
an example of an abstract data type for which we can improve the time bounds for

the other operations.

Consider the TWOARRAY abstract data type (Corollary 8.4). The operations

that update the array objects are r1w2 and w1. The updates performed by these

two update operations modify di�erent components of the arrays.

Suppose we want a linearizable implementation of TWOARRAY objects that

optimizes jR1W2j. Since R1W2 is self-oblivious, jR1W2j can be optimized. If

jR1W2j = 0, then jW1j � d and jR2j � d by Theorem 8.2. Thus, the best we can

hope for is a linearizable implementation with jR1W2j = 0 and jW1j = jR2j = d.

We now describe such an implementation.

Theorem 11.1 There exists a linearizable implementation of TWOARRAY objects

such that jR1W2j = 0 and jW1j = jR2j = d.

Proof We exhibit our implementation in Figure 11.2. If a process receives several

messages at the same time, it handles r1w2 messages before w1 messages, using

process identi�ers to break any other ties.

We now prove that our implementation produces linearizable executions. Let �

be an admissible execution. We show how to produce � .

Since we are in a system with perfectly synchronized clocks and constant mes-

sage delays, there is a total order on the messages delivered. This seems like a

promising foundation for a method to determine � . However, we have a problem if

an r1w2 operation overlaps a w1 operation for the same object. Thus, we need a

di�erent placement method to construct � .

We �rst place w1 operations in the order in which their messages are received.

The w1 operations are all legal (they do not return any values), and they satisfy

the ordering constraints required by linearizability.

Next we place the r1w2 operations. We consider them in order of their invo-

cation times, breaking ties with process identi�ers. We place an r1w2 operation

immediately after the latest of

1. its last preceding operation placed so far,
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2. the w1 operation from which it returns its value, and

3. the last r1w2 operation for the same object occurring at the same time and

preceding its message in the message delivery order.

An r1w2 operation will not be placed before any subsequent operations. Now

we must verify the legality of r1w2 operations.

If an r1w2 operation is the �rst operation in the current version of � , then it is

legal because it returns the initial value of the �rst component of its object. If an

r1w2 operation is placed before any w1 operations for the same object, then it is

legal because it returns the initial value of the �rst component of its object.

Now consider an r1w2 operation which does not satisfy either of the previous

two conditions. If in the placement rule, the r1w2's last preceding operation placed

so far is the w1 operation from which the r1w2 returns its value, then the r1w2

operation is legal.

The w1 operation from which an r1w2 operation returns must start at least

time d before the r1w2 because otherwise the process invoking the r1w2 operation

would not yet have received the message about the w1 operation.

Thus, if in applying the placement rule, the r1w2 operation's last preceding

operation comes before the w1 operation from which it returns its value in the

current version of � , the w1 operation starts exactly d before it. The r1w2 operation

is legal.

The �nal case to consider is the case in which the w1 operation from which the

r1w2 operation returns comes before the r1w2 operation's last preceding operation

in the current version of � . We must show that the last preceding operation is

not a w1 operation on r1w2's object, and we must show that no w1 operation on

r1w2's object occurs between r1w2's source operation (the w1 from which it returns

its value) and its last preceding operation. Suppose in contradiction that there is

an interfering w1 operation for r1w2's object. Then this operation also precedes

the r1w2 operation. By the algorithm, the process invoking the r1w2 would have

applied the update for the w1 operation before the r1w2 operation was started,

contradicting the choice of return value and responsible w1 operation.
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Thus, r1w2 operations are legal.

Finally, we must place r2 operations in � . We consider them in order of their

invocation times, breaking ties with process identi�ers. We place an r2 operation

immediately after the later of

1. its last preceding operation placed so far and

2. the r1w2 operation from which it returns its value.

An r2 operation will not be placed before any subsequent operations. Now we

must verify the legality of r2 operations.

If an r2 operation is the �rst operation in � , then it is legal because it returns

the initial value of the second component of its object. If an r2 operation is placed

before any r1w2 operation for the same object, then it is legal because it returns

the initial value of the second component of its object.

Now consider an r2 operation which does not satisfy either of the previous two

conditions. If in the placement rule, the r2's last preceding operation placed so

far is the r1w2 operation from which r2 returns its value, then the r2 operation is

legal.

The r1w2 from which an r2 operation returns its value must not start later than

the r2 because otherwise the process invoking the r2 operation would not yet have

received the message about the r1w2 operation.

If r2's last preceding operation comes before the r1w2 from which it returns in

� , then r2 is legal by construction.

The �nal case to consider is the case in which the r1w2 from which the r2

returns comes before the r2's last preceding operation in � . We must show that the

last preceding operation is not an r1w2 operation on r2's object, and we must show

that no r1w2 operation on r2's object occurs between r2's source operation (the

r1w2 operation from which it returns its value) and its last preceding operation.

Suppose in contradiction that there is an interfering r1w2 operation on r2's object.

Then this operation also precedes the r2 operation. By the algorithm, the process

invoking r2 would have applied the update for the r1w2 operation before the r2

140



r1w2(v)[X; p]:

broadcast(DOr1w2(v;X))

r1w2return(X[1])[X; p]

DOr1w2

p

(v;X): /* executed when message is received */

X[2] := v

w1(v)[X; p]:

timerset(p; d)

broadcast(DOw1(v;X))

when timer expires:

w1ack(Ok)[X; p]

DOw1

p

(v;X): /* executed when message is received */

X[1] := v

r2[X; p]:

timerset(p; d)

when timer expires:

r2return(X[2])[X; p]

Figure 11.2: Algorithm for TWOARRAY - Code for Process p

operation was started, contradicting our choice of return value and responsible r1w2

operation.

Thus, r2 operations are legal.

We have exhibited a legal linearization � for our admissible execution �.

Can we use the same approach as in TWOARRAY in order to optimize a general

self-oblivious operation without cyclic dependences with other operations? The

answer is \No", and we will answer this question with a type called THREEARRAY.

The objects are three-element arrays. The operations are r2i1 (which reads the
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second component and increments the �rst component of the array on which it is

invoked), r3d1i2 (which reads the third component, doubles the �rst component,

and increments the second component of the array on which it is invoked), and r1i3

(which reads the �rst component and increments the third component of the array

on which it is invoked). Each operation commutes with itself.

Suppose we want a linearizable implementation of THREEARRAY objects that

optimizes jR2I1j. If jR2I1j = 0, then jR3D1I2j � d and jR1I3j � d by Theo-

rem 8.2.

Let us adapt the implementation in Figure 11.2 for THREEARRAY objects as

a �rst attempt. In this, jR2I1j = 0 and jR3D1I2j = jR1I3j = d. We assume that

X[1] has been initialized to 1 and that X[2] and X[3] have been initialized to 0.

The following execution � is a possible execution:

� At time 0, process 4 starts an r1i3 operation on object X. It completes at

time d.

� At time d=4, process 2 starts an r3d1i2 operation on object X. It completes

at time 5d=4.

� At time d=2, process 3 starts an r1i3 operation on object X. It completes at

time 3d=2.

� At time d=2, process 1 executes an r2i1 operation on object X, returning 0.

Process 4 returns 1 for its r1i3 operation when it completes. Process 2 returns 1

for its r3d1i2 operation when it completes. Process 3 returns 3 for its r1i3 operation

when it completes.

In the total ordering of all operations in �, the r2i1 operation must come before

the r3d1i2 operation in order to be legal. However, the r3d1i2 operation must come

before the r2i1 operation in order for process 3's r1i3 operation to be legal. This

implies a cycle in the total ordering, and therefore a contradiction. However, all is

not lost because we can instantiate the implementation described in Theorem 8.7

to optimize jR2I1j because R2I1 is self-oblivious.
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11.3 Optimizing Multiple Operations

The examples from the previous sections show that optimizing just a single op-

eration from an abstract data type is a nontrivial task. What can we say about

optimizing multiple operations, besides all accessors and all pure modi�ers? In our

attempt to determine exactly when a single operation can be optimized, we found

a result which could have a negative impact on optimizing multiple operations, as

discussed after the result.

Theorem 11.2 Given abstract data type T with generic operations OP

1

and OP

2

,

an operation sequence �, and operation instances op

1

1

, op

2

1

, and op

2

such that

� � � op

1

1

is legal,

� � � op

2

� op

2

1

is legal,

� � � op

2

� op

1

1

is not legal,

� and � � op

1

1

� op

2

� op

2

1

is not legal,

then jOP

1

j > 0 or jOP

1

j+ jOP

2

j � 2d in any linearizable implementation of objects

of type T .

Intuitively, this means that OP

1

is not self-oblivious.

Proof Let A be an object of type T . We consider A

�

, the �-initialized version of

A.

Let processes 1 and 2 use A. Suppose in contradiction that there is a linearizable

implementation of A such that jOP

1

j = 0 and jOP

1

j+ jOP

2

j < 2d. Thus, jOP

2

j =

2d � �, for some � > 0.

By the sequential speci�cation for A

�

, there is some admissible execution �

1

such

that ops(�

1

) is op

1

1

[A

�

; 1]. Assume that the op

1

operation starts at time d � �=2.

Any message sent by process 1 would not arrive until at least time 2d � �=2.

143



By the sequential speci�cation for A

�

, there is some admissible execution �

2

such that ops(�

2

) is op

2

[A

�

; 2] � op

2

1

[A

�

; 2]. Assume that the op

2

operation starts at

time 0 and the op

1

operation starts at time 2d � �. Any message sent by process 2

would not be delivered until at least time d.

Since no messages are received in �

1

and �

2

before time d, replacing process

1's history in �

2

with its history in �

1

results in another admissible execution, �.

By assumption, � is linearizable. Thus, we can construct a linearization of ops(�)

which is legal for A

�

. In this linearization, op

2

must precede op

2

1

, and op

1

1

must

precede op

2

1

. Also, op

1

1

must precede op

2

. This implies the ordering op

1

1

� op

2

� op

2

1

,

which is not legal for A

�

.

As a result of this, suppose OP

2

is self-oblivious. We obtain the following

corollary. In any linearizable implementation where jOP

2

j = 0, jOP

1

j > 0.

Determining whether a given operation or group of operations can be optimized

is a very interesting problem. Optimizing a given operation or group of operations

is useful when they are frequently used. Although we do not have a complete char-

acterization of when a given operation or group of operations cannot be optimized,

we have made reasonable progress on this problem, and we hope that our work can

be used as a foundation for determining this elusive complete characterization.
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Chapter 12

Future Work

In this thesis, we have investigated the costs of implementing concurrent shared

objects. Studying these costs is important because using shared objects is a form

of interprocess communication. Using shared objects enables computer programs

to be developed with software engineering principles.

We have investigated both physical and virtual implementations of concurrent

shared objects.

With respect to physical implementations of concurrent shared objects, we

studied wait-free implementations of k-valued single-writer regular (respectively,

atomic) registers from regular (respectively, atomic) bits. We sought to optimize

(and did!) the protocol for the writer of the implemented k-valued register and

studied the impact of the optimization on the space requirement and the work re-

quirement for the readers of the register. We improved previous lower bounds on

space for two classes of regular one-write algorithms, toggle and symmetric, yield-

ing a tight bound for toggle algorithms. There is still room for improvement in

the space bounds for symmetric algorithms and more general one-write algorithms.

In the case of safe one-write algorithms, [CW90] found a connection with coding

theory in order to determine a tight space bound. Perhaps there is some connection

with coding theory that we can exploit in order to tighten our space bounds for

regular and atomic one-write algorithms.

Other areas for future work include studying the (inherent) costs of implemen-

tations of multiwriter and atomic registers and investigating the costs of shared



register implementations when readers and writers are not totally asynchronous.

With respect to virtual implementations of concurrent shared objects, we stud-

ied implementations of objects from general abstract data types. We evaluated

the impact of the consistency guarantee to be provided (sequential consistency,

linearizability, and hybrid consistency), the amount of system synchrony, and alge-

braic properties of the operations of the type on the worst-case time complexity of

operations of the type.

We have identi�ed several algebraic properties that cause operations (or pairs

of operations) to be \slow" (have worst-case execution times which are 
(d), where

d is the message delay of the network) in sequentially consistent (and linearizable)

implementations of abstract data types. Some of these properties can be used to

show that concurrent abstract data types with weaker consistency conditions are

not necessarily asymptotically cheaper to implement with respect to time than

concurrent abstract data types with stronger consistency conditions.

In perfectly synchronized systems, we have shown that for a large class of data

types, we can choose one operation and optimize its worst-case execution time

(make it be e�ectively 0) in a linearizable implementation of its abstract data

type. We would like to determine if it is always possible to optimize the worst-

case execution time for an operation, given that it immediately self-commutes. An

interesting avenue to pursue further is optimization of the worst-case execution time

of all operations of an abstract data type. This could involve �nding new algebraic

properties of operations which cause them to be \slow". Ideally we envision a

\compiler" which takes a representation of the algebraic structure of an abstract

data type (i.e., commutativity graph or something similar) as input and produces

an optimized linearizable implementation as output. Optimization of the worst-

case execution time of all operations of an abstract data type is useful when all

operations are invoked with approximately the same frequency.

In systems with approximately synchronized clocks, we have identi�ed some al-

gebraic properties that \slow down" operations, or make their worst-case execution

times be 
(u), where u is the uncertainty in the network message delay, in lin-

earizable implementations of abstract data types. We have shown that for a large

class of data types, atomic broadcast can be used to develop sequentially consis-
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tent implementations in which certain operations can be optimized with respect to

worst-case completion time. It would be very interesting to develop linearizable

implementations of abstract data types in which the slowed down operations are

as fast as they can possibly be. This may lead to higher lower bounds on worst-

case time complexity for the slowed down operations. Also, we could study atomic

broadcast further in order to improve its time complexity, yielding faster sequen-

tially consistent implementations for free. Alternatively, we could investigate lower

bounds on the worst-case time complexity for sequentially consistent (or providing

a related consistency guarantee) implementations of abstract data types.

In systems with approximately synchronized clocks, lower bounds on the worst-

case time complexity for sequentially consistent operations are at least as high as

in systems with perfectly synchronized clocks. Intuition tells us that they may

possibly be higher. [MR92] claimed that for sequentially consistent read/write

objects, jREADj + jWRITEj � d + u=2. However, their proof relies wrongly

on not being able to shift an operation too far relative to its original position.

This observation suggests de�ning a class of consistency guarantees intermediate

between sequential consistency and linearizability, parameterized by some �. The

proof techniques used in [MR92] could perhaps be used to show similar lower

bounds for general types for this family of conditions.

We now propose a class of intermediate consistency guarantees.

De�nition 6 An execution � is �-sublinearizable if there exists a legal sequence

� of operations such that � is a permutation of ops(�), ops(�)jp = � jp for each

process p, and op

2

follows op

1

in � if the call for op

2

happens at least � time after

the response for op

1

.

When � = 0, we have plain linearizability. �-sublinearizability implies sequential

consistency, but not vice versa.

The following is a very simple observation about �-sublinearizability.

Theorem 12.1 In any �-sublinearizable implementation of read/write objects where

� � d � u, jREADj+ jWRITEj � �+ u.
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Proof Since �-sublinearizability implies sequential consistency, jREADj+jWRITEj �

d by Corollary 8.2. Because �+ u � d, jREADj + jWRITEj � �+ u.

It would be interesting to see what happens to the lower bound on the worst-case

time complexity for operations in �-sublinearizable implementations of concurrent

shared objects in systems with approximately synchronized clocks.

In this thesis, we were concerned with lower bounds on worst-case time complex-

ity for hybrid consistent implementations of abstract data types. Upper bounds, or

actual implementations, are very important as well. Attiya and Friedman [AF92]

gave a hybrid consistent implementation of read/write objects in which weak op-

erations are optimized. We would like to �nd more abstract data types, or better

yet, classes of abstract data types, for which weak operations can be optimized.

We have chosen to focus on worst-case time complexity as our cost measure

in our study of virtual implementations of concurrent shared objects. Space com-

plexity is another very important cost measure. We can study this cost measure

from two points of view: the amount of local space required and the capacity re-

quired in the network (the number and size of messages that are sent). We can also

study the impact of the network topology on the costs of virtual implementations

of concurrent shared objects. We had assumed a complete communication network

that was powerful enough to handle all our message transmission needs. Our lower

bounds are still true for systems without a complete communication network. In

systems with perfectly synchronized clocks, our lower bounds can be multiplied by

the network diameter to yield improved lower bounds. Studying the impact of the

network topology and capacity should prove to be very interesting because it will

involve issues about routing algorithms and fault tolerance.

In this thesis, we have uncovered some interesting results about the costs of

implementing concurrent shared objects, for both physical and virtual implemen-

tations. We have built k-valued shared registers (regular and atomic, respectively)

from binary registers (regular and atomic, respectively) in which the writer's proto-

col is optimal, and we have rigorously proved the correctness of the respective im-

plementations. We have also proved lower bounds on space requirements for classes

of one-write algorithms. As a result of this work, we have shown again how com-

binatorial mathematics and graph-theoretic concepts can be applied to problems
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in distributed computing. In our study of virtual implementations of concurrent

shared objects, we have used algebraic properties of operations to prove that strong

consistency is expensive to provide. We have also shown that weaker correctness

guarantees are not necessarily cheaper to provide than stronger guarantees. We

have shown that optimizing the worst-case time complexity of even a single oper-

ation of an abstract data type is a nontrivial task. We hope our work gives users

of virtual implementations of concurrent shared objects clues about what they can

and cannot expect from such implementations. We have listed some new areas for

further investigation. We hope that our work can provide a foundation for gaining

new understanding about implementations of concurrent shared objects.
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Appendix A

Examples of Abstract Data Types

We now give some examples of abstract data types with their commutativity prop-

erties. We will refer to these examples throughout this work.

Let us examine the augmented queue abstract data type. In the augmented

queue abstract data type, there are three operations: enqueue, dequeue, and peek.

We assume that queues can be of arbitrary length. ? is returned by a dequeue or

peek operation that is invoked on an empty queue. Table A.1 gives the commu-

tativity table for the queue abstract data type. An � in entry (i; j) means that

operation i and operation j do not commute (either eventually or immediately).

This holds for all tables. In the augmented queue abstract data type, all pairs of

operations which do not commute, immediately do not commute, with the excep-

tion of the entry (enq; enq), for which the operations in the pair eventually do not

commute.

Next we examine the augmented stack abstract data type. In the augmented

stack abstract data type, there are three operations: push, pop, and peek. We

assume that stacks can be of arbitrary height. ? is returned by a pop or peek

operation that is invoked on an empty stack. Table A.2 gives the commutativity

table for the stack abstract data type. An � in entry (i; j) means that operation i

and operation j do not commute. This holds for all tables. In the augmented stack

abstract data type, all pairs of operations which do not commute, immediately do

not commute, with the exception of the entry (push; push), for which the operations

in the pair eventually do not commute.



Queue Operation enq(x)� deq()� deq()� peek()� peek()�

ok() ret(x) ret(?) ret(x) ret(?)

enq(y) � ok() � � �

deq() � ret(y) � � � �

deq() � ret(?) � � �

peek() � ret(y) � � �

peek() � ret(?) � � �

Table A.1: Commutativity Table for the Augmented Queue Abstract Data Type

Stack Operation push(x)� pop()� pop()� peek()� peek()�

ok() ret(x) ret(?) ret(x) ret(?)

push(y) � ok() � � �

pop() � ret(y) � � � �

pop() � ret(?) � � �

peek() � ret(y) � � �

peek() � ret(?) � � �

Table A.2: Commutativity Table for the Augmented Stack Abstract Data Type
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Set Operation ins(x; v)� del(x)� del(x)� search(x)� search(x)�

ok() ack(ok) ack(?) ret(v) ret(?)

ins(y;w) � ok() � � �

del(y) � ack(ok) � � � �

del(y) � ack(?) � �

search(y) � ret(w) �

search(y) � ret(?) �

Table A.3: Commutativity Table for the Dictionary Set Abstract Data Type

Let us now examine the dictionary set abstract data type. We assume that a set

can have an arbitrary number of (element,key) pairs. The operations we consider

are insert (an element and its key), delete (an element and its key), and search (for

an element and return its key). ? is returned by a delete or search operation that

is performed when the input argument is not an element in the set. Table A.3 gives

the commutativity table for the set abstract data type. In the set abstract data

type, all pairs of operations which do not commute, immediately do not commute.

We now examine the bank account abstract data type. This example comes

from [Wei93]. The operations we consider are deposit, withdraw, and balance. ?

is returned by a withdraw operation that is performed when the account contains

less money than the amount speci�ed in the input argument. Table A.4 gives the

commutativity table for the bank account abstract data type. In the bank account

abstract data type, all pairs of operations which do not commute, immediately do

not commute.

We now examine a di�erent form of set, a reference-count set. We assume that

a reference-count set can have an arbitrary number of elements. The operations

we consider are insert, update, and �nd (search). When an item is inserted into

this set, it has a data �eld which is initialized to 1. All inserts are normal (if we

are assuming that sets can be of arbitrary size). When an item is updated, its

data �eld is incremented by 1 (if the item is present). When an item is searched,

its data �eld is returned (if the item is present). ? is returned by an update or

search operation that is performed when the input argument is not in the set. An
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Bank Account deposit(j)� withdraw(j)� withdraw(j)� balance()�

Operation ok() ack(ok) ack(?) ret(j)

deposit(i) � ok() � �

withdraw(i) � ack(ok) � �

withdraw(i) � ack(?) �

balance() � ret(i) � �

Table A.4: Commutativity Table for the Bank Account Abstract Data Type

Reference Set ins(x)� up(x)� up(x)� find(x)� find(x)�

Operation ok() ack(ok) ack(?) ret(v) ret(?)

ins(y) � ok() � �

up(y) � ack(ok) � �

up(y) � ack(?) � �

find(y) � ret(w) �

find(y) � ret(?) �

Table A.5: Commutativity Table for the Reference-Count Set

operation that returns ? is abnormal. Table A.5 gives the commutativity table for

the reference-count set abstract data type. In the reference-count set abstract data

type, all pairs of operations which do not commute, immediately do not commute.

We �nally examine an abstract data type where the values are real numbers and

the operations are read, increment, and half. Table A.6 gives the commutativity

table for this abstract data type. Increment and half eventually do not commute.
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INC-HALF read() � ret(v) inc(x) � ok() half() � ok()

read() � ret(v) � �

inc() � ok() � �

half() � ok() � �

Table A.6: Commutativity Table for the Increment-Half Abstract Data Type
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Appendix B

Glossary of Terms

C(k; 2) the number of combinations of k elements taken 2 at a time.

d the message delay of the network.

OP denotes a generic operation with op as the name of its call event.

jOP j the worst-case completion time for operation OP .

op denotes an operation instance.

op

1

, op

2

denoting two separate instances of the same generic operation OP .

s � t sequence s immediately followed by sequence t.

u the uncertainty in the network message delay.

accessor an operation of an abstract data type which never changes an object.

action of a register implementation a logical READ, WRITE, RETURN, or

ACK, or a physical read, write, return, or ack.

admissible An execution is admissible if all messages sent in it have delays in the

range [d � u; d] and for any time t, each process has at most one operation

that has not yet �nished.



approximately synchronized A system of processes is only approximately syn-

chronized if their clocks are not initialized to the same value and the uncer-

tainty in the message delay between processes is a positive number.

atomicity a property of read/write registers which requires that all operations

must be totally ordered in a sequence with the following two restrictions. If

operation i on the register completes before operation j on the register begins,

operation i precedes operation j in the sequence. Each read operation in the

sequence returns the value written by the last write operation placed before

it in the sequence.

augmented queue a queue with enqueue, dequeue, and peek (returning the front

element of the queue without modifying the queue) operations.

augmented stack a stack with push, pop, and peek (returning the top element

of the stack without modifying the stack) operations.

call event the invocation of an operation. This includes the name of the operation,

the name of the object on which the operation is invoked, and any arguments

of the operation.

clock a monotonically increasing function which maps global (real) times, ex-

pressed as real numbers, to local times, expressed as real numbers.

commutativity graph an undirected graph representing the commutativity prop-

erties of an abstract data type. The nodes are labeled with the names of the

generic operations of the types. There is an edge between two distinct nodes

if their corresponding generic operations do not immediately commute. There

is a loop from a node to itself if its corresponding generic operation does not

immediately commute with itself.

commute Two operations OP

1

and OP

2

commute if for all instances op

1

and op

2

and all operation sequences s, s � op

1

� op

2

looks like s � op

2

� op

1

.

cyclically dependent Two operations OP

1

and OP

2

are cyclically dependent

there are instances op

1

and op

2

and a legal operation sequence s such that

s � op

1

and s � op

2

are legal, but s � op

1

� op

2

and s � op

2

� op

1

are not legal.
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doubly noninterleavable with respect to a pair of operations An operation

OP is doubly noninterleavable with respect to a pair of operations OP

1

and

OP

2

if there exist legal operation sequence s and instances op

1

; op

2

; op

1

; op

2

such that s � op

1

� op

1

and s � op

2

� op

2

are legal, but each operation sequence

formed by the concatenation of s with a permutation of the four operation

instances is illegal.

�-sublinearizable An execution is �-sublinearizable if it is sequentially consistent

and op

2

follows op

1

in the serialization if the call for op

2

happens at least �

time after the response for op

1

.

equivalent (with respect to histories) Two histories are equivalent if the views

of all processes in both histories are the same.

equivalent (with respect to operations) Two operation sequences are equiva-

lent if operations legally executed after the �rst sequence are also legal after

the second sequence, and vice versa.

eventually do not commute Two operations OP

1

and OP

2

eventually do not

commute if there exist a legal operation sequence s and instances op

1

and op

2

such that s � op

1

� op

2

and s � op

2

� op

1

are legal, but s � op

1

� op

2

does not look

like s � op

2

� op

1

.

execution of an mcs An execution of an mcs is a set of histories, one for each

process maintaining the shared objects, in which all messages sent are received

by the processes to which they were sent and all messages received were

actually sent by processes.

execution of a register implementation An execution of a register implemen-

tation is a sequence of alternating state tuples (an entry for each reader, each

writer, and each physical register) and actions.

fast describing an operation with worst-case completion time of 0. This means

that the operation can be completed with only local computation.

generic operation A generic operation encompasses all operations with the same

name for their call events. For example, enqueue is a generic operation for
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queues.

history A history of a process with a clock is a record of everything that occurs

at the process (updates to the state of the process, the sending and receipt

of messages, interrupts, timers being set and expiring), ordered by clock time

(with some tie-breaking).

hybrid consistency a property of shared objects which requires the relative or-

dering of (weak, strong), (strong,weak), and (strong,strong) operation pairs

that are executed by the same process to be preserved in some legal serializa-

tion of every execution. In addition, for every process p, there exists a legal

serialization of the execution in which response i by p precedes call j by p in

the serialization if response i by p precedes call j by p in the execution.

immediately do not commute Two operations op

1

and op

2

immediately do not

commute if there exists some sequence of operations such that op

1

and op

2

can individually legally (immediately) follow the sequence, but there is some

permutation of op

1

and op

2

which cannot legally immediately follow the se-

quence.

interrupt event a call event, a message receive event, or a timer event.

legal A sequence of operation instances is legal if it conforms to the semantics of

the abstract data types of the objects on which the operations are performed.

linearizability a property of shared objects which requires a legal linearization of

every execution.

linearization a serialization with the additional property that if response i pre-

cedes call j in the execution, then (call i, response i, call j, response j) is a

subsequence of the serialization.

logical register a register which is to be simulated by using a set of (usually)

weaker registers and a protocol (a register implementation).

looks like An operation sequence s

1

looks like operation sequence s

2

if any oper-

ation sequence that can immediately legally follow s

2

can also immediately
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legally follow s

1

and any operation sequence that cannot immediately legally

follow s

2

also cannot immediately legally follow s

1

.

memory consistency system (mcs) A memory consistency system (mcs) is a

set of processes and a set of clocks, one for each process. The processes use

the clocks and run a protocol to maintain a set of virtual shared objects

according to some consistency guarantee.

message delay the amount of real time between the sending of a message and its

receipt.

message receive event an indication of the receipt of a message. This includes

an identi�cation of the sender of the message, an identi�cation of the receiver

of the message, and the contents of the message.

message send event an indication of the sending of a message. This includes an

identi�cation of the sender of the message, an identi�cation of the receiver of

the message, and the contents of the message.

modi�er an operation of an abstract data type which changes an object.

noninterleavable with respect to an ordered pair of operations An opera-

tion OP is noninterleavable with respect to an ordered pair of operations OP

1

and OP

2

if there exists a legal operation sequence that can be legally imme-

diately followed by an instance of OP or by an instance of OP

1

immediately

followed by an instance of OP

2

, but not by all three instances, where the

ordering of the three instances which preserves the relative ordering of the

instances of OP

1

and OP

2

.

operation instance an indication that an operation has performed on an object.

It is of the form op(args; rets), where op represents the name of the operation,

args is the list of input arguments for the operation, and rets is the list of

values returned by the operation.

perfectly synchronized A system of processes is perfectly synchronized if their

clocks are initialized to the same value and run at the same rate.
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physical register a register which can be used as a piece of \hardware" in a

logical register implementation. The register is assumed to provide a certain

consistency guarantee.

(mcs) process informally, a program which maintains virtual shared objects.

pure modi�er an operation of an abstract data type which changes its object

without returning any information about the object.

pure modify/read (PMR) object an object with pure modi�er operations and

a read operation that returns its current value.

regularity a property of read/write registers which requires the value returned

by each read operation to be the value written by the last write operation

completed before the read began or by some write overlapping the read.

response event an indication that an operation has completed. This includes

an indication of which operation has completed, the name of the object on

which the operation was performed, and any values returned as a result of

performing the operation.

�-initialized version describing an object which has had the sequence � of oper-

ations performed on it starting from its initial state.

safety a property of read/write registers which requires the value returned by each

read operation not overlapping a write operation to be the value written by

the last write operation completed before the read began. The only restriction

on the values returned by other read operations is that they must be values

which could be written to the register.

schedule the sequence of actions in an execution of a register implementation, in

the order in which they occurred in the execution.

self-oblivious A generic operation OP is self-oblivious if there exist instances op

1

and op

2

and sequences s

1

and s

2

, where s

1

is a pre�x of s

2

, such that whenever

s

1

� op

1

and s

2

� op

2

are legal, there exists an instantiation of s

2

(only possibly

changing return values of operations, implying an instantiation of s

1

) such

that s

instantiated

1

� op

1

� (s

2

� s

1

)

instantiated

� op

2

is legal, where s

1

� (s

2

� s

1

) = s

2

.
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sequential consistency a property of shared objects which requires a legal se-

rialization of every execution such that for every process, if operation i and

operation j are executed by that process in the order operation i before op-

eration j, then operation i precedes operation j in the serialization.

sequential speci�cation A sequential speci�cation for an abstract data type de-

scribes the operations that can be performed on the objects of the type, along

with all possible legal orderings of the operations. These legal orderings are

given as sequences.

serialization a sequence formed from the call events and response events of an

execution in which each response event occurs immediately after its matching

call event.

shift to change the times at which all events in an execution occur by the same

amount, or to change the clock function of a process by adding a certain

amount to it.

slow describing an operation with worst-case completion time of 
(d).

step A step of a process is a tuple containing information about what the process

is doing. This information consists of the process' current state and next

state, the current clock time at the process, the current interrupt event, the

next set of response events, the next set of message send events, the next set

of timer set events.

timer event indicating that a timer has gone o� at a process at a given time. It

is of the form timer(p; T ), where p is the process at which the timer went o�,

and T is the time (according to p's clock) at which the timer went o�.

timer set event indicating that a process needs a timer to go o� at some point in

the future. It is of the form timerset(p,T ), where p is the process setting the

time, and T is the time (according to p's clock) at which the timer should go

o�.

view The view of a process in its history is the sequence of steps that it takes in

its history, arranged in ascending real-time order. The view does not contain
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the times when the steps occurred.
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