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ABSTRACT

This dissertation explores the costs of providing consistency guarantees for con-

current shared objects in distributed computer systems. Concurrent shared objects

are useful for interprocess communication. We study two forms of concurrent shared

objects: physical shared objects and virtual shared objects.

First we consider physical shared objects called (read/write) registers. Registers

are useful for basic interprocess communication and are classi�ed according to their

consistency guarantees (safe, regular, atomic) and their capacity. A one-write al-

gorithm is an implementation of a multivalued register from binary registers where

each write of the simulated multivalued register modi�es at most one binary regis-

ter. A one-write algorithm optimizes writes, speeding up applications where writes

outnumber reads. We present the �rst one-write algorithm for implementing a k-

valued regular register from binary regular registers. The same algorithm using

binary atomic registers is the �rst one-write algorithm implementing a k-valued

atomic register. The algorithm requires C(k; 2) binary registers. Two improved

lower bounds on the number of registers required by one-write regular implementa-

tions are given. The �rst lower bound holds for a restricted class and implies that

our algorithm is optimal for this class. The second lower bound, 2k � 1 � blog kc,

holds for a more general class. The lower bounds also hold for two corresponding

classes of one-write atomic implementations.

Next we consider virtual shared objects from abstract data types, which are

desirable from a software engineering viewpoint. We show that the cost (worst-case

time complexity) for operations from abstract data types depends on the amount

of synchrony among the processes sharing the objects, the consistency guarantee

(sequential consistency, linearizability, hybrid consistency), and algebraic properties

of the operations. Sequential consistency and linearizability are equally costly in

perfectly synchronized systems under certain assumptions. Hybrid consistency is
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not necessarily cheaper than sequential consistency or linearizability. In perfectly

synchronized systems, operations satisfying certain algebraic properties cost 
(d)

(d is the network message delay). To contrast, in systems with only approximately

synchronized clocks, for certain classes of abstract data types, sequential consistency

is cheaper than linearizability. Our results generalize known results for speci�c

object types (read/write objects, queues, and stacks).
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Chapter 1

Overview

1.1 Background

As the use of computers became more prevalent, people wanted to solve larger

and larger problems with computers; thus, system throughput needed to increase.

One way to increase throughput is to link computers together in a distributed

system (this also includes SIMD parallel processor structures). This is not a far-

fetched notion because some autonomous computers already share resources such as

printers and disk drives. Also, people discovered (to some degree) how to determine

the inherent parallelism of problems. They discovered that parts of problems could

be solved in parallel; then the various partial solutions could be combined to obtain

a total solution. The structure of the problem can be mapped to the processors

in a distributed system. The results of the partial solutions must be integrated.

Interprocess communication is the key to coalescing the partial solutions to form a

total solution.

Interprocess communication is implemented by using shared memory or message

passing. We concentrate on shared memory because its semantics are similar to the

semantics provided by a uniprocessor memory and it has been used to solve im-

portant synchronization problems (such as mutual exclusion and leader election),

thus providing tools for building modular concurrent programs. In a truly con-

current shared memory, reads and writes to the same memory location can occur



simultaneously. What should the users of the shared memory assume about the

validity of values returned by their read operations? These validity concerns are

expressed in terms of guarantees. A guarantee describes possible orders in which

memory operations appear to occur. For example, in a shared memory with only

one process accessing it (i.e., a uniprocessor memory), a read operation of memory

location X will appear to occur after the last write of X that completed before

the read started and before any write of X that started after the read completed.

For shared memories that can be accessed by multiple processes, many guarantees

can be de�ned. We can classify guarantees by their strengths. A strong guarantee

means that there is not much exibility in the possible orders in which memory

operations appear to occur. In our thesis, we determine quantitative measures of

the costs of building concurrent shared memory objects which provide various guar-

antees. Intuition tells us that stronger guarantees may be more costly than weaker

ones because the stronger guarantees are more restrictive. However, shared objects

with stronger guarantees may simplify programming for the users of the system.

We investigate the tradeo� between the strength of a consistency guarantee for

shared objects and the cost of providing it.

In order to study the costs of providing consistency guarantees for shared ob-

jects, we must �rst explore how to implement shared objects. We can implement

shared objects in two ways: either as physical shared objects or as virtual shared

objects. Processes directly access physical shared objects, which can be viewed as

hardware. If processes do not have a physical shared memory, then they use virtual

shared objects to communicate. In order to simulate the shared objects, processes

create the illusion of physical shared objects (hence, the term virtual shared ob-

jects). The processes achieve this simulation by keeping relevant information in

their local memories, using message passing to maintain consistency of the objects

according to a certain consistency guarantee. Thus, message passing is critical for

virtual shared objects. Since we can implement shared objects either as physical

shared objects or as virtual shared objects, we must study the costs of both types

of implementations.
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1.2 Physical Shared Objects

We consider physical shared objects called registers, which are memory cells that

support concurrent reading and writing by a collection of processes. These registers

provide read and write operations to their users. We consider registers because they

are the shared memory analog of uniprocessor memory locations. We also believe

that they may be relatively easy to implement because of their simple semantics.

Although registers cannot be used to solve many complicated coordination problems

(i.e., consensus) [Her91], they can be used for basic interprocess communication.

Processes are directly connected to the registers via channels. We want registers

to work correctly without depending on the relative rates at which the accessing

processes run; we allow the processes to be totally asynchronous. We also require

registers to be wait-free, which means that reads and writes of the registers complete

in a �nite number of steps, regardless of the actions of other processes.

We have previously listed some common features of registers. How can registers

be di�erentiated? One way to classify registers is by the consistency guarantees

that they provide to their users. What consistency guarantees can registers provide

to their users? Lamport [Lam86] de�ned the safe, regular, and atomic consistency

guarantees for asynchronous shared registers in the presence of concurrent reads

and writes. He assumed that writes do not overlap other writes. A read of a safe

register which overlaps with a write can return any legal value of the register. A read

of a regular register which overlaps with some writes can return either the value

written by the latest preceding write or a value written by one of the overlapping

writes. An atomic register makes reads and writes appear that they have occurred

in a particular order without overlapping, preserving the actual ordering of non-

overlapping operations. Every regular register is safe, but a safe register is not

necessarily regular. For example, consider a 4-valued safe register with possible

values of 0, 1, 2, and 3, where the register initially contains 0 as its value. A read

which overlaps with writes of 2 and 3 could return 1, which was never written to

the register. 1 would be an invalid value to return if the register were regular.

Every atomic register is regular, but a regular register is not necessarily atomic.

For example, consider a 3-valued regular register with possible values of 0, 1, and 2,

where the register initially contains 0 as its value. Consider two reads R

1

and R

2

,
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where R

2

begins after R

1

ends. Suppose the reads overlap with writes of 1 and 2.

R

1

could return 1, and R

2

could return 2. The pair of values would be invalid if the

register were atomic because the reads and writes will not appear to have occurred

in a particular order. To R

1

, the order of the values written would be 2; 1. To R

2

,

the order of the values written would be 1; 2. We can also classify registers according

to the number of possible values of the register (binary or multivalued). Last, but

not least, we can classify registers according to the maximum allowable number of

concurrent readers of the register (1 or many) and the maximum allowable number

of concurrent writers of the register (1 or many). In this work, we only consider

registers with multiple concurrent readers and one concurrent writer.

Many researchers have worked on building stronger registers from weaker ones.

We will survey this related work later. They have developed many register imple-

mentations with varying degrees of complexity. However, we have not seen much

work on register implementations which are optimal in some manner (number of

registers used, amount of work required by a reader, or amount of work required

by the writer).

We now consider register implementations which are optimal in the amount

of work required by the writer. A one-write algorithm is an implementation

of a multivalued register from binary registers where each write of the simulated

multivalued register modi�es at most one binary register. One-write algorithms are

interesting because writes to the registers are fast (optimal), resulting in speedups

in applications where writes of shared registers occur more frequently than reads.

However, reads must be slow in one-write algorithms, resulting in a tradeo� in

time costs [CW90]. Chaudhuri and Welch [CW90] developed the �rst one-write

algorithm implementing a k-valued safe register from k � 1 binary safe registers.

They also proved that at least k binary regular registers were needed in any one-

write algorithm implementing a k-valued regular register.

We prove that one-write algorithms for implementing regular (respectively,

atomic) multivalued registers from regular (respectively, atomic) binary registers

do exist. We show that they are expensive with respect to space (improving the

lower bound proved by Chaudhuri and Welch [CW90]). One-write algorithms are

expensive with respect to space because they require 
(k) binary registers, while
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the standard binary encoding of k values only needs O(log k) bits.

We have the following results:

� the �rst one-write algorithm implementing a k-valued regular register from

binary regular registers. It uses C(k; 2) binary regular registers.

� the �rst one-write algorithm implementing a k-valued atomic register from

binary atomic registers. It uses C(k; 2) binary atomic registers.

� some algorithm transformation techniques which may be of independent in-

terest:

{ a transformation technique for converting a one-write regular algorithm

into a normal form algorithm (one in which readers do not write to

shared registers, every reader executes the same protocol, and every

reader starts in the same state at the beginning of each read).

{ a transformation technique for converting a symmetric algorithm (in

which any sequence S of writes, followed by a write of value a, followed by

a write of value b, followed by a write of value a, leads to the same states

of the binary registers as S followed by a write of value a, for arbitrary

possible values of the multivalued register a and b) into a symmetric

algorithm in which readers read registers at most once.

{ a transformation technique for converting a one-write algorithm into a

one-write algorithm for a smaller value set using fewer binary registers.

� improved lower bounds on the number of binary registers required by regular

and normal form atomic one-write algorithms implementing k-valued registers

(the previous lower bound was k binary registers):

{ C(k; 2) registers are necessary for toggle algorithms (algorithms such

that for each pair of distinct values v and w in the domain of the multi-

valued register, there is a �xed binary register that is changed whenever

the value of the multivalued register is changed from v to w or vice

versa).
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{ at least 2k�dlog ke�1 registers are necessary for symmetric algorithms

when k � 4.

� Showing that all regular one-write algorithms implementing k-valued registers

need to satisfy the toggle property would be desirable because our one-write

algorithm would be optimal. However, we have found a regular one-write

algorithm implementing a 3-valued register that does not satisfy the toggle

property (it does satisfy the symmetric property). If all one-write algorithms

implementing k-valued registers needed to satisfy the symmetric property,

then our lower bounds above would be reasonably close. However, we have

found a regular one-write algorithm implementing a 3-valued register that

does not satisfy the symmetric property. Both counterexample algorithms use

3 binary registers, matching the lower bound of k registers proved by [CW90].

1.3 Virtual Shared Objects

We study implementations of virtual shared objects. These objects are de�ned as

arbitrary abstract data types. Providing objects from arbitrary abstract data types

is desirable from a software engineering viewpoint. Our goal is to quantify the costs

of implementations of virtual shared objects. The cost measure that we study is

the worst-case time complexity of implementations, focusing on the time required

by each operation of the abstract data type. We show that several factors inuence

these costs.

One factor that can inuence the costs of implementing virtual shared objects

is the amount of synchrony among the processes sharing the objects. We assume

that each node in the distributed system has a clock that runs at the same rate as

real time and is accessible to all processes running on the node. We consider two

possible variations in the amount of synchrony. We assume that each message sent

has a delay in the interval [d� u; d], where u is the uncertainty (if u = 0, then we

have constant message delay). One possibility is for all clocks in the system to be

perfectly synchronized

1

. This is very desirable, but is hard to ensure in practice.

1

Perfect synchrony is an equivalent assumption to constant message delay, as will be explained
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Thus, we also consider a more realistic assumption about the amount of synchrony.

This is the case when the clocks in the system are only approximately synchronized.

This means that they run at the same rate as real time but are not synchronized

initially. Although ensuring perfect synchrony is hard, it is useful to study the

inherent costs of implementing virtual shared objects in systems with perfectly

synchronized clocks because we automatically obtain the minimum lower bounds

on the costs of implementing virtual shared objects in more realistic systems.

Another factor that can inuence the costs of implementing virtual shared ob-

jects is the consistency guarantee to be provided. We now give some examples of

consistency guarantees (strong, weak, and in between or hybrid). In our study, we

concentrate on the strong and hybrid guarantees.

We now discuss two strong consistency guarantees: sequential consistency and

linearizability. In a sequentially consistent system, all operations appear to exe-

cute in an order which agrees with the order in which the operations of each process

were executed. For each object, this order (for all the operations) is legal according

to the semantics of that object's abstract data type. Although the intraprocess or-

dering of operations is preserved by sequential consistency, there are no constraints

on the relative ordering of operations that are performed by di�erent processes.

Sequential consistency is a well-studied consistency guarantee; several implementa-

tions of distributed shared memory (read/write objects) [ABM93, AW91] provide

sequential consistency. A linearizable system is a sequentially consistent system

with the additional constraint that if op

1

completes before op

2

begins in real time,

then op

1

precedes op

2

in the ordering of all operations. Thus, linearizability implies

sequential consistency; but the converse does not hold. Linearizability is equivalent

to the atomic property for shared registers. It was proposed as a consistency guar-

antee for implementations of general shared objects by Herlihy and Wing [HW90].

They argue that assuming linearizable objects aids in formal veri�cation of con-

current programs. Linearizability satis�es the locality property; a collection of

separate linearizable objects is guaranteed to be linearizable. Thus, a linearizable

shared memory can be designed incrementally, one object at a time.

later. Messages can be timestamped; they will not be handled until at least time d after they are

sent.

7



We now discuss weak consistency. In a weakly consistent system [LS88], for

each process, all operations appear to execute in a way that is consistent with

the view of the process. This does not mean that all processes observe the same

ordering of operations. Weak consistency for read/write objects is very cheap to

implement. Each process performs operations on its local copies of objects, send-

ing messages to all other processes when a write is performed. When an update

message for a shared object is received by a process, the process changes its local

copy accordingly. However, weak consistency is computationally weak; Attiya and

Friedman [AF92] proved that the non-cooperative mutual exclusion problem (where

processes not trying to enter the critical section do not participate in the mutual

exclusion protocol) cannot be solved by only using weakly consistent read/write

objects.

We now discuss a hybrid consistency guarantee. Providing a hybrid guarantee

may be less expensive than providing a strong guarantee but may still be powerful

enough to be useful in solving nontrivial problems. In the hybrid consistency

condition de�ned by Attiya and Friedman, each operation has a weak version and

a strong version. Their architecture-independent de�nition of hybrid consistency

generalized consistency guarantees, such as weak ordering [AH90, DSB88] and

release consistency [GLL

+

90, GMG91], that were proposed by the computer ar-

chitecture community. For the shared memory implementations providing these

other consistency guarantees, objects were classi�ed as strong or weak [DSB88],

and users could be sure that the guarantees were provided only if their application

programs obeyed certain synchronization constraints. Hybrid consistency does not

assume these restrictions. Weak and strong operations can be performed on the

same object. Strong operations must appear to execute in the same order at all

processes, and for any two operations executed by process i, where one is strong,

every process observes the operations in the same order as process i. [AF92] de�ne

two types of hybrid consistency: one where strong operations are linearizable, and

one where strong operations are sequentially consistent. They show that hybrid

consistent implementations of shared read/write objects can be more e�cient than

strongly consistent implementations when mostly weak operations are executed.

They also show that hybrid consistent implementations of read/write objects can

be used in a non-cooperative algorithm for mutual exclusion and that more weakly

8



consistent implementations cannot be used in a non-cooperative algorithm for mu-

tual exclusion. Attiya, Chaudhuri, Friedman, and Welch [ACFW93] show that

certain programming strategies make it possible to transform programs assuming

sequentially consistent read/write objects into correct programs only using hybrid

consistent read/write objects. Thus, hybrid consistency is an interesting consis-

tency guarantee to study.

These di�erent consistency guarantees (with the exception of linearizability) are

incomparable to the safe and regular consistency guarantees for registers discussed

earlier.

Last, but not least, algebraic properties of the operations of abstract data types

inuence the costs of implementing virtual shared objects. For an abstract data

type, we build a commutativity graph which represents relationships among the

operations. The nodes of the commutativity graph are the names of the operations

of the abstract data type. Nodes are connected by an edge if instances of them (with

arguments and return values) do not commute. We now explain what it means for

two operation instances not to commute. Two operation instances op

1

and op

2

immediately do not commute if there exists a sequence of operation instances

� such that each of op

1

and op

2

can legally follow it (according to the semantics

of the abstract data types being implemented), but at least one of � � op

1

� op

2

and

� � op

2

� op

1

is not legal. In addition, op

1

and op

2

are cyclically dependent if both

of � � op

1

� op

2

and � � op

2

� op

1

are illegal. If op

1

and op

2

have the same operation

name and immediately do not commute, then we say that op

1

immediately does

not self-commute. If op

1

immediately does not self-commute, then there is a loop

(op

1

; op

1

) in the commutativity graph. The structure of the commutativity graph

helps us to determine the costs of implementing virtual shared objects.

We determine lower and upper bounds on the time complexity of implementing

virtual shared objects from general abstract data types. We vary the amount of

synchrony among the processes and the consistency guarantee to be provided in

order to determine their e�ect on the time complexity of implementing an abstract

data type. The algebraic properties of the operations interact with the previously

mentioned parameters.

We �rst consider systems with perfectly synchronized clocks. We formally prove
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lower bounds on the amount of time required for single operations, pairs of oper-

ations, and all operations for a type. We have proofs of these lower bounds for

both sequential consistency (a lower bound for sequential consistency implies lower

bounds for linearizability) and hybrid consistency. With these lower bounds, we

have linearizable (and also sequentially consistent) implementations of classes of

abstract data types with time complexities that asymptotically match the lower

bounds.

We also consider systems with only approximately synchronized clocks. We

formally prove lower bounds on the amount of time required for single operations

in linearizable implementations. These bounds are higher than the upper bounds

holding in systems with perfectly synchronized clocks. We provide sequentially

consistent implementations of classes of abstract data types with time complexities

that asymptotically match the lower bounds for systems with perfectly synchronized

clocks (which also hold for systems with only approximately synchronized clocks).

What conclusions can we draw from our study of the costs of implementing

virtual shared objects from general abstract data types? The following are true

under certain reasonable assumptions to be explained later (the assumptions are

not necessarily the same for each case):

� Sequential consistency and linearizability are equally costly in systems with

perfectly synchronized clocks.

� Linearizable operations are more expensive in systems with only approxi-

mately synchronized clocks than in systems with perfectly synchronized clocks.

� In systems with only approximately synchronized clocks, sequentially consis-

tent operations are cheaper than linearizable operations.

� Depending on the data type to be implemented, hybrid consistency is not

necessarily cheaper than providing a strong consistency guarantee, even when

weak operations are used mostly.

Our conclusions generalize known results ( [AW91, MR92, AF92]) for speci�c

data types (read/write objects, queues, and stacks). Our conclusions also provide
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new information about other types, such as read-modify-write objects, test-and-set

objects, dictionary sets, and cyclic arrays

2

.

We now list our results in detail.

1.3.1 Systems with Perfectly Synchronized Clocks

1.3.1.1 Sequential Consistency and Linearizability

We present the lower bound results �rst. These lower bounds hold for sequentially

consistent implementations of shared objects. Since linearizability implies sequen-

tial consistency, these lower bounds also hold for linearizable implementations of

shared objects. These lower bounds depend on the network message delay, which

is d.

� The total time for a pair of operations that immediately does not commute

is at least d.

� An operation which immediately does not self-commute must take at least

time d.

� An operation which is cyclically dependent with other operations must take

at least time d.

� The total time for n operations forming a clique in their commutativity graph

is at least nd=2.

� The total time for n operations forming a clique in their commutativity graph

with s of them having to be slow (take at least time d) is at least sd+(n�s)d=2.

� The total time for a set of operations is at least (s + m)d, where s is the

number of operations that must be slow and m is the size of the maximum

independent edge set in the commutativity graph formed by removing the

slow operations and their incident edges.

2

Cyclic arrays are arrays in which some operation reads component i and writes to component

j and another operation reads component j and writes to component i.
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We can use these lower bounds to obtain lower bound results for speci�c abstract

data types. We give a few examples here. For read/write objects, the total time

for a read and a write must be at least d (read and write immediately do not

commute). For queues, a dequeue operation must take at least time d (dequeue

immediately does not self-commute). A read/modify/write operation must take at

least time d (read/modify/write immediately does not self-commute). For cyclic

arrays with two components where one operation reads the �rst component and

writes the second component and another operation reads the second component

and writes the �rst component, the total time for both operations must be at least

2d (the operations are cyclically dependent). For set objects with �nd, insert, and

update operations, the total time for the three operations must be at least 3d=2

(there is a 3-clique in the commutativity graph).

Now we present the upper bound results. These upper bounds are for lineariz-

able (implying sequentially consistent) implementations of shared objects.

� an implementation of an abstract data type with operation op where jopj = 0

(meaning only local computation time, much less than the network delay, is

required) if op immediately commutes with itself and is self-oblivious (the

return value of an instance of op does not depend on the interactions among

any previous instances of op and other operations).

� an implementation of an abstract data type with n operations, such that its

commutativity graph is the complete graph on n nodes, with the sum of the

worst-case completion times for all n operations equal to nd=2.

1.3.1.2 Hybrid Consistency

We have the following lower bound results:

� The total time for a pair of operations (one strong, one weak) that immedi-

ately does not commute is at least d.

� Either version (strong or weak) of an operation which immediately does not

commute with itself must take at least time d.

12



� The total time for a pair of cyclically dependent operations is at least 2d.

� The total time for n operations (both strong and weak versions) forming a

clique in their commutativity graph is at least

{ (n � 1)d if n is odd.

{ nd if n is even.

� The total time for n operations (both strong and weak versions) forming a

clique in their commutativity graph with s of them having to be slow is at

least

{ 2sd + (n� s)d if n � s is even.

{ 2sd + (n� s� 1)d if n� s� 1 is odd.

� The total time for a set of operations (both strong and weak versions) is at

least 2(s+m)d, where s is the number of operations that must be slow and m

is the size of the maximum independent edge set in the commutativity graph

formed by removing the slow operations and their incident edges.

� jWaopj+ jWop

1

j � d (Wop means the weak version of op; aop is an accessor,

an operation which does not change its object.) or jWaopj + jWop

2

j � d

if aop returns di�erent results in executions where op

1

and op

2

immediately

precede it, respectively.

As with the lower bounds for sequential consistency, we can use these lower

bounds to obtain lower bound results for hybrid consistent implementations of spe-

ci�c abstract data types, remembering to use weak or strong versions of operations

when appropriate.

1.3.2 Systems with Approximately Synchronized Clocks

In systems with approximately synchronized clocks, the uncertainty in the message

delay, denoted by u, plays an important role in our lower bounds.
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1.3.2.1 Linearizability

We present some lower bound results:

� A modi�er operation (informally, an operation which changes the state of

an object) must take at least time u=2 (u is the uncertainty in the message

delay) if there exists an accessor (informally, an operation which returns some

information about the state of an object but does not change it) which can

distinguish the order in which two instances of the modi�er were executed.

� A modi�er operation must take at least time u=2 if there exists an accessor

which can tell whether one or two instances of the modi�er were executed.

� An accessor operation must take at least time u=2 if there exists a modi-

�er such that the accessor can tell whether an instance of the modi�er was

executed.

We can use these lower bounds to obtain lower bound results for speci�c abstract

data types. We give a few examples here. For read/write objects, the time for a

read (respectively, write) operation must be at least u=2. For queues, an enqueue

operation must take at least time u=2. For cyclic arrays, each operation must take

at least time u=2. For set objects with �nd, insert, and update operations, the �nd

and update operations must take at least time u=2.

1.3.2.2 Sequential Consistency

We discuss our upper bound results for sequential consistency.

� an implementation of an arbitrary abstract data type with accessor operation

op in which jopj = 0.

� an implementation of an arbitrary abstract data type with pure modi�er

operation (informally, a modi�er which does not return any information about

an object's state) op in which jopj = 0.
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These implementations are very similar to the implementations in systems with

perfectly synchronized clocks. An atomic broadcast algorithm is used to ensure

consistent order of message delivery. All \slow" operations take time h, where h is

the time for message delivery by the atomic broadcast algorithm.

Instantiating these implementations yields implementations for speci�c abstract

data types. We give a few examples here.

� an implementation of read/write objects where jREADj = 0 (accessor).

� an implementation of read/write objects where jWRITEj = 0 (pure modi-

�er).

� an implementation of queues where jENQUEUEj = 0 (pure modi�er).

� an implementation of set objects where jFINDj = 0 (accessor).

1.4 Contributions

Our study of physical shared objects shows that the classic \space-time tradeo�"

holds for one-write register implementations. We can make writes inexpensive (op-

timal) with respect to time. However, these implementations need a lot of space

and reads must take a lot of time.

Although our bounds on space are not tight in all cases, we have determined

some transformation techniques which may be of general interest. Perhaps these

transformation techniques could be used in improving the lower bounds.

Our results about physical shared objects are interesting because they add rungs

to the \ladder", the complexity hierarchy of concurrent registers. They also show

how combinatorial techniques can be applied in the design and analysis of asyn-

chronous distributed algorithms.

Our study of virtual shared objects helps us to gain a better understanding

of the costs of implementing distributed virtual shared objects. Our results tell

programmers that they cannot implement shared abstract data types whose op-

erations complete in time less than our lower bounds. These lower bounds use
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algebraic properties of the data types. In some sense, these results reinforce the

notion that strong consistency is costly to provide. Hybrid consistency can be as

costly to provide as strong consistency, depending on the type of objects to be

implemented.

In this thesis, we explore the costs of providing various consistency guarantees

for both physical and virtual shared objects. What are the relationships between

these two ways of implementing concurrent shared objects? We have formally

proved a cost tradeo� that holds for both physical and virtual shared objects under

all assumptions about the amount of synchrony among the processes sharing the

objects. The tradeo� is as follows: if one operation is fast, then an operation

not commuting with it must be slow. In the case of physical shared registers,

we have concentrated on implementations where write operations are fast, forcing

read operations to be slow. We have also provided a formal reinforcement of the

intuition that strong consistency is expensive to implement for both physical and

virtual shared objects. For physical shared registers with fast write operations, we

have shown that strong consistency is expensive in terms of space as well as time.
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Chapter 2

Registers

2.1 Introduction

In any concurrent system, processes need to communicate with other processes.

Concurrent reads and writes of shared memory cells, or registers, are required for

communication. If the shared memory provides stronger consistency guarantees,

then it is more useful to the users of the system, but implementing the shared

memory may be more di�cult. Thus it is helpful to know which types of registers

can implement which other types and what the costs of these implementations

are. Many such implementations have been developed, for example, [Blo87, BP87,

CW90, Lam86, LTV89, NW87, Pet83, SAG87, Tro89, VA86, Vid88].

In this part of our thesis we focus on implementing a k-ary regular (respectively,

atomic) register, the logical register, out of binary regular (respectively, atomic)

registers, the physical registers, for k > 2. We assume that our registers support

multiple concurrent readers but only one concurrent writer. A k-ary register can

take on k di�erent values; binarymeans 2-ary. The term \regular" refers to the con-

sistency guarantee provided in the presence of overlapping reads and writes: a read

of a regular register must return either the value of the most recent preceding write

(a well-de�ned notion since there is only one writer) or the value of an overlapping

write. The term \atomic" refers to a stronger consistency guarantee provided in

the presence of overlapping reads and writes. For an atomic register, the values


