
Chapter 9

Strong Guarantees in a System

with Imperfect Clocks

In this chapter we assume that clocks run at the same rate as real time but are

not initially synchronized, and that message delays are variable and in the range

[d� u; d] for some d � u > 0.

We prove that many operations in linearizable implementations of virtual shared

objects must have worst-case response times that are
(u), under reasonable as-

sumptions about the amount of sharing of objects by processes. We show that for

many abstract data types, we can provide operations with worst-case time complex-

ities of 0 in sequentially consistent implementations. This shows that linearizability

can be more expensive than sequential consistency under our assumptions about

process synchrony. Section 9.1 contains our lower bounds on the costs of operations

in linearizable implementations of abstract data types, and Section 9.2 contains our

sequentially consistent implementations of classes of abstract data types.

To prove our lower bounds, we use shifting techniques which were originally

introduced in [LL84] to prove lower bounds on the precision achieved by algorithms

for clock synchronization. Shifting is used to change the timing and ordering of

events in the system without changing the local view of each process.

In an execution with a certain set of clocks, if process p's history is changed so

that the real times at which the events occur are shifted by some amount s and if

p's clock is also shifted by amount s, then the result is another execution in which

every process \sees" the same events happening at the same real times. p cannot

detect the changes in the real times at which events occur because its clock has

changed by the same amount.

The view of process p in history � of p with clock C is the concatenation of the

sequences of steps in �, arranged in real-time order. The view does not contain the

real times the steps occurred. History h of process p with clock C and history h

0

of process p with clock C

0

are equivalent if p's view is the same in both histories.

Execution � of system (P; C) and execution �

0

of system (P; C

0

) are equivalent if the

component histories for p in � and �

0

are equivalent for all p in P . This means that

the processes cannot tell the di�erence between the two executions.

Given history � of process p with clock C and real number s, a new history

�

0

= shift(�; s) is de�ned by �

0

(t) = �(t+ s) for all t. This means that all tuples

are shifted earlier in �

0

by s if s > 0 and later in �

0

by �s if s < 0. Given a clock

C and a real number s, a new clock C

0

= shift(C; s) is de�ned by C

0

(t) = C(t)+ s

for all t. This means that the clock is shifted forward by s if s > 0 and backward

by s if s < 0.

Shifting a history of process p and p's clock by the same amount produces

another history. We formally state this in the following lemma.

Lemma 9.1 [LL84] Let � be a history of process p with clock C, and let s be a

real number. Then shift(�; s) is a history of p with clock shift(C; s).

Given execution � of system (P; C) and real number s, we de�ne a new execution

�

0

= shift(�; p; s) by replacing �, p's history in �, by shift(�; s), and by retaining

the same correspondence between sends and receives of messages. (We rede�ne the

correspondence so that a pairing in � that involves p's event at time t will involve

p's event at time t � s in �

0

.) All tuples for process p are shifted by s, but no

other tuples are changed. Given a set of clocks C = fC

q

g

q2P

, and real number s,

we de�ne a new set of clocks C

0

= shift(C; p; s) by replacing C

p

with shift(C

p

; s).

Process p's clock is shifted forward by s, but no other clocks are changed.

109

Shifting the history of one process and its clock by the same amount in an

execution results in an execution which is equivalent to the original. We formally

state this in the following lemma.

Lemma 9.2 [LL84] Let � be an execution of system (P; C), p be a process, and

s be a real number. Let C

0

= shift(C; p; s) and �

0

= shift(�; p; s). Then �

0

is an

execution of (P; C

0

), and �

0

is equivalent to �.

The following lemma tells how muchmessage delays change when an execution is

shifted. Shifting an admissible execution may produce a non-admissible execution.

Lemma 9.3 [LL84] Let � be an execution of system (P; C), p be a process, and s

be a real number. Let C

0

= shift(C; p; s) and �

0

= shift(�; p; s). Suppose x is the

delay of message m from process q to process r in �. Then the delay of m in �

0

is

x if q 6= p and r 6= p, x� s if r = p, and x+ s if q = p.

9.1 Lower Bounds for Linearizability

We now give two algebraic properties of operations which cause individual opera-

tions to have a worst-case time complexity of
(u) in linearizable implementations

of objects of their abstract data types, under reasonable assumptions about the

amount of sharing of objects by processes.

This �rst theorem shows that an operation must have worst-case time complex-

ity of
(u) if an operation sequence can determine the order in which two instances

of the operation were executed.

Theorem 9.1 Let T be an abstract data type with an operation OP such that

� � op

1

� op

2

does not look like � � op

2

� op

1

for some operation sequence � and some

operation instances op

1

and op

2

. For any linearizable implementation of an object

of type T with at least two modifying processes, jOP j � u=2.

110

Proof The following proof generalizes the proofs in [AW94] that a write operation

for a read/write object and the enqueue operation for a queue must take time at

least u=2. We do not need the assumption about arbitrary initialization of objects

to prove this result.

Since � �op

1

�op

2

does not look like � �op

2

�op

1

, there exists an operation sequence

 such that � � op

1

� op

2

�
 is legal but � � op

2

� op

1

�
 is not legal.

Let A be an object of T . Let p

1

and p

2

be two processes that modify A, and let

p

3

be a process that performs operations on A. Assume in contradiction that there

is a linearizable implementation of A for which jOP j < u=2. By the speci�cation

of A, there is an admissible execution � such that

� ops(�) is �[A; p

3

] � op

1

[A; p

1

]� op

2

[A; p

2

] �
[A; p

3

]

� �[A; p

3

] starts at time 0 and ends at time t, op

1

[A; p

1

] starts at time t, op

2

[A; p

2

]

starts at time t+ u=2, and
[A; p

3

] starts at time t+ u

� the message delays in � are d from p

1

to p

2

, d� u from p

2

to p

1

, and d� u=2

for all other ordered pairs of processes

Let � = shift(shift(�; p

1

;�u=2); p

2

; u=2) (shift p

1

later by u=2 and p

2

earlier

by u=2). � is admissible because by Lemma 9.3 the delay of a message from p

1

or

to p

2

is d� u, the delay of a message from p

2

or to p

1

is d, and all other delays are

unchanged. But the linearization of ops(�) is

�[A; p

3

] � op

2

[A; p

2

] � op

1

[A; p

1

] �
[A; p

3

], which is not legal.

Note that the violation of legality in the proof of Theorem 9.1 could be immediate

because
 could be empty.

Corollary 9.1 The following are true in systems with at least two accessing pro-

cesses:

� In any linearizable implementation of augmented or regular queues (Table A.1),

jENQj � u=2 ([AW94]).

111

� In any linearizable implementation of augmented or regular stacks (Table A.2),

jPUSHj � u=2 ([AW94]).

� In any linearizable implementation of read/write objects, jWRITEj � u=2

([AW94]).

� In any linearizable implementation of a set with operations FINDKEY and

CHANGEKEY , where FINDKEY returns the key for a given element and

CHANGEKEY updates the key for a given element, jCHANGEKEY j �

u=2.

A variant of Theorem 9.1 can be obtained if the operation instances in the

statement of Theorem 9.1 are not in the same generic operation. The conclusion is

that at least one of the generic operations must take time at least u=2.

Theorem 9.2 Let T be an abstract data type with an operation OP such that

� � op

1

� op

2

does not look like � � op

2

� op

1

for some operation sequence � and some

operation instances op

1

and op

2

. For any linearizable implementation of an object

of type T with at least two modifying processes, jOP

1

j � u=2 or jOP

2

j � u=2.

This next theorem shows that an accessor operation must have worst-case time

complexity of
(u) if it can determine whether an instance of an operation was

executed.

Theorem 9.3 Let T be an abstract data type with an operation MOP and an

accessor AOP such that � � aop

before

and � �mop � aop

after

are legal but � � aop

after

and ��mop�aop

before

are not legal for some operation sequence � and some operation

instances mop, aop

before

, and aop

after

. For any linearizable implementation of an

object of type T with at least two accessing processes, jAOP j � u=2.

Proof The following proof generalizes the proof in [MR92] that jREADj � u=2

for read/write objects. Their proof improved a lower bound of u=4 in [AW94]. We

do not need the assumption about arbitrary initialization of objects to prove this

result.

112

Let A be an object of type T . Let p

1

and p

2

be two processes that access A and

let p

3

be a process that performs operations on A.

Assume in contradiction that there exists a linearizable implementation of A for

which jAOP j < u=2. Let w = d

jMOP j

u

e. By the speci�cation of A, there exists an

admissible timed execution � which is as follows:

� ops(�)jp

3

= �[A; p

3

] �mop[A; p

3

], where � starts at time 0 and ends at time t,

mop's call occurs at time t + u=2, and its response occurs at or before time

t+ u=2 + jMOP j.

� ops(�)jp

1

is a sequence of w + 1 operations aop

2i

[A; p

1

], where i ranges from

0 to w and the i

th

call occurs at time t+ iu.

� ops(�)jp

2

is a sequence of w+1 operations aop

2i+1

[A; p

2

], where i ranges from

0 to w and the i

th

call occurs at time t+ iu+ u=2.

We assume that � has the following message delays: messages from p

1

to p

2

have delay d, messages from p

2

to p

1

have delay d � u, and all others have delay

d � u=2.

By the de�nition of w, t + u=2 + jMOP j < t + u=2 + wu. Thus, mop has

completed before aop

2w+1

begins. Because of this fact, the linearizability of �, and

the accessor property of AOP , aop

2w+1

is an aop

after

. Also, since � �nishes before

aop

0

begins, aop

0

completes before time t+u=2, and mop does not begin until time

t + u=2, aop

0

is an aop

before

by the linearizability of � and the accessor property

of AOP . Thus, by the linearizability of �, there exists an index i, 0 � i � 2w,

such that aop

i

is an aop

before

and aop

i+1

is an aop

after

. This implies that the

linearization of � is � � aop

0

� . . . � aop

i

� mop � aop

i+1

� . . . aop

2w+1

. Since AOP is

an accessor and the linearization is legal, aop

1

; . . . ; aop

i�1

are of the form aop

before

,

and aop

i+1

; . . . ; aop

2w

are of the form aop

after

. We can assume that i is even so that

aop

i

is performed by p

1

. Let � = shift(shift(�; p

1

;�u=2); p

2

; u=2). � is admissible

because by Lemma 9.3, the delay of a message from p

1

is d � u, the delay of a

message from p

2

is d, and all other message delays are unchanged. In �, � precedes

all AOP operations, and the order of the AOP operations performed on A by p

1

113

and p

2

is aop

1

; aop

0

; aop

3

; aop

2

; . . . ; aop

i+1

; aop

i

; If mop is linearized before aop

i

in �, then by the accessor property of AOP , � �mop � aop

i

is legal, a contradiction.

If mop is linearized after aop

i

in �, then by the accessor property of AOP , � �aop

i+1

is legal, a contradiction.

Corollary 9.2 The following are true in systems with at least two accessing pro-

cesses:

� In any linearizable implementation of augmented queues (Table A.1),

jPEEKj � u=2.

� In any linearizable implementation of augmented stacks (Table A.2),

jPEEKj � u=2.

� In any linearizable implementation of read/write objects, jREADj � u=2

([MR92]).

� In any linearizable implementation of bank account objects (Table A.4),

jBALANCEj � u=2.

� In any linearizable implementation of dictionary sets (Table A.3),

jSEARCHj � u=2.

� In any linearizable implementation of reference-count sets (Table A.5),

jFINDj � u=2.

9.2 Upper Bounds for Sequential Consistency

[AW94] gives implementations of sequentially consistent read/write objects and

queues in systems with approximately synchronized clocks and uncertainties in

message delays. The implementations use an atomic broadcast algorithm to ensure

that all processes receive and handle messages in the same order, also preserving

the order of messages sent by each individual process.

[AW94] presents two implementations of read/write objects where jREADj = 0

and jWRITEj = h, and jREADj = h and jWRITEj = 0, respectively. They also

114

present a sequentially consistent implementation of queues where jENQj = 0 and

jDEQj = h. In their atomic broadcast algorithm, h = 2d.

[MR92] presents a linearizable implementation of read/write objects, based on a

time-slicing method, in which jREADj = �d+4u+b and jWRITEj = (1��)d+3u,

where � is a trade-o� parameter indicating the relative frequency of reads and b is

a positive constant.

We now describe conditions on an abstract data type which allow some opera-

tions to be \fast" (i.e., take time 0).

Accessor operations can be made fast.

Theorem 9.4 Let T be an abstract data type with m generic accessor operations

(AOP

i

) and n generic modi�er operations (MOP

j

). Then there exists a sequentially

consistent implementation of T with jAOP

i

j = 0 for each i in f1; . . . ;mg and

jMOP

j

j = h for each j in f1; . . . ; ng, where h is the maximum time for message

delivery by the underlying atomic broadcast algorithm.

Proof We now explain the details of the algorithm. For each accessor operation,

the invoking process just applies the operation to its local copy of the object and

returns the result. For each modi�er operation, the invoking process uses the atomic

broadcast algorithm to send a message to all processes (including itself) containing

the invoking process' identi�cation, the name of the operation, the object on which

the operation is invoked, and the argument list for the operation. The modi�er

operation does not complete until the invoking process receives the message and

handles it.

We now explain why the algorithm provides sequential consistency. Our proof

generalizes the proof in [AW94] for read/write objects. Let � be an admissible exe-

cution. We systematically build the desired � . We �rst order all modi�er operations

in the order that the atomic broadcast algorithm assigned to their messages. Now

we determine where to place the accessor operations. We start from the beginning

of �. aop

j

i

[X; p] goes immediately after the later of (1) the previous operation for

process p and (2) the modi�er that caused the latest update of p's copy of X before

115

the generation of the response for the operation. We use process identi�ers to break

any ties.

Now we prove that ops(�)jp = � jp for all processes p. Choose some p. By the

de�nition of � , the relative ordering of two accessor operations in ops(�)jp is the

same as in � jp. The properties of atomic broadcast guarantee that the relative

ordering of two modi�er operations in ops(�)jp is the same as in � jp. If accessor A

follows modi�erM in ops(�)jp, thenA followsM in � by the de�nition of � . Suppose

that accessor A precedes modi�er M in ops(�)jp. Suppose in contradiction that M

precedes A in � . Then in � there is some accessor A

0

and some modi�er M

0

such

that the following hold:

1. A

0

is A or precedes A in �

2. M

0

is M or follows M in �

3. M

0

causes the latest update to p's copy of A's object that precedes A

0

A

0

�nishes before M starts in �. Since modi�er operations are performed in � in

atomic broadcast order, A

0

does not see the update performed by M

0

, a contradic-

tion.

We must now prove that � is legal. We must check all operations, modi�ers and

accessors, for legality.

Modi�ers are performed at every process in atomic broadcast order. Thus, each

modi�er returns correctly based on all updates handled before it, ensuring that

each modi�er is legal.

Consider accessor A = aop

j

i

[X; p] in � . Let M be the modi�er (performed

by process q) in � that causes the latest update to p's copy of X preceding A's

accessor of p's copy of X. A follows M in � by the de�nition of � . We must show

that no other modi�er operation on X is placed between M and A in � . Suppose

in contradiction that an M

0

performed by process r does. The atomic broadcast

algorithm ensures that the update for M

0

follows the update for M at each process

in �.

116

Suppose that r = p. M

0

precedes A in � by the de�nition of � . The update

for M

0

follows the update for M in �. Thus A sees M

0

's update and not M 's,

contradicting the choice of M .

Suppose that r 6= p. By the de�nition of � , there is some operation in ops(�)jp

that precedes A and follows M

0

in � (otherwise A would not follow M

0

). Let O be

the �rst such operation.

Suppose O is a modi�er operation on some object Y . O's update to p's copy

of Y precedes A's access of p's copy of X. Since updates are performed in atomic

broadcast order, the update for M

0

occurs at p before the update for O, and also

before A's access, contradicting the choice of M .

Suppose that O is an accessor operation. By the de�nition of � , O is an accessor

of X, and M

0

's update to p's copy of X is the latest one preceding O's access (oth-

erwise O would not follow M

0

). Since updates are performed in atomic broadcast

order, the value from M

0

supersedes the value from M , contradicting the choice of

M .

Corollary 9.3 The following are true:

� There exists a sequentially consistent implementation of augmented queues

(Table A.1) in which jPEEKj = 0.

� There exists a sequentially consistent implementation of augmented stacks

(Table A.2) in which jPEEKj = 0.

� There exists a sequentially consistent implementation of read/write objects in

which jREADj = 0 ([AW94]).

� There exists a sequentially consistent implementation of bank account objects

(Table A.4) in which jBALANCEj = 0.

� There exists a sequentially consistent implementation of dictionary sets (Ta-

ble A.3) in which jSEARCHj = 0.

� There exists a sequentially consistent implementation of reference-count sets

(Table A.5) in which jFINDj = 0.

117

Pure modi�ers can be made fast, too.

Theorem 9.5 Let T be an abstract data type with m pure modi�er operations

(MOP

i

) and n other operations (OP

j

). Then there exists a sequentially consistent

implementation of T with jMOP

i

j = 0 for each i in f1; . . . ;mg and jOP

j

j = h

for each j in f1; . . . ; ng, where h is the maximum time for message delivery by the

underlying atomic broadcast algorithm.

Proof We now explain the details of the algorithm. For each operation, the invok-

ing process uses the atomic broadcast algorithm to send a message to all processes

(including itself) containing the invoking process' identi�cation, the name of the

operation, the name of the object on which the operation is invoked, and the ar-

gument list for the operation. MOP operations return immediately, while an OP

j

operation does not complete until its invoking process receives the message and

handles it.

We now explain why the algorithm guarantees sequential consistency. Let � be

an admissible execution. We construct � by ordering all operations in the order that

the atomic broadcast algorithm assigned to their messages. Since atomic broadcast

preserves the per-process message orders, � jp = ops(�)jp for each process p. We now

show why � is legal. All pure modi�er operations are legal in � because the return

values for pure modi�er operations do not depend on the states of the objects on

which they are invoked. Now we must show that each op

i

j

is legal. In �, op

i

j

[X; p]

returns based on the state of p's copy of object X when its message is handled.

The state of p's copy of object X re
ects all changes made at all processes before

op

j

i

's message is handled. Thus op

i

j

[X; p] returns a legal value list in � .

Corollary 9.4 The following are true:

� There exists a sequentially consistent implementation of read/write objects in

which jWRITEj = 0 ([AW94]).

� There exists a sequentially consistent implementation of queues (Table A.1)

in which jENQj = 0 ([AW94]).

118

� There exists a sequentially consistent implementation of stacks (Table A.2) in

which jPUSHj = 0 ([AW94]).

� There exists a sequentially consistent implementation of bank account objects

(Table A.4) in which jDEPOSIT j = 0.

� There exists a sequentially consistent implementation of Increment-Half ob-

jects (Table A.6) in which jINCj = jHALF j = 0.

In many abstract data types, accessor operations (respectively, pure modi�er op-

erations) satisfy the hypothesis of Theorem 9.3 (respectively, Theorem 9.1), mean-

ing that they can determine whether an instance of an operation has been invoked

(respectively, meaning that there is an accessor that can determine the order in

which operation instances were invoked); thus, they must take at least u=2 time

in linearizable implementations of their abstract data types. In contrast, they can

take time 0 in a sequentially consistent implementation. Thus, in systems with only

approximately synchronized clocks and uncertainty in the network message delay,

sequential consistency is less expensive than linearizability for a reasonably large

class of abstract data types.

119

Chapter 10

Hybrid Consistency

Attiya and Friedman [AF92] showed that hybrid consistency is a reasonable con-

sistency guarantee to provide for read/write objects. If weak operations are used

mostly, hybrid consistency is cheaper than sequential consistency or linearizability.

We want to explore the inherent costs of providing consistent implementations of

general abstract data types in order to see if hybrid consistency is always a bargain

compared to stronger consistency guarantees. We have determined that hybrid

consistency is not necessarily cheaper than stronger consistency guarantees.

The lower bound proofs for hybrid consistency that we present in Section 10.1

are analogous to the lower bound proofs for sequential consistency. In Section 10.2,

we use these lower bounds to compare the costs of hybrid consistency to the stronger

consistency guarantees of sequential consistency and linearizability.

We assume in this chapter that all processes have perfectly synchronized clocks.

10.1 Lower Bounds

10.1.1 Singles, Pairs, and Trios

This �rst theorem handles individual operations which immediately do not commute

with themselves.

Theorem 10.1 Let T be an abstract data type with a generic operation OP that

immediately does not commute with itself. In any hybrid consistent implementation

of T , jSOP j � d and jWOP j � d.

Proof First we prove that jSOP j � d. Theorem 8.1 applies here, letting all oper-

ations be strong.

Now we prove that jWOP j � d. This proof is very similar to the proof of

Theorem 8.1. Since OP immediately does not commute with itself, there exist a

sequence of operations � and an operation instance op such that � � op is legal but

� � op � op is not legal.

Let A be an object of type T . Let processes 1 and 2 access A. Suppose in contra-

diction that there is a hybrid consistent implementation of A for which jWOP j < d.

We consider A

�

, the �-initialized version of A.

By the sequential speci�cation for A

�

, there is some admissible execution �

1

such that ops(�

1

) is Wop[A

�

; 1]. There is an admissible execution �

2

such that

ops(�

2

) is Wop[A

�

; 2]. Since jWOP j < d, no messages are received in �

1

and �

2

.

Thus, replacing p

2

's history in �

1

with its history in �

2

results in another admissible

execution, �. By assumption, � is hybrid and must satisfy the conditions of De�ni-

tion 3. Consider �

1

. �

1

is either Wop[A

�

; 1] �Wop[A

�

; 2] or Wop[A

�

; 2] �Wop[A

�

; 1],

both of which violate the sequential speci�cation for A

�

, a contradiction.

Corollary 10.1 The following are true:

� In any hybrid consistent implementation of augmented or regular queues (Ta-

ble A.1), jSDEQj � d and jWDEQj � d.

� In any hybrid consistent implementation of augmented or regular stacks (Ta-

ble A.2), jSPOP j � d and jWPOP j � d.

� In any hybrid consistent implementation of dictionary sets (Table A.3),

jSDELj � d and jWDELj � d.

� In any sequentially consistent implementation of bank account objects (Ta-

ble A.4), jSWITHDRAW j � d and jWWITHDRAW j � d.

121

This next lower bound proof handles pairs of operations which immediately do

not commute.

Theorem 10.2 Let T be an abstract data type containing at least two objects, and

let OP

1

and OP

2

be distinct generic operations of T which immediately do not

commute. In any hybrid consistent implementation of T , jSOP

1

j+ jWOP

2

j � d

1

.

Proof The following proof generalizes the proofs in [AF92] that jSREADj +

jWWRITEj � d and jWREADj+ jSWRITEj � d for read/write objects.

Let A and B be two objects of type T . Let processes 1 and 2 use A and B.

Assume in contradiction that there exists some hybrid consistent implementation

of A and B for which jSOP

1

j+ jWOP

2

j < d.

Since op

1

and op

2

immediately do not commute, there is a sequence � of opera-

tions such that ��op

1

and ��op

2

are legal, but (without loss of generality) ��op

1

�op

2

is not legal.

By the sequential speci�cation for A and B, there exists an admissible execution

�

1

with ops(�

1

) equal to S�[A; 1]

2

�S�[B; 2]� Sop

1

[A; 1] �Wop

2

[B; 1]. Assume that

Sop

1

[A; 1] starts at real time t, and Wop

2

[B; 1] starts immediately after Sop

1

[A

�

; 1]

�nishes. Because we have assumed that the real time after the end of �

1

is less

than t+ d, no process receives a message during �

1

after time t about Sop

1

[A; 1] or

Wop

2

[B; 1].

By the sequential speci�cation for A and B, there exists an admissible execution

�

2

with ops(�

2

) equal to S�[A; 1] � S�[B; 2] � Sop

1

[B; 2] �Wop

2

[A; 2]. Assume that

Sop

1

[B; 2] starts at real time t, and Wop

2

[A; 2] starts immediately after Sop

1

[B; 2]

�nishes. Because we have assumed that the real time after the end of �

2

is less

than t+ d, no process receives a message during �

2

after time t about Sop

1

[B; 2] or

Wop

2

[A; 2].

1

WOP indicates OP 's weak version, and SOP indicates OP 's strong version. Wop indicates

a weak instance of OP , and Sop indicates a strong instance of OP .

2

If � is an operation sequence, then S� (respectively, W�) denotes the strong (respectively,

weak) version of �.

122

Since no messages are received in �

1

and �

2

after time t, we can produce an

admissible hybrid execution � by replacing process 2's history in �

1

with its history

in �

2

. Thus ops(�) consists of the operations Sop

1

[A; 1] followed by Wop

2

[B; 1] and

Sop

1

[B; 2] followed by Wop

2

[A; 2], where Sop

1

[A; 1] is preceded by S�[A; 1] and

Sop

1

[B; 2] is preceded by S�[B; 2].

� must satisfy the conditions of De�nition 3, the de�nition of hybrid consistency

in Section 7.2. We can assume without loss of generality that Sop

1

[A; 1] precedes

Sop

1

[B; 2] in �, the serialization of ops(�) from De�nition 3. We now consider �

2

.

Since �

2

is legal for A and B, each Wop

2

should precede the Sop

1

for the same

object. This implies that Wop

2

[A; 2] precedes Sop

1

[B; 2] in �

2

, contradicting the

order of p

2

's operations in �.

Corollary 10.2 The following are true:

� In any hybrid consistent implementation of read/write objects([AF92]),

jSREADj + jWWRITEj � d.

� In any hybrid consistent implementation of augmented queues (Table A.1),

jSENQj + jWPEEKj � d, jSPEEKj + jWDEQj � d, and jSENQj +

jWDEQj � d.

� In any hybrid consistent implementation of augmented stacks (Table A.2),

jSPUSHj + jWPEEKj � d, jSPEEKj + jWPOP j � d, and jSPUSHj +

jWPOP j � d.

� In any hybrid consistent implementation of dictionary sets (Table A.3),

jSINSj+ jWDELj � d, jSINSj+ jWSEARCHj � d, and

jSSEARCHj+ jWDELj � d.

� In any hybrid consistent implementation of bank account objects (Table A.4),

jSDEPOSIT j+jWWITHDRAW j � d, jSDEPOSIT j+jWBALANCEj �

d, and jSBALANCEj+ jWWITHDRAW j � d.

Changing all strong operations above to weak ones and vice versa also yields true

statements.

123

This next theorem handles operations which have cyclic dependences.

Theorem 10.3 Let T be an abstract data type with generic operations OP

1

and

OP

2

that are cyclically dependent. In any hybrid consistent implementation of ob-

jects of type T , the following are true:

� jSOP

1

j+ jSOP

2

j � 2d.

� jSOP

1

j+ jWOP

2

j � 2d.

� jWOP

1

j+ jSOP

2

j � 2d.

� jWOP

1

j+ jWOP

2

j � 2d.

Proof A slight variation of the proof of Theorem 8.3 (for sequential consistency)

applies here. However, we need to �nd a violation of hybrid consistency as de�ned

in De�nition 3.

We will prove the case jSOP

1

j+ jWOP

2

j � 2d. The same proof will apply for

the other cases after making OP

1

and OP

2

strong or weak as necessary.

Since OP

1

and OP

2

are cyclically dependent, they immediately do not commute.

Thus, jSOP

1

j+ jWOP

2

j � d by Theorem 10.2.

Since OP

1

and OP

2

are cyclically dependent, there is a sequence of operations

� and operation instances op

1

and op

2

such that � � op

1

and � � op

2

are legal, but

� � op

1

� op

2

and � � op

2

� op

1

are not legal.

Let A be an object of type T . Let processes 1 and 2 access A. We consider A

�

,

the �-initialized version of A.

Assume in contradiction that there exists a hybrid consistent implementation

of A for which jSOP

1

j + jWOP

2

j < 2d. Assume that jSOP

1

j � jWOP

2

j. (If

jSOP

1

j < jWOP

2

j, then essentially the same argument holds.)

By the sequential speci�cation for A

�

, there is some admissible execution �

1

such that ops(�

1

) is Sop

1

[A

�

; 1]. Assume that the Sop

1

operation starts at time 0.

Then the real time at the end of �

1

is at most jSOP

1

j.

124

By the sequential speci�cation for A

�

, there is some admissible execution �

2

such that ops(�

2

) is Wop

2

[A

�

; 2]. Assume that the Wop

2

operation starts at time

(jSOP

1

j � jWOP

2

j)=2. Then the real time after the end of �

2

is at most (jSOP

1

j �

jWOP

2

j)=2 + jWOP

2

j, which is less than d. Any message sent by process 2 would

not be delivered until at least time (jSOP

1

j � jWOP

2

j)=2 + d, which is more than

jSOP

1

j.

Since no messages are received in �

1

and �

2

before time d, replacing process 1's

history in �

2

with its history in �

1

results in another admissible execution, �. By

assumption, � is hybrid consistent and must satisfy the conditions of De�nition 3.

Consider �

1

. �

1

must be legal for A

�

and a permutation of ops(�). However,

because of cyclic dependency, neither permutation of ops(�) is legal for A

�

. We

have a contradiction.

Corollary 10.3 The following are true:

� In any hybrid consistent implementation of objects of type TWOCYCLE,

{ jSR1W2j + jSR2W1j � 2d.

{ jSR1W2j + jWR2W1j � 2d.

{ jWR1W2j + jSR2W1j � 2d.

{ jWR1W2j + jWR2W1j � 2d.

� In any hybrid consistent implementation of objects of type TWOFIVE,

{ jSADD2EV EN j+ jSADD5DIV 5j � 2d.

{ jSADD2EV EN j+ jWADD5DIV 5j � 2d.

{ jWADD2EV EN j+ jSADD5DIV 5j � 2d.

{ jWADD2EV EN j+ jWADD5DIV 5j � 2d.

This next theorem is the hybrid consistent analogue for the sequentially consis-

tent lower bound arising from the noninterleavability of a trio of operations.

125

Theorem 10.4 Let T be an abstract data type, and let OP

1

; OP

2

; and OP

3

be

operations of T such that OP

3

is noninterleavable with respect to OP

1

preceding

OP

2

. Then in any hybrid consistent implementation of objects of type T , at least

one of the following is true:

� jSOP

1

j + jSOP

2

j � d, jSOP

1

j + jWOP

2

j � d, jWOP

1

j + jSOP

2

j � d, and

jWOP

1

j+ jWOP

2

j � d, or

� jSOP

3

j � d and jWOP

3

j � d

Proof A slight variation of the proof of Theorem 8.4 (for sequential consistency)

applies here. However, we need to �nd a violation of hybrid consistency as de�ned

in De�nition 3.

Since OP

3

is noninterleavable with respect to OP

1

and OP

2

, there exists an

operation sequence � and operation instances op

1

, op

2

, and op

3

such that � �op

3

and

� �op

1

�op

2

are legal, but none of � �op

3

�op

1

�op

2

, � �op

1

�op

3

�op

2

, and � �op

1

�op

2

�op

3

is legal.

Let A be an object of type T . Let processes 1 and 2 access A. We consider A

�

,

the �-initialized version of A.

Assume in contradiction that there exists a hybrid consistent implementation

of A for which the following hold:

� At least one of jSOP

1

j + jSOP

2

j, jSOP

1

j+ jWOP

2

j, jWOP

1

j + jSOP

2

j, and

jWOP

1

j+ jWOP

2

j is less than d.

� jSOP

3

j < d or jWOP

3

j < d.

Let us prove the case when jSOP

1

j+ jWOP

2

j < d and jWOP

3

j < d. The other

cases are handled similarly.

By the sequential speci�cation for A

�

, there is some admissible execution �

1

such that ops(�

1

) is Sop

1

[A

�

; 1] � Wop

2

[A

�

; 1]. Assume that the Sop

1

operation

starts at time 0 and that the Wop

2

operation starts immediately after the Sop

1

126

operation �nishes. Because the real time after the end of �

1

is less than d, no

process receives a message during �

1

.

By the sequential speci�cation for A

�

, there is some admissible execution �

2

such that ops(�

1

) is Wop

3

[A

�

; 2]. Assume that the Wop

3

operation starts at time

0. Because the real time after the end of �

2

is less than d, no process receives a

message during �

2

.

Since no messages are received in �

1

and �

2

, replacing process 1's history in �

2

with its history in �

1

results in another admissible execution, �. By assumption,

� is hybrid consistent and must satisfy the conditions of De�nition 3. Consider

�

1

. �

1

must be legal for A

�

and a permutation of ops(�). However, because of

noninterleavability, none of the three permutations of ops(�) which satis�es the

order of process 1's operations is legal for A

�

. We have a contradiction.

Corollary 10.4 In any hybrid consistent implementation of objects of the abstract

data type described in Corollary 8.4, at least one of the following is true:

� jSW1j+ jSR2j � d, jSW1j+ jWR2j � d, jWW1j+ jSR2j � d, and jWW1j+

jWW2j � d, or

� jSR1W2j � d and jWR1W2j � d.

10.1.2 All Operations

As in the sequentially consistent case (Section 8.3), we use the lower bound results

about single operations and pairs of operations from the previous subsection and

the structure of the commutativity graphs to determine lower bounds on the worst-

case time complexity for all operations of abstract data types in hybrid consistent

implementations.

We now give lower bounds on the worst-case completion time for all operations

in hybrid consistent implementations of abstract data types with cliques in their

commutativity graphs.

127

Theorem 10.5 Let T be an abstract data type with operations OP

1

; OP

2

; . . . ; OP

n

such that for all i 2 f1; . . . ; ng, OP

i

immediately does not commute with OP

j

if

i 6= j. Suppose s of the operations immediately do not commute with themselves.

In any hybrid consistent implementation of T ,

� If n� s is odd, then

P

n

i=1

(jSOP

i

j+ jWOP

i

j) � 2sd + (n� s � 1)d .

� If n� s is even, then

P

n

i=1

(jSOP

i

j+ jWOP

i

j) � 2sd + (n� s)d .

Proof Let OP

i

1

; . . . ; OP

i

s

be the operations which immediately do not commute

with themselves. By Theorem 10.1, jSOP

i

k

j � d and jWOP

i

k

j � d for all k in

f1; . . . ; sg. Thus,

P

s

k=1

(jSOP

i

k

j+ jWOP

i

k

j) � 2sd .

Let OP

j

1

; . . . ; OP

j

n�s

be the remaining operations. By Theorem 10.2, jSOP

j

l

j+

jWOP

j

m

j � d and jWOP

j

l

j+ jSOP

j

m

j � d for all l 6= m.

Suppose that n � s is odd. We can add the speci�c inequalities jSOP

j

k

j +

jWOP

j

k+1

j � d and jWOP

j

k

j+ jSOP

j

k+1

j � d for each odd k in f1; . . . ; n� s� 2g,

rearranging terms where necessary, to obtain

P

n�s�1

k=1

(jSOP

j

k

j + jWOP

j

k

j) � (n�

s� 1)d. We can add this inequality to the one in the �rst paragraph to obtain the

desired result (jSOP

j

n�s

j and jWOP

j

n�s

j do not a�ect the outcome since they are

nonnegative).

Now suppose that n� s is even. We can add the speci�c inequalities jSOP

j

k

j+

jWOP

j

k+1

j � d and jWOP

j

k

j+ jSOP

j

k+1

j � d for each odd k in f1; . . . ; n� s� 1g,

rearranging terms where necessary, to obtain

P

n�s

k=1

(jSOP

j

k

j+ jWOP

j

k

j) � (n� s�

1)d. We can add this inequality to the one in the �rst paragraph to obtain the

desired result.

Corollary 10.5 The following are true:

� In any hybrid consistent implementation of read/write objects, jSREADj +

jWREADj + jSWRITEj+ jWWRITEj � 2d ([AF92]).

� In any hybrid consistent implementation of reference-count sets, jSINSj +

jWINSj+ jSUP j+ jWUP j+ jSFINDj+ jWFINDj � 2d.

128

� In any hybrid consistent implementation of increment/read objects, jSREADj+

jWREADj + jSINCj+ jWINCj � 2d.

� In any hybrid consistent implementation of half/read objects, jSREADj +

jWREADj + jSHALF j+ jWHALF j � 2d.

� In any hybrid consistent implementation of read/square root objects,

jSREADj + jWREADj+ jSSQRT j+ jWSQRT j � 2d.

� In any hybrid consistent implementation of a reference-count set with a delete

operation, jSDELj + jWDELj + jSINSj + jWINSj +jSUP j + jWUP j +

jSFINDj+ jWFINDj � 2d + 2d = 4d.

� In any hybrid consistent implementation of a bounded double-ended peek queue

(where the peek operation returns the contents at each end of the queue),

jSBACKDEQj+jWBACKDEQj+jSFRONTDEQj+ jWFRONTDEQj+

jSBACKENQj+ jWBACKENQj jSFRONTENQj+ jWFRONTENQj+

jSPEEKj+ jWPEEKj � 4d+ 2d = 6d.

As in the sequentially consistent case, we can give lower bounds on the costs of

hybrid consistent implementations abstract data types with more general commu-

tativity graphs.

Theorem 10.6 Let T be an abstract data type with operations OP

1

; OP

2

; . . . ; OP

n

and commutativity graph CG(T). In any hybrid consistent implementation of T ,

P

n

i=1

(jSOP

i

j+ jWOP

i

j) � 2(jNSC(T)j+ jMaxdom(RCG(T))j)d.

Proof If OP

i

immediately does not commute with itself, then jSOP

i

j � d and

jWOP

i

j � d by Theorem 10.1. Thus,

P

OP

i

2NSC(T)

jOP

i

j � 2jNSC(T)jd. Let

(OP

i

; OP

j

) be an edge inMaxdom(RCG(T)). By Theorem 10.2, jSOP

i

j+jWOP

j

j �

d and jWOP

i

j+ jSOP

j

j � d. By adding together these inequalities and rearranging

terms, we obtain the desired result.

129

10.2 Comparison with Sequential Consistency

and Linearizability

We have displayed a number of impossibility results for hybrid consistent imple-

mentations of abstract data types. Some of these impossibility results hold for

individual weak operations, meaning that they must be slow. Since hybrid consis-

tency is weaker than sequential consistency and linearizability, intuition tells us that

there may be some abstract data types in which hybrid consistent implementations

of weak operations are faster than their sequentially consistent (or linearizable)

counterparts. [AF92] describes a hybrid consistent implementation of read/write

objects in which weak reads and weak writes are \fast" (take time 0) and strong

reads and strong writes take time O(d). Is it always possible to develop hybrid

consistent implementations with similar time bounds (ideally, weak operations that

are faster than strong operations)? We show below that it is not always possible

to develop hybrid consistent implementations in which weak operations are faster

than strong operations.

Why could weak operations for read/write objects be optimized? One plausible

explanation is that read/write objects have simple semantics. It may be possible

to optimize weak operations for other abstract data types with simple semantics.

Let us investigate the possibility of optimizing weak operations for one such class

of abstract data types, the PMR objects de�ned in Section 8.4.

For concreteness, we will consider read/add/multiply objects. read()(v)[X; p] is

legal if the value stored in X is v. The e�ect of add(v)()[X; p] is to add v to the

value stored in X. The e�ect of mul(v)()[X; p] is to multiply v to the value stored

in X.

Let X be one such object, initialized to 1. Suppose there is a hybrid consistent

implementation of X for which jWADDj = jWMULj = jWREADj = 0. Consider

the following admissible execution, �, as follows:

� ops(�)jp

1

isWadd(5)()[X; p

1

]�Wread()(6)[X; p

1

], where the add starts at time

0 and the read completes before time d.

130

� ops(�)jp

2

is Wmul(3)()[X; p

2

] �Wread()(3)[X; p

2

], where the multiply starts

at time 0 and the read completes before time d.

This execution is not hybrid. The reason why p

1

's read must return 6 is because

the execution is indistinguishable to p

1

from an execution in which p

1

is running

alone. p

2

's read must return 3 for a similar reason.

In any total ordering of the operations of � satisfying the de�nition of hybrid

consistency, at most one of the reads will be legal.

We now use the insight gained from this example to yield a new lower bound

on the worst-case time complexity for weak operations in hybrid consistent imple-

mentations of abstract data types.

A generic operation OP is doubly noninterleavable with respect to OP

1

and OP

2

if there exist operation sequence � and operation instances op

1

; op

2

; op

1

;

and op

2

such that � � op

1

� op

1

and � � op

2

� op

2

are legal, but there is no way to place

both op

1

and op

2

after � in � � op

1

� op

2

and � � op

2

� op

1

to form a legal sequence.

Theorem 10.7 Let T be an abstract data type, and let AOP , OP

1

, and OP

2

be

operations on objects of type T , where AOP is a generic accessor operation. Suppose

AOP is doubly noninterleavable with respect to OP

1

and OP

2

. Then, in any hybrid

consistent implementation of objects of type T , jWOP

1

j+jWAOP j � d or jWOP

2

j+

jWAOP j � d.

Proof Let A be an object. Let processes 1 and 2 use A. Assume in contradiction

that there exists some hybrid consistent implementation of A for which jWOP

1

j+

jWAOP j < d and jWOP

2

j+ jWAOP j < d.

Since AOP is doubly noninterleavable with respect to OP

1

and OP

2

, there exists

an operation sequence � and operation instances aop

1

; aop

2

; op

1

; and op

2

such that

� � op

1

� aop

1

and � � op

2

� aop

2

are legal, but there is no way to place both aop

1

and

aop

2

after � in � � op

1

� op

2

and � � op

2

� op

1

to form a legal sequence.

We consider A

�

, the �-initialized version of A.

By the sequential speci�cation for A

�

, there exists an admissible execution �

1

with ops(�

1

) equal to Wop

1

[A

�

; 1] �Waop

1

[A

�

; 1]. Wop

1

[A

�

; 1] starts at real time 0,

131

and Waop

1

[A

�

; 1] starts immediately after Wop

1

[A

�

; 1] �nishes. Because we have

assumed that the real time after the end of �

1

is less than d, no process receives a

message during �

1

.

By the sequential speci�cation for A

�

, there exists an admissible execution �

2

with ops(�

2

) equal to Wop

2

[A

�

; 2] �Waop

2

[A

�

; 2]. Wop

2

[A

�

; 2] starts at real time 0,

and Waop

2

[A

�

; 2] starts immediately after Wop

2

[A

�

; 2] �nishes. Because we have

assumed that the real time after the end of �

2

is less than d, no process receives a

message during �

2

.

Since no messages are received in �

1

and �

2

, we can produce an admissible

hybrid execution � by replacing process 2's history in �

1

with its history in �

2

.

By assumption, � is hybrid and satis�es the conditions of De�nition 3. Consider

�

1

. In �

1

, Wop

1

[A

�

; 1] precedesWaop

1

[A

�

; 1]. If Wop

1

[A

�

; 1] precedesWop

2

[A

�

; 2],

then by the double noninterleavability property, all possible placements of both

Waop

1

[A

�

; 1] and Waop

2

[A

�

; 2] in Wop

1

[A

�

; 1] �Wop

2

[A

�

; 2] are illegal for A

�

. If

Wop

2

[A

�

; 2] precedesWop

1

[A

�

; 1], then by the double noninterleavability property,

all possible placements of both Waop

1

[A

�

; 1] and Waop

2

[A

�

; 2] in Wop

2

[A

�

; 2] �

Wop

1

[A

�

; 1] are illegal for A

�

. Thus, We cannot produce a �

1

that is legal for A

�

because we need to place all operations.

Corollary 10.6 The following are true:

� In any hybrid consistent implementation of read/add/multiply objects,

jWADDj + jWREADj � d or jWMULj+ jWREADj � d.

� In any hybrid consistent implementation of PMR objects (Section 8.4) with

one modi�er operationMOP and a write operation, jWMOP j+jWREADj �

d or jWWRITEj+ jWREADj � d.

For the above classes of objects, the lower bound on total time complexity of

the operations matches the upper bound given in the sequentially consistent (and

linearizable) implementations from Theorem 8.10. Thus, for these classes of objects,

sequential consistency and linearizability cost no more than hybrid consistency, even

when weak operations are mostly used.

132

A natural question arises from this. Are there other abstract data types for

which sequential consistency and linearizability cost no more than hybrid consis-

tency?

Let us consider hybrid implementations and linearizable implementations of

queues. By Corollary 10.1, jSDEQj � d and jWDEQj � d. Hybrid dequeue oper-

ations are inherently expensive. In contrast, in systems with perfectly synchronized

clocks, Attiya and Welch [AW94] presented a linearizable implementation of queues

in which enqueues complete in time 0 and dequeues complete in time d. In their

implementation, all operations are strong. The lower bound on the time required

to implement weak operations in hybrid consistency matches the upper bound on

the time required to implement linearizability in this case, and weak dequeues must

be slow. Thus, hybrid consistency gives us no advantage for queues.

We conclude that hybrid consistency does not necessarily give performance gains

for every abstract data type.

Theorem 10.8 Let T be an abstract data type with operations OP

1

; . . . ; OP

n

such

that S = fOP

i

jOP

i

immediately does not commute with itselfg is nonempty. Sup-

pose that the users of a hybrid implementation of objects of T only use weak op-

erations in S. Then the users of the hybrid implementation can switch over to a

linearizable implementation without an increase in worst-case completion time in a

system with perfectly synchronized clocks.

Proof Since we can guarantee that all processes receive and handle messages at

the same time and in the same order, there exists a linearizable implementation of

objects of type T in which all operations take time d. It works as follows. When an

operation is invoked at a process, the process sends a message about it and returns

d later when the message is handled.

By Theorem 10.1, jWOP

i

j � d for all OP

i

in S. In our linearizable implemen-

tation jOP

i

j = d for all OP

i

in S. Thus

P

OP

i

2S

jWOP

i

j �

P

OP

i

2S

jOP

i

j.

We may not always have the luxury of perfectly synchronized clocks. However,

in systems with only approximately synchronized clocks, we can deduce that the

133

inherent cost of weak operations in S for hybrid consistent implementations is
(d),

while the actual cost of operations in S in a sequentially consistent implementation

is O(d) (using a simple algorithm with atomic broadcast). Thus, providing hybrid

consistency does not yield any major gains.

We have shown in this subsection that hybrid consistency is not necessarily

cheaper to implement than the stronger guarantees of sequential consistency and

linearizability, even when weak operations are mostly used.

134

Chapter 11

Summary and Partial Extensions

We have studied the impact of algebraic properties of operations, the degree of

process synchronization, and the type of consistency guarantee on the time com-

plexities of distributed implementations of abstract data types. As a result, we

have shown that sequential consistency and linearizability are equally costly in sys-

tems with perfectly synchronized clocks under certain reasonable assumptions, that

sequential consistency is cheaper than linearizability in systems with only approxi-

mately synchronized clocks under certain reasonable assumptions, and that hybrid

consistency is not necessarily cheaper than the stronger consistency guarantees.

We were unsuccessful in �nding an algebraic property of operations such that

an operation could be optimized in a linearizable implementation assuming perfect

process synchrony if it satis�ed the property and it could not be optimized other-

wise. Although we were unsuccessful, we determined a reasonably general algebraic

property, self-obliviousness, such that if an operation is self-oblivious, then it can be

optimized in a linearizable implementation assuming perfect process synchrony. We

described a general implementation in which a self-oblivious operation is optimized

in Theorem 8.7. However, we still do not know if we can optimize an operation

which is not self-oblivious.

In this chapter, we discuss how our implementation works when we attempt

to optimize an operation that is not self-oblivious (Section 11.1), improvements

to our implementation for speci�c data types (Section 11.2), and progress towards

optimizing multiple operations of abstract data types (Section 11.3). We assume

that processes have perfectly synchronized clocks.

11.1 Optimizing an Operation Which Is Not Self-

oblivious

Theorem 8.7 describes a general linearizable implementation of an abstract data

type in which a single self-oblivious operation is optimized. Does our implemen-

tation from Theorem 8.7 still work when the operation to be optimized is not

self-oblivious? The operation must immediately commute with itself, because oth-

erwise the impossibility result from Theorem 8.1 would apply, causing the operation

to take at least time d. The answer to our question is \No", and we explain why

with a speci�c abstract data type.

Consider the abstract data type CONDARRAY, which we describe in Fig-

ure 11.1. The objects are two-element arrays. r2w1 commutes with itself. Suppose

we want to optimize jR2W1j in an instantiation of the algorithm described in the

proof of Theorem 8.7.

Suppose that X[1] is initialized to 4 and X[2] is initialized to 5. The following

execution � is a possible execution of the CONDARRAY implementation:

� At time 0, process 1 starts a r1condw2 operation with input argument 4 on

object X. It completes at time 2d.

� At time d=2, process 2 executes an r2w1 operation with input argument 1 on

object X.

� At time 5d=4, process 3 executes an r2w1 operation with input argument 3

on object X.

Process 2 returns 5 for its r2w1 operation when it completes. By the time

process 3 executes its operation, it has only received the message about process 1's

operation. Thus, it returns 4 for its r2w1 operation when it completes.

136

r2w1(X; v):

X[1] := v

return(X[2])

r1condw2(X; v):

if X[1] = v then

X[2] := v

end if

ack(Ok)

Figure 11.1: The CONDARRAY Abstract Data Type

Our � is as follows:

r2w1(1)(5)[X; 1] � r1condw2(4)(Ok)[X; 2] � r2w1(3)(4)[X; 3], which is illegal.

The problem is that the fast operations do not necessarily behave in the same

way when they are globally executed as when they are locally executed. Although

R2W1 operations do not immediately a�ect each other, they may indirectly a�ect

each other due to other kinds of operations. Thus, R2W1 is not self-oblivious.

However,R1CONDW2 is self-oblivious, and we can instantiate the implementation

in Theorem 8.7 to optimize jR1CONDW2j.

This work shows that we need a di�erent approach when trying to optimize an

operation which is not self-oblivious.

11.2 Improvements for Speci�c Data Types

The implementation from Theorem 8.7 optimizes one operation but is overly con-

servative for other operations; in essence, it assumes that the optimized operation

has a cyclic dependence with every other operation because every other operation

takes time 2d (Theorem 8.3).

If the operation to be optimized has no cyclic dependences with other operations,

we may be able to improve the time bounds for the other operations. We now give

137

