
returned by reads are consistent with some total ordering on all the operations that

respects the relative orderings of the operations. These de�nitions were introduced

by Lamport [Lam86].

More speci�cally, we are interested in one-write algorithms|implementations

with the property that every WRITE to the logical register requires only one write

to a physical register and no reads of physical registers

1

. Since bounds on the

number of physical accesses per logical access can be converted into time bounds for

the logical access, a one-write algorithm would have time-e�cient logical WRITEs,

perhaps an important characteristic for applications in which WRITEs outnumber

READs.

In this part of our thesis, we present a one-write algorithm for implementing

a k-ary regular register out of binary regular registers. Clearly this algorithm is

optimal in the number of physical writes per logical WRITE. The best previous

upper bound was dlog ke writes per WRITE, due to Chaudhuri and Welch [CW90].

The algorithm is simple to describe using the complete graph whose nodes are

labeled with the logical values. Its correctness proof is based on properties of paths

in this graph. The same algorithm also implements a k-ary atomic register out of

binary atomic registers.

One drawback of our algorithm is that it requires C(k; 2) = k(k� 1)=2 = O(k

2

)

physical registers. The best previous lower bound on the number of physical regis-

ters for a k-ary regular implementation was k [CW90], for any number of physical

writes per logical WRITE. Theoretically, binary to k-ary regular implementations

are inherently expensive in the amount of hardware required. In this chapter we

show two improved lower bounds on the number of physical registers in any one-

write algorithm in which the writer does not read physical registers. Each lower

bound holds for a natural class of regular implementations. The �rst lower bound,

C(k; 2), holds for a restricted class of implementations satisfying the toggle prop-

erty. Since the lower bound matches the upper bound given by our algorithm,

which satis�es the toggle property, our algorithm is optimal in the number of phys-

ical registers for this class. The second lower bound, 2k � 1 � blog kc, holds for a

1

The names of logical operations will be capitalized in the remainder of the chapters concerning

register implementations, and the names of physical operations will remain in lower case.

18

more general and reasonably unrestrictive class of implementations satisfying the

symmetric property.

Our lower bounds are proved by contradiction; in both cases, the ultimate con-

tradiction reached is a violation of the regular property. We have formalized a

general technique for proving that the regular property does not hold by \fooling

the reader", or constructing a scenario wherein a reader returns an incorrect value.

We also developed a general transformation to convert a one-write algorithm for

k values into a one-write algorithm for k � 1 values using fewer physical registers.

This transformation is used in the inductive proof of our symmetric lower bound.

In proving these two lower bounds, we have developed considerable understand-

ing of such one-write algorithms. We can prove that, for any one-write algorithm

(in which the writer does not read physical registers), there is no advantage, in

terms of number of physical registers, to be gained if readers write, or if di�erent

readers follow di�erent protocols, or if a reader's protocol depends on its history.

Furthermore, for symmetric algorithms, there is no advantage if a reader reads

some physical registers more than once. Thus our lower bound proofs are simpler,

since we assume the reader does none of the above. These results are shown with

transformation techniques similar to the ones mentioned previously.

Our lower bounds also apply for the two corresponding classes of atomic imple-

mentations which prohibit readers from doing any of the above. However, in the

atomic case, the restrictions on the readers are possibly too strong. We have not

yet obtained any general lower bounds for atomic one-write algorithms.

In Section 2.2, we present our basic de�nitions. In Chapter 3 we describe the

algorithm and prove it is correct with respect to regularity and atomicity. Chap-

ter 4 consists of our lower bounds on the number of registers required by one-write

algorithms. Chapter 5 contains an investigation of the necessity of the toggle or

symmetric properties in one-write algorithms. We conclude in Chapter 6.

2.2 De�nitions

We use a simpli�ed form of the I/O automaton model [LT87] to describe our system.

19

To implement a logical register with value set V , where jV j = k, we compose

a collection of physical registers X

j

, 1 � j � m, each with value set f0; 1g, a

collection of read processes RP

i

, 1 � i � n, and a single write process WP. The

read and write processes implement the protocols used by the readers and writer of

the logical register. Each such protocol consists of accessing certain of the physical

registers and doing some local computation.

The components of our logical register implementation are the outside world,

the X

j

's, the RP

i

's, and WP. Communication between these components takes

place via actions. Each action is an output of one component (the component

that generates it) and an input to another component. Components are modeled

as state machines in which actions trigger transitions. Components have no control

over when inputs occur, and thus must have a transition for every input in every

state. Components do have control over when outputs occur; if an output labels a

transition from a state, then the output is enabled in that state.

An execution of the implementation consists of a sequence in which state tuples

(one entry for the state of each component) and actions alternate, beginning with

a tuple of initial states. For each action � in the execution, � must be enabled in

the preceding state of the component for which it is an output. In the following

state tuple, the states of the two components for which � is an input and an output

must change according to the transition functions, while the remaining components'

states are unchanged.

A schedule is the sequence of actions in an execution.

The logical actions are READ(i), RETURN(i; v), WRITE(v), and ACK, 1 �

i � n and v 2 V . READ(i) is an input to RP

i

from the outside world and

RETURN(i; v) is an output from RP

i

to the outside world. WRITE(v) is an input

to WP from the outside world and ACK is an output fromWP to the outside world.

Although we do not explicitly model the outside world with a component, we do

assume that for each i, the outside world and RP

i

cooperate so that READ(i)'s and

RETURN(i; �)'s strictly alternate, beginning with a READ, and that the outside

world and WP cooperate so that WRITE(v)'s and ACK's strictly alternate. This

means that at most one operation is pending at a time at a given read or write

process.

20

The physical actions are read

j

(i), return

j

(i; v), write

j

(v), and ack

j

. The sub-

script j is between 1 and m; it indicates that X

j

is the physical register being read

or written. The parameter v is either 0 or 1 and indicates the value being read

from or written to X

j

. The parameter i is between 1 and n and indicates which of

the read and write processes is reading X

j

. For a �xed j, there is no parameter i

for writes and acks, since there is a unique read or write process that writes X

j

.

A READ(i) and its following RETURN(i; v) form a logical operation, as do a

WRITE(v) and its following ACK. Physical operations are de�ned analogously.

An operation is pending if its �rst half is present but not its second half.

We assume that the read and write processes cooperate with the physical regis-

ters so that for each i, 0 � i � n, and each j, 1 � j � m, read

j

(i) and return

j

(i; �)

alternate beginning with a read, and analogously for writes. We also assume that

no read or write process has a physical operation pending unless it has a logical

operation pending.

Each physical register X

j

satis�es this liveness property:

� Immediately after an input action occurs, the matching output is enabled.

A regular physical register satis�es:

� Physical Regular Property. Every physical read operation returns a value

written by an overlapping write operation or by the most recent preceding

write (or the initial value if there is no preceding write).

An atomic physical register satis�es:

� Physical Atomic Property. For every execution, there exists a lineariza-

tion [HW90] of the execution. A linearization of an execution e is a sequence

of operations T such that T is a permutation of the operations in e and the

ordering of non-overlapping operations in T is the same as their ordering in

e (two operations do not overlap if the response for one occurs before the

invocation of the other one). T must be such that each read in T returns the

value written by the latest preceding write in T (or the initial value if there

is no preceding write).

21

The read and write processes must work together to implement a logical register.

The liveness property for a logical register di�ers from that for a physical register,

as discussed below. A regular logical register satis�es:

� Logical Regular Property. Every logical READ operation returns a value

written by an overlapping WRITE operation or by the most recent preceding

WRITE (or the initial value if there is no preceding WRITE).

An atomic logical register satis�es:

� Logical Atomic Property. For every execution e, there exists a lineariza-

tion T of the operations in e. T must be such that each READ in T RETURNs

the value written by the latest preceding WRITE in T (or the initial value if

there is no preceding WRITE).

The liveness property for a logical register is that the implementation must be

wait-free. Informally, an implementation is wait-free if any logical operation initi-

ated by a process can complete in a �nite number of steps regardless of the actions of

the other processes in the system. However, the wait-free property involves fairness

considerations because a process cannot complete an operation if it is not allowed

to take steps in its protocol. An execution is fair to a process if every physical

operation initiated by the process eventually completes and if no output action by

the process is continuously enabled without occurring. We �nally de�ne an imple-

mentation to be wait-free if for any �xed process, in any execution which is fair to

that process, every logical invocation by that process has a matching response. Our

algorithms actually provide a bounded number of actions, while our lower bounds

hold for algorithms satisfying the weaker de�nition.

A natural question is why the liveness property is di�erent for physical and

logical registers. The wait-free de�nition for the logical register implies that every

logical operation must complete using only physical operations initiated by that

logical operation. In the case of the physical register, where we don't model the

internal actions, this wait-free property reduces to the physical liveness property

given.

22

To describe a register implementation algorithm, it is su�cient to describe the

code for the readers and the writer. An algorithm is a one-write algorithm if,

in every execution, every logical WRITE uses at most one physical write and no

physical reads.

We now de�ne several terms which will be used in the discussion of one-write

algorithms.

Let A be a one-write algorithm that uses m binary registers. A con�guration

of A is an element C of f0; 1g

m

; let C[i] denote the i

th

bit of C for i 2 f1; . . . ;mg.

The distance between two con�gurations C

1

and C

2

, denoted d(C

1

; C

2

), is the

number of bits that di�er in C

1

and C

2

. Con�gurations C

1

and C

2

are neigh-

bors if d(C

1

; C

2

) = 1. A con�guration C is initial if C[i] is the value of the i

th

binary register in the initial state of A for all i 2 f1; . . . ;mg. A con�guration C

is reachable if there exists a state in an execution of A where no physical write

is pending such that C[i] is the value of the i

th

binary register in the state for all

i 2 f1; . . . ;mg. (If a physical write is pending, the value of that physical register is

ambiguous.)

23

Chapter 3

Upper Bounds

3.1 The Algorithm

We �rst present our one-write algorithm.

Let V be the value set of the logical register, where jV j = k and v

0

2 V is the

initial value. Let K

V

be the complete graph with k nodes and r = C(k; 2) edges in

which each edge is labeled with a distinct integer from the set f1; . . . ; rg and each

node is labeled with a distinct element from V . The special bit set corresponding

to v 2 V is de�ned as s(v) = fl : l labels an edge incident to the node labeled v in

K

V

g. Since K

V

is a complete graph, js(v)j = k � 1 for all v 2 V .

Our algorithm uses r binary regular registers (bits). Each bit corresponds to an

edge of K

V

. A reader reads all r bits and returns the value of a function f applied

to the con�guration obtained. The function f is de�ned below. The writer changes

a bit only when the value of the logical register changes; when the value is changed

from v to w, the bit whose label is contained in s(v) \ s(w) is changed. There is

exactly one such bit because there is exactly one edge connecting v and w in K

V

.

Figure 3.1 is a formal description of our algorithm.

We now de�ne f . For each v 2 V and con�guration C, let count(C; v) = jfi 2

s(v) : C[i] = 1gj. Con�guration C is valid if either (1) count(C; v) is even for all

v 2 V , or (2) count(C; v

0

) is odd and count(C;w) is odd for exactly one w 6= v

0

.

Otherwise, C is invalid. First we de�ne f for valid con�guration C. If count(C; v) is

even for all v 2 V , then let f(C) = v

0

. Otherwise, let f(C) = v, where v 6= v

0

and

count(C; v) is odd. Now we de�ne f for invalid con�gurations. Let c be the closest

valid con�guration function, where c(C) is de�ned to be the �rst con�guration

in lexicographic order in the set fD : D is valid and d(C;D) is a minimumg. De�ne

f(C), for C not valid, to be f(D), where D = c(C).

If a con�guration C is valid, then there is a path in K

V

, not necessarily edge-

disjoint, starting from the node labeled with v

0

and corresponding to initial con-

�guration 0

r

such that when the path is traversed and the appropriate bits are

changed, then the resulting con�guration is C. The resulting node is labeled v,

where v = f(C). For each i 2 f1; . . . ; rg, C[i] is the parity of the number of times

edge i is traversed in this path. Suppose the path corresponding to valid con�gu-

ration C does not end at the node labeled with v

0

. The two endpoints of the path

are adjacent to an odd number of edges in the path, while all internal nodes are

adjacent to an even number. The last node in the path is entered one more time

than it is left; thus, the count for that node is odd. The �rst node in the path

is left one more time than it is entered; thus, the count for that node is odd. All

other nodes are entered and left the same number of times; thus, the counts for

those nodes are even. C satis�es condition (2) of the de�nition of valid. Suppose

the path corresponding to valid con�guration C ends at the node labeled with v

0

,

thus forming a cycle. All nodes in the cycle are adjacent to an even number of

edges in the cycle. All nodes in the cycle are entered and left the same number of

times; thus, the counts for all the nodes are even. C satis�es condition (1) of the

de�nition of valid.

3.2 Proofs of Correctness

We �rst prove that our algorithm implements a k-ary regular register from binary

regular registers in Subsection 3.2.1. We then prove in Subsection 3.2.2 that our

algorithm implements a k-ary atomic register from binary atomic registers.

25

Physical Registers (Bits): X

1

; . . . ;X

r

, initially X

j

= 0, for all j 2 f1; . . . ; rg

Reader i, 1 � i � n: variables x

1

; . . . ; x

r

READ(i):

for j := 1 to r do

read

j

(i)

return

j

(i; x

j

)

endfor

RETURN(i; f(x

1

. . .x

r

))

Writer: variables x

1

; . . . ; x

r

, initially x

j

= 0, for all j 2 f1; . . . ; rg, and

old, initially old = v

0

WRITE(v):

if v 6= old then

pick the unique i from s(v) \ s(old)

write

i

(x

i

)

ack

i

x

i

:= x

i

old := v

endif

ACK

Figure 3.1: One-Write Algorithm

3.2.1 Proof of Regularity

In this subsection, we prove that our algorithm implements a k-ary regular register

from binary regular registers. The bulk of this subsection is devoted to showing

that the logical register satis�es the regular property.

Lemma 3.1 shows that any reachable con�guration is valid and is mapped by f

to the value which was written to the register by the last completed WRITE.

Lemma 3.1 Let C be a reachable con�guration resulting from a sequence of m

physical writes corresponding to the logical values v

1

; v

2

; . . . ; v

m

. Then C is valid,

26

and f(C) = v

m

.

Proof We proceed by induction on m.

Basis: (m = 0:) Then C is the initial con�guration and is valid, and f(C) = v

0

.

Inductive step: (m > 0:) Suppose the lemma is true for m�1. Now we show that it

is true for m. Suppose the sequence of logical values is v

1

; v

2

; . . . ; v

m�1

; v

m

and the

sequence of corresponding reachable con�gurations is C

1

; C

2

; . . . ; C

m�1

; C

m

. By the

inductive hypothesis, C

m�1

is valid, and f(C

m�1

) = v

m�1

. If v

m�1

= v

m

, then C

m

trivially is valid, and f(C

m�1

) = f(C

m

) because C

m

= C

m�1

. Thus, suppose that

v

m�1

6= v

m

. There are two possibilities for v

m�1

. Either v

m�1

= v

0

, or v

m�1

6= v

0

.

Case 1: v

m�1

= v

0

. Then count(C

m�1

; v) is even for all v 2 V . When the

write for v

m

is performed, the unique bit b 2 s(v

0

) \ s(v

m

) is changed. Thus

count(C

m

; v

0

) and count(C

m

; v

m

) become odd, and count(C

m

; v) remains even for

all v 2 V � fv

0

; v

m

g. Therefore C

m

is valid, and f(C

m

) = v

m

.

Case 2: v

m�1

6= v

0

. Then count(C

m�1

; v

0

) and count(C

m�1

; v

m�1

) are odd,

and count(C

m�1

; v) is even for all v 2 V � fv

0

; v

m�1

g. When the write for v

m

is

performed, the unique bit b 2 s(v

m�1

)\s(v

m

) is changed. There are two possibilities

for v

m

. Either v

m

= v

0

, or v

m

6= v

0

. First suppose that v

m

= v

0

. Thus count(C

m

; v

0

)

and count(C

m

; v

m�1

) become even, and count(C

m

; v) remains even for all v 2 V �

fv

0

; v

m�1

g. Therefore C

m

is valid, and f(C

m

) = v

0

. Now suppose that v

m

6= v

0

.

Thus count(C

m

; v

m

) becomes odd, count(C

m

; v

0

) remains odd, and count(C

m

; v) is

even for all v 2 V � fv

0

; v

m

g. Therefore C

m

is valid, and f(C

m

) = v

m

.

We need to show that the logical register implemented by our algorithm satis�es

the regular property. If a reader RETURNs value v, we must show that v was

actually written to the register by some WRITE overlapping the READ or by the

last WRITE preceding the READ. This is nontrivial because a slow reader can read

either a reachable or a nonreachable con�guration by noticing traces from many

WRITEs to the logical register by a fast writer. Lemma 3.2 shows that a WRITE(v)

operation has occurred during an interval in an execution if a bit in s(v) is changed

during that interval. Lemma 3.3 shows that if two valid con�gurations agree in all

bits of s(v) for some v and one is mapped to v by f , our value extraction function,

27

then the other must be mapped to v by f . Lemma 3.4 shows that an invalid

con�guration C agrees with its closest valid con�guration C

N

in the special bits

corresponding to f(C

N

). Lemma 3.5, which shows that the reader will RETURN a

correct value of the register no matter what con�guration it reads, is the main result

of this section. The proof of Lemma 3.5 uses Lemma 3.2 initially to deduce that if

a value is not written to the logical register, then all elements of its special bit set

remain unchanged. If the reader reads a reachable con�guration, then Lemma 3.3 is

applied to deduce the correctness of the value RETURNed. Otherwise, Lemmas 3.4

and 3.3 are applied to deduce the correctness of the value RETURNed.

Lemma 3.2 For any interval in any execution, if no WRITE(v) operation overlaps

the interval or occurs as the last preceding WRITE, then the bits in s(v) are not

changed during the interval.

Proof Suppose in contradiction that a bit in s(v) is changed during the interval.

Then the value in the register changed from some w to v or the value in the register

changed from v to some w. This is impossible because no WRITE(v) operation

overlapped the interval or occurred as the last preceding WRITE. Therefore, the

lemma is true.

Lemma 3.3 Let C and D be valid con�gurations. If f(D) = v and C[i] = D[i] for

all i 2 s(v), then f(C) = v.

Proof There are two cases to consider. Either v = v

0

, or v 6= v

0

.

Case 1: v = v

0

. Thus count(D;w) is even for all w 2 V . Since C[i] = D[i] for

all i 2 s(v

0

), count(C; v

0

) = count(D; v

0

). Thus count(C;w) is even for all w 2 V

because C is valid. This implies that f(C) = v

0

.

Case 2: v 6= v

0

. Thus count(D; v) is odd. Since C[i] = D[i] for all i 2 s(v),

count(C; v) = count(D; v). Thus count(C; v

0

) is odd and count(C;w) is even for

all w 2 V � fv

0

; vg because C is valid. This implies that f(C) = v.

Lemma 3.4 Let C be an invalid con�guration, where D = c(C) and v = f(D).

Then C[i] = D[i] for all i 2 s(v).

28

Proof Suppose in contradiction that there exists at least one bit b 2 s(v) such

that C and D are not equal in that bit. Thus d(C;D) = l � 1. Change bit b in

D to yield C

D

. C

D

is valid and C

D

[b] = C[b]. So d(C;C

D

) = l � 1. This is a

contradiction, because D was supposed to be the closest valid con�guration to C.

Therefore, the lemma is true.

Lemma 3.5 Let C be the con�guration obtained by a reader during some execution

of the READ protocol. Suppose f(C) = v. Then the value v was written by a

WRITE which overlapped the READ or the value v was the result of the last WRITE

preceding the READ.

Proof Assume for contradiction that the value v was not written by a WRITE

which overlapped the READ and the value v was not the result of the last WRITE

preceding the READ. Thus no state of the algorithm during the READ has the

physical registers in a con�guration with value v. By Lemma 3.2, the bits in s(v)

are never changed during the READ. LetD be any reachable con�guration resulting

from either the last preceding WRITE or any overlapping WRITE. D is valid by

Lemma 3.1, and D[i] = C[i] for all i 2 s(v). There are two cases to consider. Either

C is a valid con�guration, or C is an invalid con�guration.

Case 1: Suppose C is valid. Since D has the same values as C for the bits in

s(v) and f(C) = v, f(D) = v by Lemma 3.3, which is a contradiction.

Case 2: Suppose C is not valid. Let C

N

= c(C). Then f(C

N

) = v. By

Lemma 3.4, C[i] = C

N

[i] for all i 2 s(v). By the transitive property of equality,

C

N

[i] = D[i] for all i 2 s(v). By Lemma 3.3, f(D) = v, which is a contradiction.

The result of Lemma 3.5 proves the following theorem. The logical register is

seen to be wait-free by inspecting the code of the read and write processes.

Theorem 3.1 A one-write algorithm for implementing a k-ary regular register

from binary regular registers exists.

29

3.2.2 Proof of Atomicity

The previous subsection showed that our k-ary register is regular, but we need

to go one step further. We now assume that the constituent binary registers are

atomic. Since atomicity implies regularity, our new register still satis�es the regular

property. We must now show that our new register satis�es the atomic property

by constructing a linearization for an arbitrary execution.

We de�ne several terms which will be used in proving that our algorithm satis�es

the atomic property. If W is a logical WRITE, then value(W) = v if the call for

W is a WRITE(v). If R is a logical READ, then value(R) = v if the response for

R is a RETURN(i; v) for some i. The possible writes-to-read set for READ R,

denoted by PRS(R), is fW jW is a WRITE and W either immediately precedes R

or overlaps Rg. Without loss of generality, we assume that each execution contains

a special initializing WRITE which precedes all other operations in the execution.

Thus, PRS(R) is always nonempty. The same value set for READ R, denoted by

SVS(R), is fW jW 2 PRS(R) and value(W) = value(R)g.

Given execution e of the algorithm, we must give a linearization T of the oper-

ations in e. Since the logical register only has one writer, the WRITEs are already

linearized. We just need to determine where to place each READ. We consider the

READs in the order in which they end. This yields a total ordering of the READs,

denoted R

1

; R

2

;

Given WRITE W in e, de�ne last(W) to be the last physical write in e that

�nishes before W ends, and de�ne next(W) to be the �rst physical write in e that

starts after W ends.

Since the physical registers are atomic, there exists a linearization L of the

physical operations of e. Fix such an L. Relative to L, each physical read has a

unique physical write that it reads from, namely the most recent preceding write

to that register in the linearization.

We say that a READ R observes a write w to physical register b, relative to

L, if R's read of b reads from w relative to L.

Lemma 3.6 shows that there is a correspondence between the READs and

WRITEs in an execution which can be turned into a linearization.

30

R

i

R

j

W W

0

#

#

#

#

#

�

Figure 3.2: Relationships between Two Possibly Conicting READs R

i

and R

j

Lemma 3.6 There exists a function � from the READs in e to the WRITEs in e

such that for all i � 1, the following are true.

1. �(R

i

) is in SVS(R

i

).

2. For all j < i, if R

j

strictly precedes R

i

in e, then �(R

j

) does not follow �(R

i

)

in e.

3. R

i

observes last(�(R

i

)) or next(�(R

i

)).

Proof We inductively (and non-constructively) de�ne �.

Basis: Let �(R

1

) be any W in SVS(R

1

) such that R

1

observes either last(W)

or next(W). We now prove that such a W exists. By Theorem 3.1, SVS(R

1

)

is nonempty. Suppose in contradiction that such a W does not exist. Then all

physical reads of bits in s(value(R

1

)) occur before the �rst WRITE in SVS(R

1

).

If the �rst WRITE in PRS(R

1

) is the �rst WRITE in SVS(R

1

), then we have a

contradiction because the �rst WRITE in PRS(R

1

) precedes R

1

in e. Otherwise, let

C be the con�guration of the physical registers after the �rst WRITE in PRS(R

1

).

C is valid, and f(C) 6= value(R

1

) by Lemma 3.1. Let C

1

be the con�guration

read by R

1

. f(C

1

) = value(R

1

). Let v = f(C

1

). C

1

[b] = C[b] for all b in s(v). Let

D = c(C

1

) (if C

1

is valid, then D = C

1

). D[b] = C

1

[b] for all b in s(v) by Lemma 3.4.

Thus, D[b] = C[b] for all b in s(v). By Lemma 3.3, f(C) = f(D) = v, which is

a contradiction. Thus, we can �nd a W in SVS(R

1

) such that R

1

observes either

last(W) or next(W). Conditions 1 and 3 are true by construction and condition 2

is vacuously true.

31

Inductive step: Assume � has been de�ned for R

1

; . . . ; R

i�1

. We show that

there exists some W in SVS(R

i

) satisfying conditions 2 and 3. De�ne �(R

i

) to be

W .

Claim 3.1 If, for any W in PRS(R

i

), there exists j < i such that R

j

strictly

precedes R

i

and �(R

j

) =W

0

follows W in e, then

(i) W is the �rst WRITE in PRS(R

i

),

(ii) W

0

is the last WRITE in PRS(R

j

), and

(iii) PRS(R

j

)\PRS(R

i

) = fW;W

0

g.

Proof By the inductive hypothesis, W

0

is in SVS(R

j

). Figure 3.2 gives

an illustration of the relationships among R

i

, R

j

, W , and W

0

.

End of Claim

Suppose in contradiction that there is no WRITE in SVS(R

i

) satisfying condi-

tions 2 and 3. Then for every W in SVS(R

i

), either

(a) there exists j < i such that R

j

strictly precedes R

i

and �(R

j

) follows W in

e, or

(b) R

i

does not observe last(W) or next(W) relative to L.

Let W

1

be the �rst WRITE in PRS(R

i

), and let v = value(R

i

).

Case 1: W

1

is not in SVS(R

i

). By Claim 3.1, all WRITEs in SVS(R

i

) satisfy

(b). Since R

i

does not observe last(W) or next(W) for any W in SVS(R

i

), R

i

's

read of physical register b must occur in L before the earliest write of b within a

WRITE in PRS(R

i

) � fW

1

g, for all b in s(v). Clearly all reads of R

i

occur after

W

1

. Thus C[b] = C

i

[b] for all b in s(v), where C is the con�guration after W

1

(C

is valid by Lemma 3.1) and C

i

is the con�guration that R

i

reads. Let D = c(C

i

)

(if C

i

is valid, then D = C

i

). By Lemma 3.4, D[b] = C

i

[b] for all b in s(v). Thus,

D[b] = C[b] for all b in s(v). By Lemma 3.3, f(C) = f(D) = v, a contradiction.

32

Case 2: W

1

is in SVS(R

i

) and satis�es (b). By Claim 3.1, all WRITEs in

SVS(R

i

) satisfy (b). Thus, R

i

does not observe last(W) or next(W) for any W

in SVS(R

i

). last(W

1

) occurs before R

i

begins, which implies that R

i

must observe

last(W

1

) or some later write of the same physical register written by last(W

1

), due

to a WRITE in SVS(R

i

) or a WRITE following a WRITE in SVS(R

i

). This is a

contradiction.

Case 3: W

1

is in SVS(R

i

) and does not satisfy (b). By our supposition, W

1

satis�es (a). Thus, there exists j < i such that R

j

precedes R

i

in e, but �(R

j

)

follows W . Let W

2

= �(R

j

).

Since by Claim 3.1W

2

is not the �rst WRITE in PRS(R

j

), R

j

observes last(W

2

)

or next(W

2

) by the inductive hypothesis. But R

j

cannot observe next(W

2

) because

next(W

2

) does not overlap R

j

(since W

2

is the last WRITE in PRS(R

j

)). Thus, R

j

observes last(W

2

).

Since all of R

i

's reads follow all of R

j

's reads in L, R

i

must observe last(W

2

) or

some later write of the same physical register, due to a WRITE in SVS(R

i

) or a

WRITE following a WRITE in SVS(R

i

). But note that last(W

2

) is equal to either

last(W

1

) or next(W

1

). Thus, some WRITE in SVS(R

i

) satis�es (b), a contradiction.

We can use Lemma 3.6 to determine where to place each READ in our proposed

linearization. As usual, we consider the READs in the order in which they end.

De�ne �

i

inductively as follows. Let �

0

be the sequence of WRITEs in e, in order.

For i > 0, let �

i

be obtained from �

i�1

by placing R

i

immediately before the �rst

WRITE following �(R

i

). (If no WRITE follows �(R

i

), then place R

i

at the end of

�

i�1

.)

If e contains only a �nite number of READs, then let T = �

k

, where k is the

number of READs in e. We need to show that if e contains an in�nite number of

READs, then the sequence of sequences produced by our method has a limit. We

take this limit to be the linearization. If e contains an in�nite number of READs,

then we de�ne T as follows. For j � i, R

j

is stable in �

i

if the pre�x of �

i

through

R

j

is also a pre�x of �

k

, for all k > j. If R

m

precedes R

j

in �

i

and R

j

is stable

33

in �

i

, then clearly R

m

is also stable in �

i

. Let T

i

be the smallest pre�x of �

i

containing all the READs that are stable in �

i

. Let T = lim

i!1

T

i

. T is clearly

well-de�ned. We must show that it contains all the operations of e. It su�ces to

show the following lemma.

Lemma 3.7 For all i, there exists j � i such that R

i

is stable in �

j

.

Proof: Suppose in contradiction that there exists an i such that R

i

is not stable

in �

j

for all j � i. This means that each R

j

, where j > i, is placed before R

i

in

the proposed linearization. We now show that each R

j

overlaps R

i

. Since j > i,

R

j

ends after R

i

ends in e. Thus, R

j

does not precede R

i

in e. If R

i

precedes R

j

in

e, then our method for placing READs ensures that R

j

would be placed after R

i

in the proposed linearization. We can deduce that R

j

overlaps R

i

. Thus, R

i

has

in�nitely many READs overlapping it, which is impossible.

2

Now we can prove that our algorithm satis�es the atomic property.

Theorem 3.2 T is a linearization of e.

Proof: Since each READ R is placed after a WRITE W in SVS(R) and before

any WRITE which W precedes, the value RETURNed by R is correct. Thus,

all READs RETURN correct values. We need to show that the order of non-

overlapping operations is preserved. We have four cases to consider:

� Suppose W

1

precedes W

2

in e, where W

1

and W

2

are WRITEs. W

1

precedes

W

2

in T by construction.

� Suppose W precedes R in e, where W is a WRITE and R is a READ. W

precedes R in T because R is always placed after a WRITE in SVS(R)

which wrote the value it RETURNs by construction and Lemma 3.6, and

that WRITE is either W or a later WRITE.

34

� Suppose R precedes W in e, where R is a READ and W is a WRITE. By

construction and Lemma 3.6, R is placed after some WRITE W

0

which wrote

the value it RETURNs, where W

0

either immediately precedes or overlaps

R, and before any WRITE which W

0

precedes. W

0

precedes W because the

logical register only has one writer. Thus, the following ordering holds in T :

W

0

; R;W .

� Suppose R

1

precedes R

2

in e, where R

1

and R

2

are READs. R

1

precedes R

2

in T by construction and condition 2 of Lemma 3.6.

2

Corollary 3.1 A one-write algorithm for implementing a k-ary atomic register

from binary atomic registers exists.

35

Chapter 4

Lower Bounds on Number of

Registers

We have proven the existence of a one-write algorithm for implementing a k-ary

regular (respectively, atomic) register from binary regular (respectively, atomic)

registers. The number of registers used by our algorithm is very large, C(k; 2) =

O(k

2

). The best previously known lower bound on the number of registers for this

problem is k, shown by Chaudhuri and Welch [CW90].

Section 4.1 gives lower bounds on the number of registers required by two classes

of one-write algorithms for implementing a k-ary regular register from binary regu-

lar registers. We call these algorithms regular one-write algorithms. Section 4.2

gives lower bounds on the number of registers required by two classes of one-write

algorithms for implementing k-ary atomic registers from binary atomic registers.

We call these algorithms atomic one-write algorithms.

4.1 Lower Bounds for Regularity

In this section we establish lower bounds on the number of registers required by

two classes of regular one-write algorithms. Subsection 4.1.1 gives a lower bound of

C(k; 2) for the class of regular one-write algorithms satisfying the toggle property.

Subsection 4.1.2 gives a lower bound of 2k�1�blog kc for the class of regular one-

write algorithms satisfying the symmetric property. These properties are de�ned

below.

A one-write algorithm with the following properties is a normal form algo-

rithm.

1. no reader performs a physical write

2. every reader has the same program

3. every reader starts in the same state at the beginning of every READ

In Subsection 4.1.3, we show how any one-write algorithm can be converted to

a normal form algorithm without increasing the number of physical registers. Thus

we can, without loss of generality, restrict our attention to normal form algorithms.

If one-write algorithm A uses m binary registers, A has 2

m

con�gurations. These

con�gurations are nodes in a directed m-dimensional hypercube H

A

. If con�gura-

tions C

1

and C

2

are neighbors, then both (C

1

; C

2

) and (C

2

; C

1

) are edges of H

A

. An

edge (C

1

; C

2

) ofH

A

is an algorithm edge if C

1

and C

2

are reachable con�gurations

and C

2

can be derived from C

1

after one WRITE operation. An edge (C

1

; C

2

) of

H

A

is labeled with i, where i is the bit in which C

1

and C

2

di�er.

A one-write algorithm A has the symmetric property if for all con�gurations

C

1

, C

2

, (C

1

; C

2

) is an algorithm edge of H

A

if and only if (C

2

; C

1

) is an algorithm

edge of H

A

. If A satis�es the symmetric property, the two directed edges connecting

any pair of neighboring con�gurations are either both algorithm edges or both non-

algorithm edges. Thus the two directed edges can be replaced by one edge which is

either an algorithm edge or a non-algorithm edge. Therefore, H

A

can be considered

an undirected graph. In Subsection 4.1.3, we show how an arbitrary symmetric

algorithm can be transformed into a symmetric algorithm using no more registers in

which every reader reads each physical register at most once during a READ. Thus

we can assume without loss of generality that in a symmetric algorithm every reader

reads each physical register at most once during a READ. The symmetric property

seems reasonably unrestrictive and it may allow for implementations requiring fewer

physical registers.

37

A one-write algorithm has the toggle property if for each pair of distinct

v;w 2 V , there exists a unique bit l such that whenever the value of the logical

register is changed from v to w or from w to v, bit l is written. A one-write

algorithm satisfying the toggle property trivially satis�es the symmetric property.

Our algorithm satis�es this property. We will show that our algorithm is optimal

in the class of algorithms satisfying this property with respect to the number of

physical registers. However, when proving lower bounds on the number of physical

registers required by general one-write algorithms, the toggle property is an overly

restrictive property for a one-write algorithm.

In our lower bound proofs, we want to deduce the value which must be RE-

TURNed by a reader given a particular con�guration of the physical registers.

This mapping from con�gurations to values is given by a \value extraction func-

tion", such as the function f from our algorithm in Section 3.1. We now de�ne

a value extraction function for the more general class of symmetric algorithms in

which a reader does not have to read every physical register. We �rst de�ne the

term \consistent". Bit i is consistent with con�guration C if the value of bit i

is C[i]. Let A be a symmetric algorithm for implementing a k-ary regular register

from m binary regular registers. For algorithm A we de�ne a value extraction

function f

A

: f0; 1g

m

! V . If no reader ever reads bits consistent with con�gura-

tion C, then f

A

(C) is unde�ned. If all the bits that a reader reads are consistent

with con�guration C and the reader RETURNs v, then f

A

(C) = v. Thus f

A

is

a partial function. We now discuss why f

A

is well-de�ned. Consider two logical

READs. Suppose the reader performing the �rst logical READ reads a subset S

1

of the physical registers, RETURNing v

1

, and the reader performing the second

logical READ reads a di�erent subset S

2

of the physical registers, RETURNing v

2

,

where v

1

6= v

2

. Suppose all bits in S

1

[S

2

are consistent with C. This is impossible

because the readers have the same program and start their READs in the same

initial state. For the readers to read two di�erent sets of physical registers, there

must be some physical register for which the �rst reader obtained 1 and the sec-

ond reader obtained 0 (or vice versa). Thus one of the readers did not read bits

consistent with con�guration C. Therefore, f

A

is well-de�ned.

We now de�ne terms which will be used in the formalization of our general

38

technique for \fooling the reader", which is Lemma 4.1. Let A be a one-write

algorithm for implementing a k-ary regular register from m binary regular registers

that satis�es the symmetric property. Let S be a set of reachable con�gurations and

C be a con�guration. C is constructible from S if for each i 2 f1; . . . ;mg, there

exists a C

0

2 S such that C

0

[i] = C[i]. (A similar de�nition was given in [JSL91].)

Let f

A

(S) = ff

A

(C) : C 2 Sg. S is connected if for all distinct D;E 2 S, there

exists a path from D to E in H

A

consisting only of algorithm edges in which every

con�guration on the path is an element of S.

Given a con�guration C which is constructible from a connected set of con�g-

urations S, Lemma 4.1 states that f

A

(C) must be in f

A

(S); otherwise, the reader

could be fooled into returning a wrong value. In our lower bound proofs, we obtain

a contradiction to Lemma 4.1 by identifying a connected set S of con�gurations

and showing how there is a constructible C with a wrong value.

Lemma 4.1 Let A be a one-write algorithm that satis�es the symmetric property.

For all con�gurations C and connected sets of reachable con�gurations S, if C is

constructible from S, then f

A

(C) 2 f

A

(S).

Proof Suppose in contradiction that f

A

(C) =2 f

A

(S). Consider the following exe-

cution of A. First the writer executes a sequence of WRITEs so that the resulting

con�guration of the physical registers is in S. This sequence exists because S is

reachable. Then a logical READ starts. For all i, whenever the reader is about to

read bit i, the writer executes a sequence of WRITEs with the following properties:

(1) the con�guration of the physical registers after each WRITE is in S, and (2) the

�nal con�guration D is such that C[i] = D[i]. Since S is connected, this sequence

exists. Thus the reader returns f

A

(C), which violates the regular property because

f

A

(C) was not the value of any overlapping WRITE or of the preceding WRITE.

This lemma is true for nonsymmetric algorithms if S is a strongly connected

set and the de�nition of f

A

is appropriately modi�ed. In the general case, we can

de�ne f

A

(C) to be the value RETURNed by a reader if all the bits that a reader

reads are consistent with con�guration C and if the reader never sees two di�erent

39

values for the same bit during the READ. The general lemma might be useful in

proving lower bounds for nonsymmetric algorithms.

4.1.1 Toggle Property

We can show that the upper bound of C(k; 2) is tight for the class of algorithms

satisfying the toggle property (which includes our algorithm). Every algorithm A

with the toggle property can be represented by the complete graph on k nodes, in

which each node is labeled with a distinct element from V and the edge between v

and w is labeled with some l 2 f1; . . . ;mg (when the value of the logical register

is changed from v to w or vice versa, bit l is changed), where m is the number of

binary registers used by A. Call this graph G

A

.

When k = 3, k = C(k; 2); thus our algorithm is trivially optimal in the number

of binary regular registers used. Theorem 4.1 shows that C(k; 2) binary regular

registers are necessary for any k � 4.

Theorem 4.1 For all one-write algorithms A for implementing a k-ary (k � 4)

regular register from binary regular registers, if A has the toggle property, then the

number of binary regular registers used by A is at least C(k; 2).

Proof Suppose that A is a one-write algorithm for implementing a k-ary regular

register from binary regular registers, where A has the toggle property and the

number of registers used by A is less than C(k; 2). Then there is some register i

such that i is the label of at least two edges in G

A

, say (v

1

; v

2

) and (v

3

; v

4

). Suppose

the edges have a common endpoint. Without loss of generality, assume v

1

= v

3

.

Then v

2

6= v

4

because otherwise the edges would be the same. If the current value

of the logical register is v

1

and bit i is changed, the new value of the logical register

is both v

2

and v

4

, which is ambiguous. Thus the edges are disjoint; v

1

; v

2

; v

3

, and

v

4

are distinct.

Let j, where j 6= i, label the edge (v

1

; v

3

) of G

A

. Let C

1

be any con�guration

such that f

A

(C

1

) = v

1

. Let C

2

be the con�guration that di�ers from C

1

only in

bit i. Let C

3

be the con�guration that di�ers from C

1

only in bit j. Let C

4

be

40

��

��

v

2

��

��

v

4

��

��

v

1

��

��

v

3

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

j i

i

C

2

C

4

C

3

C

1

j

Figure 4.1: Relationships Among the Four Con�gurations in the Proof of Theorem

4.1

the con�guration that di�ers from C

1

only in bits i and j. By the de�nition of

G

A

, C

2

, C

3

, and C

4

are reachable con�gurations, and f

A

(C

2

) = v

2

, f

A

(C

3

) = v

3

,

and f

A

(C

4

) = v

4

. Figure 4.1 shows the relationships among C

1

,C

2

,C

3

, and C

4

. C

2

is constructible from the connected set fC

1

; C

3

; C

4

g. But f

A

(C

2

) = v

2

is not in

f

A

(fC

1

; C

3

; C

4

g) = fv

1

; v

3

; v

4

g, contradicting Lemma 4.1.

4.1.2 Symmetric Property

The symmetric property seems to be desirable since it is plausible that an algorithm

with this property would use fewer registers. Also, it may simplify a lower bound

proof since we can use the \fooling the reader" technique. Let SYM(k) be the set of

all one-write algorithms which implement a k-ary regular register from binary reg-

ular registers and satisfy the symmetric property. For an algorithm A 2 SYM(k),

let R

A

(k) be the number of binary registers used by A. Let R(k) be the minimum

number of binary registers required by any one-write algorithm in SYM(k). The

main result of this section is Theorem 4.2, which states that R(k) > 2k�2�blog kc.

41

The proof of Theorem 4.2 is inductive. Lemma 4.2, which shows that 4 binary reg-

ular registers cannot implement a 4-ary regular register, forms the base case for the

proof. In the inductive step, either k is a power of 2, or k is not a power of 2. If k

is a power of 2, then Lemma 4.4, which proves that R(k) � R(k � 1) + 1, is used.

If k is not a power of 2, then Lemma 4.5, which proves that R(k) � R(k � 1) + 2,

is used. Then some algebraic manipulations enable us to derive the desired lower

bound. The proofs of Lemmas 4.4 and 4.5 use Lemma 4.3, which gives conditions

under which a one-write algorithm can be converted into a one-write algorithm for

fewer logical values using fewer physical registers. The proof of Lemma 4.3 consists

of a general algorithm transformation.

Lemma 4.2 R(4) > 4.

Proof Suppose in contradiction that there exists an algorithm A such that R

A

(4) =

4. Suppose without loss of generality that V = fR;G;B; Y g, the initial con�gura-

tion is 0000, f

A

(0000) = R, f

A

(1000) = G, f

A

(0100) = B, and f

A

(0010) = Y . We

now attempt to assign values to the remaining 12 con�gurations.

Figure 4.2 shows the current assignment of values to con�gurations and the

possibilities for some currently unassigned con�gurations. Because A is a one-write

algorithm, we only need to consider con�gurations which di�er in one bit from the

last assigned con�guration 1000. We cannot assign two di�erent values to the same

con�guration. Thus, we have six choices to consider:

1. f

A

(1010) = B and f

A

(1100) = Y .

2. f

A

(1010) = B and f

A

(1001) = Y .

3. f

A

(1001) = B and f

A

(1100) = Y .

4. f

A

(1100) = B and f

A

(1010) = Y .

5. f

A

(1100) = B and f

A

(1001) = Y .

6. f

A

(1001) = B and f

A

(1010) = Y .

42

We can eliminate choices 1 and 2 by showing that f

A

(1010) 6= B. f

A

(1010) 6= B

because otherwise 0010 is constructible from the connected set f0000; 1000; 1010g

and f

A

(0010) = Y is not in f

A

(f0000; 1000; 1010g) = fR;G;Bg, contradicting

Lemma 4.1. We can eliminate choice 3 by showing that f

A

(1100) 6= Y . f

A

(1100) 6=

Y because otherwise 0100 is constructible from the connected set f0000; 1000; 1100g

and f

A

(0100) = B is not in f

A

(f0000; 1000; 1100g) = fR;G; Y g, contradicting

Lemma 4.1.

We now show how to eliminate choices 4, 5, and 6. We consider each of the

three choices in turn.

Case 4. Figure 4.3 shows the current assignment of values to con�gurations and

the possibilities for some currently unassigned con�gurations. f

A

(0110) 6= G be-

cause otherwise 0110 is constructible from the connected set f0000; 0010; 0100g and

f

A

(0110) is not in f

A

(f0000; 0010; 0100g) = fR;B; Y g, contradicting Lemma 4.1.

Thus, we only have one choice to consider: f

A

(0101) = G and f

A

(0110) = Y . Fig-

ure 4.4 shows the current assignment of values to con�gurations and the possibilities

for some currently unassigned con�gurations. f

A

cannot map 0011 to both G and

B. This case leads to a dead end.

Case 5. Figure 4.5 shows the current assignment of values to con�gurations

and the possibilities for some currently unassigned con�gurations. As in Choice

4, f

A

(0110) 6= G and thus f

A

(0101) = G and f

A

(0110) = Y . Figure 4.6 shows

the current assignment of values to con�gurations and the possibilities for some

currently unassigned con�gurations. f

A

(1010) 6= B because otherwise 1000 is con-

structible from the connected set f0000; 0010; 1010g and f

A

(1000) = G is not in

f

A

(f0000; 0010; 1010g) = fR;B; Y g, contradicting Lemma 4.1. Thus, we only

have one choice to consider: f

A

(1010) = G and f

A

(0011) = B. Figure 4.7

shows the current assignment of values to con�gurations and the possibilities for

some currently unassigned con�gurations. f

A

(1101) 6= R because otherwise 1001

is constructible from the connected set f0000; 1000; 1100; 1101g and f

A

(1001) =

Y is not in f

A

(f0000; 1000; 1100; 1101g) = fR;G;Bg, contradicting Lemma 4.1.

f

A

(1110) 6= R because otherwise 0110 is constructible from the connected set

f0000; 1000; 1100; 1110g and f(0110) = Y is not in f

A

(f0000; 1000; 1100; 1110g) =

fR;G;Bg, contradicting Lemma 4.1. This case leads to a dead end.

43

Case 6. Figure 4.8 shows the current assignment of values to con�gurations and

the possibilities for some currently unassigned con�gurations. f

A

(0110) 6= G be-

cause otherwise 1010 is constructible from the connected set f0000; 1000; 0100; 0110g

and f

A

(1010) = Y is not in f

A

(f0000; 1000; 0100; 0110g) = fR;G;Bg, contradicting

Lemma 4.1. f

A

(1100) 6= Y because otherwise 1000 is constructible from the con-

nected set f0000; 0100; 1100g and f

A

(1000) = G is not in f

A

(f0000; 0100; 1100g) =

fR;B; Y g, contradicting Lemma 4.1. Thus, we have three choices to consider:

6.1. f

A

(1100) = G and f

A

(0110) = Y .

6.2. f

A

(1100) = G and f

A

(0101) = Y .

6.3. f

A

(0101) = G and f

A

(0110) = Y .

We consider each of the three choices in turn.

Case 6.1. Figure 4.9 shows the current assignment of values to con�gurations

and the possibilities for some currently unassigned con�gurations. f

A

cannot map

0011 to both G and B. This choice leads to a dead end.

Case 6.2. Figure 4.10 shows the current assignment of values to con�gurations

and the possibilities for some currently unassigned con�gurations. f

A

(0110) 6= G

because otherwise 0100 is constructible from the connected set f0000; 0010; 0110g

and f

A

(0100) = B is not in f

A

(f0000; 0010; 0110g) = fR;G; Y g, contradicting

Lemma 4.1. f

A

(0011) 6= G because otherwise 1001 is constructible from the con-

nected set f0000; 1000; 0010; 0011g and f

A

(1001) = B is not in

f

A

(f0000; 1000; 0010; 0011g) = fR;G; Y g, contradicting Lemma 4.1. This case

leads to a dead end.

Case 6.3. Figure 4.11 shows the current assignment of values to con�gurations

and the possibilities for some currently unassigned con�gurations. f

A

cannot map

0011 to both G and B. We have nowhere else to backtrack.

Thus, R(4) > 4.

44

R

0000

G

1000

B

0100

Y

0010

B

1100

1010

1001

Y

1100

1010

1001

�

�

�

�

@

@

@

@

�

�

@

@

Figure 4.2: First Set of Choices

R

0000

G

1000

B

0100

Y

0010

B

1100

Y

1010

�

�

�

�

@

@

@

@

�

�

@

@

G

0110

0101

Y

0110

0101

H

H

H

Figure 4.3: Case 4 and Second Set of Choices

R

0000

G

1000

B

0100

Y

0010

B

1100

Y

1010

�

�

�

�

@

@

@

@

�

�

@

@

G

0101

Y

0110

H

H

H

G

0011

B

0011

Z

Z
Z

P

P

P

P

P

Figure 4.4: Case 4 - Remaining Choice

45

R

0000

G

1000

B

0100

Y

0010

B

1100

Y

1001

�

�

�

�

@

@

@

@

�

�

@

@

G

0110

0101

Y

0110

0101

H

H

H

Figure 4.5: Case 5 and Second Set of Choices

R

0000

G

1000

B

0100

Y

0010

B

1100

Y

1001

�

�

�

�

@

@

@

@

�

�

@

@

G

0101

Y

0110

H

H

H

G

1010

0011

B

1010

0011

Z

Z
Z

P

P

P

P

P

Figure 4.6: Case 5 and Third Set of Choices

46

R

0000

G

1000

B

0100

Y

0010

B

1100

R

1110

1101

Y

1110

1101

�

�

Q

Q

Y

1001

�

�

�

�

@

@

@

@

�

�

@

@

G

0101

Y

0110

H

H

H

G

1010

B

0011

Z

Z
Z

P

P

P

P

P

Figure 4.7: Case 5 and Fourth Set of Choices

R

0000

G

1000

B

0100

Y

0010

B

1001

Y

1010

�

�

�

�

@

@

@

@

�

�

@

@

G

1100

0110

0101

Y

1100

0110

0101

H

H

H

Figure 4.8: Case 6 and Second Set of Choices

47

