
R

0000

G

1000

B

0100

Y

0010

B

1001

Y

1010

�

�

�

�

@

@

@

@

�

�

@

@

G

1100

Y

0110

H

H

H

G

0011

B

0011

Z

Z
Z

P

P

P

P

P

Figure 4.9: Case 6.1

R

0000

G

1000

B

0100

Y

0010

B

1001

Y

1010

�

�

�

�

@

@

@

@

�

�

@

@

G

1100

Y

0101

H

H

H

G

0110

0011

B

0110

0011

Z

Z
Z

P

P

P

P

P

Figure 4.10: Case 6.2

R

0000

G

1000

B

0100

Y

0010

B

1001

Y

1010

�

�

�

�

@

@

@

@

�

�

@

@

G

0101

Y

0110

H

H

H

G

0011

B

0011

Z

Z
Z

P

P

P

P

P

Figure 4.11: Case 6.3

48

Lemma 4.3 Consider any A 2 SYM(k) with R

A

(k) = m. Suppose there exists a

reachable con�guration C and a value w 6= f

A

(C) such that C has p neighbors D

with f

A

(D) = w. Then there exists a one-write algorithm A

0

2 SYM(k � 1) with

R

A

0

(k � 1) � m� p.

Proof We show how to construct A

0

given A. A

0

will implement a logical register

with value set V �fwg, where V is the value set of the logical register implemented

by A, and initial value v

0

2 V � fwg.

For each i 2 f1; . . . ; pg, let C

i

be the neighbor of C that di�ers from C in bit b

i

,

where f

A

(C

i

) = w. Consider the set S of all con�gurations L reachable from C by

a path of algorithm edges in which no con�guration X with f

A

(X) = w appears in

the path. Let Z be the subgraph ofH

A

in which the node set is S and the edge set is

the set of all edges in S�S that are algorithm edges in H

A

. No edge in Z is labeled

with any bit in fb

1

; b

2

; . . . ; b

p

g because otherwise some C

i

is constructible from S,

which is connected, and f

A

(C

i

) = w is not in f

A

(S), contradicting Lemma 4.1.

Algorithm A

0

will use m� p binary regular registers. We now de�ne the initial

con�guration for A

0

. Assume without loss of generality that b

1

through b

p

are the

last p bits and they are all 0 in C. Thus, b

1

through b

p

are all 0 in every con�guration

in S. Given D 2 S, de�ne �(D) to be the pre�x of D consisting of all but the last p

bits. (These will be the reachable con�gurations of A

0

.) If f

A

(C) = v

0

, let D

0

= C.

Otherwise, let D

0

be the neighbor of C in Z such that f

A

(D

0

) = v

0

. Clearly D

0

exists. We de�ne the initial con�guration of A

0

to be �(D

0

).

We now describe the reader's protocol in algorithm A

0

. The reader's protocol in

algorithm A

0

is the same as the reader's protocol in algorithm A, except that the

reader in A

0

has local bits c

1

; . . . ; c

p

corresponding to shared bits b

1

; . . . ; b

p

in A.

The value of bit c

i

is 0 for each i 2 f1; . . . ; pg at all times. Whenever reader j in A

reads shared bit b

i

, the reader in A

0

reads local bit c

i

using action localread(j; c

i

).

We now describe the writer's protocol in algorithm A

0

. If the current con�gura-

tion of the physical registers (well-de�ned because readers do not write) is �(E) for

some E 2 S and if WRITE(x), for x not the current value of the logical register,

is the next operation, then the writer changes bit b, where b labels the algorithm

edge (E;D) in Z and f

A

(D) = x. An easy induction shows that in every state of

49

every execution of A

0

the physical registers always form a con�guration E such that

E = �(E) for some E 2 S.

Now we must show that algorithm A

0

implements a (k� 1)-ary regular register.

Algorithm A

0

clearly holds (k � 1) values and satis�es the wait-free property. We

now show that the regular property holds. Consider any execution e

0

of algorithm

A

0

. We build a corresponding execution e of algorithm A as follows. We construct

a sequence of actions of A by starting with a sequence of logical WRITEs to ensure

that the con�guration of the physical registers is D

0

. We then consider each action

in the execution of A

0

in turn. If the action is not a read of a local bit c

i

by reader

j, then the action is placed as is in the sequence. If the action is a read of a local

bit c

i

by reader j, then the actions read

b

i

(j) and return

b

i

(j; 0) are placed in order

in the sequence. By induction, there exists an execution e of A with the sequence

of actions just constructed. By the assumption about A, e satis�es the regular

property. Suppose a READ by reader j in execution e

0

of algorithm A

0

RETURNs

value v. Then the corresponding READ in the constructed execution e of algorithm

A also RETURNs value v. We must prove that v is a proper value to RETURN in

e

0

. In e, v is the value of an overlapping WRITE, the value of the last preceding

WRITE, or the initial value of A. We consider each possibility in turn. If in e, v is

the value of an overlapping WRITE, then WRITE(v) overlaps the original READ

in e

0

. Thus v is a proper value to RETURN in e

0

. If in e, v is the value of the last

preceding WRITE, then either there is a corresponding WRITE(v) in e

0

or there is

not a corresponding WRITE(v) in e

0

(so no WRITE precedes the READ in e

0

). If

there is a corresponding WRITE(v) in e

0

, then v is a proper value to RETURN in

e

0

. Otherwise v is v

0

, the initial value for A

0

; thus v is a proper value to RETURN

in e

0

. If in e, v is the initial value of A and no WRITE precedes the READ, then

the initial value of A is also v

0

and the READ in e

0

has no preceding WRITE. Thus

v is a proper value to RETURN in e

0

. Therefore algorithm A

0

satis�es the regular

property.

A

0

trivially satis�es the symmetric property because A satis�es the symmetric

property, and R

A

0

(k � 1) � m� p.

Lemma 4.4 R(k � 1) � R(k) � 1.

50

Proof Choose any A 2 SYM(k) with R

A

(k) = R(k) = m. Let C be a reachable

con�guration of A. Since A is a one-write algorithm, C has a neighbor D such that

f

A

(D) 6= f

A

(C). By Lemma 4.3 with p = 1, there exists an A

0

2 SYM(k � 1) with

R

A

0

(k � 1) � m� 1. Thus R(k � 1) � m� 1.

Lemma 4.5 If k is not a power of 2, then R(k � 1) � R(k)� 2.

Proof Choose any A 2 SYM(k) with k not a power of 2 and R

A

(k) = R(k) = m.

If we can show that there exists a reachable con�guration C and some w 6= f

A

(C)

with at least two neighbors D

1

and D

2

such that f

A

(D

1

) = f

A

(D

2

) = w, then the

result would follow from Lemma 4.3, substituting 2 for p. The rest of this proof

is devoted to showing that such a con�guration exists. Suppose in contradiction

that for every reachable con�guration C and every w 6= f

A

(C), C has at most one

neighbor D with f

A

(D) = w.

Claim 4.1 For any reachable C, f

A

maps all nonreachable neighbors of C to f

A

(C).

Proof Suppose in contradiction that C has one nonreachable neighbor

E such that f

A

(E) 6= f

A

(C). C already has a reachable neighbor D with

f

A

(D) = f

A

(E) because A is a one-write algorithm. This means that C

has at least two neighbors mapped by f

A

to f

A

(E), a contradiction.

End of Claim

Claim 4.2 All con�gurations are reachable.

Proof Suppose in contradiction that there exists a nonreachable con-

�guration. Then there exists a reachable con�guration C

0

that has a

nonreachable neighbor D

0

. f

A

(D

0

) = f

A

(C

0

) by Claim 4.1. Suppose D

0

and C

0

di�er only in bit i. Since we are assuming that the minimum

number of binary regular registers is used, there exists some reachable

con�guration E such that E and C

0

di�er in bit i and bit i labels the

last edge in some path of algorithm edges in H

A

connecting C

0

and E.

The length of the path from C

0

to E must be at least 2. Let the path be

51

��

��

D

0

��

��

C

0

i

��

��

C

1

. . .

b

1

b

2

b

J

��

��

C

J

��

��

E

i

Figure 4.12: Relationships Among the Con�gurations in the Chain from C

0

to E

denoted by the bits that were changed in the path: b

1

; b

2

; . . . ; b

J

; i. Sup-

pose the sequence of con�gurations in the path is C

0

; C

1

; C

2

; . . . ; C

J

; E.

Then C

J

and E di�er only in bit i. Figure 4.12 shows the relation-

ships among these con�gurations. Double lines denote algorithm edges.

Single lines denote edges which are not algorithm edges. For all j,

1 � j � J , let D

j

be the neighbor of C

j

that di�ers from C

j

in bit

i. Notice that D

0

is nonreachable, and D

J

= E, which is reachable.

Since D

0

;D

1

; . . . ;D

J

= E is the sequence of con�gurations in some

path, there exists a j such that D

j�1

is nonreachable and D

j

is reach-

able. Figure 4.13 shows the relationships among C

j�1

; C

j

;D

j�1

; and D

j

.

Dashed lines denote edges which are not known to be algorithm edges.

Let f

A

(C

j�1

) = v

1

. f

A

(C

j

) 6= v

1

because (C

j�1

; C

j

) is an algorithm edge.

Since D

j�1

is unreachable, f

A

(D

j�1

) = v

1

by Claim 4.1. Since D

j�1

is

an unreachable neighbor of reachable D

j

, f

A

(D

j

) = v

1

by Claim 4.1.

Thus C

j

has two neighbors mapped by f

A

to v

1

, a contradiction.

End of Claim

We proceed by choosing a value from our value set V and counting in two

di�erent ways the number of edges of H

A

with one endpoint that is mapped by f

A

to our chosen value. The results of our two countings must be equal.

Choose some v 2 V . Let b be the number of con�gurations C with f

A

(C) = v.

Let B be the set of edges (C;D) such that exactly one of the following is true:

52

��

��

D

j�1

��

��

C

j�1

i

��

��

C

j

b

j

��

��

D

j

i

b

j

Figure 4.13: Relationships Among C

j�1

; C

j

;D

j�1

; and D

j

1. f

A

(C) = v and f

A

(D) 6= v.

2. f

A

(C) 6= v and f

A

(D) = v.

For each con�guration C such that f

A

(C) = v, C has k � 1 neighbors D with

f

A

(D) 6= v by Claim 4.2 and the assumption made about all reachable con�gu-

rations. This implies that jBj = b(k � 1). For each con�guration D such that

f

A

(D) 6= v, D has one neighbor C with f

A

(C) = v by Claim 4.2 and the assump-

tion made about all reachable con�gurations. This implies that jBj = 2

m

�b. Then

2

m

� b = b(k � 1), which implies that 2

m

= kb, which means that k is a power of

2. This contradicts our assumption that k is not a power of 2.

Theorem 4.2 R(k) > 2k � 2 � blog kc.

Proof We proceed by induction on k.

Basis: (k = 4:) 2k � 2� blog kc = 4. By Lemma 4.2, R(4) > 4.

Inductive step: (k > 4:) Suppose the lemma is true for k � 1. Now we show that it

is true for k. There are two possibilities for k. Either k is a power of 2, or k is not

a power of 2.

Case 1: k is a power of 2.

R(k) � R(k � 1) + 1 by Lemma 4.4

53

> 2(k � 1) � 2� blog(k � 1)c + 1 , by the inductive hypothesis

= 2k � 2 � 2� (blog kc � 1) + 1 , because k is a power of 2

= 2k � 2 � blog kc.

Case 2: k is not a power of 2.

R(k) � R(k � 1) + 2 by Lemma 4.5

> 2(k � 1) � 2� blog(k � 1)c + 2 , by the inductive hypothesis

= 2(k � 1) � 2� blog kc + 2 , because k is not a power of 2

= 2k � 2 � blog kc.

4.1.3 Justifying Restrictions on Readers

In this subsection we justify the restrictions (in the de�nition of normal form algo-

rithm) that we placed on the readers by showing that general readers do not allow

implementations which use fewer physical registers. Theorem 4.3 shows that any

one-write algorithm can be converted to a normal form algorithm which uses no

more registers. Theorem 4.4 shows that any symmetric algorithm can be converted

to a symmetric algorithm using no more registers in which every reader reads each

physical register at most once.

Theorem 4.3 Any one-write algorithm A using m physical registers can be con-

verted to a normal form algorithm A

0

which uses at most m physical registers.

Proof The proof uses algorithm transformation techniques as in the proof of

Lemma 4.3. Each reader's protocol in algorithm A

0

is the same as reader 1's protocol

in algorithm A, starting in reader 1's initial state, with one exception: the readers

in algorithm A

0

do not perform any physical writes. Instead, they perform writes

to local variables (physical register i corresponds to local variable c

i

). The writer's

protocol in algorithm A

0

is the same as the writer's protocol in algorithm A. A

0

is a

normal form algorithm. We now prove the regularity of A

0

. Consider any execution

e

0

of algorithm A

0

. Let s

0

be the schedule of e

0

. We consider each completed READ

54

r

i

in e

0

in turn. For r

i

, we build a sequence of actions, s

i

, which will be shown

to be a schedule of a possible execution of algorithm A. We obtain s

i

from s

0

by

removing all READs (and their associated physical actions) except for r

i

and by

changing r

i

to be a READ by process 1. We now consider each action a

ij

within

r

i

. If a

ij

is a write of a local variable c

l

, then we replace a

ij

with a corresponding

physical write to physical register l. If a

ij

is a read of a local variable c

l

, then we

replace a

ij

with a corresponding physical read of physical register l. Otherwise,

a

ij

remains unchanged in s

i

. By induction on the number of actions in s

i

, we can

show that there is an execution e

i

of algorithm A with schedule s

i

. Suppose r

i

in

e

0

RETURNs value v. Then the corresponding READ in execution e

i

of algorithm

A also RETURNs value v. By the assumption about A, e

i

satis�es the regular

property. Thus, in e

i

, v is the value of an overlapping WRITE, the value of the

last preceding WRITE, or the initial value of A (also, of A

0

). It follows that v is a

proper value for r

i

to RETURN in e

0

because the sequences of WRITEs in e

i

and e

0

are the same, and e

i

's READ and r

i

have the same relationship with the WRITEs.

Thus, r

i

RETURNs a correct value. Since all completed READs in e

0

are regular

and e

0

is an arbitrary execution, A

0

satis�es the regular property.

Theorem 4.4 Any symmetric algorithm A using m physical registers can be con-

verted to a symmetric algorithm A

0

using at most m physical registers in which

every reader reads each physical register at most once.

Proof The proof uses algorithm transformation techniques as in the proof of

Lemma 4.3. By Theorem 4.3, we can assume that A is a normal form algorithm.

The writer's protocol in A

0

is the same as the writer's protocol in A. The reader's

protocol in A

0

is the same as the reader's protocol in A, with the following exception.

After a reader in A

0

reads physical register i for the �rst time during a READ, it

makes a local copy of that register, c

i

. It reads the local copy for all subsequent

accesses to that physical register during the READ. We now prove the regularity of

A

0

. Consider any execution e

0

of algorithm A

0

. We build a corresponding sequence

of actions s of algorithm A as follows. We consider each action in e

0

in turn. If the

action is not a read of a local bit c

i

by reader j, then the action is placed as is in

s. If the action is a read of a local bit c

i

by reader j, then we do the following in

order:

55

� place actions to complete the pending WRITE (if there is one)

� determine the sequence of values written to the logical register since the last

read of register i by reader j (not including the last WRITE), denoted ws.

� place logical WRITEs (along with the associated physical writes) for those

values in reverse(ws)

� place a physical read operation of register i by reader j

� place logical WRITEs (along with the associated physical writes) for the

values in ws

� handle the last WRITE (making it pending again if it was originally pending).

We can do this easily because A (and A

0

) are symmetric. We can show by induction

on the number of actions in s that there exists some execution e of A with schedule

s. Suppose a READ by reader j in execution e

0

of algorithm A

0

RETURNs value

v. Then the corresponding READ in the constructed execution e of algorithm A

also RETURNs value v. We must prove that v is a proper value to RETURN in

e

0

. In e, v is the value of an overlapping WRITE, the value of the last preceding

WRITE, or the initial value of A (also, of A

0

). The sets of values written in e and e

0

which may be RETURNed by the READ are the same (the values may have higher

multiplicities in the set of values written in e than in the set of values written in

e

0

), which implies that v is a proper value to RETURN in e

0

. Thus, algorithm A

0

satis�es the regular property.

4.2 Lower Bounds for Atomicity

In this section we establish lower bounds on the number of registers required by two

classes of atomic one-write algorithms. Since atomicity is a stronger property than

regularity, we may not be able to transform an arbitrary atomic one-write algorithm

to a normal form algorithm. It may help for readers to communicate with each other

and the writer by writing to binary registers. Since atomicity implies regularity,

Theorems 4.1 and 4.2 are true for normal form atomic one-write algorithms. The

proofs for the atomic case are identical to the proofs of Theorems 4.1 and 4.2.

56

Chapter 5

Must One-Write Algorithms

Satisfy the Toggle or Symmetric

Properties?

5.1 A One-Write Algorithm Implementing a 3-

ary Regular Register but not Satisfying the

Toggle Property

Showing that any one-write algorithm would be required to satisfy the toggle prop-

erty would be a very nice result because it would imply that our algorithm is optimal

with respect to space. However, we found an exception to that rule.

We present a one-write algorithm implementing a 3-ary regular register from 3

regular bits which does not satisfy the toggle property. Let the value set of the

logical register be fa; b; cg, and let the initial value of the logical register be a. As

usual, a reader reads all 3 bits and returns the value of a function f

NT

applied to

the con�guration obtained. The writer changes a bit only when the value of the

logical register changes; when the value is changed from v to w, the writer uses the

algorithm edges of the 3-dimensional hypercube H

NT

given in Figure 5.1 and the

current con�guration of the bits to determine which bit to change. Double lines

in the �gure denote algorithm edges. Each reachable con�guration C in H

NT

is

labeled with f

NT

(C). The nodes labeled with d are unreachable con�gurations;

each of these nodes could be mapped by f

NT

to an arbitrary element of fa; b; cg. A

formal description of the algorithm, called A

NT

, appears in Figure 5.2. A

NT

does

not satisfy the toggle property because whenever the value of the logical register is

changed from a to c or from c to a, either bit 1 or bit 3 is changed, depending on

the con�gurations of the bits.

A

NT

satis�es the symmetric property. We must now prove that A

NT

satis�es

the regular property.

Theorem 5.1 Algorithm A

NT

implements a regular 3-valued register.

Proof When no write overlaps a read, the read clearly returns the last value written

to the register (or the initial value if no value has been written), thus returning a

correct value. Now suppose that at least one write overlaps a read. Let C be the

con�guration read by the reader during execution of A

NT

. Let S be the set of

distinct values written to the register by the last write preceding the read or by

some write overlapping the read. If S = fa; b; cg, then the reader returns a correct

value since f

NT

(C) is in fa; b; cg. If jSj = 2, then we have three cases to consider.

Case 1. S = fa; bg. Then the actual con�gurations of the physical registers

during the read and after the last write preceding the read must be such that

exactly one of the following is true:

1. They are in f010; 110g. By the code of A

NT

, C = 010 or C = 110, implying

that f

NT

(C) is in fa; bg. Thus the reader returns a correct value.

2. They are in f000; 001g. By the code of A

NT

, C = 000 or C = 001, implying

that f

NT

(C) is in fa; bg. Thus the reader returns a correct value.

Case 2. S = fa; cg. Then the actual con�gurations of the physical registers during

the read and after the last write preceding the read must be such that exactly one

of the following is true:

58

1. They are in f000; 100g. By the code of A

NT

, C = 000 or C = 100, implying

that f

NT

(C) is in fa; cg. Thus the reader returns a correct value.

2. They are in f010; 011g. By the code of A

NT

, C = 010 or C = 011, implying

that f

NT

(C) is in fa; cg. Thus the reader returns a correct value.

Case 3. S = fb; cg. Then the actual con�gurations of the physical registers during

the read and after that last write preceding the read must be such that exactly one

of the following is true:

1. They are in f001; 011g. By the code of A

NT

, C = 001 or C = 011, implying

that f

NT

(C) is in fb; cg. Thus the reader returns a correct value.

2. They are in f110; 100g. By the code of A

NT

, C = 110 or C = 100, implying

that f

NT

(C) is in fb; cg. Thus the reader returns a correct value.

If jSj = 1, C is the actual con�guration of the physical registers during the read

and after the last write preceding the read. Thus f

NT

(C) is a correct value for the

reader to return.

5.2 A Nonsymmetric One-Write Algorithm Im-

plementing a 3-ary Regular Register

We present a one-write algorithm implementing a 3-ary regular register from 3

regular bits which does not satisfy the symmetric property. We assume without

loss of generality that the value set of the logical register is fa; b; cg. We also

assume that the initial value of the logical register is a. As usual, a reader reads all

3 bits and returns the value of a function f

NS

applied to the con�guration obtained.

The writer changes a bit only when the value of the logical register changes; when

the value is changed from v to w, the writer uses the algorithm edges of the 3-

dimensional hypercube H

NS

given in Figure 5.3 and the current con�guration of

the bits to determine which bit to change. Arrows in the �gure denote algorithm

edges. Each reachable con�guration C in H

NS

is labeled with f

NS

(C). The node

59

labeled with d is an unreachable con�guration; this node could be mapped by f

NS

to an arbitrary element of fa; b; cg. A formal description of the algorithm, called

A

NS

, appears in Figure 5.4.

A

NS

does not satisfy the symmetric property. The symmetric property is vio-

lated twice:

� (000; 001) is an algorithm edge, but (001; 000) is not.

� (011; 010) is an algorithm edge, but (010; 011) is not.

We must now prove that A

NS

satis�es the regular property.

Theorem 5.2 Algorithm A

NS

implements a regular 3-valued register.

Proof When no write overlaps a read, the read clearly returns the last value written

to the register (or the initial value if no value has been written), thus returning a

correct value. Suppose that at least one write overlaps a read. Let C be the

con�guration read by the reader. Let S be the set of values written to the register

by the last write preceding the read or by some write overlapping the read. Let

CON be the set of actual con�gurations of the physical registers during the read

and after the last write preceding the read. If S = fa; b; cg, then the reader returns

a correct value since f

NS

(C) is in fa; b; cg. If jSj = 2, then we have three cases to

consider.

Case 1. S = fa; bg. By the code of A

NS

, CON = f000; 010g, CON =

f011; 010; 000g, or CON = f010; 000g. For all three choices for CON , C is in

CON by the code of A

NS

. Thus the reader returns a correct value because f

NS

(C)

is in f

NS

(CON). The only choice for CON which requires a more detailed analysis

is CON = f011; 010; 000g. If CON = f011; 010; 000g, then by the code of A

NS

,

011 must have been the actual con�guration of the physical registers after the last

write preceding the read. By the code of A

NS

, C = 011 or C = 010 or C = 000,

implying that f

NS

(C) is in fa; bg. Thus the reader returns a correct value.

Case 2. S = fa; cg. By the code of A

NS

, CON = f100; 110g, CON =

f000; 001; 011g, or CON = f001; 011g. For all three choices for CON , C is in

60

CON by the code of A

NS

. Thus the reader returns a correct value because f

NS

(C)

is in f

NS

(CON). The only choice for CON which requires a more detailed analysis

is CON = f000; 001; 011g. If CON = f000; 001; 011g, then by the code of A

NS

,

000 must have been the actual con�guration of the physical registers after the last

write preceding the read. By the code of A

NS

, C = 000 or C = 001 or C = 011,

implying that f

NS

(C) is in fa; cg. Thus the reader returns a correct value.

Case 3. S = fb; cg. By the code of A

NS

, CON = f010; 110g or CON =

f001; 101g. For both choices for CON , C is in CON by the code of A

NS

. Thus the

reader returns a correct value because f

NS

(C) is in f

NS

(CON).

If jSj = 1, then jCON j = 1 by the code of A

NS

. Thus, C is in CON by the

code of A

NS

. The reader returns a correct value because f

NS

(C) is in f

NS

(CON).

61

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

e

e

e

.

.

.

.

.

.

.

.

.

.

.

.

.

e

e

e

e

e

e

@

@

@

@

@

@

@

@

@

b

b

a

d

d

a

c

c

110

111

011

010

001

101

000100

Figure 5.1: The Hypercube H

NT

for the Non-Toggle Algorithm

62

Physical Registers (Bits): X

1

;X

2

;X

3

, initially X

j

= 0, for all j 2 f1; 2; 3g

Reader i, 1 � i � n: variables x

1

; x

2

; x

3

READ(i):

for j := 1 to 3 do

read

j

(i)

return

j

(i; x

j

)

endfor

RETURN(i; f

NT

(x

1

. . .x

3

))

Writer: variables x

1

; x

2

; x

3

, initially x

j

= 0, for all j 2 f1; 2; 3g, and

old, initially old = v

0

WRITE(v):

if v 6= old then

i := the bit labeling the algorithm edge between node

x

1

x

2

x

3

and its neighbor y

1

y

2

y

3

with f

NT

(y

1

. . .y

3

) = v

write

i

(x

i

)

ack

i

x

i

:= x

i

old := v

endif

ACK

Figure 5.2: One-Write Algorithm A

NT

63

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

e

e

e

?

6

.

.

.

.

.

.

.

.

.

.

.

.

.

e

e

e

o

~

@

@

@

@

@

@R

@

@I

@

@

@

@

@

@R

@

@I

�

-�

6

?

-

b

b

a

a

d

a

c

c

101

111

110

100

010

011

000001

Figure 5.3: The Hypercube H

NS

for the Nonsymmetric Algorithm

64

Physical Registers (Bits): X

1

;X

2

;X

3

, initially X

j

= 0, for all j 2 f1; 2; 3g

Reader i, 1 � i � n: variables x

1

; x

2

; x

3

READ(i):

for j := 1 to 3 do

read

j

(i)

return

j

(i; x

j

)

endfor

RETURN(i; f

NS

(x

1

. . .x

3

))

Writer: variables x

1

; x

2

; x

3

, initially x

j

= 0, for all j 2 f1; 2; 3g, and

old, initially old = v

0

WRITE(v):

if v 6= old then

i := the bit labeling the algorithm edge between node

x

1

x

2

x

3

and its neighbor y

1

y

2

y

3

with f

NS

(y

1

. . .y

3

) = v

write

i

(x

i

)

ack

i

x

i

:= x

i

old := v

endif

ACK

Figure 5.4: One-Write Algorithm A

NS

65

Chapter 6

Conclusions from Our Study of

Registers

We have proven the existence of a one-write algorithm for implementing a k-ary

regular register from binary regular registers. The same algorithm implements a k-

ary atomic register from binary atomic registers. The algorithm we have developed

uses k(k�1)=2 binary registers. It is optimal in the number of binary registers used

with respect to all one-write algorithms satisfying the toggle property. We have also

improved the lower bound on the number of binary registers required for all one-

write algorithms satisfying the symmetric property from k to 2k� 1�blog kc. Our

lower bound proofs are modular, and they use our general technique for \fooling the

reader". We have also simpli�ed the readers and have justi�ed the simpli�cations.

An interesting open question is to determine tight bounds on the number of physical

registers needed for symmetric algorithms and more general types of algorithms.

By brute force, we believe that we can prove that at least k + 1 registers are

needed for general regular algorithms. Lemma 4.3, which is our general algorithm

transformation technique, may help in obtaining tighter bounds. For example, if

one can establish that p = �(log k), then one can obtain a lower bound of
(k log k)

registers.

Chapter 7

Virtual Shared Objects

7.1 Introduction

In concurrent systems, processes need to share information with each other. Be-

cause of software engineering concerns, using shared data objects is a popular

method for organizing this information. These shared objects may come from ar-

bitrary abstract data types. However, processes may not have access to a physical

shared memory because they may be running on computers in di�erent locations

separated by long distances or their computer architecture may not provide a phys-

ical shared memory. They must simulate a physical shared memory by using a

virtual shared memory.

A consistency guarantee tells the processes using the virtual shared objects what

they can expect about the values returned as results of applying operations, even

when operations are executed concurrently on the same virtual object. Researchers

have de�ned many types of consistency guarantees, with some strong and some weak

and some in between. A strong guarantee is at least as expensive to implement as

a weaker guarantee, but it may be impossible (or very hard) to solve a problem by

using virtual shared objects providing a weaker guarantee.

Sequential consistency and linearizability are two strong consistency guarantees.

They ensure that operations appear to have executed atomically in some sequential

order that reects the order in which operations were executed at each process.

In addition, linearizability ensures that that this sequential order preserves the

relative ordering of all non-overlapping operations, even if they were executed by

di�erent processes. Sequential consistency is a very popular consistency guarantee

in various contexts, including virtual shared memories and multiprocessor caches

([ABM93, AW94]). However, linearizability is a stronger, more intuitive guaran-

tee because sequential consistency provides no clues about the relative ordering

of non-overlapping operations performed by di�erent processes. Also, a collection

of linearizable objects can be built incrementally because linearizability satis�es

the locality property (if individual objects provide a guarantee, then the collec-

tive group of objects provides the guarantee) [HW90]. In contrast, a collection

of sequentially consistent objects cannot be built incrementally because sequential

consistency does not satisfy the locality property [AF92]. Although linearizability

is more powerful than sequential consistency, it is still interesting to study both

guarantees because the di�erence between their de�nitions is very slight.

Because intuition led them to believe that weaker consistency guarantees may

be cheaper than strong guarantees, Attiya and Friedman [AF92] formally de�ned a

consistency guarantee called hybrid consistency which systematically weakens either

sequential consistency or linearizability; it generalizes guarantees proposed in the

computer architecture community ([AH90, DSB88, GLL

+

90, GMG91]). In hybrid

consistency, there are two forms of operations, strong and weak. Strong operations

appear to satisfy a strong consistency guarantee, while weak operations can appear

to execute in di�erent orders at di�erent processes as long as the relative ordering

of weak and strong operations executed by the same process is preserved. [AF92]

showed that hybrid consistency was still strong enough to be computationally use-

ful, proving that it was a consistency guarantee for shared read/write objects that

could be used to solve the non-cooperative mutual exclusion problem. [AF92] also

showed that read/write objects with some weaker consistency guarantees could not

be used to solve the non-cooperative mutual exclusion problem.

It is important to understand the costs of providing these consistency guaran-

tees, both weak and strong, in order to help system designers choose the consistency

guarantee which best suits the needs of their applications and is cost-e�ective. We

focus on (distributed) message-passing implementations because they are scalable.

68

Each process has its own local memory, and all processes run a protocol to provide

the illusion of a physical shared memory with a given consistency guarantee.

Attiya and Welch [AW91, Att91, AW94]

1

made a comparative study of the costs

of implementing sequential consistency and linearizability for basic read/write ob-

jects, queues, and stacks. They measured the worst-case time for operations to com-

plete, giving upper and lower bounds to show that the amount of synchrony among

the processes using the objects caused the cost di�erence between sequential con-

sistency and linearizability to vary. With perfect synchrony, their costs are equal.

However, sequential consistency is cheaper when processes are only approximately

synchronized. Mavronicolas and Roth [MR92] continued their comparative study,

improving some of their lower bounds and giving a distributed implementation of

linearizable read/write objects in a system with only approximately synchronized

processes. Attiya and Friedman [AF92] compared the cost of implementing hybrid

consistency with the costs of implementing sequential consistency and linearizabil-

ity for read/write objects, showing that hybrid consistency is cheaper when mostly

weak operations are executed.

Instead of concentrating on speci�c data types, as the previously described work

has done, we study the worst-case response times for operations of arbitrary abstract

data types in sequentially consistent, linearizable, and hybrid consistent implemen-

tations. We show that algebraic properties of the operations of an abstract data

type are su�cient for proving many lower bounds and some upper bounds on the

worst-case response times. Our work generalizes and uni�es previously known re-

sults [AW94, MR92, AF92]. As a consequence, we provide speci�c results about

other abstract data types that were not previously considered, such as dictionary

sets, cyclic arrays, and read/modify/write objects. Some of these algebraic prop-

erties that we used were de�ned by Weihl, who used them to study concurrency

control and recovery in transaction systems [Wei93]. Using Weihl's de�nitions as a

basis helped us to identify interesting new algebraic properties of the operations of

abstract data types.

We now give a brief description of our results.

1

[AW94] subsumes the results of [AW91] and [Att91], so we will just refer to [AW94] in the

remainder of this work.

69

Let d be the maximum message delay of a system of processes connected by a

network, and u be the uncertainty in the message delay (0 � u < d). This implies

that the actual message delay may vary between d � u and d.

In Chapters 8 and 9, we compare the costs of implementing sequential consis-

tency and linearizability, varying the amount of synchrony among the processes as

in [AW94].

In Chapter 8, we assume that processes have perfectly synchronized clocks and

constant message delays (u = 0). Any lower bounds proved for such systems will

automatically hold in systems with weaker, more realistic timing assumptions.

We considered interactions between and among operations in order to determine

the worst-case completion times for the other operations of the abstract data type to

be implemented. We found that any pair of (generic) operations that immediately

do not commute must collectively take at least d time in any sequentially consistent

implementation of objects of its abstract data type. We also found that any pair of

(generic) operations that are cyclically dependent must collectively take at least 2d

time in any sequentially consistent implementation of objects of its abstract data

type. Last, but not least, we determined that if a single operation is noninterleav-

able with an ordered pair of operations, either the single operation must take at

least d time or the pair must collectively take at least d time in any sequentially

consistent implementation of objects of its abstract data type.

It is often the case that a particular operation or group of operations of an

abstract data type is known to be used most frequently. Thus it is desirable to

optimize (in terms of worst-case completion time) that operation or group of oper-

ations. We have investigated conditions that would allow for this operation or the

individual operations of the group to have worst-case completion times of 0 (to be

fast), meaning that an operation can return immediately based on current local

information at its invoking process, in a linearizable implementation of objects from

its abstract data type. In our investigation, we have found that the worst-case com-

pletion times of operations are not independent. Making one operation fast may

require another operation to be slow (have a worst-case completion time of
(d)).

Operations may be classi�ed as accessors, pure modi�ers, self-oblivious opera-

tions, immediately self-commuting operations, or none of the above. We give the

70

relationships among these classes of operations and describe the smallest possible

worst-case completion time (fast or slow) of a single operation in these classes in

Figure 7.1. All these classes are nonempty.

Our general results are that any single self-oblivious operation can be made

fast and that no operation which does not immediately commute with itself can

be made fast. We do not know about the smallest possible worst-case completion

time for a single operation that is not self-oblivious but does immediately commute

with itself. However, a large class of well-known abstract data types has self-

oblivious operations. We prove further that any subset of operations consisting

only of accessors can be made fast and that any subset of operations consisting

only of pure modi�ers can be made fast.

What insight do the above results give us about the relative costs of sequen-

tial consistency and linearizability? Sequential consistency and linearizability are

asymptotically equal in cost for all abstract data types because the worst-case com-

pletion times for operations achieved by our linearizable implementations match our

lower bound results for sequentially consistent implementations to within constant

factors. Additionally, sequential consistency and linearizability are equally costly

under two conditions. The �rst condition is when the operations that can be made

fast in linearizable implementations are the most frequently executed operations of

their types, because 0 is the smallest possible worst-case completion time for any

operation. The second condition is when the total worst-case completion time for

all operations in a linearizable implementation matches the sequential consistency

lower bound for all operations, causing equal costs for a class of abstract data types

when all operations are executed with approximately the same frequency.

In Chapter 9, we consider systems with positive uncertainty in the message

delay and approximately synchronized clocks. Our goal is to �nd a list of algebraic

properties causing operations satisfying a property in the list to have positive worst-

case completion times (
(u)) in linearizable implementations of their abstract data

types but allowing them to have worst-case completion times of 0 in sequentially

consistent implementations of their abstract data types. This would show that

sequential consistency is less expensive than linearizability in this model of process

synchrony.

71

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

pure

modi�er

accessor

immediately self-commute

not immediately self-commute

self-oblivious

F

A

S

T

u

n

k

n

o

w

n

S

L

O

W

Figure 7.1: Classes of Operations and Their Smallest Worst-Case Completion Times

for Sequential Consistency and Linearizability

72

We have found two properties causing operations to have worst-case completion

times that are at least u=2 in linearizable implementations of their abstract data

types. One of the properties allows an operation satisfying the property to have a

worst-case completion time of 0 in a sequentially consistent implementation of its

abstract data type, while a restriction of the other property allows an operation

satisfying the restriction to have a worst-case completion time of 0 in a sequentially

consistent implementation of its abstract data type. These properties are reason-

ably general, holding for a large class of well-known abstract data types. Under

these conditions, sequential consistency is cheaper than linearizability.

In Chapter 10, we consider the weaker consistency guarantee of hybrid consis-

tency. We use the same algebraic properties used in the lower bound proofs for

sequential consistency to prove similar lower bounds for hybrid consistent imple-

mentations. We use these newly derived lower bounds in conjunction with some

upper bounds for implementations providing stronger consistency guarantees to de-

duce that hybrid consistency is not necessarily cheaper than stronger consistency

guarantees. Independently, Friedman [Fri93] compared the cost of implementing

hybrid consistency with the costs of implementing sequential consistency and lin-

earizability for read/modify/write objects, queues, and stacks, showing that hybrid

consistency is not cheaper, even when mostly weak operations are executed.

We summarize our results and discuss progress towards improving some of them

in Chapter 11.

7.2 De�nitions

7.2.1 Abstract Data Type Preliminaries

A sequential speci�cation [HW90] for an abstract data type contains a set of

operations, which are ordered pairs of call and response events, and a set of legal

operation sequences. The legal sequences of operations reect the semantics of the

abstract data type. For example, for read/write objects, each read operation in a

legal sequence returns the value written by the last preceding write operation in

the sequence. The call event represents the call for the corresponding operation

73

from the abstract data type, while the response event represents the value returned

by applying the operation. We refer to call events and their matching response

events separately because they may not occur atomically (they may be separated

in time). For operation op, a call event is of the form call(arglist), where arglist

is the argument list (possibly empty) for the operation. For example, a call event

for a read operation (respectively, write operation) on a read/write object is of

the form read() (respectively, write(v)). Similarly, a response event is of the form

resp(retlist), where retlist is the list of values returned by the operation and is

possibly empty. For example, a response event for a read operation (respectively,

write operation) on a read/write object is of the form ret(v) (respectively, ack()).

We can combine the call and response events to yield op(arglist)(retlist). For

instance, we get read()(v) and write(v)() in our running example. We can partition

all operations into equivalence classes. All operations with the same name for their

call events are in the same generic operation. OP

i

denotes a generic operation

and op

i

and op

j

i

denote instantiations of OP

i

(i.e., non-generic operations).

The notion of sequential speci�cation implicitly assumes some initialization of

the object, i.e., read()(3) is legal for a read/write object that has 3 as its initial

value. We assume the ability to explicitly initialize an object O using any sequence

of operations � that is legal for O. Formally, object O

�

is a �-initialized version

of O if it has the same set of operations as O and � is legal for O

�

if and only if � ��

is legal for O. The assumption of arbitrary explicit initialization is not unreasonable

since initialization normally occurs at the beginning of program executions.

We now de�ne two basic algebraic properties of operations that we will use.

These de�nitions come from [Wei93]. Let � and � be operation sequences. �

looks like � if for every operation sequence , � is legal only if � is legal. If

� looks like �, then the user of the abstract data type will never see the result of

an operation that allows the user to distinguish � from � after � is executed. If

� looks like � and � looks like �, then � and � are equivalent. This means that

future operations cannot distinguish between � and �.

So far in this subsection, our de�nitions were stated in terms of sequential

operations on a single object. However, we are studying implementations of multiple

shared objects in concurrent systems. Thus we need to enhance our notation. If

74

e is a call event, response event, or whole operation, then e[O; p] denotes that e is

performed by process p on object O. If � is a sequence of operations, then �[O; p]

denotes that � is performed by the process p on the object O; each entry e of �[O; p]

is regarded as e[O; p]. A sequence � of operations for a set of objects is legal if, for

each object O, the restriction of � to operations of O, denoted � jO, is legal for O's

abstract data type.

7.2.2 System Model

Our system model is the same as the system model in [AW94].

A memory consistency system (mcs) is a set of processes P and a set of

clocks C, one for each p in P . Our assumed system consists of a collection of

nodes connected by a network. An application program, a real-time clock, and a

memory-consistency system (mcs) process are running on each node. The appli-

cation program asks the mcs process at its node to perform operations on shared

objects, and the mcs process returns the results of performing those operations to

the application program, by possibly communicating with the other mcs processes

in the system with message passing.

An mcs process can read the real-time clock residing at its node. A clock is a

monotonically increasing function from real time to clock time (both sets are the

set of real numbers). A process cannot modify the real-time clock. Processes can

only obtain information about time from their clocks.

The following events can occur at the mcs process on node p. We refer later to

the mcs process on node p as process p.

� A call event occurs when the application program on node p accesses a

shared object.

� A response event occurs when the mcs process on node p gives a response

from a shared object to node p's application program.

� Message receive events are of the form receive(p;m; q) for all messages m

and all nodes q. A message receive event occurs when the mcs process on

node p receives message m from the mcs process on node q.

75

� Message send events are of the form send(p;m; q) for all messages m and

all nodes q. A message send event happens when the mcs process on node p

sends message m to the mcs process on node q.

� Timer set events are of the form timerset(p; T) for all clock times T . This

means that p sets a timer to go o� when its clock reads T .

� Timer events are of the form timer(p; T) for all clock times T . This means

that a timer that was set for time T on p's clock goes o�.

Call, message receive, and timer events are interrupt events.

Anmcs process (or just process) is an automaton with a set of states, including

an initial state, and a transition function. Each interrupt event causes the transition

function to be applied. The transition function is a function from states, clock

times, and interrupt events to states, sets of response events, sets of message send

events, and sets of timer set events (for future clock times). This means that the

transition function takes as input the current state, clock time, and interrupt event,

and produces a new state, a set of response events for the application process, a set

of messages to be sent, and a set of timers to be set for the future.

A step of p is a tuple (s; T; i; s

0

; R;M;S), where s and s

0

are states (s is the

current state, and s

0

is the new state), T is a clock time, i is an interrupt event, R

is a set of response events, M is a set of message send events, S is a set of timer

set events, and s

0

; R;M; and S are the results of p's transition function acting on

s; T; and i.

A history of a process p with clock C is a countable sequence of steps such that

� Steps are ordered by T , their time components, in increasing order.

� The old state in the �rst step is p's initial state.

� The old state of each subsequent step is the new state of the previous step.

� For the subsequence of steps with time component T = t, all non-timer events

are ordered before any timer event and there is at most one timer event.

76

An execution of an mcs is a set of histories, one for each process p in P

with clock C

p

in C which satis�es the following two conditions. First, for all pairs

of processes p and q, every message sent from p to q is received by q and every

message received by q from p was actually sent by p (reliable message transmission

and no duplicated messages). We use this one-to-one correspondence to de�ne the

delay of any message in an execution to be the di�erence between the real time of

receipt and the real time of sending. Second, a timer is received by p at clock time

T if and only if p has previously set a timer for T .

An execution � is admissible if the following are true:

� For every p and q, every message in � from p to q has delay in the range

[d� u; d], for �xed nonnegative integers d and u, u � d.

� For every p, at most one call at p is pending (lacks a matching response) at

any given time.

7.2.3 Correctness Conditions

Our de�nitions are identical to the de�nitions in [AW94] and [AF92].

Given an execution �, let ops(�) be the sequence of call and response events

appearing in � in real-time order. We need to specify a tie-breaking mechanism

for ordering events which occur at the same real time t. In this ordering, the

�rst group of events is formed by the response events which happen at time t and

have their matching call events happening before time t, ordered by their process

identi�ers. The second group of events in the ordering is formed by the call events

which happen at time t and have their matching response events happening at time

t, ordered by their process identi�ers with a call event immediately preceding its

matching response event. The third group of events in the ordering is formed by

the call events which happen at time t and have their matching response events

happening after time t, ordered by their process identi�ers.

We now de�ne the three correctness conditions we study: sequential consistency,

linearizability, and hybrid consistency. These de�nitions of these conditions all

77

