ned components are the values of the enclosed expressions.Note that as a special case, the empty sequence is denoted by []. This sequence is unde�ned every-where.5. The syntactic forms for sequences of �nite arithmetic progressions and sequence formers are similar tothose provided for sets. The only di�erence is the use of square, rather than curly, brackets.6. The length of a sequence is the largest index (counting from 1) for which a component is de�ned (thatis, is not equal to OM). It can change at run-time.7. Sequences usually are indexed starting at 1, but they can have di�erent starting indices. The lengthof a sequence starting a position b is one more than the largest index of a de�ned component minus b.See page 22 and page 24 for de�nitions.

5.3 Tuples 98. Sequences created by a FORMER have the default origin. See origin for how to rede�ne the default.9. Sequences that result from operations on other sequences inherit their origin. Generally, the resultinherits the origin of the leftmost sequence argument.5.3 Tuples1. A tuple is an in�nite sequence of components, of which only a �nite number are de�ned. The compo-nents may be of any type, mixed heterogeneously. The values of components may be repeated.2. OM is a legal value for a component.3. The order of the components of a tuple is signi�cant. By treating the tuple as a function over thepositive integers, you can extract individual components and contiguous subsequences (slices) of thetuple.4. Zero or more expressions, separated by commas and enclosed in \dotted" square brackets (\[." and\.]") evaluates to the tuple whose de�ned components are the values of the enclosed expressions.Note that as a special case, the empty tuple is denoted by [. .]. This tuple is unde�ned everywhere.5. The syntactic forms for tuples of �nite arithmetic progressions and tuple formers are similar to thoseprovided for sets. The only di�erence is the use of dotted square brackets, rather than curly braces.6. The length of a tuple is the largest index (counting from 1) for which a component is de�ned (that is,is not equal to OM). It can change at run-time.7. Since tuples use the dotted square brackets, spaces must often be used to demarcate tokens. Forinstance, [.5.], while appearing to be a singleton tuple is parsed as a sequence with one value of 0:5followed by a closing tuple symbol. By placing spaces judiciously, as [. 5 .], the proper meaningcan be determined.5.4 MapsMaps form a subclass of sets.1. A map is a set that is either empty or whose elements are all ordered pairs. An ordered pair is a tuplewhose �rst two components and no others are de�ned.2. There are two special operators for evaluating a map at a point in its domain. Suppose that F is amap.(a) F(EXPR) will evaluate to the value of the second component of the ordered pair whose �rst com-ponent is the value of EXPR, provided there is exactly one such ordered pair in F; if there is nosuch pair, it evaluates to OM; if there are many such pairs, an error is reported.(b) FfEXPRg will evaluate to the set of all values of second components of ordered pairs in F whose�rst component is the value of EXPR. If there is no such pair, its value is the empty set.3. A map in which no value appears more than once as the �rst component of an ordered pair is called asingle-valued map or smap; otherwise, the map is called a multi-valued map or mmap.

10 6 FUNCS6 Funcs1. A func is a Proteus value that may be applied to zero or more values passed to it as arguments.It then returns a value speci�ed by the de�nition of the func. Because it is a value, a Proteus funccan be assigned to an identi�er, passed as an argument, etc. Evaluation of an Proteus func can haveside-e�ects determined by the statements in the de�nition of the func. Thus, it also serves the purposeof what is often called a procedure.2. The return statement is only meaningful inside a func. Its e�ect is to terminate execution of the funcand return a value to the caller. The form \return expr;" returns the value of expr; \return;"returns OM.Proteus inserts \return;" just before the end of every func.3. A func is the computational representation of a function, as a map is the ordered pair representation,and a tuple is the sequence representation. Just as tuples and maps may be modi�ed at a point byassignment, so can funcs. However, if the value at a point is structured, you may not modify that ata point as well.> x := func(i)(>> return char(i);>>);> x(97);"a";> x(97) := "q";> x(97);"q";> x(97)(1) := "abc";! Error: Only one level of selection allowedx may be modi�ed at a point. The assignment to x(97) is legal. However, the following assignment isnot supported at this time, because you are trying to modify the structure of the value returned.4. A number of functions have been pre-de�ned as funcs in Proteus. A list of their de�nitions is givenin section 8. These are not keywords and may be changed by the user. They may not be modi�ed ata point, however.5. It is possible for the user to de�ne her/his own func. This is done with the following syntax:func(list-of-parameters)(var list-of-local-ids;value list-of-global-ids;statements;);Alternately, one may write: list-of-parameters -> result :if the function simply consists of evaluating an expression.(a) Local variables are declared with the var statement. The declaration of local ids may be omittedif no local variables are needed. The declaration of value ids represents global variables whosecurrent values are to be remembered and used at the time of function invocation; these may beomitted if not needed. The list-of-parameters may be empty, but the pair of parentheses must bepresent.(b) Parameters and local-ids are local to the func. See below for a discussion of scope.

11(c) The syntax described above is for an expression of type func. As with any expression, it may beevaluated, but the value has no name. Thus, the de�nition will typically be part of an assignmentstatement or passed as a parameter. As a very simple example, consider:cube_plus := func(x,y)(return x**3 + y;);After having executed this input, Proteus will evaluate an expression such as cube plus(2,5)as 13.(d) Parameters are passed by value. It is an error to pass too many or too few arguments. It ispossible to make some parameters optional .f := func(a,b,c opt x,y,z)(...);f can be called with 3, 4, 5, or 6 arguments. If there are fewer than 6 arguments, the missingarguments are considered to be OM.(e) Scope is lexical (static). Lexical means that references to global variables are determined by wherethe func was created, not by where it will be evaluated.By default, references to global variables will use the value of the variable at the time the functionis invoked. The value declaration causes the value of the global variable at the time the func iscreated to be used.(f) Here is a more complicated example of the use of func. As de�ned below, compose takes two func-tions as arguments and creates their functional composition. The functions can be any Proteusvalues that may be applied to a single argument; e.g. func, tuple, smap.compose := func(f,g)(return :x -> f(g(x)) :);twice := :a -> 2*a: ;times4 := compose(twice,twice);Then the value of times4(3) would be 12. The value of times4 needs to refer to the values of fand g, and they remain accessible to times4, even though compose has returned.(g) Finally, here is an example of functions modi�ed at a point and functions that capture the currentvalue of a global.f := func(x)(return x + 4;);gs := [func(x)(value N; return x+3*N;): N in [1..3]];f(3) := 21;After this is executed, f(1) is 5, f(2) is 6, but f(3) is 21. gs(2)(4) is 10 (4+3*2).

12 7 THE PROTEUS GRAMMAR | ANNOTATED7 The Proteus Grammar | Annotated7.1 Terminology1. In what follows, the symbol ID refers to identi�ers, and INTEGER, FLOATING POINT, BOOLEAN, andSTRING refer to constants of type integer,
oating point, Boolean, and string, which have been ex-plained above. Any other symbol in capital letters is explained in the grammar.2. De�nitions appear as:STMT ! LHS := EXPR ;STMT ! if EXPR then STMT else STMTindicating that STMT can be either an assignment statement or a conditional statement. The de�nitionfor STMT refers to these de�nitions, and EXPR is de�ned in the section for expressions.3. Rules are sometimes given informally in English. The rule is then quoted.4. Spaces are not allowed within any of the character pairs listed in section 3, nor within an ID, INTEGERconstant, FLOATING POINT constant, or keyword. Spaces are required between keywords, IDs, INTEGERconstants, and FLOATING POINT constants.5. Proteus treats ends of line and tabs as spaces. Any input can be spread across lines without changingthe meaning, and Proteus will not consider it to be complete until a semicolon (\;") is entered. Theonly exceptions to this are the ! directives, which are ended with a carriage return, and the fact thata quoted string cannot be typed on more than one line.The annotated grammar below is divided into sections relating to the major parts of the language.7.2 Input at the PromptINPUT ! PROGRAMINPUT ! STMTINPUT ! EXPR ;The EXPR is evaluated and the value is printed.7.3 ProgramPrograms are usually read from a �le, only because they tend to be long. Programs are executed as soon asthey are read.PROGRAM ! program ID (LOCALS VALUES STMTS) ;Of course, it can appear on several lines. LOCALS and VALUES are de�ned in section 7.10.7.4 StatementsSTMT ! LHS := EXPR ;First, the left hand side (LHS) is evaluated to determine the target(s) for the assignment, then theright hand side is evaluated. Finally, the assignment is made. If there are some targets for whichthere are no values to be assigned, they receive the value OM. If there are values to be assigned, butno corresponding targets, then the values are ignored.Examples:

7.4 Statements 13a := 4;a is changed to contain the value 4.[a,b] := [1,2];a is assigned 1 and b is assigned 2.[x,y] := [y,x];Swap x and y.f(3) := 7;If f is a sequence or tuple, then the e�ect of this statement is to assign 7 as the value of thethird component of f. If f is a map, then its e�ect is to replace all pairs beginning with 3 bythe pair [3,7] in the set of ordered pairs f. If f is a func, then f(3) will be 7, and all othervalues of f will be as they were before the assignment.STMT ! EXPR ;The expression is evaluated and the value ignored. This is usually used to invoke procedures.STMT ! (LOCALS; STMTS;)Statement block. Optional local declarations followed by a list of statements. Id's de�ned by localdeclarations are local to this block.STMT ! if EXPR then STMTSTMT ! if EXPR then STMT else STMTThe EXPR after if is evaluated to determine which branch (if both are present) to execute. TheSTMT following the associated then is executed when it is true. If EXPR is found to be false, the STMTfollowing the else is executed. If the EXPR is false and the else-clause is omitted, this statement hasno e�ect.STMT ! for ITERATOR do STMTThe STMT is executed for each instance generated by the iterator.STMT ! forall ITERATOR do STMTAll instances of the STMT are executed in parallel. This is done with Proteus' private memory model,where each thread works with its own copy of the state, all of which are merged at the end of executingall instances of STMT.STMT ! STMT || STMTExecute all statements joined with parallel bars concurrently, using the private memory model ofProteus. Of course, there can be more than 2 statements.STMT ! while EXPR do STMTEXPR must evaluate to a Boolean value. EXPR is evaluated and the STMT is executed repetitively aslong as this value is equal to true.STMT ! read LHS-LIST ;Proteus gives a question mark (\?") prompt and waits until an expression has been entered. ThisEXPR is evaluated and the result is assigned to the �rst item in LHS-LIST. This is repeated for eachitem in LHS-LIST. As usual, terminate the expressions with a semicolon. Note: If a read statementappears in an !include �le, then Proteus will look at the next input in that �le for the expression(s)to be read.STMT ! read LHS-LIST from EXPR ;This is the same as read LHS-LIST; except that EXPR must have a value of type �le. The values tobe read are then taken from the external �le speci�ed by the value of EXPR. If there are more valuesin the �le than items in LHS-LIST, then the extra values are left to be read later. If there are more

14 7 THE PROTEUS GRAMMAR | ANNOTATEDitems in LHS-LIST than values in the �le, then the extra items are assigned the value OM. In the lattercase, the function eof will return true when given the �le as parameter. Before this statement isexecuted, the external �le in question must have been opened for reading by the pre-de�ned functionopenr (see section 8.8).STMT ! readf PAIR-LIST ;STMT ! readf PAIR-LIST from EXPR ;The relation between these two forms is the same as the relation between the two forms of read, withthe second one coming from a �le. The elements in the PAIR-LIST de�ne the formating used. SeePAIR-LIST at the end of this section.STMT ! print EXPR-LIST ;Each expression in EXPR-LIST is evaluated and printed on standard output. The output value areformatted to show its structure, with line breaks at reasonable positions and meaningful indentation.STMT ! print EXPR-LIST to EXPR ;As in read: : :from: : : , the second EXPR must be a value of type �le. The values are written to theexternal �le speci�ed by the value of EXPR. Before executing this statement, the external �le inquestion must have been opened for writing by one of the pre-de�ned functions openw or opena (seesection 8.8).STMT ! printf PAIR-LIST ;STMT ! printf PAIR-LIST to EXPR ;The relation between these two forms is the same as the relation between the two forms of print,with the second one going to a �le. The elements in the PAIR-LIST de�ne the formating used. SeePAIR-LIST at the end of this section. See write and writeln below.STMT ! return ;return is only meaningful inside a func. Its e�ect is to terminate execution of the func and returnOM to the caller. Proteus inserts return; just before the end of every func. If return appears at the\top level", e.g. as input at the keyboard, a run time error will occur.STMT ! return EXPR ;Same as return; except that EXPR is evaluated and its value is returned as the value of the func.STMT ! take LHS from LHS ;The second LHS must evaluate to a sequence, set or tuple. An arbitrary element is assigned to the�rst LHS and removed from the sequence, set or tuple.STMT ! take LHS frome LHS ;The second LHS must evaluate to a sequence, tuple or string. The value of its last de�ned component(or last character) is assigned to the �rst LHS and replaced by OM in the sequence or tuple (deletedfrom the string).STMT ! take LHS fromb LHS ;The second LHS must evaluate to a sequence, tuple or string. The value of its �rst component(de�ned or not) (�rst character) is assigned to the �rst LHS and all components of the sequence ortuple (characters of the string) are shifted left one place. That is, the new value of the ith componentis the old value of the (i+ 1)st component (i = 1; 2; : : :).STMT ! write PAIR-LIST ;STMT ! write PAIR-LIST to EXPR ;STMT ! writeln PAIR-LIST ;STMT ! writeln PAIR-LIST to EXPR ;write is equivalent to printf, provided for the convenience of the Pascal user. writeln is equivalentto write, with 'nn' as the last item of the list. This is also provided for user convenience.

7.4 Statements 15> readf x;1.34> x;1.34000e+00;> readf y;123,456> y;"123,456"; Figure 1: readf example> printf 1/3: 15.10, 1/3:15.1, 1/3:15.01, "\n";0.3333333135 0.3333333135 0.3printf 1/3: -17.10, 1/3:-17.1, 1/3:-17.01, "\n";3.3333331347e-01 3.3333331347e-01 3.3e-01Figure 2: printf exampleSTMTS ! \One or more instances of STMT. The �nal semicolon is optional."PAIR-LIST ! \One or more instances of PAIR, separated by commas."PAIR ! EXPR : EXPRPAIR ! EXPRWhen a PAIR appears in a readf, the �rst EXPR must be a LHS. The meaning of the PAIR and thedefault value when the second EXPR is omitted depends on whether the PAIR occurs in readf orprintf. The second EXPR (or its default value) de�nes the format.� Input: Input formats are integers.The integer gives the maximum number of characters to be read. If the �rst sequence of non-white space characters can be interpreted as a number, that is the value read. Otherwise, the�rst non-white sequence is returned as a string.> printf 3*[. "" .]+[. 1..30 .] : 7*[. 3 .] with "\n";1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30> x := [[i,j,i+j] : i,j in [1..3]];> printf x: 5*[. [. 0,"+",0, "=", 0 .], "\t" .]>> with "\n", "\n";1+1=2 1+2=3 1+3=4 2+1=3 2+2=42+3=5 3+1=4 3+2=5 3+3=6Figure 3: printf with structure example

16 7 THE PROTEUS GRAMMAR | ANNOTATEDIf the integer is negative (say �i), exactly i characters will be read and returned as a string.Therefore c:-1 will read one character into c.If no integer is given, there is no maximum to the number of characters that will be read.See �gure 1.� Output: Output formats are: integers,
oating point numbers, strings, or tuples of outputformats.Integers (and the integer part of
oating point numbers) represent the minimal number ofcolumns to be used. The fractional part of a
oating point number is used to specify preci-sion, in terms of hundredths. The precision controls the number of places used in
oating pointnumbers, and where breaks occur in very long integers.Negative values cause
oating point numbers to be printed in scienti�c notation.Notice that there is a limit to the number of useful digits. Also notice that 15.1 is the same as15.10; hence, both would use 15 columns and 10 decimal places. See �gure 2.Strings should not be used as formats outside of tuples.Compound objects (tuples and sets) iterate over the format. If the format is a number, it is usedas the format for each element. If the format is a tuple, the elements of the tuple are cycledamong, with strings printed literally and other items used as formats. See �gure 3.Default values are: Type Columns PrecisionFloat 20 5Integer 10 50 (for breaking large ints)String 0Anything else 107.5 IteratorsThese constructs are used to iterate through a collection of values, assigning these values one at a time to avariable. Iterators are used in the for and forall statements, quanti�ers, and set formers.A SIMPLE-ITERATOR generates a number of instances for which an assignment is made. These assignmentsare local to the iterator, and when it is exited, all previous values of IDs that were used as local variables arerestored. That is, these IDs are \bound variables" whose scope is the construction containing the iterator.(e.g., for and forall statements, quanti�ers, formers, etc.)ITERATOR ! ITER-LISTITERATOR ! ITER-LIST | EXPREXPR must evaluate to a Boolean. Generates only those instances generated by ITER-LIST for whichthe value of EXPR is true.ITER-LIST ! \One or more SIMPLE-ITERATORs separated by commas."Generates all possible instances for every combination of the SIMPLE-ITERATORs. The �rstSIMPLE-ITERATOR advances most slowly. Subsequent iterators may depend on previously boundvalues.SIMPLE-ITERATOR! BOUND-LIST in EXPREXPR must evaluate to a sequence, set, tuple, or string. The instances generated are all possibilitiesin which each BOUND in BOUND-LIST is assigned a value that occurs in EXPR.SIMPLE-ITERATOR! BOUND = ID (BOUND-LIST)BROKEN! Don't use.Here ID must have the value of an smap, sequence, tuple, or string, andBOUND-LIST must have the correct number of occurrences of BOUND corresponding to the parame-ters of ID. The resulting instances are those for which all occurrences of BOUND in BOUND-LIST haveall possible legal values and BOUND is assigned the corresponding value.

7.6 Formers 17SIMPLE-ITERATOR! BOUND = ID f BOUND-LIST gSame as the previous one for the case in which ID is an mmap.BOUND-LIST ! \one or more BOUND, separated by commas"BOUND ! ~Corresponding value is thrown away.BOUND ! IDCorresponding value is assigned to ID.BOUND ! [BOUND-LIST]Corresponding value must be a sequence or tuple, and elements of the sequence or tuple are assignedto corresponding elements in the BOUND-LIST.7.6 FormersGenerates the elements of a sequence, set or tuple.FORMER ! \Empty"Literally nothing. Generates the empty sequence, set or tuple.FORMER ! EXPR-LISTValues are explicitly listed.FORMER ! EXPR .. EXPRBoth occurrences of EXPR must evaluate to integers. Generates all integers beginning with the �rstEXPR and increasing by 1 for as long as the second EXPR is not exceeded. If the �rst EXPR is largerthan the second, no values are generated.FORMER ! EXPR , EXPR .. EXPRAll three occurrences of EXPR must evaluate to integer. Generates all integers beginning with the�rst EXPR and incrementing by the value of the second EXPR minus the �rst EXPR. If this di�erenceis positive, it generates those integers that are not greater than the third EXPR. If the di�erence isnegative, it generates those integers that are not less than the third EXPR. If the di�erence is zero, nointegers are generated.FORMER ! EXPR : ITERATORThe value of EXPR for each instance generated by the ITERATOR.7.7 SelectorsSelectors fall into three categories: function application, mmap images, and slices. A sequence, tuple, string,map, or func (pre- or user-de�ned) may be followed by a SELECTOR, which has the e�ect of specifying avalue or group of values in the range of the sequence, tuple, string, map, or func. Not all of the followingSELECTORs can be used in all four cases.SELECTOR ! (EXPR-LIST)Must be used with an smap, sequence, tuple, string, or func.If used with a sequence, tuple or string, then EXPR-LIST can only have one element, which mustevaluate to an integer greater-than-or-equal-to the base index of the sequence (lo(EXPR)), tuple(1)or string(1).If used with a func, arguments are passed to corresponding parameters. There must be as manyarguments as required parameters and no more than the optional parameters permit.If used with an smap and EXPR-LIST has more than one element, it is equivalent to what it would beif the list were enclosed in square brackets, []. Thus a function of several variables is interpreted asa function of one variable | the tuple whose components are the individual variables.

18 7 THE PROTEUS GRAMMAR | ANNOTATEDSELECTOR ! f EXPR-LIST gMust be used with an mmap, sequence, tuple, or string. Sequences, tuples and strings will eitherselect a singleton set or the empty set. The case in which the list has more than one element ishandled as above.SELECTOR ! (EXPR .. EXPR)Sequence/Tuple/String slicing. Must be used with a sequence, tuple or string, and both instances ofEXPR must evaluate to an integer.The value is the slice of the original sequence, tuple or string in the range speci�ed by the twooccurrences of EXPR. There are some special rules in this case. To describe them, suppose that the�rst EXPR has the value a and the second has the value b so that the selector is (a..b).a � b Value is the sequence, tuple or string with componentsde�ned only at the integers from 1 to b� a+ 1,inclusive. The value of the ith component isthe value of the (a+ i� 1)st component of thevalue of EXPR.a = b+ 1 Value is the empty sequence/tuple.a > b+ 1 Run-time error.SELECTOR ! (.. EXPR)Means the same as (low .. EXPR), where low is 1 for strings and tuples, or lo(T) for sequences T.SELECTOR ! (EXPR ..)Means the same as (EXPR .. high), where high is #s for the string or tuple s and hi(T) forsequences T.SELECTOR ! ()Used with a func that has no parameters. It also works with an smap with [] in its domain.7.8 Left Hand SidesThe target for anything that has the e�ect of an assignment.LHS ! IDLHS ! LHS SELECTORLHS must evaluate to a sequence, tuple, string, or map. LHS is modi�ed by replacing the componentsdesignated by selector.LHS ! [LHS-LIST]LHS-LIST ! \One or more instances of LHS, separated by commas"Thus the input, [A, B, C] := [1, 2, 3];has the e�ect of replacing A by 1, B by 2, and C by 3.Any LHS in the list can be replaced by ~.The e�ect is to omit any assignment to a LHS that has been so replaced. Thus the input,[A, ~, C] := [1, 2, 3];replaces A by 1, C by 3.

7.9 Expressions 197.9 ExpressionsThe �rst few in the following list are values of simple data types and they have been discussed before.EXPR ! IDEXPR ! INTEGEREXPR ! FLOATING-POINTEXPR ! STRINGEXPR ! trueEXPR ! falseEXPR ! OMEXPR ! newatomThe value is a new atom, di�erent from any other atom that has appeared before.EXPR ! FUNC-CONSTA user-de�ned func. See section 7.10.EXPR ! if EXPR then EXPR else EXPRSee de�nition of if under STMT, page 13. Else-clause is required, and each part contains an expressionrather than statements.EXPR ! (EXPR)Any expression can be enclosed in parentheses. The value is the value of EXPR.EXPR ! [FORMER]Evaluates to the sequence of those values generated by FORMER in the order that former generatesthem.EXPR ! [. FORMER .]Evaluates to the tuple of those values generated by FORMER in the order that former generates them.EXPR ! f FORMER gEvaluates to the set of those values generated by FORMER.EXPR ! # EXPREXPR must be a sequence, set, tuple, or string. The value is the cardinality of the set, the length ofthe sequence, the length of the tuple, or the length of the string.EXPR ! not EXPRLogical negation. EXPR must evaluate to Boolean.EXPR ! + EXPRIdentity function. EXPR must evaluate to a number.EXPR ! - EXPRNegative of EXPR. EXPR must evaluate to a number.EXPR ! EXPR SELECTOREXPR must evaluate to an Proteus value that is, in the general sense, a function. That is, it must bea map, sequence, tuple, string, or func. See section 7.7.EXPR ! EXPR . ID EXPRThis is equivalent to ID(EXPR,EXPR). It lets you use a binary function as an in�x operator. The spaceafter the \." is optional.EXPR ! EXPR . (EXPR) EXPRThis is equivalent to (EXPR)(EXPR,EXPR). It lets you use a binary function as an in�x operator. Thespace after the \." is optional.

20 7 THE PROTEUS GRAMMAR | ANNOTATEDIn general, arithmetic operators and comparisons may mix integers and
oating point. The result of anarithmetic operation is an integer if both operands are integers and
oating point otherwise. For simplicity,we will use the term number to mean a value that is either integer or
oating point.Possible operators are: + - * / div mod **with less= /= < > <= >=union inter in notin subsetand or impl iffSee section 9 for precedence rules.Any cases not covered in the explanation for an operator will result in an error. For an explanation of errors,see section 13.EXPR ! EXPR + EXPRIf both instances of EXPR evaluate to numbers, this is addition. If both instances of EXPR evaluate tosets, then this is union. If both instances of EXPR evaluate to sequences, tuples or strings, then this isconcatenation.EXPR ! EXPR union EXPRAn alternate form of +. It is intended that it be used with sets, but it is in all ways equivalent to +.EXPR ! EXPR - EXPRIf both instances of EXPR evaluate to numbers, this is subtraction. If both instances of EXPR evaluateto sets, then this is set di�erence.EXPR ! EXPR * EXPRIf both instances of EXPR evaluate to numbers, this is multiplication. If both evaluate to sets, this isintersection. If one instance of EXPR evaluates to integer and the other to a sequence, tuple or string,then the value is the sequence, tuple or string, concatenated with itself the integer number of times,if the integer is positive; and the empty sequence, tuple or string, if the integer is less than or equalto zero.EXPR ! EXPR inter EXPRAn alternate form of *. It is intended that it be used with sets, but it is in all ways equivalent to *.EXPR ! EXPR / EXPRBoth instances of EXPR must evaluate to numbers. The value is the result of division and is of type
oating point.EXPR ! EXPR div EXPRBoth instances of EXPR must evaluate to integer, and the second must be non-zero. The value isinteger division de�ned by the following two relations,(a div b) � b+ (a mod b) = a for b > 0a div (�b) = �(a div b) for b < 0.EXPR ! EXPR mod EXPRBoth instances of EXPR must evaluate to integer and the second must be non-zero. The result is theremainder, and the following condition is always satis�ed,0 � a mod b < jbj.EXPR ! EXPR ** EXPRThe values of the two expressions must be numbers. The operation is exponentiation.

7.9 Expressions 21EXPR ! EXPR with EXPRThe value of the �rst EXPR must be a sequence, set or tuple. If it is a set, the value is that set withthe value of the second EXPR added as an element. If it is a sequence or tuple, the value of the secondEXPR is assigned to the value of the �rst component after the last de�ned component of the sequenceor tuple.EXPR ! EXPR less EXPRThe value of the �rst EXPR must be a set. The value is that set with the value of the second EXPRremoved, if it was present; the value of the �rst EXPR, if the second was not present.EXPR ! EXPR = EXPRThe test for equality of any two Proteus values.EXPR ! EXPR /= EXPRNegation of EXPR=EXPR.EXPR ! EXPR < EXPREXPR ! EXPR > EXPREXPR ! EXPR <= EXPREXPR ! EXPR >= EXPRFor all the above inequalities, both instances of EXPR must evaluate to the same type, which must benumber or string. For numbers, this is the test for the standard arithmetic ordering; for strings, it isthe test for lexicographic ordering.EXPR ! EXPR in EXPRThe second EXPR must be a sequence, set, tuple, or string. For sequences, sets and tuples, this is thetest for membership of the �rst in the second. For strings, it is the test for substring.EXPR ! EXPR notin EXPRNegation of EXPR in EXPR.EXPR ! EXPR subset EXPRBoth instances of EXPR must be sets. This is the test for the value of the �rst EXPR to be a subset ofthe value of the second EXPR.EXPR ! EXPR and EXPRLogical conjunction. Both instances of EXPR should evaluate to a Boolean. If the left operand is false,the right operand is not evaluated. Actually returns the second argument, if the �rst is true. Whilethe user may depend on the left-to-right evaluation order, it is recommended that they not dependon the behavior when the second argument is not Boolean.EXPR ! EXPR or EXPRLogical disjunction. Both instances of EXPR should evaluate to a Boolean. If the left operand is true,the right operand is not evaluated. Actually returns the second argument, if the �rst is false. Whilethe user may depend on the left-to-right evaluation order, it is recommended that they not dependon the behavior when the second argument is not Boolean.EXPR ! EXPR impl EXPRLogical implication. Both instances of EXPR must evaluate to a Boolean.EXPR ! EXPR iff EXPRLogical equivalence. Both instances of EXPR should evaluate to a Boolean. It actually checks forequality, like =, but it has a di�erent precedence. It is recommended that the user not depend on iffto work with arguments other than Booleans.

22 7 THE PROTEUS GRAMMAR | ANNOTATEDEXPR ! % BINOP EXPREXPRmust evaluate to a sequence, set, tuple, or string. Say that the elements in EXPR are x1, x2,: : : ,xN(N=#EXPR). If N=0, then the value is OM. If N=1, then the value is the single element. Otherwise,%� EXPR equals x1 � x2 � � � � � xNEXPR ! EXPR % BINOP EXPRThe second instance of EXPR must evaluate to a sequence, set, tuple, or string. If the �rst EXPR is a,BINOP is �, and the values in the second are x1, x2,: : : ,xN as above, then the value is:a � x1 � x2 � � � � � xNEXPR ! EXPR ? EXPRThe value of the �rst EXPR, if it is not OM; otherwise the value of the second EXPR.EXPR ! exists ITER-LIST | EXPREXPRmust evaluate to a Boolean. If ITER-LIST generates at least one instance in which EXPR evaluatesto true, then the value is true; otherwise it is false.EXPR ! forall ITER-LIST | EXPREXPRmust evaluate to a Boolean. If every instance generated by ITER-LIST is such that EXPR evaluatesto true, then the value is true; otherwise it is false.EXPR ! EXPR where (DEFNS)The value is the value of the EXPR preceding where, evaluated in the current environment with theIDs in the DEFNS added to the environment and initialized to the corresponding EXPRs. The scope ofthe IDs is limited to the where expression. The DEFNS can modify IDs de�ned in earlier DEFNS in thesame where expression.EXPR ! EXPR @ EXPRThe �rst expression must be an integer i and the second a sequence T. The result is a sequenceconsisting of the same sequence as T, but with the �rst index being i.BINOP ! \Any binary operator or an ID or expression in parentheses whose value is a function of twoparameters. The ID and parenthesized expression may be preceded by a period."The acceptable binary operators are: +, -, *, **, union, inter, /, div, mod, with, less, and, or,impl.DEFNS ! \Zero or more instances of DEFN. The �nal semicolon is optional."DEFN ! BOUND := EXPR ;DEFN ! ID SELECTOR := EXPR ;EXPR-LIST ! \One or more instances of EXPR separated by commas."7.10 Function ConstantsFUNC-CONST ! FUNC-HEAD (LOCALS VALUES STMTS) ;This is the syntax for user-de�ned funcs. VALUES and LOCALS may be repeated or omitted and appearin any order.See return on page 14.FUNC-CONST ! : ID-LIST OPT-PART -> EXPR :An abbreviation for func(ID-LIST OPT-PART) (return EXPR;)FUNC-HEAD ! func (ID-LIST OPT-PART)In this case, there are parameters. The parameters in the OPT-PART receive the value om if there areno corresponding arguments.

7.10 Function Constants 23FUNC-HEAD ! func (OPT-PART)In this case, there are no required parameters.OPT-PART ! opt ID-LIST\May be omitted."LOCALS ! var ID-LIST ;VALUES ! value ID-LIST ;ID-LIST ! \One or more instances of ID separated by commas."

24 8 PRE-DEFINED FUNCTIONS8 Pre-de�ned Functions8.1 Functions on IntegersIn each of the following, EXPR must evaluate to integer.1. even(EXPR) | Is EXPR even?2. odd(EXPR) | Is EXPR odd?3. float(EXPR) | The value of EXPR converted to
oating point.4. char(EXPR) | The one-character string whose (machine dependent) index is the value of EXPR.8.2 Functions on Floating Point NumbersIn each of the following, EXPR must evaluate to
oating point.1. ceil(EXPR) | The smallest integer not smaller than the value of EXPR.2. floor(EXPR) | The largest integer not larger than the value of EXPR.3. fix(EXPR) | The same as floor(EXPR) if EXPR>=0, and the same as ceil(EXPR) if the value ofEXPR<=0. In other words, the fractional part is discarded.8.3 Functions on SetsIn each of following, EXPR must evaluate to a set.1. pow(EXPR) | The set of all subsets of the value of EXPR.2. npow(EXPR,EXPR) | One EXPR must be a set and the other a non-negative integer. The set of allsubsets of the set whose cardinality is equal to the integer.8.4 Functions on MapsIn each of the following, EXPR must evaluate to a map.1. domain(EXPR) | The set of all values that appear as the �rst component of an element of the valueof EXPR.2. image(EXPR)| The set of all values that appear as the second component of an element of the valueof EXPR.8.5 Functions on Sequences (and Tuples)1. lo(EXPR) | EXPR must be a sequence. Returns the low bound of the sequence.2. hi(EXPR) | EXPR must be a sequence (or tuple). Returns the high bound of the sequence (or tuple).3. origin(EXPR)| EXPR must be an integer. Sets the default lower bound for sequences. It returns theprevious default origin.

8.6 Standard Mathematical Functions 258.6 Standard Mathematical Functions1. Each of the following takes a single numeric argument. The result is a
oating point approximationto the value of the corresponding mathematical function. exp, ln, log, sqrt, sin, cos, tan, asin,acos, atan, sinh, cosh, tanh, asinh, acosh, atanh.2. In each of the following, EXPR must evaluate to number. The result is the value of the mathematicalfunction in the same type as the value of EXPR.(a) sgn(EXPR) | If EXPR is positive, then 1; if EXPR is zero, then 0; otherwise �1.(b) random(EXPR) | The value is a number selected at random in the interval from 0 to the valueof EXPR, inclusive. There has been no statistical study made of the generators. Don't depend onthem for highly sensitive work.(c) randomize(EXPR)| This resets the random number generator. EXPR should be an integer. Thismay be used to select a new sequence of random numbers.3. In each of the following, both occurrences of EXPR must evaluate to a number or string. The result isalways one of the two EXPR, according to the usual mathematical de�nition.(a) max(EXPR,EXPR)(b) min(EXPR,EXPR)8.7 Type TestersIn each of the following, the value of EXPR can be any Proteus data type. The function is the test for thevalue of EXPR being the type indicated.1. is atom(EXPR)2. is boolean(EXPR)3. is defined(EXPR)| Negation of is om.4. is file(EXPR)5. is floating(EXPR)6. is func(EXPR)7. is integer(EXPR)8. is map(EXPR)9. is number(EXPR)| true for integer and
oating point.10. is om(EXPR)11. is seq(EXPR)12. is set(EXPR)13. is string(EXPR)14. is tuple(EXPR)

26 8 PRE-DEFINED FUNCTIONS8.8 Input/Output Functions1. In each of the following functions, the value of EXPR must be a string that is a �le name consistent withthe operating system's naming conventions. The value of the function has Proteus type �le and maybe used in read: : : from: : : , readf: : : from: : : , print: : : to: : : , printf: : : to: : : , and the functioneof to refer to that �le.(a) openr(EXPR) | If the �le named by the value of EXPR exists, then it is opened for reading, andthe value of the function is of type �le. If the �le named by the value of EXPR does not exist, thenthe value of the function is OM.A special case is the �le named "CONSOLE". Opening "CONSOLE" for reading provides a way toread from the console, even if you are currently reading from an include �le. If you have directedstdin from a �le, it may read from that �le or it may read from the console; this is machinedependent.(b) openw(EXPR) | If the �le named by the value of EXPR does not exist, then it is created by theoperating system externally to Proteus. This �le is opened for writing from the beginning, sothat anything previously in the �le is destroyed. The value of the function is of type �le.(c) opena(EXPR) | The same as openw(EXPR), except that if the �le exists its contents are notdestroyed. Anything that is written is added to the end of the �le.(d) openserver(EXPR) | This function opens a server socket with TCP/IP service on the machineon which the process is running. The parameter is either a string or an integer (the string mustcontain numeric characters) giving the port number. It returns a valid �le descriptor for theProteus i/o functions. The server socket is closed with the close function. The socket can beused with read, readf and print, and printf, sockets are bi-directional.(e) openclient(EXPR)|This function opens a socket to a server process with the address given. TheEXPR is a string of the form \hostname:port" where hostname is a machine name and port is theport number on the remote machine where a server is waiting. Once opened, communication withthe server (via read, readf, print and printf) must follow the software communication protocol,otherwise deadlock may occur (both client and server want to read, for instance).2. In the following function, the value of EXPR must be of type �le. The �le speci�ed by this value isclosed. Output �les must be closed to guarantee that all output has been stored by the operatingsystem. All �les are closed automatically when Proteus is exited. There is usually a system-imposedlimit on the number of �les that may be open at one time, however, so it is a good idea to close �leswhen �nished using them.(a) close(EXPR) | The value of the function is OM.3. In the following function the value of EXPR must be of type �le.(a) eof(EXPR) | Test for having read past the end of an external �le.8.9 Miscellaneous1. abs(EXPR) | If the value of EXPR is integer or
oating point, then the value of the function is thestandard absolute value.2. ord(EXPR) | The inverse of char. EXPR must be a string of length 1.3. arb(EXPR) | An element of EXPR selected arbitrarily. If the value of EXPR is empty, then the value ofthe function is OM. EXPR may be a sequences, set, tuple, or string.

8.9 Miscellaneous 274. random(EXPR)| An element of EXPR selected with uniform probability. If the value of EXPR is empty,then the value of the function is OM. EXPR may be a sequence, set, tuple, or string.5. max line(EXPR) | EXPR must be an integer. The maximum number of columns used when pretty-printing is set to the value of EXPR.6. system(EXPR) | EXPR must be a string. The string is passed to the operating system as a commandline. Available under Unix, VMS, and MSDOS.7. prog(EXPR, EXPR) |The �rst EXPR is a string, naming an executable program for the underlying operating system. Thesecond EXPR is any expression, and is sent as pretty-printed text to the standard input of the namedprogram. The program is expected to print a Proteus expression on its standard output, which willbe the result of this expression.An example of the identity function on Unix systems is prog("cat", x), which sends a pretty-printedversion of x to cat which simply echoes it. This could also be entered as "cat" .prog x. A morerealistic use might be the expression "invert" .prog matrix.The external program is started only once, as starting a program is often much more expensive thankeeping it around. The key which is used to determine if a program has previously been started is thestring that describes it, so if it is invoked in di�erent ways, say with distinct options on the commandline, then another copy will be started.The external program being invoked should stay in a loop until eof on standard input, and can expectto receive data in the same format as that printed by the print statement. It should print its resultin a similar fashion, ending with a \;", and probably a bu�er
ush to make sure the data is sent backto the interpreter.The data going to and coming from the external program can be captured by modifying the command(on Unix systems) from, say, "invert" to "tee invert.in | invert | tee invert.out". The datasent to invert will be in the �le called invert.in, and the resulting output will be in invert.out.8. precision(EXPR)| EXPRmust be an integer. This sets the number of decimal places shown by print.If EXPR is negative, it indicates that print should use scienti�c notation.9. quit() | exit(EXPR) | Prede�ned functions to exit a Proteus program. quit() is the same asexit(0). exit is a direct call to the Unix system call of the same name.

28 9 PRECEDENCE RULES9 Precedence Rules� Operators are listed from highest priority to lowest priority.� Operators are left associative unless otherwise indicated.� \nonassociative" means that you cannot use two operators on that line without parentheses.CALL anything that is a call to a function| func, sequence, tuple, string, map, etc.# - + unary operators? nonassociative% nonassociative** right associative* / mod div inter+ - with less union.ID in�x use of binary functionin notin subset< <= = /= > >= nonassociativenot unaryandorimpliffexists forallwhere

2910 Directives10.1 Brief DescriptionsThere are a number of directives that can be given to Proteus to modify its behavior.On the command line, the following switches control aspects of Proteus.-d indicates direct input. This suppresses the interactive line editor or the screen editor in MSDOS.-s indicates silent mode. In silent mode, the header and all prompts are suppressed.The rest of the directives are ! commands. [a | b] indicates a choice between a and b.10.1.1 Commands� !quit | Exit Proteus.� !include <filename> | Replace <filename> with a �le/pathname according to the rules of youroperating system. Proteus will insert your �le.� !clear | Throw away all input back to the last single prompt.� !sched [seq|rr|random]| Set the thread scheduling algorithm to one of sequential (each thread isexecuted to completion), round-robin (each thread executes one statement before switching to the nextthread), or random (a thread executes one statement and then another thread is chosen at random toexecute). Without a preference, it shows what is scheduler is currently in use.� !memory [nnn]|Change the legal upper bound to nnn. May not be lower than the currently allocatedmemory. Without nnn, shows how much memory has been allocated.� !allocate nnn | Increase the currently allocated memory to nnn. Will not exceed the upper boundset by !memory, nor the actual limits of the machine.� !record [file-name] | Begins recording input to \file-name". This lets you experiment andkeep a record of the work performed.� !system command-line| Sends the command-line to the system for execution. Not available on theMacintosh.� !ids | Lists all identi�ers that have been de�ned.� !oms | Lists all identi�ers that have been used, but not de�ned.� !alias id command-line | Makes !id equivalent to !command-line.� !version | Prints version information for Proteus.10.1.2 TogglesToggles take arguments on or off. Without arguments, they echo the toggle's current state.� !verbose | Controls the amount of information provided by runtime error messages. See section 13.Default is o�.� !echo | When on, all input is echoed. This is particularly useful when trying to �nd a syntax errorin an !include �le or input for a read. It is also useful for pedagogical purposes, as it can be used tointerleave input and output.

30 10 DIRECTIVES� !code | When on, you get a pseudo-assembly listing for the program. Default is o�.� !trace | When on, you get an execution trace, using the same notation as !code. When desperate,this can be used to trace the execution of your program. Really intended for debugging Proteus.Default is o�.� !source | Saves source for debugging. See !pp, !stack, and !slow.� !stack | Show calls when errors occur.10.1.3 Debugging1. !watch list-of-ids | Traces assignment and evaluation of ids.2. !unwatch list-of-ids | Turns o� tracing for ids.3. !pp id [file-name]|Prints the source for function id. When present, output goes to file-name;otherwise, output goes to last �le. !pp returns the �le to stdout (usually the screen).4. !slow | Execution steps by source lines. See section 10.1.3.5. !fast | Return to normal execution speed.When the system is stopped for debugging, in the !slow mode, you get the ?> prompt. Responses atthis point are:f | go to fast mode.l | leap mode (calls are executed as one step).c | crawl mode (trace execution within calls).e | evaluate. Enter an expression at the ! prompt.RET | Execute the next step.10.2 !allocate and !memoryThe !memory directive adjusts the upper limit on permitted memory allocation. This is mainly to protectmainframe systems, so that one user doesn't use all the available space.The !allocate directive increases the amount of memory currently available for Proteus objects. Thisspace is automatically increased up to the limit set by !memory, but by allocating it early, some largeprograms may run more quickly.If you want to grab as much memory as possible, particularly on single user systems, this is what wewould recommend. First, determine the amount of memory available, by attempting to allocate everything.Then subtract from that 10K for Proteus's scratch area plus any other space you may wish to save for useby the !system directive. You can then set the memory limit and pre-allocate in your proteus.ini (or.proteusrc) �les.See �gure 4. Having tried to allocate 800K, there was only room for 500K. Deciding to leave 200K forother work, a limit of 300K was placed on Proteus, and 150K was pre-allocated. The lines below \: : : " arein another session, because one cannot decrease the GC (garbage collected) memory.

10.3 !watch and !unwatch 3110.3 !watch and !unwatchThe two commands !watch and !unwatch control which identi�ers are traced during execution. Tracingconsists of reporting assignments and function evaluation.An identi�er is watched by the directive:!watch id id1 id2 id3where \id" is the name of the identi�er to be watched. More than one identi�er may be listed, separatedby blanks.While being watched, any assignment to a variable named with that identi�er is echoed on the standardoutput. This includes assignments to slices and maps. If the identi�er is used as a function (smap, mmap,sequence, tuple, func), a line is printed indicating that the expression is being evaluated and a second line isprinted reporting the value returned.It is signi�cant that identi�ers are watched, rather than variables. If i is being watched, then all variablesnamed i are watched.You can stop watching an identi�er with the directive:!unwatch idSee �gure 5 for an example of the output.10.4 !recordThe !record directive channels all input from standard input into a �le. This allows you to capture yourwork and later edit it for including.A directive of the form: !record test changes to recording on �le test. If you had been recordingelsewhere, the other �le is closed. !record with no �le name turns o� recording altogether. The recordingis appended to an existing �le.By combining this with the !echo directive, one can create terminal sessions.10.5 !systemThis allows you to execute one command in the operating system without leaving Proteus. This feature isnot available on the Macintosh version. See section 10.2 for hints on making sure that there is enough roomto invoke the command from the system.You could list your directory on Unix using the command:!system ls> !memoryCurrent GC memory = 50060, Limit = 1024000> !allocate 800000Current GC memory = 500600, Limit = 1024000: : :> !memory 300000Current GC memory = 50060, Limit = 300000> !allocate 150000Current GC memory = 150180, Limit = 300000Figure 4: Finding memory limits

32 10 DIRECTIVES

> f := func(i);return f(i-1)+f(i-2);end;> !watch f!'f' watched> f(1) := 1;! f(1) := 1;> f(2) := 1;! f(2) := 1;> f(4);! Evaluate: f(4);! Evaluate: f(3);! Evaluate: f(2);! Yields: 1;! Evaluate: f(1);! Yields: 1;! f returns: 2;! Evaluate: f(2);! Yields: 1;! f returns: 3;3; Figure 5: !watch examples

33Assuming that you had enough memory, you could escape to an editor, edit a �le, exit the editor, andthen include the �le.If you type !system by itself, you will enter a new copy of your operating system. You can executeanything that �ts in the remaining memory.11 EditorsThe original view of the interpreter was a program that read lines of text, recognizing programs and ex-pressions, and then evaluating them. The introduction of editors adds a second level to this. In each of theeditors, there is some way to send text to Proteus. This phrase refers to taking the text and treating it asif those lines had been typed directly in.11.1 Interactive Line Editor (ILE)11.1.1 Brief descriptionThe left and right arrows will move you within a line, permitting insertions of characters. delete removesthe character at the cursor, backspace deletes the character left of the cursor. The interesting feature isthat the up arrow moves you back thru the last hundred lines entered, with down arrow moving you forward.You can't go past the last entered line.You need to use !clear if you want to throw away your current input (since the last >) so that you canedit it.Example:> a := b +>> c +>> !clear> =up=> c + =up=> a := b +>> =up=> a := b + =up=> c + =edit=> c;The !clear had Proteus throw away the earlier input, but left it for subsequent editting. =up=> meanstyping the up arrow, followed by the new value displayed on that line. =edit=> means editing the line toproduce the desired result.Below is a complete description of the new editor.11.1.2 Default key bindingsThe interactive line editor is an input line editor that provides both line editing and a history mechanism toedit and re-enter previous lines.Proteus looks in the ile initialization �le. See page 4 for more information.Not everyone wants to have to �gure out yet another initialization �le format so we provide a completeset of default bindings for all its operations.The following table shows the default bindings of keys and key sequences provided by ile. These arebased on the emacs key bindings for similar operations.

34 11 EDITORSKey E�ect VMS di�erencesdel delete char under^ A start of line unde�ned^ B backward char^ E end of line^ F forward char^ K erase to end of line^ L retype line^ N forward history^ P backward history^ U erase line^ V quote^ X delete char underdelete delete char under delete char beforeback space delete char before start of linereturn add to historyline feed add to historyhome start of line unde�nedend end of line unde�ned^ C interrupt^ Z end of �le^ D end of �leleft backward charright forward charup backward historydown forward history11.1.3 Initialization FileThe ile initialization �le is a list of table numbers, characters, and actions or strings. ile has 4 actiontables. Each action table contains an action or string for each possible character. ile decides what to dowith a character by looking it up in the table and executing the action associated with the character or bypassing the string one character at a time into ile as if it had been typed by the user. Normally only table 0is used. The escape actions cause the next character to be looked up in a di�erent table. The escape actionsmake it possible to map multiple character sequences to actions.By default, all entries in table 0 are bound to the insert action, and all entries in the other tables arebound to the bell action. User speci�ed bindings override these defaults. The example in Table 1 is aninitialization �le that sets up the same key and delimiter bindings as the ile default bindings.The �rst character on each key binding line is the index of the table to place the key binding in. Validvalues for the index are 0, 1, 2, and 3.The second character on the line is either the character to bind or an indicator that tells how to �nd outwhat character to bind. If the second character is any character besides `^ ' or `n' then the action is boundto that character.If the second character on the line is `^ ' then the next character is taken as the name of a controlcharacter. So ^ H is backspace and ^ [is escape.If the second character on the line is a `n' and the next character is a digit between 0 and 7 the thefollowing characters are interpreted as an octal number that indicates which character to bind the action to.If the character immediately after the `n' is not an octal digit then the action is bound to that character.

11.1 Interactive Line Editor (ILE) 35
0\177=delete_char_under0^@=escape_30^A=start_of_line0^B=backward_char0^C=pass_thru0^D=pass_thru0^E=end_of_line0^F=forward_char0^J=add_to_history0^H=delete_char0^K=erase_to_end_of_line0^L=retype_line0^M=add_to_history0^N=forward_history0^P=backward_history0^U=erase_line0^V=quote0^X=delete_char_under0^Z=pass_thru0^[=escape_11[=escape_22A=backward_history2B=forward_history2C=forward_char2D=backward_char3\107=start_of_line3\110=backward_history3\113=backward_char3\115=forward_char3\117=end_of_line3\120=forward_history3\123=delete_char_under Table 1: Example ile.ini �le

36 11 EDITORSFor example, to get the `^ ' character you would use `n^ '.The next character on the line is always `='. Following the equal sign is the name of an action or a string.The actions are de�ned in the following table.11.1.4 Actionsbell Send a bell (^ G) character to the terminal. Hopefully the bell will ring. This action is a nice way totell the user that an invalid sequence of keys has been typed.insert Insert the character into the edit bu�er. If there are already 75 characters in the bu�er ile willbeep and refuse to put the character in the bu�er.delete char Delete the character directly to the left of the cursor from the edit bu�er.delete char under Delete the character under the cursor from the edit bu�er.quote The next character to come into ile will be inserted into the edit bu�er. This allows you to putcharacters into the edit bu�er that are bound to an action other than insert.escape 1 Look up the next character in action table 1 instead of action table 0.escape 2 Look up the next character in action table 2 instead of action table 0.escape 3 Look up the next character in action table 3 instead of action table 0.start of line Move the cursor to the left most character in the edit bu�er.backward char Move the cursor to the left one character.end of line Move the cursor past the last character in the edit bu�er.forward char Move the cursor to the right one character.add to history Add the contents of the edit bu�er to the history bu�er and pass the line along to theprogram running under ile.erase line Clear the line. Erase all characters on the line.erase to end of line Delete the character under the cursor and all character to the left of the cursor fromthe edit bu�er.retype line Retype the contents of the current edit bu�er. This is handy when system messages or otherasynchronous output has garbled the input line.forward history Display the next entry in the history bu�er. If you are already at the most recent entrydisplay a blank line. If you try to go forward past the blank line this command will beep at you.backward history Display the previous entry in the history bu�er. If there are no older entries in thebu�er, beep.11.1.5 StringsIn addition to being able to bind a character sequence to an action ile allows characters sequences to bebound to strings of characters. When a string is invoked the characters in the string are treated as if theywere typed by the user. For example, if the line:0^G=ring^Ma^Mbell^Mwas in your ile.ini �le, typing control G would cause three lines to be typed as if the user typed them.Using the default bindings, unless there is a ^ J or ^ M in the string the string will be inserted in the currentline but not sent along until the user actually presses return.

11.1 Interactive Line Editor (ILE) 3711.1.6 Error MessagesWhen ile encounters errors it prints a message and terminates. ile can print several standard error message.It can also print a few messages that are speci�c to ile.� ile: '=' missing on line #In a character binding line you left out the `=' character. Or, you did something that confused theinitialization �le reader into thinking there should be an `=' where you didn't think there should beone.� ile: error in initialization file on line #This means that the �rst character of a character binding line wasn't a newline or a 0, 1, 2, or 3. Itcould also mean that the initialization �le reader is confused.A misspelled action name in an ile.ini will be treated as a string. This means that typing the sequenceof characters that should invoke the action will actually cause the misspelled name to be inserted in theinput line.11.1.7 Copyrightile and this documentation was adapted from the program called ile. Permission to modify and distributethe program and its documentation is granted, subject to the inclusion of its copyright notice, which hasbeen reproduced at the front of this manual.

38 12 PARALLEL EXECUTION12 Parallel ExecutionProteus supports the prototyping of parallel algorithms. Proteus programs can be executed with theProteus interpreter, or can be transformed and translated to run on speci�c parallel computers. Eachtranslation tool targets a speci�c style of parallelism, so not all parallel programs will run well on all parallelmachines. The distint models being targetted are described.12.1 Data ParallelismOne model of parallelism supported by Proteus is that of data parallelism, a model where the computationfor each datum is given parametrically. Speci�cally, this is done using sequence notation with iterators,function application, conditional expressions and most operations over numbers and boolean values. If thesequences are nested, then all values at the same nesting level will be computed in parallel (as the hardwarepermits).Data-parallel execution can be obtained even in the case where the program is written without adhering tothe data-parallel subset. The portions of the program that are outside of the subset (assignment statements,for example) are executed in a sequential manner. All sequence expressions that are within the subset(including all the functions they call) are translated to data-parallel execution. This allows intermixing ofdi�erent styles of programming, giving the programmer the
exibility to achieve parallel execution withoutrestricting him to a small subset of the language.A technical report is available that describes the subset of the language and its transformation412.2 Thread ParallelismThread parallelism in Proteus is started either by enumeration or iteration. Examples of each are \x :=breadth first(i) || y := depth first(i)" and \forall i in [1..10] do x(i) := solve(i);". Ineach case, all statements are started without waiting for any to complete, and all statements must �nishprior to executing the next sequential statement.Generally, variables outside the scope of the executing threads are \private." A thread uses its ownprivate copy of a variable during parallel execution, and then when all sibling threads are complete, anymodi�ed private variables are merged together. If multiple threads modify a variable, one of the new valuesis chosen at random as the persisting value of the variable.If threads desire communication via shared variables, then the shared variable must be declared as suchwith the shared variable declaration. This declaration is similar in form to the var declarations and mayoccur at the beginning of any statement block, or as a global declaration. For communicating threads withinthe interpreter, the thread scheduling algorithm should be set to round-robin or random (!sched rr or!sched random), otherwise a spinning thread will never stop spinning.4J. Prins and D. Palmer, \Transforming High-level Data-Parallel Programs into Vector Operations," in Proc. 4th ACMSIGPLAN Symposium on Principles and Practices of Parallel Programming, May 1993. Also available via anonymous ftp atcs.duke.edu as /pub/proteus/reports/ppopp93.ps.Z

3913 Runtime ErrorsError messages describe most problems by printing the operation with the o�ending values of the arguments.If !source was on when the program was read, you will get the source line where the error occurred. If!stack is on, lines containing the calls leading to this error will also be printed.One possible problem is that some values are very big: f1..1000000g for instance. Therefore, thereare two forms of the error messages, controlled by the !verbose directive. By default, verbose is o� andlarge values are represented by their type. The directive !verbose on results in full values being printed.!verbose off returns you to short messages. See �gure 6 for an example.> !verbose on> f1..3g + 5;! Error -- Bad arguments in:f3, 1, 2g + 5;> !verbose off> f1..3g + 5;! Error -- Bad arguments in:!Set! + 5;Figure 6: Runtime errors13.1 Fatal ErrorsThe following errors cause Proteus to exit. Generally they indicate that the problem is larger than Proteuscan manage. Please report cases where internal limits are exceeded to the author.Message Explanation / SuggestionsAllocated data memory exhausted Use !memory to raise limit.Includes too deeply nested Probably �le includes itself.Out of parsing space Internal limit exceeded.Parser out of memory Internal limit exceeded.Too many locals Internal limit exceeded.Too many variables Internal limit exceeded.13.2 Operator Related MessagesMost errors print the o�ending expression with the values (or types) of the arguments. A few have additionalinformation attached.Additional Explanation+ May refer to union.* May refer to inter.<relation> Refers to any of the relational operators.Boolean expected May occur in if, while, and,or, ?, and iterators.Can't iterate over Error in iterator.in LHS of assignment Error in selector on LHS.Multiple images Smap had multiple images.

40 13 RUNTIME ERRORS13.3 General ErrorsThese errors do not provide context by printing the values involved, but they are generally more speci�c.* Used for self explanatory messagesinternal Messages the user should never seePlease report to author.Message ExplanationArithmetic error Relates to machine limitsBad arg to mcPrint internalBad args in low,next..high *Bad args in low..high *Bad format in readf *Bad mmap in iterator MMap iterator over non-mapCan't mmap string Cannot perform selection in assignmentCan't mmap tuple Cannot perform selection in assignmentCannot edit except at top level Edit not permitted withinan includeDivide by zero *Exact format too big in readf *Floating point error *Input must be an expression *Internal object too large *Iter Next internalNesting too deep for pretty printer. *Only one level of selection allowed See section 6Return at top level *RHS in mmap assignment must be set *RHS in string slice assignment *must be stringRHS in tuple slice assignment *must be tupleReturn at top level *Slice lower bound too big *Slice upper bound too big *Stack Over
ow *Stack Under
ow *Too few arguments *Too many arguments *Wrong number of args *

4114 The Proteus Grammar | Compressed14.1 Input at the PromptINPUT ! PROGRAMINPUT ! STMTINPUT ! EXPR ;14.2 ProgramPROGRAM ! program ID (LOCALS VALUES STMTS) ;14.3 StatementsSTMT ! (LOCALS VALUES STMTS) ;STMT ! STMT || STMT ;STMT ! LHS := EXPR ;STMT ! EXPR ;STMT ! if EXPR then STMT [else STMT] ;STMT ! for ITERATOR do STMT ;STMT ! forall ITERATOR do STMT ;STMT ! while EXPR do STMT ;STMT ! read LHS-LIST ;STMT ! read LHS-LIST from EXPR ;STMT ! readf PAIR-LIST ;STMT ! readf PAIR-LIST to EXPR ;STMT ! print EXPR-LIST ;STMT ! print EXPR-LIST to EXPR ;STMT ! printf PAIR-LIST ;STMT ! printf PAIR-LIST to EXPR ;STMT ! return ;STMT ! return EXPR ;STMT ! take LHS from LHS ;STMT ! take LHS frome LHS ;STMT ! take LHS fromb LHS ;STMT ! write PAIR-LIST ;STMT ! write PAIR-LIST to EXPR ;STMT ! writeln PAIR-LIST ;STMT ! writeln PAIR-LIST to EXPR ;STMTS ! \One or more instances of STMT. The �nal semicolon is optional."PAIR-LIST ! \One or more instances of PAIR, separated by commas."PAIR ! EXPR : EXPRPAIR ! EXPR14.4 IteratorsITERATOR ! ITER-LISTITERATOR ! ITER-LIST | EXPRITER-LIST ! \One or more SIMPLE-ITERATORs separated by commas."SIMPLE-ITERATOR! BOUND-LIST in EXPR

42 14 THE PROTEUS GRAMMAR | COMPRESSEDSIMPLE-ITERATOR! BOUND = ID (BOUND-LIST)Broken.SIMPLE-ITERATOR! BOUND = ID f BOUND-LIST gBroken.BOUND-LIST ! \One or more instances of BOUND, separated by commas."BOUND ! ~BOUND ! IDBOUND ! [BOUND-LIST]14.5 SelectorsSELECTOR ! (EXPR-LIST)SELECTOR ! f EXPR-LIST gSELECTOR ! (EXPR .. EXPR)SELECTOR ! (.. EXPR)SELECTOR ! (EXPR ..)SELECTOR ! ()14.6 Left Hand SidesLHS-LIST ! \One or more instances of LHS, separated by commas."LHS ! IDLHS ! LHS SELECTORLHS ! [LHS-LIST]14.7 Expressions and FormersEXPR-LIST ! \One or more instances of EXPR separated by commas."EXPR ! IDEXPR ! INTEGEREXPR ! FLOATING-POINTEXPR ! STRINGEXPR ! trueEXPR ! falseEXPR ! OMEXPR ! newatomEXPR ! FUNC-CONSTEXPR ! if EXPR then EXPR else EXPREXPR ! (EXPR)EXPR ! [FORMER]EXPR ! [. FORMER .]EXPR ! f FORMER gFORMER ! \Empty"FORMER ! EXPR-LISTFORMER ! EXPR .. EXPRFORMER ! EXPR , EXPR .. EXPRFORMER ! EXPR : ITERATOREXPR ! # EXPREXPR ! not EXPREXPR ! + EXPR

14.8 Function Constants 43EXPR ! - EXPREXPR ! EXPR SELECTOREXPR ! EXPR . ID EXPREXPR ! EXPR . (EXPR) EXPREXPR ! EXPR OP EXPRPossible operators (OP) are: + - * / div mod **with less= /= < > <= >=union inter in notin subsetand or impl iffEXPR ! % BINOP EXPREXPR ! EXPR % BINOP EXPREXPR ! EXPR ? EXPREXPR ! exists ITER-LIST | EXPREXPR ! forall ITER-LIST | EXPREXPR ! EXPR where (DEFNS)EXPR ! EXPR @ EXPRBINOP ! \Any binary operator or an ID or expression in parentheses whose value is a function of twoparameters. The ID and parenthesized expression may be preceded by a period."The acceptable binary operators are: +, -, *, **, union, inter, /, div, mod, with, less, and, or,impl.DEFNS ! \Zero or more instances of DEFN. The �nal semicolon is optional."DEFN ! BOUND := EXPR ;DEFN ! ID SELECTOR := EXPR ;14.8 Function ConstantsFUNC-CONST ! FUNC-HEAD (LOCALS VALUES STMTS) ;FUNC-CONST ! : ID-LIST OPT-PART -> EXPR :FUNC-HEAD ! func (ID-LIST OPT-PART)FUNC-HEAD ! func (OPT-PART) ;OPT-PART ! opt ID-LIST\May be omitted."LOCALS ! var ID-LIST ;VALUES ! value ID-LIST ;ID-LIST ! \One or more instances of ID separated by commas."

Index! (directives), 12, 29!alias, 29!allocate, 29, 30!clear, 29!code, 30!echo, 29!fast, 30!ids, 29!include, 4, 29!memory, 30!oms, 29!pp, 30!quit, 4, 29!record, 29, 31!sched, 29!slow, 30!source, 30!stack, 30!system, 29, 31!trace, 30!unwatch, 30, 31!verbose, 29!version, 29!watch, 30, 31+, 19, 42-, 19, 43-d, 5-s, 5.., 17, 18, 42.proteusrc, 4, 30/, 20, 43:=, 12, 41?, 22, 43@, 22, 43||, 41abs, 26and, 6, 20, 43arb, 26atom, 7BINOP, 22, 43block stmt, 13BOUND, 17, 42bound variable, 16BOUND-LIST, 17, 42call by value, 11cardinality (#) of a set, 19, 42

ceil, 24char, 24character set, 5close, 26comments (--), 5comments (ellipsis), 5comments ($), 5compound operator (%), 22, 43concatenation (+)sequence, 20concatenation (+)string, 20, 43concatenation (+)tuple, 20, 43CONSOLE, 26cos, 25DEFN, 22, 43DEFNS, 22, 43di�erence (-) of two sets, 20, 43directives, 29div, 6, 20, 43do, 6, 13, 41dollar sign, 5domain, 24ellipsis, 5else, 6, 13, 41empty sequence ([]), 8empty set (fg,;), 8empty tuple ([. .]), 9end, 13, 22eof, 26equal, 20, 43error messages, 39even, 24exists, 6, 22, 43exit, 4exit, 6, 27exponentiation (**), 20, 43EXPR, 19, 42EXPR-LIST, 22, 42false, 6, 7, 19, 42�le, 7fix, 2444

INDEX 45float, 24
oating-point number, 6FLOATING-POINT, 19, 42floor, 24for, 6, 13, 41forall, 6, 22, 41, 43FORMER, 17, 42from, 6, 13, 14, 41fromb, 6, 14, 41frome, 6, 14, 41func, 6, 22, 43func e�, 11func s�, 10FUNC-CONST, 19, 22, 42, 43FUNC-HEAD, 22, 43function, 18function e�, 11function s�, 10function application, 17function modi�ed at a point, 11function of several variables, 18generalize operation, 22, 43grammar, 12hi, 24hyperbolic functions, 25ID, 19, 42ID-LIST, 23, 43if, 6, 13, 41iff, 6, 20, 43ile.ini, 33image, 17image, 24impl, 6, 20, 43in, 6, 16, 20, 41, 43INPUT, 12, 41integer, 6INTEGER, 19, 42inter, 6, 20, 43Interactive Line Editor e�, 37Interactive Line Editor s�, 33intersection (*, inter, \), 20, 43is..., 25ITER-LIST, 16, 41ITERATOR, 16, 41lambda expressions, 10

length (#)of a sequence, 19length (#)of a string, 19, 42length (#)of a tuple, 19, 42less, 6, 20, 43LHS, 18, 42LHS-LIST, 18, 42ln, 25lo, 24LOCALS, 23, 43log, 25map, 9, 17max, 25max line, 27merge, 6min, 25mmap, 17mod, 6, 20, 43newat, 6, 42newatom, 19not, 6, 19, 42notin, 6, 20, 43npow, 24number, 6odd, 24of, 6OM, 19, 42om, 6opena, 26openclient, 26openr, 26openserver, 26openw, 26opt, 6, 23, 43OPT-PART, 23, 43optional parameters, 11or, 6, 20, 43ord, 26origin, 24PAIR, 15, 41PAIR-LIST, 15, 41parallel execution, 38parallel execution, 13parallel statements, 41parameter, 11pow, 24

46 INDEXprecedence rules, 28precision, 27print, 6, 14, 27, 41printf, 6, 14prog, 27PROGRAM, 12, 41program, 6prompts, 4proteus.ini, 4, 30quit, 4quit, 6, 27random, 25, 27randomize, 25read, 6, 13, 41readf, 6relational operators, 20, 43replication (*)sequence, 20replication (*)string, 20, 43replication (*)tuple, 20, 43return, 6, 10, 14, 41scope, 11, 16SELECTOR, 17, 42sequence former, 8set former, 8sgn, 25shared, 6SIMPLE-ITERATOR, 16, 41sin, 25slice, 17smap, 17sqrt, 25statement block, 41STMT, 12, 41STMTS, 15, 41STRING, 19, 42subset, 6, 20, 43system, 27take, 6, 14, 41then, 6, 13, 41thread, 13to, 6, 14, 41trace, 30, 31transcendental functions, 25trig functions, 25true, 6, 7, 19, 42

tuple former, 9type test, 25union (+, union, [), 20, 43union, 6, 20, 43value declaration, 11value, 6VALUES, 23, 43var, 6where, 6, 22, 43while, 6, 13, 41with, 6, 20, 43write, 6writeln, 6%, 22, 43~, 17, 42

