
 i 

Shaping Curved Surfaces 
 

by 

John S. Rhoades 

 

 

 

A dissertation submitted to the faculty of the University of North Carolina 

at Chapel Hill in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in the Department of Computer Science 

 

 

 

 

Chapel Hill 

 

 1993 

 

 

 

 

 

 

 

Approved by: 

 

 

_________________________ 

Stephen M. Pizer, advisor and reader 

 

_________________________ 

Gary Bishop, reader 

 

_________________________ 

Robert B. Gardner, reader 

 

_________________________ 

Dinesh Manocha, reader 

 

_________________________ 

Jonathan A. Marshall, reader 



 ii 

John S. Rhoades. Shaping Curved Surfaces (Under the direction of Dr. Stephen M. Pizer, 

Kenan Professor of Computer Science) 

 

Abstract 

 

This dissertation presents a new tool for shaping curved surfaces, the bending operator. 

The bending operator is an interactive tool intended for use in 3-D sketching. It is based 

on the idea that bending a surface is equivalent to changing its normal vector field while 

perturbing its metric as little as possible. The user of this tool specifies a bending 

operator, which is a surface that indicates how the normals of a target surface should 

change. The bending algorithm adds the derivatives of the normal vector fields of the 

bending and target surfaces and integrates this sum to produce a desired normal vector 

field. The target surface is then reshaped using a variational technique that moves the 

underlying surface control points to minimize a penalty function of the target surface. 

After bending, the resulting surface acquires the features of the bending surface while 

maintaining the general shape of the original target surface. 

 

The bending algorithm can perform a wide variety of surface shaping tasks, including 

bending about a cylinder axis, indenting, twisting, and embossing. The algorithm includes 

a positioning control used to specify the correspondence between points of the bending 

operator surface and target surface and a range of action selector used to restrict the 

bending action to a part of the target surface. The bending operator is intuitive in that a 

user can easily learn to predict the approximate result of a bending operation without 

needing a detailed understanding of the algorithm. The algorithm can be applied to any 

patch type that is based on control points and that is piecewise twice differentiable, 

including Bezier patches, B-spline patches, and NURBS. The algorithm can also be 

applied to a non-branching mesh of patches with smoothness constraints. The bending 

algorithm was implemented in an interactive prototype program using X-windows. This 

program performs a bending operation in seconds to minutes on a HP-730 workstation 

depending on the complexity of the target and bending surfaces. The dissertation also 

includes an outline for a joining algorithm based on variational techniques similar to 

those used in bending.  

 

Acknowledgments 
 

 



 iii 

I thank my advisor and committee chairman, Stephen M. Pizer, for technical and moral 

support during this work. One could not ask for a better advisor. Thanks to Dr. Pizer, I 

now have some inkling of what it takes to do a major research project and write a major 

technical document. 

 

I thank the other members of my committee, Gary Bishop, Robert B. Gardner, Dinesh 

Manocha, and Jonathan A. Marshall, for technical advice about the dissertation and for 

strategic advice about doing the research. They helped me clarify my goals and limit the 

work to a doable amount.  

 

I thank David Banks, David Eberly, Elaine Cohen, and Jan Koenderink for technical 

discussions and advice. Their feedback greatly improved the quality of this dissertation. 

 

I thank the following projects for monetary support. NIH Grant CA 47982, Medical 

Image Presentation, paid my salary for a year during this work. NSF/ARPA Science and 

Technology Center for Computer Graphics and Scientific Visualization, paid for a very 

productive week-long visit to the University of Utah. 

 



 iv 

Table of Contents 
 

    Page 

 

List of Figures ................................................................................................................ vii 

List of Abbreviations ....................................................................................................... ix 

List of Symbols x 

 

Chapter 

 

1. Introduction ..................................................................................................................1 

 1.1 Goals of this work .................................................................................................1 

 1.2 Prerequisites for the reader ...................................................................................1 

 1.3 The driving problem .............................................................................................2 

 1.4 Overview of results ...............................................................................................4 

 

2. Previous work ...............................................................................................................7 

 2.1 Tool-based geometric modelers ............................................................................7 

 2.2 Surface warping ....................................................................................................9 

 2.3 Space warping .....................................................................................................12 

 2.4 Comparison of surface and space warp ...............................................................13 

 2.5 Relation to physically based modeling ...............................................................14 

 

3. Bending .................................................................................................................15  

 3.1 What is bending? ................................................................................................15 

 3.2 Informal description of the bending algorithm ...................................................18 

 3.3 Mathematical description of the bending algorithm ...........................................19 

  3.3.1 Defining the desired normals ..................................................................19 

  3.3.2 Producing the final bent surface ..............................................................24 

 3.4 Positioning the bending operator ........................................................................32 

 3.5 Bending a mesh of patches ..................................................................................38 

  3.5.1 Adapting the bending operator to a mesh of patches ..............................39 

 3.6 Implementation issues .........................................................................................43 

  3.6.1 Patch type ................................................................................................43 

  3.6.2 Incremental bending ................................................................................45 



 v 

  3.6.3 Computing the normal vector field .........................................................47 

  3.6.4 Minimizing the penalty function .............................................................48 

  3.6.5 Implementing the bending operator for a mesh of B-spline patches .......51 

  3.6.6 Summary .................................................................................................53 

 3.7 Strengths and weaknesses of the algorithm ...........................................................53 

 

4. Applying the methodology to another problem: Joining .......................................56 

 4.1 The role of variational techniques in surface shaping algorithms .......................56 

 4.2 Background of the joining problem ....................................................................57 

  4.2.1 Definition of geometric continuity ..........................................................58 

  4.2.2 Implications of Gk continuity ..................................................................60 

  4.2.3 Producing algebraic continuity constraints .............................................62 

 4.3 A variational algorithm for joining .....................................................................62 

  4.3.1 Classification of joining problems ..........................................................63 

  4.3.2 Outline of an algorithm for Edge-Edge joins ..........................................64 

 4.4 Summary and conclusions ..................................................................................72 

 

5. Results .................................................................................................................74 

 5.1 Description of prototype software ..........................................................................74 

  5.1.1 The control panel ....................................................................................75 

  5.1.2 The viewing window ...............................................................................81 

 5.2 Modeling tasks handled by the prototype ..............................................................81 

  5.2.1 Bending a flat sheet into a torus ..............................................................81 

  5.2.2 Making dents and bumps ........................................................................86 

  5.2.3 Examples of other bending operators......................................................90 

  5.2.4 Effect of the metric/normal factor ...........................................................90 

  5.2.5 The range of action control .....................................................................92 

  5.2.6 Bending a mesh of patches ......................................................................94 

  5.2.7 Custom bending operators ......................................................................97 

  5.2.8 Making a spoon .......................................................................................99 

 5.3 Summary ...........................................................................................................100 

 

6. Conclusions 102 

 6.1 The problem ......................................................................................................102 

 6.2 The bending operator: a new tool for surface shaping ......................................103 

  6.2.1 A new concept of what bending is ........................................................104 



 vi 

  6.2.2 How the bending operator works ..........................................................104 

  6.2.3 What the bending operator can do ........................................................107 

  6.2.4 Strengths and weaknesses of the bending operator ...............................109 

  6.2.5 Variational techniques for surface shaping ...........................................110 

  6.2.6 Key issues in the design of the bending operator ..................................110 

 6.3 An  algorithm for joining using variational methods ........................................114 

  6.3.1 Why joining is a hard problem ..............................................................115 

  6.3.2 Classification of joining problems ........................................................115 

  6.3.3 Outline of an algorithm for Edge-Edge joining ....................................116 

 6.4 Future work .......................................................................................................117 

  6.4.1 Making the bending algorithm faster ....................................................117 

  6.4.2 Incorporating the bending operator into a 3-D modeling system ..........117 

  6.4.3 Bending a solid object via the symmetric axis ......................................118 

 

Appendix 

 A. Tutorial on differential geometry of surfaces ....................................................120 

 

Bibliography ...............................................................................................................137 

 



 

 vii 

List of Figures 
 

Figure   Page 

 

Figure 3.1-1 Original target surface .............................................................................16 

Figure 3.1-2 Bending surface .......................................................................................17 

Figure 3.1-3 Final bent surface ....................................................................................18 

Figure 3.4-1 Positioning tool .......................................................................................33 

Figure 3.6.3-1 Path for integration .................................................................................48 

Figure 4.2.1-1 Edge joining with geometric continuity ..................................................59 

Figure 4.3-1 Edge matching tool .................................................................................67 

Figure 4.3-2 Softness function .....................................................................................68 

Figure 4.3-3 Softness tool ............................................................................................70 

Figure 5.1.1-1 Control panel ...........................................................................................75 

Figure 5.1.1-2 Positioner widgets ...................................................................................77 

Figure 5.1.1-3 Bending operator menu ...........................................................................78 

Figure 5.1.1-4 Continuity menu ......................................................................................79 

Figure 5.1.1-5 Weld UV menu .......................................................................................80 

Figure 5.2.1-1 Flat patch with bending operator ............................................................82 

Figure 5.2.1-2 Flat patch with original and desired normal vectors ...............................82 

Figure 5.2.1-3 Result of cylindrical bend .......................................................................83 

Figure 5.2.1-4 Original and desired normal vectors for second bending via cylinder ....83 

Figure 5.2.1-5 Result of second bending via cylinder, wireframe ..................................84 

Figure 5.2.1-6 Result of second bending via cylinder, shaded .......................................84 

Figure 5.2.1-7 Torus with original and desired normals shown .....................................85 

Figure 5.2.1-8 Torus with original and desired normals, shown close up ......................85 

Figure 5.2.2-1 Flat patch with image of bending operator control .................................86 

Figure 5.2.2-2 Flat patch bent by Gaussian bump ..........................................................86 

Figure 5.2.2-3 Desired normals for Gaussian bump .......................................................87 

Figure 5.2.2-4 Bending twice with different Gaussians .................................................87 

Figure 5.2.2-5 Gaussian dent in a cylinder .....................................................................88 

Figure 5.2.2-6 Gaussian dent in cylinder, with control points ........................................88 

Figure 5.2.2-7 Gaussian bump near edge .......................................................................89 

Figure 5.2.2-8 Gaussian bump near edge, top view ........................................................89 

Figure 5.2.3-1 The twisting operator ..............................................................................90 



 

 viii 

Figure 5.2.4-1 Cylinder to torus bend with metric/normal factor of 0.9 ........................91 

Figure 5.2.4-2 Cylinder to torus bend with metric/normal factor of 0.6 ........................92 

Figure 5.2.4-3 Gaussian bump with very low metric/normal factor ...............................92 

Figure 5.2.5-1 Cylindrical bend with range of action .....................................................93 

Figure 5.2.5-2 Positioning control for bend with range of action ...................................93 

Figure 5.2.5-3 Normals for cylindrical bend with range of action .................................94 

Figure 5.2.6-1 Mesh with no edge continuity .................................................................95 

Figure 5.2.6-2 Mesh with C
0
 continuity ........................................................................96 

Figure 5.2.6-3 Mesh with C
1
 continuity .........................................................................96 

Figure 5.2.6-4 Closing the cylinder ................................................................................97 

Figure 5.2.6-5 Closing the torus .....................................................................................97 

Figure 5.2.7-1 Custom bending operator ........................................................................98 

Figure 5.2.7-2 Original target patch ................................................................................98 

Figure 5.2.7-3 Target patch after bending ......................................................................99 

Figure 5.2.8-1 Spoon blank before bending ...................................................................99 

Figure 5.2.8-2 Completed spoon ..................................................................................100 

Figure 6.2.2-1 Original target surface ...........................................................................104 

Figure 6.2.2-2 Final bent surface ..................................................................................105 

Figure 6.2.2-3 Bending operator surface ......................................................................106 

Figure 6.2.3-1 Original target patch ..............................................................................107 

Figure 6.2.3-2 Bending operator surface ......................................................................107 

Figure 6.2.3-3 Final bent surface ..................................................................................108 

Figure 6.2.3-4 Simple spoon model ..............................................................................109 



 

 ix 

List of Abbreviations 
 

 

2-D two dimensional 

3-D three dimensional 

BFGS Broyden, Fletcher, Goldfarb, and Shanno 

CAGD computer-aided geometric design 

CAT computer axial tomography 

EFFD extended free form deformation 

FFD free form deformation 

HP Hewlett Packard 

NURBS non-uniform rational B-spline 

PADL part and assembly description language 

PDE partial differential equation 

SIGGRAPH special interest group on graphics 

 



List of Symbols 
 

 

  wedge product of forms 

  vector cross product 

 vector dot product 

u f  directional derivative of f in the u direction 

v  vector or matrix norm of v 

C
k
 parametric continuity of degree k 

df differential of f 

G
k
 geometric continuity of degree k 

gu  partial derivative of g with respect to u 

I first fundamental form 

II second fundamental form 

  set of real numbers 


n
 set of n-tuples of real numbers 

vp f  application of tangent vector to function (directional derivative) 

 



 

 xi 

 

 

 

 

Chapter 1 

Thesis  
 

1.1 Goal of this work 

 

My goal in this dissertation is to develop and demonstrate a set of intuitive, high level 

operators for shaping curved surfaces. These operators are intended to be tools in a 3-D 

graphics modeling system. They are high level in that they permit a user to modify the 

shape of a surface without being concerned with patch control points or patch boundaries. 

The operators automatically adjust the control points to achieve the effect requested by 

the user. They are defined independently of patch type and thus are applicable to a wide 

variety of patch types, including Bezier patches, B-spline patches, and NURBS. I present 

two such operators, a bending operator and a joining operator. The bending operator is 

fully developed and implemented in a software prototype. The joining operator is defined 

but not implemented. 

 

1.2 Prerequisites for the reader 

 

It is possible for the reader to understand the basics of this dissertation without an 

advanced mathematics background. However,  to understand the mathematical parts of 

this dissertation, the reader needs to be familiar with the fundamental concepts of 

differential geometry of 2-D surfaces in 3-D space. In particular, the reader should have at 

least an intuitive grasp of the notions of parametric patches, vector fields, forms, the 

metric, curvature, the Cartan structure equations, and the distinction between intrinsic and 

extrinsic surface properties. To this end, I include Appendix A, which is a brief 

introduction to this subject with pointers to the literature for more detail. I have 

endeavored to make the presentation comprehensible with this bare minimum of 
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background; however, Section 3.3, which describes the mathematical justification for the 

bending algorithm, cannot be completely understood unless the reader has a working 

knowledge of exterior differential operators and the algebra of p-forms. These parts are 

primarily proofs of theorems and mathematical justifications of definitions. In these 

cases, though, I have attempted to give intuitive explanations, with the aid of figures and 

diagrams, of what these theorems and definitions are saying. 

 

1.3 The driving problem 

 

Existing 3-D computer graphics modeling systems require overspecification and thus are 

difficult to use. The following paragraphs give background on conventional modeling 

approaches and explain why this problem came about. 

 

The 3-D modeling systems available today are primarily based on four techniques: direct 

construction of polygon sets, generalized cylinders (surfaces of revolution), constructive 

solid geometry, and splines. For example, the AutoCAD system1 and the Wavefront 

system2 let the user specify simple polygon sets (boxes, cones, and spheres made of 

polygon meshes, as well as individual polygons) and surfaces of revolution. The 

Designbase system [ Chiyokura 88 ] and the Alpha_1 system3 [ Alpha_1 90 ] allow the 

user to generate spline surfaces by manipulating control points. The PADL system 

[ Voelcker 93 ], the Designbase system, and the Alpha_1 system also allow the user to 

build up complex models by intersection, union, and differences of volume elements.  

 

How do these 3-D modeling programs require the user to overspecify? When generating a 

model for interactive graphics applications, the user frequently wants a model that looks 

like some familiar object (for example, a telephone handset) but cares neither about the 

exact dimensions of the object, nor the exact number and arrangement of polygon vertices 

or spline control points. The systems mentioned above, however, require that some or all 

of these details be specified. This is the overspecification problem. When a model is 

                                                 
1 Commercially available from Autodesk, Inc., Sausalito, CA. 
2 Commercially available from Wavefront Technologies, Santa Barbara, CA. 
3 Commercially available from Engineering Geometry Systems, Salt Lake City, UT. 
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being built with these systems, modifying the shape is awkward. Support for direct 

polygon sets is generally limited to overall scaling and positioning of subsets and 

movement of single vertices. Systems based on constructive solid geometry suffer from a 

restricted set of primitives, registration problems among the solid primitives used to 

generate the model, and difficulty in forming smooth joins between parts of the model. 

Systems that are based on splines usually allow only very local shape changes based on 

movement of single control points or small groups of control points. 

 

In this dissertation I am primarily concerned with the problem of geometric modeling 

with curved surfaces. State-of-the-art geometric modeling software is generally based on 

the use of sculptured surfaces comprised of parametric surface patches. A parametric 

surface patch is a function from some simple domain in 2-space, typically a triangle or 

square, to 3-space. Such patches are usually defined by polynomials (Bezier patches), 

piecewise polynomials (B-splines), or piecewise rational functions (NURBS). The 

coefficients of the polynomials or rational functions are specified (indirectly) by a set of 

3-dimensional control points. The patches are designed so that the surface is a smooth 

function that approximates the geometry of the control points. By design, patches usually 

have some nice continuity, subdivision, local control, and convex hull properties that 

make them easy to work with from a mathematical and programming standpoint. Objects 

of any complexity cannot be represented by a single patch; instead, a mesh of patches 

with certain smoothness criteria at the junctions is used. Even fairly simple objects 

require tens of patches with hundreds of control points for a faithful patch-based 

geometric model. For example, the well-known Utah teapot uses 32 Bezier patches with a 

total of 512 3-D control points in its definition.  

 

The problem with control points is that they do not directly provide a very nice level of 

interaction from a human user point of view, however nice they may be from a 

mathematical or programming point of view. There are three reasons for this. First, there 

are just too many of them; hundreds or thousands are needed even for fairly simple 

shapes. Second, they are somewhat arbitrary in the sense that virtually identical surfaces 

can be represented in many different ways; there are choices to make about number and 

size of patches, degree of the polynomials defining the patch, etc. These two reasons 
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represent the overspecification problem. Third, the effects on the surface of manipulating 

a single control point are often not very intuitive to a human user. Some surface 

properties, such as smooth joins between patches, require complex algebraic relations to 

hold among several control points. Such relations are practically impossible to achieve by 

direct user manipulation of single control points. In short, control points can be thought of 

as the assembly language of shape definition. 

  

What is needed in a good user interface is a higher level, more intuitive method of shape 

control. Such a method might use an underlying structure based on control points, but it 

would not show control points to the user unless asked. There are, of course, many 

possible ways to design such an interface. My idea of a useful approach is as follows. The 

interface would present to the user a palette of simple starting shapes and a palette of 

shape modification tools. To build a more complex object, the user interactively selects a 

few of the starting shapes, applies the shape modification tools repeatedly to customize 

them, assembles them into an overall figure, and finally joins them together, again using 

the shape modification tools. The starting shapes would include squares, blocks, 

cylinders, spherical caps, cones, etc., possibly a dozen or so shapes all told. The shape 

modification tools would include positioning, scaling, bending, twisting, and indenting 

for individual shapes and a joining operator to stick together two or more shapes. I am 

proposing a geometric modeler based on surface representations, not on constructive solid 

geometry, although one could imagine combining the two ideas. 

 

Clearly, building a complete 3-D graphics modeling system based on this concept would 

be a major undertaking and is more than I propose to do in this dissertation. What I do 

propose is to address the problem of defining and implementing the shape modification 

tools. 

 

1.4 Overview of results 

 

I have developed a new concept of what bending is that is both general and intuitive. It is 

general in the sense that it includes not only simple bending around a cylinder axis, but 

also twisting, indenting, and embossing. It is intuitive in the sense that a user can easily 
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learn to predict the result of applying a given bending operator to a given surface. My 

concept is basically that bending is modification of surface normals. The bending 

operator, itself a surface, specifies how the surface normals of a target surface will be 

perturbed. The user simply applies the bending operator to a whole or part of a surface, 

without regard to control points. The bending algorithm automatically computes the 

control point movements needed using a variational method. The bending operator is a 

key tool in my ideal modeling system proposed in the previous section. 

 

To design an algorithm for the bending operator, I broke down the bending process into 

three stages. 

 

1) The user selects or creates a bending surface and positions it with respect to the target 

surface. 

 

2) The bending algorithm computes a desired normal vector field for the target surface. 

 

3) The bending algorithm reshapes the target surface with the dual goals of maintaining 

its metric and matching its true normals to the desired normals from stage 2. 

 

Each of these stages generated a set of sub-problems that I needed to solve. 

 

Stage 1 required the design of a positioning control, which is a method for permitting the 

user to identify corresponding points in the bending surface and target surface. I 

developed a general purpose positioning control that works for any bending surface and 

any target surface and that is intuitive and easy to use. The method, described in detail in 

Section 3.4, involves an affine transformation between the parameter space domains of 

the two surfaces and a rotation in the range space of the bending patch. I explained why it 

is necessary to work with both spaces. 

 

Stage 2 required the design of an algorithm for combining two normal vector fields to 

produce a new vector field that reflects the properties of both. I explained in Section 3.3.1 

why the important issue for bending is the variation of the normal vectors with respect to 
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movements in the surface. I showed how to formulate the desired normal vector field as 

the solution to a certain differential system. I applied the Frobenius theorem to prove that 

the differential system is integrable, which implies that it has a unique, global solution. I 

showed in Section 3.6.3 how to solve the differential system, by converting it to a system 

of ordinary differential equations on curves in surface parameter space and then applying 

a standard numerical integration algorithm to this system. 

 

Stage 3 required the design of an algorithm for reshaping the surface to cause its true 

normals to match the desired normals from the second stage. I explained in Section 3.3.2 

why the specification of the desired normals alone leads to an under-constrained problem 

– there may be many surfaces  that have exactly the desired normals (this fact justifies 

separating stages 2 and 3). I argued that the metric (local stretch and shear) of the target 

surface is the geometric property that complements the desired normals to make the 

reshaping process well-defined. I explained how variational methods can be used to 

implement the reshaping algorithm. Variational methods for surfaces work by using an 

optimization algorithm that adjusts the surface control points to minimize a penalty 

function. The penalty function assigns a numerical measure to the extent to which the 

surface fails to attain its goals. It is usually impossible to exactly satisfy the surface goals, 

and the variational method is a good way to find the best approximate solution. 

 

I constructed a composite penalty function which is a weighted sum of four component 

penalty functions. Section 3.3.2 gives the design criteria and the formulas for these. The 

first component measures the deviation between the actual and desired normals of the 

target surface. The second component measures deviations of the metric of the target 

surface from its initial value. The third component measures deviations of the curvature 

of the target surface from its initial value. This component was needed to implement a 

range of action control, which allows the user to restrict the bending action to a portion of 

the target patch. Experimentation with the software prototype showed that these three 

components were insufficient – folds and creases sometimes formed during the bending 

process. I added a fourth component, which penalizes collapse of the local area element, 

to eliminate this problem.  

 



 

 xvii 

I have implemented a software prototype to show the feasibility of the bending operator. 

The prototype includes an interactive graphical user interface for setting up a bending 

operator and applying it to a B-spline surface patch or continuous mesh of B-spline 

patches and an algorithm that carries out the bending operation. The prototype runs on 

any system with UNIX and X-windows. The user interface provides a wireframe or 

shaded display of the surface being manipulated and the ability to interactively control the 

viewing parameters. On a desktop workstation such as the HP-730, the bending algorithm 

is not quite interactive; a typical bending operation takes about a minute to perform. 

 

The other key shape modification operator in my ideal modeling system is a joining tool. 

I have investigated how the methodology of the bending operator could be applied to 

develop such a tool. I present an outline of an algorithm for smoothly joining two surface 

patches along a common edge. 
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Chapter 2 

Previous Work 

 

Many successful geometric modeling systems in recent years make use of a tool-based 

user interface. Research into design of new tools is very active. This work is enabled by 

the increase of available computing power in interactive systems and is encouraged by the 

enthusiasm of users and the proven success of the tool-based approach. In this chapter I 

survey the previous work on modeling tools, with special emphasis on precursors to my 

bending and joining operators. I give examples of such tools, discuss their strengths and 

weaknesses, and discuss how my bending and joining operators compare to them. 

 

2.1 Tool-based geometric modelers 

 

During the past ten years or so, the geometric modeling community has gradually come to 

the realization that direct manipulation of control points is an awkward and unsatisfactory 

user interface technique for designing with smooth, curved surfaces. From mathematical 

and computational viewpoints, control points are very nice, but for a model of any 

complexity, there are too many control points and their effects on the surfaces they define 

are both too subtle and too limited for convenient direct control. A tool-based approach 

for user interfaces is gaining in popularity. With a tool-based user interface, the user does 

not directly create the patches or other primitives that make up the model. Instead, the 

user is provided with a tool kit containing operators for creating or modifying the shape 

of such primitives. An early example of such a tool, already in use fifteen years ago, is the 

sweeping or skinning tool.  With the sweeping tool, the user defines a curve, and then 

creates a surface by sweeping the curve through space. 
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In recent years the variety and power of the available modeling tools have increased 

dramatically. These tools can be categorized into roughly three classes: surface warp 

techniques, space warp techniques, and physically based techniques. Surface warp 

techniques operate directly on a surface patch or mesh without considering that the 

surface may be the boundary of some solid object. Examples of surface warp methods are 

the bending and indenting operators developed by Cobb [ Cobb 84 ] and implemented in 

the Alpha_1 modeling system [ Alpha_1 90 ]. The bending and joining operators 

described in this dissertation are in this category. Space warp techniques work by 

changing the shape of the ambient space in which the surface resides or by changing the 

shape of a solid object of which the surface is a boundary.  An example of a space warp 

method is the Free-Form Deformation (FFD) tool pioneered by Sederberg and Perry 

[ Sederberg 86 ] and later extensions implemented in the ACTION3D modeling system 

developed by SOGITEC and INRIA [ Coquillart 90 ]. Physically based modeling 

techniques create or modify surface shape automatically or semiautomatically by forcing 

a surface or solid to obey constraints based on physics, e.g., strain energy minimization or 

volume preservation. Physically based methods are not exactly modeling tools, and I will 

not say much more about them, except to point out some similarities of implementation to 

the bending operator. 

 

Tool-based modelers are attractive to users because they present an intuitive and easily 

learned interface. I think that this is because they mimic to some extent the real world, in 

which real models can be built using mainly a small class of predefined objects (bar 

stock, blocks of material) and shaping tools (lathes, files, drills, chisels.) Tool-based 

modeling systems have been successful in production use: the Alpha_1 and ACTION3D 

systems are examples. Chadwick et al. [ Chadwick 89 ] at Ohio State used a modeler with 

the FFD tool to model muscle and skin of animated characters. 

 

As modeling tools become more sophisticated, the geometric modeling community is 

beginning to realize the importance of separating the underlying modeling primitives 

from the modeling tools. Ideally, these would be completely orthogonal issues. There are 

two important reasons for this. First, one would like to use a new tool with as many 

existing primitive types as possible and to have the possibility of using newly discovered 
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primitive types with existing tools. Second, one would like to avoid constraints due to 

limitations of the modeling primitives from affecting the result of applying the modeling 

tools. An example may help to clarify this second point. Consider an indenting tool being 

applied to a mesh of Bezier patches. The user might wish to create an indentation much 

smaller than the spacing of the control points would allow. Coquillart's ACTION3D 

system (based on the FFD tool) has no problem with this, because during rendering, the 

indentation is processed along with the Bezier patches. Another approach, used by Welch 

and Witkin [ Welch 92 ] of Carnegie Mellon, is automatic refinement of the primitives 

based on the needs of the modeling tool. The bending tool I describe could in principle be 

used in conjunction with automatic refinement, but that is not implemented in my 

prototype software. 

 

In the rest of this chapter I discuss in some detail the previous work on modeling tools 

based on surface warp and on space warp. I give examples of such tools, discuss their 

strengths and weaknesses, and discuss how my bending and joining operators compare to 

them. 

 

2.2 Surface warping 

 

The earliest tool for surface shaping seems to be the sweep operator. The idea is to 

produce a surface by sweeping a curve through space. In sophisticated versions, the curve 

may change shape during its movement. This technique dates back at least to the 1960's, 

and I could not discover who should have credit for its invention. S. Coons seems to have 

written the first description of a computer implementation [ Coons 67 ]. Properly 

speaking, the sweep operator is a method for generating surfaces rather than a tool for 

modifying them. 

 

The most direct precursor to my bending operator is described in E. S. Cobb's  Ph.D. 

dissertation entitled "Design of Sculptured Surfaces using the B-Spline Representation" 

[ Cobb 84 ]. She described a set of "surface modification operators." These surface 

modification operators are now incorporated into the Alpha_1 modeling system 

[ Alpha_1 90 ]. Two operators are described, a bending operator and a warping operator. 
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The bending operator performs a cylindrical bend of a single B-spline patch about one of 

the coordinate axes. The restriction to a coordinate axis is not as severe as it might seem, 

since the patch could later be rotated arbitrarily. The warping operator produces 

indentations or protrusions in a single B-spline patch. The boundary of the warp is 

specified by a polygonal region. The result of an operation is a new patch with 

recomputed control points. If the control points are not sufficiently dense to support the 

desired curvature, the user must manually add more using the "addFlex" operator. The 

tools are not interactive; the user must write a script in the Alpha_1 model definition 

language to describe the modeling operations. Cobb later used these operators in Alpha_1 

to design and automatically manufacture some shapes, including a spoon. Since my 

bending operator is defined by an arbitrary bending surface, it generalizes both Cobb's 

bending operator and warping operator. My bending operator is defined independently of 

patch type, although implemented only for B-spline patches and smooth meshes of B-

spline patches. My implementation has the same problem with density of the control 

points as Cobb's, but there is no theoretical problem with adding automatic refinement to 

the algorithm. 

 

Hagen et al. [ Hagen 87 ] describes a tool for automatic smoothing of surfaces. The user 

begins with a rough approximation of the desired surface using a mesh of polygons, 

Bezier patches, or B-spline patches. The smoothing operator is then used to turn the 

approximation into a "fair" or smooth surface, using variational techniques. Others have 

described alternatives and extensions to this method [ Celniker 91 ] [ Moreton 92 ]. 

Automatic smoothing is not, by itself, a surface shaping tool. Rather, it is a method that 

can be used in conjunction with shaping tools to improve the final resulting surface. 

 

Forsey and Bartels [ Forsey 88 ] describe a technique for direct manipulation of points on 

a surface. Basically their scheme is a hierarchical subdivision technique for B-spline 

surfaces. The user can select a surface point and a range of action about that point, and 

then pull or push the point in any direction. The surface responds like an elastic 

membrane, with the flexibility limited to the range of action. The implementation 

involves the use of a hierarchical set of "overlays," which are smaller patches that are 

vectorially added to the original surface patch. The strength of this approach is the 
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automatic creation of more underlying control points as needed by the nature of the 

interaction. 

 

Several groups have recently been working on variational approaches to surface shaping. 

Celniker and Gossard [ Celniker 91 ] discuss a technique for smooth deformation of 

curves and surfaces based on minimizing an energy function. In their technique a surface 

is equipped with an energy function which measures bending and stretching distortion 

under an externally applied "sculpting force."  With this method, the user supplies a 

sculpting force at selected points or curves in the surface, and a minimization algorithm is 

run to find a distortion of the surface that minimizes the energy. The surface shape is 

computed by minimizing an area integral of the form 

 

 Edeformation  G 

2
 B 

2

  f , 

 

where G is the matrix of the first fundamental form, B is the matrix of the second 

fundamental form of the surface, and f represents the sculpting force. They approximate 

the integrand by a quadratic function of the patch first and second derivatives so that the 

minimization problem can be handled by linear methods. The main reason for this 

approximation is to be able to perform the minimization at interactive speeds. 

 

Welch and Witkin [ Welch 92 ] are currently implementing an interactive surface modeler 

based on a similar approach. They minimize an energy function that has a form like that 

of Celniker and Gossard, except that there is no sculpting force. Instead, the user 

manipulates point and curve constraints to control the shape of the surface. Their energy 

function has the form 

 

 Edeformation  ij DiwDjwij DiDjw 
2

i, j1

2


 , 

 

where w is the patch function and Di  is partial differentiation with respect to a patch 

parameter. This Edeformation  is essentially a quadratic approximation to G 

2
 B 

2

 , to 
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permit the use of linear solution methods. They note that the approximation is not very 

good except near a minimum (where the higher order terms tend to zero) but that it is 

nevertheless a well-behaved function that produces smooth surfaces. A variation of this 

formula is to replace w by w-w0, where w0 is the patch function for a prototype, or rest 

shape. In this case the energy function measures deviation from the prototype shape. 

 

Welch and Witkin allow the user to place arbitrary point and curve constraints on the 

surface. They mention a "normal vector" constraint but do not explain it further. The 

modeling software then performs a constrained optimization in order that the surface 

deforms smoothly while meeting the constraints. The implementation as of early 1992 on 

a Silicon Graphics machine is able to perform the computation at interactive speeds. The 

user sees an infinitely malleable surface on which he can freely place "handles" to control 

he shape. At any time the user can install the current shape as the rest shape. A tensor 

product B-spline surface representation is used, and the modeling system does automatic 

refinement if the user attempts to add features that are too small to be represented by the 

control point mesh. 

 

This approach is quite similar to mine. In a sense, this is an idea whose time has come 

(SIGGRAPH 92 has a whole session, with four papers on the subject of variational curve 

and surface modeling,) due to the recent availability of desktop computers that have 

enough power to solve such variational problems in a reasonable amount of time. I am 

also minimizing an energy function, but instead of using explicit sculpting forces or 

constraints, I replace the second fundamental form component of the integrand with a 

measure of the deviation between the actual and desired surface normals. The chief 

difference in my approach is the use of my new bending operator tool, which uses the 

normal vector field of a second surface to modify the normal vector field of a target 

surface. In my method, the integrand is not limited to a quadratic function of the control 

points, so I cannot use linear methods for the minimization. This means that I have 

sacrificed interactive speed, at least on today's workstations. What I have gained is the 

ability to use more complex functions to define the energy integral. This is important, 

since the logical choices for the energy functions for the bending and joining operators 

are not quadratic. 
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2.3 Space warping 

 

The earliest published work on space warping tools is A. H. Barr's discussion of 

deformations of solid objects [ Barr 84 ]. His concept is to deform the space around an 

object and then render the object as if all its points had moved to new coordinates. He 

discusses global deformations, for which an explicit non-singular smooth mapping from 

  
3

 to   
3

 is given and local deformations, in which only the Jacobian derivative of such a 

mapping is given. In the case of local deformations, an integration process is used in the 

tangent planes of the object to compute the new coordinates. His examples include 

twisting, tapering, and cylindrical warps. Not much was done with Barr's general warps 

until recently due to the lack of an easy interactive way of specifying them. Recently, in 

1991, the graphics modeling group at Brown University invented a tool they called "the 

rack" for specifying such warps. [ John Hughes, 1992, personal communication ]. 

 

Sederberg and Perry [ Sederberg 86 ] developed and implemented the Free-Form 

Deformation (FFD) tool. Sederberg does not claim credit for inventing the idea, but he 

and Perry were the first  to develop it into a full-fledged, useful tool for modeling. The 

idea is to embed the object to be deformed into a 3-D tensor product Bezier or B-spline 

volume. The volume is then manipulated by moving its control points, causing the 

ambient space containing the model to be reshaped. Then the points of the model are 

rendered as if they had moved to their new coordinates in the reshaped volume, just as in 

A. H. Barr's approach. What was new is the way in which the global deformation function 

is specified. Sederberg and Perry went on to show that by placing constraints on the 

deformation it can be made to have certain regularities, for example, local volume 

preservation. 

 

It is important to note that the FFD tool does not actually change the geometry of the 

underlying primitives making up the model. Instead the FFD transformation is considered 

for rendering purposes to be composed with the original geometry. A point in the surface 

is found by first locating it in the unwarped object and then applying the warp. Hence, 

FFD's can be composed. In practice this means that during rendering the transformation 
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represented by the FFD has to be inverted. Barr pointed out that one could think of the 

light rays near the object as following curved paths instead of the object being distorted. 

In other words, one can imagine looking at the model as if through a refractive medium. 

 

Colquillart noted that the class of warps achievable with FFD was restricted due to the 

parallelepipedical shape of the control point mesh [ Coquillart 90 ], and he developed 

Extended Free-Form Deformations (EFFD) to alleviate this restriction. The extension was 

basically to introduce more general shapes for the 3-D mesh of control points. He 

developed a wedge-shaped mesh and showed how such wedges could be composed to 

make quite complex shapes. He incorporated EFFD's into the ACTION3D modeling 

system developed at INRIA-Rocquencourt. In that system, EFFD meshes are a basic 

modeling tool. Some predefined ones are provided by default, and a user can invent new 

ones and add them to the palette of tools. 

 

2.4 Comparison of surface and space warp 

 

The strength of the space warp technique compared to surface warp is that it 

automatically treats solid objects as solids rather than a random collection of surfaces. 

Hence 3-D concepts such as volume can be addressed. Because of the way it is usually 

applied, it is completely independent of the underlying primitive types used to implement 

the models, a desirable goal as mentioned earlier. This benefit comes at some cost 

however, as the warping function must be explicitly stored along with the model. There is 

also some additional cost for rendering because the warping function has to be inverted. 

Sederberg doesn't discuss this issue, and Colquillart states that the extra computation is 

not significant compared to total rendering costs. 

 

The two main drawbacks of space warp compared to surface warp are the necessity of 

having an invertible mapping, and the general difficulty involved in specifying complex 

  
3

 to   
3

 mappings. There is no practical way with space warp to tie a knot in a ribbon, 

for example. There is not even a theoretical way with space warp to form a ribbon into a 

Möbius strip. Both of these operations are relatively easy to do with surface shaping tools 

such as my bending operator. 
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2.5 Relation to physically based modeling 

 

Some of the recent variational techniques, such as those of Celniker and Welch and my 

bending algorithm, have a certain similarity to physically based modeling approaches. In 

physically based modeling of surfaces, the surface is imagined to be made of some 

material that obeys certain physical or pseudo-physical laws. For example, [ Weil 86 ] 

and [ Carignan 92 ] discuss modeling realistic cloth surfaces. Cloth resists stretching but 

not shearing or bending. Locally it preserves its area element. These properties can be 

used to create a variational model in which a cloth surface minimizes some energy 

functional. One can think of surface warp techniques as performing physically based 

modeling, but with an idealized, imaginary substance making up the surface. The physical 

laws governing the surface behavior are selected, not for realism, but instead for getting 

the model to act in ways that make the desired modeling operations work. 
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Chapter 3 

Bending  
 

My aim in this chapter is to develop a concept of bending that is intuitive but powerful 

enough to be used for a wide variety of surface shaping tasks. By intuitive I mean that a 

user can easily learn to predict the approximate result of applying a given bending 

operator to a surface without the need for extensive training or detailed understanding of 

the underlying algorithm. However, the bending algorithm must be powerful enough to 

perform not only simple bending but also twisting, indenting, embossing, and other shape 

modification. In addition, this concept of bending should be independent of patch type, so 

it can be implemented using all the common patch types such as Bezier patches, B-spline 

patches, and NURBS, as well as new patch types that have not been developed yet. 

 

3.1 What is bending? 

 

I claim that a good way to think about bending a surface is to consider what happens to 

the surface normal vectors. Mathematically, the local curvature information of a surface 

at some point is captured by the derivatives of the normal vector field with respect to 

movements of the point in the surface. So it is the variation of the normal vectors that is 

of importance in describing the surface. Bending is basically making changes to surface 

curvature, so we can describe bending by describing how the surface normals should 

change. More precisely, we describe a particular bending operation by saying how the 

variation of the surface normal vector field should change. A conceptual model of 

bending might work this way: Imagine that the surface is covered by a forest of little 

arrows representing the normal vectors, like a porcupine. To bend the surface, we grab 

certain of these arrows and push and pull them in different directions, causing the 

underlying surface to change in an intuitively predictable way. The problem is that there 
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are too many surface normals, so a direct implementation of this model would be too 

tedious to use. This is essentially the same problem as using control points. 

 

We need a way to specify the pushing and pulling of the normals "all at once," a bending 

operator. A natural way of specifying this bending operator is by means of another 

surface, which I call the bending surface. The normal vector field of the bending surface 

is used to describe how the normal vector field of the target surface should be changed. In 

particular, the variations of the normal vector field of the bending surface are added to the 

variations of the normal vector field of the target surface. 

 

Here is a simple example. The original target surface in Figure 3.1-1 is the upper half of a 

cylinder with the axis in the X direction. Notice that for movements in the surface in the 

X direction the surface normal doesn't change, but for movements in the perpendicular 

direction the normal falls over toward the direction of motion. In other words, the normal 

curvature in the X direction is zero, but in the perpendicular Y direction it is positive. 

 

 

X

Y

Z

The surface normals  
should spread apart like 
this to form a torus

 

 

 

Figure 3.1-1 Original target surface 

 



 

 xxix 

Consider how to bend this surface into a part of a torus. We need to end up with a 

positive normal curvature in the X direction. Thus, we use as the bending surface another 

piece of cylinder, shown in Figure 3.1-2,  but with the axis turned 90 degrees so that the 

curvature, and thus the curvature change to be applied, is in the X direction. 

 

 

 

Figure 3.1-2 Bending surface 

 

Both the target surface and the bending surface are defined on the same parameter space, 

the unit square, with coordinates U and V. The parameterization is such that movement in 

the U direction in the parameter space translates to movement in the X direction in 

modeling space at the exact center of parameter space. Notice that for the bending 

surface, movements in the U direction at the center of parameter space cause the normals 

to turn in the X direction, but movements in the V direction cause no change in the 

normals. Hence this bending surface may be interpreted as an operator that "pulls apart" 

the normals of the surface it is applied to, but only in the U direction in parameter space. 
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Figure 3.1-3 Final bent surface 

 

Thus the final bent surface, shown in Figure 3.1-3, has the shape of part of a torus. For 

this surface, movement in the U direction at the center of parameter space causes the 

normal to turn in the X direction, and movement in the V direction causes the normal to 

turn in the Y direction. In other words, the normal variations of the final surface show the 

combined effects of the normal variations of the original and bending surfaces. 

 

Since the bending surface can be of an arbitrary shape and can be oriented in an arbitrary 

way with respect to the target surface, the method is very powerful. For example, if the 

bending surface resembles a length of ribbon that is twisted about its long axis, then the 

target surface will be twisted. If the bending surface resembles a Gaussian height field, 

then a bump or dent will be placed on the target surface. If the bending surface is a bas-

relief pattern, for example, the face of a coin, then that pattern will be embossed on the 

target surface. In all of these cases,  a user of the bending operator can intuitively predict 

the approximate results of applying a given bending surface to a target surface. 
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3.2 Informal description of the bending algorithm 

 

Intuitively, the bending operator works as follows: We begin with two parametrically 

defined surfaces, a target surface to be bent and a surface which defines the bending 

operator. The normal vector fields of both the bending operator surface and the target 

surface are differentiated to determine how the normal vectors vary with movements in 

parameter space. These normal vector variations are then added and integrated to 

determine a new normal vector field. The idea is to produce a new surface which 

combines properties of both the original and the bending surface. The target surface is 

smoothly deformed in an attempt to obtain the new desired normal vectors. During the 

deformation process it is generally necessary to locally deform, i.e., shrink, stretch, and 

shear the surface. A constraint is applied to minimize the total amount of this distortion. 

The surface resulting from application of the bending operator can be thought of as the 

result of an optimization process. There are two competing constraints: the surface 

normals must be close to what is prescribed by the bending operator, but the original 

surface must be distorted as little as possible.  

 

3.3 Mathematical description of the bending algorithm 

 

The definition of bending has two main parts: determining the desired surface normals 

after bending, and determining the final bent surface. The following provides motivation 

for the definitions, presents proofs where necessary that the definitions are consistent, and 

discusses some alternatives that were rejected. 

 

3.3.1 Defining the desired normals 

 

A patch is a mapping of the unit square to 3-D space. In the bending algorithm, a target 

patch c is bent using a bending patch b. The following definitions set the stage. 

 

 D 0,1 
2
 domain 

 c: D  
3
 target patch 

 b: D 
3
 bending patch. 
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Note that the corresponding points of b and c are identified via a source point in D, i.e., 

via the parameterization. 

 

It is convenient to work with complete frame fields rather than just surface normals. Let 

e e1,e2 ,e3  be an adapted frame field for the target patch c with e3  being the normal 

vector, and f  f1, f2 , f 3  be an adapted frame field for the bending patch b with f 3  

being the normal vector. 

 

Define the 1-forms, called the structure forms: 

 

  j

i
 dei ej

 

 j

i
dfi  f j

 

  for i 1,2,3 and j 1,2,3 . 

 

We are interested in the pullbacks of these forms to the tangent space of D, but using the 

standard abuse of notation, I will use the same symbols for these. 

 

In matrix form the notation becomes more compact: 

 

 de e  

 df  f . 

 

The 33 matrices of forms  and  capture the way the frame vectors turn with 

movements in the parameter space. 

 

To define the bending action, we want to add the matrices  and , but to do this we must 

represent them in a common coordinate system. This is accomplished by "rotating"  the 

matrix , the details of which are presented shortly. 

 

Why addition instead of some other possible way of combining  and the rotated ? 

Suppose we have a part of a cylinder, and we want to bend it using another part of a 
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cylinder with the same axis and radius. What should happen? If the normals of one 

cylinder turn at some rate  and a bending operator causes them to be pulled apart at the 

same rate, the result should have normals turning at double the original rate.  If we choose 

an adapted frame field such that e1  points along the cylinder axis, the rate of turn of the 

normal e3  of the target cylinder in the e2  direction is23 .  The rate that the bending 

operator causes the normals to be pulled a part is 23  which equals 23 . But that means 

the 23 coefficient of the resulting form matrix should be 2 23 , which is exactly the effect 

of addition. 

 

Now consider the problem of rotating the structure form matrix   into the frame of the 

target surface. Let g g1,g2 ,g3  be the frame field of the final bent surface. Define a 

rotation matrix r by 

 

 f  rg . 

 

Then the structure form matrix r
t
r  is  expressed in terms of the g frame. This is shown 

by the following calculation. Let 

 

 a
i
fi  b

i
gi  

 

be a vector field on D. Then we need to show 

 

  a
i
f i  r

t
r  b

i
gi . 

 

In matrix form with a  a
1
,a

2
, a

3  and b  b
1
,b

2
,b

3 , we have 

 

 af  bg , 

 

and the relation that needs to be proven is 

 

  af  r
t
r bg . 
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Using linearity and the fact that ar  b , the following calculation proves this relation. 

 

  af  a f  a rg  a rr
t  rg  br

t
 rg  b r

t
vr g  r

t
vr bg . 

 

We are now ready to start defining precisely what bending means. The first step is to 

define a frame field g g1,g2 ,g3  that will specify the desired normals of the bent 

surface. The key idea is to transform the structure forms for the bending surface into the 

coordinate system of the bent surface and to add them to the structure forms of the 

original target surface. 

 

Definition 3.3.1-1. Given a target patch c with adapted frame field e and structure form 

matrix , and a bending surface b with adapted frame field f and structure form matrix , 

and given a point of application p in the domain D, such that b is tangent to c at p, define 

the desired bending frame field g as the unique solution to the differential system: 

 

 g p  e p , (3.3.1-1) 

 dg   r
t
r g  on D, 

where 

 

 f  rg  on D. 

 

A proof is needed that this definition makes sense, i.e., that a solution exists and is 

unique. I use the Frobenius Theorem [ Warner 71 ], which can be stated as follows: 

 

Theorem (Frobenius). Let 
1
,...,

q
 be one-forms in 

n
, n  q  s , linearly independent 

at 0. Suppose the 
i
 form a completely integrable system, i.e., there exist one-forms  j

i
 

satisfying 

 d
i
  j

i
 

j

j1

q

  i  1,...,q  . 

Then there are functions h j

i
 and k

j
 in a neighborhood of 0 satisfying 

 
i
 hj

i
dk

j

j1

q

  i  1,...,q  . 
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Furthermore, if 
1
,...,

q
 are linearly independent on a connected open subset U 

n
 

containing 0, then the functions h j

i
 and k

j
 have unique extensions to all of U.  

 

The plan is to produce a completely integrable system in a suitable high dimensional 

space such that the frame field g is an integral manifold (hypersurface) of this system. 

Begin by putting the equation dg   r
t
r g  into a more convenient form. Eliminate r 

yielding 

 

 dg   gf
t
fg

t g g  gf
t
f g g  where   f

t
f . 

 

The form matrices  and  are independent of g and satisfy 

 

 d    

 d     . 

 

The first is a standard property of structure forms, and the second is shown as follows, 

using the relations d    , 
t
  , and f

t
f  is the identity matrix: 

  

 d  d f
t
f  df

t
 f  f

t
df  f

t
  df  

  f
t


t
 f  f

t
  f  f

t
  f  

  f
t


t
 f   f

t
  f  f

t
f  f

t
f     . 

 

Now move to the 11-dimensional space D  
3 

3

 with coordinates u,v, zj

i
,1 i, j  3 . 

Define a 33 matrix of one-forms on this space: 

 

   dz  z  z . 

 

I claim that   0  has a unique solution and that furthermore, in the solution space, z is a 

frame field. The following calculation shows that  is a completely integrable system: 
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d  dz   dz dz  zd

  z   dz dz  z  

   z  z  dz  dz z z  

     

. 

 

Thus  satisfies the hypothesis of the Frobenius Theorem, so it follows that there exist 

functions slj

ki
, t j

i
 such that 

 

  j

i
 slj

ki
dtk

l

k ,l1

3

  i, j 1, 2,3 . 

 

Abbreviate this relation as   sd t. Note that  is non-zero, so the equations   0  and 

dt  0 have the same solutions, namely the hypersurfaces t  constant . Now I claim that 

there exists a 3 3 matrix of functions g of u,v , with the prescribed initial values 

g p  e p , so that g  z  is an integral manifold of   0 , that is, 

 

 dg  g  g . 

 

To see this, simply pick a solution hypersurface that passes through e p . 

 

The Frobenius theorem implies that g is unique and that it exists on all of D. What 

remains is to show that g is a frame field. To show that g is a frame field, it suffices to 

show that dgg
t
 is skew-symmetric [ Flanders 89 ], p. 103. By definition, 

 

 dgg
t
 g g gt

  gg
t
. 

 

 is skew-symmetric by hypothesis, and the calculation 

gg
t 

t

 g
t
g

t
 g f

t
f 

t

g
t
 gf

t
fg

t
gg

t
 shows that gg

t
 is, also. 

 

Now that we have a desired normal vector field, the next step is to produce the bent 

surface. Ideally, the bent surface would have as its normal vector field the desired normal 

vector field, but that turns out in general to be impossible. It would be nice if we could 
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include the position vector x: D  R
3
 in the differential system used to get the normal 

vector field by adding the equations 

 

 x p  c p  

 dx    r
t
r x , 

 

and integrate this system to solve for the final bent surface in one step. This attempt fails 

because dx doesn't necessarily satisfy the integrability conditions needed to apply the 

Frobenius Theorem. 

 

Even in principle, it may be impossible to construct a surface with a given normal vector 

field. [ Spivak 70 ] gives a simple example. There are also practical problems. First, a real 

modeling system will use a particular patch type, usually with only a finite number of 

degrees of freedom (control points), so some normal vector fields will be unattainable. 

Second, if we try too hard to match the desired normals, we may destroy any resemblance 

between the target surface and the final bent surface. Therefore, my current approach is to 

deform the original surface in such a way that it only approximately inherits the desired 

normal vector field.  

 

3.3.2 Producing the final bent surface 

 

Producing the final bent surface can be formulated as an optimization problem. I define a 

penalty function that measures to what extent the final surface fails to have the desired 

normals and to what extent the surface fails to resemble the original surface. Then the 

optimization problem is to find some surface that minimizes this penalty function. In 

practice, a patch is defined by a finite number of control points, and the optimization 

problem is to find a configuration of these control points that minimizes the penalty 

function. 

 

How can this somewhat vaguely stated goal for the penalty function be made 

mathematically precise? In the differential geometry of surfaces, there is an important 

distinction between intrinsic and extrinsic properties. Appendix A contains a precise 
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definition of these terms and some examples to help the reader develop an intuitive 

understanding of this distinction. Roughly speaking, intrinsic properties of a surface are 

those properties that do not depend on how the surface happens to be embedded in 3-D 

space. Such properties depend only on how the surface is locally stretched and sheared, 

which is captured by the metric of the surface. Extrinsic properties of a surface are those 

properties that are not intrinsic, that is, they depend not just on the metric but also the 

position of the surface in space. It is obvious that the normal vector field of a surface is an 

extrinsic property, since it can be changed by a rigid rotation of the whole surface. I make 

use of this distinction to develop a rationale for the penalty functions.  Suppose the 

normal vector field of a surface is fixed, i.e., the normal vectors at each point are 

constrained against changing their direction. What degrees of freedom are left? Consider 

a specific point p on the surface with normal vector v. With the direction of v fixed, all 

that can be done is to move the point p. Locally the motion of point p has to stay in the 

plane through p perpendicular to v,  or the surface will bend, changing the direction of 

nearby normal vectors. But sliding a point around in the tangent plane amounts to 

stretching and shearing the surface, thus changing the metric. The point of this admittedly 

hand-waving argument is that once the normal vectors of a surface are determined, the 

only degree of freedom left in the surface is the metric. (It is possible to make this 

argument mathematically sound; see Theorem A-2 in appendix A.) Thus, the only sense 

in which the bent surface can resemble the original surface is to have a similar metric. It 

seems logical based on this argument that the penalty function should have two main 

components, one that measures disturbances to the metric of the original target surface 

and one that measures the deviation between the actual and the desired normal vector 

field. 

 

Criteria for the penalty function definitions 

 

I define the total penalty function as 

 

   kmm  knn , km  kn 1, 
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where m   is the metric penalty function and  n  is the normal penalty function. The ratio 

of km  and k n  determines the relative importance of metric deviations and normal 

deviations in the minimization. The penalty functions are functions of the initial and final 

target surfaces as well as the desired normal vector field. In application, the initial target 

surface and desired normals are fixed, so we can consider  to be a function of only the 

final bent surface. For patches defined by a finite number of control points, we can 

consider  to be a function of the control points. The definitions of the penalty functions 

m  and  n  are motivated by several criteria: 

 

1) They should separate as much as possible intrinsic and extrinsic properties. 

 

2) They should be independent of the coordinate system, that is, invariant under 

translations. They should be independent of rotations in the following sense: if the desired 

normals and the final surface are subjected to the same rotation, then the penalty 

functions do not change. 

 

3) They should be as independent as possible of surface parameterization, given that the 

correspondence of the normals between the bending surface and the target surface is via 

parameterization. 

 

4)  n  should be zero if and only if the surface has exactly the desired normals, and should 

increase as the actual and desired normals deviate more. 

 

5)  m  should be zero if and only if the surface is not locally stretched or sheared 

compared to the original target surface (that is, the two surfaces are isometric), and 

should increase as such stretch or shear increases. Furthermore m  should be 

isometrically invariant, meaning that if the final surface is replaced by an isometric 

surface, m  remains the same. Isometric invariance implies that m  is independent of both 

parameterization and rigid motions of the final target surface. 

 

6) They should be feasible to compute. 
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The intrinsic properties of a surface c: D  
3
 are captured by the first fundamental form 

I, the matrix of which is 
E F

F G







 with respect to du and dv, where  

 

 E  cu  cu  

 F  cu  cv  

 G  cv cv . 

 

I consider a time-varying surface 

 

 c:D 0,1 
3
, 

 

where the final argument is time and time 0 marks the beginning of an optimization 

process and time 1 marks the end. At time 0, c is the original target surface, and at time 1, 

c is the final bent surface. 

 

In the following definitions,  subscript 0 refers to the values of variables at time 0, e.g., c0  

denotes the surface at time 0. With justifications that appear in the following pages, I 

define the metric penalty function as 

 

  

 m  min
f

I0

1
 ˆ I 1

2

E0G0  F0

2
du dv

D

  , (3.3.2-1) 

 

where f is an isometry, ˆ I  is the first fundamental form matrix of f c ,  I0  is the first 

fundamental form matrix of c0 , and 1  is the identity matrix. A discussion of the 

properties of the first fundamental form, also called the metric, can be found in Appendix 

A. The term I0

1
 ˆ I 1is a 2  2matrix that measures the difference of the metric of f c  

and the metric of c0 . I use I0

1
 ˆ I 1 instead of ˆ I  I0

 to make m  independent of scale. 

The term E0G0  F0

2
dudv is the area element for the surface c0 . Thus m  is the 

minimum of the integral of the squared difference of the metrics over all possible 

isometries of the surface. 
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I define the normal penalty function as 

 

 n 
cu  cv

cu  cv

 ndes

2

E0G0  F0

2
du dv

D


. (3.3.2-2) 

 

The term 
cu  cv

cu  cv

 ndes  measures the difference of the true surface normal n 
cu  cv

cu  cv

 

and the desired surface normal ndes . Thus  n  is the integral of the squared difference of 

the actual and desired normals over the surface. 

 

Remark 1. Computing m  requires minimizing over the function space of all isometries of 

the final surface and hence is difficult to implement in software. I address this problem in 

the prototype software by replacing  m  with an approximation, discussed later in this 

section. 

 

Remark 2. The term E0G0  F0

2
dudv is the area element of the initial target surface 

c0 , pulled back to the domain D. There are two surfaces involved, c and c0 , and it is not 

clear a priori which one to integrate over. I chose to integrate over the initial surface 

since otherwise I would have to deal with the area element changing during the 

optimization process. If the initial and final surfaces are not too different according to m , 

then neither are the area elements, since the area element is an isometric invariant. 

 

Remark 3. In the definition of m , I am trying to compare two matrices, so I need to pick 

a matrix norm. 

 

 A
2


a11 a12

a21 a22

2

 a11

2
 a12

2
 a21

2
 a22

2
 

 

was chosen because it is easy to compute. A more logical alternative would be the matrix 

2
 norm induced by the vector 

2
 norm, but this is harder to compute since it involves 
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finding eigenvalues. These norms differ little however, because A  s A 2  where 

1  s  2 . The following calculation shows this: 

 

 trace A
t
A  trace

a11

2  a12

2  

  a21

2  a22

2








 a11

2
 a12

2
 a21

2
 a22

2
 A

2
 . 

 

Since trace A
t
A  is the sum of the eigenvalues of A

t
A and A 2

2
 is the largest eigenvalue 

of A
t
A,  we have A 2

2
 A

2
 2 A 2

2
. 

 

Remark 4. These definitions fully meet criteria (1)-(5). There is no getting around a 

certain dependence on parameterization since the correspondence of the bending and 

target surfaces is via parameterization. 

 

The final bent surface is one that minimizes . It is not clear on theoretical grounds how 

to choose the arbitrary constants k n  and km , but experience with the prototype software 

shows that kn / km  8  is usually a good choice. Much smaller values of this ratio tend to 

make the surface seem too stiff, and much larger values tend to cause the surface to 

expand or contract by large amounts. 

 

From a theoretical point of view, there are a number of problems with this definition, 

aside from the fact that m  is difficult to compute. First, the minimum might not be 

unique, or even if it is, there may be multiple local minima that are numerically 

indistinguishable. Second, it may be the case that radically different surface shapes have 

roughly the same minima. Third, the total penalty function may have stationary points, 

i.e., configurations of control points for which the gradient of the penalty function is zero 

but for which the total penalty function does not have a local minimum. 

 

From a practical point of view these difficulties can usually be circumvented by 

performing the bending process incrementally. That is, the original target surface is used 

as a starting estimate, and the algorithm operates by altering the original normals towards 

the desired normals in a series of small steps and performing the minimization at each 

step. The advantage of using an incremental approach is that the target surface tends to 
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deform in a continuous manner. This behavior makes the bending operator more intuitive 

because it fits the user's mental model of deforming a physical piece of material. The 

minimization algorithm used, the BFGS algorithm (discussed in Section 3.6.4), finds a 

nearby local minimum of the penalty function when given a starting estimate. This local 

minimum will not necessarily be a global minimum. Finding a nearby local minimum 

rather than a global minimum is not a problem. On the contrary, it is an advantage 

because it tends to make the bending process continuous. 

 

The bending algorithm can fail if the penalty function has stationary points. My 

experimentation with the prototype software indicates that such failures are very rare in 

practice. I have seen this kind of failure occasionally when using the twist operator (see 

Section 5.2.3 for a precise definition). The symptoms of such a failure are that the shape 

of final bent surface is very sensitive to the setting of the error tolerance, and that 

subsequent applications of bending operators cause unexpectly large changes to the shape 

of the surface. However, even in these failure cases, the final bent surface normal vectors 

are still rougly equal to the desired normals. My speculation is that the twist operator 

sometimes leads to an underconstrained optimization problem. 

 

Finding a computable approximation for the metric penalty function. This is at present an 

open problem. The approximation I use in the prototype software is  

 

 m  I0

1
 I 1 E0G0 F0

2
du dv

D

 , 

 

i.e., I am using the identity map instead of minimizing over the space of isometries of the 

surface. In practice this works surprisingly well, considering how poor the approximation 

is on theoretical grounds. I speculate that this may be due to using B-spline patches with 

uniformly spaced knots. I think that there isn't enough freedom in the  definition of such 

patches to permit two surfaces that are similar except for parameterization. This suggests 

an experiment with B-spline patches with variable knots. 
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Collapse resistance. In early experiments with the software prototype, occasionally 

creases and folds would form in the surface during the bending process.  This typically 

occurred when there were extremely large curvatures in the bending operator. 

Mathematically, this behavior is undesirable because the normal vectors become 

undefined. To circumvent this problem, I added third component to the total penalty 

function. The collapse resistance penalty function is 

 

 c 
1

det I 2
E0G0 F0

2
du dv

D

 . (3.3.2-3) 

 

The term det I 
2
 EGF

2
 measures the square of the local area magnification factor 

for the deformed surface. When it approaches zero,  a collapse of the surface is occurring. 

In this case the integral will increase, causing the collapse to be penalized. The coefficient 

for the collapse function in the total penalty function is set to a very small value. Thus, 

the collapse penalty has little noticeable effect on the bending action except that creases 

and folds no longer occur.  

 

Range of action. The bending action can be restricted to a neighborhood of the point of 

application, which I call the range of action, by introducing a non-negative weight 

function w into the integral that defines  n  and introducing another penalty function  f . 

The purpose of this new penalty function is to prevent the shape of the surface outside the 

range of action from changing (the subscript f is for "fix.") This penalty function is 

necessary because without it, the surface would be underconstrained in regions with w 

small, causing "ripples" to spread out from the range of action area. I define the function 

as 

 

  f  I0

1
 II  II0 

2

1 w  E0G0  F0

2
du dv

D

  , (3.3.2-4) 

 

where II  denotes the second fundamental form of c. Roughly speaking, II measures the 

curvature of the surface. (Note: to be precise, the right measure of curvature is the 

function I
1
 II , which is called the curvature tensor or Weingarten map. The 
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eigenvalues of I
1
 II  are the principal curvatures, and the eigenvectors are the principal 

directions. A discussion of these properties can be found in Appendix A.) The matrix of 

II is 
L M

M N







 with respect to du and dv, where 

 

 L  cuu  n  

 M  cuv n  

 N  cvv n . 

 

The term I0

1
 II  II0  captures the deviation of the second fundamental form between 

the initial and the bent surface. I use I0

1
 II  II0  instead of II  II0  to get a more 

accurate measure of the curvature deviation and to achieve scale independence. The 

weight function is not  introduced into m , since there is no harm in preserving the metric 

in "fixed" parts of the surface. Indeed, such preservation is needed to make the range of 

action work properly, since the shape of a surface depends both on its curvature and its 

metric. This dependence is discussed and made explicit in Theorem A-2 in Appendix A. 

 

As it is stated, this definition of the penalty function  f  suffers from a dependence on the 

parameterization of the surface. To be strictly accurate, the definition should be 

 

  f  min


I0

1
 II   II0 

2

1  w   E0G0  F0

2
du dv

D

 , 

 

where  is a reparameterization of D and II   is the second fundamental form of c  . 

As with m , I am using an approximation to make the computation feasible. 

 

Experience with the software prototype reveals that the range of action operator does not 

perfectly preserve the shape of a patch in regions where the weight function is zero. This 

is to be expected, since the various penalty functions are competing with one another in 

the optimization process. However, it appears that the normal penalty function  n  

exercises better control over surface shape than does the fix penalty function  f . This 

effect can be somewhat compensated for by adjusting the penalty function weights but 
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cannot be entirely eliminated. I believe that the effect is due to  f  being a more indirect 

type of control than   n . By this I mean that  f  uses first and second derivatives of the 

patch function while  n  uses only first derivatives. This leads to the question: Why not 

use the original unaltered normals of the surface to define  f  rather than the second 

fundamental form? The answer has to do with the rather delicate nature of the differential 

equation used to compute the desired normals. We cannot use the original normals 

directly, because  f  has to be invariant under rigid motions. For example, consider 

bending a rod in the middle – although the ends are rigid, the normals near the ends have 

to rotate. Thus, the differential equation that produces the desired normals would have to 

be altered so that it produces a rotated form of the original normals where the range of 

action weight function is small. I have discovered that doing just about anything to the 

differential equation breaks the integrability conditions and destroys the uniqueness of the 

solution. I have not been able to find a way to alter the equations to get the desired effect 

while maintaining the integrability conditions. 

  

3.4 Positioning the bending operator 

 

This section discusses the mathematical details of positioning the bending operator patch 

with respect to the target patch. My goal is to permit the use of an arbitrary patch as the 

bending operator, so I needed to develop a general purpose method for positioning. The 

user's conceptual model for positioning the bending operator works as follows: 

 

1. The user selects a point of application on the target patch and places the bending 

operator patch such that it is tangent to the target patch at that point. 

 

2. The user rotates the bending operator patch about the normal vector at the point of 

application to achieve the desired orientation. 

 

3. The user scales the bending operator patch along two axes to the desired size. 

 

It may appear from this description that positioning the bending operator simply involves 

applying Euclidean motions and scaling to the bending operator patch, but this is not the 
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case. The correspondence between the target patch and the bending operator patch is via 

the patch parameterizations, so positioning has to include a reparameterization of the 

bending operator. But reparameterization alone is not sufficient, because it doesn't 

provide any way to handle the rotation in step 2. To see this, consider a cylindrical patch 

used as a bending operator. Reparameterization doesn't change the geometry of the 

surface defined by the patch function, so no reparameterization can change the direction 

of the cylinder axis for this bending operator. In the remainder of this section I develop 

the mathematics needed to implement the positioning control. 

 

The bending operator placement control is designed to make it easy for the user to place 

the bending operator interactively. Figure 3.4-1 shows a schematic diagram of this tool. 

u

v

u

v

p ^

^



 

Figure 3.4-1 Positioning tool 

 

The square with coordinates u and v represents the unit square in the parameter space of 

the target patch. The oblique rectangle with coordinates ˆ u  and ˆ v , called the control 

rectangle, represents the unit square in the parameter space of the bending operator. The 

point of application in parameter space is p, which has coordinates ( ˆ u , ˆ v )  0.5,0.5  in 

the parameter space of the bending operator.  The user selects the (u,v)  coordinates of p 

by moving the control rectangle. Since the control works in parameter space, the user 

doesn't have to explicitly manipulate the bending operator patch to make it tangent to the 
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target patch – this is handled automatically by the software. The user orients the bending 

operator by rotating and scaling the control rectangle. The final configuration of the 

control rectangle determines an affine transformation ˆ u , ˆ v   f u,v  between the two 

parameter spaces by 

 

 ˆ u  a11u a12v  a13 

 ˆ v  a21u  a22v  a23 . 

 

Because the control shape is a rectangle, the linear part of this transformation can be 

written as the product of a scaling matrix and a rotation matrix as 

 

 
a11 a12

a21 a22









s1 0

0 s2








cos sin

sin cos







, 

 

where  is the angle between the u coordinate axis and the ˆ u  coordinate axis. 

 

I am now ready to define mathematically how the positioning control works. Let 

b: D
2


3
 be the bending operator patch, where 0,1 

2
 D. Note that the bending 

operator patch has to be defined on a subset of 
2
 such that f

1
D  covers 0,1 

2
, where 

f is the affine transformation.  Let q  r ,q  denote a rotation of 
3
 by angle  about 

the normal vector of the bending operator patch at the point b 0.5,0.5 .  The positioned 

bending operator b  is defined by 

 

 b u,v  r ,b  ̂u ,  ̂v   .  

 

This formula says that the modified bending operator patch b  is obtained by a 

reparameterization of its domain followed by a rotation of its range. This result is not 

obvious and it needs to be justified. My justification has two parts. I prove for simple 

bending operator, namely a quadratic patch, that it works properly, and I appeal to the fact 

that the prototype software works as expected for more complex bending operators. 
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The proof for quadratic patches is as follows. To simplify the calculations, I ignore the 

translation and assume that the point of application is at 0,0  in both the u,v  and ˆ u , ˆ v   

coordinate systems. Let the (unmodified) bending operator be defined by the function 

b u,v   u,v,u
2
 v

2 .  Suppose that the positioning operation specified by the user is 

 

 ˆ u  a11u  a12v  

 ˆ v  a21u  a22v , 

 

and that 

 

 
a11 a12

a21 a22









s1 0

0 s2








cos sin

sin cos







. 

 

This positioning operation represents stretching the control rectangle along the u direction 

by a factor of 1 s1 , stretching along the v axis by a factor of 1 s2 , and then rotating the 

control rectangle clockwise by an angle of .  Note that stretching the control rectangle by 

a factor of two, say, in a given direction means that the normal vectors should turn half as 

fast for movements in that direction. The question is, what should the modified bending 

operator b u,v   do? Intuitively, it should have the same bending effect as some quadratic 

patch q u, v  . Having the same bending effect amounts to having the same normal vector 

field, since only the normal vector field of the bending operator is used in the bending 

algorithm. Hence, we need to determine what quadratic patch q u, v   has the normal 

vector field desired by the user, and show that the modified bending operator b u,v   has 

the same normal vector field as q u, v  . I claim that q u, v   should be the function 

 

 q u, v   u,v,c1u
2
 2c2uv c3v

2  u,v, u v 
c1 c2

c2 c3








u

v











 


, 

 

where the matrix of ci  coefficients has the factorization 

 

 
c1 c2

c2 c3









cos sin

sin cos








s1 0

0 s2








cos sin

sin cos







 RSR

t
. 



 

 l 

 

It is a standard result in linear algebra [ Strang 80 ] that any symmetric matrix can be 

factored this way and that the columns of R are the eigenvectors and the diagonal 

elements of S are the eigenvalues.  To see why this is the correct form for q,  let us 

investigate the behavior of the normal vector field of q near the origin. We have 

 

 qu u,v  1,0,2c1u 2c2v  
 qv u,v  0,1,2c2u2c3v , 

 

so 

 

 qu qv  2c1u2c2v,2c2u2c3v,1 . 

 

This formula is easier to work with using vector notation: 

 

 qu  qv u,v   2

c1 c2 0

c2 c3 0

0 0 1 2

















u

v

1

















 2
RSRt 0

0 1 2









u

v

1

















. 

 

Near the origin, qu  qv 1, which implies n  qu  qv , where n  is the normal vector 

field. Taking partial derivatives, we have 

 

 qu  qv 
u
 2c1,2c2 ,0  2

c1 c2 0

c2 c3 0

0 0 0

















1

0

0

















 2
RSRt 0

0 0









1

0

0

















 and 

 qu  qv 
v
 2c2 ,2c3,0  2

c1 c2 0

c2 c3 0

0 0 0

















0

1

0

















 2
RSRt 0

0 0









0

1

0

















. 
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Now we examine the directional derivatives of qu  qv  in the eigendirections 
cos

sin







 and 

sin

cos







. We have 

 

  cos 

sin 











qu  qv  qu  qv 
u
cos  qu  qv 

v
sin  2

RSRt 0

0 0









cos

sin

0

















  

  2
RS 0

0 0








1

0

0

















 2s1

R 0

0 0








1

0

0

















 2s1

cos

sin

0

















 . 

 

  sin 

cos 











qu  qv   qu  qv 
u
sin  qu  qv 

v
cos  2

RSRt 0

0 0









sin

cos

0

















  

  2
RS 0

0 0








0

1

0

















 2s2

R 0

0 0








0

1

0

















 2s2

sin

cos

0

















 . 

 

These equations say that small movements in the eigendirections near the origin in u,v  

space cause the normal vectors to turn in the analogous directions in the range space at a 

rate proportional to the eigenvalues s1  and s2 . But this is exactly the behavior that we 

desire from the positioning control, so q u, v   must be the quadratic patch we are looking 

for. 

 

The final step is to show that q u, v   and b u,v   have the same normal vector fields (note 

that they are not the same function). This is done by computing b u  b v  and showing that 

it is a positive multiple of qu  qv . Using the definition of b u,v  , we obtain the modified 

bending operator 
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 b u,v   r ,b ˆ u , ˆ v   
R 0

0 1







b ˆ u , ˆ v  

R 0

0 1








ˆ u 

ˆ v 

ˆ u 
2
 ˆ v 

2

















. 

 

We have 

 

 b ˆ u , ˆ v   ˆ u , ˆ v , ˆ u 
2
 ˆ v 

2  
 bu

ˆ u , ˆ v   a11, a12,2a11
ˆ u 2a21

ˆ v   
 bv

ˆ u , ˆ v   a21,a22,2a12
ˆ u 2a22

ˆ v   

 bu
ˆ u , ˆ v  bv

ˆ u , ˆ v   a11a22 a12a21  2 ˆ u ,2ˆ v ,1 . 

 

Since we are interested only in the normal vector, we can drop the positive multiplier 

a11a22  a12a21. Using vector notation, 

 

 bu
ˆ u , ˆ v   bv

ˆ u , ˆ v  2

a11 a12 0

a21 a22 0

0 0 1 2

















u

v

1

















 2
SRt 0

0 1 2









u

v

1

















, 

 

so 
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 b u u,v  b u,v 
R 0

0 1







bu

ˆ u , ˆ v   bv
ˆ u , ˆ v   2

RSRt 0

0 1 2









u

v

1

















 qu  qv . 

 

Therefore, b u,v   and q u, v   have the same normal vector fields. 

 

It seems difficult to generalize this proof because it depends on being able to produce a 

function analogous to  q u, v   that fits our intuition of what the positioning control should 

do. I originally derived the mathematics of the positioning control by letting the 

coefficients ci of the quadratic patch q u, v   be arbitrary and then working out what they 

must be to give the correct bending action. For more complex bending operators I can 

only offer the observation that the positioning control always produces the intuitively 

correct behavior in my experiments. 

 

3.5 Bending a mesh of patches 

 

For the bending operator to be a useful modeling tool, it must be applicable to complex 

objects.  In practice, complex objects are modeled by a mesh of patches. For smooth 

objects there are continuity requirements across the edges where the patches of a mesh are 

joined. The details of these continuity requirements are explored in Chapter 4. My 

purpose in this section is to demonstrate that the bending operator can be applied to 

complex objects that are represented as meshes of patches with continuity constraints. I 

show that the mathematics of the bending algorithm is changed very little by this 

adaptation. The two main difficulties that arise have to do with the topology of the mesh 

and the need to maintain the continuity requirements across edges. I handle the topology 

problem by applying the bending operator only to topologically simple parts of the mesh. 

I show that the continuity requirements change the unconstrained optimization problem 

into a constrained optimization problem. As a practical test of these ideas I have 

implemented a software prototype that can apply the bending algorithm to a smooth mesh 

of tensor product B-spline patches. 
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3.5.1 Adapting the bending operator to a mesh of patches 

 

I believe it is worthwhile to proceed as far as possible without limiting this analysis to a 

particular patch type, and as the reader will see, that is quite far indeed. Such an approach 

ensures that the conclusions will be applicable to a large variety of existing patch types 

and perhaps to new types not yet invented. In this section, I make only two assumptions  

about the patch types: 

 

1. A patch is a regular piecewise smooth mapping c from a closed polygonal domain D 

in 
2
 to 

3
. 

2. For any patch c there exists a finite set of piecewise rational basis functions 

Nj:D
3
 for j 1, .. .,n  such that c u,v  bj Nj u,v 

j1

n

 . The b j  are called control 

points and are just points in 
3
. 

 

Note: These assumptions are not very restrictive, but they could be even further relaxed at 

the expense of complicating the optimization algorithm. The optimization algorithm 

proposed here has to have some finite set of variables to manipulate, and control point-

based patches naturally provide such a set. In principle, the patches need only be 

piecewise twice differentiable functions of the parameter space. In this case, the 

optimization algorithm could approximate the patches by some finite element basis 

functions to provide an approximate solution to the bending problem. The approximation 

error could be reduced below any desired threshhold by using enough basis functions. In 

fact, control point-based patches are finite elements, but they lack the ability to add more 

basis functions as needed to reduce the approximation error.  

 

I show in Chapter 4 that given the previously stated assumptions 1 and 2, the continuity 

conditions for a mesh of patches can be formulated as a set of algebraic equality 

constraints on the patch control points and a set of free real variables. That is, given a 

mesh of patches c1,. .. ,ck  such that patch ci  has control points bij , there exist a finite 

number of real variables t r  and a finite number of rational functions f l  such that 
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f l b11,b12,...,b21,b22,...,t1,t2 ,... 0 . Most of the patch types in common use satisfy these 

assumptions, including Bezier patches, B-spline patches, and NURBS.  

 

To apply the bending operator to a mesh, we have to be able to compute the desired 

normals and to evaluate the penalty functions. To satisfy the continuity requirements, we 

have to maintain the continuity conditions during minimization of the total penalty 

function. How does the use of a mesh instead of a single patch complicate these 

operations? 

 

Computing the desired normals. The topology of the mesh can cause difficulties in 

computing the desired normals. Recall that the correspondence between the target surface 

and the bending operator surface is via the parameterization of the domains. This 

presented no problem for single patches in Section 3.3 because the domain for all patches 

was the unit square. With meshes, this is no longer the case. The assumption that the 

patches in a mesh are regular implies that it is possible to construct a piecewise polygonal 

domain with the same edge and vertex connectivity as the mesh. However, this is not 

much help since the mesh connectivity can be arbitrarily complex, with any number of 

branching sheets and cycles. The way out of this dilemma is to apply the bending operator 

only to topologically simple parts of a model. 

 

When is a shape (i.e., a mesh of patches) simple enough to apply the bending operator to 

it? Let us consider for the present only the problem of computing the normal vectors. If 

the mesh is part of a single bounded connected sheet with no branching and no self-

intersections, it is possible to redefine the set of patches that make up the mesh such that 

the union of the domain polygons form a single large polygon P, possibly containing 

holes. This is because the patches are regular, which implies that they are continuous 

mappings with continuous inverses. The technical term for such a function is 

homeomorphism. Two surfaces are said to be homeomorphic if there is a 

homeomorphism between them. As such, the patch functions preserve the topology of the 

mesh. This fact is proven in chapter 1 of [ Spivak 70 ]. Taking the union of these 

redefined patch functions produces a function from P whose range is exactly the union of 

the ranges of the original patch functions. Notice that this function satisfies assumptions 1 
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and 2 and hence is itself a patch. By using an affine transformation of 
2
 if necessary, the 

domain polygon P can be mapped into the unit square, producing a single large patch 

defined on the unit square. Extending this patch function to the whole unit square 

produces a single patch, call it c, whose range contains the range of the original mesh. If 

there are holes in the domain polygon, extend the patch function in any smooth way to fill 

the holes. In order to compute normals for the patch c, it is necessary that the differential 

of c exists, which is equivalent to c having C
1
 continuity. To summarize, it is possible to 

compute the desired normal vector field in the sense of Section 3.3 for any mesh of 

patches which is homeomorphic to a polygon (possibly with holes) in 
2
 and which has 

at least C
1
 continuity.  

 

It is possible to apply the bending operator to simple closed shapes that can be mapped 

onto a polygon, such a cylinder or torus. Consider bending a cylinder. The cylinder can be 

cut and flattened into a rectangle, so it is possible to describe it with a single patch. The 

problem is that the normal vector field computed by the bending algorithm will not be 

continuous across the cut, since points on either side of the cut are not contiguous in 

parameter space. Thus, it is not possible to place features, such as dents, across the cut 

line. Also, unless continuity constraints are used to prevent it, the cylinder will break 

open at the cut line during bending. 

 

Computing the penalty functions. All the penalty functions are surface integrals of certain 

functions derived from the basic patch function. The surface integral over a mesh is 

simply the sum of the surface integrals over the patches that make up the mesh. The only 

possible problem is that the integrals might not exist. Examining the penalty functions, 

we can see that all the functions being integrated are derived from first and second 

derivatives of the patch functions. Hence we can be assured that the penalty functions are 

well defined provided that the individual patches of the mesh have at least piecewise C
2
 

continuity. In fact, the assumption that the patch functions are regular and piecewise 

rational implies that the patches have piecewise C


 continuity. The continuity degree of 

the joins between patches is immaterial because these joins have zero area and thus do 

not contribute to the integrals. 
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Performing the minimization. The main complication introduced by meshes of patches is 

the need to minimize the penalty functions under the constraint of satisfying the 

continuity equations. I show in Chapter 4 that these constraints are nonlinear in general. 

Most of the difficulty this causes is technical rather than theoretical. Given some random 

mesh of patches of possibly different types, it is a difficult problem just to write down the 

constraint equations explicitly. Furthermore, it is hard to write efficient software for 

optimization with nonlinear constraints. Such software is typically tailored to a specific 

problem. [ Himmelblau 72 ] is a good textbook on subject of optimization theory which 

discusses this point. For these reasons modeling systems that work with smooth meshes 

of patches generally limit themselves to one or a few patch types, for which the continuity 

equations have been worked out.   

 

Implications for the user interface. We have seen that the bending operator can be applied 

only to single connected sheets of a model which have at least C
1
 continuity. This raises 

the question of how the bending operator can be used in the context of a geometric 

modeling system that supports models with a more complex topology. I discussed in 

Chapter 1 what an ideal geometric modeling should look like to users. One of the 

important ideas there was that complex models should be constructed as hierarchies, with 

the lowest level parts being very simple shapes. A partial answer to the question is to 

apply the bending operator only to the lowest level parts of the hierarchy. It seems likely 

that the bending operator would frequently be used on such parts, but not always. This 

restriction is too severe,  since it precludes applying the bending operator to any 

assemblage of parts. 

 

A more general method of applying the bending operator is possible, according to the 

following scenario. The user selects some point of application on the surface of a 

complex model, not on an edge at which the model branches into multiple sheets. The 

modeling system selects and highlights  part of a connected sheet containing this point. 

The user can ask the modeler to shrink or expand this selection if desired. The selection 

can grow until it is the whole connected sheet containing the point of application. That is, 

the selection can grow until it reaches an edge where the model branches into multiple 

sheets. If the modeling system permits the user to intervene and select a branch to follow, 
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the selection can grow further.  When the user indicates that the selection is final, the 

modeling system constructs a "pseudo-patch" that has the unit square as its domain and 

the selection as its range. The user then applies a bending operator to this pseudo-patch, 

possibly using the range of action tool to limit the bending action to a subset of this 

pseudo-patch. There are two problems that arise with this method. First is the problem of 

keeping the pseudo-patch properly connected to the rest of the model. The bending action 

must preserve the model topology and the continuity conditions between the pseudo-

patch and the rest of the model. This problem is solvable by including the constraint 

equations  for edges  that connect the pseudo-patch to the rest of the model in the 

optimization constraints. The mesh topology will be preserved if at least C
0
 continuity is 

preserved at these edges. Second is the problem of rigidity of the model outside the 

bending area. For example, consider a model of a telephone hand piece. If the connecting 

member between the transmitter and receiver is bent, the transmitter and receiver ought to 

be rotated with respect to each other. With my suggested method, this rotation will not 

occur.  There does not seem to be any easy solution to the rigidity problem. To handle this 

problem, the modeling system would have to contain a very sophisticated representation 

of the model that included information about possible articulations of the parts. 

 

3.6 Implementation issues 

 

This section presents the details of the numerical methods and programming techniques 

used to implement the bending algorithm. A specific patch type is needed for the 

implementation, and I chose the tensor product B-spline patch for reasons explained later. 

However,  the implementation of the bending algorithm is independent of the patch type.  

I implemented the bending algorithm by the combined use of several standard algorithms 

from numerical analysis. I present here the specific numerical methods I chose and the 

reasons for their choice. For reasons discussed in Section 3.3.2, the bending algorithm 

needs to be incremental, and I discuss how this is achieved.   

 

3.6.1 Patch type 
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The prototype software uses tensor product B-spline patches of arbitrary degree and 

number of control points. There is nothing special in the prototype about this kind of 

patch; any piecewise smooth patch type will serve. The prototype does depend somewhat 

on a rectangular patch domain, but it could be adapted, for example, to a triangular 

domain without major changes. I justify these statements later in this section. The B-

spline patch is a very flexible modeling element. For example, the Bezier patch is a 

special case of the B-spline patch. The number of control points and the patch degree 

(polynomial degree) can be varied across a wide range, and quite complex surfaces can be 

modeled using a single patch. [ Farin 90 ] gives a definition of B-spline patches and an 

explanation of the deBoor algorithm for evaluating points and derivatives. 

 

As discussed earlier, it is desirable to make the patch type and the algorithms used to do 

surface shaping operations as independent as possible. I achieve this independence in the 

prototype by using some object-oriented programming techniques. The software is 

implemented in the C++ language, and I use the language feature called abstract base 

classes to hide patch implementation details from the algorithms. A key feature of 

abstract base classes is that they define a class of objects and a set of operations for 

manipulating these objects without revealing any details about the internal state of the 

object or the implementation of the operations. I define a hierarchy of abstract base 

classes culminating in a class Mpatch which provides the operations needed to implement 

the bending algorithm. An abbreviated version of the class hierarchy taken directly from 

the source code follows. 

 
class Apatch { // an abstract patch 
public: 
 virtual vec3 eval(double u,double v) const = 0; 
 virtual vec3 deriv(double u,double v,int ndu,int ndv) const = 0; 
}; 
 

An  Apatch is a patch that provides the capability to evaluate points and take derivatives 

with respect to parameter space variables. In C++ the eval and deriv functions are called 

pure virtual functions, meaning that their implementation is provided elsewhere (at run 

time) by some concrete patch object. There are actually two concrete patch types in the 

prototype software. One is a B-spline patch and the other is "pseudo-patch" which 
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comprises a mesh of B-spline patches. The routines that use objects of type Apatch have 

no way of telling which concrete patch type they are using. 

 
class Gobj { // a graphics object 
public: 
 virtual void draw(GW*) const = 0; 
 virtual void render(GW*) const = 0; 
}; 
 

A  Gobj is an object that knows how to draw a 3-D projection of itself, making use of a 

GW, which is an object that encapsulates information about the graphics environment. 

 
class Mpatch : public Apatch, public Gobj { // bendable patch 
public: 
 virtual void control_pts(const v3mat&) = 0; 
 virtual const v3mat& control_pts() const = 0; 
 virtual v3mat& control_pts() = 0; 
 
 virtual double obj(const v3mat& yt) const = 0; 
 virtual void dobj(const v3mat& yt,v3mat& ydt) const = 0; 
  
 virtual void range_of_action(RGAct*) = 0; 
 virtual void desired_normals(Sarb*,const mat32&, 
  double u,double v) = 0; 
 
 virtual void normal_wgt(double) = 0; 
 virtual void metric_wgt(double) = 0; 
 virtual void shape_wgt(double) = 0; 
 virtual void collapse_wgt(double) = 0; 
}; 

 

An Mpatch is a class that inherits the properties of an Apatch and a Gobj and additionally 

provides operations that are needed by the bending algorithm. The geometric shape of an 

Mpatch is defined by a rectangular array of 3-D control points. The function 

control_pts permits reading or writing these control points. An Mpatch has a penalty 

function that measures the deviation of the patch from some ideal shape. In the case of the 

bending algorithm, this is just the penalty function defined in Section 3.2. The function 

obj evaluates this penalty function for a given set of control points, and the function dobj 

evaluates the derivative of the penalty function with respect to the control points. The 

function range_of_action allows the patch access to information about the range of 

action, which is encapsulated in an RGAct object. The function desired_normals allows 

the patch access to information about the bending operator so that the desired normals can 
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be computed. The bending operator is specified via a prototype function encapsulated as a 

Sarb object, a 32 orientation matrix encapsulated as a mat32 object, and a point of 

application u,v . The functions normal_wgt, metric_wgt, shape_wgt, and 

collapse_wgt set the adjustable parameters of the penalty function. 

 

The Mpatch class was designed to expose only the bare minimum of functionality needed 

to implement the bending algorithm. It was necessary to assume a few things, namely, 

that the patch domain is the unit square and that the geometry of the patch is defined by a 

rectangular array of control points. These assumptions are not very restrictive. Due to this 

design, any patch type meeting these assumptions can be used and the bending algorithm 

will work. Indeed, the source code for the bending algorithm does not even have to be 

recompiled to change the patch type because the linkage between the abstract patch and 

the concrete patch occurs at run time. As proof of this, I point out that in the prototype 

software, exactly the same source code is used to apply the bending operator to a single 

patch and to a rectangular mesh of patches. 

 

3.6.2 Incremental bending 

 

A continuous transformation from the original target surface to the final bent surface 

seems desirable to avoid surprising the user. The user's mental model is that a piece of 

elastic material is being deformed. If the deformation is not continuous, the user will be 

caught be surprise, and the bending operator will be less intuitive. As stated earlier, the 

minimization process has some mathematical difficulties. There may be undesirable local 

minima which represent drastic deformations of the target surface, such as part of the 

surface being flipped over. To avoid these, I arrange the minimization such that at any 

point in the process the current surface is near a local minimum. I originally thought that 

this would help efficiency, as the minimization algorithm would always be operating in a 

region in of quadratic convergence. However, experimentation shows that larger step 

sizes are more efficient. I do not fully understand this, but I speculate that the BFGS 

algorithm used (see Section 3.6.4) has such a high startup cost to attain a good estimate of 

the Hessian that it outweighs the savings due to quadratic convergence. 

 



 

 lxii 

Making the algorithm incremental. The key idea is to start with a small piece of parameter 

space for the bending surface, and expand to the whole parameter space in a number of 

stages. Mathematically, if the point of application is p u0,v0 , the bending surface 

frame field at "time" t is 

 

 f t;u,v  f u u0 t  u0 , v  v0 t  v0 . 

 

Then t is increased from some small   0 up to 1 in a number of steps, and the 

minimization problem is re-solved at each step. The starting t cannot be 0, as this would 

not define a surface. The main problem with this approach is that it can introduce some 

"wiggles" in which the target surface bends first one way, then another. 

 

I considered and rejected two other possible ways of making the algorithm incremental.  

 

I tried introducing a parameter s  0,1  into the differential system for the normal vector 

field, yielding 

 

 dg   sr
t
r g . 

 

This attempt failed because the system no longer satisfies the integrability conditions. 

 

I considered interpolating between the normal vector field of the original target surface 

and the desired normal vector field. Linear interpolation works if at no point does a 

normal turn 180 degrees or more. Otherwise singularities occur. I think that this 

constraint is too restrictive, as it precludes the use of bending operators that have drastic 

amounts of curvature. This possibility needs further research. There may be some other 

way to interpolate normals, or there may be a hybrid approach combining normal 

interpolation with the method I am currently using. 
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3.6.3 Computing the normal vector field 

 

There are two parts: converting the differential system into an ordinary differential 

equation, and solving the differential equation in a systematic way. Recall that the 

differential system is 

 

 g p  e p  

 dg   r
t
r g  on D, 

with 

 f  rg  on D. 

 

To solve for g q  at any qD, we can apply this system to a piecewise smooth curve in 

parameter space 

 

 : 0,1  D,  with  0   p,  1   q 

 

to produce an initial value problem for an ordinary first order differential equation of nine 

variables: 

 

 dg   g  

    r

t
  r  g   

 g   0  g p  e p . 

 

Since g is well-defined, the solution to the differential equation depends only on the end-

points p and q and is independent of the which curve  is used. This path independence 

can be exploited to compute the values of g on a regular m  n  grid in parameter space. 

This array of values will be needed later for performing a numerical integration. The idea 

is to integrate from p along a straight line to the nearest grid point, and then follow a 

pattern of straight lines to reach all the grid points, as shown in Figure 3.6.3-1. 
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Figure 3.6.3-1 Path for integration 

 

The computation of the desired normals is fairly expensive, amounting to about a fourth 

of the total  bending time. Therefore, to minimize the total length of the lines integrated 

along,  I construct a minimal spanning tree rooted at p that reaches all the grid points. I 

use the Bulirsh-Stoer method [ Bulirsch 80 ] for numerically integrating the ordinary 

differential equation. 

 

3.6.4 Minimizing the penalty function 

 

Rejected alternatives. Before looking at ways to minimize the penalty function, I consider 

and reject an alternative. One can apply the Euler-Lagrange equations to convert many 

variational problems, including this one, into a system of partial differential equations. 

For my penalty functions, this system turns out to be non-linear. Solving general systems 

of non-linear partial differential equations is a hard problem. One of the standard solution 

techniques is to turn the system into a variational problem, but that is what I already have. 

 

How the penalty function is minimized. The penalty function that the bending algorithm 

minimizes is defined as the sum of a set of integrals over the patch surface. In practice, 

the integral is pulled back to the patch domain and converted to an ordinary iterated 

integral. The surface itself is defined as the weighted sum of a set of basis functions, the 

weights being the control points. It has the form 
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 p u,v   bj Nj u,v 
j0

n

 . 

 

The terms that appear in the integrals are various combinations of p and its first and 

second partial derivatives with respect to u and v. Hence we need to minimize a function 

of the form 

 

 f b1,. .. ,bn  F p u,v , pu u,v , pv u,v , puu u, v , puv u,v , pvv u,v  
0

1


0

1

 dudv, 

 

i.e., find a set of control points b1,...,bn  that minimizes the integral. The minimization 

technique that I use requires computing first partial derivatives of f with respect to the 

control points, which can be expressed in the form 

 

 
f

bj


F

p

p

bj


F

pu

pu

bj


F

pv

pv

bj


F

puu

puu

bj


F

puv

puv

bj


F

pvv

pvv

bj











0

1


0

1

 dudv. 

 

The collection of derivatives 
f

b1

, .. .,
f

bn




 


 is a vector with 3n  components, namely, the 

gradient of f. These integrals are evaluated via a point sampling technique (Gaussian 

quadrature), which turns the problem into one of computing finite sums. The 

minimization of the penalty function proceeds as follows. The set of control points of the 

original surface is taken as the starting estimate. An iterative process (the BFGS 

algorithm, discussed later) is used to reduce the value of f by varying the control points. 

The basic iteration step first chooses a direction vector in the space of control points and 

then does a line minimization along that vector to obtain a new estimate. The gradient of f 

is used to select the direction vector. If one simply used the negative of the gradient of f 

as the direction vector,  this would be the method of steepest descent. However, the 

BFGS algorithm uses a more sophisticated way of picking the direction vector, which 

leads to a considerably more efficient algorithm. 
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Computing the integrals for the penalty function.  I chose to do the numerical integral 

integration by Gaussian quadrature. This method gives order 2n1 accuracy with n 

sample points (i.e., the method gives exact results for a polynomial of degree 2n1,) 

making it one of the most efficient methods known with respect to the number of function 

evaluations. Most of the computational cost of the bending algorithm is in the evaluation 

of the penalty function, so it is very important to minimize the number of evaluations. 

The chief drawback of Gaussian quadrature is the difficulty of obtaining an error bound. 

The usual practice is to compute the integral for increasing values of n until the result 

doesn't change [ Bulirsch 80, p. 151 ]. However, for efficiency I choose n as a function of 

patch degree and number of control points to give a reasonable accuracy, based on 

numerical experiments. I used Romberg integration originally, but I found that Gaussian 

quadrature requires about a fourth as many  function evaluations for the same accuracy.  

 

Minimization method. The main considerations in choosing a minimization algorithm are 

order of convergence, number of function evaluations, and the degree of derivatives 

required. Since the penalty functions are complicated, it is difficult to write a program to 

compute first derivatives with respect to the patch control points, and well-nigh 

impossible for second derivatives. One of my goals is experimenting with different 

penalty functions, so I would prefer a method that doesn't require derivatives. 

Unfortunately, I discovered that methods that do not use derivatives are far less efficient 

(by at least an order of magnitude in this application) than those that do, to the extent that 

experiments just take too long to run. 

 

After examining several methods, I chose the BFGS (Broyden, Fletcher, Goldfarb, and 

Shanno) algorithm [ Bulirsch 80 ]. It is a quasi-Newton method, meaning that it works 

like Newton's method, but second derivatives (Hessian) are not computed. Instead, an 

estimate of the Hessian is built up as the algorithm proceeds using only first derivative 

information. The method has quadratic convergence near a local minimum and requires 

computing only function values and first derivatives. The method can make use of second 

derivatives to reduce the number of iterations, but some experimentation has led me to 

believe that the cost of computing second derivatives outweighs the savings due to fewer 

iterations. The basic iterative step of the BFGS algorithm is defined as follows. Let 
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f :
n
  be the function being minimized, let xk 

n
 be the current estimate of the 

minimum, let gk  be the gradient of f xk , and let Hk  be the current estimate of the 

Hessian of f xk . Then set 

 

 sk  Hk gk  

  k min f xk  sk   0  
 xk 1  xk   ksk  

 pk  xk1  xk  

 gk1   gradient of f xk1  

 qk  gk1  gk  

 Hk1  Hk  1
qk

t Hkqk

pk

t
qk




 




pk pk

t

pk

t
qk


1

pk

t
qk

pkqk

t
Hk  Hkqk pk

t . 

 

It is shown in [ Bulirsch 80 ], Theorem 5.11.9, that if the line minimization for  k  is done 

with reasonable accuracy and H0  is positive definite, xk  converges quadratically to a 

stationary point of f, and Hk  converges to the Hessian of f xk . H0  is usually taken to be 

the identity matrix, although the method tends to converge faster if H0  is a better estimate 

of the Hessian. 

 

The big advantage of the BFGS algorithm in my application is that the number of 

iterations needed for reasonable accuracy is considerably less than the number of degrees 

of freedom of the problem. For example, an order 66 B-spline patch has 36 control 

points, each with 3 components, yielding 663=108 degrees of freedom. The 

minimization algorithm typically converges in 15-20 iterations. Previously, I 

experimented with Powell's method, which is also quadratically convergent and doesn't 

require computing derivatives, but the minimum number of iterations required is at least 

twice the number of degrees of freedom. For the 66 B-spline patch example, Powell's 

method converged in about 400 iterations. I also experimented with the most simple 

method, steepest descent. The literature warns that this is usually a poor method 

[ Bulirsch 80, pp. 308 ], with only linear convergence. I stopped the experiment when it 

failed to converge after 2000 iterations. 
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3.6.5 Implementing the bending operator for a mesh of B-spline patches 

 

To demonstrate the feasibility of bending meshes of patches, I implemented the bending 

algorithm for a mesh of B-spline patches in the prototype software. My goal was only to 

provide a proof of concept, so the functionality is limited but sufficient to show that the 

main problems are solvable. The mesh is required to be a rectangular array of tensor 

product B-spline patches. All the patches in the array must have the same parameters, that 

is, the same knot vectors, control points, and patch degree. The interior edges of the 

patches in the array are required to join with C
k
 continuity for k = 0, 1, or 2. C

k
 

continuity has the advantage of generating linear constraint equations. (Note: it would be 

better to use G
k
 continuity, as discussed in Chapter 4, but G

k
 continuity leads to non-

linear constraint equations, making the optimization problem much harder.) It is also 

possible to join the outside top and bottom or left and right edges of the mesh with C
k
 

continuity, creating the topologies of a cylinder,  a Möbius strip,  a torus, a Klein bottle,  

or a projective plane. This implementation had to address the problems of solving for the 

desired normals of a large "pseudo-patch," integrating the penalty functions over a mesh, 

setting up the constraint equations, and performing a constrained optimization. 

 

Creating a pseudo-patch. The individual patches of the mesh all have as their domain the 

unit square 0,1 
2
. Because the mesh is rectangular, it is easy to create a combined 

pseudo-patch by chopping up the unit square into rectangles and assigning these 

rectangles as the domains of the B-spline patches. As an example, consider a 2  2  mesh. 

Label the patches cij  for i, j  0,1. Then the pseudo-patch is 

 

 c u,v  

c00 2u,2v  for 0  u  0.5,0  v  0.5

c01 2u,2v 1  for 0 u  0.5,0.5 v  1

c10 2u 1,2v  for 0.5  u 1,0  v  0.5

c11 2u 1,2v 1  for 0.5 u 1, 0.5  v  1









, 

 

which can be differentiated by the chain rule to get the derivatives needed for computing 

the desired normals and the penalty functions. 



 

 lxix 

 

Setting up the constraint equations. I do not give the complete mathematics of B-spline 

patches here since it is not necessary to understand this algorithm. A good reference on B-

spline curves and patches is Farin's Curves and Surfaces for Computer Aided Geometric 

Design [ Farin 90 ]. Farin gives the constraint equations on the control points for C
k
 

continuity across an edge join. First, the patches have to be compatible in the direction of 

the edge; that is, they must have the same knot vectors, degree, and number of control 

points in the edge direction. Second, the corresponding rows (or columns) of control 

points  on either side of the edge must satisfy a difference equation, as follows. Label the  

control points on either side of the edge as bij  and cij  for i 1,...,n  and j 1,.. .,m . The 

edges join with C
k
 continuity if 

r
cnr , j  

r
c1, j

 for r  0,...,k  and j 1,.. .,m . 
r
 

denotes the r-th iterated forward difference and is defined recursively by 
0
ai  ai

 and 


r
ai 

r1
ai1 

r1
ai

 for any sequence ai . These constraint equations form a linear 

system in terms of the control points. 

 

Performing the constrained optimization. I chose to use a form of continuity that 

generated linear constraints because the software for optimization with linear constraints 

is much easier to write and more efficient than for optimization with nonlinear 

constraints. I  had already developed software to perform unconstrained minimization of 

the penalty functions, and my problem was to adapt it to use linear constraints. The 

minimization routine basically works by repeatedly doing line minimizations in various 

directions. The method is explained in detail in Section 3.6. I modified the algorithm such 

that the direction vectors were always chosen to be in the null space of the constraint 

equations. Thus, if the constraints are initially satisfied, they continue to be satisfied as 

the minimization proceeds. The constraints are initially satisfied by projecting the control 

points onto the null space of the constraint equations. 

 

3.6.6 Summary 

 

One of the design goals for the bending algorithm is independence from patch type. I 

showed that by using suitable programming techniques, it is practical to implement the 

bending algorithm with very few assumptions about the patch type. The main idea is the 
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use of abstract base classes provided by the C++ programming language to isolate the 

patch implementation from the patch interface. Similar techniques could be used in any 

standard programming language. 

 

The problems of computing the desired normals and minimizing the penalty function 

were solved by using a collection of standard numerical analysis techniques. The main 

difficulty was choosing which of the many available techniques to use. Numerical 

analysis is as much an art as a science. There are often many ways to solve a given 

problem, and the choice of which way is best tends to be strongly problem dependent. I 

found that experimentation with different methods was needed to determine which 

worked well for the bending algorithm.  

 

3.7 Strengths  and weaknesses of the bending operator 

 

The main strengths of the bending operator are its intuitiveness, power, and generality. 

We saw in Section 3.1 that for the simple example of bending a cylinder into a torus, the 

bending operator is easily understood and predictable, hence intuitive. I present further 

evidence of this in Chapter 5 by demonstrating the bending operator for several more 

complex examples. The power of the bending operator comes from its ability perform a 

large variety of surface shaping tasks. This ability derives from defining the bending 

operator by means of a bending surface that may be quite complex. We saw in Section 3.2 

that the bending operator is independent of patch type and thus can be applied to a wide 

variety of patch types in current use. Furthermore, we saw in Section 3.5 that it is possible 

to apply the bending operator to more complex models made up of a mesh of patches. It 

is these reasons that justify calling the bending operator general purpose. The main 

problem with applying the bending operator to models with a complex topology is that 

the operator can only be applied to pieces of the model and not to the whole model at 

once. This tends to be a characteristic problem of surface-based modeling tools and an 

area where tools based on space warp excel. 

 

A big problem is that the bending operator is slow. Since the bending operator is based on 

minimization of a complex and nonlinear penalty function, the computational workload is 
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very high, making the algorithm too slow to operate at interactive speeds on current 

workstations. On an HP-730 workstation a single application of the bending operator 

takes seconds to minutes depending on the complexity of the surface and the bending 

tool. Any modeling tool based on minimization techniques can be expected to have high 

computational requirements. Other research groups working on such tools have mostly 

sacrificed accuracy for speed by using linear or quadratic approximations for the penalty 

functions. This kind of tradeoff could be made for the bending operator also, but I chose 

not to do this in the current work. My reason is that the algorithm is complicated enough 

that I think it would be impossible to separate the effects of approximation errors from 

the occasionally unexpected effects of the operator itself. An example of such unexpected 

effects are the edge effects. 

 

Edge effects seem to be a problem for the bending operator. These effects appear when a 

particular operation causes a large change of curvature near the edge or corner of a patch. 

The symptom is that the surface metric changes more at the edge than in the center of the 

patch. An example is using the bending operator to place a dent or bump in a surface. If 

the bump is near the center of the patch, everything is fine, but if it close to an edge or 

corner, the surface there tends to contract, causing the bump to be asymmetrical. Before I 

added a penalty function to resist collapse, such bumps even caused the surface to fold 

over or collapse to a point.  With collapse resistance, this problem is more annoying than 

crippling. By this I mean that the bending operator does approximately what one would 

expect near edges, but with a noticeable error. I do not fully understand these edge 

effects, but I speculate that they occur because near an edge, there is less surface area 

nearby to contribute to the metric penalty function.  Effectively this causes the surface to 

be "softer" at edges and corners. In support of this speculation, I note that no edge effects 

occur at interior edges and vertices of a mesh of patches. Thus one way to eliminate edge 

effects is to surround the target patch with extra patches. Furthermore, the range of action 

tool tends to reduce, though not eliminate, these edge effects. 

 

I believe the bending operator is an important new tool for surface-based geometric 

modelers.  Although it is slow, it can do in one intuitive step complex surface operations 

that might take many steps or be impossible with other tools.  Although the bending 
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operator can only be applied to parts of complex models, it is still very useful for those 

parts. Since people tend to build complex models hierarchically, I expect that the bending 

operator will be mostly used for parts of the model at fairly low levels of the hierarchy.  
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Chapter 4 

Applying the methodology to another problem: Joining 
 

My goal in this chapter is to demonstrate that the methods used to implement the bending 

operator are very general and can be applied to a variety of surface shaping tasks. I do this 

by presenting a detailed case study of applying these methods to an important problem in 

3-D graphics modeling, the joining problem. This is the problem of fitting together a set 

of curved surface patches into a mesh such that a specified degree of smoothness is 

attained across the interior edges and vertices of the mesh. The chapter has three main 

sections. Section 4.1 is a discussion of the general characteristics, advantages, and 

disadvantages of variational methods for surface shaping. Section 4.2 defines the joining 

problem in more detail and presents a brief review of the state of the art. Section 4.3 

presents an outline of a joining algorithm based on variational techniques. 

 

4.1 The role of variational techniques in surface shaping algorithms 

 

Variational techniques are powerful because they automatically turn a local specification 

of a shape goal – the penalty function – into a global algorithm for shaping the surface to 

attain the goal. It is often easier to formulate the desirable properties for a surface locally 

rather than globally. A local surface goal is simply a non-negative function defined at 

each point of a surface. The better the surface meets the goal, the smaller the function 

value is at any point. In the case of bending, for example, the goal of changing the surface 

normals was formulated as a term in the composite penalty function that measured the 

difference between the actual and desired surface normals. The precise definition of the 

penalty function depends on the task to be achieved, and producing a good one is as much 

an art as a science. The penalty function is usually defined in terms of the local geometric 

properties of the surface. In Chapter 3 the penalty function for the bending algorithm was 
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defined in terms of the desired normals and the metric for the goal surface. In this chapter 

the penalty function for joining is defined in terms of constraint equations imposed by the 

requirement for smoothness across patch edges and in terms of a "fairness functional" that 

measures how fair, or free of unnecessary bumps and wiggles the surface is. 

 

Algorithms based on variational techniques have two main problems. First, they take a lot 

of computing and thus tend to be slow. It is only in recent years with the advent of 

desktop workstations with substantial floating point compute power that variational 

algorithms have become practical at all. Except in special cases in which the penalty 

function is quadratic, variational algorithms are too slow for interactive use, taking 

seconds to minutes per operation. Quadratic penalty functions are special because they 

can be minimized using linear algebra methods, with speedups of orders of magnitude 

compared to arbitrary penalty functions. The other main problem comes about because 

variational algorithms are indirect – we want some global change of shape, but we specify 

a local penalty function. Sometimes it is hard to predict exactly what global effects a 

given local penalty function will produce. For example, the bending operator had 

unexpected edge effects. Also, it may be necessary to "tune" the penalty function by 

adding components to prevent undesired behavior. An example is the collapse resistance 

term in the penalty function for the bending operator. 

 

4.2 Background of the joining problem 

 

The joining problem is important because in practice it is impossible to build a complex 

graphics model from a single patch. The model may have branching surfaces or cycles, 

making it impossible to assign a consistent two-dimensional coordinate system to the 

whole object. Even in cases where it is theoretically possible to use a single complex 

patch, it is often more convenient to use several simpler patches. As mentioned in 

Chapter 2, a good modeling system should support hierarchical models in which 

independently designed parts are combined to produce more complex objects. Therefore, 

objects need to be composed of several patches. This raises the question of how to join 

them together. It is often required that certain smoothness criteria be met at shared 



 

 lxxv 

vertices and edges. For example, to avoid visible seams a minimum requirement is 

continuity of normal vectors across patch edges. 

 

This section presents some definitions and results from recent research on joining. A 

definition is presented of what it means for patches to join smoothly, that is, to join with 

what is called geometric continuity. Producing a geometrically continuous join between 

two arbitrary patches requires solutions of a system of non-linear partial differential 

equations (PDE’s) and thus is a hard problem. For a large class of patches based on 

control points, the PDE system can be reduced to a set of non-linear algebraic constraints 

on the patch control points and a set of free variables. 

 

4.2.1 Definition of geometric continuity 

 

It has been agreed in the graphics community that the correct notion for smooth joining of 

patches is that of geometric continuity. Roughly speaking, a mesh of patches joins with 

geometric continuity of degree k, denoted G
k
, if an arbitrary point in the mesh cannot be 

distinguished locally from a point of a C
k
 continuous patch. A precise definition and an 

explanation of why this is the right concept is given later in this section. Several authors 

independently defined G
1
 and G

2
 continuity of surfaces (cf. [ Sabin 76 ] and 

[ Vernon 76 ]) using geometric surface properties. T. DeRose presented the first 

systematic treatment of geometric continuity of arbitrary degree in his Ph.D. dissertation 

[ DeRose 85 ]. He gave a method for constructing the constraint equations, known as 

Beta constraints, that are necessary and sufficient for geometric continuity of arbitrary 

order for a mesh of patches. 

 

The following definition for geometric continuity of a join between two surface patches is 

adapted from [ DeRose 85 ]. It is based on the idea that how the patches of a mesh are 

parameterized is irrelevant to the geometry of the resulting surface. Changing the way a 

patch is parameterized does not change the set of points in 
3
 that comprise the surface, 

and in modeling it is only this set of points that we are usually concerned with. To begin, 

we need a new definition of a surface patch. This definition is more elaborate than the 

definition of a patch used in Chapter 3 to allow for domains other than rectangles. This is 
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needed because current modeling practice makes use of various shapes for patch domains, 

particularly triangles. 

 

Definition 4.2.1-1. A domain is a closed, connected, and bounded subset D of 
2
, with a 

finite number of edge curves Ei  that can be piecewise regularly C


 parameterized as 

Ei s  , s  0,1 . A C
k
 patch  on D is a regular (Jacobian has rank 2) mapping c: D  

3
 

that has continuous derivatives through order k on D.  

 

The regularity requirement excludes various singularities such as cusps and conical points 

and ensures that there is a well-defined normal vector at every point. Note that c has to be 

defined on some open set containing D in order for the C
k
 condition to make sense. 

 

Definition 4.2.1-2. Let be a function from a subset of 
n
 to 

n
. is said to be a C


 

diffeomorphism if is invertible and both  and 
1

 possess continuous derivatives of all 

orders.  is said to be orientation preserving if the Jacobian of  has a positive 

determinant at all points. In the case of n  2 , this is equivalent to u

1
v

2
u

2
v

1
0 . 

 

Definition 4.2.1-3. Two C
k
 patches c1:D1 

3
 and c2 :D2 

3
, defined on domains 

D1  and D2 , join with geometric continuity G
k
 along edges E1  and E2  if there exist 

orientation-preserving C


diffeomorphisms  1 and  2  such that 1

1
E1 s   2

1
E2 s   

for s  0,1 ,  1

1
D1  and 2

1
D2 overlap only on the common edge 1

1
E1 0,1   , and 

the composite map c1 1  c2 2  is a C
k
 function at all points of the edge 

1

1
E1 0,1   . 
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D1

D2

1

2

E1

E2

c1

c2 c1c2





 

 

Figure 4.2.1-1 Edge joining with geometric continuity 

 

This definition essentially says that an edge join has G
k

 continuity if some (orientation-

preserving) reparameterization of the composite surface has C
k
 continuity. Figure 4.2.1-1 

illustrates the spaces and functions involved. This is an adaptation of the definition of an 

oriented, two-dimensional manifold from differential geometry. The orientation-

preserving property of the reparameterizations ensures that the normal vectors cannot flip 

over at edge joins4. 

 

Geometric continuity is the right concept of smoothness for geometric modeling because 

reparameterization of a patch does not change its geometric properties. Furthermore, there 

                                                 
4 There is also a concept of weak geometric continuity in which the orientation preservation requirement is dropped, 
but in computer graphics, it is not very useful because it can lead to "smooth" surfaces without smooth normals. This 
interferes, for example, with rendering algorithms. 
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are benefits to be gained from taking the trouble to handle continuity of joins properly. 

DeRose shows G
k
continuity is less restrictive than C

k
 continuity. This means that the 

class of possible patch types that can be use in modeling surfaces is larger. Other 

advantages are discussed later in this section. 

 

4.2.2 Implications of G
k
continuity 

 

Direct application of the definition G
k
 continuity is not very useful for computer 

implementations because it would require working with the function space of all 

diffeomorphisms. DeRose presents a general procedure for deriving a set of constraint 

equations, the Beta constraints, that are necessary and sufficient for G
k

 continuity. To 

state his result, some notational machinery is needed. Let us denote the mixed partial 

derivative of a function f of two variables taken i times in the first variable and j times in 

the second variable by Di, j f . In the usual notation, Di, j f u,v  
 i j f u,v 

u
i
v

j . Repeated 

application of the chain rule and product rule to the composite function f s u,v ,t u,v   

yields a polynomial in terms of the mixed partial derivatives up to order i  j  of f, s, and 

t.  This polynomial is hard to write down explicitly for the general case.  A statement of 

the formula is given in Loomis and Sternberg [ Loomis 90 ], but we will not need it here. 

Denoting this polynomial by Pi , j ,  we have 

 

 
Di, j f s u,v ,t u,v   

Pi , j D11 f ,D12 f , D21 f ,..., Dm,n f ,D11s, D12s, D21s,..., D11t, D12t, D21t,... 
. 

 

This formula is abbreviated in the following by  

 

 Di, j f s u,v ,t u,v   Pi, j Dm,n f , Dm ,ns,Dm ,nt . 

 

DeRose states and proves the following theorem (Theorem 2.2 in his dissertation). 

 

Theorem 4.2.2-1. Let c1:D1 
3
 and c2 :D2 

3
 be C

k
 patches that join with 

geometric continuity G
k
 along shared edges E1  and E2  as in Definition 4.2.1-3. Further 
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assume that D1  has coordinates s and t such that edge E1  is obtained by fixing s at s0  and 

letting t vary, i.e., s0,t E1 t  for t  0,1  (this can be achieved by a suitable change of 

parameterization). Then c1  and c2  meet with G
k

 continuity along edge c1 E1  if and only 

if there exist functions k

u
t  and k

v
t  such that the partial differential equations (PDEs) 

 

 
 ic1

u
i u0,t  Pi,o

 j lc2

u
j
v

l 0

u
t ,0

v
t  , j

u
t , j

v
t 




 


 (4.2.2-1) 

 

are satisfied for i 1,....,k , and 

 

 1

u
t 

d0

v

dt
t  0

u
t 

d1

v

dt
t   0 . 

 

The functions k

u
t  and k

v
t  are called the Beta constraints. The functions 0

u
 and 0

v
 

are determined by the requirement that the patch edges meet, and the functions 1

u
 and 1

v
 

are constrained by the inequality in the theorem. The rest of the Beta constraints are 

completely arbitrary C


 functions. The idea of DeRose's proof is to choose a 

diffeomorphism  such that c1  and c2   form a composite C
k
 function. The equation 

c1  c2   is satisfied on the edge E1 . The Beta constraint functions turn out to be simply 

the partial derivatives of the component functions of  in the cross-edge direction. 

DeRose states that the PDE system of equation 4.2.2-1 is not necessarily solvable for a 

given patch type. 

 

For a mesh of patches with G
k
 continuity, there are 2k  Beta constraints per edge. To 

completely define a mesh of patches that has G
k

 continuity, the continuity at shared 

vertices as well as shared edges has to be defined. A detailed discussion of G
k

 continuity 

at shared vertices can be found in  [ DeRose 85 ] and [ Gregory 89 ]. I omit these details 

because they are not necessary to support my points. The main difficulty at a shared 

vertex is to make sure that the patches properly "wrap around" the vertex. 

  

Solving, or even setting up the Beta constraint equations for a given patch type is a hard 

problem. Obtaining solutions to this problem is an open research area. A common 
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approach is to design new patch types such that the solvability of the continuity equations 

is "built in" [ DeRose 88 ] [ Loop 90 ] [ Halstead 93 ]. Another common technique is to 

restrict the Beta constraints to being constant functions. DeRose shows that for tensor 

product surfaces the Beta constraint functions are, in fact, constant [ DeRose 85 ]. Even 

with this restriction, there are still too many Beta constraints for direct user control of 

them. In practice, some of them are fixed and others are ganged together such that a 

single control variable determines a set of Beta constraints. An example of this technique 

is the Beta-spline curve [ Barsky 81 ], which exploits the extra freedom of geometric 

continuity by giving the user direct control over some of the Beta constraints.  

 

4.2.3 Producing algebraic continuity constraints 

 

For an important class of patch types based on control points the Beta constraint 

equations can be reduced to an algebraic system, using a well-known technique. Let D be 

a patch domain in 
2
 with coordinates u and v as in definition 4.2.1-1. Suppose we have 

a finite number of basis functions Nj u, v   for j 1, ... ,n , such that Nj u, v   is a 

piecewise polynomial or rational function of u and v on D. Consider patches that are 

linear combinations of the form 

 

 c u,v  bj

j1

n

 Nj u,v , 

 

where b j  is  a point in 
3
. The b j  are called control points and the Nj u, v   are called 

basis functions. Many commonly used patch types, including tensor product B-spline 

patches, tensor product Bezier patches, triangular Bezier patches, and non-uniform 

rational B-splines (NURBS) can be expressed in this form. Since Nj u, v   is a polynomial 

or rational function, so are all of its partial derivatives with respect to u and v of all 

orders. The partial derivatives of c are also polynomial or rational functions because 

differentiation is a linear operator. This means that all the partial derivatives that appear 

in equations 4.2.2-1 can be replaced by polynomial or rational functions, converting the 

PDE system to an algebraic system. 
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4.3 A variational algorithm for joining 

 

In this section I describe several forms of the joining problem and show that they can be 

reduced to a common form. I outline how the optimization methods used in the bending 

algorithm can be adapted to produce an algorithm for joining patches. The requirement of 

inter-patch geometric continuity leads to a non-linear constrained minimization 

algorithm. The penalty function is chosen to make the resulting surface as fair as possible. 

 

4.3.1 Classification of joining problems 

 

Most of the joining problems met in graphics modeling practice fall into one of the 

following three classes:  

 

1.  Edge-Edge. Join two patches by pulling together two edges that are not initially 

contiguous, such that the join has a specified geometric continuity of degree k. One 

or both of the patches may deform during the joining process. A precise definition 

of geometric continuity of degree k was presented in section 4.2. 

 

2. Blend. Join the edges of two patches by connecting them with a third patch that 

fills in the gap with a specified degree of geometric continuity at both edges. The 

two patches being connected usually do not deform during the process. 

 

3. Edge-Curve. Join two patches by gluing the edge of one to a curve in the other 

with a specified degree of geometric continuity at the joining curve. The patch 

containing the curve does not deform during the process. 

 

I consider the Edge-Edge joining problem to be fundamental because a solution for it can 

be applied to solve both the Blend and Edge-Curve joining problems. 

 

The Edge-Edge Joining Problem. The problem is to pull together the edges of two patches 

so that the patches join with a specified continuity across the edge. What is needed to 

make this a well-defined mathematical problem? Four pieces of information are needed: 
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1. Edge matching - how the corresponding points on the two edges should match up. 

2. Softness - what parts of the patches are allowed to deform during the process. 

3. Position - the initial positions and orientations of the patches. 

4. Continuity - the degree of geometric continuity at the edge after joining. 

 

The details of exactly how this information is specified is necessarily intertwined with the 

design of the joining algorithm. An outline for an Edge-Edge joining algorithm is given in 

section 4.3.2, and these details are discussed in that section. 

 

Reducing Other Joining Problems to Edge-Edge Joining. Earlier I claimed that Blend and 

Edge-Curve joins can be reduced to Edge-Edge joins. This is fairly easy to see for Blend 

joins, in which two patch edges are to be interpolated by a third patch. Let us call the two 

patches to be joined A and B and the Blend patch C. Patches A and B are usually not 

allowed to deform during the joining process. Initially C is any patch which is reasonably 

close to A and B, it does not need to be touching. We simply perform two Edge-Edge 

joins, one from A to C and one from C to B. The trick is to assign a zero value to the 

softness measure of A and B, so they do not deform during the joining process. During 

the second Edge-Edge join B-C, the geometric continuity constraints for both the A-C and 

B-C edges have to be preserved. Because of this, it may turn out to be more efficient in an 

implementation to perform the A-C and B-C joins simultaneously. 

 

The Edge-Curve problem is harder. Say we want to join an edge of patch A to a curve c 

lying in the interior of patch B. If a zero value is assigned to the softness of patch B, it is 

clear that this can be handled in the same way as the Edge-Edge case. However, there is a 

possible problem with the continuity constraints, namely, that there is no a priori reason 

to think that they can be satisfied for a particular type of patch. All that can be said is that 

if the continuity constraints are solvable then the joining problem is solvable. One way to 

be sure that the continuity constraints are solvable is to split patch B into two patches of 

the same type, such that curve c becomes an edge curve. If this is possible, the Edge-

Curve join is possible and the problem is identical to the Edge-Edge problem. 
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4.3.2 Outline of an algorithm for Edge-Edge joins 

 

It is now time to follow up the earlier suggestion that joining can be formulated as a 

constrained minimization problem. The objective function is a weighted sum of three 

penalty functions that measure various surface characteristics. One penalty function 

measures in some sense how "fair," or free of unnecessary bumps and wiggles, the 

surfaces are after the joining is completed. Another penalty function measures how much 

the patches being joined are distorted from their original shapes. A third penalty function 

measures how well the corresponding points on either side of the edge match up. The 

constraints are the Beta constraints discussed in Section 4.2. These are equations that, if 

satisfied, guarantee that the required continuity condition holds across the join. The 

patches are assumed to be defined by some finite number of control points, e.g., B-spline 

patches. These control points are the variables that the minimizer manipulates; they are 

not directly available to the user. Rather, the user specifies the four pieces of information 

needed to define the join via a graphical interactive interface, after which the joining 

process is automatic. 

 

What are the penalty functions and constraint equations? I present what I think is a good 

way of specifying them and justify my choices. First of all, it would be desirable to 

specify the penalty functions and constraints without reference to the specific patch type 

so that the algorithm would be general purpose. This is no problem for the penalty 

functions but seems to be impractical for the continuity constraint equations. As shown in 

section 4.2, the continuity constraints are very complex. There is no practical patch type-

independent way to solve them that I know of. Hence, the algorithm must be built around 

a patch type or types for which it is known how to solve the constraints. Furthermore, the 

most general form of the constraint equations were shown to involve 2n  arbitrary 

functions (the Beta constrains) per edge to be joined. I make the usual assumption that 

these functions are constant. This assumption does cause some loss of flexibility in the 

resulting joined surfaces, but without it the problem has too many degrees of freedom for 

my proposed method to be used. A possible extension of this research would be to 

approximate the Beta constraint functions using finite element methods. In any event, 
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some technique has to be used to produce a finite number of variables for the 

minimization algorithm to work with. 

 

The difficulty with the continuity constraint equations is that they must be solved exactly, 

at least in theory. In a computer implementation the constraint equations must be 

numerically satisfied to a very high accuracy. If, for example, the patch edges do not quite 

meet, there will be pin-holes and cracks visible in a rendered scene. These types of 

artifacts are very visibly objectionable. For this reason I doubt that the standard technique 

of converting the problem to an unconstrained minimization by turning the constraints 

into penalty functions would work. A high weighting factor would have to be assigned to 

the constraint penalty functions to get high accuracy, which might make the algorithm 

become numerically unstable. (I note, however, that Moreton and Sequin [ Moreton 92 ] 

implemented a system for filling in fair surfaces between outline curves that uses this 

unconstrained minimization technique. Their paper does not discuss any numerical 

problems or defects in the resulting joins.) Furthermore, the constraint equations must not 

be so restrictive that they leave no "yield" in the surface, or else the minimizer would 

have nothing to do, and the resulting surface might not be very fair. 

 

We are ready to discuss how to set up the penalty functions and constraint equations. The 

goal is to do this in such a way that the user interface is simple and intuitive. The logical 

way to proceed is to organize around the four pieces of information that we need from the 

user. In the following discussion, assume that the user has selected two patches c1  and c2  

to be joined along edges E1  and E2 . 

 

Edge matching. Suppose the two edges to be joined are parameterized as E1 s  and E2 s  

for s  0,1 . Let 1 s  and2 s  be smooth, increasing or decreasing functions from 0,1  

onto 0,1  that are specified by the user to indicate how corresponding points on the two 

edges should match. Note that a decreasing function is needed to reverse the direction of 

one of the edges. After the joining is completed, we would ideally like to 

have E1 1 s   E2 2 s  . This requirement is too restrictive, however, as there is a 

danger of not leaving enough yield in the surface. Furthermore, an exact equality might 

not be compatible with the continuity constraint equations. Since the end goal is to 
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produce a seamless surface, it does not seem very important that edge matching be exact 

except at the end points of the edge. That is, as long as the continuity constraints are 

satisfied, it does not seem matter if there is some slippage along the direction of the edge. 

Finally, an exact edge match presents difficulties in the user interface – how could it be 

specified? For these reasons it is preferable to define a penalty function for edge 

matching. I define the penalty function as an integral of the deviation of the match along 

the edge: 

 

 edge  E1 1 s   E2 2 s  
2 E1

' s   E2

' s  
L E1  L E2 

ds
0

1

 , 

 

where L E   is the arc length of edge E. The term 
E1

' s   E2

' s  
L E1  L E2 

 is included as a 

weighting factor so that equal lengths of the edge curves will receive equal weight in the 

integral. The rationale for the weighting factor comes from the fact that integrating the 

magnitude of the tangent vector of a curve gives the length of the curve: 

L E   E
'

s  ds
0

1

 . Dividing by the curve length yields a unit weight over the curve. The 

factor is symmetrical between the two curves because the problem statement is 

symmetrical. Possibly this weighting factor is unnecessary; some experimentation is 

needed to decide. Note that this penalty function does not force the end points of the edge 

curves to meet exactly, nor does it need to, since this requirement will be enforced by the 

continuity constraint equations. Likewise, the continuity constraint equations keep the 

edge curves from pulling apart. 

 

There remains the issue of just how the user specifies the two functions 1 s  and 2 s . 

Here I propose to use control points. I argued against the use of control points earlier, but 

that was for the direct specification of surfaces. Control points work very well for low 

dimensional problems, however, and this is essentially such a problem. Specifically, I 

propose to provide an interactive tool as shown in Figure 4.3-1. 
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Control Points  

 

Figure 4.3-1 Edge matching tool 

 

To use the tool the user slides the control points along the horizontal lines, which 

represent the parameter spaces of the two edges. The control points at the ends would not 

be movable. There would be a way to add or delete control points. As the control points 

of the tool are moved interactively, highlighted points would move correspondingly in a 

3-D display of the scene reflecting the 3-D locations of the control points on the edges. 

The functions 1 s  and 2 s  are low (probably cubic) order B-spline functions based on 

these control points. Various refinements of this scheme are possible, and some 

experimentation would be needed to find out what works best. For example, the density 

of control points might be used as a weighting factor in the penalty function. 

 

Softness. The problem here is to specify what parts of the two patches are allowed to 

deform and what parts are to remain fixed during the joining process. To establish the 

notation, suppose we are joining two patches, c1: 0,1 
2


3
 and c2 : 0,1 

2


3
, and 

that the edges selected by the user to be joined are E1 s  c1 1,s  and E2 s   c2 0,s  as 

shown in Figure 4.3-2. 
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Figure 4.3-2 Softness function 

 

Suppose the user has supplied two weight functions, w1: 0,1 
2
 0,1  and 

w2 : 0,1 
2
 0,1  . Our goal is to develop a penalty function which allows the surfaces to 

deform where the weights are positive and keeps the surfaces fixed where the weight is 

zero. The amount of deformation permitted should be roughly proportional to the weight, 

hence the term softness of the surface. The user may set one of the weight functions to 

zero, effectively fixing the location of one of the patches. During the joining process, the 

deformation should be controlled to make the resulting surface "fair", that is, in some 

sense the resulting surface should be as smooth as possible. We do not want unnecessary 

ripples and bulges to form during the bending process. Based on these considerations I 

define two penalty functions 

 

  fix  1  w1  fixdA
S1

  1  w2  fixdA
S2

  

and 
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 deform  w1deformdA
S1

  w2deformdA
S2

 . 

 

The function  fix  measures the deviation of the patch from its original shape at a point in 

the patch parameter space. The function deform  is a "fairness functional" of the surface, 

that is, it measures the smoothness of the surface in a sense that will be defined shortly. 

The total penalty function is a weighted sum of the terms  edge ,  fix , and deform . There is 

some competition between  fix  and deform  , in that minimizing  fix  tends to preserve 

surface features and minimizing deform  tends to remove surface features. In some 

applications the former may be desirable behavior, and in others the latter may be more 

desirable. The user-controlled weight functions w 1 and w2  determine which behavior will 

dominate. 

 

I define  fix  as the square of the deviation of the patch from its original position. Thus for 

patch c1 , denoting the original patch before bending as c1

0
, we have 

 

  fix  c1  c1

0 2

. 

 

As it is stated, this definition depends on how the patch is parameterized. Eliminating this 

dependence is an unsolved problem. The function  fix  could alternatively be defined as a 

measure of the deviation of the patch from its original shape, i.e.,  fix  could be defined 

such that it was not sensitive to rotation and translation. Such a definition could be based 

on preservation of the first and second fundamental forms of the patch, as was done for 

the range of action operator described in Chapter 3. I prefer the position-dependent 

definition of  fix  for two reasons. First, I expect the user would position and orient the 

patches to be joined approximately before running the joining algorithm. If the patches 

could then move or rotate, the effect of the joining would be less intuitive as well as less 

controllable by the user. Second, the position-independent definition is much simpler, so 

it should require less computing. 

 

The problem of defining deform  has been well-researched [ Hagen 87 ] [ Lott 88 ] 

[ Celnicker 91 ] [ Moreton 92 ], and several methods have been discovered that will do a 
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reasonable job. A common technique for generating fair surfaces is to minimize strain 

energy, which can be done by minimizing local curvature. This is accomplished by 

minimizing 

 

 1

2
  2

2 dA
S

 , 

where  1  and  2  are the principal curvatures on the surface. These are defined and 

discussed in Appendix A. The function 1

2
2

2
 is the basis of Koenderink's "curvedness" 

measure for surfaces. 

 

Moreton recently showed [ Moreton 92 ] that minimizing the total variation of curvature 

rather than the total curvedness seems to produce fairer surfaces. Therefore, I adopt his 

fairness functional 

 

 deform  e1
1 

2

 e2
2 

2

, 

 

where v f  denotes the directional derivative of a function f with respect to a vector v and 

e1  and e2  are the principal directions (the directions in which the principal curvatures are 

attained, also discussed in Appendix A). 

 

How does the user specify the weight functions w 1 and w2 ? I propose to provide a tool by 

which the user can place a pair of nested rectangles in the parameter space of each patch. 

Figure 4.3-3 shows a possible appearance for the tool. 
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Figure 4.3-3 Softness tool 

 

The weight function is be 0 outside the larger rectangle, 1 inside the smaller rectangle, 

and some smooth interpolating function in between. This is very similar to the range of 

action tool in the bending prototype software. Experience with the range of action tool 

indicates a need for a transition region where the weight function interpolates between 0 

and 1. There is likely to be a noticeable seam in the final surface without this transition 

region.  If a single rectangle doesn't give fine enough control, the tool could provide for 

arbitrary polygonal regions or regions bounded by smooth curves. Some experimentation 

will be needed to see how elaborate a tool needs to be. 

 

Position. The position and orientation of the two patches affect the bending process via 

the penalty function  fix  which is defined in the previous section. No special tools are 

needed for user specification beyond the customary object space positioning tools that 

any 3-D modeling system would have to provide. 

 

Continuity. The only user input needed is the value of k to specify a join with 

G
k
continuity. 

 

Putting the pieces together. The joining algorithm comprises an interface via which the 

user specifies the details of a join and an automatic solver that does the join. The solver 

has two tasks, to solve the continuity constraint equations and to minimize a penalty 

function while maintaining the constraints so as to produce a fair composite surface. The 

total penalty function is a weighted sum of the individual penalty functions defined in the 

previous paragraphs. The variables that the solver manipulates are the locations of the 

patch control points. Because of the complexity of the constraint equations, the joining 

algorithm will be restricted to using one or a few patch types for which it is known how 

to solve the constraints. 

 

It appears be desirable that the solver operate in three stages. In the first stage an 

approximate solution is computed to an unconstrained minimization problem in which 
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the continuity constraints are replaced by penalty functions. In the second stage the 

constraints are solved exactly, or at least to high precision. In the third stage the full 

constrained minimization problem is solved. There are two reasons for this multi-stage 

method. First and most important, solving the constraint equations when the edges to be 

joined are far apart may drastically alter the shapes of the patches. Since the minimization 

process finds a local minimum, it might converge to a surface that has little resemblance 

to the original patches. Second, a constrained minimization is probably not as efficient as 

a unconstrained minimization. Hence, the total time will be reduced by doing part of the 

work as an unconstrained minimization.  

 

I expect that there will be problems with the speed of this algorithm. I discussed in 

Chapter 3 that the bending algorithm is too slow on current workstations for interactive 

use, taking seconds to minutes to perform a single bending operation. I argued there that 

nevertheless, the algorithm is still useful because it can do surface shaping tasks that 

might take much longer or be impossible to do any other way. The penalty functions for 

the joining algorithm are not more complex than those of the bending algorithm, but a 

constrained rather than an unconstrained minimization is needed. Also, the constraints are 

not initially satisfied, so they have to be solved. For these reasons I expect that the joining 

algorithm will be slower, perhaps by a factor of 2-4, than the bending algorithm on 

problems of similar size. My implementation of the bending operator for a mesh of 

patches can be considered to be a limited form of joining, because a set of linear 

constraints on the patch edges has to be initially solved and maintained during the 

bending process. I estimate that the inclusion of the linear constraints slows down the 

program by 30-50%. Solving non-linear edge constraints will not be as efficient as linear 

edge constraints, hence the larger factor of 2-4. Unfortunately, joining problems 

inherently involve multiple patches and hence are likely to be bigger than bending 

problems, resulting in a further slowdown of the algorithm. There are three possibilities 

for solving the speed problem. First, it may be possible to use quadratic approximations 

for the penalty functions. Other researchers have achieved dramatic speed improvements 

for similar algorithms this way. Second, there is good potential in the algorithm for using 

parallelism. For example, the penalty functions get evaluated at many sample points, and 
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in principle this can be done in parallel. The third possibility is to simply wait a few years 

– the available desktop workstations still show a trend of getting much faster every year. 

 

4.4 Summary and conclusions 

 

In this chapter I presented a definition of the joining problem and an outline for an 

variational algorithm to solve it. There are two reasons that I thought this problem is 

worth addressing. First, I wanted to show by means of a non-trivial example that the 

optimization techniques used to solve the bending problem are quite general and 

applicable to a large variety of surface shaping tasks. Second, I am interested in the 

general problem of geometric modeling with curved surfaces, and as I explained, this 

problem requires the use of multiple patches, and so a way of joining patches is needed. 

Though there have been several recent research papers addressing special cases, nobody 

has yet published a  fully general purpose solution. The nearest approach to date is a 

paper by Moreton and Sequin [ Moreton 92 ] which describes a system for filling in 

smooth surfaces between a set of fixed outline curves. I explain later why I think my 

approach could be developed into a general purpose solution with some further work. 

 

I presented a summary of T. DeRose's  definition and analysis of what geometric 

continuity of a join means and why it is the proper criteria for smoothness for joins. He 

showed that for arbitrary patches the requirement of geometric continuity leads to a 

system of non-linear partial differential equations that must be satisfied on patch edges 

and that for a large class of patch types the PDE system can be turned into an algebraic 

system. Even for an algebraic system, as opposed to a PDE system, the problem of 

solving or even setting up the equations is very hard and is an active research area in the 

field of geometric modeling. 

 

The algorithm I outlined addresses the problem of joining two patches at a common edge. 

I argued that this is the fundamental joining problem, since the other types of joining can 

be reduced to this type. The user has to supply information about how the edges should 

match up after the join, what parts of the patches involved are allowed to deform, how the 

patches are positioned and oriented with respect to each other, and what degree of 
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geometric continuity should hold after the join is complete. This information is used to 

set up penalty functions to drive minimization algorithm. The main difficulty that 

appeared is the need to perform a constrained minimization so that the continuity 

constraints are met. 

 

I believe my approach could be developed into a fairly general purpose solution except 

for restrictions on the patch types supported. Restrictions on patch types are due to the 

difficulty of setting up and solving the continuity constraints; this problem is not unique 

to my particular approach. To carry out further development would require addressing 

three problems. First, the details of handling all three types of joins, and not just edge-

edge, would have to be worked out. Second, continuity constraints on vertices would 

have to be incorporated. Third, the problem of speed of the algorithm would have to be 

addressed. 
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Chapter 5 

Results 
 

This chapter describes the prototype software that I developed for the bending operator 

and shows some results of applying the bending operator. It comprises two main topics. 

First is a description of the user interface and an explanation of how the interactive 

controls work. Second is a series of examples showing the application of various bending 

operators to a single patch and to a mesh of patches. 

 

5.1 Description of prototype software 

 

The prototype software is a program that enables a user to interact graphically with the 

bending operator, using the X-windows system on a workstation with a color display. 

This program is not a complete graphics modeling system; it only provides a convenient 

set of functions for experimenting with the bending operator. The program creates two 

windows, a control panel window and a viewing window. The user directs the action of 

the program by manipulating widgets in the control panel using the mouse pointer. The 

controls are implemented using the InterViews tool kit5. The viewing window provides a 

perspective view of a 3-D scene containing the patch being manipulated. When the 

program is started, an initialization file is loaded that defines the patch geometry and 

initial values for the controls.  

 

                                                 
5InterViews is a public domain software package developed at Stanford University by Mark Linton. 
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5.1.1 The control panel 

 

Figure 5.1.1-1 shows the control panel. 
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Figure 5.1.1-1 Control panel 

 

It is divided into five functional areas which are explained below. This section only 

summarizes the control panel; detailed instructions for using the program are in a separate 

programmer's manual. The functional areas are 
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 A. mouse-sensitive widgets for viewing control 

 B. buttons for initiating actions and setting states 

 C. sliders for setting various analog parameters 

 D. widgets for positioning the bending operator and range of action 

 E. pull-down menus for selecting various options 

 

Area A contains controls for adjusting the parameters for the viewing window. The five 

beveled pads are widgets that are sensitive to mouse movements and mouse button 

depressions.  The widgets control rotation, scale, and translation of the model space, as 

indicated by the icons. 

 

Area B contains push buttons that initiate some action and toggle buttons that set the state 

of a boolean variable. The toggle buttons have a small indicator patch which is bright for 

true and dim for false values. The main buttons are 

 

 1. Execute - apply the current bending operator 

 2. Reinit - abort the current bending operator 

 3. Undo - undo the last bending operation 

 4. Render - show a shaded surface instead of a wireframe for the patch 

 5. ShowCp - show the control point mesh of the patch 

 6. ShowGrid - show a wireframe display of the patch 

 7. DesNormals - show the desired normal vectors 

 8. RangeAct - activate the range of action positioning control 

 9. BendOp - activate the bending operator positioning control 

 10. NewBendop - make the current patch into a bending operator 

 

The other buttons are described in later sections of this chapter where appropriate. 

 

Area C contains sliders for adjusting parameters used by the program. The sliders are 

 

1. Error Weight - sets the error threshold for terminating the minimization 

algorithm.  
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2. Normal/Metric - sets the relative weight assigned to the penalty functions for 

the desired normals and the metric. When the slider indicator is at a position x 

units from the left on a scale from 0 to 1, the normal error gets weight x and 

the metric error gets weight 1-x. 

3. Range of Action Weight - sets the weight multiplier of the range of action  

region. 

4. Collapse Weight - sets the weight multiplier for the collapse penalty function. 

 

Area D contains widgets for positioning the bending operator and the range of action with 

respect to the target patch. Figure 5.1.1-2 shows area D in more detail. 

 
File Name : pos itioner.eps

Title :  Positioner Widgets

Creator :  Is landDraw for rhoades

CreationDate :  Tue Aug 17 1993

Pages  :  1

 

Figure 5.1.1-2 Positioner widgets 

 

The large inset gray area represents the target patch parameter space. The black square in 

the center represents the unit square 0,1 
2
 which is the target patch domain. The light 

gray (red on a color display) oblique rectangle is the positioner control for the bending 
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operator. The dark gray (green on a color display) oblique rectangle is the positioner 

control for the range of action region. Both of these controls have three small circles at 

the center and middles of two edges. These circles are handles that can be grabbed and 

moved using the mouse pointer. Moving the center handle translates the control rectangle 

in parameter space. Moving the side circles rotates the control rectangle or changes its 

size along one axis. The shape of the controls is always rectangular. A control is 

continuously redrawn while being manipulated. Simultaneously the image of the control 

in the surface patch is continuously redrawn in the viewing window to allow the user to 

see where the control rectangle lies in model space. 

 

The range of action control is used to specify a weight function that determines which 

parts of parameter space will be included in the bending action. How the weighting 

function is used is described in Section 3.3. The weight function has the value 0 outside 

the control rectangle and the value 1 in a region around the center of the control rectangle. 

There is a transition region near the control rectangle in which the weight function makes 

a smooth transition between 0 and 1. This transition region is needed to avoid 

discontinuities in the penalty function. Such discontinuities are undesirable, as they cause 

creases, sharp changes in curvature, and other visible problems. 

 

The bending operator positioning control is used to position, orient, and scale the bending 

operator patch with respect to the target patch. The positioning control can be thought of 

as modifying the shape of the bending operator patch; that is, the control redefines the 

patch function of the bending operator. The details of how this is done are complicated 

and have been explained in Section 3.4. The center of the control rectangle determines 

where the point of application of the bending operator falls in the target patch parameter 

space. The size and orientation of the control rectangle essentially determines an affine 

transformation between the domains of the bending operator patch and the target patch. 

The control rectangle can be thought of as the unit square in the domain of the bending 

operator patch.   
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Area E is a group of three pull-down menus for selecting which bending operator is used 

and for selecting parameters related to meshes of patches. Figure 5.1.1-3 shows the menu 

for selecting the bending operator. 
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Figure 5.1.1-3 Bending operator menu 

 

Six bending operators are currently implemented. They are 

 

1. Gaussian - a Gaussian shaped bump or dent. The bending operator placement 

control in Area D sets the center and major and minor axes of the Gaussian. 

The rectangle shows approximately where the magnitude of the Gaussian falls 

to about 1/4 of its maximum value. The patch function for this operator is 

p u,v  u,v,he
u2 v2

 , where h is the height of the Gaussian. The value of h 

is set by the slider labeled "Gaussian Height". 

2. Up Cylinder - a cylindrical bending operator. The term "Up" means that the 

curvature is positive, i.e., the center of the cylinder is higher than the edges as 

seen from the top. The bending operator placement control determines the 

amount of curvature and the direction of the cylinder axis. The patch function 

for this operator is p u,v   u,sinv,cosv . 

3. Down Cylinder - a cylindrical bending operator. It is like the Up Cylinder, 

except that the curvature is negative, i.e., the center of the cylinder is lower 

than the edges as seen from the top. The patch function for this operator is 

p u,v   u,sinv,cosv . 
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4. Twist - a twisting operator. This operator causes the patch to be twisted about 

an axis line in the surface. The bending operator placement control determines 

the direction of the axis of twist and the amount of twisting. The patch 

function for this operator is p u,v   u,v,uv  . 

5. Mogul - an experimental bending operator. This operator is included because 

it has no good quadratic approximation, to verify that the bending operator 

placement control is working properly. The patch function for this operator is 

p u,v   u,v,cosusinv . 

6. Patch - a user-defined bending operator. This operator uses a B-spline patch as 

the bending operator. To use this operator, the user constructs a patch,  installs 

it using the NewBendop button, and then selects this menu item. 

 

The menus Continuity and Weld UV are used when bending a mesh of patches. Figure 

5.1.1-4 shows the Continuity menu which is used for selecting the degree of continuity 

for the edge joins in a mesh. 
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Figure 5.1.1-4 Continuity menu 

 

The menu item "None" means that no continuity constraints are applied. The menu item 

"C n" means that during the bending process, the edges of the patches of a mesh are 

constrained to join with C
n
 continuity. How this is accomplished has been discussed in 

detail in Section 3.5. Briefly, a constrained optimization is performed during bending, 

such that the continuity constraints are always satisfied. Two of the buttons in Area B are 

relevant when bending a mesh. Pressing the Constrain button projects the control points 

onto the null space of the continuity constraint equations, forcing the continuity 

constraints to be satisfied. This represents a crude joining algorithm. It is crude because 
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no penalty functions are applied to control the behavior of the joining. The Constraints 

toggle switch  sets or clears a boolean variable that causes the constraints to be preserved 

during the bending process. 

 

Figure 5.1.1-5 shows the Weld UV menu. 
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Figure 5.1.1-5 Weld UV menu 

 

Its purpose is to force the top and bottom edges or the left and right edges of a mesh of 

patches to be joined together. This allows various closed shapes such as a cylinder or 

torus to be formed. The "U Weld" menu item causes the edges of the patch with u  0 

and u  1 to be joined, where u and v are coordinates of the parameter space. The point 

u,v  0,t  is joined to the point 1, t . The "U Reversed" menu item causes these same 

edges to be joined, but in the reverse direction, that is, the point u,v  0,t  is joined to 

the point 1,1  t . The "U None" menu item places no constraint on these edges. There 

are analogous choices for the v coordinate. These welding operations can be applied to a 

single patch as well as a mesh of patches. 

 

5.1.2 The viewing window  

 

This window shows a 3-D perspective display of the current patch. The patch is displayed 

as either a wireframe or Phong-shaded surface depending on the state of Render toggle 

button. The wireframe display is fast enough – 10-15 updates/second – for interactive 

control over the viewing parameters. The shaded surface display is slower – about second 
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or two per update. When the BendOp toggle switch is on, an image of the bending 

operator positioning control appears superimposed on the surface. This display updates 

continuously while the bending operator control is being changed, allowing the user to 

see where the bending operator is positioned both in parameter space and in the object 

space of the patch. The same is true of the range of action control when the RangeAct 

toggle switch is on. 

 

When the ShowCp toggle switch is on, the control point polygon of the current patch is 

shown in the viewing window. When the DesNormals toggle switch is on, the desired and 

actual normals are shown as a field of short line segments growing from the surface of the 

patch. 

 

5.2 Modeling tasks handled by the prototype 

 

This section is a demonstration of the bending operator. The purpose of this 

demonstration is to show the capabilities of the bending operator and to expose both its 

strengths and weaknesses. It begins with some examples of bending a single patch and 

then shows some examples using a mesh of patches. 

 

5.2.1 Bending a flat sheet into a torus 

 

This example was used at the beginning of Chapter 3  to explain the bending operator. 

Figure 5.2.1-1 shows a wireframe drawing of the initial flat patch. It is a B-spline patch 

with 77 control points and degree 66 (which makes it a degree 66 Bezier patch). The 

first operation is to bend with a cylindrical bending operator with the axis parallel to the 

U parameter axis. The white rectangle is the image of the bending operator control 

rectangle, and the short white line at the center is the surface normal at the point of 

application. All the figures in this section were created by using the prototype software to 

write a Postscript file. 
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Figure 5.2.1-1 Flat patch with bending operator 

  

Figure 5.2.1-2 shows the same patch after computing the desired normals but before the 

bending is actually performed. The actual and desired normals are indicated by short 

white vectors. The vectors are positioned at the points used to do the numerical 

integration of the penalty functions. There are 81 sample points in this example, which is 

enough to give good accuracy with a patch of this size, in the absence of very tiny 

features in the target patch or the bending operator patch. The number of sample points 

can be set in the initialization file. 

 



 

 civ 

File Name : flat-wf-dnc-1.eps

Creator :  view

Pages  :  0

 

Figure 5.2.1-2 Flat patch with original and desired normal vectors 

 

  

Figure 5.2.1-3 shows the result of applying a cylindrical bending operator. Since the 

original patch was flat, the target patch after bending takes on the shape of the bending 

operator patch. In this case, the desired normals were attained almost exactly, since the 

metric penalty function did not contribute significantly to the total penalty function. This 

is because a cylinder and a flat patch are isometric. The next bending operation is another 

cylindrical bend, but with the cylinder axis rotated 90 degrees.  
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Figure 5.2.1-3 Result of cylindrical bend 

 

Figure 5.2.1-4 shows the desired original and desired normals resulting from applying the 

second cylindrical bending operator, and Figures 5.2.1-5 and 5.2.1-6 show a wireframe 

view and a shaded surface view of the result of the bending operation. 
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Figure 5.2.1-4 Original and desired normal vectors for second bending via cylinder 
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Figure 5.2.1-5 Result of second bending via cylinder, wireframe 
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Figure 5.2.1-6 Result of second bending via cylinder, shaded 

 

Figures 5.2.1-7 and 5.2.1-8 show the same surface with the actual and desired normals 

visible. 



 

 cvii 

File Name : torus-wf-dn-1.eps

Creator :  view

Pages  :  0

 

Figure 5.2.1-7 Torus with original and desired normals shown 

 

For this bending operation I set the metric/normal factor to 0.1, so that the normal penalty 

function contributes ten times as much as the metric penalty function to the total penalty 

function. This bending definitely changes the metric of the patch. The desired normals 

could not be attained exactly, although the discrepancy can barely bee seen in Figure 

5.2.1-8. Section 5.2.4 discusses how varying the metric/normal factor affects the bending 

operator. 
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Figure 5.2.1-8 Torus with original and desired normals, shown close up 



 

 cix 

5.2.2 Making dents and bumps 

 

I illustrate the use of the Gaussian bending operator in this section. The effect of this 

operator is to place a bump (or dent) in the surface. It is possible to produce bumps by 

direct manipulation of patch control points, but their size and shape is determined by the 

spacing of the control points. The Gaussian bending operator gives the user much better 

control over the size and shape of the bump. The prototype software does not perform 

automatic subdivision of the patch control point mesh, so there is a limit to how small 

features can be in the bending operator. Figures 5.2.2-1 and 5.2.2-2 show the result of 

bending a flat patch with 88 control points and degree 55 using a Gaussian bump. The 

image of the bending operator control is shown in Figure 5.2.2-1. Note that the image of 

the control rectangle has slightly curved sides. This is because straight lines in parameter 

space do not, in general, map into straight lines in model space for B-spline patches. 
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Figure 5.2.2-1 Flat patch with image of bending operator control 
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Figure 5.2.2-2 Flat patch bent by Gaussian bump 

 

Figure 5.2.2-3 shows the desired normals versus actual normals for the lower left corner 

of this patch. 
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Figure 5.2.2-3 Desired normals for Gaussian bump 

 

The actual and desired normals are close together  near the edge and far apart (about 20 

degrees) on the steeply curved side of the Gaussian bump. This is the result of the 

competition between the normal penalty function and the metric penalty function. The 

original flat patch has to be stretched considerably to add the bump, and the metric 

penalty function resists this stretching. Therefore, the bump is not as high as it should be 

to match the desired normals. For Figure 5.2.2-2 the metric/normal factor was set to 0.2. 
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Figure 5.2.2-4 shows the results of bending a flat patch twice, first with an elongated 

Gaussian bump, and second with a Gaussian dent, with the long axis in a different 

direction. The resulting surface resembles a difference of Gaussians, as expected. 
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Figure 5.2.2-4 Bending twice with different Gaussians 
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Figure 5.2.2-5 shows the result of placing a Gaussian dent in a cylinder. The cylinder was 

modeled with an 88 B-spline patch with degree 77. The v=0 and v=1 edges of the 

patch were constrained to be joined during the bending process.  
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Figure 5.2.2-5 Gaussian dent in a cylinder 

 

Figure 5.2.2-6 shows the control point mesh superimposed on the resulting patch on the 

left and the control point mesh by itself on the right.  Since this patch is of fairly high 

degree, the relation between the patch control points and the surface is not very intuitive. 

It would be practically impossible to produce this surface by direct manipulation of the 

control points. 
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Figure 5.2.2-6 Gaussian dent in cylinder, with control points 

 

One of the problems with the bending algorithm is "edge effects." Figures 5.2.2-7 and 

5.2.2-8 show a Gaussian bump placed near the edge of a flat patch. Notice how the edge 

of the patch near the bump tends to pull inward toward the bump, giving the figure a lop-

sided appearance. This problem is quite noticeable in the top view of Figure 5.2.2-8. 
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Figure 5.2.2-7 Gaussian bump near edge 
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Figure 5.2.2-8 Gaussian bump near edge, top view 

 

 



 

 cxiv 

5.2.3 Examples of other bending operators 

 

There are two other built-in bending operators, the twist and the mogul. The 

mathematical formula for these are given in Section 5.1.1. The purpose of the twist 

operator is to perform twisting, i.e., to cause the surface normals to turn an amount 

proportional to the distance along a twisting axis.  The direction of turn is perpendicular 

to the twisting axis. Figure 5.2.3-1 shows the twist operator, which is a hyperbolic 

paraboloid, applied to a flat patch. The mogul bending operator is not useful as a shaping 

tool; it is included in the prototype software as a testing tool for the bending operator 

positioning tool. 
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Figure 5.2.3-1 The twisting operator 

 

5.2.4 Effect of the metric/normal factor. 

 

The metric/normal factor is an adjustable parameter of the bending algorithm that 

determines the relative importance of the normal penalty function and the metric penalty 

function in computing the total penalty function. As mentioned in section 5.2.1, this 

factor is a number x between 0 and 1 such that the metric penalty function is multiplied 

by weight x and the normal penalty function is multiplied by weight 1-x. I have found by 

experimentation that a value of about 0.2 usually produces good results. The bending 

algorithm is not very sensitive to this parameter. Large values tend to make the patch act 



 

 cxv 

as if it were stiff piece of paper, i.e., the target surface before and after bending are 

roughly isometric.  Small values lead to problems with the patch changing size during the 

bending process and a sort of "flowing" of surface features within the surface. In this 

section I demonstrate both of these effects. I decided that the metric/normal factor should 

be adjustable by the user, because for some bending operations the user may want to 

tightly constrain the normal vectors and for other bending operations the user may want to 

avoid the "flowing" effect. 

 

Figure 5.2.4-1 shows bending a cylinder into a torus with the metric/normal factor set to 

0.9. This means that emphasis is placed on maintaining the metric of the patch. 
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Figure 5.2.4-1 Cylinder to torus bend with metric/normal factor of 0.9 

 

Most of the curvature seems to be concentrated into four diagonal lines that connect the 

mid-points of the edges. The corners and center are relatively flat. I think that the patch is 

approximating a shape that is isometric to a flat patch with the smallest possible normal 

vector deviation from that of a torus. You may want to try the following experiment. Take 

a piece of paper and bend it into a half-cylinder. Then try to bend again perpendicular to 

the cylinder axis. You will notice that the shape you get is very similar to Figure 5.2.4-1. 

This is because paper has the property of strongly resisting changes to its metric while 

being easy to bend. 
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Figure 5.2.4-2 shows the same bending operation, but the metric/normal factor set to 0.6. 

Notice that the lower edge curve is slightly more curved in the center than at the corners. 

This is another example of an edge effect. The metric penalty function appears to make 

the target patch more "stiff" near the corners.  Actually, wireframe displays can be 

misleading for judging the results of the bending operator. The curves making up the 

display are parameter curves in the surface, and their curvature within the tangent plane of 

the surface (i.e., geodesic curvature) has no significance to the surface geometry. 
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Figure 5.2.4-2 Cylinder to torus bend with metric/normal factor of 0.6 
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If the metric/normal factor is set very low, the actual and desired normals will be very 

close, but there may be an undesirable "pulling in" effect on the edges. This effect is 

illustrated in figure 5.2.4-3 by a Gaussian bump, in which the metric/normal factor is 

0.025. 
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Figure 5.2.4-3 Gaussian bump with very low metric/normal factor 

 

 

5.2.5 The range of action control 

 

The previous figures were made with the range of action control turned off. In this section 

I demonstrate the effects of this control. This range of action control basically causes the 

normal penalty function to be weighted so that there is no contribution to the total penalty 

function outside the range of action area. The main use of this control is to exclude parts 

of the target patch from the bending action. The effect of this control is explained in 

detail in Chapter 3. Figure 5.2.5-1 shows the result of bending a flat sheet with a 

cylindrical bending operator in conjunction with the range of action control. The range of 

action was limited to the left side of the patch. Figure 5.2.5-2 shows the state of the 

positioning control widget. The large dark gray rectangle shows the range of action area 

in parameter space. Figure 5.2.5-3 shows the desired normals superimposed on the result 

of the bending. The desired normals are computed for the entire patch but are ignored 

outside the range of action. That is why the discrepancy between the actual and desired 

normals is large on the right side of Figure 5.2.5-3. 



 

 cxviii 

 
File Name : cylrga-wf-4.eps

Creator :  view

Pages  :  0

File Name : cylrga-sd-4.eps

Creator :  view

Pages  :  0

 

Figure 5.2.5-1 Cylindrical bend with range of action 
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Figure 5.2.5-2 Positioning control for bend with range of action 
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Figure 5.2.5-3 Normals for cylindrical bend with range of action 

 

Although the right side of the patch is completely outside of the range of action area, 

there is a small amount bending there. This seems to happen because there is a lesser 

contribution from the metric penalty function in this case than if the right side were 

perfectly flat. Another use of the range of action control is to limit which part of a 

complicated bending operator gets used. For example, a bending operator patch 

constructed by the user is well defined only within the unit square in parameter space. 

The range of action control can be used to ensure that only the well defined part of the 

bending operator gets applied to the target surface. 

 

5.2.6 Bending a mesh of patches 

 

The problem of extending the bending operator to a mesh of patches is discussed in 

Section 3.5. The key idea is to treat the mesh as a single large pseudo-patch. This is 

possible if there is no branching or looping of the 2-D sheets in the mesh. As a practical 

test of this idea, I implemented the bending operator for a simple rectangular array of B-

spline patches. The main complication is the need to keep the edges of the patches joined 

together with a user-specified degree of continuity during the bending process. The 

conditions for the edges to be joined can be formulated as a set of continuity constraint 

equations on the patch control points. The bending process becomes a constrained 

optimization with the continuity equations as the constraints. I implemented C
n
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continuity for n = 0, 1, or 2. The prototype software determines that it is working with a 

mesh instead of a single patch when reading the initialization file. 

 

I present some examples of bending a mesh of patches. In this example the mesh is a 22 

array of cubic Bezier patches. I show the results of bending with a Gaussian bump for 

several degrees of continuity. Figure 5.2.6-1 shows the result of bending with no 

continuity constraints. The individual patches break apart.  Figure 5.2.6-2 shows the 

result of bending with C
0
 continuous joins. This means that the edges stay joined during 

the bending but there is no constraint on the angle with which the edges join. Thus in the 

example, discontinuities of shading are visible. Figure 5.2.6-3 shows the result of bending 

with C
1
 continuity. This implies a smooth normal vector field across the edge joins, so 

there is no discontinuity in the shaded images. Note that, with respect to the individual 

patches of the mesh, the Gaussian bump was right on some edge. However, there is no 

evidence of the edge effects that appeared when bending single patches. My theory is that 

edge effects occur because there is less "material" near edges and corners, hence less 

contribution to the penalty functions that control the shape. That is, edges and corners are 

less constrained than the center of a patch, hence more sensitive to the action of the 

bending operator. The lack of edge effects at interior edges of a mesh supports this theory. 
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Figure 5.2.6-1 Mesh with no edge continuity 
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Figure 5.2.6-2 Mesh with C
0
 continuity 
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Figure 5.2.6-3 Mesh with C
1
 continuity 

 

It is possible to make closed figures by applying the continuity conditions to opposite 

edges of a single patch. In this case, the program is actually operating on a mesh of 

patches that contains only one patch. As discussed in Section 5.1.1, the prototype 

software can join the U or V parameter edges either directly or in a reversed sense. This 

means that it is possible in the prototype to construct several geometric shapes including a 

cylinder, a torus, a Möbius strip, and a Klein bottle. The cylinder shown in Section 5.2.2 

was made this way. I show now how to use the bending operator and continuity 

constraints to construct a torus. Step 1 is to construct a cylinder. This is done by bending 
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a flat sheet with the cylindrical bending operator by slightly less than 360 degrees. This 

leaves two opposite edges almost adjacent, as shown in Figure 5.2.6-4. 
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Figure 5.2.6-4 Closing the cylinder 
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Figure 5.2.6-5 Closing the torus 

 

Then enforcing a C
1
 constraint does  the join. This provides a crude joining capability in 

the prototype software. The cylinder is then bent using a cylindrical bending operator with 

the axis turned 90 degrees. The bending operations are actually the same as those shown 

in section 5.2.1, except that the bending angles are greater. When the ends of the cylinder 

almost touch, as shown in Figure 5.2.6-5, a C
1
 constraint is imposed on the edges, 

causing a closed torus to be created. 
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5.2.7 Custom bending operators 

 

Any patch can, in principle, be used as a bending operator. This leads to the idea of the 

user constructing his own building operator. The minimum requirements on the bending 

operator patch were discussed in Section 3.6. Basically any patch for which it is possible 

to take first and second partial derivatives is satisfactory. B-spline patches certainly meet 

this requirement. There is only one difficulty – because of the affine transformation 

involved in the positioning tool, it is possible that the bending operator patch will need to 

be defined on a larger domain than the unit square in parameter space. This difficulty can 

be handled by using the range of action tool. The idea is  to construct the custom bending 

operator with a "buffer zone" around the part that is to be used, and to limit the bending 

action with the range of action operator to avoid using parts of the bending operator patch 

outside this buffer zone. 

 

In the next few figures, I show a simple example of constructing and using a custom 

bending operator. Figure 5.2.7-1 shows the bending operator patch. It was made by using 

two cylindrical bends of opposite curvatures, limited by a range of action. It has an S-

shaped profile. 
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Figure 5.2.7-1 Custom bending operator 
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This bending operator was applied to a target patch, shown in Figure 5.2.7-2, which is a 

section of a cylinder. The result of the bending operation is shown in Figure 5.2.7-3. The 

effect is to impose a longitudinal "wave" on the cylinder. 
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Figure 5.2.7-2 Original target patch 
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Figure 5.2.7-3 Target patch after bending 

 

5.2.8 Making a spoon 

 

To demonstrate a more complicated and realistic example of the bending operator, I made 

a model of a spoon. I started with a degree 59 Bezier patch which was flat but had the 

right outline, shown in Figure 5.2.8-1. The prototype program doesn't have the tools for 

making such patches, as it is not  a complete modeling system, so I made the patch offline 

and loaded it into the program via the initialization file. 
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Figure 5.2.8-1 Spoon blank before bending 

 

I used three bending operations to make the spoon that is shown in Figure 5.2.8-2. First, I 

used a Gaussian dent to make the bowl. Second, I used a cylindrical bend with a limited 

range of action to set the angle between the bowl and handle. Third, I used another 

cylindrical bend to slightly curve the handle of the spoon along its long axis. The entire 

operation took me less than ten minutes, not counting making the initial flat patch. 
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Figure 5.2.8-2 Completed spoon 

 

 

5.3 Summary 

 

This chapter demonstrates the variety of the surface shaping tasks the bending operator 

can do. The bending operator positioning tool allows  a bending operator to be translated, 

scaled, and rotated. The range of action operator allows a bending operator to be 

restricted to a selected part of the target patch. Thus quite complex surface shaping 
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operations are possible with only a few bending operator functions. Nonetheless, the user 

can construct custom bending operators. I demonstrated that the bending operator can be 

applied to meshes of patches. The bending operator has some difficulties with edge 

effects. Edge effects  are manifested by a different action of a bending operator near edges 

and corners of a patch. The problem is more annoying than crippling, as the bending 

operator still does approximately the right thing. To an extent, edge effects can be traded 

off for  patch "stiffness" by changing the metric/normal factor. Edge effects don't occur 

for interior edges of a mesh, which suggests a remedy that may work in some cases. 

Namely, surround the target patch with some more patches, do the bending, then remove 

the extra patches. 
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Chapter 6 

Conclusions 
 

The key result in this dissertation is a new concept of what it means to bend a curved 

surface. I call this new concept the bending operator.  I showed that the bending operator 

has a sound mathematical basis, and I used it to develop a new algorithm for shaping 

curved surfaces. This algorithm is capable of performing a wide variety of surface 

shaping tasks, including not only bending around a cylinder axis, but also indenting, 

twisting, and embossing. The bending operator is intended for use as an interactive tool 

within a geometric modeling system based on surface patches. I implemented the 

algorithm in an interactive prototype program to demonstrate its feasibility and to 

investigate its strengths and weaknesses. Chapter 3 discusses the bending operator in 

detail, and Chapter 5 presents a description of the prototype software and examples of 

results from this software. 

 

The second main result in this dissertation is an investigation of the generalization of the 

variational approach used in bending to the problem of smoothly joining surface patches. 

I presented in Chapter 4 a classification scheme for joining problems, and I showed that a 

large class of such problems can be reduced to what I call the Edge-Edge joining 

problem.  The Edge-Edge joining problem is the problem of connecting two surface 

patches smoothly along a common edge. The correct mathematical definition of 

"smoothly joining" turns out to be what is called geometric continuity in the geometric 

modeling literature. I presented a definition and some analysis due to DeRose which 

shows that geometric continuity for an edge-edge join is equivalent to a non-linear partial 

differential system of equations being satisfied on the edge curves.  I presented an outline 

of a new Edge-Edge joining algorithm which is based on the variational techniques used 

in the bending algorithm. 
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6.1 The problem 

 

Current geometric modeling systems for objects with curved surfaces are typically based 

on the use of meshes of surface patches. Such systems use one or a few types of surfaces 

patches, such as Bezier patches, B-spline patches, or Non-Uniform Rational B-spline 

patches (NURBS). The geometry of the surface patches is determined by a (usually small) 

finite number of control points. The characteristics of such systems are discussed in more 

detail in Chapter 1. The most simple form of interaction is to make the control points 

directly accessible to the user. Changes to the surface can be made interactively by 

moving the control points. Direct manipulation of control points, however, is not a good 

user interface technique. For complex models containing many patches there are too 

many control points, and the effects of moving control points on the surface are too 

limited and too subtle. Smooth joining of patches requires complex constraints on the 

control points that cannot be satisfied by direct manipulation. In short, control points can 

be thought of as the assembly language of surface description. 

 

Current modeling systems often provide more intuitive, higher level methods for surface 

shaping. Design of such shaping tools has been a very active and successful area of 

research in the past few years. Chapter 2 presents a survey of the current state of the art of 

these tools. This tool-based approach to modeling, besides making the user's job easier, 

also allows a clean separation between the user interface and the underlying surface 

representation. A recent trend is to design the tools to be independent of the patch 

representation. Shaping tools can be thought of as a higher level language for surface 

description. Just as we should not care which particular underlying machine language is 

being used when programming in a higher level language, we should not care what 

particular underlying patch type is being used when using surface shaping tools. 

 

6.2 The bending operator: A new tool for surface shaping 

 

I claim that the bending operator is a new surface shaping tool that significantly advances 

the state of the art. Recall from Chapter 1 the design goals for the bending operator. First, 
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it should be intuitive, meaning that the user can easily learn to predict the result of a 

bending operation without needing a detailed understanding of the tool. Second, it should 

be high-level, meaning that the user can specify in a direct and simple way what action 

should be performed on the surface, without being concerned with control points or patch 

boundaries. Third, it should be general, meaning that it can be applied to a wide variety of 

patch types. In this section I show that the design goals have been met, and furthermore, I 

show that that the bending operator is capable of performing a wide variety of surface 

shaping tasks. However, the bending operator does have some problems, which I point 

out later in this section. 

 

6.2.1 A new concept of what bending is 

 

The key idea of the bending operator is that bending a surface is equivalent to changing 

its normal vectors. Therefore, to specify a bending operation, we can specify how we 

want the normal vectors to change during the bending. There are a lot of normal vectors, 

however, so we need some succinct way of specifying how they should change. This 

specification is provided by means of another surface, which I call the bending operator 

surface. The important thing about the bending operator surface is not its actual shape, 

but rather the way its normal vectors change with respect to movements in the surface. 

 

6.2.2 How the bending operator works 

 

A simple example of the bending operator in action may help to clarify the reader's 

understanding. Section 3.1 presents a detailed example of bending a piece of a cylinder 

into a piece of a torus. An abbreviated version of that example follows. The goal is to 

bend the target surface, the cylinder in Figure 6.2.2-1, into the final bent surface, the torus 

in Figure 6.2.2-2. 
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The surface normals  
should spread apart like 
this to form a torus

 

 

Figure 6.2.2-1 Original target surface 

 

 

 

Figure 6.2.2-2 Final bent surface 

 

Note what is different about the normal vector fields between these two surfaces. In the 

original target surface the normal vectors do not change for movements in the surface 
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along the cylinder axis (X-axis). In the final bent surface the normal vectors turn in the 

direction of movement for movements along the corresponding direction. For movements 

transverse to the cylinder axis (Y-axis) the normal vectors turn at the same rate in both 

the original target surface and final bent surface. Therefore, to get from Figure 6.2.2-1 to 

Figure 6.2.2-2, the normal vectors need to be spread apart along the cylinder axis. What 

surface has a normal vector field that describes this change? Another cylinder, turned 90 

degrees, so that its cylinder axis is aligned with the Y-axis, as shown in Figure 6.2.2-3. 

 

 

 

Figure 6.2.2-3 Bending operator surface 

 

The bending algorithm adds the variations of the normal vector field of the bending 

operator surface to the variations of the normal vector field of the target surface to get the 

variations of the normal vector field of the final bent surface. Mathematically, this 

comprises adding the derivatives of the two normal vector fields and then integrating this 

sum to get the desired normal vector field of the final bent surface. The formulas and the 

proof that this method makes sense are given in Section 3.3.1. 

 

The bending algorithm is a two stage process. In the first stage the normal vector field for 

the final bent surface is computed, as described above. In the second stage the original 
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target surface is warped (by varying its control points) to minimize a weighted sum of 

penalty functions. This composite penalty function, described in Section 3.3.2, has two 

main terms. The first is a normal penalty function that penalizes deviations between the 

actual surface normals and the desired surface normals from the first stage. The second is 

a metric penalty function that penalizes shearing and stretching (deviations of the metric) 

of the surface. This metric penalty function is needed because the normal penalty function 

alone does not fully constrain the surface; i.e., there may be multiple surfaces with the 

same desired normal vector field. There are additional penalty functions that are used to 

implement a range of action control and to resist folding and creasing of the surface; these 

are described later in Section 6.2.6. The movement of the control points to reshape the 

surface is handled completely by the bending algorithm; the user need not even be aware 

of the existence of control points. The final surface produced by the algorithm will in 

general not have exactly the desired normals from the first stage, because there is 

competition between the two terms of the penalty function, but the actual normals will 

generally be fairly close to the desired normals. 

  

6.2.3 What the bending operator can do 

 

Intuitively, the behavior of the bending operator is to superimpose features of the bending 

operator surface onto the target surface, while maintaining the general shape of the 

original target surface. The following figures, produced by the prototype program, shows 

an example of this. The original target surface, Figure 6.2.3-1, is a piece of a cylinder, and 

the bending operator surface, Figure 6.2.3-2, is a "wave" shaped surface. Figure 6.2.3-3 

shows the result of the bending operation: a wave is superimposed on the cylinder. 

 
File Name : cyl-cb-wf.eps

Creator :  view

Pages  :  0

File Name : cyl-cb-sd.eps

Creator :  view

Pages  :  0

 



 

 cxxxiv 

Figure 6.2.3-1 Original target patch 
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Figure 6.2.3-2 Bending operator surface 
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Figure 6.2.3-3 Final bent surface 

 

The power of the bending operator derives from the fact that the bending operator can be 

any surface. A bending operator with a complex shape will produce a complex change of 

shape, but the change is predictable – the features of the bending operator will be 

transferred to the target surface. The relation between the bending operator surface and 

the target surface is not symmetric because the metric of the bending operator surface is 

ignored. The bending operator surface is simply a concise representation of the desired 

shape change, as indicated by its normal vector field. With the prototype software the user 

can use the bending operator to make some shape, then install that shape as the next 

bending operator. As a practical matter, simple bending operators, such as cylinders, 

twists, and Gaussian bumps and dents, are used to incrementally reshape the target 

surface toward the user's desired final shape, with visual feedback after each step. If the 

result of a step is not quite right, the user can undo the operation and try again. 

 

As a more realistic modeling example, I reproduce from Chapter 5 a model of a spoon 

which I made using the prototype software, shown in Figure 6.2.3-4. Starting with a flat 

B-spline patch, I used only three bending operations: a Gaussian dent to make the bowl of 

the spoon, and two cylindrical bends to shape the handle. The prototype software contains 

a range of action control to limit the bending action to a part of the model. This control 

was used to limit the bending of the handle to a region near the bowl of the spoon. It took 

me less than ten minutes to produce this model. I asked another person who was familiar 

with the theory of bending operator, but who had actually used the prototype software for 

less than an hour altogether, to reproduce the spoon model. He needed about 15 minutes. 
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Figure 6.2.3-4 Simple spoon model 

 

6.2.4 Strengths and weaknesses of the bending operator 

 

Strengths. I showed in Chapter 5 and in Section 6.3.3 above that the bending operator is 

intuitive and high level. I pointed out that because the bending operator can be any 

surface, and because the range of bending action can be limited to part of the target 

surface, the bending operator is powerful. Examination of the equations for the penalty 

function in Section 3.3.2 shows that only first and second partial derivatives of the target 

surface and bending surface are used. The optimization algorithm that determines the 

final surface operates by varying the locations of the control points. Therefore, the 

bending operator can be applied to any patch type that is twice piecewise differentiable 

and described by a finite set of control points. These restrictions are very light, and 

virtually all of the patch types in common use satisfy them. Furthermore, I demonstrated 

in Chapter 3 that the bending algorithm can be applied to a mesh of patches, if the mesh 

has no branching sheets or loops.  Therefore, the bending operator is general purpose. The 

current implementation of the bending operator requires patches defined by control 

points, but I discussed in Section 3.5.1 a possible extension to further generalize the 

algorithm to arbitrary C
2
 patches. 
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Weaknesses. The bending operator has some problems, however. These are discussed in 

detail in Chapters 3 and 5. My implementation of the bending operator is slow. A single 

bending operation takes seconds to minutes on current generation workstations, such as 

the HP-730. Most of the running time is spent performing the minimization of the penalty 

function, and this penalty function is quite complicated and non-linear. The bending 

operator has problems with edge effects. This problem is manifested by asymmetrical 

effects near edges and corners; i.e., the same feature in the bending operator will produce 

different results at the center of a patch than at the edge. Examples are shown in Chapter 

5. Finally, the bending operator can only be applied to surfaces that can be flattened out 

into a single sheet. This restriction is discussed in detail in Section 3.7. This means that 

the bending operator is primarily useful for working with the simple parts of a complex 3-

D model. I discuss later in this chapter a possible way of removing this restriction.  

 

6.2.5 Variational techniques for surface shaping 

 

The bending operator is a new example of a variational technique for surface shaping. 

The basic idea of the variational method is to define a penalty function that measures 

numerically how much a surface differs from some shape goal. An optimization 

algorithm is then performed to vary the surface to minimize the penalty function. 

Variational methods for implementing surface shaping tools have gained in popularity in 

recent years; several examples are discussed in Chapter 2. My joining algorithm can best 

be viewed as an extension of the work of Welch and Witkin [ Welch 92 ], who are 

developing an interactive modeling system with which a user can change the shape of a 

surface by placing "handles" on the surface and manipulating the handles. The handles 

they describe are point and curve constraints that the surface has to satisfy. They 

minimize a penalty function on the surface that measures deviation from "fairness" or 

smoothness. Their algorithm can also minimize the deviation of the surface from a 

specified "rest" shape. My bending operator extends their work because it is more general 

than their handle constraints. It is more general because it exercises control over the shape 

of the whole surface, not just a point or curve in the surface. On the other hand, the 

bending operator cannot be used to explicitly force the surface through a particular point 

or curve, so the two approaches can be thought of as complementary. 
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6.2.6 Key issues in the design of the bending operator 

 

I discuss in this section the important design decisions that I had to make during the 

development of the bending algorithm. In designing mathematical algorithms there are 

tradeoffs that have to be made between generality and complexity.  One of my design 

goals is to allow any surface to be used as a bending operator. This goal had a major 

effect on design of the positioning control and the range of action control, which are the 

first two topics of this section. There are also issues of accuracy and robustness that are 

forced on the designer by the nature of the algorithm. These issues led me to address the 

last three topics of this section, making the algorithm incremental, making the target 

surface resistant to collapse, and making the penalty functions independent of patch 

parameterization. 

 

Positioning the bending operator. The bending operator derives much of its power from 

the fact that the bending surface can be any surface. This flexibility comes at some cost in 

the complexity of the design. One aspect of this cost is the need to develop a general 

method of positioning an arbitrary bending operator with respect to the target patch. For 

any particular bending operator, such as a cylinder or Gaussian dent, it is fairly easy to 

construct a positioning control that works for that bending operator. But this piecemeal 

approach would cause adding a new bending operator to require significant coding 

changes to the bending operator software. I chose instead to develop a general approach 

that worked uniformly for all bending operators. One advantage is that adding new 

bending operators to the prototype software is easy – a prototype function for the new 

bending operator needs to be written and a menu item needs to be added. A more 

important advantage is that the general approach permits the user to design custom 

bending operators. In the prototype software, the user can at any time install the current 

target patch as a bending operator. The details of this method are discussed in Section 3.4 

and outlined in the next paragraph. The execution time penalty of this general solution is 

small, about 6-7 percent of the total running time for the bending algorithm. 
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Positioning of the bending operator is performed by the user via an interactive set of 

controls, explained in Section 5.1.1. The user chooses a point of application, i.e., a point 

in the target surface about which the bending will occur, and then scales and rotates the 

bending surface about this point to determine what parts of the target surface will be 

affected by what parts of the bending operator surface. The correspondence between the 

target surface and the bending surface is determined by the surface parameterizations. 

Mathematically, both the target surface and the bending surface are defined as patches, 

that is, functions from the unit square in 0,1 
2
 

2
, called parameter space, to 

3
, 

called model space. A point in the target surface and a point in the bending surface 

correspond if they are the image of the same point in parameter space. The effect of the 

positioning control is to redefine the patch function of the bending surface. There are two 

parts to this redefinition. The first part is an affine transformation of the parameter space 

of the bending surface so that correspondence of points between the bending and target 

surface is what the user desires. The second part is a rotation of the normals of the 

bending surface in model space. This rotation is necessary because changing the 

parameterization of the bending surface does not affect the directions of its normal 

vectors. Section 3.4 gives the mathematical details. 

  

Range of action control. The range of action control permits the user to restrict the action 

of the bending operator to a selected subset of the target surface. This capability greatly 

increases the utility of simple bending operators, such as cylinders and Gaussian bumps 

and dents. It also makes possible the use of custom user-designed patches as bending 

operators. A custom patch might not be well defined on the whole parameter space of the 

target patch, or it might have features that the user wants to ignore. The range of action 

control can pick out only the part of a custom patch that the user wants to use. 

 

Implementing the range of action control required some modifications to the penalty 

functions and an additional interactive user interface for specifying the range of action 

region. The interactive control is a rectangle in patch parameter space that the user can 

move, rotate, and scale to the desired position. Only parts of the target patch inside the 

rectangle are subject to the bending operator. The normal penalty function needed to be 

modified and a new penalty function had to be added. The details of these penalty 
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functions are described in detail in Section 3.3.2 and summarized here. The modification 

to the normal penalty function was to add a weighting factor that is 1 inside the range of 

action and 0 outside. Therefore, discrepancies of the normals outside the range of action 

do not contribute to the normal penalty function. A new penalty function, the fix penalty 

function, had to be added to constrain the surface outside of the range of action. It 

basically measures deviations between the curvature of the original and bent target 

surface outside the range of action area. It is needed because the metric penalty function 

by itself does not fully constrain the surface. 

 

Incremental bending. The bending algorithm works incrementally so that it generates a 

continuous deformation from the initial target surface to the final target surface. 

Discontinuities in this deformation process would surprise the user and hence make the 

bending operator less intuitive. The basic cycle of computing desired normals and 

warping the surface is repeated several times, with the desired normals in each iteration 

gradually changing from the normals of the initial target surface to the desired normals 

for the final bent surface. The penalty functions used in the warping algorithm might have 

several local minima, some of which represent drastic deformations of the target surface, 

such as part of the surface being flipped over. With incremental bending, the warping 

algorithm will find a local minimum of the penalty function, but not necessarily the 

global minimum. Finding the global minimum is a much harder numerical problem, and 

it is actually not a good idea anyhow. Consider the user's mental model of what happens 

during bending. The user imagines a material surface undergoing a deformation process. 

This process can be thought of as defining a one parameter family of surfaces, the first of 

which is the original target surface and the last of which is the final bent surface. Nearby 

surfaces in this family should have similar shapes, or the user will be surprised and the 

intuitiveness of the bending process will be lost. The minimization algorithm requires a 

starting estimate and tends to be attracted to nearby local minimum. The incremental 

approach causes the starting estimate used by the minimization algorithm to be near a 

local minimum of the penalty function that represents a small change to the target surface, 

since the target surface doesn't change greatly during each increment. Therefore, the 

incremental approach guides the warping process to produce a continuous family of 

surfaces. I originally thought that the incremental approach would improve efficiency 
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since the minimizer ought to work faster with a better starting estimate, but timing 

measurements showed that efficiency was not significantly affected. 

 

Having decided to use an incremental approach, I needed a method for generating several 

intermediate sets of desired normal vectors, with a smooth transition from the normals of 

the original surface to the desired normals of the final bent surface. The obvious method 

of interpolating between the normals of the original surface and the desired normals of 

the final surface can produce discontinuities if the normals vary greatly. The method I 

chose is to start with a small piece of the bending surface centered at the point of 

application, and gradually expand that piece to include the whole bending surface. 

Mathematically, if the point of application is p u0,v0  and f u,v   is the bending 

surface selected by the user, the bending surface used for "time" t is 

 

 f t;u,v  f u u0 t  u0 , v  v0 t  v0 . 

 

The parameter t is increased from some small   0 up to 1 in a number of steps, and the 

bending algorithm is applied using f t;u,v  as the bending surface at each step. Section 

3.6.2 discusses the incremental algorithm in more detail, including some alternatives that 

were considered and rejected. 

 

Collapse resistance. During early experiments with the bending operator, I found that 

bending operators with high curvatures sometimes caused creases and folds to form in the 

target surface. This seems undesirable from the user's point of view. Furthermore, at such 

singularities the normal vectors become mathematically undefined, with disastrous effects 

on the numerical algorithms. To circumvent these problems, I added a collapse penalty 

function. This penalty function, described in detail in Section 3.3.2, measures the inverse 

of the size of local area element integrated over the surface. If any non-zero area of the 

surface attempts to contract to zero area during the surface warping phase of the bending 

algorithm, the collapse penalty function will become large, causing the collapse to be 

resisted by steering the minimization algorithm away. The collapse penalty function is 

given a low weight in total penalty function and thus does not significantly affect the 

results of the bending operator except that creases and folds are prevented. 
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Independence of parameterization for the penalty functions. It is desirable that the penalty 

functions be independent of the parameterization of the target surface. This is because in 

geometric modeling we are interested only in the geometry of the surface, which is shown 

in Chapter 3 to be independent of its parameterization. There has to be some dependence 

on parameterization because the correspondence between the bending and target surfaces 

is determined by the parameterization. However, this dependence should appear only in 

the normal penalty function. I discuss in Section 3.3.2 what measures are needed to define 

the metric penalty function and the fix penalty function in a parameterization independent 

way (the collapse penalty function turns out to be naturally independent of 

parameterization). These measures involve minimization over the function space of all 

isometric warpings of the target surface. How to implement such a minimization is a 

problem I have not solved, although I think it could be done by finite element techniques. 

Although my definitions are independent of parameterization, my implementation uses an 

approximation to avoid doing the minimization, so the prototype software is not 

independent of patch parameterization. 

  

6.3 An  algorithm for joining using variational methods 

 

I present two new results about the joining problem in this dissertation. The general 

joining problem is to connect several surface patches such that the resulting composite 

surface has a specified degree of smoothness across the joined edges.  My new results are 

a classification scheme for joining problems and an outline for a joining algorithm. I 

addressed the joining problem in this dissertation for two reasons. First, I wanted to show 

that the variational methods used to implement the bending algorithm have a wide utility 

for surface shaping tasks and are applicable to the joining problem. Second, my long term 

goal is to develop a sufficiently complete set of high level surface shaping tools to build a 

full function 3-D graphics modeling system. The joining problem turned out to be 

unexpectedly difficult for reasons explained in Section 6.3.1. I developed the theory and 

an outline for a joining algorithm, but I did not implement the algorithm. 

  

6.3.1 Why joining is a hard problem 
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In Chapter 4 I presented a definition and some analysis due to DeRose [ DeRose 85 ] of 

the concept of geometric continuity of degree k (usually denoted G
k
 in the literature). 

This concept derives from the theory of differentiable manifolds. The basic idea is that 

the composite surface obtained by joining some patches with G
k
 continuity at the edges 

and corners should be indistinguishable from a single patch that has degree k continuity. 

In particular the property of G
k
 continuity is independent of how the individual patches 

are parameterized. DeRose showed that  G
k
 continuity is the correct way to define 

smoothness of joins and that it is a more general property than C
k
 continuity (which can 

be destroyed by changing the patch parameterization). DeRose showed that G
k

 continuity 

implies that a system of non-linear partial differential equations must be satisfied on the 

edge curves of the patches in the composite. For a large class of patch types based on 

control points the non-linear PDE system can be reduced to a non-linear algebraic system 

of equations in terms of the control points and a finite number of arbitrary functions (the 

Beta constraints). The problem is that these non-linear systems of constraints are in 

general very hard to solve and, in fact, may not be solvable at all for certain patch types. 

This problem is well-known in the geometric design field, and one of the common 

techniques for dealing with it is to design patch types around these constraints such that 

solvability is built in. It is this problem that makes my solution to the joining problem not 

fully general over patch types. 

 

6.3.2 Classification of joining problems 

 

I presented in Chapter 4 a new classification scheme for joining problems. This scheme 

has three categories: 

 

1.  Edge-Edge. Join two patches by pulling together two edges that are not initially 

contiguous. One or both of the patches may deform during the joining process. 

 

2. Blend. Join the edges of two patches by connecting them with a third patch that 

fills in the gap. The patches being joined usually do not deform. 
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3. Edge-Curve. Join two patches by gluing the edge of one to a curve in the other. 

The patch containing the curve does not deform. 

 

Most of the joining problems encountered in practice seem to fall into one of these 

categories. I showed that, under certain conditions, detailed in Section 4.3.1, the Blend 

and Edge-Curve joining problems can be reduced to the Edge-Edge joining problem. 

 

6.3.3 Outline of an algorithm for Edge-Edge joining 

 

I presented in Chapter 4 an outline of a variational algorithm for performing Edge-Edge 

joining of two patches with G
k
 continuity. The joining algorithm is similar to the bending 

algorithm in that a penalty function of the two surfaces is minimized to produce the 

smoothest possible final surface. The important difference is that the joining algorithm 

requires a constrained minimization and the bending algorithm requires an unconstrained 

minimization. The constraint equations for the joining algorithm are the non-linear 

algebraic equations mentioned earlier in Section 6.3.1. The joining algorithm is restricted 

to using patch types for which it is known how to set up and solve these constraint 

equations. The penalty function has two components: one measures how smooth the 

surface is, and the other  measures how well the corresponding points on the edge curves 

match up. I did not implement the algorithm, but I am confident that with the restrictions 

on patch types mentioned earlier, it would work because it is quite similar to the bending 

algorithm for a mesh of patches. As discussed in Chapter 3, the bending algorithm for a 

mesh of patches has to preserve a set of continuity constraints on the joined edges of the 

patches in the mesh. I only wanted to demonstrate a proof of concept in the prototype 

software, so I used C
k
 continuity (which yields linear constraints) rather than G

k
 

continuity. Because of the non-linear constraints, the joining algorithm would be more 

difficult to implement than the bending algorithm, and I expect it would be slower to 

execute. 
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6.4 Future work 

 

There are several directions in which this work could be extended. There are the obvious 

extensions of implementing the joining algorithm,  improving the speed of the bending 

algorithm, and incorporating the bending algorithm into a complete graphics modeling 

system. There is also an interesting and not so obvious extension of the bending operator 

to solid objects rather than surfaces. 

 

6.4.1 Making the bending algorithm faster 

 

The bending algorithm spends most of its execution time minimizing the penalty 

function. Given an arbitrary, non-linear penalty function, there is not much that can be 

done to improve efficiency further. I am already using one of the most efficient known 

numerical optimization algorithms, the BFGS algorithm, described in Section 3.6.4. 

However, if the penalty function were quadratic in terms of the control points, there is a 

far more efficient algorithm. The gradient of the penalty function would then be linear in 

terms of the control points. The minimum could be found directly by setting the gradient 

to zero and solving the resulting linear system for the control points. This ought to 

provide a two or three order of magnitude speed improvement for the minimization.  

Several researchers working with variational techniques for surface shaping have 

addressed this same problem; see Chapter 2 for the details. Welch and Witkin 

[ Welch 92 ], for instance, expanded their penalty function as a Taylor series in the 

control points and discarded the terms of greater order than quadratic. This, of course, 

yielded a very poor approximation of the penalty function, but amazingly, their surface 

shaping algorithm still worked well. Because I am using a quite similar penalty function, 

it seems worth trying the same trick for the bending algorithm. 

 

6.4.2 Incorporating the bending operator into a 3-D modeling system 

 

By itself the bending operator does not provide a complete set of modeling capabilities. 

For example, it cannot be used to stretch or shear (change the metric) of a surface. In the 

spoon example I had to make the initial, flat patch for the spoon outside the prototype 



 

 cxlvi 

program because the patch had to be wide where the bowl was to be made and narrow 

where the handle was to be made. Incorporating the bending operator into a full function 

geometric modeling system would be useful for further experimentation. A logical 

candidate system is the Utah Alpha-1 system. It is a patch-based system that uses B-spline 

patches as the basic modeling element. It is a modular system in that specialized shaping 

tools can be and are implemented as stand-alone programs that communicate via sockets 

with the rest of the modeling system. 

 

6.4.3 Bending a solid object via the symmetric axis 

 

It may be possible to apply the bending operator to a solid object by bending the object's 

symmetric axis. In fact, this was my original plan for the dissertation, but figuring out 

how to do bending of a surface turned out to be a big enough problem in itself. 

 

The symmetric axis of a solid object is the set of points inside the object and equidistant 

from two or more points on the boundary surface of the object. The symmetric axis of a 

solid object turns out to be a possibly branching two-dimensional manifold. At each point 

on the symmetric axis there is a radius function that is the distance to the nearest 

boundary surface point. Given both a symmetric axis and a radius function, it is possible 

to reconstruct the object. Thus a possible shaping algorithm for solid objects would work 

as follows: find the symmetric axis and radius function for the object, bend one of the 

sheets making up the symmetric axis, and reconstruct a new object from the modified 

symmetric axis and old radius function. A variation of this algorithm would to also allow 

the radius function to change (by an analog of bending). 

 

There is a theoretical problem and a practical problem with this proposed algorithm. The 

theoretical problem is that a sufficiently large bending of the symmetric axis might cause 

it not to be any longer the symmetric axis of any object. There are certain inequalities that 

must hold between the derivatives of the symmetric axis and radius function, and the 

bending process might violate these. The bending algorithm could possibly be modified 

to respect these constraints or to change the radius function to preserve these constraints. 

The practical problem is that the symmetric axis of a complicated object is itself a 
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complicated object, possibly containing loops and branches. As discussed in Chapter 3, 

the bending operator can only be applied to parts of a mesh of patches that can be 

flattened out, i.e., single, non-branching sheets. 

 

There is an interesting potential application of this idea to visualization of 3-D data, for 

example, volume rendered medical patient CAT scans. A big difficulty in viewing 

volume rendered data is obscuration of interesting parts of the data set by uninteresting 

parts. It is often not possible to remove the uninteresting parts by classification, because 

they may have virtually the same density as the interesting parts. Consider, for example, 

looking for a tumor. What is needed is a range of interest selection tool, that is, a solid 

shape that can be used as a key for whether or not to remove parts of the data set. To be 

useful, such a range of interest tool would need to be very malleable so that it could be 

interactively shaped to select the interesting parts of the data set. The bending operator 

applied to the symmetric axis of the range of interest tool might provide the necessary 

ease of shape control. 
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Appendix A 

Tutorial on differential geometry of surfaces 
 

The purpose of this tutorial is to provide definitions and explanations of the concepts of 

the differential geometry of surfaces in 3-D space. This presentation does not 

comprehensively cover the subject; only concepts actually needed to read the dissertation 

are included. Some important ideas that are omitted here are the theory of space curves, 

arc length, the Frenet equations, and the algebra of n-forms and exterior differential 

forms. Some references to the literature on differential geometry are given at the end of 

this appendix. The reader is assumed to be familiar with linear algebra and calculus of 

several variables. 

 

The reader who isn't familiar with the notation of modern differential geometry may 

become dismayed and confused by the tremendous number of definitions and the great 

variety of spaces used. I assure the reader that these definitions and spaces are not 

arbitrary but that they have been worked out carefully over more than half a century. They 

are the right tools for the job. Before jumping into the details I offer the following bit of 

advice, which helped me a great deal when I was first learning the subject. When things 

get confusing, try drawing a diagram of nodes connected by arrows. Label the nodes with 

the spaces and the arrows with the functions and operators involved. 

  

The setting for this topic is 2-D and 3-D Euclidean space, i.e., real vector spaces of 

dimensions 2 and 3 with a notion of length and dot products of vectors. Many of the 

concepts are independent of the actual dimension. 
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Definition A-1. Euclidean n-space 
n
 is the set of all ordered n-tuples of real numbers. 

Such an n-tuple p  p1,...,pn  is called a point of 
n
. The distance between two points p 

and q is given by the Pythagorean formula 

 

 p q  p1  q1 
2

. .. pn  qn 
2

, 

 

and the dot product of two points p and q is given by  

 

 p  q  p1q1...pnqn . 

 

Euclidean n-space becomes a real vector space by defining addition and scalar 

multiplication componentwise. 

 

Tangent Vectors. Intuitively, the notion of a vector in 
n
 can be thought of as a directed 

line segment or arrow between two points. In differential geometry both the starting point 

and the arrow are important.  A vector vp  is defined by giving the starting point p and the 

change, or vector v, necessary to reach its end point p+v.  Strictly speaking, v is just a 

point of  
n
. 

 

Definition A-2. A tangent vector vp  to 
n
 consists of two points of 

n

, its vector part v 

and its point of application p. 

 

The word "tangent" is included to emphasize that the point of application is important: 

two tangent vectors vp  and vq  are not the same if p is not equal to q. In this dissertation, 

all vectors are tangent vectors with a specific point of application although sometimes the 

word "tangent" or the subscript p is omitted for brevity. 

 

For a given point p in 
n
, the totality of all tangent vectors vp  with point of application p 

form an  n-dimensional vector space by applying addition and scalar multiplication to the 

vector parts, called the tangent vector space of p, or tangent space of p. A tangent vector 

field, or vector field on 
n
 is obtained by selecting one tangent vector vp  from the 
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tangent vector space for each p in 
n
. Such a vector field is defined to be continuous or 

differentiable if its vector part is a continuous or differentiable function of the point of 

application. 

 

Tangent vectors can also be thought of as derivative operators, in the following sense. Let 

f be a real-valued function on 
n
. For a given tangent vector vp  one can think of taking 

the directional derivative of f at p in the v direction. To be specific, we define the 

application of a tangent vector vp  to a function f by 

 

 vp f   lim
f p  tv  f p 

t
 as t0 . 

 

Consider the operator 


x
in 

2
. By definition 

 

 


x
p f p  lim

f p t 1, 0   f p 
t

 as t0 . 

 

Thus 


x
p

 acts just like the tangent vector 1,0 p  when applied to functions. Thus the 

familiar partial derivative operators can be considered to be tangent vectors. 

 

We can extend the concept of tangent vectors to two-dimensional surfaces in 
3
. We 

define tangent vectors vp  of a two-dimensional surface S in 
3
 as the subset of tangent 

vectors of 
3
 with point of application p in S and vector part v tangent to S at p. It can be 

shown that the set of tangent vectors at a point of a surface forms a two-dimensional 

vector space. In this dissertation, we are interested in surfaces that are the range of a 

single patch. We define patches as follows. 

 

Definition A-3. A two-dimensional patch c is a smooth (differentiable) function 

c: 0,1 
2


3
 which is regular (its Jacobian has rank 2) at each point of 0,1 

2
. Letting u 
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and v be the usual coordinates of 0,1 
2
 the outward normal vector of the patch is 

cu  cv

cu  cv

, where cu and cv  denote the partial derivatives of c with respect to u and v. 

 

We require patches to be regular so that there is always a well-defined normal vector. Not 

every surface can be represented as the image of a single patch. The proper generalization 

of a two-dimensional surface is a two-dimensional differentiable manifold, which is 

roughly speaking, a surface that can be covered by overlapping patches. The main 

difficulty is to make sure that all of the geometrical objects defined on a manifold agree 

on the overlap between patches and are thus independent of patch coordinates. 

 

1-Forms. The concept of 1-forms is very useful in the differential geometry of surfaces. 1-

forms are equally as important as tangent vectors, but they are harder to visualize and less 

widely known. One can think of a 1-form as a measuring device for tangent vectors. If  

is a 1-form and vp  is a tangent vector, then  vp  is a real number. At a given point of 

application p, the function from the vector part of vp  to the reals is required to be linear. 

 

Definition A-4. A 1-form  on 
n
 is a real-valued function on the set of all tangent 

vectors of 
n
 such that  is linear at each point p, i.e., 

 

  avp  bwp  a vp  b wp  

 

for any real numbers a, b and any tangent vectors vp , wp  at the same point p of 
n
. 

 

The sum of 1-forms on 
n
 is defined pointwise 

 

    vp   vp  vp . 

 

Likewise multiplication by a real-valued function on 
n
 is defined pointwise. 

 

 f  vp  f p  vp . 
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At a given point p, the 1-forms p   p  form an n-dimensional real vector space due to 

the linearity property. This is just the dual space of the tangent vector space. If  p  is not 

zero, a standard theorem of linear algebra guarantees the existence of a tangent vector vp  

such that  vp  1. If wp  is another tangent vector at p, then  wp  v w . In particular, 

if vp  and wp  are orthogonal, then  wp  0 . 

 

One way of visualizing a 1-form  is to picture for each p a stack of parallel plates 

centered at p. Let vp  be the tangent vector for which  vp  1. The plates are thought of 

as being perpendicular to v with a separation of the length of v. Hence  p  is seen as an 

oriented ruler that measures the component of tangent vectors at p in the v direction, with 

a scale such that v is the unit length. To measure the size of a tangent vector wp  using , 

count the number of plates crossed by w. For 1-forms on 
2
 picture line segments rather 

than plates. 

 

Differentials. The symbols df,  dx, and dy that appear in the familiar equation 

 

 df 
f

x
dx

f

y
dy 

 

and which are often not rigorously defined in introductory calculus courses, turn out to be 

1-forms. Let f be a real-valued function on 
n
. Then df is the 1-form which measures the 

change of the value of f at a point p for movements along tangent vectorsvp . By definition 

df vp  vp f . It is instructive to use this formula to compute the differentials dx and dy 

in 
2
. Define x as the coordinate function from 

2
 to   which picks out the first 

component of a point p. That is, x p  x p1, p2  p1
. Hence,  

 

 dx vp  vp x  lim
x p  tv   x p 

t


p1  tv1  p1

t
 v1 . 
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In other words, dx throws away the point of application and returns the first or x 

component of the vector part of vp . Using the visualization technique, we picture a family 

of line segments parallel to the y axis with a unit separation.  

 

2-Forms. The concept of 1-forms can be generalized to n-forms for any non-negative 

integer n. We will need 2-forms to define integration on surfaces. One can think of a 2-

form as a measuring device for area. A 2-form operates on pairs of tangent vectors and 

gives the signed area of the parallelepiped spanned by the two vectors. 

 

 Definition A-5. A 2-form   on 
n
 is a mapping from pairs of tangent vectors of 

n
 to 

the reals which satisfies the following two properties. 

 

1. At a given point p,  is linear in each component, that is, if up , vp , and wp  are tangent 

vectors at p and a and b are real numbers then 

 

  aup  bvp ,wp  a up ,wp  b vp ,wp  

and 

  wp ,aup  bvp  a wp,up  b wp ,vp  

 

2.  is alternating, that is,  

 

  up, vp   vp ,up . 

 

For consistency, 0-forms are defined to be ordinary real-valued functions. It turns out that 

on 
2
 and on two-dimensional surfaces, all forms of degree 3 or higher are zero. We will 

only be concerned with 0-, 1-, and 2-forms in this tutorial. 

 

A 2-form  applied to a pair of identical tangent vectors yields zero due to the alternating 

property:  up,up   up ,up  0 . 2-forms are closely related to determinants as the 

following theorem shows: 
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Theorem A-1. Let  be a 2-form on 
2
, and let up  and vp  be tangent vectors of 

2
 at a 

point p. Let e1p  and e2 p  be a basis for the tangent space of 
2
 at p and ij  be real 

numbers such that up  11e1p 12e2 p and vp 21e1p 22e2 p . Then 

 

  up, vp  1122 1221  e1 p,e2 p  det
11 12

21 22







 e1p,e2 p . 

 

This is easily shown by expanding the left hand side using the linearity and alternating 

properties. Thus a 2-form on 
2
 is completely determined at any point by its value on a 

basis of the tangent space at that point. Using componentwise addition and scalar 

multiplication, the 2-forms can be made into a vector space at each point. Theorem A-1 

shows that this space is one-dimensional. Hence if we have any non-zero 2-form   on 


2
, we can write any other 2-form  on 

2
 as a scalar multiple of . That is, given  

there exists a function f such that   f . 

 

There is a natural way to multiply n-forms called the wedge product, which we will need 

to investigate integration on surfaces. 

 

Definition A-6. Let  and  be 1-forms, and let f be a 0-form (ordinary function) on 
n
. 

Let up  and vp  be tangent vectors of 
n
. The wedge product of  and , denoted by  , 

is the 2-form defined by 

 

   up ,vp   up  vp  vp  up  det
 up   vp 
 up   vp 









. 

 

The wedge product of f and , denoted by f , is the 1-form f, the scalar product of f 

and . 

 

It is easily shown that if  and  are 1-forms and f is a 0-form then        and 

  f  f   . It is interesting to note how often the determinant appears when dealing 
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with n-forms. One way of thinking of n-forms is that they are generalizations of the 

determinant. Indeed, on 
2
 the function det  can be thought of as a 2-form. 

 

We define n-forms on a surface S by restricting n-forms of 
3
to the surface. It can be 

shown that the 1-forms at a point of the surface form a 2-dimensional vector space and 

that the 2-forms at a point of the surface form a one-dimensional vector space. 

 

Derivative Maps and Pull-backs. Tangent vectors and n-forms can be transferred from 

one surface to another by a smooth mapping. Suppose we have a function f that smoothly 

maps a two-dimensional surface M in 
3
 to a two-dimensional surface N in 

3
 

  

 f : M  N . 

 

We define a function from tangent vectors of M to tangent vectors of N as follows.  

 

Definition A-7. Let vp  be a tangent vector of M. Let f
1
, f

2
, f

3  be the components of f. 

The derivative map f *  is defined by 

 

 f * vp  vp f
1 ,vp f

2 ,vp f
3  

f p 
. 

 

Another way of saying this is that f *  at p is the linear transformation which best 

approximates the behavior of f at p. The matrix of this linear transformation with respect 

to the usual basis is just the Jacobian matrix of f at p. The derivative map is sometimes 

called a push-forward, as it works in the same direction as f. Similarly we can transfer 1-

forms between surfaces. Let   be a 1-form on N. We define a 1-form f
*
  on M, called 

the pull-back of   under f, by 

 

 f
*
 vp  f* vp  . 
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In words, the pull-back of a 1-form is evaluated on a tangent vector by first pushing 

forward the vector and then applying the 1-form. Let  be a 2-form on N. We define a 2-

form f
*
  on M, called the pull-back of  under f , by 

 

 f
*
 up ,vp   f * up , f * vp   . 

 

As with 1-forms, the pull-back of 2-form is evaluated on a pair of tangent vectors by first 

pushing forward the vectors and then evaluating the 2-form. For consistency, we define 

the pullback of a 0-form g on N by 

 

 f
*
g  g f . 

 

Pull-backs go in the opposite direction of the function, that is, n-forms on N are taken to 

n-forms on M.  Pull-backs interact with wedge products according to the formula 

f
*
   f

*
 f

*
  for n-forms  and  of any degree. 

 

Frame Fields. A frame field on 
n
 is a set of mutually orthogonal unit vectors at each 

point of 
n

. A frame field is defined to be continuous or differentiable if its component 

vector fields are. 

 

Any smooth surface in 
3
 induces (at least locally) a pair of differentiable unit normal 

vector fields. The surface is called orientable if there is a global differentiable unit normal 

vector field. Though not all surfaces are orientable (e.g., the Möbius strip), we will 

assume the surfaces we encounter here are. Any surface that is the range of a single patch 

is clearly orientable. A normal vector field can be expanded to a frame field by choosing 

two other unit vector fields orthogonal to each other and the normal vector field.  Such a 

frame field is said to be adapted to the surface. By sliding a small distance along the 

normal vectors, this adapted frame field can be extended to a 3-dimensional 

neighborhood of the surface. An adapted frame field for a surface is defined to be 

continuous or differentiable if its extension to a 3-dimensional neighborhood is. 
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The Structure Equations. Elie Cartan developed the very powerful idea of moving frames 

for studying surfaces by attaching adapted frame fields at each point and considering how 

such frame fields twist and turn with movements in the surface. The key idea is to express 

the derivatives of an adapted frame field in terms of the frame field itself. In this way the 

coefficients of the derivative matrices give direct information about the geometry of the 

surface. 

 

Let c be a patch, i.e., a function from the unit square to 3-dimensional Euclidean space, 

and let 
 
e e1,e2 ,e3  be an adapted frame field for this patch, with e3  the outward normal 

vector. A frame field is called right-handed if e1  e2  e3  and left-handed if e1  e2  e3 . 

We can compute the differentials of vector fields e1,e2,e3  yielding de1,de2 ,de3 . dei  is thus 

a vector of 3 1-forms, and de can be thought of as a   33 matrix of 1-forms. Cartan’s idea 

was to express these forms in terms of the frame e itself. Hence we define 

 

 ij  dei  ej  for i, j  1. .3 . 

 

These are called the structure forms. In matrix notation, 

 

   dee
t
. 

 

What are the properties of these coefficients  ij , and what do they reveal about the 

geometry of the surface? If we apply, for example, 13  to a tangent vector vp that is 

tangent  to the surface, we obtain 

 

 13 vp  de1 vp  e3 . 

 

de1 vp  gives the change in the e1  frame vector for motions along the tangent vector vp . 

Thus 13 vp  gives the component of the change in the e1  frame vector in the direction of 

the e3
 frame vector. In other words,  13  gives the rate at which the e1  frame vector is 

turning towards the e3  frame vector. The same reasoning applies to all the  ij , so for any 

vp , ij vp  is the rate of turn of the i-th frame vector towards the j-th frame vector for 
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movement in the v direction at point p in the surface. It can be shown that   ii  0  and 

furthermore that  is a skew-symmetric matrix, i.e., it is the negative of its transpose: 


t
  . Intuitively this means that the rate of turn of the i-th frame vector in its own 

direction is zero (which has to be true for any unit vector) and that the turn of the i-th 

frame vector toward the j-th frame vector is the negative of the turn of the j-th frame 

vector toward the i-th frame vector. The proof is simple: just compute the differential of 

the dot product of two frame vectors. Since ei  ej  is constant, 

 

 0  d ei ej  dei ej  ei dej  ij  ji . 

 

If we multiply both sides of   dee
t
 by the matrix e, we obtain the structure equations  

in matrix form 

 

 de e . 

 

The Metric. The metric, also called the first fundamental form, is basically a device for 

measuring the lengths (squared) of tangent vectors. It is not an n-form. It is customarily 

denoted by the symbol I (Roman numeral one.) The metric repeatedly appears in the 

study of the geometry of surfaces. 

 

Definition A-8. The metric I on 
n
 is the function from the set of all tangent vectors vp  

of 
n
 such that I vp  v

2
. The metric on a surface patch in 

3
 is defined by restricting 

the metric on 
3
 to tangent vectors of the patch. 

 

The metric can be expressed in terms of 1-forms, which should not be too surprising, 

since 1-forms are also real-valued functions of tangent vectors. Let x, y, and z be the 

coordinate functions for 
3
, i.e., if p p1, p2 ,p3  is a point in 

3
 then x p  p1 , 

y p  p2 , and z p  p3. Consider the 1-forms dx, dy, and dz. We saw earlier that the 

differentials of the coordinate functions simply pick out the corresponding component of 

the vector part of tangent vectors. Therefore we have 
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I vp  v
2
v1

2
v2

2
v3

2
dx vp 

2

dy vp 
2

dz vp 
2

 

 

or in short 

 

 I  dx
2
 dy

2
 dz

2
 dX dX, 

 

where X denotes the point x, y, z . Matters become more interesting when we consider 

the metric on a surface patch in 
3
. 

 

Let c: 0,1 
2


3
 be a surface patch. Our goal is to find a formula for the metric on this 

surface. From the previous paragraph we have I  dcdc. Let u and v be the coordinate 

functions on 0,1 
2
. We have 

 

 dc  cu du cvdv, 

 

where cu  and cv  are tangent vector fields on the surface obtained by taking partial 

derivatives with respect to u and v.  Let E  cu  cu , F  cu  cv , and G  cv cv . Then 
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I  dc dc  cudu  cvdv  cudu  cvdv 

 cu  cudu
2
 2cu  cvdudv cv cvdv

2

 Edu2  2FdudvGdv2

 

 

in terms of the differentials du and dv. Strictly speaking, this is actually the pull-back of I 

by the function c. I is an example of a quadratic form, that is, a quadratic polynomial of 1-

forms. We can write I  in matrix notation in the following way: 

 

 I  du dv 
E F

F G








du

dv







 

 

Isometries. Roughly speaking, two surfaces are isometric if one can be deformed into the 

other without stretching or tearing. For example a flat sheet and a cylinder are isometric, 

but a cylinder and a sphere are not. The precise definition of isometries is as follows. 

 

Definition A-9. Let M and N be surfaces in 
3
. Let f be a smooth mapping from M to N. f 

is an isometry if its derivative map f *  preserves the lengths of tangent vectors. 

 

Letting IM  denote the metric of M and IN  denote the metric of N, this definition is 

equivalent to f
*
IN  IM

. That is, the pullback via f preserves the metric. Two surfaces are 

said to be isometric if there exists an isometry between them. Surface properties which 

are preserved by isometries are said to be intrinsic, and other surface properties are said to 

be extrinsic. 

 

To help understand the distinction between intrinsic and extrinsic properties, let us 

imagine a race of two-dimensional beings living on a surface, with no awareness of 

height. What could such beings discover about the geometry of their world? One thing 

they could do is measure distances, and hence they could determine the metric of their 

world. Thus they would be able to tell whether they lived on a flat plane or on a sphere, 

since these have different metrics. In fact, they could completely determine the intrinsic 

geometry of their world but none of the extrinsic geometry. 
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The normal vector field of a surface is an extrinsic property. To see this, think of bending 

a flat sheet of paper. Paper has the property of resisting changes to its metric. Some 

experimentation will convince the reader that a sheet of paper can be bent into a great 

variety of shapes. However the sheet of paper cannot assume all shapes. For instance it is 

impossible to wrap even a small piece of a sphere with a flat sheet. The class of shapes 

that a piece of paper can be bent into is precisely the set of surfaces isometric to a flat 

sheet. 

 

Integration and the Area Element. In the bending algorithm developed in this dissertation 

the penalty functions are defined as integrals of certain functions over a surface. We 

denote the integral of a function f over a surface S by fdA
S

 . 

 

Our goal in this section is to define such an integral and to develop a formula for 

evaluating it. The term dA is the area element and is an example of a 2-form. The notation 

might lead one to think that dA is the differential of something, but this is not necessarily 

the case. However the notation is too firmly established to change. The proper object to 

integrate over a surface turns out to be a 2-form rather than an ordinary function. By our 

rule for scalar multiplication,  fdA is a 2-form. 

 

Definition A-10. Let c: 0,1 
2


3
 be a patch, and let 

 
e e1,e2 ,e3  be an adapted frame 

field for this patch, with e3  the normal vector.  Further assume that the frame field is 

right-handed, i.e. e1  e2  e3 . We define the area element dA  on S  c 0,1 
2 to be the 2-

form such that at each point, dA e1,e2 1. 

 

It can be shown that dA is independent of the particular frame field used to define it. 

Recall that a 2-form measures the area of the parallelepiped spanned by a pair of vectors. 

This definition says that dA is the (unique) 2-form that assigns unit area to the square 

spanned by the frame vectors e1  and e2 . 

 

We now ready to define the integral of an arbitrary 2-form on a surface patch and to 

develop machinery for evaluating such integrals. 
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Definition A-11. Let  be a 2-form on 
2
. Let f be the real-valued function on 

2
 such 

that   fdA, where dA is the area element for 
2
. The integral of  over the unit square 

0,1 
2
 is defined by 

 

 
0,1 

2

  fdA
0,1 

2

  f (u,v)dudv
0

1

0

1

 . 

 

Let c: 0,1 
2


3
 be a patch, and let  be a 2-form on S  c 0,1 

2 . The integral of f 

over S is defined as 

 

 
S

  c
*


0,1 
2

 . 

 

Strictly speaking we integrate only in 
2
. We pull back forms to 

2
 and convert to 

ordinary iterated integrals of functions. Definition A-11 appears to depend on the choice 

of the particular patch c, but it can be shown that the value of the integral is independent 

of this choice; i.e., if ˆ c  is another patch such that S  ˆ c 0,1 
2 , then ˆ c 

*


0,1 
2

  c
*


0,1 
2

 . In 

fact, the main reason we integrate 2-forms on surfaces is to achieve this independence of 

parameterization. To develop the machinery for computing surface integrals, we must 

investigate how to compute pull-backs of 2-forms. 

 

To set the stage for this computation, let c: 0,1 
2


3
 be a patch, let   fdA be a 2-

form on S  c 0,1 
2 , and let e e1,e2 ,e3  be a right-handed, adapted frame field on S. 

Our goal is to find a formula for the pull-backs of dA and fdA via c. Let u and v be the 

usual coordinate system on the domain 0,1 
2
. First note that on 0,1 

2
 the area element is 

du dv. To see this, compute 

 

  
du dv 1,0 p, 0,1 p  du 1,0 p dv 0,1 p  du 0,1 p dv 1,0 p 
 11 0  0  1

. 
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We will show that c
*

dA   EG F
2
du dv det I du dv, where E, F, and G are 

the components of the first fundamental form I, i.e., E  cu  cu , F  cu  cv , and G  cv cv . 

Expressing cu  and cv  in terms of the frame field e, we have 

 

 cu  cu  e1e1  cu  e2e2  

 cv  cv e1e1  cv  e2e2. 

 

There are no e3  components, since cu  and cv  are tangent to the surface, hence orthogonal 

to e3 . Now applying Theorem A-1, we compute 

 

 c
*

dA  1,0 p , 0,1 p dA c* 1,0 p,c* 0,1 p dA cu,cv  

 

 dA cu  e1e1  cu  e2e2,cv e1e1  cv e2e2 

 det
cu  e1 cu  e2

cv e1 cv e2







dA e1,e2  det

cu e1 cu e2

cv e1 cv e2








. 

 

Let M 
cu e1 cu e2

cv  e1 cv  e2







. We need to show that det M  EGF

2
.  We have 

 

 MM
t


cu  e1cu  e1  cu e2cu e2 cu e1cv e1  cu  e2cv e2

cv  e1cu  e1  cv  e2cu  e2 cv e1cv e1  cv e2cv e2









cu  cu cu cv

cv  cu cv  cv







 I  

 

which implies det M 
2
 det I   and thus det M   det I   EG  F

2
. 

 

To conclude, we compute c
*

fdA  f cc
*

dA   f c EG F
2
du dv. Our formula 

for the surface integral is therefore 

 

 

fdA
S

  c* fdA 
0,1 

2

  f c EG F2 du dv

0,1 
2



 f c u, v   E u,v G u,v  F u, v 2 dudv
0

1


0

1



. 
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Curvature and the Second Fundamental Form. The curvature of curves and surfaces is 

essentially a measure of how tangent vectors at a point turn in the normal direction as the 

point moves along the respective tangent vectors. For curves this measure at any point is a 

single number, but for surfaces it is not, since there are multiple directions in which one 

can move. The curvature information about a surface is captured by a quadratic form 

known as the second fundamental form, defined later. 

 

Definition A-12. Let : a,b 
2
 be a plane curve with  t  1 , i.e., a unit speed 

curve. The curvature of   at t, denoted by  t  , is defined as  t   t J  t  , 
where J x,y  y, x  . The function J represents a counter-clockwise 90 degree rotation 

in 
2
. 

 

That is, the curvature is the component of the acceleration vector in the normal direction. 

In geometric terms, the curvature at a point on a plane curve is the inverse of the radius of 

the osculating circle at that point. There is an inherent ambiguity in the sign of the 

curvature, since there are two possible choices for the normal direction. The ambiguity is 

resolved in Definition A-12 by the customary rule that left-turning curves have positive 

curvature and right-turning curves have negative curvature. Note that the sign of the 

curvature of a plane curve is changed by parameterizing the curve in the opposite 

direction. 

 

To get at the curvature of surfaces, we examine the curves formed by cutting the surface 

with a plane that includes the surface normal vector. Such a curve is called a normal 

section curve. Because of the sign ambiguity mentioned in the previous paragraph, we 

cannot directly use the curvature of such curves to define the curvature of a surface. 

However, oriented surfaces are equipped with a well-defined outward normal, which we 

can make use of to produce an unambiguous definition of surface curvature. 

 

Definition A-13. Let c: 0,1 
2


3
 be a surface patch, and let n denote the outward 

normal vector field of c . Let wp  be a unit tangent vector and n p  be the outward normal 

vector at a point p on the surface patch. Let : 1,1 
3
 be a unit speed 



 

 clxv 

parameterization of the normal section curve formed by the intersection of the surface 

patch and a plane through p that includes the normal vector n p , such that  0   p and 

 0 wp
. The normal curvature at p in direction w is defined by 

 

 k wp   0  np . 

 

The minimum and maximum values of the normal curvature at a point are called the 

principal curvatures, usually denoted by  1  and  2 , and the tangent vectors at which 

these are attained are called the principal directions. It can be shown that the principal 

directions are orthogonal where defined. Principal directions are not defined at umbilic 

points, at which 1   2 . 

 

The second fundamental form is a quadratic form that captures all the curvature 

information of a surface. 

 

Definition A-14. Let c: 0,1 
2


3
 be a surface patch, and let n denote the outward 

normal vector field of c . The second fundamental form of c , denoted by II  (Roman 

numeral two),  is the mapping from tangent vectors of c  to the reals defined by 

II  dc dn. 

 

The formula for normal curvature can be derived by applying the second fundamental 

form to unit speed normal section curves, which demonstrates that II captures all the 

curvature information of a surface. As in Definition A-13, let : 1,1 
3
 be a unit 

speed parameterization of the normal section curve formed by the intersection of the 

surface patch c and a plane through p that includes the normal vector n p , such that 

 0   p and  0 wp
. Applying II to   yields 

 

 II  dc  dn      n  , 

 

where n  denotes n restricted to . But   is a tangent vector to the surface, so 

 n  0 . Taking the derivative of this equation yields 0   n   n , implying that 
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 II wp  II  0     0  n  0   0 np  k wp . 

  

The second fundamental form can be thought of as giving the rate at which a unit tangent 

vector wp  is turning in the n direction as p moves in the w direction. Equivalently, the 

second fundamental form can be thought of as giving the rate at which n is turning in the 

w direction as p moves in the w direction. The rate at which n is turning in the direction 

perpendicular to w at the point p has no effect on the normal curvature in the w direction 

(though it certainly affects the normal curvature in the direction perpendicular to w). To 

see this, consider a unit speed normal section curve through p with tangent vector wp . 

The effect of n turning in the direction perpendicular to w is to twist the curve about its 

axis, which does not change its curvature. 

 

Let u and v be the coordinate functions on 0,1 
2
. The matrix of the second fundamental 

form in terms of du and dv is 

 

 
L M

M N







, 

 

where L  cuu  n , M  cuv n , and N  cvv n . The curvature information can be extracted 

by premultiplying the matrix of II by the inverse of the matrix of the first fundamental 

form I. It can be shown that the eigenvalues of the matrix I 
1
 II  are the principal 

curvatures  1  and  2  and that the eigenvectors of this matrix are the principal directions. 

A remarkable fact is that the second fundamental form and the metric completely 

determine the geometry of a surface. 

 

Theorem A-2 (The Fundamental Theorem of Surfaces). Let c1: 0,1 
2


3
 and 

c2 : 0,1 
2


3
 be regular surface patches. If both the first and second fundamental forms 

of c1  and c2  are equal, then c1 0,1 
2  and c2 0,1 

2  are congruent; that is, they can be 

superimposed by a rigid motion. 
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A proof can be found in [ O'Neill 66 ]. Intuitively, this theorem says that the shape of a 

surface is fully determined by the metric and the curvature up to rigid motions. 

 

References. We have barely scratched the surface of the field of differential geometry. For 

more detail, here are some good reference books on the subject. Elementary Differential 

Geometry, by O'Neill is a good introductory text. Differential Forms with Applications to 

the Physical Sciences, by Flanders is a book on applications of differential forms written 

for scientists and engineers. Solid Shape, by Koenderink provides an intuitive, visual 

approach to the subject with many diagrams and verbal explanations. A Comprehensive 

Introduction to Differential Geometry by Spivak is a five volume survey of the field for 

the mathematically sophisticated.  
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