
Appeared in IEEE Computer Graphics and Applications, March 1994

Solving Systems of Polynomial Equations

Dinesh Manocha1

Department of Computer Science

University of North Carolina,

Chapel Hill, NC 27599-3175

Abstract:

Current geometric and solid modeling systems use semi-algebraic sets for de�ning the

boundaries of solid objects, curves and surfaces, geometric constraints with mating rela-

tionship in a mechanical assembly, physical contacts between objects, collision detection.

It turns out that performing many of the geometric operations on the solid boundaries or

interacting with geometric constraints is reduced to �nding common solutions of the poly-

nomial equations. Current algorithms in the literature based on symbolic, numeric and

geometric methods su�er from robustness, accuracy or e�ciency problems or are limited

to a class of problems only.

In this paper we present algorithms based on multipolynomial resultants and matrix

computations for solving polynomial systems. These algorithms are based on the linear

algebra formulation of resultants of equations and in many cases there is an elegant re-

lationship between the matrix structures and the geometric formulation. The resulting

algorithm involves singular value decompositions, eigendecompositions, Gauss elimination

etc. In the context of 
oating point computation their numerical accuracy is well under-

stood. We also present techniques to make use of the structure of the matrices to improve

the performance of the resulting algorithm and highlight the performance of the algorithms

on di�erent examples.
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1 Introduction

Geometric and solid modeling deal with issues of representation and manipulation of phys-

ical objects. These �elds have received much attention throughout the industrial and

academic communities for more than three decades. Most of the current formulations

of geometric objects (curves and surfaces) are in terms of polynomial equations and in

many application like boundary computations, the problems are reduced to manipulating

a polynomial systems. Polynomial equations are used for representing semi-algebraic sets.

The importance of semi-algebraic sets has been established in many other applications

of geometric computation besides boundary representations. For example, the geometric

constraints associated with kinematic relationships in a mechanical assembly (composed

of prismatic and revolute joints) de�ne semi algebraic sets. Other applications include the

representations of voronoi diagrams of set-theoretic models [1], formulation of con�gura-

tion space of a robot in motion planning applications [2] etc. A fundamental problem in

these geometric computations is that solving systems of polynomial equations. In particu-

lar, the problems of curve intersection, ray tracing curves and surfaces, inverse kinematics

of serial or parallel mechanisms, collision detection, computing the distance from a point

to a curve, �nding a point on the bisector between two curves or a point equidistant from

three curves and solving geometric constraint systems are reduced to �nding roots of non-

linear polynomial equations [3, 4, 1]. The need for solving algebraic equations also arises in

surface intersection algorithms, for �nding starting points on each component and locat-

ing singularities [5, 6], manipulating o�set curves and surfaces [7] and geometric theorem

proving [5]. Most of these problems have been extensively studied in the literature.

The currently known techniques for solving non-linear polynomial systems can be classi-

�ed into symbolic, numeric and geometric methods. Symbolic methods based on resultants

and Gr}obner bases algorithm can be used for eliminating variables and thereby reducing

the problem to �nding roots of univariate polynomials. These methods have their roots

in algebraic geometry. However, the current algorithms and implementations are e�cient

for sets of low degree polynomial systems consisting of up to three to four polynomials

only. The major problem arises from the fact that computing roots of a univariate poly-

nomial can be ill{conditioned for polynomials of degree greater than 14 or 15, as shown by

Wilkinson [8]. As a result, it is di�cult to implement these algebraic methods using �nite

precision arithmetic and that slows down the resulting algorithm. As far as the use of

algebraic methods in geometric and solid modeling is concerned, the current viewpoint is

that they have led to better theoretical understanding of the problems, but their practical

impact is unclear [7, 9].

The numeric methods for solving polynomial equations can be classi�ed into iterative

methods and homotopy methods. Iterative techniques, like the Newton's method, are

good for local analysis only and work well if we are given good initial guess to each so-
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lution. This is rather di�cult for applications like intersections or geometric constraint

systems. Homotopy methods based on continuation techniques have a good theoretical

background and proceed by following paths in the complex space. In theory, each path

converges to a geometrically isolated solution. They have been implemented and applied

to a variety of applications [10]. In practice the current implementations have many prob-

lems. The di�erent paths being followed may not be geometrically isolated and thereby

causing problems with the robustness of the approach. Moreover, continuation methods

are considered to be computationally very demanding and at the moment restricted to

solving dense polynomial systems only. Recently, methods based on interval arithmetic

have received a great deal of attention in computer graphics and geometric modeling. The

resulting algorithms are robust, though their convergence can be relatively slow.

For some particular applications, algorithms have been developed using the geometric

formulation of the problem. This includes subdivision based algorithms for curves and

surface intersection, ray tracing. In the general case subdivision algorithms have limited

applications and their convergence is slow. Their convergence has been improved by B�ezier

clipping [11]. However, for low degree curve intersections algebraic methods have been

found to be the fastest in practice. Similarly algorithms based on the geometric properties

of mechanisms have been developed for a class of kinematics problems, constraint systems

and motion planning problems.

In this paper we present an algorithm for �nding roots of polynomial equations and

demonstrate its performance on a number of applications. The algorithm uses resultants

to eliminate variables from a system of polynomial equations. The resultant formulations

linearize a non-linear polynomial system and the resultant, therefore, can be expressed in

terms of matrices and determinants. In particular, we show that the resultant of a system

of polynomial equations corresponds to the determinant of a matrix polynomial and the

problem of �nding its roots can be reduced to an eigenvalue problem (or a generalized

eigenvalue of a matrix pencil). There is an elegant relationship between the kernels of

these matrix polynomials and the variables being eliminated, which is being used for

computing the rest of the variables and birational maps. We consider algorithms for

sparse as well as dense polynomial systems and illustrate them on the problems of curve

and surface intersections, �nding distance from a point to the curve, birational maps and

geometric constraint systems. Later on we make use of the sparsity of the matrices to

improve the performance of the algorithm. The resulting algorithms are robust in nature

and their numerical accuracy is well understood. For most of the linear algebra problems,

backward stable algorithms are known. This is in contrast with �nding roots of high

degree univariate polynomials. Furthermore, e�cient implementations of backward stable

routines are available as part of LAPACK [12] and we used them in our applications.

The rest of the paper is organized in the following manner. In Section 2 we review the
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results from elimination theory. We consider sparse as well as dense polynomial systems.

In Section 3, we brie
y review some of the techniques from linear algebra and matrix

computations used in the paper. In Section 4 we show how the resultants of polynomial

systems can be expressed in terms of matrix polynomials. Furthermore, there is a direct

relationship between the variables being eliminated and the kernels of the matrix poly-

nomials. In Section 5 we illustrate the algorithm on intersection of curves and surfaces,

�nding distance of a point to a curve or a surface, representation of birational maps and

geometric constraint systems. In Section 6 we discuss the performance and limitations of

the current algorithm and highlight future directions for performance improvement and

�nally in Section 7 we conclude the paper.

2 Background

A semi-algebraic set is obtained by a �nite number of Boolean set operations (union, inter-

section, di�erence) applied to half spaces de�ned by algebraic inequalities. These sets are

used to de�ne solids and their boundaries consist of zero, one and two dimensional algebraic

sets (in 3-space). Algebraic sets are de�ned as common zeros of a system of polynomial

equations. Common examples of boundary sets include parametric curves and surfaces de-

�ned by B�ezier and B-spline formulations. For many operations like intersections, o�sets

and blends on these boundary sets, the resulting algorithms involve computing common

roots of polynomial equations. Elimination theory, a branch of classical algebraic geome-

try, deals with conditions for common solutions of a system of polynomial equations. Its

main result is the construction of a single resultant polynomial of n homogeneous poly-

nomial equations in n unknowns, such that the vanishing of the resultant is a necessary

and su�cient condition for the given system to have a non-trivial solution. We refer to

this resultant as the multipolynomial resultant and use it in the algorithm presented in the

paper.

2.1 Resultants

Resultants are used for eliminating a set of variables from given equations and the geomet-

ric, symbolic and numeric problems can be cast in that manner. Many formulations for

computing the resultant of a system of polynomial equations are known in the literature.

The classical literature in algebraic geometry deals with resultant of dense polynomial

systems [13, 14]. The resultant of sparse polynomial systems has received a considerable

amount of attention in the recent literature and many formulations have appeared [15, 16]

based on the BKK bound relating the number of solutions of a sparse system to mixed

volumes of Newton polytopes. All these formulations of resultants express them in terms
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of matrices and determinants. For many special cases, corresponding to n = 2; 3; 4; 5; 6,

where n is the number of equations, e�cient formulations of resultants expressed as the

determinant of a matrix, are given in [14]. The most general formulation of resultant

for dense polynomial systems expresses it as a ratio of two determinants [13]. For sparse

polynomials a single determinant formulation is known for multigraded systems [15] and

a formulation equivalent to Macaulay's formulation has been highlighted in [16]. The

ongoing activity in sparse elimination methods is important as many polynomial systems

resulting from applications in geometric constraint systems, intersection, o�sets and blends

are sparse [7, 17].

Resultants have gained a lot of importance in geometric and solid modeling literature.

Following Sederberg's thesis [3] on implicitization of curves and surfaces, resultants have

been applied to motion planning [2] and many other geometric problems, as surveyed in

[18]. Most of the earlier practical applications of resultants were limited to low degree curve

and surface intersections [7]. The idea of combining resultant formulations with matrix

computations has been proposed with Macaulay's formulation in [19]. In particular, [19]

describe a general formulation of the resultant of dense polynomial system in terms of

matrices and show that the solutions can be computed by reducing it to a linear eigenvalue

problem. It turns out their resultant algorithm corresponds to the Macaulay's formulation

[13] and [19] do not take into account that the resultant is expressed as a ratio of two

determinants. As a result, their approach may not work whenever the lower determinant

vanishes. Furthermore, for many cases of polynomial systems consisting of up to 5 � 6

equation, e�cient formulations of resultant given by Bezout, Dixon, Morley and Coble etc.

result in non-linear matrix polynomials. The algorithm presented in this paper is not based

on any particular formulation of the resultant. Rather it uses the fact that resultants can

be expressed in terms of determinants of non{linear matrix polynomials. This approach

has been specialized to particular problems of curve and surface intersections. In [20] the

problem of curve intersection is analyzed using resultants and algorithms are presented

based on Bezout resultant of two polynomials and matrix computations. Higher order

intersections corresponding to tangential intersections or singular points are considered

as well. For intersection of triangular or tensor product surfaces, [6] use the fact that

the implicit representation of such surfaces corresponds to the determinant of a matrix

and proposed a representation and evaluation of the intersection curve in terms of matrix

computations.

3 Matrix Computations

In this section we review techniques from linear algebra and numerical analysis used in

our algorithm. We also discuss the numerical accuracy of the problems in terms of their
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condition numbers and the algorithms being used.

3.1 QR Factorization

The QR factorization of an m� n matrix A is given by

A = QR;

where Q is an m�m orthogonal matrix and R is an m�n upper triangular matrix. More

details on its computations are given in [22].

3.2 Singular Value Decomposition

The singular value decomposition (SVD) is a powerful tool which gives us accurate in-

formation about matrix rank in the presence of round o� errors. Given A, a m� n real

matrix then there exist orthogonal matrices U and V such that

A = U�VT

where U is a m � n orthogonal matrix, V is n � n orthogonal matrix and � is a n � n

diagonal matrix of the form

� = diag(�1; �2; . . . ; �n):

Moreover, �1 � �2 � . . . � �
n
� 0. The �

i
's are called the singular values,

3.3 Eigenvalues and Eigenvectors

Given a n�n matrix A, its eigenvalues and eigenvectors are the solutions to the equation

Ax = sx;

where s is the eigenvalue and x 6= 0 is the eigenvector. The eigenvalues of a matrix are

the roots of its characteristic polynomial, corresponding to determinant(A � sI). As a

result, the eigenvalues of a diagonal matrix, upper triangular matrix or a lower triangular

matrix correspond to the elements on its diagonal. E�cient algorithms for computing

eigenvalues and eigenvectors are well known, [22], and their implementations are available

as part LAPACK [12].

3.4 Power Iterations

The largest or the smallest eigenvalue of a matrix (and the corresponding eigenvector)

can be computed using the Power method [22]. Power method involves multiplication of a
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matrix by a vector and after a few steps it converges to the largest eigenvalue of a method.

Given a matrix,A, the technique starts with a vector q0 and performs computation of the

form

z
i
= Aq

i�1;

q
i
= z

i
= k z

i
k;

�
i
= qT

i
Aq

i
:

After a few iterations, �
k
corresponds to the eigenvalue of maximum magnitude and q

k
is

the corresponding eigenvector.

3.5 Sparse Matrix Computations

The general formulation of resultants corresponding to Macaulay formulation results in

sparse matrices [13]. In such cases we want to make use of the sparsity of the matrix

in computing its eigendecomposition. The order of Macaulay matrix is a function of the

number of polynomials and the degrees of the polynomial. The sparsity of the matrix

increases with the degrees of the polynomials or the number of equations.

Algorithms for sparse matrix computations are based on matrix vector multiplications

as highlighted in the Power iterations. For our applications, we use the algorithm high-

lighted in [23] for computing the invariant subspaces and thereby the eigendecomposition

of a sparse matrix.

3.6 Generalized Eigenvalue Problem

Given n�n matrices,A and B, the generalized eigenvalue problem corresponds to solving

Ax = sBx:

We represent this problem as eigenvalues of A� sB. The vectors x 6= 0 correspond to the

eigenvectors of this equati on. If B is non{singular and its condition number (de�ned in the

next section) is low, the problem can be reduced to an eigenvalue problem by multiplying

both sides of the equation by B�1 and thereby obtaining:

B�1Ax = sx:

However, B may have a high condition number and such a reduction can cause numerical

problems.
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4 Algorithm for Solving Equations

In this section, we describe the algorithm for solving a system of non-linear equations

(assuming that they have �nite number of common solutions). We initially show how the

resultants are being used to linearize the problem in terms of matrices and determinants.

In particular, we obtain matrix polynomials and the problem of roots computation is being

reduced to �nding eigenvalues of a matrix polynomial and the corresponding vectors in its

kernel. This algorithm is illustrated on many applications in the next section.

Given a system of n equations in n unknowns,

F1(x1; x2; . . . ; xn) = 0

F2(x1; x2; . . . ; xn) = 0

...

Fn(x1; x2; . . . ; xn) = 0:

Let the degrees of these equations be d1; d2; . . . ; dn, respectively. The resultant, R(x1), is

obtained by eliminating the variables x2; x3; . . . ; xn from these equations. The resultant is a

polynomial in x1 and its roots correspond to the x1 coordinate of each solution of the given

multivariate system. The degree of the resultant is equal the total number of non-trivial

solutions of the given system of equations. The degree is is bounded by the BKK bound

for sparse system and Bezout bound for dense polynomial systems. Di�erent formulations

of resultant express it as determinant of a matrix or as ratio of two determinants. In either

case, the entries of the resulting matrices are polynomial functions of x1.

In case, a single matrix formulation is not possible for the given system, we use the

u-resultant formulation to solve the given system of equations [24]. In particular, we add

a polynomial

Fn+1(x1; x2; . . . ; xn) = u0 + u1x1 + . . . + unxn

to the given system of equations. The ui's are symbolic variables. The resultant is obtained

by eliminating the variables x1; . . . ; xn from the n + 1 equations and is a polynomial in

u0; u1; . . . ; un. It is known as the u-resultant of original system of polynomial equations [24].

Moreover, the u-resultant is expressed as a ratio of two determinants, Det(M)=Det(D).

However the entries of D are independent of the u
i
's. This is a property of Macaulay's

formulation and the u-resultants [24]. As a result, if the matrix D is non-singular, the

resultant of the F1; F2; . . . ; Fn+1 corresponds exactly to the determinant of M. In case, D

is singular, we replace M by its largest non-singular minor as shown in [17].

Given M, whose entries are polynomials in the ui's, the u-resultant corresponding to

its determinant can be factored into linear factors of the form [24]:

Det(M) =
kY

i=1

(�i0u0 + �i1u1 + . . . + �inun)
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where k is the total number of non-trivial solution and (�
i0; �i1; �i2; . . . ; �in

) are the

projective coordinates of a solution of the given system of equations. Let us choose a

specialization of the variables:

u0 = x1; u1 = �1; u2 = 0; u3 = 0; . . . ; un = 0:

The determinant of M obtained after specialization is a polynomial in x1 and its roots

correspond exactly to the x1 coordinate of each solution of the given multivariate sys-

tem. Thus, the determinant corresponds exactly to the resultant of F1; F2; . . . ; Fn
, R(x1),

obtained after eliminating x2; x3; . . . ; xn. As a result, given any system of n polynomial

equations whose coe�cients are numeric constants, we can eliminate n� 1 variables and

express the resultant as determinant of a matrixM(x1).

Multipolynomial resultants linearize a non-linear polynomial system. In other words,

they take a system of non-linear polynomial equations, say F1; F2; . . . ; Fn
, and reduce it

to a linear system of the form

M(x1)(1 x2 . . . xn . . . xd2 xd3 . . . . . . xdn)
T = (0 0 . . . 0)T : (1)

M(x1) is a square matrix and its entries are polynomials in x1. The entries of the vector

consist of power products of x1; x2; . . . ; xn (the actual arrangement of the power products

of these variables is a function of the degrees of the polynomial and the formulation of

resultant being used). This linearization has the property that for any given solution

(�1; �2; . . . ; �n
), of the given system, M(�1) is a singular matrix and the vector in its

kernel is obtained by substituting x1 = �1; x2 = �2; . . . ; xn = �
n
in the vector consisting

of power products highlighted in (1). We use this property along with those of matrix

polynomials to compute the roots of the polynomial equations.

4.1 Matrix Polynomials

The matrixM(x1) highlighted in the previous section can be expressed as a matrix poly-

nomial:

M(x1) =M0 +M1x1 +M2x2 + . . . +Mlx
l

1; (2)

whereM
i
are numeric matrices and l is the maximum degree of x1 in any term of M(x1).

AllMi have the same order, say m�m. The determinant ofM(x1) corresponds exactly to

the resultant of the given equations and we are interested in its roots. Furthermore, for a

given root �1, the kernel ofM(�1) is used to compute rest of the coordinates, �2; �3; . . . ; �n.

Let us assume that the leading matrix,Ml is non-singular and well-conditioned. As a

result computation of M�1
l

does not introduce severe numerical errors. Let

M(x1) =M
�1
l
M(x1); and Mi =M

�1
l
Mi; 0 � i < l:
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M(x1) is a monic matrix polynomial. Its determinant has the same roots as does the

determinant of M(x1). Let x1 = �1 be a root of the equation, Determinant(M(x1)) = 0:

As a result M(�1) is a singular matrix and there is at least one non trivial vector in its

kernel. Let us denote that m� 1 vector as v. That is

M(�1)v = 0; (3)

where 0 is a m� 1 null vector. The roots of the determinant of M(x1) correspond to the

eigenvalues of C highlighted in the following theorem [17]:

Theorem 4.1 Given the matrix polynomial, M(x1) the roots of the polynomial corre-

sponding to its determinant are the eigenvalues of the matrix

C =

0
BBBBBBB@

0 Im 0 . . . 0

0 0 Im . . . 0

...
... . . .

...
...

0 0 0 . . . Im

�M0 �M1 �M2 . . . �Ml�1

1
CCCCCCCA
; (4)

where 0 and Im are m � m null and identity matrices, respectively. Furthermore, the

eigenvector of C corresponding to the eigenvalue x1 = �1 has the form:

[v �1v �21v . . . �l�1
1 v]T ;

where v is the vector in the kernel of M(�1) as highlighted in (3).

Many a times the leading matrix M
l
is singular or close to being singular (due to high

condition number). Some techniques based on linear transformations are highlighted in

[17], such that the problem of �nding roots of determinant of matrix polynomial can be

reduced to an eigenvalue problem. However, there are cases where they do not work. For

example, when the matrices have singular pencils. In such cases, we reduce the intersection

problem to a generalized eigenvalue problem using the following theorem [17]:

Theorem 4.2 Given the matrix polynomial, M(x1) the roots of the polynomial corre-

sponding to its determinant are the eigenvalues of the generalized system C1x1�C2, where

C1 =

0
BBBBBBB@

Im 0 0 . . . 0

0 Im 0 . . . 0

...
... . . .

...
...

0 0 . . . Im 0

0 0 . . . 0 Ml

1
CCCCCCCA
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C2 =

0
BBBBBBB@

0 Im 0 . . . 0

0 0 Im . . . 0

...
... . . .

...
...

0 0 0 . . . Im

�M0 �M1 �M2 . . . �Ml�1

1
CCCCCCCA
; (5)

where 0 and I
m
are m�m null and identity matrices, respectively.

The roots of the determinant ofM(x1) correspond to the eigenvalues of C or C1x1�C2.

In many applications we are only interested in the real solutions or solutions lying in a

particular domain. The QR or QZ algorithm for eigenvalue computation returns all the

eigenvalues of a given matrix and it is di�cult to restrict them to �nding eigenvalues in a

particular domain [22].

Let us assume that �1 is a simple eigenvalue of C. In the rest of the paper, we carry

out the analysis on the eigenvalues of C and the resulting algorithm is similar for the

eigenvalues of the pencil C1x1�C2. Since �1 is a simple eigenvalue, the kernel of C��1I

has dimension one represented as

V = [v �1v �21v . . . �l�1
1 v]T :

Furthermore, we know that v = [v1 v2 . . . v
m
]T corresponds to the vector in the kernel

of M(�1). Given v, we use the relationship highlighted in (1) to compute the x2; . . . ; xn
coordinates:

(1 x2 . . . xn . . . xd2 xd3 . . . . . . xdn)
T = �(v1 v2 . . . vm)

For example, �2 =
v2

v1
.

In many cases �1 may correspond to an eigenvalue of multiplicity greater than one of

C. There are two possibilities:

� (�1; �2; . . . ; �n) is a solution of multiplicity greater than one of the given system of

equations. In this case, the algebraic of multiplicity of �1 is greater than one but

the geometric multiplicity corresponding to the dimension of the kernel of C � �1I

is still one.

� There may be two solutions of the given equations of the form (�1; �2; . . . ; �n
) and

(�1; �
0

2
; . . . ; �

0

n
). As a result the kernel of C� �1I has dimension greater than one.

The problem of computing higher multiplicity roots can be numerically ill-conditioned.

However, in many cases it is possible to identify higher multiplicity eigenvalues of a matrix

by identifying clusters of eigenvalues and using the knowledge of the condition number of

the clusters. More details of its application to �nding solutions of polynomial equations

are given in [17].
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Given a higher multiplicity eigenvalue, �1, we compute its geometric multiplicity by

computing the SVD of C��1I. The geometric multiplicity corresponds to the number of

singular values equal to zero. In case, the geometric multiplicity is one, the relationship

highlighted in (1) is used to compute �2; �3; . . . ; �n
for each �1. Otherwise there are two or

more vectors in the kernel of M(�1). The vectors computed using linear algebra routines

may correspond to any two vectors in the vector space corresponding to the kernel. As

a result, it is di�cult to compute �2, �3, . . . ; �n
from them. To solve the problem we

substitute x1 = �1 and solve the n� 1 equations:

F1(�1; x2; . . . ; xn) = 0

F2(�1; x2; . . . ; xn) = 0
...

F
n�1(�1; x2; . . . ; xn) = 0;

for x2, x3 . . ., xn. The solutions obtained are veri�ed by substituting into Fn
(�1; x2; . . . ; xn) =

0.

We have implemented the algorithm using linear algebra libraries. The three major

parts of the algorithm are:

1. Use a suitable resultant formulation to linearize the problem in terms of matrix

polynomials. The entries of the Macaulay matrix are actually the coe�cients of the

polynomial equations. The resultant formulations of Bezout, Dixon corresponding

to two or three equations result in matrix entries being polynomial functions of the

coe�cients.

2. Reduce the problem to an eigenvalue problem. This involves estimating the condition

number of the leading matrix of the matrix polynomial. In some cases a linear

rational transformation is involved on the matrices to improve the conditioning of

the leading matrix. Finally, we reduce the problem to an eigenvalue or a generalized

eigenvalue problem.

3. Compute the eigendecomposition of the given matrix and recover the common roots

from the eigenvalues and the eigenvectors. In a few instances, this may involve

identifying higher order eigenvalues using knowledge of clusters, using the SVD to

know the geometric multiplicity of the eigenvalue and possibly solving a system of

n� 1 equations in n� 1 unknowns.

All the three parts mentioned above are relatively simple to implement, given the linear

algebra routines. A major feature of the algorithm is that at each stage the numerical

accuracy of the operations involved is well understood. As a result, we are able to come up
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with tight bounds on the accuracy of the resulting solution. In fact, the higher multiplicity

eigenvalues are determined from their condition numbers. For most cases, we are able to

accurately compute the roots using the 64 bit IEEE 
oating point arithmetic available on

most workstations.

5 Applications

In this section we highlight the application of the equation solving algorithm to some prob-

lems in boundary computations and geometric constraint systems. Initially, we consider an

example of intersection of three surfaces from [10]. In particular, Morgan uses continuation

methods to solve this problems and argues that approaches based on symbolic reduction

lead to severe numeric problems. Secondly, we consider the problem of �nding a distance

from a point to a curve or a surface. It is well known that these problems can be reduced

to solving non-linear algebraic equations and they are frequently encountered in the com-

putation of o�set curves and surfaces and voronoi surfaces [7, 1]. The matrix relationship

expressed in (1) is also used for computing the birational maps. These birational maps

are expressed in terms of ratio of determinants as opposed to algebraic expression. They

are useful for the inversion problem and expressing the rational relationships between the

variables being eliminated and the coe�cients of the given polynomial system. Finally, we

discuss the application of this algorithm to geometric constraint systems.

5.1 Intersection of Three Surfaces

Given three algebraic surfaces, F1(x; y; z) = 0; F2(x; y; z) = 0; F3(x; y; z) = 0, we

are interested in their common points of intersection. This problem arises frequently in

the boundary computations [5]. It turns out that this problem corresponds to solving

3 equations in 3 unknowns. In case, we are given parametric surfaces, we can either

implicitize them and reduce it to solving for 3 equations or deal with the parametric

variables and reduce the problem to solving 6 equations in 6 unknowns.

The total number of solutions in the complex space is bounded by the product of the

three degrees. Resultants and Gr}obner bases have been used to eliminate two variables

from these three equation. The resulting problem correspond to �nding roots of a univari-

ate polynomial, which can be ill-conditioned on low degree polynomials. We illustrate it

on an example from [10] and also analyze the accuracy of the algorithm presented in this

paper.
Consider the intersection of a sphere, a cylinder and a plane described by the following

equations:

1:6e�3 x
2
1 + 1:6e�3 x

2
2 � 1 = 0

5:3e�4 x
2
1 + 5:3e�4 x

2
2 + 5:3e�4 x

2
3 + 2:7e�2 x1 � 1 = 0
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�1:4e�4 x1 + 1:0e�4 x2 + x3 � 3:4e�3 = 0:

According to [10], these equations have two real solutions of norm about 25 and a com-

plex conjugate pair of order 109. The two real solutions have a physical meaning. After

eliminating x2 and x3 from these equations, the eliminant is [10]:

6:38281970398352 x41 � 7:12554854545301e9 x31 +

1:89062308408416e19 x21 + 9:36558635415069e20 x1

� 1:15985845720186e22:

where the coe�cients have been rounded to 15 digits. In the original polynomial system

there is a range of 4 orders of magnitude in the coe�cients and in the eliminant the range

is 22. As a result, it is very di�cult to accurately compute the roots using the IEEE 64

bit arithmetic, which allows 16 digits of precision. These kind of problems are commonly

faced in algebraic algorithms.

We analyze the accuracy and robustness of our algorithm on this problem. We use the

Macaulay formulation of the resultant and it linearizes the problem into

M(x1)v = 0: (6)

The matrix M(x1) corresponding to the resultant formulation is:

0
BBBBBBBB@

1:6e�3 0 0 0 0 0 0 �1 + 1:6e�3 x
2
1
; 0 0

0 1:6e�3 0 0 0 0 0 0 �1 + 1:6e�3 x
2
1

0

0 0 1:6e�3 0 0 0 0 0 0 �1 + 1:6e�3 x
2
1

5:3e�4 0 0 5:3e�4 0 0 0 5:3e�4 x
2
1
+ 0:027 x1 � 1 0 0

0 5:3e�4 0 0 5:3e�4 0 0 0 5:3e�4 x
2
1
+ 0:027 x1 � 1 0

0 0 5:3e�4 0 0 5:3e�4 0 0 0 5:3e�4 x
2
1
+ 0:027 x1 � 1

0 1:0e�4 0 1 0 0 �1:4e�4 x1 � 3:4e�3 0 0 0

0 0 1:0e�4 0 0 0 1 �1:4e�4 x1 � 3:4e�3 0 0

0 0 0 0 0 1 1:0e�4 0 �1:4e�4 x1 � 3:4e�3 0

0 0 0 0 0 0 0 1:0e�4 1 �1:4e�4 x1 � 3:4e�3

1
CCCCCCCCA

and the right hand side vector is

v = (x3
2
x2
2
x3 x

2
2
x2x

2
3
x3
3
x2
3
x2x3 x2 x3 1)

T :

Although the Macaulay resultant expresses the resultant as a ratio of two determinants,

the lower matrix is non-singular and consist of numerical entries only.

It follows from Bezout's theorem that the system has 4 solutions in the complex space.

In fact, the determinant of the matrix, say M(x1), highlighted above corresponds to the

eliminant (up to a constant). We treat it as a matrix polynomial and reduce the problem

to an eigenvalue problem.

In this case, M(x1) is a 10� 10 matrix polynomial of degree 2 in x1. Let us express it

as:

M(x1) =M2x
2
1
+M1x1 +M0:
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The fact that the determinant of M(x1) has degree 4 implies that M2 is singular. As

a result, we cannot reduce the problem to an eigenvalue problem using Theorem 4.1. It

turns out that the condition number of M0 is 4:0911e03. As a result, we perform a linear

transformation y = 1=x1 and we reduce the problem to �nding eigenvalues of the matrix

C =

 
0 I

�M�1
0 M2 �M�1

0 M1

!
:

It follows that y = 0 is an eigenvalue of multiplicity 6 of C. We use this information in

choosing the appropriate shifts in the double shift QR algorithm for eigendecomposition,

as described in [22]. This knowledge of some of the eigenvalues speeds up its convergence.

The 4 nonzero eigenvalues are

0:04037383; 0:04037383; �1:35035361e � 10 + 5:773741e � 10 i; �1:35035361e � 10 � 5:773741e � 10 i;

where i =
p
�1. Substituting x1 = 1=y and computing x2 and x3 from the eigenvectors of

C results in two real solutions to the original equations:

(x1; x2; x3) = (4:76851749893;�3:39419223;0:00720701519);

(x1; x2; x3) = (24:76851768;3:3941908959;0:006528173):

The solutions computed are accurate up to 8 digits of accuracy. Further accuracy can

be achieved by a few iterations of Newton's method on the original equations and using the

solutions from eigendecomposition procedure as the start points for Newton's iteration.

We have used this algorithm on the intersection of three surfaces with more than 100

intersections and are able to compute the solutions with good accuracy.

5.2 Distance from a Point to a Curve or Surface

The problem of computing the distance of a point to a curve or a surface comes up

repeatedly in solid modeling computations. Some examples include computation of the

medial axis transform, voronoi surfaces, o�set curve and surfaces etc. [7, 1]. It is well

known in literature that this problem can either be posed as an optimization problem

(minimizing the distance function) or reduce it to solving algebraic equations. Let (X;Y )

be a point and F (x; y) = 0 be the curve. Let (xp; yp) be the point on the curve closest to

(X;Y ). Then there are two equations:

F (xp; yp) = 0

(Y � yp)Fx(xp; yp)� (X � xp)Fy(xp; yp) = 0:

14



It turns out that these equations have more than one real solution and therefore, any

algorithm based on local methods may converge to a wrong solution [1]. Algorithms based

on constrained optimization may converge to a local minima of the function. Thus, none

of the previous technique is able to solve this problem in a reasonable manner.

Using the algebraic formulation the problem reduces to solving for x
p
; y

p
in these two

equations. For a curve of degree n there are n2 solutions to these equations. We used the

Bezout formulation of the resultant of two equations and solved the problem using the

eigenvalue formulation. In particular, we eliminate x
p
from the given equations and the

Bezout formulation results in a n � n matrix, whose entries are a polynomial of degree n

in y
p
. This is eventually reduced to an eigenvalue problem of a matrix of order n2. The

resulting algorithm works well in practice. We know from the equations that the roots of

the given system contain a point on the curve closest to (X;Y ). This point is identi�ed by

computing the distances between the roots and (X;Y ) and �nding the root corresponding

to the minimum distance. Similarly the problem of �nding the distance from a point to a

surface is reduced to solving three polynomials in three unknowns.

Many other problems like ray-tracing parametric curves and surfaces, �nding singular

points on algebraic curves and surface can be reduced to solving two polynomial equations

in two or three unknowns. This algorithm has been successfully applied to these problems

[17].

5.3 Birational Maps

Birational maps play a fundamental role in algebraic geometry. They have also gained

importance in solid modeling for their use in many applications. Many problems related

to boundary computation are easily solved using birational maps. The most common

example is that of inversion problem for rational curves and surfaces. Given a rational

parametric surface, expressed in projective coordinates as:

F(s; t; u) = (x; y; z; w) = (X(s; t; u); Y (s; t; u); Z(s; t; u);W (s; t; u));

where X(s; t; u); Y (s; t; u); Z(s; t; u) and W (s; t; u) are homogeneous polynomials of degree

n. Common examples of this formulation are the triangular and tensor product B�ezier

patches used in geometric and solid modeling. A rational surface de�nes a map from the

s; t; u projective plane to the projective space de�ned by x; y; z; w. In applications involving

parametric surfaces an important problem is that of computing the s; t; u coordinates, given

a point on the surface, (x0; y0; z0; w0). This is the inversion problem.

It turns out that the exact relationship between the points on the surface, F(s; t; u),

and the parameters s; t; u can be expressed as a rational map as well:

F�1(x; y; z; w) = (s; t; u) = (S(x; y; z; w); T (x; y; z; w); U(x; y; z; w));

15



where each of S(x; y; z; w), T (x; y; z; w) and U(x; y; z; w) is a homogeneous polynomial.

As a result, we see that F and F�1 de�ne rational maps between the s; t; u and x; y; z; w

space.

Algorithms to compute the birational maps are known in the literature. They are based

on Gr}obner bases [5] or multipolynomial resultants [18]. However, direct applications of

these algorithms su�er from accuracy and e�ciency problems as highlighted in [7]. We

make use of the fact that multipolynomial resultants linearize a non-linear problem by

eliminating some variables as shown in (1). In particular, we express the birational maps

in terms of ratio of determinants and use matrix computations for their computation. At

the moment, the algorithm is limited to systems of polynomial equations, such that their

resultant can be expressed as a single determinant. Such formulations are known for 2; 3

or 4 equations and most applications of curve and surface modeling involving birational

maps fall in this category.

Lets consider the resultant of the n equations, F1; F2; . . . ; Fn
expressed as a single

matrix in (1). The entries of the matrix are functions of the coe�cients of the given

polynomial equations and x1. To compute, x2; . . . ; xn we make use of the kernel of M(x1).

In particular, we represent M(x1) as

M(x1) =

0
BBBBB@

M1;1(x1) M1;2(x1) . . . M1;m(x1)

M2;1(x1) M2;2(x1) . . . M2;m(x1)
...

... . . .
...

Mm;1(x1) Mm;2(x1) . . . Mm;m(x1)

1
CCCCCA :

Let us consider the points which makeM(x1) singular. In this case, x1 correspond to the

roots of the determinant of M(x1). For a generic choice of the point the kernel of M(x1)

has dimension one (this has to be the case for birational maps to be de�ned). Lets treat

each power product in the vector highlighted in (1) as a separate variable and denote the

resulting vector as

v = [1 v
0

2
v
0

3
. . . v

0

m
]T :

It follows from this notation that x
i
= v

0

i
, for i � n. Taking the n equations denoted by

M(x1)v and applying the Cramer's rule it follows that
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v
0

i
=

�����������

M1;2(x1) M1;3(x1) . . . M1;i�1(x1) �M1;1(x1) M1;i+1(x1) . . . M1;m(x1)

M2;2(x1) M2;3(x1) . . . M2;i�1(x1) �M2;1(x1) M2;i+1(x1) . . . M2;m(x1)
...

... . . .
...

...
... . . .

...

M
m�1;2(x1) M

m�1;3(x1) . . . M
m�1;i�1(x1) �M

m�1;1(x1) M
m�1;i+1(x1) . . . M

m�1;m(x1)

����������������������

M1;2(x1) M1;3(x1) . . . M1;i�1(x1) �M1;i(x1) M1;i+1(x1) . . . M1;m(x1)

M2;2(x1) M2;3(x1) . . . M2;i�1(x1) �M2;i(x1) M2;i+1(x1) . . . M2;m(x1)
...

... . . .
...

...
... . . .

...

M
m�1;2(x1) M

m�1;3(x1) . . . M
m�1;i�1(x1) �M

m�1;i(x1) M
m�1;i+1(x1) . . . M

m�1;m(x1)

�����������

:

This formulation can therefore, be used to represent birational maps in terms of matrices

and determinants.

Let us illustrate this on rational parametric surface. Given a parametric surface

(x; y; z) = (
s2t� t� s2 � 1

s2 + s2t
;
s2t� t+ s

s2 + s2t
;
2s2 � 2t� 2

s2 + s2t
);

we formulate the equations:

x(s2 + s2t)� s2t+ t+ s2 + 1 = 0

y(s2 + s2t)� s2t� s+ t = 0

z(s2 + s2t)� 2s2 + 2t+ 2 = 0:

Using Dixon's formulation, the resultant of these three equations can be expressed as:

����������

0 0 4 + 2x� z �2 + 2x� z

4 + 2x� z �2 + 2x� z 4 + 2x� z �2 + 2x� z

�2 + 2x� z �2 + 2x� z �4� 2x+ 6y + z �2 � 4x+ 6y � z

�4� 2x+ 6y + z �2� 4x+ 6y � z �2 + 2x+ 2z 0

����������

0
BBBB@

1

t

s

st

1
CCCCA =

0
BBBB@

0

0

0

0

1
CCCCA :

Using the Cramer's rule, we are able to compute the inverse maps as

t =

��������
0 4 + 2 � x� z �2 + 2 � x� z

�4� 2 � x+ z 4 + 2 � x� z �2 + 2 � x� z

2� 2 � x+ z �4� 2 � x+ 6 � y + z �2� 4 � x+ 6 � y � z

����������������
0 4 + 2 � x� z �2 + 2 � x� z

�2 + 2 � x� z 4 + 2 � x� z �2 + 2 � x� z

�2 + 2 � x� z �4� 2 � x+ 6 � y + z �2� 4 � x+ 6 � y � z

��������
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and

s =

��������
0 0 �2 + 2 � x� z

�2 + 2 � x� z �4� 2 � x+ z �2 + 2 � x� z

�2 + 2 � x� z 2� 2 � x+ z �2� 4 � x+ 6 � y � z

����������������
0 4 + 2 � x� z �2 + 2 � x� z

�2 + 2 � x� z 4 + 2 � x� z �2 + 2 � x� z

�2 + 2 � x� z �4� 2 � x+ 6 � y + z �2� 4 � x+ 6 � y � z

��������

:

The birational maps are expressed in terms of matrices and determinants and are

very useful in the boundary computation algorithms. To accurately compute the inverse

coordinates of a point x0; y0; z0, we substitute the values and compute the determinants

using Gaussian elimination with pivoting.

5.4 Geometric Constraint Systems

Solving geometric constraint systems is fundamental for many applications in mechan-

ical assemblies, constraint-based sketching and design and kinematic analysis of robots

and other mechanisms. An important class of the problems involve �nding the positions,

orientations and dimensions of a set of geometric entities that satisfy a set of geomet-

ric constraints. Earlier approaches to solve large constraint systems using this notion

have either relied on the user to specify the sequence of operations. Recently, automated

approaches based on kinematic simulation of mechanical linkages have appeared in the

literature. The geometric constraints formulated in kinematics are applicable to tolerance

analysis, assembly planning and constrained based design.

It turns out that kinematic solution to mechanical linkages has been extensively studied

in robotics and mechanics. While the problem of direct kinematics of serial mechanisms

and inverse kinematics of parallel mechanisms are simple, the inverse kinematics of serial

mechanisms and direct kinematics of parallel manipulator has been relatively di�cult.

The latter problems reduce to solving algebraic equations in the most general case. Some

other approaches to geometric constraint systems using algebraic formulation have been

proposed in [25] and they reduce the problem to solving non linear algebraic equations as

well.

We have applied our equation solving algorithm to the problem of inverse kinematics

of general 6R manipulators. This had been a long standing problem in robotics litera-

ture. The absence of good solutions for the inverse kinematics of general 6R manipulators

lead to all commercial manipulators being designed with geometric simplicity such that a

closed form solution exists. In particular, the problem reduces to solving 6 equations in

6 unknowns and it had been recently shown that there can be at most 16 solutions. In

particular, they reduce the problem to �nding roots of a 16 degree univariate polynomial.

However, these algorithm are of theoretical interest and their practical implementation
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su�ers from numerical problems. Known implementations of inverse kinematics in the

general case are based on continuation methods and they take about 10 sec. on an average

(on an IBM 370-3090 mainframe) for a given pose of the end e�ector [26]. We applied

our algorithm based on resultant, matrix polynomials and eigendecompositions to this

problem. More details are given in [17]. The average running time for the given pose of

the end e�ector is 10 milliseconds (on an IBM RS/6000 workstation) and giving up to 8

or more digits of accuracy. The robotics applications desire this kind of real time perfor-

mance and the other algorithms have been found to be too slow for that. The technique is

applicable for inverse kinematics of all serial manipulators and direct kinematics of parallel

manipulators.

6 Performance Improvement

The matrices C, C1 and C2 corresponding to the eigenvalue formulation seem to have

a speci�c structure. The algorithm highlighted in Section 4 treats them as general non-

symmetric matrices and uses the QR or QZ algorithm for eigendecomposition. In many

cases, we may know a few of the eigenvalues depending upon the problem formulation and

this information is being used in choosing the appropriate shifts along with the double

shift QR algorithm for eigendecomposition. The order of these matrices correspond to the

total number of non-trivial solution of a given system (Bezout bound for a dense system

and BKK bound for the sparse system) and in most applications we are only interested in

the eigenvalues lying in a particular domain. For example, many algorithms for boundary

computations, intersection, ray tracing on B�ezier curves and surfaces need the eigenvalues

in the [0; 1] domain only.

The matrices C;C1 and C2 are relatively sparse. It turns out that the Macaulay

formulation results in sparse matrices as well. In other words, the matricesMi arising from

Macaulay's formulation are sparse. As a result, it is worthwhile to use eigendecomposition

algorithms for sparse matrices as opposed to the QR or QZ algorithm. In particular, we

have tried the algorithm presented in [23] to compute invariant subspace of a real matrix

by simultaneous iterations up to a user speci�ed tolerance. The eigenvalues of the matrix

are approximated from the invariant subspace. Although this algorithm is relatively fast

as compared to the QR algorithm for eigendecomposition, its accuracy is not as good. We

are currently investigating the tradeo�s between the accuracy and e�ciency based on the

choice of eigendecomposition algorithm.
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6.1 Limitations of the Current Algorithm

The equation solving algorithm makes use of the resultant formulation of polynomial

equations and reduces the problem to matrix computations. It turns out that good re-

sultant formulations are known for systems containing up to 5 or 6 polynomial equations.

Macaulay's formulation for general systems results in large and sparse matrices. The or-

der of the matrix growns exponentially with the degrees of the equations and the number

of equations. For example, polynomial systems with 6 or more equations arise in the

computations of o�sets, blends and voronoi diagrams and at the moment e�cient resul-

tant formulations are not known for these systems. The performance of algorithms based

on Macaulay formulation and eigendecomposition is relatively slow. In many ways good

resultant formulations are fundamental to the e�ciency of this algorithm. The current

algorithm performs well for polynomial systems consisting of up to 4 or 5 polynomials.

The matrices corresponding to the eigenvalue formulation are relatively structured. We

have only been able to utilize the fact that they are sparse for systems with high Bezout

bound. Furthermore, we are only interested in eigenvalues in a particular domain and no

good sequential algorithms are known for that for these matrices.

7 Conclusion

The problem of solving a system of polynomial equations arises repeatedly in geometric

and solid modeling applications. Algorithms based on resultants are well known in the

literature. However, it is a widely conceived notion that algebraic approaches based on

resultants su�er from numerical and e�ciency problems, when it comes to application.

In this paper, we utilized the fact that resultant of a system of polynomial equations

is expressed in terms of matrices and determinants. As a result, we used algorithms

and results from linear algebra and reduced the problem to matrix computations like

Gauss elimination, eigendecomposition and SVD. Good implementations of the latter are

available as part of linear algebra libraries and in the context of 
oating point computation

their numerical accuracy is well understood. For most cases, we are able to compute

accurate solutions using 64 bit IEEE 
oating point arithmetic. The algorithm has been

successively applied to curve and surface intersections, �nding distance from a point to a

curve or a surface, locating singularities etc.

Due to the editorial policies of the journal, many related references could not be cited.
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