
imply that every call eventually has a matching response and that call events and

response events alternate at a given process (a process never has more than one

pending call). If s is a sequence of operations and p is a process, then we denote

the restriction of s to operations of process p by sjp.

Sequential consistency ensures that all processes agree on some ordering of the

execution at the granularity of entire operations. In this ordering, the operations

for each process appear in the order in which they were executed at that process.

De�nition 1 An execution � is sequentially consistent if there exists a legal

sequence � of operations such that � is a permutation of ops(�) and ops(�)jp = � jp

for each process p.

Like sequential consistency, linearizability ensures that all processes agree on

some ordering of the execution (at the granularity of entire operations) that pre-

serves the operation sequences of the processes. In addition, the ordering must

preserve the actual timings of operations.

De�nition 2 An execution � is linearizable if there exists a legal sequence � of

operations such that � is a permutation of ops(�), ops(�)jp = � jp for each process p,

and op

1

precedes op

2

in � if the response for op

1

precedes the call for op

2

in ops(�).

Hybrid consistency tries to give us the best of two worlds: strong consistency (in

which operations appear to execute everywhere in some �xed order { i.e., sequential

consistency or linearizability) and weak consistency (in which operations appear to

execute in di�erent orders at di�erent processes, admitting fast implementations).

Each operation has a strong version and a weak version. We want all processes to

perceive

1. the same order of execution for all strong operations.

2. the same relative order of execution for each pair of operations executed by

the same process, where at least one operation in the pair is strong

78

De�nition 3 An execution � is hybrid consistent if there exists a serialization

� of the strong operations of � such that for each process p, there exists a legal

sequence �

p

of operations such that the following are true:

� �

p

is a permutation of ops(�).

� if op

1

and op

2

are executed by the same process, op

1

precedes op

2

in �, and at

least one of op

1

and op

2

is a strong operation, then op

1

precedes op

2

in �

p

.

� if op

1

precedes op

2

in � and both are strong, op

1

precedes op

2

in �

p

.

� �

p

jp = �jp.

We now give some examples of hybrid consistent, sequentially consistent, and

linearizable executions. We assume that the initial values of X and Y are 0 in all

examples.

1. A Hybrid Consistent Execution �

1

. Let ops(�

1

)jp

1

= Wwrite(Y; 1) �

Wread(X; 0), and let ops(�

1

)jp

2

= Wwrite(X; 1) � Wread(Y; 0). All oper-

ations in �

1

are weak. �

1

is hybrid consistent because we can �nd a se-

rialization of the strong operations of �

1

(an empty sequence since there

are no strong operations) and legal operation sequences �

1

and �

2

satisfy-

ing the requirements of De�nition 3. Let �

1

= Wread(Y; 0) �Wwrite(Y; 1) �

Wread(X; 0) � Wwrite(X; 1), and let �

2

= Wread(X; 0) � Wwrite(X; 1) �

Wread(Y; 0) � Wwrite(Y; 1). If all operations in �

1

were strong instead of

weak, �

1

would not be sequentially consistent, and thus would not be lineariz-

able, because p

1

and p

2

do not see the same ordering of the write operations.

To p

1

, the write of Y appears to occur before the write of X. To p

2

, the write

of X appears to occur before the write of Y .

2. A Sequentially Consistent Execution �

2

. Let ops(�

2

)jp

1

= write(X; 5),

ops(�

2

)jp

2

= read(X; 5), and ops(�

2

)jp

3

= read(X; 0). Also, p

1

's operation

precedes p

2

's operation in ops(�

2

), and p

2

's operation precedes p

3

's operation

in ops(�

2

). �

2

is sequentially consistent because we can legally serialize the

operations as follows: read(X; 0)�write(X; 5)�read(X; 5). �

2

is not linearizable

79

because p

3

's operation must precede the others for legality, but p

3

's operation

follows the others in ops(�

2

).

3. A Linearizable Execution �

3

. Let ops(�

3

)jp

1

= write(X; 5), ops(�

3

)jp

2

=

read(X; 5), and ops(�

3

)jp

3

= read(X; 0). Also, p

2

's operation starts before

p

1

's operation �nishes, and p

3

's operation starts before p

2

's operation �nishes

and before p

1

's operation �nishes. �

3

is linearizable because we can legally

linearize the operations as follows: read(X; 0) � write(X; 5) � read(X; 5).

An mcs is a sequentially consistent (respectively, linearizable or hybrid consis-

tent) implementation of a set of objects if any admissible execution of the mcs is

sequentially consistent (respectively, linearizable or hybrid consistent).

We measure the e�ciency of an implementation by the worst-case response time

for any operation on any object in the set. Let O be an object, and OP be a generic

operation. jOP (O)j is the maximum time taken by an op operation on O in any

admissible execution. jOP j, the worst-case time for the generic operation OP to be

completed, is the maximum of jOP (O)j over all objects implemented by the mcs.

In our lower bound proofs, we make the argument lists and return lists for

operations explicit only when absolutely necessary.

80

Chapter 8

Strong Guarantees in a System

with Perfectly Synchronized

Clocks

In this chapter we assume that all processes have perfectly synchronized (perfect)

clocks and a constant, known message delay (these two concepts are equivalent

1

).

We model perfect clocks by letting the clock functions C

p

(t) = t for all processes p

and real times t. We model constant message delay by letting the message uncer-

tainty u = 0. The mcs processes know the value of the message delay d.

In this chapter we give lower and upper bounds on the costs of providing sequen-

tially consistent and linearizable implementations of virtual shared objects. These

lower bounds automatically hold under weaker, more realistic assumptions about

process synchrony. We prove our lower bounds on the costs of operations in sequen-

tially consistent implementations, getting lower bounds on the costs of operations

in linearizable implementations for free because sequential consistency is weaker.

We exhibit four algebraic properties of operations causing individual operations or

1

If clocks are not perfectly synchronized, but run at the same rate as real time, and the message

delay is constant and known, the the clocks can easily be synchronized. On the other hand, if

clocks are perfectly synchronized and there is a known upper bound of d on the message delay,

then we can simulate constant message delay by timestamping each message sent and having the

receivers delay processing of messages until time d after they were sent.

groups of operations satisfying one of those properties to have a worst-case response

time of
(d). We demonstrate linearizable implementations of classes of abstract

data types in which the worst-case response time for one operation or a group

of operations is optimized (the worst-case response time is 0), provided that the

operation or group satis�es one of three algebraic properties. If these two lists of

properties \cancelled each other out", then we could say that sequential consistency

and linearizability are equally costly. Unfortunately, our two lists of properties do

not form a predicate and its negation. However, if we are able to optimize an op-

eration or group of operations known to be invoked most frequently, we can say

that sequential consistency and linearizability are equally costly for these classes of

abstract data types. In addition, if all operations of certain classes of abstract data

types are known to be invoked with approximately the same frequency, we can say

that sequential consistency and linearizability are equally costly for these classes of

abstract data types. This is true because there exist linearizable implementations of

the abstract data types with the total worst-case completion time of all operations

matching the lower bound on the worst-case completion time of all operations in

any sequentially consistent implementation of the types.

Section 8.1 contains our lower bounds on the costs of implementing single oper-

ations, pairs of operations, and trios of operations from abstract data types. Sec-

tion 8.2 contains implementations of classes of abstract data types in which a single

operation is optimized. Section 8.3 contains our lower bounds on the costs of im-

plementing all operations from abstract data types. Section 8.4 describes abstract

data types for which the bounds in Section 8.3 are tight.

8.1 Lower Bounds for Singles, Pairs, and Trios

In this section we prove lower bounds on the costs of single operations, pairs of

operations, and trios of operations in sequentially consistent implementations of

abstract data types. These bounds hold if the operations satisfy certain algebraic

properties.

We present these algebraic properties as they are needed. These algebraic prop-

erties will also be important in Chapter 10, when we consider hybrid consistency.

82

We now describe algebraic properties which will be important in proving lower

bounds on the worst-case response times for single operations and pairs of opera-

tions.

De�nition 4 [Wei93] If � and are operation sequences, then � and commute

2

if, for every operation sequence � such that � � � and � � are legal, � � � � and

� � � � are legal and equivalent.

Formally we say that two operations \do not commute" by negating De�nition 4.

If op

1

and op

2

do not commute, then there exists a sequence of operations � such

that � � op

1

and � � op

2

are legal and (at least) one of the following is true:

1. � � op

1

� op

2

is not legal

2. � � op

2

� op

1

is not legal

3. � � op

1

� op

2

does not look like � � op

2

� op

1

, which means that there exists an

operation sequence such that � � op

1

� op

2

� is legal but � � op

2

� op

1

� is not

4. � � op

2

� op

1

does not look like � � op

1

� op

2

, which means that there exists an

operation sequence such that � � op

2

� op

1

� is legal but � � op

1

� op

2

� is not

If item 1 or item 2 above is true, then we say that op

1

and op

2

immediately do

not commute

3

. This implies that OP

1

and OP

2

immediately do not commute. If

item 3 above is true, then we say that op

1

and op

2

eventually do not commute,

and also that OP

1

and OP

2

eventually do not commute. If items 1 and 2 above are

true, then we say that op

1

and op

2

are cyclically dependent, and also that OP

1

and OP

2

are cyclically dependent.

Appendix A contains examples of several abstract data types with their com-

mutativity properties. We will refer to data types from there throughout this work.

This �rst theorem gives a condition under which an individual (generic) opera-

tion of an abstract data type must be slow.

2

\commute forward" in [Wei93]

3

If op

1

and op

2

are the same instantiation of the same generic operation, then op

1

immediately

does not commute with itself, implying that OP

1

immediately does not commute with itself.

83

Theorem 8.1 Let T be an abstract data type with a generic operation OP that

immediately does not commute with itself. In any sequentially consistent imple-

mentation of objects of type T , jOP j � d.

Proof The following proof generalizes the proof in [AW94] that a dequeue opera-

tion of the queue abstract data type must take at least time d.

Let A be an object of type T . Let processes 1 and 2 access A. Suppose in

contradiction that there is a sequentially consistent implementation of A for which

jOP j < d.

Since OP immediately does not commute with itself, there exist a sequence �

of operations and an operation instance op such that � � op is legal but � � op � op is

not legal.

We consider A

�

, the �-initialized version of A

4

.

By the sequential speci�cation of A

�

, there is some admissible execution �

1

such

that ops(�

1

) is op[A

�

; 1]. There is an admissible execution �

2

such that ops(�

2

) is

op[A

�

; 2]. By assumption, the real times at the end of �

1

and �

2

are less than d.

Thus, no process in �

1

or �

2

receives any message. Since no messages are received

in �

1

and �

2

, replacing p

2

's history in �

1

with its history in �

2

results in another

admissible execution, �. By assumption, � is sequentially consistent. Thus, there

is a � which is a permutation of ops(�) and is legal for A

�

. However, all possible

permutations of ops(�) are of the form op � op, which is not legal for A

�

. We have

a contradiction.

The operations in all following corollaries are from the data types in Appendix A.

Corollary 8.1 The following are true:

4

The use of the explicit initialization assumption is necessary in this proof because we must

use serialized operation sequences of the form � � to prove a violation of sequential consistency,

and the de�nition of sequential consistency does not require that � appear as a pre�x of the

serialization of the execution. The necessity of the explicit initialization assumption is an open

question.

84

� In any sequentially consistent implementation of augmented or regular queues

(Table A.1), jDEQj � d ([AW94]).

� In any sequentially consistent implementation of augmented or regular stacks

(Table A.2), jPOP j � d ([AW94]).

� In any sequentially consistent implementation of dictionary sets (Table A.3),

jDELj � d.

� In any sequentially consistent implementation of bank account objects (Ta-

ble A.4), jWITHDRAW j � d.

For read/write objects, write(v)() immediately commutes with write(w)(), but

the two writes eventually do not commute if v 6= w. Therefore, the previous theorem

does not apply for jWRITEj. In fact, [AW94] and [MR92] present algorithms in

which writes take less than time d.

This next theorem gives a condition under which a pair of distinct (generic)

operations from an abstract data type must be slow.

Theorem 8.2 Let T be an abstract data type, and let OP

1

and OP

2

be distinct

generic operations on T which immediately do not commute. In any sequentially

consistent implementation of at least two objects of type T , jOP

1

j+ jOP

2

j � d.

Proof The following proof generalizes the proof in [AW94] that

jREADj + jWRITEj � d for read/write objects. This actually proves a theo-

rem that appeared in [LS88]. We do not need the assumption about arbitrary

initialization of objects to prove this result.

Since OP

1

and OP

2

immediately do not commute, there is a sequence of opera-

tions � and operation instances op

1

and op

2

such that � � op

1

and � � op

2

are legal,

but (without loss of generality) � � op

1

� op

2

is not legal.

Let A and B be two objects of type T , and let processes 1 and 2 use A and B.

Suppose in contradiction that there is a sequentially consistent implementation of

A and B for which jOP

1

j+ jOP

2

j < d.

85

There exists an admissible execution �

1

with ops(�

1

) equal to �[A; 1] � �[B; 2] �

op

1

[A; 1] � op

2

[B; 1]. Assume that op

1

[A; 1] starts at real time t, and op

2

[B; 1] starts

immediately after op

1

[A; 1] �nishes. Because we have assumed that the real time

after the end of �

1

is less than t+ d, no process receives a message during �

1

after

time t about op

1

[A; 1] or op

2

[B; 1].

There exists an admissible execution �

2

with ops(�

2

) equal to �[A; 1] � �[B; 2] �

op

1

[B; 2] � op

2

[A; 2]. Assume that op

1

[B; 2] starts at real time t, and op

2

[A; 2] starts

immediately after op

1

[B; 2] �nishes. Because we have assumed that the real time

after the end of �

2

is less than t+ d, no process receives a message during �

2

after

time t about op

1

[A; 2] or op

2

[B; 2].

Since no messages are received in �

1

and �

2

after time t, replacing process

2's history in �

1

with its history in �

2

results in another admissible execution, �.

Then ops(�) consists of the operations op

1

[A; 1] followed by op

2

[B; 1], and op

1

[B; 2]

followed by op

2

[A; 2], where both pairs are preceded by �[A; 1] and �[B; 2].

By assumption, � is sequentially consistent. Thus there exists a legal operation

sequence � in which

� the operations in �[A; 1] are followed by op

1

[A; 1], and op

1

[A; 1] is followed by

op

2

[B; 1]

� the operations in �[B; 2] are followed by op

1

[B; 2], and op

1

[B; 2] is followed

by op

2

[A; 2]

Since � �op

1

�op

2

is not legal, � must have op

1

[A; 1] follow op

2

[A; 2]. But that causes

op

2

[B; 1] to follow op

1

[B; 2], which is not legal.

Corollary 8.2 The following are true:

� In any sequentially consistent implementation of read/write objects, jREADj+

jWRITEj � d ([LS88, AW94]).

86

� In any sequentially consistent implementation of augmented or regular queues

(Table A.1), jENQj+ jPEEKj � d, jPEEKj+ jDEQj � d, and jENQj+

jDEQj � d.

� In any sequentially consistent implementation of augmented or regular stacks

(Table A.2), jPUSHj+ jPEEKj � d, jPEEKj+ jPOP j � d, and jPUSHj+

jPOP j � d.

� In any sequentially consistent implementation of dictionary sets (Table A.3),

jINSj+jDELj � d, jINSj+jSEARCHj � d, and jSEARCHj+jDELj � d.

� In any sequentially consistent implementation of bank account objects, (Ta-

ble A.4), jDEPOSIT j+jWITHDRAW j � d, jDEPOSIT j+jBALANCEj �

d, and jBALANCEj+ jWITHDRAW j � d.

The next theorem shows that cyclic dependences cause a pair of operations to

be slow, even slower than the previous lower bound indicates.

Theorem 8.3 Let T be an abstract data type with generic operations OP

1

and

OP

2

that are cyclically dependent. In any sequentially consistent implementation

of objects of type T , jOP

1

j+ jOP

2

j � 2d.

Proof Since OP

1

and OP

2

are cyclically dependent, they immediately do not com-

mute. Thus, jOP

1

j+ jOP

2

j � d by Theorem 8.2.

Since OP

1

and OP

2

are cyclically dependent, there is a sequence of operations

� and operation instances op

1

and op

2

such that � � op

1

and � � op

2

are legal, but

� � op

1

� op

2

and � � op

2

� op

1

are not legal.

Let A be an object of type T . Let processes 1 and 2 access A. We consider A

�

,

the �-initialized version of A.

Assume in contradiction that there exists a sequentially consistent implementa-

tion of A for which jOP

1

j + jOP

2

j < 2d. We can assume without loss of generality

that jOP

1

j � jOP

2

j.

87

By the sequential speci�cation for A

�

, there is some admissible execution �

1

such that ops(�

1

) is op

1

[A

�

; 1]. Assume that the op

1

operation starts at time 0.

Then the real time at the end of �

1

is at most jOP

1

j.

By the sequential speci�cation for A

�

, there is some admissible execution �

2

such

that ops(�

2

) is op

2

[A

�

; 2]. Assume that the op

2

operation starts at time (jOP

1

j �

jOP

2

j)=2. Then the real time after the end of �

2

is at most (jOP

1

j�jOP

2

j)=2+jOP

2

j,

which is less than d. Any message sent by process 2 would not be delivered until

at least time (jOP

1

j � jOP

2

j)=2 + d, which is more than jOP

1

j.

Since no messages are received in �

1

and �

2

before time d, replacing process 1's

history in �

2

with its history in �

1

results in another admissible execution, �. By

assumption, � is sequentially consistent. Thus, there is a permutation of ops(�)

which is legal for A

�

. However, because of cyclic dependency, neither permutation

of ops(�) is legal for A

�

. We have a contradiction.

Dequeue and enqueue are not cyclically dependent because an enqueue is always

legal after a dequeue. Read and write are not cyclically dependent because a write

is always legal after a read. Thus, we cannot strengthen the lower bound for

jDEQj+ jENQj and jREADj+ jWRITEj. In fact, [AW94] showed that the lower

bounds were tight, displaying algorithms with worst-case response times for the

pairs of operations matching the lower bounds of d.

None of the abstract data types discussed so far have any operations which have

cyclic dependences with other operations.

We now give an example of a type, TWOCYCLE, with cyclically dependent

operations. The object of the type is a two-element array. There are two operations,

R1W2 and R2W1. r1w2(v)(w) writes v to the second element of the array and

returns the value of the �rst element of the array in w. r2w1(v)(w) writes v to the

�rst element of the array and returns the value of the second element of the array in

w. R1W2 commutes with itself, and R2W1 commutes with itself. However, R1W2

and R2W1 are cyclically dependent.

We give another example of a type, TWOFIVE, with cyclically dependent op-

erations. The object of the type is a variable which holds a real number. There are

88

two operations, ADD2EV EN and ADD5DIV 5. add2even()(v) causes the object's

value to be incremented by 2 and returns the parity of the object's previous value in

v (0 for odd, 1 for even). add5div5()(v) cause the object's value to be incremented

by 5 and returns a value denoting the divisibility of the object's previous value by

5 (0 if not divisible by 5, 1 otherwise). ADD2EV EN commutes with itself, and

ADD5DIV 5 commutes with itself. However, ADD2EV EN and ADD5DIV 5 are

cyclically dependent.

Corollary 8.3 The following are true:

� In any sequentially consistent implementation of objects of type TWOCYCLE,

jR1W2j + jR2W1j � 2d.

� In any sequentially consistent implementation of objects of type TWOFIVE,

jADD2EV EN j+ jADD5DIV 5j � 2d.

We now de�ne a condition for a trio of operations which could cause either a

pair of operations or an individual operation to be slow.

A generic operation OP is noninterleavable with respect to OP

1

preceding

OP

2

if there exist operation sequence � and operation instances op, op

1

, and op

2

such that � � op and � � op

1

� op

2

are legal, but none of � � op � op

1

� op

2

, � � op

1

� op � op

2

,

and � � op

1

� op

2

� op is legal.

Theorem 8.4 Let T be an abstract data type, and let OP

1

; OP

2

; and OP

3

be generic

operations of T such that OP

3

is noninterleavable with respect to OP

1

preceding

OP

2

. Then in any sequentially consistent implementation of objects of type T ,

jOP

1

j+ jOP

2

j � d or jOP

3

j � d.

Proof Since OP

3

is noninterleavable with respect to OP

1

and OP

2

, there exists an

operation sequence � and operation instances op

1

, op

2

, and op

3

such that � �op

3

and

� �op

1

�op

2

are legal, but none of � �op

3

�op

1

�op

2

, � �op

1

�op

3

�op

2

, and � �op

1

�op

2

�op

3

is legal.

Let A be an object of type T . Let processes 1 and 2 access A. We consider A

�

,

the �-initialized version of A.

89

Assume in contradiction that there exists a sequentially consistent implementa-

tion of A for which jOP

1

j+ jOP

2

j < d and jOP

3

j < d.

By the sequential speci�cation for A

�

, there is some admissible execution �

1

such that ops(�

1

) is op

1

[A

�

; 1] � op

2

[A

�

; 1]. Assume that the op

1

operation starts

at time 0 and that the op

2

operation starts immediately after the op

1

operation

�nishes. Because the real time after the end of �

1

is less than d, no process receives

a message during �

1

.

By the sequential speci�cation for A

�

, there is some admissible execution �

2

such

that ops(�

1

) is op

3

[A

�

; 2]. Assume that the op

3

operation starts at time 0. Because

the real time after the end of �

2

is less than d, no process receives a message during

�

2

.

Since no messages are received in �

1

and �

2

, replacing process 1's history in �

2

with its history in �

1

results in another admissible execution, �. By assumption, �

is sequentially consistent. Thus, there is a permutation of ops(�), � , which preserves

the order of process 1's operations in � and is legal for A

�

. However, because of

noninterleavability, none of the three permutations of ops(�) which satis�es the

order of process 1's operations is legal for A

�

. We have a contradiction.

Let TWOARRAY be an abstract data type where the objects are two-element

arrays and the operations are R1W2 (as in TWOCYCLE), W1 (which writes to

the �rst element of the array on which it is invoked), and R2 (which reads and

returns the value of the second element of the array on which it is invoked). R1W2

is noninterleavable with respect to W1 preceding R2.

Corollary 8.4 In any sequentially consistent implementation of objects of type

TWOARRAY, jW1j+ jR2j � d or jR1W2j � d.

8.2 Upper Bounds Where a Single Operation or

Class of Operations is Optimized

We have shown several lower bounds on the worst-case time required for operations

in linearizable implementations of objects from general abstract data types. We

90

used various algebraic properties of the operations to prove these lower bounds.

In particular, we proved that the worst-case completion time of an operation is

at least d if it immediately does not commute with itself. Given an operation

that immediately commutes with itself, can we optimize its completion time in

a linearizable implementation of its abstract data type? In other words, can we

implement it so that it only performs local computation, for which the time is

assumed to be negligible compared to the message delay in the communication

network? We now attempt to answer this question. Optimizing an operation's

completion time is useful if the operation is used frequently in applications. We

demonstrate three algebraic properties such that an operation or group of operations

can be optimized if it satis�es one of these properties. Optimizing just a single

operation from an abstract data type has proved to be a nontrivial task. Although

we have not quite developed a tight characterization about exactly when a single

operation can be optimized, we have shown that if an operation is self-oblivious,

then that operation can be optimized. The self-oblivious property is a common

property for operations. From our lower bound results, we know that any operation

which immediately does not commute with itself cannot be optimized. We also

know that if an operation is noninterleavable with respect to a pair of operations,

then some slowdown must occur (either the individual operation or the pair). The

absence of the self-oblivious property is related to both of these properties. If an

operation immediately does not commute with itself, then it is not self-oblivious.

If an operation is not self-oblivious, then it may be noninterleavable with respect

to another operation and itself.

We now de�ne some more properties of generic operations. Let � and � be

arbitrary operation sequences. If the legality of � � aop � � implies the legality of

� �� for any instance aop of generic operation AOP and the legality of � �� implies

the legality of � �aop

�

�� for some instance aop of generic operation AOP (where op

�

denotes 0 or more copies of op), then AOP is an accessor. Informally speaking,

an accessor does not change the state of an object. MOP is a modi�er if there

exist operation sequences � and � such that � �mop �� is legal but � �� is not legal

for some instance mop of MOP . Informally speaking, a modi�er changes the state

of an object, and this change can be detected.

91

For any abstract data type, we can always implement accessor operations such

that they only perform local computation.

Theorem 8.5 Let T be an abstract data type. If T has generic accessor operations

AOP

1

; . . . ; AOP

n

, then there exists a linearizable implementation of objects of type

T where jAOP

1

j = . . . = jAOP

n

j = 0 and jMOP

1

j = . . . = jMOP

m

j = d for all

other generic operations MOP

1

; . . . ;MOP

m

.

Proof We exhibit an implementation where jAOP

1

j = . . . = jAOP

n

j = 0 and

jMOP

1

j = . . . = jMOP

m

j = d. Each process keeps a copy of all objects in its local

memory. When an aop

i

is invoked at process p, p performs the operation locally

and returns the result from the operation. When a mop

j

operation on object X is

invoked at process p, p sends a message DoMop

j

(X) with the argument list for the

operation to all processes (including itself), waits d time, and returns the result of

performing the operation. When a process receives any form of DoMop message, it

performs the operation on X in its local memory. If the message was sent by that

process, it saves the result so that the process can return it. We can break ties in

the following way. DoMop

k

is handled before DoMop

l

if k < l, and we use process

identi�ers to break any remaining ties.

We now prove that this algorithm is correct. The proof is very similar to a proof

in [AW94] for read/write objects.

Let � be an admissible execution. We systematically construct the desired � .

Each operation in � occurs at the time of its response. Let � be the sequence of

operations in � ordered by the times of occurrence, breaking ties by placing mop

operations before aop operations, aop

k

before aop

l

if k < l, mop

k

before mop

l

if k <

l, and using process identi�ers to break any remaining ties. By construction, �jp =

� jp for all p, and � preserves the relative ordering of non-overlapping operations.

We now must show that � is legal, or that for each object X, � jX is in the

sequential speci�cation of T .

Consider an accessor operation. It returns based on its local state. Its local

state reects all changes made by modi�ers occurring up to the time of the accessor

in �. Thus the accessor operation returns a legal value list in � .

92

Consider a modi�er operation that returns a value list. It returns based on its

local state at its response time in �. Its local state reects all changes made by

modi�ers occurring up to the time of the modi�er. Let the sequence of modi�ers

occurring up to the time of the modi�er in � be �. The modi�er is legal after �,

which is a subsequence of � . Any accessors interleaved with � in � will not a�ect

the legality of the modi�er. Thus the modi�er operation returns a legal value list

in � .

We now de�ne an algebraic property of modi�er operations which more �nely

classi�es them. Let � be a sequence of operations. If the legality of � implies

the legality of � �mop for any instance mop of generic modi�er operation MOP ,

then MOP is a pure modi�er. Informally speaking, pure modi�ers are modi�ers

whose return value lists do not depend on the states of the objects on which they

are invoked.

For any abstract data type, we can always implement pure modi�er operations

so that they return immediately.

Theorem 8.6 Let T be an abstract data type. If T has generic pure modi�er

operations MOP

1

; . . . ;MOP

n

, then there exists a linearizable implementation of

objects of type T where jMOP

1

j = . . . = jMOP

n

j = 0 and jOP

1

j = . . . = jOP

m

j = d

for all other generic operations OP

1

; . . . ; OP

m

.

Proof We exhibit an implementation where jMOP

1

j = . . . = jMOP

n

j = 0 and

all other operations (OP

1

; . . . ; OP

m

) take time d. Each process keeps a copy of

all objects in its local memory. When a mop

i

is invoked at process p, p sends

a message DoMop

i

(X) with the argument list for the operation to all processes

(including itself) and returns immediately. When a process receives any form of

DoMop message, it performs the operation on X in its local memory. When an

op

j

on object X is invoked at process p, p sends a message DoOp

j

(X) with the

argument list for the operation to all processes (including itself), waits d time, and

returns the result of performing the operation. When a process receives any form

of Op message, it performs the operation on X in its local memory. If the message

was sent by that process, it saves the result so that the process can return it. We

93

can break ties in the following way. DoMop messages are handled before DoOp

messages, DoMop

k

is handled before DoMop

l

if k < l, DoOp

k

is handled before

DoOp

l

if k < l, and we use process identi�ers to break any remaining ties.

We now prove that this algorithm is correct. The proof is very similar to a proof

in [AW94] for read/write objects.

Let � be an admissible execution. We systematically construct the desired � .

Each operation in � occurs time d after the time of its call. Let � be the sequence

of operations in � ordered by the times of occurrence, breaking ties by placing mop

operations before op operations, mop

k

before mop

l

if k < l, op

k

before op

l

if k < l,

and using process identi�ers to break any remaining ties. By construction, �jp = � jp

for all p, and � preserves the relative ordering of non-overlapping operations.

We now must show that � is legal, or that for each object X, � jX is in the

sequential speci�cation of T .

All mop operations are legal because they are pure modi�ers.

Consider an op

k

that returns a value list. It returns based on its local state

at its response time in �. Its local state reects all changes made by operations

occurring up to the time of the op

k

in �. Thus the op

k

returns a legal value list in

� .

We have just shown how we can optimize pure accessors and pure modi�ers. A

natural question to ask now is the following: Can we optimize a self-commuting

operation which both accesses and modi�es the states of the objects on which it is

invoked?

We must be very careful because two fast operation instances will not know

about each other if they are executed less than time d apart. Given a generic

operation FOP , in order to optimize jFOP j, it is su�cient for FOP to be self-

oblivious. Intuitively, this means that a fop operation instance will not indirectly

a�ect another fop operation instance. We now give a formal de�nition.

De�nition 5 Let �

1

; �

2

; . . . be sequences of operations. FOP is self-oblivious if

whenever �

1

� fop

1

, �

1

� �

2

� fop

2

, . . ., �

1

� �

2

� . . . � �

n

� fop

n

, . . . are legal, there

94

exists an instantiation of return values for the operations in �

i

for each i � 1,

creating new sequences of operations �

0

i

for each i � 1, such that �

0

1

�fop

1

��

0

2

�fop

2

� . . . � �

0

n

� fop

n

. . . is legal.

We can observe that an operation which immediately does not commute with itself

is not self-oblivious because the �'s can be empty sequences.

Given an abstract data type with a self-oblivious operation, can we optimize

the worst-case response time for that operation in a linearizable implementation of

the abstract data type? We now answer that question in the a�rmative.

Theorem 8.7 Let T be an abstract data type with a self-oblivious generic operation

SELFOP . There exists a linearizable implementation of objects of type T where

jSELFOP j = 0 and jOP j = 2d for all other generic operations OP .

Proof We instantiate the algorithm in Figures 8.1 and 8.2 to yield our implemen-

tation of objects of type T . We note that each assignment statement is executed

locally.

5

Each process keeps both an actual copy and a scratch copy of each object.

Each process also maintains an ordered set of message slots, where each slot is

indexed by a time. When a selfop operation is invoked, the invoking process sends

a message about the operation to all other processes, determines the return value

list (by possibly updating its scratch copy of the object based on messages it has

received), and returns. When an instance of another generic operation is invoked,

the invoking process sends a message about the operation to all other processes. If

a message about a self-oblivious operation is received at time t, then it is placed

in slot t� d. If any other message is received at time t, then it is placed in slot t.

If a received message is not about a selfop operation, then a timer for d later is

set. When a timer goes o�, all messages in slots indexed by times up to d before

the current time are handled, updating actual copies of objects as necessary. At

this time, if the process has a pending operation for which its message has been

handled, the process completes its pending operation.

We must now show that the implementation guarantees linearizable executions.

Let � be an admissible execution. To form � , we place all operations in order

5

In all subsequent descriptions of algorithms, assignment statements are also executed locally.

95

according to their message slots, and according to their positions in the message

slots if their message slots contain multiple messages.

In � , the relative ordering of nonoverlapping operations is preserved because of

the constant message delay d.

We must now show that � is legal. Choose an object X and consider � jX =

op

1

op

2

. . .. Consider op

i

. If op

i

is a selfop operation, then op

i

's return value is based

on the sequence of operations that have been executed on scratch

X

at op

i

's process

by the time op

i

was invoked in �. This sequence is a subsequence of � . Since op

i

is

self-oblivious, op

i

's return value is legal in � . If op

i

is not a selfop operation, then

its return value is based on the sequence of operations that have executed at op

i

's

process in � by the time op

i

returned in �. This sequence is a pre�x of � . Thus, op

i

is legal in � .

What kinds of operations are self-oblivious? Any accessor operation is self-

oblivious. Any pure modi�er operation is self-oblivious because it is always legal

after a legal sequence of operations. However, determining whether an arbitrary

operation is self-oblivious requires looking at the semantics for all operations of

its abstract data type. An operation that immediately commutes with itself is

self-oblivious if all other operations of its abstract data type do not perform con-

ditional updates (whether and how to perform updates are based on object state

information).

Let us give some speci�c examples of self-oblivious operations. For read/write

objects, reads and writes are self-oblivious. For queues and stacks, enqueues and

pushes are self-oblivious. For TWOARRAY objects, R1W2 and R2W1 are self-

oblivious.

In our implementation optimizing a self-oblivious operation, all non-optimized

operations have a worst-case response time of 2d. Given an abstract data type with

such an operation to be optimized, how slow must the other operations be? Since

a self-commuting operation may have cyclic dependences with other operations,

by the result of Theorem 8.3, these other operations must have a worst-case time

96

complexity which is at least 2d. If this self-commuting operation immediately does

not commute with some other operation, then the other operation must have a

worst-case time complexity which is at least d.

8.3 Lower Bounds for All Operations of a Type

In Section 8.1, we determined lower bounds for single operations and pairs of op-

erations from abstract data types. We use the results from that section and the

structure of the commutativity graphs to deduce lower bounds on the worst-case

time complexity for all operations of abstract data types in sequentially consistent

implementations.

An alternative way to represent the commutativity properties of an abstract

data type T is to use a commutativity graph CG(T), where the nodes are the

generic operations. There exists an edge between two nodes if their corresponding

operations immediately do not commute. There exists a loop at a node if the cor-

responding operation immediately does not commute with itself. We let NSC(T)

be the subset of nodes in CG(T) such that each node's corresponding operation

immediately does not commute with itself. We let RCG(T) (the reduced commu-

tativity graph for T) be the subgraph of CG(T) formed by deleting all nodes in

NSC(T) and their incident edges. We let Maxdom(RCG(T)) be a subgraph of

RCG(T) formed by a maximum independent edge dominating set of RCG(T).

6

We now give a lower bound on the time required for all operations of an abstract

data type with a clique in its commutativity graph.

Theorem 8.8 Let T be an abstract data type with operations OP

1

; OP

2

; . . . ; OP

n

such that for all i 2 f1; . . . ; ng, OP

i

immediately does not commute with OP

j

if

i 6= j. In any sequentially consistent implementation of T ,

P

n

i=1

jOP

i

j � sd+ (n�

s)d=2, where s is the number of operations which immediately do not commute with

themselves.

6

A maximum independent edge dominating set of a graph is a largest subset of edges of the

graph such that distinct edges in the subset do not have nodes in common and all other edges in

the graph have a node in common with one of the edges in the set.

97

Proof Let OP

i

1

; . . . ; OP

i

s

be the operations which immediately do not commute

with themselves. By Theorem 8.1, jOP

i

k

j � d for all k in f1; . . . ; sg. Thus,

P

s

k=1

jOP

i

k

j � sd . Let OP

j

1

; . . . ; OP

j

n�s

be the remaining operations. We can

assume without loss of generality that t = n� s > 2 because Theorem 8.2 handles

the t = 2 case. From the result of Theorem 8.2, we get a system of t(t � 1)=2

equations of the form jOP

j

a

j + jOP

j

b

j � d, where a 6= b. We want to minimize

P

t

k=1

jOP

j

k

j given the above constraints and the constraints jOP

j

k

j � 0 for all

k 2 f1; . . . ; tg. Set jOP

j

a

j+ jOP

j

b

j = d. Without loss of generality we consider

� jOP

j

1

j+ jOP

j

2

j = d

� jOP

j

1

j+ jOP

j

3

j = d

� jOP

j

2

j+ jOP

j

3

j = d

We can subtract the third equation from the second equation to yield the equation

jOP

j

1

j � jOP

j

2

j = 0. Adding the new equation to the �rst yields 2jOP

j

1

j = d. We

now get that jOP

j

1

j = d=2. It easily follows that jOP

j

k

j = d=2 for all k 2 f1; . . . ; tg.

Thus,

P

t

k=1

jOP

j

k

j � (n� s)d=2 . Adding these two inequalities yields the desired

result.

Corollary 8.5 The following are true:

� In any sequentially consistent implementation of reference-count sets, jINSj+

jUP j+ jFINDj � 3d=2.

� In any sequentially consistent implementation of a reference-count set with a

delete operation, jDELj + jINSj+ jUP j+ jFINDj � d+ 3d=2 = 5d=2.

� In any sequentially consistent implementation of a bounded double-ended peek

queue (where the peek operation returns the contents at each end of the queue),

jBACKDEQj+jFRONTDEQj+jBACKENQj+ jFRONTENQj+jPEEKj

� 2d + 3d=2 = 7d=2.

The previous theorem gave lower bounds on the costs of implementing abstract

data types with cliques in their commutativity graphs. This next theorem gives

98

lower bounds on the costs of implementing abstract data types with more general

commutativity graphs.

Theorem 8.9 Let T be an abstract data type with operations OP

1

; OP

2

; . . . ; OP

n

and commutativity graph CG(T). In any sequentially consistent implementation of

T ,

P

n

i=1

jOP

i

j � (jNSC(T)j+ jMaxdom(RCG(T))j)d.

Proof If OP

i

immediately does not commute with itself, then jOP

i

j � d by The-

orem 8.1. Thus,

P

OP

i

2NSC(T)

jOP

i

j � jNSC(T)jd. Let (OP

i

; OP

j

) be an edge in

Maxdom(RCG(T)). By Theorem 8.2, jOP

i

j+ jOP

j

j � d. By adding together these

inequalities, we obtain the desired result.

8.4 Types Having a Tight Lower Bound for All

Operations

We now exhibit some abstract data types for which there are implementations in

which the total time for all operations matches the lower bounds proved in the

previous subsection. Minimizing the total time required for all operations may help

when the frequencies of invoking each operation are approximately equal.

A pure modify-read (PMR) object is a variable X that can be read or modi�ed

by a pure modi�er operation. This is a generalization of the pseudo read-modify-

write (PRMW) object [AG91] (a variable that can be read, written, or modi�ed

by a pure modi�er operation that is a commutative arithmetic operation) because

the pure modi�er operation may be such that it eventually does not commute with

itself.

We now show that there exists an implementation of PMR objects with the

total worst-case response time for all operations matching the lower bound on the

total worst-case response time for all operations.

Theorem 8.10 For any set of PMR objects with operations READ and

MOP

1

; . . . ;MOP

n

(pure modi�er operations), there exists a linearizable implemen-

tation of the set with jREADj = d and jMOP

1

j = . . . = jMOP

n

j = 0.

99

Proof Since all non-read operations are pure modi�ers, we can instantiate the

implementation described in Theorem 8.6 to yield an implementation achieving the

desired time bounds.

Corollary 8.6 There exists a linearizable implementation of a set of Increment-

Half objects (Table A.6), where jREADj = d, jINCj = 0, and jHALF j = 0.

We now show why the upper bound for all operations matches the lower bound

for all operations in linearizable implementations of PMR objects. By Theorem 8.2,

jREADj + jMOP

i

j � d for each i in f1; . . . ; ng. Thus, jREADj+ jMOP

1

j+ . . . +

jMOP

n

j � d, matching the upper bound from Theorem 8.10. All pairs of distinct

non-read operations may be such that they eventually do not commute, but they

immediately do commute; thus the lower bound from Theorem 8.2 does not apply

for them.

PMR objects have sparse commutativity graphs. All nodes have degree 1, with

the exception of the READ node. Can we optimize the total worst-case time com-

plexity for abstract data types with dense commutativity graphs? We give a speci�c

data type for which the answer is a�rmative.

The reference-count set abstract data type (Table A.5) has a complete commu-

tativity graph, which has maximum density. Corollary 8.5 gave a lower bound of

3d=2 on the total time complexity for sequentially consistent implementations of

reference-count sets. Can we get a matching upper bound? We now answer this

question in the a�rmative.

Theorem 8.11 There exists a linearizable implementation of reference-count sets

in which jINSj = d=2, jUP j = d=2, and jFINDj = d=2.

Proof We now describe an algorithm which achieves the above bounds. Each

process keeps a copy of every set in its local memory. Figures 8.3 and 8.4 contain

a description of the algorithm. When a process invokes an operation, it sends a

message about the operation if it is a modi�er, and it waits d=2 time before returning

based on its local state. If a process receives several messages at the same time, it

100

handles insert messages before update messages, breaking any other ties by using

process identi�ers. When a process handles a message, it updates its local state

accordingly.

We must now show that this algorithm produces linearizable executions.

Let � be an admissible execution. We show how to produce � . We serialize

normal updates (updates not returning ?) and inserts to occur d=2 after their

response times, and �nds and updates returning ? (abnormal) to occur at their

response times, breaking ties by ordering inserts before updates before �nds and

using process identi�ers to break the remaining ties. By construction, � jp = �jp for

all processes p, and � preserves the relative order of non-overlapping operations.

We now show that � is legal. We have the following 6 cases to check.

1. An abnormal update cannot be placed after a normal update for the same

object. Suppose in contradiction that an abnormal update is placed after

a normal update for the same object. Let t

1

be the response time in � for

the abnormal update, and let t

2

be the response time in � for the latest

such normal update placed before the abnormal update. By the de�nition

of � , the normal update's serialization time is t

2

+ d=2, and the abnormal

update's serialization time is t

1

. Since the abnormal update is placed later,

t

1

� t

2

+ d=2. However, t

2

= t

call

+ d=2, where t

call

is the time of the call for

the normal update. Thus t

1

� t

call

+ d, which means that the normal update

should have happened at the process which invoked the abnormal update. We

have a contradiction.

2. An abnormal update cannot be placed after an insert for the same object.

The argument is similar to the argument for the previous case.

3. An abnormal �nd cannot be placed after an insert for the same object. The

argument is similar to the argument for Case 1.

4. A normal �nd cannot be placed before the �rst insert for the same object.

Suppose in contradiction that a normal �nd is placed before the �rst insert

for the same object. Let t

1

be the response time for the �rst insert. Let t

2

be

the response time for the �nd. By the de�nition of � , the insert's serialization

101

time is t

1

+ d=2, and the �nd's serialization time is t

2

. Since the �rst insert is

placed later, t

2

< t

1

+ d=2 = (t

call

+ d=2) + d=2 = t

call

+ d. Thus the process

that invoked the �nd could not have known that an insert was performed,

and the �nd must have been abnormal. We have a contradiction.

5. A normal update cannot be placed before the �rst insert for the same object.

Suppose in contradiction that a normal update is placed before the �rst insert

for the same object. Let t

1

be the response time in � for the insert, and let

t

2

be the response time in � for the update. By the de�nition of � , the

insert's serialization time is t

1

+ d=2, and the update's serialization time is

t

2

+ d=2. Since the update is placed before the insert, t

2

+ d=2 < t

1

+ d=2 =

(t

call

+ d=2) + d=2 = t

call

+ d, where t

call

is the time of the call for the insert.

Thus t

2

< t

call

+ d=2 < t

call

+ d. The process invoking the update had not

received any information about the insert. Thus the update is not normal, a

contradiction.

6. The value returned by a normal �nd must be 1 more than the number of

normal updates for the same object that are placed before the �nd. By Case

4, the value returned by a normal �nd is at least 1. Suppose that the value

returned by a normal �nd is greater than 1 plus the number of normal updates

for the same object that are placed before the �nd. Then there must be an

update for the same object that is placed after the �nd. Let t

1

be the response

time in � for the �nd, and let t

2

be the response time in � for the update placed

after the �nd. By the de�nition of � , the �nd's serialization time is t

1

, and

the update's serialization time is t

2

+ d=2. Since the update is placed after

the �nd, t

2

+ d=2 > t

1

. But t

2

+ d=2 = (t

call

+ d=2) + d=2 = t

call

+ d, where

t

call

is the time of the call for the update. Thus the process that invoked

the �nd could not have known that another update was performed and thus

could have not returned a greater value. Now suppose that the value returned

by a normal �nd is less than 1 plus the number of normal updates for the

same object that are placed before the �nd. Let t

i

be the response time in �

for the i

th

normal update placed before the �nd. By the de�nition of � , the

update's serialization time is t

i

+ d=2. Since the update is placed before the

�nd, t

i

+ d=2 � t

1

. But t

i

+ d=2 = (t

call

+ d=2) + d=2 = t

call

+ d. Thus the

102

process invoking the �nd must have known about each update. We have a

contradiction.

103

fastop(args)[X; p]:

scratch

X

:= X

Handle all unhandled messages in slots up to (current time) about operations

on X in message slot order, updating scratch

X

as necessary

Determine return value based on scratch

X

Send message handle-fastop(X; args; p) to all processes

fastopret(returnvalue)[X; p]

otherop(args)[X; p]:

send message handle-otherop(X; args; p) to all processes

receive a message:

if message is a handle-fastop message then

Insert in slot (current time - d) with tiebreaking after other types of

messages and then by process identi�cation

else handle-otherop message

Insert in slot (current time)

with a �xed tiebreaking order among di�erent types of messages and then by

process identi�cation

timerset(p; d)

end if

Figure 8.1: Algorithm for Optimizing One Operation - Code for Process p

104

when timer goes o�:

for each unhandled message in slots up to (current time - d), considered in message

slot order, do:

Use it to perform an update on the actual copy of its object

if it is not a handle-fastop message then

/* it is of the form handle-otherop(X; args; q) */

if p = q then

Determine return value based on X

otheropret(returnvalue)[X; p]

end if

end if

Mark message as handled

Figure 8.2: Algorithm for Optimizing One Operation - Code for Process p (contin-

ued)

105

Ins(x)[S; p]:

timerset(p; d=2)

broadcast(DoInsert(x; S))

when timer expires:

Ack(Ok)[S; p]

DoInsert

p

(x; S): /* executed when message is received */

if an element with key x is not already in S then

insert element (x; 1) into S

end if

Up(x)[S; p]:

timerset(p; d=2)

if an element with key x is already in S then

broadcast(DoUpdate(x; S))

end if

when timer expires:

if an element with key x is not already in S then

Ack(?)[S; p]

else

Ack(Ok)[S; p]

end if

DoUpdate

p

(x; S): /* executed when message is received */

Find element (x; v) in S.

(x; v) := (x; v + 1)

Figure 8.3: Algorithm for Reference-Count Set - Code for Process p

106

Find(x)[S; p]:

timerset(p; d=2)

when timer expires:

if an element with key x is in S then

Ret(v)[S; p], where v is the value of the element with key x

else

Ret(?)[S; p]

end if

Figure 8.4: Algorithm for Reference-Count Set - Code for Process p (continued)

107

