
Texturing Surfaces

Using Reaction-Diffusion

TR9~·035
June 1994

Greg Tt•rk

Department of Computer Science
l: ni,·ersity of :'\onh Carolina at Chapel Hill
Chapel Hill, :\C 21599-3175

[;.\Cis <L'l Eq11al Opportunity/ Affirmative Action Institution.

Texturing Surfaces Using Reaction-Diffusion

by
Greg Turk

A dissertation submiued to rhe faculty of The University of
Nonh Carolina at Chapel HiU in panial fulfillment of the
requirements for the degree of Doctor of Philosophy in the
Depanment of Computer Science.

Chapel Hill
1992

Approved by:

:!:~

Reader: Turner Whitted

... 199:!

Greg Turk

ALL RIGHTS RESERVED

GREG TURK. Texruring Surfaces Using Reaction-Diffusion (under the direction of Henry
Fuchs).

Abstract

This dissenation introduces a new method of creating computer graphics textures that is
based on simulaling a biological model of pa11em formation known as reaction-diffusion.
Applied mathematicians and biologistli have shown how simple reaction-diffusion systems
can create pan ems of spots or stripes. Here we demonstr.lte that the range of patterns created
by reaction-dtffusion can be greatly expanded by cascading two or more reaction-d iffusion
systems. Cascaded systems can produce such complex paucms as the clusters of spots found
on leopards and the mixture of spots and stripes found on ccnain squirrels.

This disscnalion also presents a method for simulating reaction-diffusion systems directly on
the surface of any given polygonal model. This IS done by creating a mesh for simulation that
is specifically fit to a p<tnicular model. Such .a mesh is created by first randomly distribuLing
points ovcnhc surface of the model and causing these pomts to repel one another so that they
are evenly spaced over the surface. TI1en a mesh cell is crea ted around each point by finding
the Vorono• region for each pomt within a local planar approximation 10 the surface.
Reaction-diffusion systems can then be simulated on this mesh of cells. The chemical
concenrrauons resulting from such a simulation can be convened to color values tO crea te a
texture. Textures erentcd by simulation on a mesh do not have the problems of texture
distonion or seams between parches that are arofacrs of some other methods of texturing.

Two methods of rendering thes;: synthetic textures are pres;:nred. The first method uses a new
surface of triangles that closely matches the original model. but whos;: veniccs are taken from
the cells of the simulauon mesh. These venices are assigned colors based on the simulation
values. and this re-Lilt:d model can be rapidly displayed on a graphics workstation. A higher­
quality image can be created by eomputingeach pixel's color value using a weigh ted average
of the chemical coneenrration at nearby mesh points. Using a smooth cubic weighting
function gives a satisfactory reconstruction oi the underlying function specified by the values
at the mesh pointS. Several low-pass filtered versions of the texrure are used to avoid aliasing
when the textured object covers a small ponion of the screen. The propercolorvalueat a pixel
is found by selec£ing from the appropriately filtered level.

• 111 •

Acknowledgments

I thank Henry Fuchs for giving me the freedom and the encouragement to pursue the research
rhatled to this dissertation. I am grateful for the guidance that Alben Harris gave to me about
issues in developmental biology and for the many pleasant conversat ions we had on the
subject. I thank Turner Whined for his advice on technical issues 111 computer graphics .
especially during the critical time when I was first preparing an article abou1 this work. I also
thank James Coggins and Jonathan Mar>halJ for their excellent suggestions for improving
this dissertation.

I thank the many friends that have offered help and cncoumgemen1. In particular 1 thank
David Banks. David Ellsworth. Sieve Molnar, Carl M ucller, Marc Olano. Mark Parris, Penny
Rhcingans. and Brice Tebbs. These are 1he people that made my years at UNC a joy.

I thank Mary McFarlane for !he love and patience she ha~ shown through the often d ifficult
process of fimshtng th1s dissenanon.

Finally, J thank my parcniS for the love, understanding and encouragement thnt they have
shown throughout my educa1ion.

• IV •

Figure Credits

Some of the figures in this dissertation were made with the generous help of others. f thank
all of them.

Special thanks are due tO Marc Olano. Carl Mueller, and Andrei State for helping me during
the last few weeks before my defense. Marc Olano created Figures 1.6. I. 7. and 1.8. Carl
Mueller made Figures 1.2. 1.4. 1.5. 5.7, 5.8. and 5.9. Figure 2. 1 was drawn by Andrei State.
Figure 5.2 is re-printed from Paul Hcckbcrt's Mas ter's thesis with his pcnnis~ion. Figures
1.3. 1.6. 1.7. and 1.8 were created using a version of Photorealistic RenderMnn that was
donated ro UNC by Pixar (thanks to Tony Apodaca).

Thanks goes to Rhythm & Hues for the horse model that appears in many of the figures. The
sea-slug model of Figure 5.13 tS courtesy of Apple Computer's Vivarium Program. The
giraffe model of Figures -1 .14 and ~ . 15 was created by Steve Speer. The minimal surface in
Figures 5.22 and 5.23 was created by Jan1cs T. Hoffman, and is based on a mathematical
description due to Cclso Costa, David Hoffman and William Meeks HI.

- v -

Contents

I S yn the tic Texturing 1
1.1 introduction !
1.2 Overview of Dissertation .. 3

1.2.1 Guide to Related Work4
1.3 A Definition of Texture with Examples .. 5
1.4 The Three Steps to Texturing (Previous Work) 9

1.4.1 Texture AcquisJUon I 0
1.4.2 Texture Mapping 11
1.4.3 Texture Rcndering l2

1.5 An Idealized System .. 14

2 Pattern Formation in Deve lopmental Biology 16
2. 1 Tntroduciion to the Cell 16
2.2 Animal Development 18
2.3 Cell Actions ... 18

2.3.1 Cell Division 19
2.3.2 Shape Change 20
2.3.3 MigraLion 21
2.3.4 Materials from Cells: The Cell Matrix. Hormones and Morphogens 21
2.3.5 Cell DeaLb 22
2.3.6 DcterminaLion 22

2.4 lnformation that Guides a Cell 23
2.4.1 Chemical Messages 23
2.4.2 Haproracric Gradients 24
2.4.3 Electric Fields 24
2.4.4 Srructurallnformation and Mechanical Forces 25
2.4.5 Cont.act Inhibition 25
2.4.6 Internal State of Cell 25

2.5 Pauem Formation 26
2.5.1 Gradient Model 27
2.5.2 Reaction-Diffusion 28
2.5.3 Pancrns Created b) Chemotaxis 29
2.5.4 Mechanical Fonnauon of Patterns 29

2.6 Summary 30

- V1 -

3 Reaction-Diffusion Patterns 31
3.1 The Basics of Reaction-Diffusion Systems 31

3.1.1 A Mathematical Description of Reacrion Diffusion 32
3. 1.2 Simulation of Reaction-Diffusion 34

3.2 Reaction-Diffusion in Biology (Previous Work) 37
3.3 Ca~cade Systems 39
3.4 An Interactive Program for Designing Complex Panems40

3.4. I Creating a New Panem41
3.4.2 Panems Created by Cascade 43

4 Simulating Reaction-Diffusion on Polygonal Surfaces .46
4. I Simulation on Jo ined Patches (Previous Work)47
4.2 Requirements for Simulation Meshes 49
4.3 Even Distribution of Points over a Polygonal Surface 50

4.3.1 Random Points Acros:- a Polyhedron 50
4.3.2 P01n1 Rclaxauon , 52

4.4 Generating Voronoi Cells on the Model 55
4.4.1 Meshes for Anisotropic Diffusion 58

4.5 Simulation on a Mesh 59
4.6 Pattern Control Across a Surface ... 61

4.6. 1 Slripc Initiation 6 I
4.6.2 Parameter Specification Using Diffusion 64
4.6.3 Using Curvature to Specify Parameters 64
4.6.4 Furure Work in Pattern Conrrol.. 67

5 Rendering ReacLion-Diffusion Textures 68
5.1 Rendering Lmage-Based Textures (Previous Work) 68

5. 1. I Transformation Berwcen Texturt! Space and Image Space 69
5. l.2 Aliasing and Filtering 70
5.1.3 Two Texture Sampling Methods: Point Sampling and Mip maps 74

5.2 Interactive Texture Rendering 77
5.3 Using Surface Re-Ttling for Rapid Rendering 78

5.3.1 Re-Tiling using Constrained Triangularion 80
5.3.2 Macro-Displacement Mapping 84

5.4 High-Quality Rendering of Reaction-Diffusion Textures 85
5.4.1 Sparse Interpolation on Polygonal Models 85
5.4.2 Diffusion of Colors for Pre-Fillering 88
5.4.3 Filter Quality 91
5.4.4 Bump Mapping 96

5 .5 Hierarchy of Meshes 97
5.5. I Building Nested Point Sets 97
5.5.2 Sharing Pa11ems Between Levels in Hierarchies 99
5.5.3 Hierarchies of Polygonal Models ... 100

· vii ·

6 Conclusjon ... 1 02
6.1 Summary of Contributions ! 02
6.2 Future Work 103

Appendix A: Cascade Language] 04
Appendix B: Reaction-Diffusion Equations] 06

B.l Turing Spols ! 07
B.2 Meinhardl Spols 108
B.3 Meinhardl Stripes !! 0

Appendix C: Cascaded Systems 112
References ... 118

• \'111-

List of Illustrations

Figure 1.1: Stripe texture created using reaction-diffusion. Top is an umexmre{i
horse and the bouom shows zebra stnpes on the same mode l. 2

Figure 1.2: Light interacting with perfcclly shiny surface 5
Figure 1.3: Example of environment mapping. The Utah Teapot

reflecting the UNC Old Well .. 6
Figure 1.4: Dtagram of how hght interacts at a locauon on a diffuse surface 7
Figure 1.5: Using bump mapping to modify surface normals 7
Figure 1.6: Example of bump mapping (center) und dtsplaccmcnt mapping (right) 7
Figure 1.7: Trunspn.rent texturing 1-i

Figure 1.8: Texturing a cubic surface pa tch '>
Figure 1.9: Aliascd checkerboard (left) and anu-aliascd vcrs1on (nght) I J
Figure 2.1: Cell diviston transforms egg mto morula and then tnto blastula 19
Figure 2.2: Gastrulation 20
Figure 2.3: Formation of the neural mbe . .. 20
Figure 2.4: Hydra . .. 21
Figure 2.5: Pattern of chemical concentration from renction-<liffusion system 27
Figure 3. 1: A row of cells. Molecular bridges allow morphogens to diffuse

between neighboring cells .. ~.] I
Figure 3.2: One-dimensional example of reacuon-diffusion. Chemical

concenrrarion is sho"n in intervals of .tOO time steps 33
Figure 3.3: Reaction-diffuston on a square grid. Large spots, small spots,

cheetah and leopard panems 36
Figure 3.4: Irregular spots. reticulation. random stripes and mixed large·

and-small stripes 36
Figure 3.5: User interface of Cascade program 42
Figure 3.6: A variecy of panerns created by Cascade ~ 44

Figure 4.1: Isotropic and anisotropic pan ems of spots48
Figure4.2: Choosing random point in triangle. Top: s + t ~ l. Bottom: s + r > I. 51
Figure 4.3: Random points in plane and the same points after relaxation 52
Figure4.4: Mapping nearby point Q onto plane of point P. Left shows when

Q is on adjacent polygon. Right shows more remote poin t Q S4
Figure 4.5: Amount of diffusion between adjacent cells depends on size

of shared boundary 56
Figure 4.6: Voronoi regions of the points shown in Figure 4.3 56
Figure 4.7: Spot panem from anisotropic diffusion on test object. 59
Figure 4.8: Diffusion between cells on s-quare grid (left) and between Voronoi

regions (nght) 59

- IX •

Figure 4.9: Reaction-diffusion on test object. Top shows Voronoi regions,
bouom shows chemical concentration as color 60

Figure 4. 10: Zebra stripes on horse model, .created by simulating reac tion-
diffusion on surface ... 62

Figure 4.11: Suipes are 11lillated at the head and hooves .. 62
Figure 4.12: Resul1 of flood-fill over horse model from key positions 63
Figure 4.13: Values from Figure 4.12 after beang smoothed by diffusion 63
Figure 4.14: Approx:imation of curvarure over giraffe model. Areas of high

curvature arc red and areas of low curvature are bluc 65
Figure 4.15: Size of spots on giraffe model are guided by the curvature estimate

shown in Figure 4.14 ... 65
Figure 4.16: Curvature along a path in the plane (lefl) and curvature

approximation used at venices 66
Figure 5.1 : Mapping from texture to image space ... 69
Figure 5.2: Conceptual model of the processes involved in rendering a texture 72
Figure 5.3: Two-dimensional illustr.uion of the rendcnng process 73
Figure 5.4: Pixel's area mapped mto texture space (left) nnd ahc appropriate

fihenng eompuacd from 1he mip map (right) .. 76
Figure 5.5: Original polygons of a horse model (top) and a re·tiled version of

the same model (bonom) 81
Fagure 5.6: Re-tiled horse model. where veniees are colored based on a

reaction-diffusion pattern 82
Figure 5.7: Cons1111ined lriangulauon 82
Figure 5.8: Mumaltessellation of a face to incorpora1e mesh points 82
Figure 5.9: Removing an old venex from :a mutualtesseJialion 83
Figure 5.10: Macro-displacement bumpy horse 84
Figure 5.11: Weigh1ed average at Q of 1wo nearby sample points 86
Figure 5.12: Leopard-horse. rendered us1ng the we1ghred-average of nearby

mesh values 87
Figure 5.13: Increasingly blurred versions of a texrure on a sea slug 87
Figure 5.14: Frames from animation that was anti-atiased using multiple

band-limited versions of a smpe texrure 90
Figure 5.15: Frame.s from animation wi1h no anti -aliasing 90
Figure 5.16: Spatial (top) and frequency (oouom) graph of the cubic weighting

function w 92
Figure 5.17: Spatial (top) and frequency (oonom) graph of a Gaussian ftlter 93
Figure 5.18: Spatial (top) and frequency (oorrom) graph of a box filter 94
Figure 5. 19: Bumpy horse crea1ed by penurbing the surface normals based on

a reaction-diffusion pattern 96
Figure 5.20: A hierarchy of poims on a regular grid 98
Figure 5.21: An irregular set of nested poims in the plane 98
Figure 5.22: Nes1ed poims on a minimal surface 99
Figure 5.23: Three re-tiled versions of a minimal surface with texruring. From

lef110 right the models contain 16000.4000. and 1000 veruces 101

- X •

1 Synthetic Texturing

1.1 Introduction

This dissertlltion describes improved methods for computer generation of many of l11e
patterns found on animal fur. scales and skin and shows a method for placing these patterns
on complex surfaces. Examples of such patterns include the clusters of spots on leopards and
jaguars called rosettes. the large. plate-l ike spots on giraffes and the stripes-within-stripes
found on the lionfish. This dissenation explores the patterns that can be created by simula ting
a chemical mechanism called reacllon·dljfusion. This is a process in which severa l chemicals
diffuse over a surface and react with one another to produce stable patterns of chemical
concentration. Reaction-diffusion is a model of pattern formation that developmenta l
biologistS hnve proposed toexplrun someof theeell patterns that are laid down during embryo
development. This dissenation demonstrates that simulauon of a reaction-diffusion system
can be used to create synthetic twwe, that is. patterns on the surfaces of computer models.
As an example of this, the top of Figure 1.1 shows a horse model with a white surface and
the bot1om shows this same model with zebra stripes created by reaction-diffusion.

My thesis is:

Noriceably improved biological re.xrures on complex swfaces can be genera red
by first tessellating a surface inro a mesh of fairly uniform regions and then
simularing a reaction-diffusion sysrem on that mesh to create a final rexrure.

The field of computer graphics has been quite successful at creating models and images of
man-made objects. Most manufactured objects have surfaces that are fairly smooth and that
have very little color variation, and such objects are captured well by current graphics
techniques. More of a challenge to computer graphics is simulating natural scenes that
contain surfaces with rich patterns of color and surface detail. Nature abounds with complex
panerns: the ruggedness of a IDOUntain range, the cracking pattern o f tree bark, the blades of
grass in a field, the veins of a leaf, the pattern of bristles on a fly. This dissertation is directed
towards capturing some of the richness and complexiry of patterns found in nature. The
patterns presented here take us a step closer to creating convincing natural scenes by
simulating a biological model of pattern formation (reaction·diffusion) to create an array of
textures that resemble patterns found in nature.

The advantages of using simulations of reaction-diffusion to create patterns are both in the
natural look of the patterns and also in the natural way in which these textures can be fit over

Figure 1.1: Stripe rexrure created usmg reaction-diffusion. Top rs an umexrured
horse and the bonom shows zebra stripes on the same model.

the surface of a particular modeL This gives substantially improved images over previous
procedural texturing methods forcreanng tmages oianimals that have color variation across
their fur or skin.

What advantages might there be of using a model that is biologically inspired to creme
realisttc tmages? Of1en the computer genera1ed images lha1 look the most real are those that
take tnto accoum as much knowledge as is po~sible about the real world. For instance. 1he
htghlightson shiny surfaccsongtnally we recreated usmg ad-hoc formulas for light reflecuon

2 -

(?hong 75]. !'\ow more convincing highlightS are made by takmg mto account the
microscoptc features of a surface (Blinn 771 [He et aJ 91). Computer graphtcs researchers
learn about optics and the propemes of matenals to bener simulate how light illummates
~urfaces. As another example. consider the con' mcmg images of plants that have been
created by taking tnto account the measured stzes and growth pancms of the leaves and
brnnche~ of specific plants (de Reffye 88]. Here again. more knowledge of the real world
results 1n more convmcing 1mages. S1mtlarly. to create better looking synthetic pattcms. we
cun try to understand how patterns of color form in nature. In particular, biologists have
shown how reaction·dtffus1on systems can produce a wide number of the patterns that are
found on animals: these patterns can then be used to texture the surfaces of objects in
computer generated scenes.

There arc three maJOr tssues in texturing tha[gu1de much of the computer graphic~ wort.. on
tc~ture~ u~crcontrol. image rcahsm and 1magequahty. Usercontrali~concerned wuh wh;ll
influence users can exe.n over the linaltmage. Although "'e would hke not to burden the u'cr
wuh roo many tasks and choice~ wh1le crcaung a te:\tured obJecl. they should be able ro gutde
the look and placemem of the rexrure. The comrols pro,·aded ro rhem should be simple and
inllllllVC,JUSI as the: acceleraror and brake~ an a car arecasy to undcrsrand and to u~e. Another
tmponant tssu.: an texrunng is realism The panems of the textures should look ns close as
p<•.:-~•ble to textures in rhe real world These textures should not be su~rched or d1stoned and
should not show unnatural seams. Related to rhe issue of realism is image quality. The mo~L

imponunt aspect of texture quahty in 3 final image ts how wellrhe tex1ure ts filtered. 'lllat
is. how well is !he rexture represented on the screen. especially when rhe tex ture is magnified
or compressed Texture realism. quality and u~er control are assues rha1 wtl l come up often
an thi~ das~enauon.

1.2 Over view of Dissertation

Thts disscnation demonstrates thar reacuon-dttTuston can be integrated with each of the
stage~ needed to create an image thar conuuns textured objects. The disscnation is organized
as follows:

Synthetic Texturing (Chap1er l): This chapter gives a definition of texrure and outlines the
rhreesreps needed tocrea1e a synthetic texture. Much of the li!eratureon textures in computer
graphics is surveyed here. An idealized ~ystem is outlined for creating textures ustng
reaction-diffusion. This is a system that may be built in the future using the techniques
presented in this dissenation. Chapte~ 3. 4 and 5 present new results that take significant
steps towards realizing such a textunng system.

Developmental Biology and Reaction-Diffusion (Chaprer 2): This chapter gtves an
overvtew of vanous models of animal development. \tuch of this chapter is devoted to t"o
vacws of the cell: cell actions and the datTerenr forms of iniormation a"ailable ro a cell Thas
gtvcs rwo perspecuves that are useful for undersrandmg the formauon of panerns m a
dcvelopang embryo. and several panc:m formauon models are d1scussed. ln pantcular, th1s
chapter mtroduces the reacuon·dtffu,ton model of panem formation .

. 3 -

Reaction-Diffusion Patterns (Chapter 3): This chapter is concerned with creation of
specific patterns using reaction-diffusion. It begins by providing a more detailed view of the
literature on reaction-diffusion in developmental biology than is given in the previous
chapter. It then demonstrates that a cascade of more than one reaction-diffusion system can
be used to create a variety of panems found in nature. Using multiple reaction-diffusion
systems to create panerns is a new resuh presented in this dissenation.

Mesh Generation for Reaction-Diffusion (Chapter4): This chapter presentS a method for
creating a reaction-diffusion texture that is milored to fit a given surface. This is a central
contribution of this dissermtion. The chapter shows that a fairly uniform mesh of cells can
be created over an arbitntry polygonal model. Such a mesh can be used tO Simulate reaction­
diffusion systems for texture creation. To build such a mesh, frrst a set of poinL~ is evenly
distributed over a model by causing the points to repel one another. Then the final simulation
mesh is constructed by bUilding the Voronoi reg10ns surrounding each of these points. A
reaction-diffusion simulauon can then be cnmed out over this mesh to produce patterns of
chemical concentration. The final pa11ems of concenmmon fi t the geometry of the given
model. Also. this method allows users tO control the way in which feature size or other
parameters arc to vary over the surface of a model.

Rendering Reaction-Diffusion Textures (Chapter 5): This chapter describes two new ways
of rendering reaction-diffusion textures. Textures are created by interpreting as colors the
patterns of chemical concentration over an irregular mesh whose creation was described in
the previous chapter. The high-quality (but r.:latively slow) method averages the colors of
nearby mesh points to give the color at a pnnicular ptxel. This averagtng of mesh points is
based on a cubic weighting function that falls off smoothly with distance. A faster (butlower­
quali ty) way to render such textures ts tore -tile a model based on the simulation mesh and
color the triangles from there-tiling to creme the pan ern. Creating a hierarchy of meshes can
speed up both these methods of rendering.

1.2.1 Guide to Related Work

Because this dissenation touches on a number of issues in graphics. there are many re lated
articles in the computer graphics literature. For ease of understanding, the description of a
particular anicle is placed at the beginning of the chapter where the article's resultS are the
most relevant. Chapter I describes previous work on texture synthesis and texture mapping.
Chapter 2 gives pointers into the literature of developmental biology that relates to pattern
formation. This is standard material in developmental biology that is organized in a manner
that is most relevant to paHern creation for computer graphics. Chapter 3 gives an overview
of the work done on reaction-diffusion pan ems in the biology literature. Chapter4 describes
other work done in computer graphics on mapping of reaction-diffusion textures [Witkin and
Kass 91]. Chapter 5 covers the literature on texture filtering.

- 4 .

1.3 A Definition of Texture with Examples

Before discussing the details of synthetic texruring it IS useful to have a working definition
of texture in the context of creating images by computer:

Texture is any change in stufar:e appearance across an object that can be effectively
separated from the gross geometry of chat object.

The most stn~ightforward way that a surface's ap~arance can change IS to have its color vary
at differem positions on the surface. A picture on the wall of a living room is a good example
of a texture that varies the color of a surface. The picture can be separated from the description
of the room's geometry by storing the picture in a two-dimensional army of colors.

Computer-generated textures "ere first used in early flight simulators built by General
Electric for NASA !Schachter 83]. The motivation for using textures in these simulators was
to give cues for judging distances during night tnlining. The first of these simulators.
completed in 1963. displayed no more than a patterned ground plane and sky in perspective.
These wert two·color textures created by combimng four levels of square mosaic patterns
using modulo 2 addition. The more detailed pattern components faded with distance, but no
ane.mpt was made to smooth the edges between the square component~ of the texture. This
resulted in distnlctingjagged edges in the texture. Textures provide impon.nnt visual cues in
night training, and nearly all modem flight simulators incorporate textures in scene
generation.

Texture mapping was introduced to graphics in its modem form by the work of Ed Catmull
[Cat mull 74]. Catmull's work centered on the dtsplay of objects that are described by cubic
surface patches. His algorithm for creating images used a deptlt·buffer, which is an array of
distance values for each pixcl1n the final1mage. The display algorithm divides patches into
smaller and smaller pieces umilthey are the size of a pixel. and then places the color of a small
patch into the final image if its distance is less than the currently stored depth in the depth·

observer~·-.
N

· .. · .. E

shiny surface

R ···
..... ~

reflected
object

Figure 1.2: L1ght mteracung with perfectly shiny surface .

. 5 .

Figure 1.3: Example of cnvu-onment mapping. The: Utah Ten pot
rcflecung the U:-\C Old Well

buffer. TI1c patches arc descnbed as cubic funcnons that map a square in :!D paramc:ter space
inw 3D positions. Textures are pl3ced on a patch by creating a correspondence between a
rectangular stored array of colors and this 20 parameter space. The parameter l!mm rorcJch
p3tch are kept during the subdivision process, and the texture color is avernged over t.hc~c
parameter ltmus tO gtve the color at a ptxel.

Textures can also be used to change surface properties other than color. For tnstance, textures
can be used to approximate the way in which light renects off a perfectly shiny surface. With
nurrored surfaces. light bounces off the surface much like a pool ball bounces off the side ot
a billiard table. This is shown in Figure 1.2, where we can find what light travels tn the
direction E tOwards the observer's eye by tracmg the path of a ray away from the surface tn
the renee ted djrection R. The color of the surface that !his ray would soi.ke is the color that
an observer would see at thts location on the mirrored object. Perforrrung this ray tractng t'
computationally expensive when compared wir.h the simple intensirycakulation used for the
diffuse surface [Whined 801. A simple and fa.st way to approximate this effect is given Ln

[B I inn and Newe IJ 7 6). We can make the simplif yi.ng assumption that the objects surrounding
the reflecting surface are far from the surface. We can then compute an env1ronmenr map
irom the viewpoint of the objecL The environment map is a collection of six rendered view'
of ihe world surrounding the object. one v1ew fo.reach face of a cube surround.ing the mirrored
object. Now when the mmored object is rendered, the environment map is consulted to find
the retkcted color instead oi performmg a costly ray trace through the world. Figure I 3
shows the use of environment mapping to simulate the effect of reflection on a shiny teapot.
Here again, surface appearance ts separated from geometry. in this case by stonng the ilistartl
environment in a texture.

- 6-

' 1 / _ Q _ light 'ource

/ I '

intensity= :-.1 • L

C a 1 (h)

(CJ td)

Figure 1.5: L '1ng bump mlpp•ng to mod1fy surflce normlb

Figure 1.6: E'ample of bump mapping (.:entcrland d1splacem~nt mappmg crigho.

- 7 -

Another propeny that a t~:-.ture can mod1iy IS the nonnal venor to the ;urfa.:e 1 Bltnn 7'1\]. T0

understand"' hat thi> wi tl do. we first need toexamme a stmple lighting model. Let us a,-;ume
1nat we haq: a surf act: thai isac:ompletel~ diffuse reOee10r.1h;u is. assume that light >tn kl ~g
the surface will be scanered equally mall dJiecuons. regardless of 1he dtrecuon of the ltght
-.nurcc. Figure I ..! shows a small piece of a surface, where the unit vector ,1\' pointo. m the
normal direction tdJrcctly outward from the surface1 and the un11 vector L po1nts mv.ards the
hgh1 For a totally dtffuse surface. the 1mensuy I of light leaving this surface in an) clrrecuon
1; propomc>nal to the dot productS · L. llu~ means that more light 1mpmges upon and leave'
a d1ffuse ~urface when the d1recnon of the light is nearly pomnng head-on to the \urface. It
the light IS near!) grazing a diffuse surface then the ~urface will catch and reflect vcrv lllllc
of the !tght.

\Vc arc now ready to see what change m appc!lJ'ance will occur when the ~urf.1cc nom1ab arc
changed based on a te~ture. Th~ 1dea of bwnp mappin~. descnlx:d m [Blinn 7)1], is thJt a t'-'O·
dimeminnal array of scalar values can lx: U$td 10 represent small height changes to a surf.u::c.
Blinn found that a surface can be made to look bumpy if the , urfacc normals are p~nurlx:d
bused on 1hese hctght values. and that the actual posi1ion of the ~urface doesn't need to lx:
altered to g1ve convmcing bumps. Figure 1.5 shows an example of th1s. Pan {al of the ltgurc
rcprc$cnt~ u one-dimensiona.l >lice of a flat su.rface. Pm (b) shows a hctght ticld that "Ill
modtfy the left surface. and pmlc) shows the new height that resuhs from pumng 1ogcther
pans (a) and (b). Part (d) shows the ongmal surface shape wnh the: modlficd surface noml:lls.
Rendering the surface usmg the modified surface normals produces patterns of light and dark
across the surface thai are convincingly like what actual bumps would look like. yet the
surface actually remams smooth Figure 1.6 shows an un-textured sphere on the left and a
bump mapped sphere m the center. hIS the change in the normal direction N as it is used in
the lighung model that gives the change in imensuy over the center surface. !':orice that the

figure 1.7: Transparent texturing.

- 8 .

;dhouctte or the .:emer surface I> sull 'mooth N:c:wse the geom.:uy h~s no: ~en cban;~c .

only the surfa<:e normals are altered dunng :he ltghling caiculations.

·\not her surface charactcrisnc that can be modtfi<:d b~ textures is rran~parency. Figure l 7
shov. s a translut·cnt sphere. an opaque sphere and a sphere whose transparency has been
modulated hy a stmptc texture. Gardner has u~e.d transparency-altenng textures to produc.:
rcalt\ltC unagcs of clouds [Gardner 85]

I r' textures can be used to change the color. rcnec<ion. normal direction, and rransparcnc::- of
a ~urface. then can texture~ also be used to modify the actual posmon of a surface'! The an<wcr
IS yes. and the techntque IS called displacement mappinf? [Cook 84]. The nght pon1on or
Pigure 1.6 shov. ~an a sphere " hose surface posmon has been altered by ad1splaccmcnt map
1'-'oticc that not only does the intens1ry vary over the surface asH does with bump mappmg.
but the silhouettes are also bumpy. Thts 1s because the posHton of the surface has been
changed by a dbplacemem map prior to h1dden surface el1mmation. Displacement mupptng
~cpar;ues the fine geometnc detail of an ObJeCt from us gross shape. :-\oucc that displaccmc nt

mappmg satistie~ the defimuon oi texture g1vcn above.

1.4 The Three Steps to Texturing (Previous Work)

The process of textunng n surface can be broken down tnto three stages: I J texture
acquisition, 2) texture mapping. and 3) texture rendenng. As an example of thc~c three
smges. constder the cub1c surface patch 10 the left portion of Figure 1.8. The 1mn~c 1n th<:
middle of this figure was captured using a dignal camera. Next. the mapping stage Ct)nsi;t,
of finding a funcuon that maps pointS m the texture's space onto points of the surface be1ng
texwred. In this case. the texrure · sspacc is the t'-' a-dimensional rectangle that contains color
values of the 1mage. This space can be mdexed by a twcrdimensionaJ vector (u.v). The cub1c

Figure 1.8: Texturing a cubic surface patch .

. 9 .

surface is a patch that is defined by mapping paramelric values in the unit square [0.1] x [0,1 j
into three-space. Positions on the patch correspond to two-dlmensional coordinates (s.t) in
th is unitsquarc. The texture can be mapped omo the surface pa~ch simply by identifying the
texture coordinates (u.v) with the parametric coordinates (s, t). Finally. the actual rendering
of the texture must bring together the texture definition. the texture mapping function and the
reflective properties of the surface to create a final textured image, shown at right in the figure.

Below we will discuss each of these stages of texturing. Notice that decisions about one of
the stages will often influence the methods chosen for the other stages tn the texturing process.

l.4.1 Texture Acquis ition

!low a texture is acquired for a given object depends on the kind of texture being used. There
are currently two broad classes of textures recognized in computer graphics: image-based
textures and procedural textures. Lmagc.-bascd textures are stored arrays of color values that
represen t a particular picture orpaucm. Using a digital paint program is a fairly common way
of defining image-based tcxtun:s. Another way tocapturean image IS to usc an image scanner
or a digital camera. The photographic image of Figure 1.8 is an example of this. Another
method of creating an tmage-based texture tS tO render a synthetic tmnge and usc the rcsulung
pic:wrens a texture. All of these methods create: !\YO-dimensional arrays of gray-scale or color
vatues that represent a picture or a pauem.

Quite a different approach for defimng a texrure is to gtve a mathematical description of a
pauern. Such a texture is known as a procedural re.nure, and creating such textures is often
called rexmre synrhesis. Several methods have been proposed that use composition of
various functions to generate texrures. Gardner introduced the idea of sunmting a small
number of sine waves of different periods, phases and amplitudes to create a textu re [Gardner
84]. Pure sine waves generate fairly bland textures, so Gardner uses the values of the low
period waves toperrurbtheshapeofthe higher period waves. This method gives textures that
are evocative of pan ems found in nature such as those of clouds and trees. Perlin uses band­
limited noise as the basic function from which roconstructtextures [Perlin 85]. He has shown
that a wide variety oftexrures (srucco. wrinkles, marble, fire) can be created by manipulating
such a noise function in various ways. [Lewis 89] describes several methods for generati ng
noise functions to be used for texture synthesis.

Blinn and Newell briefly described how a texture can be created by specifying a two­
dimensional freque-ncy spectrum and taking i.ts inverse Fourier Transform to make a final
pattern [Blinn and Newell 76]. Lewis expanded on this idea to make a method of creating
textures that is halfway between digital painting and procedural texture creation [Lewis 8-1).
He demonstrated how a user can paint an ·'image" in the frequency domain and then take the
Inverse Fourier Transform to create the f tnal texture. He shows how texmres sue h as canvas
and wood grain can be created by this method.

None of the methods for texture synthesis described above attempt to model the actual
physical processes that produce panems in the real world. Some of the textures generated

. 10-

by function composition produce images that look quite rea!, but some physical phenomena
are likely to pro'e too difficult to mimic "nhout modeling the underlying processes that
creme the texture. One example of thi~ rs the "-ood solid texture demonstr.~ted by Peachy that
mrmics the way trees create concentric nngs of dark and hght wood (Peachy 85(. Another
example of modelling natural processes arc the"' ay different wave functions can be summed
to produce the effect of water waves (Schachter 801 (Max 81). Still another example of usmg
physical simulation for texture creation is the dynamic cloud pancrns of Jupiter in the movie
20 I 0 (Yaeger and Upson 86]. Another example of how physical simulation cnr\ be used to
generate textures is the texture synthesis method using reaction-diffusion presented in th1s
disscnation. Creating patterns by phy~rcal Simulation of natural processe~ IS a r;Hhcr
involved method of defining textures procedurally.

An imponam rssue that arises in mal.tng procedural textures is how to gu1de the synthcsas tO
gave a de~ a red panern. For instance. \I.e nught want to use Gardner's sum·Of·sancs to make
a tC'(ture of carrusclouds. Ho"' man) sane funcnons should we use and how large should we
make the sancwave amphmdes? Typically. "'e would find ourselves trying out different
values for pam meters of the texture f uncnon unnl we get a pan em we like. We would lake
to get a "feel" for which parameters changed particular aspects of n procedural texture
funcnon. This kind of parameter exploranon can be made more pleasanttf the textures can
he creuted and displayed rap1dly For an stance. some: proceduraJ textures can be generated
m a rntc of several frames per second on the Pixel-Planes graphtcs engine (Rhoades ct al92(.
Rhoades and his co-au thors describe u system in which a user can change texture pllrumctcrs
and cause dynamtcal updacing or textured objects by turning a joystick knob or moving a
slider bar. The issue of user pnmmeter control must be addressed for any procedural method
of texture creauon. and we will return to th1s 1ssuc when we look at the parameters for
reaction-diffusion textures.

I .-4.2 Texture :.tapping

Once a texture has been created. a method IS needed to map it onto the surface to be textured.
Often an image texture is represenred as a t\1. o-dimensaonal array of color values. and one can
think of such a texture as resting in a rectangle (O.m] x (O,n) in the plane. Mapping these values
onto a complex surface is not easy, and several methods have been proposed to accomplish
this. A common approach is to define a mapping from the unit square to the natural coordinate
system of the target object's surface. For example. latitude and longitude can be used to
define a mapping omo a sphere, and parametric coordinates may be used when mapping a
texture onto a cubic patch fCarmull74).

In some cases an object might be covered b~ muluple patches. and in these instances care
must be taken to make the pauems match at the common seams of adjacent patches. For
example, suppose a model of a co"' ·s body "as composed of fhe large patches. one patch
for each of the four legs and a fifth patch for the rest of the body. Further suppose there are
sepnmte dappling texrures for each of these patches. A leg patch must have a pa11em that
matche\ uself where opposite edges JOin together from the patch wrapping around the leg.
Funhermore. the pauerns of each leg must match the panern of the body patch wh~re the leg

· I I ·

meets the cow's body. A successful example of matching textures across patches has been
shown for the bark texture of a maple tree [Bloomenthal 85].

An important issue in texrure mapping is finding a way to give the user control over how a
texture is placed on a surface. One method of mapping that offers the user some amount of
control is to create a projection of the texture onto the surface of the object. An example of
this approach is to allow the user to orient the texture rectangle tn 3-space and perform a
projection from this rectangle onto the surface [Peachey 85]. Related to this is a two-step
texture mapping method given by [Bier and Sloan 86]. The ftrst step maps the texture onto
a simple intermediate surface in 3-space such as a box or cylinder. The second step projects
the texture from this surface onto the target ObJeCt.

A different method of texture mappmg ts to make use of the polygonal nature of many
gi"Jphical models. This approach was taken by [Samek 86]. where the surface of a polygonal
object is unfolded omo the plane one or more umes and the average of the unfolded positions
of each vertex is used to determine: texture placement. A user can adjust the mapping by
specifying where to begin the unfolding of the polygonal object.

Each of the above methods have been used wnh success for some models and texrures. There
are pitfalls to these methods, however. Each of the methods can cause a texture tO be dis toned
because there is often no natural map from a rectangle to an object's surface. This ts a
fundamental problem that comes from dcfinmg the texture pattern over a geometry that is
different than that of the object to be textured. One solution to this problem can be found in
a sub-class of procedural textUres known as solid textures.

A solid rexmre is a color funcuondefined over~ pomonof3-space, and such a texture is easily
mapped onto the surfaces of objects [Peachey 851 [Perlin 85]. A point (x,y.z) on the surface
of an object is colored by the value of the solid texture function at this point in space. This
method is well suited for simulating objectS that are formed from a solid piece of material such
as a block of wood or a slab of marble. Solid texturing is a successful technique because the
texture function matches the geometry of the material being simulated. nan1ely the geometry
of3-space.

1.4.3 Texture Rendering

The purpose of texturing is to create images of synthetic objects that are visually enhanced
by the surface patterns given by the textures. Rendering a te.-ttured object is the process of
bringing together the information about the texture, the mapping of the texture and the
object 's geometry to create a final image. Much of the work in te.-~turing has concentrated
on minimizing the visual artifacts that can arise in texrure rendering.

The most noticeable rexruring artifacts result from a phenomenon knovm as aliasing.
Aliasing occurs when high- frequency patterns appear as if they are lower-frequency patterns.
This can be seen in the checkerboard at the left of Figure 1.9. The moire patterns near the
horizon illusrrare that the high frequencies from many squares bunched close together can

- 12 .

-- •

Figure 1.9: Ahasc:d checkerbOard lef:l 3nd anu·aha>ed ,cr,ion (nghtl

lool. a>though there: is alo.,.,er·frc:quenc} pattern "'llh fev.er features 1n a gwen rc:g1on 1l1c
jagged edges between the squares IS 3nothc:r e11ample oi ahal>mg. One way to mimm1zc
alia~1ng am filets ts to filter the texture:. avcrag1ng the color values in an area of the tnturc to
detemune the color at a given p1xel. There: 1., a large body of literature on texture filtcnng.
and·good starung po1nts in thts htc:raturc are (Hcckben 891 and [Mitchell and :-lcLr;tv.tll Xlll

One way 10 thmk aboutlhe 1ssue of texture tihcnng 1~ to consider what needs to be done tn
fanhfully render a texture: tn e~ueme)Cene tnSt311Ce> For example. constdcr wh:ll)hnuiJ
happen when a textured ObJect IS far away tn a g1~c:n ~ccnc so that 11 covers very few p1xeh
in the 1magc. In tlus case, m3Ily texture elements)hould contnbute to the color of a smglc
p1xel. A\eragtng the color values from m3Il~ texture elements me3Ils filtenng the tc~turc
A filter that a\'crages together m3Ily color values from a texture IS l..no~~< n as a decmUltt .. n
jilcer. The opposne exrreme IS "'hen 3Il ObJect 1s 'cry ncar the ''~ewer tn a scene. so that .t
s1ngle texture element ma} cover m3Il) p1xels 10 the final image. The surface pattern v. 11lloolo.
blocky 1f care IS not taken. rcvealmg the discrete nature of the stored texture. Avcragrng
between several nearbycolorvaluesc3Il make the underlying gnd of the texture less appMent
A filter that reconstructs a color value from very few adjacent texture elementS IS called a
maRncJicarion ;ilrer.

Theextremesofmagnification and decimation do not give the whole storyoftexrure filtenng.
There are many 1ssues to consider "'hen deetd.mg ho"' texrure values should be averaged
together tocont:nbute to a final1mage. Th1s topiC w1il be considered in more detail in Chapter
5 a> a prehrrunary to how reacnon-<liffus1on textures c:3Il be rendered. A lithe 1ssuesdescnbed
above are relevant to rendenng of pauems cre.tted b~ reacuon-<ilffus1on.

. I ~ .

1.5 An Idealized System

Now that we have e)(amined the topics of texture syn thesis, mapping, and rendering, we can
consider how all these methods may be brought together in practice. This section describes
a session that a user might have with a hypothetical system for texture creation. This is an
idealized system for texturing objects using reaction-diffusion. The example will serve to
highlight the major issues involved in texturing a model v.'ith a reaction-diffusion panern. Let
us assume that a user has a polygonal model of a large cat and wants to fit a leopard spot pattern
on to this model. Traditionally. the user would create a spot pallern on a rectangular surface
(probably using a digital paim progrnm) and then painstakingly work to map this image
texture onto the surface of the cat. Using this traditional approach, the user would have
trouble avoiding visible seams when wrapping the texture around the legs and would also
encounter problems when trying to make the pattern uninterrupted at the junction between
the legs and main body. As an alternative to this method, let us see how we might use reaction­
diffusion to place a spot paucm on the cat model.

The first step IS to find a react•on-diffusion system or a cascade of such systems that produces
the desi red pauern of ~pot c lu~tcrs. The user picks a pauem that most closely resembles the
desired panc.rn fTom a catalog of cascade panems. Perhaps the spots look too regular. so the
user dec ides to increase the randomness in the underlying c hemical substrate. A simulation
of thi~ on a small grid gives the look the user wants, and now he or she begins to make
decisions about how the pattern's scale should vary across the model. The leopard should
have smaller spots on the legs and head than on the main portion of the body. The user
specifies this by selecting key points on the head and legs of an un-tcxtured image of the cat
and indicating that at these locations the spotS should be roughly three centimeters in
diameter. Likewise. key positions on the cat· s body are selected to have s ix centimeter spotS.
11tese parameters are automatically interpolated across the model's surface. and the values
arc bundled together with the parameters of the cascade process and sent to a program that
generates the final texture on the surface of tlhe cat. The program creates a mesh over the
surface of the model and then simulates the given reaction-diffusion process on the mesh to
create the spot pattern.

There are two ways that the resulting panern can be used to create a final image. The first
method is to create are-tiled version of the polygonal model based on the simulation mesh.
The polygons of this re-riled model are then colored based on the chemical concentration
given by the reaction-diffusion simulation. The user can view and manipulate this polygonal
model on a graphics workstation. For a higher quality image. the user can invoke a renderer
that has been enhanced to display textures direct! y from a texture mesh. Such a renderer uses
a cubic weighted average of mesh values to avoid visual artifacts resulting from the discrete
nature of the underlying mesh. lf the cat is positioned far from the viewer, the renderer may
generate the eat's image from a more coarse representation of the model's geometry, and it
may also use a version of the te/Cture where the higher frequency componeni:S have been
eliminated. Using such simplified models speeds the rendering process without noticeably
affecting the image quality.

- I~-

There are four issues that the above e~ample allustrates:

creating complex pauems "'ath reacuon-daffusaon
~pecafymg how pararneaers "3T}' across a surface
gencraung a le\rure that fits the geometr) of a model
n:ndcnng a mages efficaentl> and"' Lthout am facts

The remainder of this dissenation tells how each of these assucs in texwring wiah reaction·
diffusion pauerns can be addressed

• 15

2 Pattern Formation in Developmental
Biology

The goal of this chapter is to prov1de an ovcii"View of pauem formation models in develop­
menial biology. TI1is will provide context for understanding the specific dcvclopmcnuu
model of reaction-diffusion and also presem other models of pauem formation. Some of
these other models may also prove useful tocomputergrnphics. The chapter begins by giving
an overview of the imponant issues m embryo development. Funherdetai ls should besought
in an inrroductory text on devclopmc:mal biology such as [Gilben 88]. The remainder of the
chapter describes models of pauem formation. describing them according to the information
cells are thought to rece1ve and acuons that cells ean perform.

A major gonJ of developmcntn.l biology ts to .expla1n how the seemingly unstructured object
that is the feniliz.ed egg can. over time, change into a complex organism such as a fruit fly
ora human being. The first few stages of development of an embryo are very similar for most
multi-eellularnnimals, fromsimplt worms to amphibians. birds. and mammals. During early
stages of development, the cells of the embryo undergo numerous divisions to crea te many
cells. Atthesametime, these cells are arranging themselves spatially to layout the basic body
plan of the an1mal. The fa tes of these cells are also being decided during this process. A cell
of the early embryo has the possibil ity of "becoming almost any cell type. Later in the
developmemal process, however. a given cell has fewer possible fates with respect to its
ultimate cell type.

The cenrral issue of animal development is the arrangement of all the cells into their proper
positions in the embryo according to cell typ.e. There are roughly 200 different cell ryp.es in
humans [Alberts et al 89], and during development all of these cells must be positioned
correctly in the embryo. For instance, pigment cells should find their way tO the skin, and
the cells of the central nervous system must come to be in the spinal column or brain. Each
of the cells ends up in its proper place within the animal , and this occurs either through cell
movement or by cells becoming specialized based on their position. Developmental biology
seeks to undeTSiand the mechanisms that produce this geomeuic arrangement of cells
according to cell rype. We will need an understanding of some of the components of a cell
and their functions before we return to this issue.

2.1 Introduction to the Cell

Biologists commonly view the embryo as a collection of cells. One reason for this view is
that a cell is the sm;lllest ponion of an embryo that can act somewhat independently of other

pansofthedevelopingorganism. In mammals, for example, the macrophagecells act in such
an independent fashion that they almost seem t-o be whole. single-celled creatures that freely
rravel through our circulatory system and the surrounding tissues. A cell's plasma membrane
is a clear division between the cell and the environment outside of the cell. It is this membrane
that allows a cell to regulate the concenrratJon of proteins and tons present inside its
cytoplasm. The chromosomes, the DNA within the nucleus of the cell. store the vast majority
of the information needed to guide the actions of the cell. including those acnons necessary
fordevclopmcm. The synthesis of proteins within the cell is dictated by the DNA. Together.
the plasma membrane. the DNA and the many ·proteins in a cell can be thought of as the skin.
the brain and the active a.nd structural pans of a ce ll that give the cell a separate identity.

The infomlntion in DNA includes directions for the general actions and upkeep of the cell and
also directions for the cell's embryonic developmem. The information takes the fom1 of
genes that control the production of specific proteins and RNA. Protean are crcatc{j by the
processes of rranscriprion and rranslarion . Transcription is the creation of an RNA molecule
that is a copy of the informauon present in a gene. When this RNA codes for a protein. it is
cal led a messenger RNA ormRNA. mRNA 's are an intermediate form ofinfom1ation along
the pathwuy from DNA to protein. An mRNA molecule encodes the mformation controlling
the amino acid sequence from which one or more protein molecules may be produced. The
process of rendmg the mRNA and forming a protem molecule ts called rrans/arion.

Transcription is pivotal in embryo development. Control of transcripuon ts altl!ge pan of
the conrrol over what proteins are produced by a given cell. The difference between one all
type and another is a difference in the proteins that arc bemg mnnufactured within the cells.
All cells have the same information contained in their DNA, so the differences between cells
are a result of which genes are being rranscribed \\-ithin each cell. Thus cells of a given tissue
type can be characteri?..ed by which genes are turned ''on" (which are being rranscribed) and
which are turned "off."

Throughout development. the cells In the embryo become increasingly specialized. Any
single cell from the four-cells stage of a sea urchin embryo can develop to produce an
complete sea urchin if it is separated from the other cells. This shows that such an early cell
is unspecialized. Later in development, a cell separated from the rest of the embryo is qui te
incapable of developing into a whole· animal and will instead form abnormal structures that
resemble pans of an animal. Such a cell is said to be determined, which means that the cell
has rravelled some distance down the path of increased specialization. Determination of a
cell is closely related to what genes are being ·transcribed in the given celL To give another
example. a cell of the neural crest might become either a pigment cell or a neuron depending
on later evenrs, but it cannm become a blood cell. It is presumed that these cells have
particular genes that are rumed on or off. and r:hat this limits the fate of these cells. T hus we
can view development as the control of gene uanscription in order to create the geometry of
the embryo.

- 17-

2.2 Animal Development

We are now III a beuer position to understand the cent.ral question of animal development:
How are cells geometrically arranged according to cell type? This is aquesuon about the way
genes control the geometry of an embryo. How can the genes (and the proteins that tht: genes
encode) dictate the final geometry of an animal? It 15 known that there are b'Toups of genes
that are somehow re~pons1ble for placing the legs of a fly on ns thorax in>tead of on its head.
What signals are present 10 an embryo to gmde the placement of the thumb of the left hand.
in contrast tons final posmon 10 the nght hand? In the regeneranon of a salamander arm. the
nearer portion grow~ back first and the hand and f1ngers are the last ptlT!s to re-form. What
mechanism keeps tr.1ck of the pans that have already been regenerated and whnt part should
be created next?

There are two basic mechanisms for plac1ng a cell correctly 1n the embryo according to its
ti~sue type. One way is for the cell to mfl\"t to the correct position in the embryo. This can
mean that a cell actually crawls through the embryo to the correct posmon. a process known
as mi}?ration. Th1~ can also mean that the embr)'O folds. stretches or othcrw"e changes its
shape to bnng the cclb tO the1r proper locauon. The ~cond way a cell can come to be
positioned correctly ~~for the cell to somehow ""I.. no"··" here it band for n to change into
the proper cell rypc ba;,ed on th1s mformanon. Th1~ means that a cell may dil"fcrenti;He based
on geometric infonnauon.

The process of development i~ a complex mixture of the two mechanism~ of cell placemem
described above. Celb do not purely rely on movement to arrive at the1r proper position. nor
do all cells n:main stationary and change their cell type based on posuion Development is
a complex web of events that can mvolve both b:~~ic mechani~m> For in~tancc. a group of
cells may differentiate mto different cell types b:~sed on their posiuon along the length oi
embryo. then some of these cells may migr.lle to :1 nev. location, and finally th~se cells might
funhertlifferentiate based on their new posiuon. In the sections that follow, it will be helpful
to keep in mind these two broad mechan i>ms of development. Cell movement and
differentiation based on information about position both contribute to the embryo's devel·
opment.

The remainder of this chapter is cti>;ded into three sections. The first of these sections
describes in more detail some of the actions a cell may take dunng the course of development.
This will give us a better understanding of how cells participate in shaping an embryo. The
next section describes the forms of information available to cells in a developing embryo. A
cell may use information to guide itS migration ortodecide how to differentiate funhcr. The
final section describes how the information a va1lable to a cell and the actions that a cell may
perform can be brought together to lay down patterns man embryo.

2.3 Cell Actions

There are t"o complementary aspects that are essential to a cell"s pamc1pauon m develop·
ment· the acti(>ns a cell can perfom1to int1uence development and the iriformali(>n on which

• I 8 •

the cell bases as actions. Many of the actions a cell can perform can chrectly mfluence the
form of an embryo. Examples of such actions include changing cell shape or size. migrating.
d1viding. and dymg. Some actions. however. have a rather indirect mfluence on develop·
ment; examples include the internal change in the state of a cell (detemunation) and the
secretion of chemicals that will later influence developmenL Both direct and indirect
mechanisms of change are discussed in more de !ail below.

2.3. I Cell Division

Cell division is the most conspicuous mechamsm of change in the very early embryo. The
fust taSk of the fertilized egg IS to make a rap1d tranSIUOn from an egg to an embryo with many
cells. It is only when the embryo is composed of a number of cells that it can begm to change
its shape and that different poruons of it can become specialized. Most of the cc lis in the early
embryo divide rapidly, providing many cells with which to form panems. An exception to
this. however. is that the cells of the early embryo of venebrates do not divide rnpidly.

The rare of cell divis1on IS not the only conmbuuon that division has on development.
however. Also imponant ts the dm:ction in wh1ch a cell divides. The early cell dtv1sions 10
3Jl embryo arc carefully oncntcd to aid in setong down the overall body plan. In the sea
urch10, for example. cells that arise from what IS known as the anunal pole have a dtffcrcnt
fate th3ll cells of the vegetal pole (see Figure 2 .1). The first and second d1vis1ons of the sea
ur~htn embryo split the egg 10to four cells that each have an animal and vegeml portion. Each

Egg

Yeget.allble

Bla~ --
Figure 2.1: Cell division !l'lUlsforms the egg into a blastula .

• 19 •

r l nintal cells
Ectoderm

Entoderm

'v tgetal cells Blastopore

Figure 2.2: Gastru lation.

of these cells can go on to develop into a complete sea urchin if separated from the others.
The third cell division then splitS each of these four cells into an animal and a vegetal cell,
defining much of the orientation of the embryo. None of the eight cells resu lting from this
divisiOn can create a whole normal embryo if separated from the other cells.

2.3.2 Sha pe C hange

Another mechanism of development in the embryo is shape change of cells. An imponant
example that emphasizes the imponance of shapechangecan be found in early deve lopment
in sea urchins and frogs. During gasrrularion in these animals, the vegetal ponion of the
embryo flauens out and then fold in towards the hollow cavi ty called the blastocoel (Figure
2.2). The change in shape at the lower portion of the embryo is thought to be caused by the
cells actively changing their shape. First, these cells become elongated in the direction
perpendicular to the cell's surface. This flattens the embryo at the pole. Then these same cells
become consnicted on their ourward-poindng end, giving them a characteristic pyramid

Nwral plate
Neural gro~e

.4

Ne11ral fold

c D

Figure 2.3: Formation of neural tube.

- 20-

shape. This shape change causes the lower sheet of cells 10 fold in towards the hollow center
of the embryo. These cells form the endothelial layer of cells that are des lined to give rise
to particular organs and tissues in the adult embryo. Similar changes in cell shape appear to
contribute to the formation of the neural plate and the neural mbe (Figure 2.3).

2.3.3 Migration

Cell migration is movement of a group of cells from one ponion of an embryo (away from
their cell neighbors) to another pan of the developing animal. Migrating cells typically take
on quite a different role at the dcstinauon sne thWl the cells that were already present at the
destination. This is a more curious developmental mechani~m than cell division and cell
shape change. Why do cells need to migrate. tnstead of having cells at the destination site
take on the role of the migrntors'> The answer to this ts probably not simple, but it is thought
that much of the answer can be ascribed tO hts torical, or evolutionary, reasons.

Whatever the reason for cell mtgration, it is a fact of development. One example of cell
migration in sea urchin embryos is the movement of cells from the far vegetal pole into the
blastocoel during gastrulation. These cells. called mtcromcres, separate themselves from
their neighbors. crawl through the outer ~hell of the embryo, and individually take up new
positions anachcd to the inner surfaces of the cells that compose the hollow blastocoel. The
indjvidual cell motions arc distinct from the flattening and folding of the lower region that
also is pan of gastrulation. The cells arising from micromeres secrete the skeleton of the sea
urchin.

Cell migration plays an imponant role in other aspects of development besides gastrulation.
Another imponant migration occurs when many of the cells from the neural crest move to
other portions of the embryo 10 become pigment cells and various cells in ganglia, glands. and
teeth. Still another example of cell migration can be found in animals with a central nervous
system. In these higher organisms, migration of the axons of neurons plays a central role in
wiring the brain. This is a different kind of migration, where the cell body remains flXed and
only pan of the neuron actually moves. Both the mechanisms that guide the axons and the
way in which the axons move through tissue are similar to the actions performed when an
entire cell migrates, and it is for this reason that axon migration is considered a special form
of cell migration. However, axon migration could also be considered an extreme form of cell
shape change.

In this discussion of cell migration we have ignored how a cell knows which direction to
travel. This is a question of how a cell acquires information. and the issue will be addressed
later, with other issues about forms of information within an embryo.

2.3.4 Materials from Cells: The Cell Matrix, Hormones and Morphogens

There are a number of ways that a cell can help steer the course of development by creation
and release of chemical products. An important example is the way in which cells create the
suppon structures within an organtsm. The spaces between cells are composed of many

. 21 •

proteins and carbohydiates that comprise the exrracel/ular matrix. The components of the
exrracellular matrix include collagen, a fibrous material that forms a srrong framework for
tissue, and proreoglycans that allow tissue to resist compression. Also part of the matrix are
molecules that form potential adhesive sites. places where a cell can attach permanently. or
temporarily as "hand·holds" during migration. All of these materials are created by cells and
are essential to development.

There are other sorts of molecules that a cell can release that contribute to development.
Hormanes are chemicals that are released into the circulatory system that can trigger
responses by cells at many points in an animal. For instance. ecdysone is an insect hormone
that causes the transition from one larval stage to another or causes the final trans•tion to insect
aduhhood. It causes the shedding of the insect's old exoskeleton to reveal the new, still soft
exoskeleton of the next insect form. Hormones arc chem•caJ signals that regulate changes
across the entire organism.

Anothcrkindofchemical signal is called amorpllOge". and, as the name implies, morphogens
are signals for change of form. Although there is some debate within developmental biology
nbout the scope of the tcm1, we will interpret the word broadly. We will say a chemical is
a morphogen when 11 freely diffuses through groups of cells or tissue and causes cells to
follow different developmental pathways depending on its local concenr:rntion at each cell.
Murphogens play a large role in two models of how pauems in an embryo are fom1cd. and
we will return to these models in section 2.5 on pauern formation.

2.3.5 Cell Deal h

A well-documented and widespread mechanism in development is the case of cells dying to
aid in shaping the embryo. Cell death plays a major role in the shaping of hands and feet in
birds and mammals. These extremities are shaped like paddJes early in limb formntion.
without any separation of the digits. Then, cells in four regions on the hand-to-be die off.
leaving four gaps between the portions of the hand that become the fingers. These cells arc
fated to die in order to help shape the hand or fooL Cell death is also imponam in the
development of the nervous system. ln venebrate embryos. several motor neurons may
initially form synapses with the same muscle cell. Then, through some form of competition.
many of the neurons lose their connection with the muscle cell. The neurons that are le ft
without a connection to a muscle cell then die. Here again, cell death is a normal pan of the
development process.

2.3.6 Determination

All of the cellular mechanisms of development described above are ways that a cell may
interact with its embryonic environment. There is another cell mechanism that plays a vital
role in development bu t that goes on entirely within a cell. DeiemJiiiGtion is an internal
change of State in a cell that locks the cell into a particular course of development The cells
of the neural crest illustrate detemunation. At a certrun point in development, these cells
migrate to other locations in the embryo to become pigment cells, cells in the sensory ganglia.

- 22-

or one of several other kinds of cells. Cell transplant studies have shown that a cell is not yet
fated to become a panicularcell type before it begms migration from the neural crest. Before
migration the cell is said to be undetermined. Once the cell has migrated away from the neural
crest and arrived at one of the possible destinations, that cell soon is locked into a panicular
pathway of change that fits the role it will play in the destination tissue. At that point the cell
is said to be determined. It should be noted that there IS often no one determination cveot for
a particular cell, but instead a cell becomes more and more specialized throughout the course
of development. Thus calling a cell determined or undetermined really should be viewed in
the context of how specialized other cells are at the same point in development.

For cells migrating from the neural LTest. the detem1ination of the cel l is triggered by cues
from the enV1ronment at ns desnnation. The act of dctermmauon, however, is an event that
is in ternal to the cell. In some cases (probably most) the actual determination event is a
chang.: in the way protctns arc bound to DNA often reinforced by slight modifications tO the
DNA itself (such as mcthylauon). A change might either block or tum on the expression of
a panicular gene. and the protein coded by that gene may tngger any number of other events
within the cell. Biologists speak of a cascade of gene expression, where one gene's activity
causes many other genes to become active m a particular sequence. The detai ls of such
cascades of cxpn:sston are only now becoming evident in a few specific cases. One such case
is the cascade of expression that lays down the segmentation in the developing fruit ny.

2.4 Information that Guides a Cell

As mentioned earlier. the act1ons a cell may perfom1 rs only half lhe story about a ceU's
pmicipation in development. Equally imponant are the various forms of information that
guide a cell's actions. These forms of informauon include: chemtcal messages, haptomctic
gradien ts (changes in stickiness}. mechanical forces. electric fie lds and the internal state of
a cell. Some of the forms of information described below (such as chemical o1essages)
naturally correspond to particular actions of a cell (such as production of a chemical).
Viewing these products again, as information instead of actions, gives us a usefu l additional
perspective.

The discussion below is organized according to the jorm taken by information, that is.
according to the information carrier. lt will also be useful to consider the information
contents . There are several different kinds of information important to a cell in a developing
embryo. These include: guidance for migrating cells. information about position within the
embryo for cells that rema.in stationary and information about lhe timing of eventS within the
embryo. This view of information in an embryo will be especially useful in Chapter 3. where
our goal is to simulate pattern foml3rion using a computer model.

2.4.1 Chemical Messages

Morphogens and hormones are tv.•o kinds of chemical messages that guide development.
Hormones are very simple chemical rnggers that are meant to be received by many cells at
once through an organism in order to synchronize an event. such as the casting off of an insect

. 23 .

exoskeleton. or to control the rate of a given process. A cell that detects the hormone is nm
concerned with where the message came from or1he quanmy of the chemical. The hormone
is just a messenger that says 11 is time to perfonn a pamcular action. In con ernst. morphogens
are chemical messages thnt convey informunon about geometry. The morphogen typically
conveys this geomeuic information by its vruiation m concentranon (chemical gradient)
across different ponions of an embryo. A cell chat detects a morphogen will travel down one
of several developmencal pachways dependmg on the morphogen concencrauon that it
detects.

Probably the most clear examples of morphogens (m the above sense) are some of the proteins
thac diffuse through the early frun fly embryo. Seven pa1rs of segments are formed during
the course of developmenc of n fruit fly larva. More than a dou:n genes have been identified
thnc participate in detem1ining this pnucrn of ~egmcmauon of che larval fly . There arc at least
four distinct stage~ co chi~ process of segment formation. and djfferenc genes that panicipate
in defining the segment~ are acuve at daffcrcnt times during thiS proces~. The proteans
produced by some of the~ genes have been shov. n to be present m graded concentrations
along the head/trul ax as of the embryo In some cases 11 has been shov. n that the concentrations
of such protein~ cau!,C dafferent cells to follow daffc:rcnt de\elopmental pachways. Ex peri·
mcnts have shown that 1f che concentranons of cenaan chemicals arc changed then this
disturbs later developmenc of the embryo. See [Aibens et al 891 for Jn overview of th is
subjccc.

llormones and morphogens usually deliver chcar messages to scationary cells. There is
another form of chem1cal me~-.age chat is used to gu1de cells that are in mouon Chemcraxis
IS the attraction of a cell to a particular chemacal. called a chemoarrracraru The job of a
chemoartractant is geomemc. lake a morphogen. but in this case the ta.\1.. as to guade a
migrating cell to a panicular posilion. Biologiscs have idemilied potential anstanccs of
chemotaxis in developang embryos, but idencifying the chemoamactams has proved to be
difficult.

2.4.2 Haptotactic C radien ts

Chemical messages are not the only form of information that may be used co gu1de a migrating
cell. Haproraxisis the attraction of a cell to regionsof1ncreasedstickiness. The word "haptic"
means " relating to touch.'' and in this case it means the sense of touch of a cell. A migrating
cell makes and breaks contact with the exrracellular matrix. The idea behind haptotaxis is
that a migrating cell may preferentially move 1n the direction of higher adhesiveness because
a stickier contact is likely to pull the cell in that direction. Haptotms has been demonstrated
in the laboratory [Harris 73 I and there is evidence that haptotaxis guides che migration of the
pronephric duct cells 111 che ~lamander embryo [Poole and Steinberg 82].

2..1.3 Electric Fields

Another possible source of information an an embryo 1s elecmc fields. Electnc fields have
been detected in many hvtng orgamsm~. including early chick embryos [Jaffe and Stern 79]

and in the regenerating limbs of some amphibians I Borgens 82]. Experiments are inconc lu­
sive about whether these fields play a role in development. Measurement of an e lectric field
at a particular location gives information about both field s!Tength and direction. so there is
cenainly the potential for such fields to be a oource of geometric information.

2.4.4 S l ructu rallnformation a nd 1\'t l'chan ica l Forces

As we have discussed. migrating cells may be directed by chemical or adhesive grad ientS.
Another guiding factor for migrating cells is the struc ture of the extracellularrnatrix in which
they are moving. Some panions of the ex!T3cellular matrix contain ribers that are stretched
preferentially in onedrrection. It has been shown in laboratory conditions that migrating cells
are influenced in their motion by the way the structures in the matrix arc aligned LWciss 341.
When cell motion or shape is influenced in thts manner It is called co mace guidance. Because
contact guidance has been demons!T3ted in the laboratory, it is tempting to guess that this is
also a factor for cells migrating in the developing embryo.

Everything within :m embryo is made either directly or indirectly by cells. This means that
the preferential stretching of fibers within the exrracellular matrix must result from the
activities of celts (excepting forces from outside the embryo}. Indeed, fibers mken from the
c:xrraccllular matrix have been shown tO be preferentially stretched in laboratory expen­
men ts. In particular, fibroblast cells in a petn dish will gather together into clumps when
placed on a collagen substrate I Stopak and Hani s 821. The ce lis aherthe coil ngen so that ri ber
bundles are str~tch<!d betw~en these clusters of cells. Morc!over. film of this organ izing
activiry shows tha t cells not already in such a cluster seem to move along these stretched fibers
as if the fibers are providing contact guidance. As with any swdy of cells outside the living
organism. we should be cauuous when drawing conclusions about what goes on in the
developing animal. Nevertheless, these studies are suggestive, and we will return to
mechanical forces when we talk about broad rnechantsms for pattern formation.

2.4.5 Contact Inh ibition

There is another kind of response a migrating cell may have tocenain forms of contact. O ittn
when a migraringcell comes to touch another cell it will back away from the paint of contact
Thls is known as contact inhibition. It is easy to see how contact inhibition can help to
disperse a clump of cells or to more evenly distribute a given rype of cell through a region
of the embryo. There is evidence to show that comact inhibition plays a role in the in it ial
dispersion of cells from the neural crest [Rosavio et al 83).

2.4.6 Internal Sta te of Cell

In the earlier section on detem1ination we discussed how a cell may change iL~ internal state
to set the course of its development. Thus we can think of a cell's internal state as another
source of infommion for the cell. A large part of a cell's state is determined by which genes
are actively being transcribed from the cell's DNA and !Tanslated into proteins. Tho:

- 25-

transcription of DNA is panly contrOlled by the binding of cra~cripcionfaccors to panicular
location$ along the DNA.

There are other sources of information internal to cells. Some of the actions that a cell
performs are guided by timing mechanisms within the cell. An important example of th is is
the tin1ing of cell divisions. This is a complex tOpiC, and H IS only recently that much of the
timing mechanism for cell division has become understood [Murray and Kirschner 89].

Still another soureeofinfortnation is the protein and mRNA already present in the egg during
the time of fenilizauon. The genes coding for such molecules are termed macema/-ejjecc
genes because the gene products are transmined solely from the female zygote: the male
zygote docs not contnbute to the proteins and mRNA of the fertilized egg. An example of
a m:uemal-cffect gene is demonstrated by a maternal-effect mutation called snake in the Fruit
fly. The wild-type mRNA product of rh1s gene Cno mutation) is present 10 the fert ilized fruit
fly egg, The protein coded by thiS gene ha~ been shown to be important in determining the
dorsal/ventral orientation of the embryo (backside versus belly). An embryo with the snake
mutauon on both chromosomes lacks th1s proce1n coded by the maternal-effect gene , and such
embryos are badly deformed [Anderson and Nusslcin- Vol hard 841. This illustrates that part
of the gcomerry of the embryo can be dictated by infortnation purely internal to the early cells
of the organism.

2.5 Pattern Formation

One of thelargest differences between h1gher animals and plants is in their strtctnessofbody
plru1. Although each plan t species has a distinct style or motif in the way its leaves, branches,
flowers and so on are laid out. there is considerable v:uianon in geomemc detail between
individuals from the same species. We can recognize a weeping willow by a collection of
characteristics. like the !ypical bend of its branches. but two willows never have the same
number of branches in an identical configuration. This variation of geometric detail in plants
stands in srrong contrast to the fixed body plan of animals. A given normal individual animal
always has the same geometric form as other members of the same species. It is th is constancy
of geometry that allows us to say that a spide-r has eight legs and that the human femur is the
same shape across all individuals. The process of realizing the blueprints for a developing
animal is called pattern jonnarion. To be more precise, pattern formation is the process by
which differentiated lissue is laid out within an embryo according to a fixed geometric plan.

Pa11em fom1ation is a higher· level view of development than the cellular viewpoint that we
adopted earlier. Ln examining how patterns form, we are interested in observing the fate of
large collections of cells. Nevertheless. we can take a reducri onist attitude towards pauem
fom1ation and ask how the actions of many individual cells ultimately determines the
geomerry within the animaL The sections th.at follow examine four mechanisms for pattern
formation: the gradient model, reaction-diffusion, chemota.·ds, and mechanical change.
Each of these mechanisms can be examined from the standpoint of information available to
the cells and the actions that these cells perform .

• 26 -

I
Tentacles

Figure V I: Hydra.

2.5. 1 Gradient Model

In an earlier secrion we discussed cell differentiation based on the quanmy of a chemical
called a morphogen. Because one of the characteristics of a morphogen is that it can fTcely
diffuse through an embryo. the best candJdates for morphogens are small molecules or ions.
The central issue for panem formation based on a morphogen is the creation of a fixed, stable
panern of concentration throughout the embryo. There is more than one way in whlch the
concentration of a morphogen can be caused 10 vary across different positions in the embryo.
One way is for the chemical 10 be produced ar one locauon in the embryo (the source) and
for that chemical 10 be broken down at another location (the sink). Diffusion causes the
morphogen concentration 10 vary from regions of high concentration (near the source) 10

regions of lower concentration (near the sink). This gives a stable variation of concentration
of the morphogen if a balance is srruck between the creation and breakdown of the
morphogen. This basic modd is known as the gradie111 model for panem formation. This
model has recently received a good deal of attention, largely due to the work of Lewis Wolpert
[Wolpert 71], although the nmion of chemical ;gradientS in development has been around for
q uire some time [Child 41].

There is indication that a gradient mechanism is responsible for maintaining the body plan
of the Hydra. The Hydra is a small, freshwater animal found in ponds and streams, and it is
related to jellyfish and anemones. A Hydra has a collection of stinging tentacles surroundi ng
its mouth at one end called ilS "head" and it attaches itself 10 plants or rocks at its "foot'' (see
Figure 2.4). The Hydra is rather unusual because irs cells are constantly moving from one
part of the organism 10 another, yet its basic body plan remains intact. There is evidence to
suggest that there are several chemicals in the Hydra that are responsible for maintaining the
position of the head and foot. One chemical. dubbed the head activator. has a high
concentration in the head region. and thts concentration tapers off towards the foot. The head
activator appears to be a signal for maintaining the structures in the Hydra's head. The head

. 27 •

region is !he source of !he head acriva10r. There isanolherchemical. called the head inhibitor.
that is also produced by the head region. The head mhibitor seems to diffuse more raptdly
than !he head activator. and !his inhibnor t) thought to prevent olher head regions from be10g
formed elsewhere on !he Hydra. ln addttion. there are two chem1cals !hat seem to be
responstble for ma~ntaining !he foot tn much the same fashion. These four candidate
morphogens pose a somewhat more complicated p1cture !han the s1mple one-chemical
gradient model ofpanem formation. Still,there is much overlap here wnh the baste grudient
model. The key similanty is the s1mplc grad tent from one part of !he orgamsm to the other
that signals to the cells the role !hey should play 10 the body. (See [G1Iben 881 for a more
complete dcscnprion of morphogcns tn 1/ydra and for references.}

Another candidate for a morphogenic gradient IS found tn !he study of hmb-bud formation
in chick embryos. The limb-bud is a bump on !he chick embryo that later become~ a wing.
1\ ~mall molecule known as retinoic acid (a fom1 of viumin A} is present tn gntdcd
conccntrauons across !he hmb-bud. Reunou.- ac1d has recently has been discovered tO affect
development 10 wmc animals and 11 is a "el)· <,trong producer of birth defec~ of !he limbs and
heart. New discoveries about I!~ role 1n hmb development suggest thatn 1s a morphogen and
that 11 directs the 3Jltcrior/postenor (head/tail) onentation of limbs It remams to be seen 1f
the mcch:m1~m for ma1nt:unmg renno1c ac1d's concentrauon across the ltmb bud 1s tn

agreement wuh !he sourcc/sml. grad1cnt model of p:mern formauon.

2.5.2 l{euclion-Diffusion

The gradient model of pattern formation use~ a source and a sink 10 create a Slablc chemtcal
concen[Tauon across part of an embryo. Are !here other ways a diffusible chemical c:m hold
n fixed pattern of concentration in a develOping organi!.lll? The mathemauc1an Alan Tunng
answered this question in !he affirmauve in a landm3J'k theoretical paper on morphogenes1~
(Turing 52). Turing showed !hat two chemicals !hat diffuse at different rates and that react
with one another can form stable pattern~ of concentration. Such a chemical system is called
a reacrum-diffiuion system In his paper. Tunng used as an example a nng of cells such .IS

IS found at !he moulh of a Hydra He showed that a reaction-diffusion system acting over such
a ring of cells could form a stable p:lllem of pelks 31ld valleys of chemical concentration. Th1s
is much like !he standing waves on a srling that IS vibrating at a fixed frequency. Figure 2.5
shows a graph of !he concentration of one chemical from a simulation of such a system. More
recently, olher biologists have shown how reaction-diffusion systems that act in two
dimensions can produce panerns of spotS or stripes. See Sections 3.1 and 3.2 for a discussion
of this work.

Both the "reaction" and the "diffusion·· components of a reaction-diffusion system are
needed to produce patterns such as spots. and suipes. "Reacnon" refers tO how the
concentrations of the two chem1cals affect the creanon or degradation of one another in a
systcmauc manner. Turing assumed that the'e reacuons operate idenrically in all reg1ons of
the embryo. Thus. if !he concentr.ltion of the chem1cals are initially uniform throughout !he
embryo !hen !he amounts of the two chemical~ w1ll rise 31ld faJJ tn exactly the same way
through the entire embryo. gi,;ng no spatial variauon tn concentr.ltion. Likewise. if there IS

- 28 -

n = 400 n = 1600

n= 800 n = 2000

Figure 2.5: Panem of cbeJDJcal concentrauon from reaction-diffusion system.

no vanation tn concentranon, then dlffusion docs not change the concentration at any point
in the embryo. What Turing demonstrated, however, ts that in many cases even a small
vanation in t.he mitiaJ concentration of one or both chemicals is enough tO cause the two
chemicals to reach a stable state where their concentrations vary in a regular manner across
the embryo. This model of panc:m formation is the basis of the textures created in this
dissenntion. We will examine reacnon-diffuston systems in greater detail in Chapter 3.

2.5.3 Patterns Created by Chemotaxis

There is still another way in which chemiCal agentS can play a role in pattern formauon.
Murray and Myerscough have presented a model of snake skin patterns based on chemotaXis
[Murray and Myerscough 91). They propose that the panemson snakes result from different
densines of cells over the skin and that the amount or kind of pigment produced is a factor
of this cell density. Their model supposes the extstence both of a chemical agent that attracts
migrating cells and of a relationshtp between production of this chemical and the density of
cells in a given region of skin. This system can be described as a pair of partial differential
equations that share many characteristics with reaction-diffusion equations. Numerical
simulations of this system with different parameters over several different geomeaies result
in a wide variery of panerns. Many of these patterns match skin patterns of various snake
species.

2.5.4 Mechanical Formation of Patterns

We discussed earlier bow mechanical forces can act to clump together cells in a pem dish.
In experiments the fibers underneath such groups of cells are Stretched parallel to the lines
runmng between neighboring groups of cells [Harris et aJ 84). This clumpt.ng and the

. 29 .

stretching between the groups is reminiscent of some patterns found in developing organ­
isms. This has led to the suggestion that mechanical forces can act as a mechanism of pan em
formation [Oster. Murray and Harris 83). This paper suggests that this mechanism may be
responsible for the formation of feather primordia on chick embryos. These primordia are
arranged in a diamond lattice on the surface of the chick. and there are lines of tension running
between neighboring buds.

2.6 Summary

Dcvclopmenl is the process of arrang~ng cells JD an embryo according to cell type. We have
seen how this can be viewed from the perspective of cell actions and the various fom1s of
information available to a cell. Patterns of tissues in an embryo are fom1cd by many ce lls
acting together in the embryo. Biologists have proposed severn! models of patte rn formation.
including the grud1cnt model. reaction-diffusion. chemotaxis. and mechanical pattern
fonnation. These mechanisms of pattern forma non are actively being explored by develop·
men tal biologists. It is my hope that the field of computer graphics can benefit from fun her
exploration of developmental mechanisms. At this point, however. we will leave behind
other issues in developmental biology and concentrate only on reaction-diffusion .

. 30-

3 Reaction-Diffusion Patterns

T his chapter presentS some of the patterns that can be formed by simulating reaction­
d iffusion systems. We begin by examining the components of a simple reaction-diffusion
system and present a mathematical model of such systems. Nex t. we give an overview of the
literature in developmental biology on pattern fonnation by reaction-diffusion. Once we
have covered these basics. we wi ll then dernonsmue that more complex patterns can be
formed usingcascadesofre.action-diffusion systems. Th1s ts new work that widens the range
of patterns that can be created using rcacuon-diffusion. We will then look at an interactive
program called Cascade that was made for cxplonng cascade systems. The me thods
presented in this chapter provide a user with a wide range of control over the textures that can
be crea ted using reaction-diffusion.

3.1 The Basics of Reaction -Diffus ion Systems

To·bcgin our discussion of reaction-diffusion systems we will describe a hy potheucal
arrangement of cells and give a description of the interactions between some of the chemicals
in these cells. The assumpuons are those llUlde by Alan Turing in his paper that inrroduced
reaction-diffusion as a possibk pattern fonmanon mechanism [Turing 521. From these
biological components we will form a mathematical description of what are considered the
important aspects of a reaction-diffusion system.

Let us begin by considering a one-dimensional arrangemen t of cells in an embryo. Figure
3.1 gives a diagram of this hypothetical row of cells. We will give attention to two chemicals
that are present in the cells, and we will refer to them as chemica Is a and b. Assume that there
are processes within these cells that can cause more of these chemicals to be manufactured

Figure 3.1: A row of cells. Molecular bridges allow morphogens
to diffuse between neighboring cells.

and other processes that can cause these chemicals to be broken down ldegraded). Further
assume that the rates of these processes are dictated directly by the amounts of chemicals a
and b already in a celL That is, the amount of chemical a in a ceil changes based on the
quantity of the chemicals a and bare already in the cell. Likewise. the concentration of
chemical b will increase, decrease or remain rlXed depending on the concentrations of
chemicals a and b. This is the reaction portion of the system.

The molecules within a cell are usually confined to the cell by the cellular membrane. In our
model, however. we will assume that there arc pathways or bridges between adjacent cells
through which some molecules can pass. As 3!!1 aside, such bridges between certain animal
cells do in fact exist. Gap junctions are bridges between cells that are found more widely
distributed in devcloptng embryos than 10 adults. and they allow molecules of up tO 1000
Daltons to pass between cells 1 Alberts et al 891. Although Figure 3. 1 shows only a few
bridges. adjacent cells are often joined by many such molecular bridges. In our model we will
assume thm chemicals a and b can diffuse between neighboring cells in the row through these
bridges. The process of diffusion will tend tocvenout thcconccnrr:uion of thechemicalsover
the row of cell s. If a particular cell has a higher concentration of chemical b th:u1 it.s
neighbors, then that cell's concentration of b will decrease over ume by diffusion to its
neighbors, if all else remains the same. That is. a chemical will diffuse away from peaks of
concentration. Likewise, if the concentration of b is at m1nimum at a particular place ulong
the row of cells, then more of b will diffuse from adjacent cells to this cell to mise the
concenrration of b at that cell. Diffusion acting alone over time tends to smooth out the
concentration of chemicals across a given domain. It wears down the peaks and fills in the
valleys.

Reaction and diffusion are the driving forces of change in the concenrrations of chemicaLs a
and h in the row of cells. Such a sy~tem m::1y have one of several patterns of change in
chemical concentrations over time depending on the deuils of the processes of reaction and
diffusion. These possible trends of chemical concentration include: oscillating c hemical
quantities, unbounded increase of chemicals, vanishing of the chemicals, and a steady state
of chemical concentrations. Turing singled out a special case of the last of these, achieving
a steady State of concentrations. as the most imeresting behavior for pattern formation. He
found that under cenain conditions a stable pattern of standing waves of concentration will
arise. lt happens that there are two necessary conditions for such a pattern to appear. The
ftrst of these is that the two chemicals must diffuse at unequal rates. That is, one of the
chemicals must spread to neighboring cells more rapidly than the other chemicaL The second
condition necessary to make these patterns is that there must be some random variation in the
initial concentration of chemicals over the cells. This is a reasonable assumption to make
because there are bound to be small variations from one cell to another in a real organism.
A specific reaction-diffusion system that follows these assumptions is given in Section 3.l.2.

3.1.1 A Mathematical Description of Reacltion Diffusion

Now we will abstract from this model of cells and chemicals a mathematical description of
the system. The result of this abstraction will be a set of pmial differential equations. In our

- 32 .

mathematical model, the concentrations of these two chemicals can be represented as real
numbers. The units of these quantities are not important, but the unitS might be something
like pans per million or moles. (See [Lengyel and Epstein 91] for a description of the
chemical reactants and their amounts in an actual reaction-diffusion system.) The positions
along the row of cells can be either discrete (one value per cell) or they can be represented
as positions along a continuous domain. For now, let us represent positions along the row
as a continuous value. Let us now use the symbols a and b to represent the concentration of
the corresponding chemicals. We can capture the changes in concentration of these two
chemicals over time by the following partial differential equations:

oa 2
-=F(a,b)+D V a
01 Q

ob 2 - = G(a.b) +Db V b
01

The first of these equations describes the change over time in the annount of chemical a at a
particular position in the line of cells. The reaction term F(a,b) says that pan of this change
is some function of the local concentrations of a and b. The term D • V'a says that the change
in the concentration of a also depends on t.he diffusion of a from nearby positions. The
constant D

0
describes the speed of diffusion of chemical a. The Laplacian V'a is a measure

of the concentration of a at one location with respect to the concentration of a nearby. If
nearby places have a higher concentration of a. then V'a will be positive and a will diffuse
towards this position. [f nearby places have lower concentrations, then V'a will be negative
and a will diffuse away from this position. The meaning of the second equation is analogous
to the ftTSt, but with a different reaction function G and a different diffusion rate Db' The

n=400 n=l600

n= 800 n = 2000

Figure 3.2: One-dimensional example of reaction-diffusion. Chemical
concentration is shown in imervals of 400 time steps.

- 33-

reaction tenns in these equations say what is going on within a cell, whereas the d iffusion
terms describes the flow of chem.icals berween cells.

3.1.2 Simulation of Reaction-Diffusion

The panial differential equations above give a concise description of the reaction-d iffusion
process. It is nmuralto ask whethertheseequationscan be solved inclosed form. The answer
is that closed-form solutions are clifficult or impossible to find except when the reaction
functions F and G are very simple. For this reason. reaction-diffusion equations are usually
discretized and solved numerically instead of analytically. Here is the discrete fonn of one
of the one-dimensional reaction-diffusion systems that Turing gave in his 1952 paper:

6.a, = s (16- b)+ D. Ca,., +a, 1 -2a)
6b, = s (a, b, - b, - {1) + D • (b •. ,+ b,., - 2b)

where

a, = conccntr1ltion of the first morphogen at the i th cell
b, =concentration of the second morphogen at the 1 th cell
/3, = rnndom substrnte at i th cell
D. =diffusion rate for a
D • =diffusion rate forb
s = SJX!ed of reacuon

For the equations above, each a, is one "cell" in n row of cells nnd itS neighbors are a,., and
a,.,. The diffusion tenn is approximated by the expression D a (a~, +a., • 2a). The values
Cor /3, are the sources of slight irregularities in chemical concentration across the row of cells .
Figure 3.2 shows the results of these equations by graphing the change in the concentration
of chemical b across a row of 60 cells over Lime. Initially the values of a and b were set to . '
4forallcellsalong the row. The values of fJ, were clustered around 12, with the values varying
rMdomly by ±0.05. The diffusion constants were set to D • = 0.25 and Db= 0.0625, which
means that a diffuses more raptdly than b. The reaction speed constant s has the value
0.03125. The values of a and b were consrrained to be always greater than or equal to zero.
Notice that after about 2000 iterations the concentration of b has settled down into a pauem
of peaks and valleys. The simulation resultS look different in detail from this when a di fferent
random seed is used for /3,. but such simulations all have the same characteristic peaks and
valleys with roughly the same scale of these features.

In the above reaction-diffusion system. f3 acts as a random substrate to keep the values of a
and 1J from remainin!! constant across aU ~ells. The initial values for a, b. and 11 were set so

._ I l }JI

that if there was no rnndomne.ss introduced in the equations then the value of the reaction
ponionsoftheequations would always evaluate to :zero. In other words, without the variation
from /3,. the chemical concentrations of both a and b would remain flat and unchanging over
time. As we Will see below. the amount of rnndomness introduced by /3, affectS just how
regular or irreguJar the final pa11em will be .

• 34 -

The above reaction-diffusion system can also be simulated over a two-dimensional domain.
in this case the discrete equations become:

M,,, = s (16 -a,,1 b;) + D0 (a,+1,1 + a,.1,1 +a;,,~t + a,_1.1 - 4a;)
/:;b . · = s (a . b . - b1 -fJ. j) + D0 (b . I + b-I ·+b. · I+ b- · I- 4b.)

:, J '·I '·l ·I r. ~~ .J , • • J '•J+ '·I· '·1

These equations arc simulated on a square grid of cells. Here the diffusion terms at a
particular cell are based on its value and the values of the four cells that surround the cell. Each
of the neighboring values fora chemical are given the same weight in computing the diffusion
tem1 because the length of the shared edge between any rwo cells is always the same on a
square grid. This will not be the case when we perform a similar computation on an irregular
mesh in Chapter4, where different neighbors will be weighted differenuy when calculating
\120 and \12b.

Figure 3.3 (upper left) shows the result of a simulation of these equations on a 64 x 64 grid
of cells. The values of the parameters used to make this pattern are the same as the values
of the one-dimensional ex.ample (Figure 3.2) except that s = 0.05 and f3 = 12 ± 0.1 . Nouce
that the valleys of concentration in b take the form of spots in two dimensions. It is the nature
of thiS sys tem tO have high concentrations for a tn these spot reg10ns where b IS low.
Sometimes chemical a is called an inhibirorbccause high values fora in a spot region prevent
other spots from forming nearby. In two-chemical reaction-diffusion systems the inhibitor
is always the chemical that diffuses more rapidly. The inhibitor communicates information
about the distances to cxrremesof concentration (e.g. distances tO the centers of spots) by this
faster diffusion.

We can create spots of different s.izes by changing the value of the constants for this system.
Small values for s (s = 0.05 in Figure 3.3, upper left) cause the reaction part of the system to
proceed more slowly relative to the diffusion, and this creates large.r spots. Larger values for
s produce smaller spots (s = 0.2 in Figure 3.3. upper right). The spot patterns at the top of
Figure 3.3 were generated with /3. . = 12 ± 0.1. Tf the random variation of fJ,· is increased

'·I ·1
to 12 ± 3,the spots become more irregular in shape (Figure 3.4, upper left). The patterns that
can be generated by this reaction-diffusion system were extensively srudied in [Bard and
Lauder 74] and [Bard 81].

The literature on reaction-diffusion systems is filled with different reaction functions that
create either spot or stripe patterns. It is interesting to observe the many forms that a reaction
function may take. These functions may be linear, may usc product terms (as does Turing's),
or may use quotients [Murray 81). There is much work yet to be done to characterize what
reaction functions will produce stable patterns in reaction-d iffusion systems.

The method of introducing randomness into the above simulation may appear somewhat
arbitrary. Albert Harris has pointed out that there are many ways to introduce randomness
to a reaction-diffusion system and he has observed that many of these ways still produce the
patterns that are characteristic of the particular system [Harris 921. We have veri lied this for

- 35-

t ••••

• •• • •

Figure 3.3: Reaction-diffus1on on a square gnd. Large spots.
smaU spots. cheetah and leopard panems.

, •••
··­• ••• . ~ •• ••

Figure 3.4: Irregular spots. reuculauon, random scnpes
a.nd milted large·and· smaJI stripes .

. 36.

Turing's spot-formation system using the Cascade program (described below). For example,
spots will form even if f3is held constant at the value 12 (without random variation} and both
the values for a and the diffusion rate D. have slight random variations. The li terature in
reaction-diffusion does not appear to address this issue of how randomness is intrOduced into
a system, and this is a fruitful topic for fu ture research.

3.2 Reaction-Diffusion in Biology (Previous Work)

This section examines the literature on reaction-diffusion in developmental biology.

As was mentioned previously. reaction-diffusion was introduced as a model of morphogen­
esis by Alan Turing [Turing 52). The papcr introduced the idea that chemical substances
called tn()rphogens could react with one another and diffuse through an embryo to create
stable panems. Turing's paper is thorough in its examination of different aspectS of this basic
idea. It gives considerable detail about the breakJng down and formation of chemicals due
to reactions between different molecules in a reaction-diffusion system. The paper examines
several simple reaction-diffusion systems. h descnbes a system with linear reaction terms
and solves both the discrete and continuous forms of these equations. The solutions to both
equations are a set of standing waves of chemical concentration (sinusoid a.! functions). The
paper examines reaction-diffusion systems on a ring of cells and on a ~phere. Turing suggests
that the breakdown of symmetry of a reaction-diffusion system on a sphere may be
responsible for uiggering gastrUlation in the early embryo. The paper also shows a dappling
pattern rnnde by reaction-diffusion that is reminiscent of the spots on cows.

Jonathan Bard and I an Lauder thoroughly exam1ned one of Turing's reaction-diffusion
equations that acts over a row of cells [Bard and Lauder74]. This is the same two-morphogen
system that was described earlier in this chapter. Through computer simulation, they
explored the kinds of patterns that this particular system will produce under a variety o f initial
conditions. Their conclusion was that the patterns that are generated by this system are not
sufficiently regular to explain most patterns in development. They suggest. however, that
reaction-diffusion could explain less regular patterns in development such as leaf organiza­
tion or the disuibution of hair follicles.

In 1981 both Jonathan Bard and James Murray published independent papers suggesting that
reaction-cliff usion mechanisms could explain the patterns on coats of manunals. Bard's work
concentrated on showing that a variety of spot and stripe patterns could result from such
systems [Bard 81]. He showed that a reaction-diffusion system can produce the small white
spots on a deer or the large-dark spotS on a giraffe. He demonstrated that a wave of activation
that sweeps over a surface of cells might account for creating suiped patterns. These stripes
can be either parallel or perpendicular to the wave of activation depending on the assumptions
of the model. Murray's work showed that a single reaction-diffusion system might produce
rather different patterns of light and dark on a mammalian coat depending on the size of the
animal [Murray 81). For example, the pattern created on a small animal may be dark regions
at the head and tail of the animal separated by a white region in the center. The same
mechanism may produce several irregularly shaped dark regions on a larger animal. On an

-37-

even larger animal, the mechanism might produce a large number of small dark spots. This
same paper also demonstrated that a reaction-diffusion may account for some patterns found
on butterfly wings.

Hans Meinhardt dedicated much of a book on pattern formation to exploring the patterns that
reaction-diffusion systems can create (Meinhardt 82]. The book gives equations and
FORTRAN code that produce spots and soipes in two dimensions. The lower left of Figure
3.4 shows a random soipe pattern created by a five-morphogen reaction-diffusion system lhat
is described in lhis book. Appendix B of this dissenarion gives the five simultaneous
differential equ:uions for stripe-formation. Also presented in Meinhardt's book is a reaction­
diffusion system that creates patterns much like the veins on a leaf. Much of Meinhardt's
book is concerned with simple chemical J,rradie nts that can be set up and remain stable under
a number of different assumptions about lhe embryo's geometry and under different initial
conditions.

David Young demonstrated that irregular striped patterns can be created by a reaction·
diffusion model (Young 84). These kinds of pa11ems strongly resemble theoculardominance
columns found in the mammalian visual system [Hubel and Wiesel79). Young's stripe·
fom1ation model is based on lhe work of N. V. Swindale, who simulated such panerns by a
model of local activation and inhibHton between synapses (SwindaJe 80].

Hans Meinhardt and Mnnin Klinger presented a model showing that reaction-diffusion
systems may explain lhe patterns of pigment found on mollusc shells [Meinhardt and Klinger
87]. The model assumes that pigment is laid down on the growing edge of the shell. The
shell 's pattern reflects the history of chemical concenrrations along lhe one-dimensional
domain that is this growing edge. Different reaction functions and initial conditions result
in different panems. Many of the panems generated by this model bear a soiking
resemblance to patterns found on actual molluscs. Deborah Fowler and her co-workers
generated striking irnagesofsynthericshells by bringing this work into the computer graphics
domain [Fowler et al 92].

Perhaps a dozen or more researchers have anempted to model the segmentation of fruit fly
(Drosophila) embryos using reaction-diffusion. Early work along lhese lines met with the
problem of irregular soipe formation, where lhe reaction-diffusion systems proposed would
not consistently form the seven segmentS that arise in Drosophila embryos [Kauffman et al.
78]. More recent models have met with success. Thurston Lacalli found that a particular
model that uses four-morphogens will produce a stable pattern of stripes [Lacalli 90]. Axel
Hunding, Stunn Kauffman and Brian Goodwin have showed lhat a hierarchy o f reaction­
diffusion systems can lay down a stable pan ern of seven segmentS [Hunding et al. 90]. Their
model is what we will call a cascade of reaction-diffusion systems, a topic we will rerum to
in Section 3.3. Their paper also provides a good summary of other work on Drosophila
segmentation and reaction-diffusion.

Reaction-diffusion is one developmental model within a broader class thar have been termed
local activation and lateral inhibition (LAL!) models. George Oster has pointed out the

. 38 .

similarities between several models of pattern fonnation. including models based on
c hemical, neural and mechanical means of lateral inhibition [Oster 88]. Simulations of all
of these models give a similar range of panems,lhat of spots or stripes of varying sizes. For
reaction-diffusion systems, the local aCiivarion says that a high concentration of one
chemical (call it x) will cause even more of chemic<~! x to be created. The larera/ inhibition
refers to the way production of another, more rapidly diffusing chemical (call it y) can be
triggered by production of x and how in tum y can inhibit the production of x. The local
activation causes peaks of concentration of x, and the lateral inhibition preventS th is from
being a runaway process. The lateral inhibition also keeps two peaks of x from form ing too
c lose to one anomer.

3.3 Cascade Systems

In earlier sections we saw that reaction-diffusion can be used to make simple spot and stripe
patterns. This section presents a method of creating more complex patterns using more than
one reaction-diffusion system. This expands the range of panerns that can be created for
texture synthesis using reaction-diffusion. and it is one of the main contributions of this
dissenation. Complex patterns ean be created using reaction-diffusion by causing one
chemical system to set down an mitial pattern and then allowing this p3ttern to be refined by
simulating a second system. We will refer to such a sequence of reaction-diffusion systems
as a cascade. As mentioned earlier. one model of embryogenesis of the fmit ny is based on
a series of reaction-diffusion systems. These systems may lay down increasingly refined
stripes to give a final pauern that matches the segmemauon pauem of the fly larva fHunding
90). Bard has suggested that such a cascade process might be responsible for some of the less
regu lar coat patterns of some mammals [Bard 81). The last paragraph in his aniclecontains
the following remarks:

The jaguar has on itS basically light coat, dark spots surrounded either by a dark
ring or a circle of spots. Such a pattern could perhaps be derived from either a
cascade process or a very complex interpretation system. It is however hard to
see how lheseor any othermechanismscould generate the pan ern oflhe thirteen·
lined ground squirrel: this animal, basically brown, has seven A-P [anterior­
posterior] stripes with six intervening rows of white spots ...

Bard gives no details about the way TWO reaction-diffusion systems might interact. The
patterns shown in this section are new results mat are inspired by Bard's suggestion of a
cascade process.

The upper portion of Figure 3.3 demonsrrares that the spot size of a pattern can be altered by
changing lhe size parameters of Turing's reaction-diffusion system from 0.05 to 0.2. The
lower left portion of Figure 3. 3 demonstrates that these TWO systems can be combined to create
the large-and-small spot pattern found on cheetahs. We can make this pattern by running the
large spot simulation. "freezing" pan of this pattern, and then running lhe small spot
simulation in the unfrozen portion of lhe computation mesh. Specifically, once the large
spotS are made (using s = 0.05) we set a boolean flag frozen to TRUE for each cell that has

- 39-

a concentration for chemical b between 0 and 4. These marked cells are precisely those that
form the dark spotS in the upper left of Figure 3.3. Then we run the spot fanning mechanism
again usings = 0.2 to form the smaller spotS. During this second phase all of the cells marked
as frozen retain their old values for the concen·rrations of a and b. These marked cells must
still participate in the calculation of the values of the Laplacian for a and b for neighboring
cells. This allows the inhibitory nature of chemical a to prevent the smaller spotS from
forming too near the larger spots. This final image is more natural than the image we would
get if we simply superimposed the top rwo images of Figure 3.3. For the pa!lems made in
this dissenation, the choice of when to freeze a pattern was made interactively by a user of
the simulation program (described below).

We can create the leopard spot pauem of FiguTe 3.3 (lower right) in much the same way as
we created the cheetah spots. We lay down the overall plan for this pattern by creating the
large spots as in the upper left of Figure 3.3 (s= 0.05). Now. tn addition to marking as frozen
those cells that form the large spots, we also change the values of chemicals a and b to be 4
at these marked cells. When we run the second system to form smaller spotS (s =0.2) the small
spots tend to form in the areas adjacent to the large spots. The smaller spots can form ncar
the large ~-pots because the inhibitor a is not high at the marked cells. This texture can also
be seen on the horse model in Figure 5.12.

In a manner analogous tO the large-and-small ~pots of Figure 3.3 (lower left) we can create
a pattern with small stripes running between larger stripes. The stripe pattern of Figure 3.4
(lower right) is such a pattern and is modeled after the stripes found on fish such as the
lionfish. We can make the large stripes that set the overall structure of the panem by running
Meinhardt's stripe-formation system with diffusion rutes of 0

8
= 0.1 and D, = 0.06 (see

Appendix B for equations). Then we mark those cells in the white stripe regions as frozen
and run a second stripe-forming system with 0

8
= 0.008 and 0

1
=0.06. The slower diffusion

of chemicals g
1

and g
2

(a smaller value forD
1

) causes thinner stripes to form between the
larger stripes.

We can use both the spOt and stripe formation systems together to form the web-like pattern
called reticulation that is found on giraffes. Figure 3.4 (upper right) shows the result of first
creating slightly irregular spolS as in Figure 3.4 (upper left) and then using the stripe·
formation system to make stripes between the spots. Once again we mark as frozen those cells
that compose the spots. We also set the concentrations of the fivechemicalsat the frozen cells
to the values found in the white regions of the pauems made by the stripe-formation system.
This causes black stripes to form between the marked cells when the stripe-formation system
is run as the second step in the cascade process.

3.4 An Interactive Program for Designing Complex Patter ns

The patterns presented in the section 3.3 indicate that there is a wide range of possible textures
that can be made using cascades of reaction-diffusion systems. This section presents an
interactive program called Cascade that is used for exploring the space of cascade patterns.
Perhaps the most difficult aspect of creating new cascade patterns is that there are many ways

-40 -

that one reaction-diffusion system can pass information to a second system. It may be
desirable to have the first system change any of the following parameters of the second
system: the diffusion rates, the initial chemical concentrations, the degree of randomness. the
reaction rates, or additional parameters in the reaction functions. Cascade lets a user specify
changes to these in a s1mple fashion using a small language designed for this purpose.
Cascade uses a MasPar MP-1 parallel computer to quickly generate new panems, and these
pauems are presented in gray-scale on the user's screen. As an indication of the Maspar's
simulation speed, it requires less than a second to compute l,OOOiterations ofTuring'ssystem
on a 64 x 64 grid. The same simulation requires about SO seconds on a DECstation 5000. The
remainder of this section describes Cascade in more detail and presents pa11ems that have
been created using the program.

3.4. 1 Creating a New Pallcrn

Figure 3.5 shows the screen from a sess•on with Cascade . In this particular session the user
is creating a two-stage cascade texture to make cheetah spots. The left ponion of the scret:n
is dedicated to the first reaction-diffusion system and the right of the screen is for the second
system in the cascade. Both are Turing's spot-formmion system in this figure. Each half of
the screen is funher divided into a graphical ponion at the top. where the chemical
concentrations arc shown. and a text ponion below where parameters to the system are
specified.

The conceptual model underlying Cascade is simple and consists of rwo parts. One part is
that a user specifies the initial values of a collection of parameters across a grid. Each
parameter is given a value at each posnion in the grid. so any parameter may vary spatially
over the grid. This means that chemical concentration, reaction rates, diffusion rates. and all
other parameters can differ depending on location. The second part of the conceptual model
is that a user can invoke a routine that sirnula·tes a particular reaction-diffusion system over
the grid. The simulation is carried out based on the initial values of the parameters that are
specified by the user. A simulation routine changes the values of some of the parameters over
time, namely those that represent the concenmtions of chemicals in the reaction-diffusion
system. Let us examine the way these rwo componenLS are controlled through the user
interface of Cascade.

A typical session with Cascade beings with the user choosing the basic systems that will be
used in the cascade process. Currently there are three simulation routines to choose from:
Turing's spot-formation system. Meinhardt's spot-formation syste~ and Meinhardt's
stripe-formation system. Reasonabledefaul! parameter values are provided for each system,
and these values appear in the text ponion of the window. In Figure 3.5, for example, the
initial value for chemical a at the left is given as 4, and the random substrate f3 is specified
as 12 ± 0. 1. The user is free to change any of these values and run a simulation at any time
based on the specified parameters. Several words on the screen are surrounded by ovals, and
these are called burtons (refer to Figure 3.5). A user can trigger an event by clicking on one
of these buttons using a mouse. A simulation is begun by first clicking on the "Initialize"
bunon and then clicking one or more times on the "Simulate'' bunon. The "Initialize'' button

- 41 -

•• • :.. ~ .. ~ . .. "'

' ' -

- 42 -

tells Cascade to evaluate the parameter specifications over the square simulation grid.
Clicking "Simulate" runs the particular reaction-diffusion simulation for a number of time
steps specified by theiterruion parameter. The graphical representations of the chemicals are
updated after each simulation run.

Most often a user will change parameters and run simulations on the first system until the
pa11em looks as if it will be a good basis forthedesired final pa11em. For example. in Figure
3.5, the user has created a large spot pnnem that needs smaller spots added to it. The user can
change the second system so that the ini tial values of one or more of its parameters are based
on values from the first system. In Figure 3.5 this is accomplished by specifying a value of
"b < 4" for the freeze parameter. This says that a cell in the simulation grid is to be frozen
if the concentration of chemical b is less than 4 in the first system. To make the new spots
smaller. the value for ka (another name for S) in the second SYStem is different than i1s value
in the first system. We will now take a c loser look at parameter specification in Cascade.

3.4.2 Pau erns Created by Cascade

Figure 3.6 shows twelve pancms that were created using Cascade. These pa11ems are not
meant to be an exhaustive catalog of those that can be created. They are theresuh of a couple
of days of exploration using Cascade. and 1hey are presented as an indication of the range of
panems that can be created using cascaded systems.

T he mechanisms for generating these panems are outlined below. Complete expressions for
each of these systems are given in Appendix C.

Amocatalyrjc Swts

These are spots created by Hans Meinhardt's autocatalytic spot-formation system. Notice
that they are more irregularly spaced than the spots from Turing's system.

Vary Spots

This shows a gradation of spot sizes over a region. This was made by varying the speed
constants from Meinhardt's spot system.

Eroded Snipes

This pattern was created by cascading two stripe-formation systems. The first system created
thick snipes, and the second system carved cavities in these thick snipes.

Thin Lines

The basic form of th is panem was laid down by a snipe-forming system. This panem was
then altered by Turing's spot-forming system. where the substrate parameter f3 was altered
by the first system.

-43-

•
t .

..
• .. • • • • • • • •· • •

ovto_spot.s:

- • • • I
••• 4 • •• • • • • - ll liPOtS ~""· -

brokr n_ltnt"s

. .- .

rrodrd_$trtP~•

t.tlc:lf' _t.J)Ots
• 0 0 • '

•• 0 0
:: :.:.::":.' ·: .. :. ··:.::::; :·: :·.·) :;
:·:... ":
·::-:::,: •,' :·: .. ·:·:·:'.':,' I· .. \

·. ·/. :::: :· ;:·::;·/::'
··· .• ~· ·:. , .. ::.

0 • • 0 . • • •• 0 •

• ·:. :# . :: .. 0 ••• • •• II
~PI:l-Strlpr~ ~••rd_spots

Figure 3.6: A variety of pauems created with Cascade.

• • • I : I

tt\an_ltnt's

.t £. ' • r_
- I:..J •

'q~o~1 r r-el

Small Spots

This was created by cascading two Turing spot-formation systems. The second system's
substrate {3 was derived from the chemical a of the first system.

Honeycomb

These two patterns are more extreme cases o f the above cascade (Small Spots). Here, the
initial value of {J was higher than 1n the previous system.

Wide Soots

These spots were created by cascading large spots from Turing's system together with a
stripe-formation system. The chemical bin the stripe system was altered based on chemical
b of the spot system.

This is a similar system to the pn:vtous one (Wide Spots). The stripe-forming system was
set to produce more thin stripes than the earlier pattern.

Broken Lines

This is a cascade of two Turing spot-fonnation systems. The second system's diffusion rnte
for chemical a was conrroUed by the concentration of chemical b from the first system.

Bumoy Snipes

This pan em was created from one instance of Meinhardt's spot-formation system. Here, the
parameter p2 has been raised to cause the system to produce stripes instead of spots. This
demonstrates that Cascade can be useful for exploring isolated reaction-diffusion systems.

Mixed Spots

This pattern was made by cascading thick stripes from Meinhardt's stripe-formation system
tOgether with spots from the autocatalysis spot system. The spor sizes were controlled by
setting the speed parameters from the result of the earlier stripe· formation system.

Squirrel

This pattern shows that the mixed stripe-and-spot pattern of the thineen-lined ground squirrel
can be created using a cascaded system. The stripes were set down using Meinhardt's stripe­
formation system. The stripes were oriented vertically by having a higher degree of
randomness at the right border. Then poniQnS of the stripes were frozen and spots were
created between the stripes using Turing's system.

- 45 -

4 Simulating Reaction-Diffusion on
Polygonal Surfaces

This chapter describes a new method for placing patterns that are generated by reacuon­
diffusion onto polygonal surfaces. ln order to understand what is presented in this chapter,
let us consider the way a texture placement task would be accomplished using more
traditional methods. Let us assume we wish to place a pattern of spots on a polygona l model
of a frog. The most obvious way to do this begins by simulating a spot-fom1ing reaction­
diffusion system on a rectangular patch that is divided into a grid of squares. The resulting
patterns of chemical concentrntion could then be considered as colors of an image texture,
and that texture could be mapped onto the frog surface by traditional means. The recmngular
patch could be wrapped over the surface of the frog by assigning patch coordinates to vertices
of the frog model. This method has the advantage of using well-understood methods of
texture mapping and rendering. Unfortunately, it also retains the problems of stretched
textures and noticeable seams when the texture is placed on any but the most simple models.

Fonunately, we can takt! advantage of the physical nature of reaction-diffusion to place the
resulting patterns on a given surface. Specifically, we can simulate any reaction-diffusion
system directly on a mesh that is fit to a given surface. Presumably this is similar to what
happens in naturally occurring reaction-diffusion systems. That is. a pattern-formation
mechanism that makes spots on a real frog during development acrs over the enti re geometry
of the skin or pre-skin cells. The frog's spots an~ not unusually stretched and show no seams
because such a pattern is formed on the frog's surface. Likewise. lf we simulate a spot­
making reaction-diffusion system directly on the surface of a polygonal model of a frog, mere
will be no stretching or seams in the panern. The spot texture is tailor-made for the given
surface. This method of fitting a texture to a given surface is a centrnl contribu tion of this
dissertation.

The majority of this chapter is dedicated to des--Jibing an automated method of creating a
mesh over which a reaction-diffusion system can be simulated. This is work that was
presented in [Turk 91]. Quite a different approach to simulating reaction-diffusion on
surfaces was presen ted in [Witkin and Kass 91]. The next section gives an overview of the
technique of Witkin and Kass. The remaining sections turn lO the central mesh creation
method.

4.1 Simulation on Joined Patches (Previous Work)

One approach to fitting a reaction-diffusion system to a given surface was described by
Andrew Witkin and Michael Kass (Witkin and Kass 91]. It should be noted that this method
has not yet been implemented for complex surfaces. Their method begins by dividing the
surface to be textured into rectangular patches. This step currenlly must be done by hand
since there are as yet no automated methods of taking a polygonal model and fitting
rectangular patches over the model. The ne)(t step is to gather together information about the
way the patches Stretch over the model and where they join one another. This infonnarion
is then used during simulation of a reaction-diffusion system. The simulation is performed
on several rectangular grids of square cells, one grid for each of the rectangular patches. Let
us examine the way in which simulation on grids can be modified to avoid the twin pitfalls
of texture distonion and scams between patches.

For isotropic diffusion system.~. where the chemicals diffuse at equal rates in all directions,
simulation on a grid of square cells is straightforward. Several examples of isotropic
diffusion systems were described in Chapter 3. The basic method replaces the differential
equacions with discrete versions of the equation that approximates the Laplacian operator
with sums and differences of adjacent grid cells. For instance, consider Turing's spot·
formation system as simulated on a grid:

The last terms of the first equarion show that the diffusion term at cell a is approximated
'·1

by the sum of the concemrarions of a at the four neighboring cells minus four rimes the
concentration at cell a,,J' This is the isotropic case. Such grid simulations can be modified
to take into account anisotropic diffusion. For instance. the d iffusion term for a . . could be

' ·1
changed to the following:

This equation says that chemical a diffuses twice as rapidly in one direction as in the other
direction. This has the effect of stretching the pattern in the direction of faster diffusion.
Figure 4.1 shows an isotropic pattern on the left and a stretched pattern on the righ t. This
ability to create patterns that appear to be stretched was suggeSted by Witkin and Kass as a
way ro generate textures that are pre-distoned to fit a given surface. For instance, suppose
one of the rectangular patches that covers a model is stretched in the vertical d irection near
the top of the patch than at the bottom. This could be taken into account during the simulation
by changing the diffusion term so that the panem would be bunched up near the top. Then
when the final pauem is stretched on to the surface, the top of the patch would be stretched
to un-diston the pattern. The proper pre-disronion amount can be computed from the
Jacobian of the parametric equation for the surface patches. This is described in full in
[Witkin and Kass 91].

. 47 °

Figure 4.1: lso1r0pic and aniso1r0pac panems of spots

Creating pre-eli stoned patterns avoads texrures that look stretched, but what can be done about
avoiding seams between patches? This issue is addressed by using appropnate boundary
conditions for the patches, that is. by sharing infonnation between patches during simulation
of the physical system. Chemical quantities can be passed from one patch to an adjacent patch
by incorporating ccUs from more than one patch imo the sums of ceU concenrration that
approximate the Laplacian terms. The most simple case is that of the perioclic patch, where
the top and bonom edges of a patch are identified with one another and Likewise the left and
right edges are joined to one another. These condttions are appropriate for a torus that is
covered by a single four-boundary patch. The diffusion terms in the simulation equation are
modified to rake this into account simply by changmg the meaning of"neighboring cell" for
cells on the edge of the rectangle. Each of the cells on the left edge of a grid has the three
"typical" neighbors and. in adclition, has a fourth neighbor that is a cell from the far right of
the grid along the same row of cells. All the simulations on square grids shown in Chapter
3 use such perioclic boundary conclitions. Patches that cover more complicated objects can
also have their boundary conditions modified to join the patches together during the
simulation that creates reaction-diffusion patterns. This is the approach suggested (bur not
yet implemented) by Witlcin and Kass roavoid seams between patches. Each of the reaction­
diffusion patterns shown in their paper were simulated on one surface patch.

The srrength of the above method for simulating reaction-diffusion on surfaces is that many
grid-based simulation techniques can be brougr;1 to bear. For instance. ·Witkin and Kass
demonsrrate that a rapidly computable approximation to Gaussian convolution [Bun 81] can
be used to speed up reaction-diffusion simulations. Thedrawbackof the patch-based method
is that the user is required to clivide the model mto surface patches. Th.e remainder of the
chapter is devoted to a method of simulating reaction-diffusion directly on the surface of a
model that requires no such work on the pan of the user.

0 48 0

4.2 Requir ements for Simulation Meshes

In this section we will discuss the desired characteristics of meshes for reaction-diffusion
simulations. We will consider the acceptable shapes and sizes for the cells of a simulation
mesh. Before considering these issues, let us ask whether we need to simulate reaction­
diffusion on a mesh at all. As we saw in Section 3.1, a reaction-diffusion system can be
described by a set of partial differential equations. The non-linearity of many reaction­
diffusion systems often make closed-form solutions difficult. Solving such systems on
complex geometry such as a giraffe model makes analytic solutions harder still. Because few
reaction-diffusion systems can be solved symbolically in closed form. our system uses
numerical integration tO solve the differential equations. Let us consider possible sources for
meshes on which to simulate a reaction-diffusion system.

Suppose we wish to place a reaction-diffusion pauem on the surface of a given polygonal
model. What are the characteristics of such models? There are many sources of polygonal
models in computer graphics. Models genera ted by special-effects houses are often digitized
by hand from a scale model. Models created by computer-aided design might be made by
converting a model from constructive solid geometry to a polygonal boundary reprcsenta·
tion. Some models are generated procedurally. such as fractals used to create mountain
ranges and rrees. Still other models are captured by laser scanning of an object. It is natural
to ask whether we can use the original polygo-nal mesh as the mesh on which to simulate a
reaction-diffusion system. Unfonunately, the above methods of model c reation give few
guarantees about the shapes of the polygons, the density of vertices across the surface or the
rangeofsizesofthe polygons. If a model has polygons that arc largenhan thesizeofthespots
we want to place on the surface then we cannot capture the detail of the spots by using the
original polygonal mesh for simulation. Long mesh cells are not good for simulations
because the numerical approximations to the derivatives at such cells are poor. We do not
wan t to simulate a system on a mesh that is too dense, otherwise we will spend more time to
com pure a texrure than is necessary. For these. reasons it is unwise to use the original polygons
as the mesh to be used for creating textures. Let us examine the properties we want for our
simulation meshes.

The simulations of Chapter 3 all took place in a grid of squares. The regularity of such a grid
makes simulation programs particularly easy 10 write. All the squares are the same size and
each of them has four neares1 neighbors, given the appropriate boundary conditions. Is it
important that the squares are the same size? Our goal in simulating reaction-d iffusion
systems is to produce panems such as those described in Chapter 3. None of these patterns
have feanares that vary radically in size. For instance, the spors in the upper right square of
Figure 3.3 are roughly the same size throughout the square. The same observation can be
made of striped panerns. We will referto the average width of the spots or stripes in a pattern
as the naruralfeaiUre size of the panem. We need grid cells that are small enough to capture
the features of a given reaction-diffusion system, but these cells do not need to be very much
smallenhan the natural fearure size of the system. Features will be lost if the cells aren't small
enough, bur extra work will go to waste if the cells are too small. It makes sense, then.to have
grid cells that arc all roughly the same size. Another requirement is for the shapes of the cells

. 49.

to be fairly regular so that the chemicals wiU diffuse isotropically across the surface. ldeally
we would like a mesh to be composed of cells that are all exactly the same sbape, such as
regular squares or hexagons. Unforrunately. this is not possible upon arbitrary surfaces.
Instead. our goal will be to automatically generate a mesh that has cells that are all roughly
the same size and shape.

Mesh generation is a common problem in finite-element analysis. and a wide variety of
methods have been proposed to create meshes [Ho-Le 88]. Au tomatic mesh generation is a
difficult problem in general but the requirements of texture synthesis will serve to simplify
the problem. We don' t need to invoke the elaborate methods from the finite-element
literature. These complex methods can create variable-si:z.ed mesh regions based on
geometric features or physical properties of the surface. Instead, we only require that the
model be divided up into relatively evenly-spaced regions. The mesh generation technique
described below automatically divides a polyhedral surface into cells that abut one another
and fully tile the polygonal model. The only input necessary from the user is a specification
of the number of cells to be in the final mesh.

There arc three steps to generating a mesh for rencuon-diffusion simulation. The first step
is to distribute 11 points randomly over the surface of the given polygonal model. Step two
causes all these points to repel one another, thus sprcadtng themselves evenly over the surface
of the model. The final step is to build a cell (called a Yoronoi region) around each of these
points. The following two sections (4.3 and 4.4) describes these steps in detai l.

4.3 Even Distri bution of Points over a Polygonal Surface

This section describes a new method of evenly spreading points over the surface of a
polygonal model. These points will eventually become the center of cells in a simulation
mesh. First we will describe a method of placing points randomly over a given model so that
no pan of the model is more likely to receive points than any other portion of the surface. Then
these points will be spread more evenly over lhe model 's surface by having each point repel
a! l other nearby points.

4.3.1 Ra ndom Points Across a Polyhedron

Distributing points randomly over a polyhedral model is non-trivial. Care must be taken so
that the probability of having a point deposited within a fiXed-size region is the same for all
such regions on the surface. When placing a poim randomly on a model, we cannot simply
choose randomly with equal weighr from among alllhe model 's polygons. This would result
in a higherdensity of pointS on the smaller polygons. Instead. when randomly placing a poinr.
we need to make an area-weighted choice from among the polygons. (We will show later a
method of placing a poin t randomly on this polygon.) Suppose we have a model composed
of n polygons: P 1, P2, ... P •. Let each polygon P, in the model have an areaAr We want the
probability of placing a point on polygon P, to be proponional to this polygon's area relative
to the surface area A .. of the model. This probability is A I A This can be accomplished

~- f ·-

first by creating a list of sums 51, Sz-... s .. where S, is the sum of all polygon areas from A, up

-50 -

to and including A, To choose a random polygon, we wiU flTSt pick a random value rchosen
unifonnly m range of zero to A.,.., (!he total surface area of lhe model). Now we can look
through lhe list of partial sums S, to find the smallest i such that S, is great than r, that is. find
i such !hatS,., S r < S, This search can be performed qutckly using binary search over lhe
values S,. S

1
•... S . Since r is chosen from zero to A .~and because S - S

1
=A . !his search

a ·- i to I

will yield the value i wilh probabthty A,/ A_. as we destred. This indicates !hat lhe point
should be deposited on lhe polygon P, We no"' require a melhodofplacing a point rnndomly
on this polygon. The approach dcscnbed below for this is taken from [Turk 90].

In whnt follows we will assume that we arc ptcktng a random potnt on a triangle. Any
polyhedral model can be triangulated to satisfy !his requirement. Call the venices of the
trinngleA. 8. and C. Lets and c be two umformly distnbuted random values chosen from the
interval [0.1] . Then the pseudo-code below picks a random point Q in the triangle:

tf s + 1 > I !hen
s = I · s
I = I · I

(rellect tf necc ... '\31')' I

a = I ·S· I
b =s

(compute baJ")·cemnc coordinates within the mangle I

C = I

Q = aA+bB+cC

Without the "ir' Statement, the point Q wtll be a random point in lhe paral lelogrJm with
veniccs A. B. C. and (B + C- A) (see Figure 4.2). A pomtlhat lands in the triangle B. C. (B
+C- A) is moved into the triangle A. B. C by reflecting it about thecemeroflhe parallelogram.

I

I

I
A====--------"'- B

s

c (B+C)·A - - ;

I

I

I

s

Figure 4.2: Picking random point in mangle. Top: s + 1 S I. Bottom: s + 1 > I.

• 51 •

4.3 .. 2 Point Relaxation

Once the proper number of pointS have been randomly placed across the surface, we need to
move the pointS around until they are somewhaJ regular! y spaced. This is accomplished using
relaxation. Inruirively, the method has each point push around other pointS on the surface by
repelling netghboring points. The method requires choosing a repulsive force and a repulsive
radius for the points. It also requires a method for moving a point thai is being pushed across
the surface. especially if tbe potnt ts pushed off its original polygon. Here is pseudo-code
giving an outline of the relaxation process:

loop k times
for each point P on surface

determtne nearby potnts to P
map these nearby potnts onto plane containing the polygon of P
compute and store the repulsive forces that the mapped points exert on P

for each point P on surface
compute new position of P based on repulsive forces

Each itemuon moves the points tnto a more even distnbution across the polyhedron. Figure
4.3 shows an tnmally random dlsaibuuon of 200 potnts in a squane and the positions of the
same potnts with lc = 50 itemtions of the relaxation procedure .

..
•

• •

• • • • • • . • • ,
• • • •

• • • • • • • • • • • • • . • • • . • . • •
• • • • .. -

, ..
• . ,

• . .
• •

••

. . . .

. .
•

• • •

.

•

• • •

• •

. .
• •

. . .
.

. . .
• . .

• •

•
. . . • • •

. . • • • • •

Figure 4.3: Random points in plane (left) Md the same points after relaxation (right).

-52 -

The repulsive radius of the poims should be chosen based on the average density of the points
across the whole surface. The meshes used in this paper were created using a radius of
repulsion given by:

n = number of points on surface
a = area of surface
r= 2VaTii

The above value for r gives a fixed average number of neighboring points to any point,
independent of the number of points on the surface and independent of surface geometry.
This is important because uniform spatial subdivision can then be used to find neighboring
points quickly. It has been our infom1al experience that the exact na!Ure of the equation for
the force between poinL~ docs not significant ly affect the qualityofthe final point distribution.
For instance, we could have used a force that varies inversely with the square of the d istance
between points. but this would have meant that points arbitrarily far ap~rt would affect one
another. This would have been an added computational burden with no advantage in the final
configuration of points.

For repulsion by nearby points, we require a dbtance function across the surface. For points
that lie on the same polygon the Euclidean dis Lance function can be used. For points that lie
on different polygons we need to do something reasonable. A logical choice is to pick the
shortes t distance between the two poinrs over nil possible versions of the polyhedral model
where each model has been unfolded and nanened onto a plane. Unfortunately. detennining
the unfolding that minimizes this distance for any two points is not easy. Since there is no
limit to the number of polygons that may be between the two points, finding this distance
could take an arbicrary amount of computation. As a compromise, we choose only to use th is
flattened distance when the two points are on adjacent polygons, and we will use an
approximation if the points are further removed than this. We use this approximation for the
sake of speed. The approximate distance between points that is described below can be
compmed in constant time for any pair of points. There are clearly more elegant approaches
to finding distances over a surface that have a h ighercompmational cost. Fonunately, we do
not affect the final point distribution much by using an approximation because points that are
far from one another do not affect each other's final position much.

The left portion ofFigure 4.4 illustrates computing the flanene.d distance between two points
that are on adjacent polygons. We can pre-compute and store a transformation matrix M for
adjacent polygons A and 8 that specifies a rotation about the share.d e.dge that will bring
polygon B into the plane of polygon A. With this transformarion, the distance berween point
P on polygon A and point Q on polygon 8 is de1ennined by applying M to Q and then finding
the distance between this new point and P.

For points P and Q on widely separated polygons A and 8, we ftrst find in which direction
Q lies with respect to the polygon A. Then we can apply to Q the rotation given by the
ttansfommtion matrix of the e.dge associate.d with this direction. Usually this will not bring
Q into t:he plane of A. so this point is then projected onto the plane of A and we can use the

-53 -

Too Vjcw lop Vjew

polygon A polygon A

p

•

Side Vjcw Sjdc View

p MapToPJane(Q, A) p MapToPiane(Q, A)

polygon A polygon A
-------...... ,---l--

' .
', prOJCCl

Figure 4.4: Mapping nearby point Q onro plane of point P. Left shows
when Q is on adjacenr polygon. Right shows more remote point Q.

distance between lhis new point and Pas our final distil nee. This is shown in lheright portion
of Figure 4.4. This gives a distance function across lhe surface, and in addition it gives a
method of making every point near a given poinr P seem as though it lies on the plane of the
polygon of P. The procedure of moving a point Q onto polygon A is called Map ToPiane(Q A).

With a dismnce function m hand. making the points repel each other becomes straightfor­
ward. For each point P on lhe surface we need to determine a vectorS lhat is the sum of all
repelling forces from nearby points. Here is lhe determination of S based on the repulsive
radius r:

S=O
for each point 0 near point P

map Q onto plane of P 's polygon; call the new point R
V = normalized vector from R to P
d = distance from R to P
if d < r then

S=S+ (r -d }V

Once lhis is done for each point on lhe surface, lhe points need to be moved to their new
positions. The new position for the point P on polygon A will be P' = P + kS, where k is some
small scaling value. The meshes used here were made wirh k = 0.15. ln many cases lhe new
point P' will lie on A. If P' is not on A then it will often not even lie on lhe surface of the
polyhedron. In lhiscase, we determine which edge of A lhatP' was "pushed" across and also
fmd which polygon, call it 8, that shares this edge wtth A. The point P' can be rotated about

. 54.

the common edge between A and B so that it lies in the plane of B. This new point may not
lie on the polygon B. but we can repeat the procedure to move the point on to the plane of a
polygon adjacent to B. Each step of this process brings the point nearer to a polygon, and
eventually th is process will terminate.

Most polygons of a model should have another polygon sharing each edge, but some
polygons may have no neighbor across one or more edges. Surfaces that have edges such as
these are called manifolds with boundaries. A .cube with one face removed is an example of
such a surface. and this surface has a four-sided boundary. If a point is "pushed'• across such
a boundary then the point should be moved back onto the nearest position still on the polygon.
This is simply a matter of finding where the line between P and P' intersects the boundary
of the polygon that P is on. For a surface with boundaries. thi s wi II cause some of the points
10 be distributed along the boundaries.

The result of the point repulsion process is a set of points that arc fairly evenly distributed over
the surface of the given polygonal model. These points can now serve as centers for cells of
a simulation mc~h. Once this mesh is built, any reaction-diffusion system can be simulated
on the surface of the model. Let us tum to crcaung the cells surrounding the mesh points.

4.4 Generating Voronoi Cells on the Model

The final step in creating a mesh is to take the points th:u were distributed evenly by the
relaxation process and determine the cells centered at each of these points. Each of these cells
is like a container of small quantities of the chemicals that nre patticipating in the reaction­
diffusion process. These cells will abut one another. and the chemicals will diffuse between
pairs of cells through their shared wall. Figure -1.5 gives an abstract picture of this modeL The
size of the shared wall between rwo cells determines the amount of diffusion between the
cells. This quantity will be referred to as the diffusion coefficienc between the two cells. We
need a way to form regions around the points to determine adjacency of cells and to give the
diffusion coefficients between adjacent cells. Tn keeping v.~ th many finite-element mesh­
generation techniques, we choose to use the Vo:ronoi regions of the points to form the regions
surrounding the points. Other choices of mesh generation procedures are possible, and we
will discuss this issue below.

A description of Voronoi regions can be found in books on computational geometry. e.g.,
[Preparata and Shamos 84). Given a collection of points Sin a plane, the Voronoi region of
a particular point Pis that region of the plane where Pis the closest point of all the points in
S. For points on a plane, the Voronoi regions will always be bounded by lines or portions of
lines that are positioned halfway between pairs of points. Figure 4.6 shows the Voronoi
regions in the plane for the points from Figure 4.3. When simulating a diffusing system on
such a set of cells we will use the lengths of the edges separating pairs of cells to determine
the quantity of a given chemical that can move between the two cells. It is imponant to
understand that constructing the Voronoi region around a panicular point tells us which
points are its neighbors. We need to know which points are neighbors in order to compute
the diffusion terms at a poinL

-55-

Large amount
of diffusion

Small amount
of diffusion

Figure 4.5: Amount of diffusion berween adjacent cells depends
on size of shared boundary.

Figure 4.6: Voronoi regions of the points shown in Figure 4.3.

-56-

The concept of a Voronoi region gracefully generalizes to three dimensions. A Voronoi
region of a point P from a set of poiniS S in 30 is a region of 3-space that is separated from
other regions by planes or ponions of planes that are midway between P and other points in
S. These three-dimensional cells are always convex. This leads directly to one possible
generalization of Voronoi regions for a polyhedral surface. We can take the Voronoi region
of a point P on the surface as being the intersection between the 3D Voronoi region and the
polyhedral surface. Unfonunately, this sometimes leads tO regions that are composed of
several disjoint pieces on different ponions of the surface. Moreover, these Voronoi regions
do not adequately capture the notion of adjacency of points on a surface because the distance
function docs not measure distance across the actual surface.

A more reasonable generalization of Voronoi regions to a surface makes use of a measure of
distance over the surface. We can usc the notion ofshonest path (geodesic) over a polyhedral
surface to give :1 bctterdefinitionofVoronoi region. Using the length of the shonest path over
the surface as our distance measure. the Voronoi regions that this induces are never disjoint.
They also capture the idea of adjacency better than the previous definition ofVoronoi regions
for a surface. An exact solution to finding these Voronoi regions on an arbitrary polyhedron
is given in !Mount 85]. Unfonunatcly,the algonthm to detenmneexact Voronoi regions is
rather involved. Instead of using Mount's method. the meshes in this dissenation were
crea1ed using planar approximation of Lhe exact Voronoi regions.

The simplified method of creaung Voronoi reg1ons on a polygonal surface makes use of the
unfolding process used in the point repulsion process. Using the same procedun: as before,
all points near a given point Pare mapped onto lhe plane of the polygon A containing P. Tllen
the planar Voronoi region of Pis constructed and the lengths of the line segments that form
the region are calculated. It is the lengths of 'these segments that are used as the diffusion
coefficients between pairs of celb. It is possible that the process of unfolding and creating
Voronoi regions for two nearby points can give two different values for the length of the
shared line segment berween the regions. In this case, the values of the rwo lengths is
averaged.

In general, computing the Voronoi regions for n points in a plane has a computational
complexity of O(n log n) [Melhorn 84]. Recall, however. that the relaxation process
distributes points evenly over the surface of 1he object. This means that all points that
contribme to the Voronoi region of a poin1 can be found by looking only anhose points within
a sma!J fixed distance from that point. In practice we need only to consider those points within
2r of a given point 10 construct a Voronoi region, where r is the radius of repulsion used in
the relaxation process. Because uniform spatial subdivision can be used to find these points
in a constantamounr of time, constructing the Voronoi regions is of O(n) complexi ty in this
case. This can be substantia!Jy faster than creating the true Voronoi regions over the surface.
For models with many more polygons 1han Voronoi regions, computing the exact Voronoi
regions would take an amount of time that is independent of the number of Voronoi regions.
In this case, the number of polygons that mus1 be examined would dictale the computation
tin1e required tO build the Voronoi regions.

- 57 -

It is important to consider whether the planar approximation to the exact Voronoi regions is
acceptable for mesh building. There are two characteristics of the planar approximation
method that make it an attractive al te.rnative to Mount's exacr technique. The ftrSt favorable
aspect is the O(n) rime complexity of the approximatio n method. in conrrast to the longer time
to compute the exact regions. The second favorable aspect is that the approximation method
is a more simple method to implement. Ease of implementation has the positive side-effect
of being easier to debug and make robusL The mesh generation method described above has
been successfuUy applied to creating simulation meshes for a wide variety of polygonal
models. These models include a hand-digitized model of a horse, a mathematically
interesting minimal surface, an isosurface created using the marching cubes algorithm
[Lorensen and Cline 87j. and a model of a giraffe that was created freehand using a model ­
building program. The reaction-diffusion te:o;tures created using these meshes showed no
apparent artifactS from the simulation mesh. The success of this mesh-building technique
over a large number of models indicates that using an approximation of the Voronoi regions
was a reasonable compromise between speed and accuracy. Furthermore. building the planar
apprmdmation to the Voronoi regtons ts tndependem of all othcraspectsofrcaction·diffusion
simulation and rendering. If the appro~imation was somehow found to be inadequate,
Mount's method could be substituted and then all other aspects of the techniques presented
here could be used with these exact Voronoi regions.

As an alternative to the Voronoi mesh, we could choose that the relaxed points be used as the
vertices of the simulation cells instead of as the cell centers. This approach would yield a
mesh that is the dual of the Voronoi diagrnm. called the Delnunny triangulation. If the
Voronoi mesh had C cells and Vvertices. then the corresponding Delaunay mesh would huve
V cells and C venices. and the two meshes would have the same number of edges. Since the
cells of the Delaunay mesh are all triangles. each cell would diffuse to exactly three
neighboring cells. in conrrast to the roughly six neighbors per cell in a Voronoi mesh.
Although all the simulations in this dissen.ation used Voronoi meshes, using Delaunay
meshes probably would have given satisfactory results. Further research is needed to
determine the relative merits of the two approaches.

4.4.1 Meshes for Anisotropic Diffusion

The previously described construction of the Voronoi regions assumes that the diffusion over
a surface is isotropic (has no preferred direction). The striking texrures in (Wilkin and Kass
91] show that simulation of anisotropy can add to the richness of patterns generated with
reaction-diffusion. Given a vector field over a polyhedral surface, we can simulate
anisotropic diffusion on the surface if we take inro account the anisotropy during the
cons011ction of the Voronoi regions. This is done by contracting the positions of nearby
points in the direction of anisotropy after projecting neighboring points onto a given point's
plane. Then the Voronoi region around the point is constructed based on these new positions
of nearby points. The contraction affects the lengths of the line segments separating the cells

. 58.

Fieu re 4.7: Spot pattern from ;~msotroptc dtl"fus1on on test OhJCCt.

,1nd thus affects the d1ffu~ton coefficients bet"'een cells The contr.1cuon "'Ill aho afi.:ct
wh1ch cells arc ne1ghho~ Figure 4.7 shows that :uuso1r0p1c dlffus1on create~ -;pot~ thai arc:
\trctched when Turing's \ystcm IS sunulatcd on the surface of a model

4.5 Simulation on a Mesh

The previous section gave a method for creaung a s1mulaoon mesh for any polygonal modd
We can now create any of the reacnon·dlffus1on patterns from Chapter 3 on a g1ven model
by s1mularionon this mesh The squ:ue cells of a rcgulargnd are now replaced by the Voronoi
reg10ns that compnse the cells oi the mesh. Stmularion proceeds exactly as on a gnd ot

Figure 4.8: Diffusion ber.v.ee n cells on square grid !left)
and between Voron01 reg1ons <nght).

0 59 °

-;qua:1~s ex:eptthat ca.lculaoon of the Laplac1Jn terms nov. :akcs mto account that the cell
shapes are irregular F1gure 4.8 shov. s both the ~quare gnd case and the ln\Wlce oi a mesh
of Vorono1 reg1ons. Con51dcr de1enninmg the rate oi diffu$1on of a chem1ca.l a at3 particular
c~ll. The diffus1on term v:a on a square gnd has the form:

da[i .j] = (a(i·1.j] + a[i+1,J] + a[i.j·1) + a[I.J+1]). 4a{i.J]

The U1ffus1on quantlt) da[I.J]I~ computed from the ~alue of the concenrrauon a[i,J] at the cell
and the concentrauons at the 'urrounchng cells. The compuunon is much the 5anlc on a me,h
of Voronoi repons. The dlffus1on coefficients .:an be calculated b~ .1ppro1omaung the
dcnvauves of concenuauon b~ a path Integral around the bound~ of the cell [Thompo,on
ctall\5. pages 156-1571. Y:a 1s computed at a pamcular cell by muloplymg each ddiu>~on
cocffic1ent of the cell by the va.lue of a at the corresponding ne1ghbonng cell. summmg thc~c
values for all neaghbc>nng cells. and subtracung the value of a at the g1vcn cell. Let the
conccntrauons of chcrmcal a be stored an a one·duncn~aon:~l array called a Let coeff(1,jj tx:
the diffusion coefficient between cells i andJ. Then the Laplac1an term da(i] tor 3 pamcular
cell ' 1s computed a\ follows

da(i] = - a[a)
for each ne1ghbor j of cell i

da[1) = da[t] + coeff[i.J) • a(J]

Figure 4.9: Reacuon·dlffusion on test ObJeCt. Top shows Voronoa reg1ons.
bon om shov. s chemical concentraoon as color

• 60-

We have found that the diffusion coefficient between a pair of adjacent cells can be
approximated by the lengths of the boundary separating the two cells. For a particular cell.
these lengths are normalized by the circumference of the cell. so that the coefficients sum to
one. The values given by this approximation are usually within 15% of the values given by
the method described in [Thompson et al85). Most of the simulations in this dissenauon used
this boundary leng1h approximation for the di (fusion coefficientS.

When a reaction-diffusion simulauon over such a mesh is complete, the result i~ a
concentration at each cell in the mesh for each pnmciparing chemical. Figure 4.9 shows the
results of simulating Turing's spot-formation system on a mesh ofVoronoi rcgionsovero.tcst
surface. The color of the cells are based on the concentration of chemical b. where low values
of b are shown blue and high values are whHe. The underlying simulation mesh is quite
evident in this image. Chapter 5 shov. ~ that such patterns can be placed on surfaces without
displaying amfactS of the mesh.

4.6 Pattern Control Across a Surface

U~cr COntrOl IS an imponant issue 10 ~)nthellC texturing. We Sa"' in ~ectiOn 4.5 that an
arbnrary reacnon-d1ffus1on pattern can be placed on any given polygonal model Th1s gives
a user the ability to t·hoose from a w1de vanety of patterns such as those presented m Chapter
3. In thi s secuon we will exarrune several techmques for g1ving a user further control of
rcnction-diffu~ion textures. The methods presented here give a user control over the manner
in which features vary over the surface of a p::t!11Cular model. The first technique allows a
user to specify the placement of stripes on a model. The second technique demonstrates that
diffusion can smoothly spread parameter values over n particular surface. This can be used
to vary such characteristics as the size or regu lo.riry of spots and stripes over a model. The
final technique allows parameters to be specified based on an approximation to the curvature
of the underlying surface.

4.6. 1 Stripe Init iation

The reaction-diffusion system that produced the random stripes in the lower left of Figure 3.4
can also be used to create more regular stripe panems. The random stripes are a result of the
slight random penurbarions in the "substrate" for the chemical system. lf these random
penurbations are completely removed, then no stripes whatsoever will form. If, however,the
substrate and chemical concemrations are homogeneous at all but a few special cells. then
stripes will radiate from these few designated mesh cells. Such a stripe initiator cell can be
made by marking the cell as frozen and raising the initial concentration of one chemical at
that cell. Such a cell actS as a source of the particular chemical. The stripes shown in Figure
4.10 were created in this manner. These stripes were created by creating several stripe
Initiator cells on the head and one such cell on each of the hooves. Figure 4.1 I shows the
stripes radiating from these positions pan-way through the simulation. These cells were
marked as unchanging and the initial value of chemical g1 was set to be slightly higher than
at other cells (see Appendix B for the simulation equarions).

- 61 .

Figure 4.10: Zebra stripes on horse model, created by simul3ting
reaction-diffusion on surface.

Figure 4.11: Stripes are iniria ted ar !he head and hooves .

. 62.

Figure 4.12: Result of flood-fill over horse model from key positions.

Figure 4.13: Values from Figure 4.12 after being smoothed by diffusion .

• 63 .

4.6.2 Parameter Spedficafion Using Diffusion

Section 4.5 demonstrated that we can place any single reaction-diffusion pauem onto an
arbitrary surface. Sometimes a user aught want to have a pattern vary based on position on
a surface. For example, we might recogni.ze that the stripes on a zebra are thicker on the
zebra's haunches than elsewhere on its body. This variation could be achieved by slowing
the diffusion rate on and near the haunches. in contrast to the rate of diffusion over the rest
of the model. There are many ways this variation in the diffusion rate might be specified. We
will discuss one such method that uses diffusion over a simulation mesh to smooth our
parameter values over a surface. This method was used to create the variation in stripe
thickness for the model in Figure 4. 10.

The first step to specifying variation in a panicular paran1eter is to specify the value of the
parameter at particular key positions. These key positions will be particular cells in the
simulation mesh. For the example of the zebra, twelve key positions on the haunches were
designated to have low diffusion rates (call it r ,). Twelve more key positions on other parts
of the body were marked as having high diffusion rates (r

2
). Then these parameter values

were spread omward cell-by-cell from these special cells to other parts of the mesh. This
stage can be thought of as a flood-fi ll of the cell s in the mesh. A given cell on the mesh
receives either the value r1 orr~ depending on which key position is closest. At the end of
this process, all the cells of the mesh have one or the other parameter value. Figure 4. 12 shows
these values, representing a high value as black and low value as white. T he next stage in this
process is to smooth out these parameters to remove the sudden jump in values at the border
between black and white.

Diffusion of the parameter values over the simulation mesh can smooth out this discontinuity
of values. (This should not be confused with reaction-diffusion. There is no reaction process
here.) As was discussed in section 3.1 , diffusion acting alone has the tendency to smooth out
any spatial variation of a substance. Figure 4.13 shows the results of allowing the parameter
values of Figure 4.12 todiffuse for400 time steps. Notice that the sharp jumps in value have
been removed. The numerical values illustrated in Figure 4.13 could be used to vary any
parameter of a reaction-d iffusion system. Two of the paran1eters it could vary are the degree
of randomness or the rate of diffusion. The stripes of Figure 4. 11 were created by using the
parameter variation shown in Figure4. 13to specify the r.ueofdiffusion overthe model. This
created the variation in stripe width near the hind quarters.

4.6.3 Using Curvature to Specify Parameters

Another way to specify parameter variation over a model is to al low aTtributes of the s urface
to contribute to the parameter values. This section demonstrates that a surface 's curvature
can be used to set parameter values for reaction-diffusion. Suppose we notice that a giraff<~· s
spots are smaller at places ofhighercurvamre on its body. We would like to use the amoullt
of curvature to gu ide the rate of diffusion during pattern simulation on a giraffe model. Figure
4.14 shows an estimate of curvature on a giraffe model, and Figure 4.15 is the same model
with a texture whose spots vary according to this curvature information.

- 64-

Figure ~.I-' : Approximation of curvature over giraffe model. Areas of
high curvature are red and areas of low curvarure are blue.

Figure 4.15: Size of spots on giraffe model are guided by the curvature
estimate shown in Figure 4.14 .

. 65 •

p

B

Figure 4.16: Curvature along a path in the plane (left) and curvature
approxinmion used at vertices (ri ght).

A

The curvature estimate used for Figure 4.14 was presented in [Turk 92], and we will describe
that estimate below. Ideally, we would like 10 have an exact measure of curvature from the
object that the polygonal model is meant to represent. Often, however, this information is
not available, e ither because the object being represented is not available (e.g. volume data
was not retained) or because there never was an exact description of the object (e.g. a cat
model was created freehand by a human modeler). Forthese reasons it is useful 10 have a way
to approximate surface curvature from the polygonal data alone. More precisely, we want
to know the maximum principal curva ture at any given point on the model. See any text on
differential geometry for a mathematical description of principal curvature, such as [O'Neill
66]. Intuitively, th is is asking for the radius of the largest sphere that can be placed on the
more curved side of the surface at a given point without being held away from the surface by
the manner in which the surface curves. The left portion of Figure 4. 16 shows the radius of
curvawre at two points along a curve in the plane.

The right portion of Figure 4.16 illustrates the curvature approximation used here. This figure
shows the two-dimensional version of the curvature estimate near a point P. Here a circle has
been drawn that is tan gem tO the edge PA at i ts mid-point and that is also tangent to the longer
edge PB. The radius of this circle is r = tan(6) I P- A I I 2. In this figure, the line segment
PC bisects the angle APB. This figure will act as a staning point for approximating the
curvarure of a polygonal surface in 3-space at a venex P.

-66 -

In the three-dimensional case, the Line segment PC is replaced by an appro)(imation to the
surface normal Nat the vene" P. Then, each edge in the polygon mesh that joins the verte)(
P 10 another verte)(Q is e"amined, and an estimate of the radius of curvature from each of •
then edges PQ

1
, P~···· PQ. can be computed. Let V be the normalized version of the vector

Q, • P, that is, a unit vector parallel to the edge PQ, Then an estimate fore, is arccos(N • V),
and the radius estimate for the ed<>e PQ is r = tan(9) I P • Q. I I 2. The final estimate r of

b 1 I I I

minimum radius of curvature at the vertex Pis the minimum of all the r .. This estimate of
' curvature is a little noisy for some models, .so we can smooth the estimate by averaging a

vene"'sradiusr with that of al l of its neighbors, and we can take this to be theminimumradius
of curvature at the vertex. Figure 4.14 shows the resu lts of this estimate, where the s urface
is colored red in areas of high curvature (Smll ll radius) and is colored blue in regions that are
more near! y flat

Curvature information can be used to specify any parameters of a reaction-diffusion
simulation. These include reaction rates, speed of diffusion. random substrates. or initial
chemical concentrations. The spot sizes of Figure 4.15 were set by varying the diffusion rates
of a cascade system. ft is likely that other surface properties will also prove useful in
specifying reaction-diffusion parameters. Some of these properties are: direction of
maximum curvature, surface normal direction, mean curvature, and Gaussian curvature.
E"ploring the uses of these surface properties is a logical direction for future research.

4.6.4 Futu re Wo rk in Pa t tern Control

Future work on pattern comrol over a surface should concentrate on user interface issues. For
example, a user should be able to specify the size of the stripes or spots directly instead of
providing numerical values for parameters. Specifying feature sizes would be much more
intuitive with the a id o f a graphical pointing device such as a mouse. The user might point
at one portion of a giraffe model and drag the pointer over the model to indicate the average
width of a spot at that position.

. 67-

5 Rendering Reaction-Diffusion Textures
Rendering a textured object is the process of bringing together the information about the
texture, the mapping of the texture, and the object's geomecry to create a final image. This
chapter is concerned with how tO render scenes that contain objects that are textured using
reaction-diffusion patterns. The chemical concentrations from a reaction-diffusion simula­
tion are convened into colors to give a final textu re. This is analogous to a biological model
in which the concentration of amorphogen triggers the production of a pigment in an animal's
skin.

We will begin by examining the major iss.ues of rendering image-based textures, namely
projection and texture fi ltering. This overview will give us a poim of reference for examining
two new methods of rendering reaction-diffusion texrures. We require new methods to
renderthe patterns resulting from simulation on a mesh because our mesh cells are irregularly
distributed over a model. Previous texture rendering methods used regularly spaced grids of
color information. The first of the new rendering methods re-tiles the textured model with
small polygons that are colored based on the texture. This allows rapid display of textured
models on graphics workstations. The second method renders from the original surface's
geometry and uses a weighted average of texture values to interpolate smoothly the reaction­
diffusion texture pattern. This is a more compute-intensive rendering approach, but the final
images are usually of higher quality than those from there-tiling method. The same issues
that are important for image-based textures will allow us to evaluate the quali ty of these two
techniques for rendering reaction-diffusion textures. Both the methods presented to render
reaction-diffusion textures are new contributions of this dissertation.

5.1 Rendering Image-Based Textures (Previous Work)

In this section we will examine the rendering process and look at several visually disrracting
artifacts that can appear in textured images. Much of the material presented here is taken from
[Heckben 89]. First, we will look at the fundanJentals of creating a textured image by using
an image-based texture to vary the color across an object 's surface.

Photorealistic rendering has concerned itself almost exclusively with creating a rectangular
array of color values that are outpm to such devices as color cathode-ray tubes, liquid crystal
displays and film scanners. The task of rendering is to determine what the color components
(most often red, green, blue) should be for each pixel of the image. When a textured object
is rendered, one issue is bringing the color information in the texture to the correct place in
the final image. For instance, what process brings the blue dome from the center of Figure
1.8 to the appropriate position in the right portion of the figure? We need to find the

appropriate correspondence between positions in the texture and positions in the final image.
This information is found in two places: first, in the mapping function that the user describes
tO wrap the texture around the object; and second, in the projection from the three­
dimensional scene description onto the two-dimensional screen.

5.1.1 Transformation Between TextureS pace and Image Space

Let us define a few functions that will allow us to discuss the correspondence between
positions in an image-based texture and sc:reen positions. Let the function g: R2 ~ R'
descri.be the mapping of a point in texture space into a three-dimensional position on the
object's surface in the scene. For a particular image of the scene. we also have a mapping
from points in the three-dimensional scene to their projected positions on rhe screen, and we
will caU this function h: R' ~ R1

. The composite function h • g: R2 ~ R2describes mapping
a position in the texture ro the final image. Figure 5.1 illustrates the functionsg and lt. The
composite mapping function h • g gives one way to render textured objects: For each texture
element at texture position (s,t), apply the function h • g to get a position (x,y) =(It • g) (s,r)
in the final image. The color values texture[s. ~ of the texrureare then used to determine the
final color at the screen locarion screen(x,y] in the tina! image. This is texture order
mapping, and can be written as:

for s
for t

(x,y) = (h • g) (s,l)
screen[x,y] = texture(s.~

Texture Map

Texture Space

Screen Projection

(h)

Object Space

Texture-to-Image Map

Figure 5.1: Mapping from texture to image space.

- 69 -

Image Space

To a first approximation. this is the forward mapping method of rendering textured objectS.
For the sake of simplicity, this description ignores the issues of lighting models, hidden
surface removal and sampling.

The forward texture mapping approach has two potential difficulties. The ftrSt problem is that
there may be holes in the textured surface because no texture elementS mapped to some of
the pixels in the fi nal image. This problem can be overcome by careful attention to how much
the mapping function h • g stretches the texture. This information about Stretching is
contained in the Jacobian of the mapping function. The second problem is correctly filtering
the texture. This is a complex issue that we will return to in section 5.1.2. A solution to both
these issues was presented in [Levoy and Whi tted 85], where the authors mapped texture
elements to fuzzy points whose contributions were summed in the final image. The
contribution of a fuzzy point varied in cross-section according to a Gaussian distribution. A
similar approach was taken in [Westover 90] to render volume data. Westover used the
regularity of the 3-D grid of volume data to son the Gaussian footprints. which makes
combining their contributions simple.

Due to the difficul ties mentioned above in the forward mapping approach,the more common
approach to texture mapping is to reverse the above process. Let the function/represent the
composite mapping function:/= It · g. Then we can use the inverse functionf·' to determine
which position (s,t) in the texture space corresponds to a given position (x,y) in the final
irnnge:f"'(x,y} = (s,r). Texture rendering proceeds as follows: Render tl1eobjects in the scene
using some surface algorithm such as ray trac ing or polygon scan conversion. When u screen
pixel at position (.r,y) is determined to be covered by a portion of an object, the reverse
mapping f ·I (x,y) gives a location (s.r) in the texture space where the color values in
texture[s.~ can be looked up directly. This method is called screen order mapping, and can
be written as follows:

for x
for y

(s,l) = t·' (x,y)
screen[x,y] = texture[s.~

This method of texture rendering is the more commonly used approach of the two for
detem1ining the color of an object. In a real renderer, the color value texture[s. ~ would be
passed along with additional surface propenies to a lighting model, and the result of this
computation would be stored at screen[x,y].

5.1.2 Aliasing and Filtering

Both screen and image order mapping depend on determining a correspondence between a
point in the texture space and a point in the final image. It is rarely correct to use just a single
enay from a texrure color table to determine the color of a pixel in the final image. If, for
instance. an object is very far away from the viewer, the image of that object may cover only
a handful of pixels in the fi nal image. This means that any detail from a texture on the object

. 70.

is compressed into a very small number of pixels, so that many texture elements should
contribute to just one pixel's color. The above sketches of forward and inverse texturing do
not address this problem because they do not account for sampling. The naive method of
inverse texruring looks up a single texture element based on the color value from the inverse
mapping of screen position (x,y). This is known as point sampling. The left half of Figure
1.9 shows an image of a checkerboard using this method of point sampling. Notice the
distracting moire panems near the horizon of the image and the jagged edges between each
of the black and white squares. Both of these image ani facts are a result of aliasing. Aliasing
is the result of try ing to re-create a fu nction from an inadequate number of samples of the
function. More precisely, aliasing is an artifact that results from high-frequency infonnation
of a signal erroneously appearing as low-frequency information. ln the case of the
checkerboard, the moire patterns are a result of not properly averaging the texture values near
the horizon. The jagged edges between the squares are a resulr of not collecting enough
texture information near the edges between squares. To avoid these kinds of artifacts, we
need to filter the textures to remove these high-frequency components.

The problem of aliasing is well-understood, and the issues involved in sampling a signal such
as a texture are described in the literature on signal processing. The main approach to avoid
aliasing is to remove the high-frequency components by filtering the signal (e.g. the texture)
before it is sampled (e.g. represented as pixels). A band-limiredfiltertakes a given signal and
removes the high frequencies that cannot be adequately represented in the final, sampled
representation of the signal. Hopefully, this :filter will retain the low-frequency infonnation
that can be represented. Refer to books on image processing such as [Castleman 79] or
[Oppenheim and Schafer 75] for more infom1ation about aliasing, filtering, and sampling as
they relate to images.

To gain an understanding of texturing artifacts and how to avoid them, we need a conceptual
model of the enrire texrure rendering process. Rendering creates discrete values on a regular
grid (the final image) from a set of discrete values in another regular grid (the image texture).
For the sake of simplicity, let us assume that both the texrure and the final image are black
and white so that we can view them as real-valued functions. As a further simplification, we
will consider both texture and image to be one-dimensional samples instead of two­
dimensional grids of values. Figure 5.2 (from [Heckben 89)), pans (a) and (e) show
representations of the texture and the final image. All the functions in this figure arc real­
valued functions, and these two functions in particular are zero everywhere except at
regularly spaced sample points. The arrows in the figure show the four processes involved
in the rendering of textures. The first process is reconsrrucrion, where a continuous function
is created from the original, sampled function (in our case. the discrete grid of the texture).
The second step is to warp this continuous version of the texrure, using the mapping h • g.
This is the process of squashing, stretching or otherwise transfonning the texture to place it
on the final image. The third step is to preji leer the warped image, and we discuss this step
in detail below. Here we will use the term pre-filrer to mean a filter that is applied before
resampling. The fmal step is to sample the pre-filtered function, and the result of this step
gives us the final image. Figure 5.3 gives a two-dimensional illustration of these four
processes.

• 71 •

({u) g(x)

u ':>x
discrete input discrete output

fc(u) lnro~'~' g.;(u) g~ (x)
1 ~,,,

warp • prefilru

Figure 5.2: Conceptual model of the processes involved in rendering a texrure.

Two of the four processes shown in Figure 5.2 are already dictated by the given scene that
is to be rendered. The warping step is completely determined by the way the texture is
mapped onto an object and from the position of the object in the scene. We represented this
warping by the function f = h • g above. Sampling, the last stage of the model, is fully
detennined by the size of the final image. We are free to make decisions about both the
reconstruction and the pre-filtering processes. Let us take a closer look at reconstruction.
This process is the recognition that the discrete color values that make up an image-based
texture really are meant to represent some continuous color function. For our application,
reconstruction is the process of re-creating, as best we can, that continuous function. One
simple reconstruction method is to use linear interpolation between adjacent values in a
texture. Say, for instance, we wish to know the color of a texture at a position one-third of
the way between a completely black texture e'lement (value 0) and an adjacent texture element
that is pure white (value 1). Linear interpolation of these color values gives a value of 1/3
at the place in question. In general, if we want a color value that is the fraction 1 of the way
between texture values texture(i] and texture[i+ 1], then the linearly interpo.:lted value is:

value = texture(i) + t• (texture[i+1] · texture(i])

·72-

-.J,

Original Texture

Reconstruct +
Warp Pre--Fllter

Figure 5.3: Two-dimensional illuso-.uion of the rendering process.

Final Image

Linear interpolation is the same as convolution of a discrete function with the triangle filter:

triangle(/) = max(O, l - lrl)

Convolving a discrete function with an appropriate filter is in fact the most common view of
reconstruction. Linear, quadratic and cubic reconstruction ftltersare all common in computer
graphics. Much work has been done exploring the qualities of different reconstruction fil ters.
Reconstruction fi lters are covered in many books on signal processing such as [Oppenheim
and Schafer 75]. See [Mitchell and Netravali 88) for a good overview of this topic as it relates
to computer graphics.

Let us now rum tO the pre-filtering stage of texture rendering. The purpose of this stage is
to band-limit the warped texture function before it is discretely sampled to create the final
image. Ideally, this pre-filter should remove any frequencies in the fu nction that are above
the Nyquist limit given by the sampling rate of the tina! image (see, for example, [Castleman
79]). This will remove the high-fre.quency infom1ation that could, due to aliasing, appear as
low-frequency information. Here again weare convolving a function with a filter. Sampling
theory tells us that the best shape for this filter is the sine function (sinc(x) = (1/x) sin(x))
because only this filter c uts off high frequencies completely and leaves the lower frequencies
untouched. Unfortunately, the sine function gives some difficulties in practice. One problem
is that it is infinite in extent. This means that every function value from part (d) of Figure 5.2
contributes to any given discrete value in part (e), which means a high computational
expense. Secondly, the sine function can produce ringing (visible ripples near edges) which
is the result of the many closely spaced lobes of the sine fu nction. For these reasons, other
filters are used in practice. Two popular families of filters are the Gaussian filters and cubic
filters.

Although the processes of reconstrUction and pre-filtering can be separated conceptually,
often they are implemented together in one part of a program. When a texturing algorithm
has the two processes tightly intertwined, they are referred to as a single process, the texture
filter. Under cenain conditions, one component of the texture filter is more prominem than
the other. Depending on the position of a tex:tured object in a scene, either the reconstrUction
or pre-filtering process may dominate the look of a texture. [fan object is very close to the
viewer then the reconstruction filter becomes important because a very small number of
texture elements may cover a large ponion of the screen. ln such cases, the interpolation
method used between texture elements dominates the look of the texture. When this happens,
the texture filter is sometimes called a magnificmionfi.lter. The opposite extreme occurs
when a textured object covers very few pixels of the final image. Then the texture ftlter's job
is to average many of the texture elements 1ogether io give one color value. Here, the pre­
filtering is foremost in importance, and such a filter is called a decimation filter.

5.1.3 Two Texture Sampling Methods: Point Sampling and Mip maps

Let us examine two concrete examples of filters for image-based textures. These two filters
are similar to the two methods of rendering reaction-diffusion textures that will be described

-74-

later. The ftrSt texture "filter" we will look at is point sampling of the texture. This is the naive
method of texturing that was ou tlined in the description of screen order mapping of textures.
The texture value is simply the color of the closest texture element to the inverse function
value f ·1(.l:,y). This is actually the absence of any fi ltering, although it can be viewed as
convolution with a box filler. Conceptually, the reconstruction filter is a box filter that
stretches halfway between two texture elements. This means that no averaging between
neighboring texture elements is performed. This filter will give blocky looking textures when
a textured object is close to the viewer. The pre-filter is an impulse function centered at the
origin. This means that the filter uses just one texture element for the color, no matter how
small the object appears in the final image. The effect of this will be most noticeable if such
an object is moving, in whic h case the texrure will sparkle and shimmer distractingly as
different portions of the texture move under the sampled positions. Clearly, point sampling
makes a poor texture filter. There-tiling method of displaying reaction-diffusion textures
(described later in this chapter) has much in common with the point sampling method of
image· based texture rendering.

A substantially better texturing technique called a mip map was introduced by Lance
Williams [Williams 831. Map maps should be though t of as a fami ly of fil ters, and a specific
filter is given by the panicular mip map implementation. Mip maps are now in common use,
probably because they are easy to implemenl and because they have a low, fixed computa­
tional cost per textured pixel. To motivate this fixed cost, consider what happens when a pixel
in a final image spans a large ponion of a texaure. The pixel's color should be an average of
the colors from a large region of the texture, so a single lookup into the original texture will
be inadequate. Depencting on the size of this region, we may have to make several hundred
texture lookups to find the appropriate average. If we create several pre-fi ltered versions of
the texture, however, just a few lookups into these pre-filtered ve.rsions will suftice to give
a reasonable color average over much of the texwre. Each of these pre-filtered versions of
the texture is an appropriately band-limited (blutTed) version of the original texture. The
collection of pre-flltered textures is what the image processing literature calls an image
pyramid. The high-quality method of displaying reaction-diffusion textures (described later
in this chapter) is similar to mip maps.

A mip map is just such a technique that uses multiple pre-filtered versions of a texture. Figure
5.4 is a ctiagram of a mip map. Consider a 256 x 256 element black and white texture. TI1e
first level of the mip map is the original array of256 x 256texrure values, shown at the base
of the pyramid atthe right of Figure 5.4. The second level is a 128 x 128 version of the texture
in which each elemeot is the average of nearby elements (typically four) from the ftrst level
of the mip map. The additional levels are smaller by a factor of 2 on each side from the
previous level, and each of their elements are averages of texture elements from the previous
level. The final level of the mip map is a single value that is the average value over the entire
texture.

Fincting a texture value using a mip map begins by determining the amount of compression
or stretching of the texture at a given pixel. A typical measure for this compression factor
is the size that a one· pixel circle on the final image would be if it was inverse mapped back

-75 -

Original Texture

Mipmap

Figure 5.4: Pixel's area mappped inw texture space (left) and the appropriate
filtering computed from the mip map (right).

into texture space. This will usually give an elliptically shaped region. The equation given
in [Williams 83] for the compression factor is:

d =max(

This valued detem1ines the two levels of the mip map that will be used to compute the filtered
texture value. It is a measure of the size of the smallest bounding square around the elliptical
pixel-coverage region shown and the left of Figure 5.4. The larger the bounding square, the
higher the levels we will use in the mip map .. Most of the time, the value o f d will not specify
one particular level, but instead will indicate that the resulting color should be a blending of
values taken from two adjacent levels of the rnip map. The pixel 'scoloris given by averaging
the values found from these two pre-filtered versions of the texture. The mip map approach
to flltering allows any number of ways to interpolate between the levels, and it also gives us
a choice about how a panicular value within one level is computed. Linear interpolation is
the most commonly used choice in both cases, and this is what we will describe here. Given
a position (s,r) in texture space, the tex ture value within one level of the mip map can be
computed using bi-linear interpolation between the four nearest tex ture elemems with in a
level. This is done for both the levels indicated by d, and then the fractional portion of dis
used to linearly interpolate between the values at the two levels to arrive at the final filtered
texture value. This value is the result of seven linear interpolations between a total of eight
values in the mip map. It is this fixed cost that makes the mip map approach computatio nally
attractive.

- 76 -

ltis instructive to contrast point sampling with !he mip map filter described above. The fil ter
give by a particular implementation of a m:ip map is a concatenation of several transfer
functions, and !his makes an exact analysis of a mip map fi lter difficult. To my knowledge,
no analysis of any filter that has been implemented using a mip map has appeared in the
graphics liter<~ture. The filter used in the above mip map is partially determined by the bi­
linear interpolation with in a level. The fil te r shape is that of a four-s ided pyramid and is
sometimes called a Bart leu filter. When the mip map turns into a magnification filter, the
resu lting textures look a good deal smoother than a point sampled texture because !he linear
interpolation makes the individual texture elements less noticeable. The second determining
factor in a mip map's filter is the way one level is computed from the nex t lower level in the
pyramid. In the case of the implementation described above, point sampling is equivalem to
convolving with a box fi lterthat is al igned with the axes of the texture space. When a textured
object is small, the mip map texture gives a rough average of all the texture elementS present
within a pixel. For surfaces that are more nearly edge-on, the pre- tilter of the mip map will
cause more texture elements than necessary to be averaged together. resu lting in over­
blurring in one direction. This is a good deal less distracting than the sparkl ing that results
from point sampling. Overall, this mip map implementation does a fair job of filtering a
texture at a very reasonable computational cost. An analysis of mip map implementations
of filters is a topic for further research.

Point sampling and mip maps are by no means the only ways to filter textures. Other texture
ftlteri ng methods inc lude summed-area tables [Crow 841 [Glassner 86], repeated integration
[Heck bert 88], space-variant kernels [Fournier and Fiume 88J, and the Ell iptical Weighted
Average filter [Greene and Heckben 86). We examined poim sampling because the method
of rendering described in Section 5.3 has much in common with point sampling. We
examined mip maps in detai l because they are similar to the high-quality method of rendering
reaction-diffusion textu res that are described in Section 5.4. They are similar in !he way that
they interpolate between rwo low-pass filtered versions of a given texture and because they
perfoan interpolation between sample pointS within a given filter level.

5.2 Interactive Texture Rendering

We would like to view reaction-diffusion textures interactively on graphics workstations. In
order to achieve interactive display rates we may need to make compromises in the quality
of !he final image. In this section we will examine methods that have been used to display
textures rapidly using graphics hardware. Then in section 5.3 we will describe a fast
technique for displaying a reaction-diffusion texture that has been made for a specific model.

The moSt common method of generating textures in real-time is to use special-purpose
hardware that is designed to render image-based textures. The first texturing hardware was
built for fl ight simulators, and tO this day most of the graphics machines that have rapid
texturing capabilities are targeted for the veh icle simulation market. The details of texture
rendering on present-day hardware varies from machine to machine, but !he overall approach
to real-time texturing is qu ite consistent across vendors. Texture lookup and filtering is

-77-

usually performed as a final step just after primitive rasterization (e.g. polygon scan­
conversion) and direct! y before sending the pixel's color information to the frarnebuffer. The
basic approach is to have one or (more often) several processors take a surface ID and texture
coordinate information from the rasterization stage and perfom1 a texture lookup. These
texture processors typically have large amounts of memory to store several textures.
Textures are usually stored at several levels of detail (as is done for mip maps) although the
exact form of these levels varies among architectures.

An unconventional alternative to image-based texture hardware was demonstrated by the
Pixel-Planes group [Rhoades eta! 92(. Pixel-Planes 5 is a graphics engine that uses 128 x
128 arrdys of one-bit processors to rasterize_polygons (Fuchs et al89]. Although these small
processors only have 208 bi ts of memory each and operate in SIMD fashion, they provide
enough processing power to re-compute some procedural textures anew each frame. This
method of texturing is only acceptable when the desired textures can be represented as simple
functions that do not requ ire large amounts of data to evaluate. The technique cannot provide
a texture from an arbitrary image. Examples of textures that have been displayed interac­
tively using this approach include wood, ceiling and noor tiles, sheet music, fire, and bricks.
Scenes that contain a dozen such procedural textures can be displayed at about ten frames per
second on Pixel-Planes 5.

When using a fast polygon display engine with no special-purpose texture hardware, textures
can be displayed as collections of many small polygons. This approach often strains the
polygon budget on such devices, however. If the texture is a 128 x 128 array of color values,
for example, tllen 1282 = 16,384 squares can be used 10 render the texture. Polygon display
engines often provide Linear interpolation of colors across polygons. Color interpolation
across the texture e lement squares can be used to improve the look of the texture when the
textured object is near the viewer and the squares cover larger areas of the screen. Often the
graphics hardware provides linear interpolation of colors between polygon vertices. When
the texture squares become much sm~Jler than pixel size, however, this texture method is
equivalent to point sampling, and the texrure wil l sparkle objectionably.

The next section will describe a technique for rendering reaction-diffusion textures on
graphics workstations with no special-purpose hardware.

5.3 Using Surface Re· Tiling for Rapid Rendering

This section describes the rdpid display of reaction-diffusion texture on a graphics worksta­
tion. The motivation for this is to give rapid feedback to the user about the overall look of
a reaction-diffusion texture. Using the technique presented in this section, a user can
interactively change the position and orientation of an object a nd see these new views
immediately. For example, the horse model shown in Figure 5.6 was displayed at a rate of
more than 15 frames a second on Pixel-Planes 5, a high-end graphics engine [Fuchs et aJ 89].

Recall from Chapter 4 that we can simulate any reaction-diffusion system on a mesh that is
fit to a particular surface. The results of th:is simulation are chemical concentrations at the

- 78 -

centers of the mesh cells. The basic method of texture rendering described in this section is
tore-tile a given surface based on a simulation mesh. This re-tiling process results in a new
model that is composed of polygons that a:re colored according to a pauern created by
reaction-diffusion. This is similar to displaying an image-based texture using a large
collection of color-interpolated squares or rectangles. Re-ri ling based on a reaction-diffusion
pattern has the same image quality problems that are fou nd when rendering image textures
using collections of rectangles. However, this method has a speed advamageover the higher­
quality rendering technique that will be described later in this chapter.

The approach of this re-ti ling process is to throw away all the old polygons of the model and
replace them with new polygons that are placed according to the cells in the simulation mesh.
Then the chemical concentrations at each cell will dictate the colors of the vertices of the
surrounding polygons. A graphics workstation can then interpolate these colors across the
polygons and display the model at interactive rates. It is important to recognize that the
polygons of the original model cannot be used for this purpose because the simulation mesh
can have many cells for any single polygon of the model. Details of the texture would be lost
if the frequency contents of the partern are h.igher than the density of the polygon vertices.
We want to create a new collection of polygons. One possible candidate for these polygons
are the Voronoi regions that comprise the cells of the mesh. Recall , however, that these
regions are never saved explicitly as geometric information. Only the lengths of the sides of
these regions are keptforcalculatingthediffusion terms of the cells. In fact, it would be quite
difficult to use the Voronoi regions 10 re-ri le the polygonal model. The reason for this at least
in pan is that many of the Voronoi regions are not flat but instead should lie on several of the
original polygons. It would be difficult tO create a polygon for each Voronoi region in a
manner that could even allow all the new polygons to meet seamlessly at the polygon edges.
Since many of the-se regions may have six ed,ges or more it would be difficult to make them
planar.

A narural alternative to using the Voronoi regions as polygons is to have the centers of the
cells become the vertices of the new polygons_ This turns out to be much easier to accomplish
than using the Voronoi regions, and this is the approach used to create there-tiled models in
this dissertation. One way to accomplish this would be to use the dual graph of the Voronoi
tessellation, known as the De launay triangulation. This is formed by replacing region centers
witb vertices and vice versa. This results in a triangular mesh. U nfortunately, we tried this
method for several models and found that there were often several Voronoi regions in a model
that were particularly troublesome when creating the dual model., resulting in holes or
overlapping polygons. The source of these problems is in the nature of the planar
approximation used for the Voronoi regions, in the cases where nearby regions do not agree
on whether they are adjacent to one another. This problem resu lts from using the planar
approximation of the Voronoi regions and it could be corrected by using the exact Voronoi
regions. In the work that follows, however, the Del au nay triangu lation was dropped in favor
of a more robust method of re-tiling that did not pose these kinds of difficulties.

The solution to the problem of robust re-tiling was to create an intennediate form between
the original and there-tiled model that allowed the topology to always remain faithful to that

-79-

of the original surface. This re-tiling technjque was introduced in [Turk 92j. This method
replaces all the old polygons of the model with a collection of triangles, each of whose
vertices are mesh points that were positioned by relaxation. The method begins by
incorporating the mesh points into the polygonal model to create a new model that has all the
original vertices of the model as well as new vertices from the mesh points. Then the old
vertices are removed from the model one-by-one, leaving only the new vertice~ that are also
mesh pointS. The triangles in this new model receive their vertex colors from the chemical
concentrations of the reaction-cliffusion simulation. Figure 5.5 shows a close-up of an
original model of a horse (top) and are-tiled version of the same model (bottom). The user
has control over the number of polygons in rhe re-tiled model, although in Figure 5.5 there­
tiled model has more polygons than the original model. Figure 5.6 shows a textured version
of the re-riled model using color-interpolated triangles.

5.3.1 Re-Tiling using Constrained Triangulation

The first stage in re-til ing, incorporating the mesh points as vertices of the model, relies on
a problem in computational geometry called constrained rriangulation. Figure 5.7 shows a
constrained triangulation problem. The left half of this figure shows a collection of points
in the plane and a few edges between some of the points. The problem of constrained
triangulation is to connect all the points into a mesh consisting only of triangles while
incorporating the already given edges as parr of the mesh. The right half of Figure 5. 7 shows
a triangulation that meets the given constraint edges given at the left.

There are many ways to solve a constrained triangulation problem [Preparata and Shamos
85]. The solution method employed for the models in this dissertation is a commonly used
technique called greedy triangulation. Consider a set of n poin ts and some constraint edges.
This algorithm starts by initializing the final list of edges with all the constraint edges for the
given problem. It then considers all other pairs of points of the problem and places these on
a canclidate list of edges that is ordered based on the distance between the points. The
algorithm proceeds by removing the shortest edge on the candidate list and then adding this
edge to the final edge list if this edge does not intersect any of the edges already on the final
list. The "greedy" aspect of the algorithm is that it always tries to find the shortest edge it can
to add to the solution. The a lgorithm terminates when the candidate edge list is empty. The
final step determines what the resulti ng triangles are from the edges in the final edge list. The
greedy triangulation algorithm has the advantages that it is simple to implement and that it
gives reasonably shaped triangles. Its drawback is that it has computational complexity
O(n'Z).

Incorporating the mesh points into the polygonal model is a simple process that relies on
constrained triangulation. All of the polygons in the original model are processed one at a
time. Each of the vertices of a particular polygon are taken together with the mesh points that
lie on that polygon, and this collec tion of points is considered as a triangulation problem in
the plane of the given polygon. The edges of the original polygon serve as constraint edges
in this problem. The left half of Figure 5.8 shows a five-sided polygon taken from a

- 80 .

Figure 5.5: Original polygons of horse model (top. 13352 polygons) and a re·tiled
version of the same model (bottom, 32137 polygons) .

. 81 -

Figure 5.6: Re-tiled horse model , where vertices are colored
based on a reaction-diffusion pattern .

•

~
•

Figure 5.7: Constrained triangulation.

Figure 5.8: Mutual tessellation of a face to incorporate mesh poims.

- 82-

hypothetical polygonal model and the two mesh points that lie on this polygon. This problem
is given to the greedy algorithm, and it returns a list of triangles as the solution. The right half
of Figure 5.8 shows the constrained triangula1tion solution for the example on the left. Now,
the original polygon is removed entirely from the model and is replaced with the new
collection of triangles. [tis because we use the edges that bound the original polygon as
constraints during triangulation that we know the boundary of the new triangles will be the
same as the boundary of the polygon we remove. When this process is carried out for all
polygons in the model, the result is a model (entirely composed of triangles) that incorporates
all the points from the simulation mesh. This intermediate model in there-tiling process is
called the mutual tessellation of the model.

The next step in there-tiling process is tO remove all the old vertices from the original model,
leaving only those vertices that were part of the simulation mesh. This can be accomplished
by once again invoking constrained triangulation. The idea is to replace the triangles that
inunediately surround an old vertex V with a set of new triangles that do not include V and
that have the same collective boundary as the original triangles. To remove a panicu lar vertex
V, we ftrst find a plane that is an approximation of the tangent to the surface. at V. Any
reasonable tangent approximation will do, and for the re-tilings found here we have used the
average of the surface normals of the polygons that share the vertex V. The next step is to
consider all the vertices of the model that form the triangles immediately surrounding V. The
left portion of Figure 5.9 shows a venex V we wish to remove from a mutually tessellated
model and the triangles surrounding V. We now project all the vertices of these triangles
except V onto the tangent plane, and this gives us a new set of points for a constrained
triangulation problem. The additional edge constraints are those edges that did not have V
as an endpoint and that were part of the original set of triangles. These edges form the
boundary of the triangles surrounding V. The middle of Figure 5.9 shows such a constrained
triangulation problem from the model and the venex V shown at the left. Constrained
triangulation is now invoked to give a new set of triangles (show at the right in Figure 5.9)
with the same boundary as the old set. T he old triangles are. then removed and replaced by
this new set of triangles. This process is repeated for each old vertex in the model until the

V (vertex to
remove)

Remove V and itS edges

!
\
'

Figure 5.9: Removing an old venex from a mutual tessellation .

. 83.

only vertices th:u are left are those new venices from the simulation mesh. The model ha~
now been ~e-tiled.

With thi~ re-tiled model. n tS now stmple to assign lhe colors of me veruces based on the
;:onccncr:uions oi chemicals given by a reacuon-<iiff us ion simulation. The pattern on the
horse in Figure 5.6 was created using Turing's spot-formation system.

The re- tilcd models shown in this dissertation all have had the original vertices removed from
the model. A natural variant of the above re-tiling method would be to incorporate all the
mesh point~ into the model but then retain till the original vertices. There are good and bad
aspects to retaining the original vertices of the model. We have no values of chemical
concentration at the original vertices of the model. lf we retained the original vertices we
would re{juire some form of interpolation of chemical concentration at these vertices. On the
other hand, when we throw out the original vertices we are throwing out some of the geomeuy
of the model, and this is undesirable. In some instances lhis may cause sharp comers to be
lost. Ylodels that keep the original vertices will have more polygons and wiU take longer to
dtsplay. but they will be faithful to lhc original model's geometry. The ability to choose
between retaining and removing the original vertices would be a simple one to provide. and
this would allow a user to choose between geometric fidelity and display speed.

5.3.2 Macro-Displacement Mapping

Some patterns found in nature are not simply patterns of color but arc also variations in the
roughness or bumpiness of a surface. For instance, the wans and bumps on a frog can be

Figure 5.10: Macro-ctisplacemem bumpy horse.

- S4 -

considered a pattern. We can create such patterns of geometry based on reaction-diffusion
simulations. Using the newly tiled model of an animal from the simulation mesh, we can
move the positions of the venicesofthe model based on the pattern from a reaction-diffusion
simulation. Figure 5.!0 shows a bumpy horse created in this manner. The vertices of this
model were pushed in a direction tangent to the surface, and the amount of motion of each
vertex was proponional to the concentration of chemical b from the Turing spot-formation
system. We will call this technique macro-displacement rnapping. This is much the same
as the original displacement mapping technique described in (Cook 84).

In true displacement mapping, the positions of micropolygons are moved according to a
texture. Micropolygons are sub-pixel sized polygons that are created on-the-fly during the
rendering process. In contrast, macro-displacement mapping moves the polygons of a model
once to create a new model. This may be an important disadvantage. With macro­
displacement mapping, the individual polyg~ms that are displaced will become noticeable if
the object is near enough to the viewer. This is not the case with true disp lacement mapping
because surfaces are split into micropolygons in a manner that is sensitive 10 the size of the
model on the screen. Macro-displacement mapping was used in th is dissertation for two
reasons. First, no renderer was available that could be cas il y modified to do true displacement
mapping. This is a straightforward task left for furure work. Second, there-tiled models that
result from macro-displacement mapping can be rapidly displayed on fast graphics hardware.
This is an advantage over rrue displacemem mapping. For instance, the model shown in
Figure 5.10 was displayed at more than ten frames per second on Pixel-Planes 5.

5.4 High-Quality Rendering of Reaction-Diffusion Textures

We now turn to a higher quality method of texturing an object using the pattern from a
reaction-diffusion simulation. The result of a simulation on a mesh is a set of irregularly
distributed measurements of chemical concentration over the surface of a given polygonal
model. The texturing method described in this section is based on a method to compute value-s
of chemical concentration at any position on the surface from these irregularly spaced values.
This is an interpolation problem over an irregular mesh of points. Texture interpolation is
usually done over regular meshes, and the method of irregular mesh interpolation described
in this dissertation is a new contribution to computer graphics. The interpolation method
described below produces images that minimize visible ani facts due to the simulation mesh.
As before, chemical concentration is mapped to color values to create the final texture of the
surface. This section begins by describing the sparse interpolation method that generates
function values at arbitrary positions on a polygonal model.

5.4.1 Sparse Interpolation on Polygonal Models

The problem at hand is to take discrete values of a function and to consrruct a continuous
function from these values. The numerical analysis literature is filled with ways of
interpolating between regularly spaced function values along a line or on a grid [Press 88].
Within thecomputergraphies field , the mosLcommonly used method of interpolation is low­
order polynomial fi tting to regular grids of data. Linear, quadratic and cubic in terpolation

. 85 -

methods are all commonly used for reconstruction in tex turing, image warping and volume
rendering. It is far less common in graphics to reconstruct a continuous function from
irregularly spaced samples. One place where this problem does a.rise is in ray tracing.
Sometimes more rays are cast <.~t pixels in places where the scene is more complex. These
additional rays may be evenly spaced, but more often their positions are randomly penurbed
to combat aliasing fCook 861. This is a very similar problem to that of interpolation of mesh
values over a polygonal model. The solution usually adopted for ray tracing is the weighted­
averagefilter. This is the method we will use for mesh interpolation. This and other methods
are evaluated in [Mitchell 87].

Let us examine the weighted-average filte.r in one dimension. We begin with a list of n
positio ns P,, P2 , .. . , P. and the function values F 1, F

2
, ... , F. at each of these posi tions. The idea

behind the interpolation method is to allow nearby values to have a strong effect oo the value
at a given position Q, and for that effect tO fall off with distance from a sample position. We
will call this fall -off effect w: R -7 R, our weighting function from the reals into the reals.
This weighting function should have a maximu·m value at zero, fall off monotonically in the
positive and negative directions, and be symmetric around the origin. Figure 5.11 is a one­
dimensional illustration showing that the value at a position Q is found by weighting the
values of two nearby sample points. The equation for the weighted-average filter is:

•
LF,wcJP, - Ql IS)

V (Q) = !..1 .:_=. !_I ------

L W(IPI - Q I Is)
i •l

Figure 5.11: Weighted-average at Q of two nearby sample points .

. 86 .

Each nearby function value is weighted accord ing to its distance to the position Q. The scalar
quantity s stretches or contracts the range of action of the weighting functio n w. This method
of sparse interpolation works well if the d iscrete function values are not spaced too
irregularly. Fortunate ly, o ur mesh points are fairly regularly spaced due to the re laxation step
du ring mesh generation. The weighted-average fi lter generalizes quite naturally to our
problem.

Adapung the above equation tO color values in three dimensions i$ straightforward. Allow
the function values F

1
• Fz, .. . , F, to be color\'al ues F, =(red,, green,. blue.) and leuhe positions

P,, P2, P, be positions in three-space P, = (x,. Y,. z). Then the interpolated color v(Q) of a
position Q = (x, y, z) can be evaluated directly from the above equation of the weighted ­
average filter. All that is left to do is pick a suitable weighting function w. The two aspecL~
guiding our choice of ware smoothness of the function and speed of evaluation. A good
compromise between these two is given by the following function;

w(d) = 2d' - 3d' + I if 0 ::; d::; I
w(d) = 0 if d > 1

This function falls smoothly from the value 1 down to 0 in the domain [0,1], and its first
derivative is zero at both 0 and !. This function is the only cubic polynomial with these
properties. and it can be found in several places in the graphics li terature, e.g. [Perlin and
Hoffert 89]. The images in this dissertation have been made using a value of s = 2r, where
ris the radius of repulsion from the relaxation s1epof mesh generation. An important property

Figure 5.12: Leopard-horse. rendered using the weighted-average of nearby mesh values.

- 87 -

of the weighting function is that it is identically zero for distances greater than l . lhis means
that mesh points that are funher away than !.his distance do not contribu te at all to the value
at a given position on the surface. We can use unifom1 spatial subdivision to rapidly
detennine all the mesh points that fall within the radius of effect cifthe position. ll1is reduces
the interpolation calculation at a panicu!ar location from an O(n) algorithm (examine all
mesh pointS in model) to 0(1) since the number of nearby mesh poin ts is a small finite value.

The leopard-horse in Figure 5. 12 shows the resu lt of this method of color interpolation. The
giraffe of Figure 4. I 5 shows another example of this texture rendering method. The patterns
on these models were created by two of the cascade systems described in Chapter 3.

The interpolation method described above allows a textured object to be asel.ose to the viewer
as desired without displaying artifacts of the-simulation mesh. The method as described does
not, however, address the problem of an object that covers very few pixels. We will examine
this issue now.

5.4.2 Diffus ion of Colors for Pre-Filtering

As we look at texturing using mesh values, it will be helpful to refer tO Figure 5.2, which
shows the four processes of texture fi ltering: reconstruction, warping, pre-filtering, and
resan1pling. As with image-based textures, the warping and resampling processes are
dictated by the scene composition and the screen size. The weighted-average filter described
above takes care of the reconstruction process. Now we willconsidenhe issue of pre-filtering
using mesh va lues. The solution presented here is taken from the notion of an image pyramid
such as a mip map [Williams 83], and Ehis idea is exEended EO our irregular texM e meshes.

We cannot display infom1ation that has a higherfrcquency than our display device, so we can
use low-pass filtering tO avoid aliasing. The idea of a mip map is to pre-compute different
versions of a texture at different amounts of !ow-pass filtering. We can extend rhe concept
from mip maps 10reaction-diffusion tex tures by creating low-pass filtered (blurred) versions
of the texture meshes. The texwre meshes a re noth ing more than color values F, at positions
P,- We will call level 0 the original set of color values, that is. an un-blurred version of the
texture. Level I will be a sl ightl y blurred version of this originaltexrure, and levels 2 and
higher will carry increas ingly blurred color values. What we need now is a method of low­
pass filtering those color values in a controlled fashion . It is our good fortune that diffusion
can provide us with a solution.

Let us look at diffusion on a two-dimensional grid in the plane. When the values of a gray­
scale inlage are allowed to diffuse across fhe image, the result is exactly the same as if the
image had been convolved with a Gaussian fi lter. Larger amounts of blurring (wider
Gaussian filters) are obtained by diffusi ng for longer periods of time. The relationship
between diffusion for a timet and convolution with a Gaussian kernel of standard deviation
sis t = s2 [Koenderink 84]. This gives us a method of producing our filtered levels l, 2, and
higher. Texture level k+ I is created by allowing the colors of texture level k tO d iffuse for
the appropriate amount of time. Figure 5. 13 shows three low-pass filtered versions of a spot

. 88 -

Figure 5.13: Increasingly blurred versions of a texture on a sea slug.

texrure on a sea slug. Each leve l's Gaussian kernel has a standard deviation that is rwice that
of the next lower level.

Now that we have several band-limited versions of the texture's color, we can select between
the appropriate levels based on the si.ze of the textured object on the screen. The texture color
at a point will be a weighted average between the colors from two band-limited texture levels.
We can choose between blur levels and calcu late the weighting between the levels at a pixe l
from an approximation to the amount of texwred surface that is covered by the pixeL This
estimate of surface area can be computed from the distance to the surface and the angle the
surface normal makes with the direction to the eye. The natural unit of length for this area
is r, the repulsion radius for mesh building. Let a be the area of the surface covered by a given
pixel, and let this area be measured in square units of r . Then the proper blur level Lata ptxel
is:

We have produced shon animated sequences using this ami-aliasing techn ique, and these
show no apparent aliasing of the textu res. Figure 5. 14 shows some Stills from such an
animation. The texture of the figure is a blue-and-red version of the zebra texture shown in
Figure 4.10. 1\etice that as the horse model becomes smaller the colors blend together
cowards purple. Compare this wnh the textures produced without using blur levels (Figure
5. 15).

. 89.

Figure 5 . 1~: Frames r·T(lm anim:uion that "as anti ·al iased using
muldp!e band-limned versions o f 3 smp<: texr'.lre.

Figure 5.15: Fr:u:1es :rom ~n;rr.aHon with no am:i-:!11::-,:n.c; .

. ':10 •

5A.3 Filter Quality

Let us evaluate the texrure filler that is described above. We will look at the visual quality.
the computational cost, and the memory cost of the filter. Examining these issues will suggest
possible directions for future research in rendering of reaction-diffusion textures.

As we found earlier, the visual quality of the filter depends on both the reconstruction from
discrete samples and the pre-fi lter. The reconstruction filter used is a radial cubic weighted­
average filter. Unfortunately, the irregularity of the positions of the sample points makes it
rather difficult to evaluate rigorously the quality of this filter. We can evaluate some of its
properties by examining the shape of the filler in the spatial domain. The upper portion of
Figure 5.16 shows the shape of the weighting function. The function is continuous and has
continuous first and second derivatives. This means that the reconstructed function will be
continuous and willshownodiscontinuities in its first or second derivative. This is in contrast
to the mip map implementation described earlier which uses a reconstructed function that has
a discontinuous first derivative. We can get more of an idea of the filter's properties by
examining it in the frequency domain. The lower portion offigure5.16 shows the weighting
function's frequency spectrum. Notice that the filter's spectrum does preserve most of the
low-frequency components of a signal while attenuating the high-frequency components.
This appears tO be a reasonable approximation tO the ideal resampling filter, the sine function.
which has a spectrum that preserves all the low-frequency signal but removes all high­
frequency components.

The pre-filter of our texture filter is based on multiple blurred levels of the texture. Using
diffusion, the blurred levels are equivalent 10 convolution of the original texture with a
Gaussian filter. The top portion of Figure 5.17 shows a Gaussian filter. Gaussian filters have
several favorable properties. First, the frequency spectrum of a Gaussian is anotherGaussian.
The bottom portion of Figure 5.17 shows the spectrum of the Gaussian on the right. Notice
that this filter preserves much of the low-frequency information while attenuating the high­
frequency components. Unfortunately, the Gaussian filter is not perfect since it attenuates
frequency components at the high end of the baseband that we would like to retain.
Nevertheless, this still compares favorably with the box filter often used in mip maps. The
box ftlter's spectrum is a sine function (Figure 5.18), which means tha t there arc still
significant high-frequency components present in the filtered function. We used a Gaussian
tiller because it is an acceptable compromise between quality of filtering and convenience
of computation.

The second important aspect of the pre-filter is the supporr of the filter, that is. the shape of
the region over which the filter averages samples. The process used to make the blur levels
is isotrOpic diffusion, which means that the texture is blurred evenly in all directions. This
means that the support of the filter is circular. This is a reasonable support when the textured
surface is nearly facing the viewer in a given scene. When the surface is viewed nearly edge­
on, however, a circular support blurs the texrure more than necessary. Mip maps also blur
textures for nearly edge-on orientations. A better support shape for nearly edge-on

- 91 -

-3. - 2 . 2 .

Figure 5.16: Spatial (top) and frequency (bottom) graph of
the cubic weighting function w .

. 92 .

3.

-1. -0 .5 0 . 5 1 .

-3 . -2 . 2 . 3 .

F igure 5.17: Spatial (top) and frequency (bottom) graph of a Gaussian filter.

- 93 -

- 1. -0 .5

0 . 8

0 . 6

0.4

0 .2

0 . 5 1.

Figure 5.18: Spatial (top) and frequency (bottom) graph of a box filter.

. 94 .

oriemations is an ellipse. An elliptical suppon would average together more texture samples
along the direction of the surface that is more steeply angled with respect to the viewer. A
high-quality filter with this property called the Elliptical Weighted Average filter (EW A) is
described in [Greene and Heck ben 86] and [Heck bert 89] . TheEW A filter averages together
an arbitrary number of samples within an elliptical region in the texture space, depending on
the orientation of the surface being texmred. A simi lar scheme could be implemented for
re;!ction-diffusion texture meshes, although this would have a much higher compmational
cost. This higher cost would be due to having tO fi lter the texture in many orientations and
at several different ellipse eccentricities.

lt is fortunate that images of scenes containing reaction-diffusion textures can be produced
without a dramatic cost in memory or computation time. As was mentioned earlier, the
amount of computation needed for a single evaluation of the texture filter is fixed. The
breakdown of costs is as follows:

I) Roughly a dozen color lookups in a spatial data structure for each o f two levels.
2} The same number of evaluations of the weighted-average function w.
3} Linear interpolation between the two levels.

The cost of (3) is negligible compared to (I) and (2). One lookup in the hash table for the
unifonn spatial subdivision requires two integer multiplies and a modulo evaluation.
Evaluation of w requires four multiplies and two add/subtracts with one more multiply and
two more adds to keep the running sums for the weighted average. This gives roughly 120
multiplies and 96 add/subtracts per texture evaluation. Several of the multiplies can be
eliminated by prc·computing and storing values of the weighted-average function in a table.
This amount of computation is the same magnitude as is needed to compute Gardner's sum­
of-sines texture [Gardner84] or a fractal texture based on Perlin's solid noise fu nction [Perlin
85]. As an example of rendering times, the leopard-horse shown in Figure 5.12 took 81
seconds to compute at512 x 5!2resolution on a DECstation 5000-125. This is a workstation
with 32 megabytes of memory and a 25Mhzclock forthe CPU/FPU (R3000A!R30!0) which
has roughly 26 MIPS and 3 MFLOPS (double precision) perfom1ance. T he same scene
without texture required 15 seconds to render. The renderer used was a z-buffer polygon
renderer, and the shader in both cases used Phong interpolation of normal vectors and used
the Phong approximation for specular high! ights [Phong 75].

The memory cost for a reaction-diffusion texture is, of course, dependent on the number of
cells in the simulation mesh. The mesh for Figure 5. 12 had 64,(X){) cells in the mesh. Both
the positions P

1
, P

2
, ... , P. and the colors Fl' F

2
, ... , F, need to be stored for each cell, as well

as a pointer for the hash table. When four different blur levels are stored (a typical number
of levels). this gives a cost of about 30 bytes per sample. This comes out to roughly two
megabytes for the single reaction-diffusion texture of Figure 5.12. For comparison, a I 024
x !024 texture elemcm mip map requires one megabyte of storage.

-95-

The table below give s an overview of some of the properties of the high-quality t:ltcr for
reacuon-diffusion tcwu es. It gives the same infom1auon for mip maps as a point of
comparison.

Reconstruction
Pre-filrering
Computational cost
Additional memory

5.4.4 Bump Mapping

Mjp map
Linear filter
Box filter
Constant
1/3

Texture Mesbe<
Cubic fi lter
Gaussian ii lter
Constant(using spatial subdivision)
Number of blur levels (typically four)

Bump mapping (described in section 1.3) is .a technique used to make a surface appear rough
or wnnkled without expl icitly al tering the surface geometry [Bli nn 78]. The rough
appearance is created from a gray-scale texrure by adding a perturbation vector to the surface
normal and then evaluating the lighting model based on this new surface normal. Perlin
showed that the gradient of a scalar-valued fu nction in R3 can be used as a perturbation vector
to produce convincing surface roughness [Perl in 85). We can use the gradient of the values
v(P) of a reaction-diffusion simulation to gi ve a perturbation vec tor at a point P:

Figure 5.19: Bumpy horse created by perturbing the surface normals
based on a reaction-diffusion pattern.

- 96 -

d =r E
g, = (v(P)- v(P + [d,O,OJ)) I d
g

1
= (v(P) - v(P + fO,d,O])) I d

g, = (v(P) - v(P + [O,O,d))) I d
perturbation vector"' [kg,, k g

1
, k 8,1

The above method for computing the gradient of v evalu:ues the function at P and at three
nearby points in each of rhex, y, and z directions. The valued is taken to be a small fraction
E of the repulsive radius r to make sure we stay c lose enough tO P that we get an accurate
estimate for the gradienL The gradient can also be computed di rectly from the definition of
v by calculating exactly the partial derivatives in x, y, and z. The scalar parameter k is used
to scale the bump features, and changing the sign of k causes bumps 10 become indemations
and vice versa. Figure 5. 19 shows bumps created in this manner based on the resu lts of a
reaction-diffusion system.

5.5 Hierarchy of Meshes

Storing information at various levels of detail for the purpose o f faster rendering is a common
techn ique in computer graphics. The mip m:tp is one example of this, where differemlevels
in the mip map givedifferentamoums of detail of the texture. With mip maps, a low-detailed
level contains one-quarter the number of sample points as the next higher level of detail. ln
co·mast, the reaction-diffusion texture filter described earlier uses the same number of mesh
points at each of the different levelsoftexwre meshes. In this section we will discuss build ing
a set of meshes for texturing that contain different numbers of sample points. just as is done
with mip maps. If. for example, we create a reaction-diffusion pattern on a mesh of 64,000
cells, we can also build meshes of 16000, 4000 and 1 OOOcells that are less-detailed versions
of the same texture. Such a hierarchy of meshes provides a more efficient way to render a
given object. When the object covers a small portion of the screen then one of the low-de tail
meshes can be used tO render the object. When the object covers much of the screen we can
use the fully-detailed texture mesh to render the object, Such a mesh hierarchy is more
efficient both in rendering time and in the usc of memory. The sections below show that a
mesh hierarchy can be used to create several re-tiled models for rapid rendering on polygon
display hardware. To create such a mesh hierarchy, we will fl.rst need to create a "nested"
collection of mesh points. We will also detem1ine the way a pattern can be passed down from
the most detailed mesh level to the other levels in the hierarchy.

5.5.1 Building Nested Point Sets

We will say that a set of points Son the surface of an object is nested with in a larger point
set L if all the points inS are al.so presen t in the larger set Land if the points in L fill in the
spaces between the points in S. This is analogous to hierarchies of points on a regular grid
as is shown in Figure 5.20. In this figure, the solid grid points are a low-detail version of a
grid, and both the solid and hollow grid poims taken together give the higher-detail grid. The
hollow points cover the area of the plane between the solid grid points. Figure 5.21 shows
a nested point set where the mesh poin ts are irregular in spacing. It is possible to create several

-97.

• • • •

• • • •

• • • •

• • • •

Figure 5.20: A hierarch:y of points on a regular grid .

•
• •

• •
•

•
• • •

•

• • •
• •

• • •
• •

• •
• •

Figure 5.21: An irregular set of nested points in the plane .

. 98 .

- . .

' -.. ..·.

figure 5.22: Nested poims on a minimal surface.

levels of nested points. Let us examine the creation of such a hierarchy of mesh point:; over
a given polygonal model.

Assume we have a polygonal model and we wish to create four meshes over lhe surfare !hat
contain lOOO. 4000, 16000, and 640<X) poims. Funher assume that we want all lhe mesh
points in the lower-deta.l led models 10 be present in the meshes with more derail. The fust
step is to position I ,000 points on lhe original polygonal surt'ace using point-repulsion. The
4,000 vertex mesh can be created by fixing lhe positions of the fust 1,000 pointS, then placing
3.000 additional points on the object's surface, and finally by allowing these new pointS to
be repelled by one another as well as by the 1,000 f1xed points. The next mesh level is made
by fixing these 4,000 vertices and adding 12,000 more in the same mannerin which we added
the previous 3,000. Now we have 1.000 points !hat have the same position in three meshes
and -1.000 points that are present in the same location in twooflhe meshes. Now 48.000 mesh
points can be posi tioned in the same manner as the previous two sets of mesh points. Figure
5.22 shows the positions of the points from three such levels of detail that were created in the
manner just described. For visual clariry, the levels in these meshes contain 200. 800 and
3200 pointS. The large black spots are lhe 200 initial points, lhe red spots are 600 additional
points. and lhe cyan spots are the final 2,400 points. The original object is a portion of a
mimmal surt'ace of malhematical interest !hat was modeled using 2,040 vertices. The spots
in !his figure were rendered by changing the color at a given surt'ace position if it is inside a
sphere centered at one of the 3,200 points.

5.5.2 Sharing Patterns Between Levels in Hierarchies

We need tO determine a method of sharing patterns between lhe levels in a hierarchy of
meshes. Let us assume !hat we have created a reaction-diffusion pattern using a 64.000 point

. 99 .

mesh and we want to pass this pattern on to the mesh levels with 16000,4000 and 1000 poims.
To do this properly we should fi lter the pauern to match the amount of frequency information
that the different levels can properly represent. T hat is. we need to band-limit the pattern
appropriately for each level. We can do th is by using the same Gaussian filtering (by
diffusion) that we used to create the different color levels for anti-aliasing. The steps for
sharing a pattern between levels are as follows:

l) Create reaction-diffusion pattern on full64,000 point mesh.
2) Convert chemical concentration to :a color panem on this large mesh.
3) Create d ifferent blurred versions of the pauem on the large mesh by diffusion.
4) Obta in the appropriately band-limited colors for the less deta iled meshes (16,000

points and fewer) from the correctly blurred patterns.

The idea behind this process is to pass the color infonnation from the mesh poims that only
appear in the high-detail meshes to the points that are in the lower-detailed meshes. Diffusion
over the high-detail mesh is the carrier of this information.

5.5.3 Hierarchies of Polygonal Models

Often for interactive graphics applications it is desirable to have several versions of a model.
each containing different amounts of detail. With such levels of detaU we can choose from
among these versions to trade between fast rendering and high image quality. Earl ier in this
chapter we saw that surface re-tilingcan be used to build a polygonal model that incorporates
a pattern created by simulation. Since we can share pattern information in a hierarchy of
meshes, i1 is straighlforward to create several polygonal models thai capture these patterns
at different levels of detai l. This gives us a choice of the number of polygons to use to djsplay
the given object. A lower-detailed version of the model can be used to speed up rendering
when a textured object is far from the eyepoim in a given scene. T he method described here
to crea te a hierarchy of polygonal models is based on the work described in [Turk 92].

We can start building a hierarchy of polygonal models by first creating are-ti led model of
the object using the full set of points in our nested point set. This re-tiled model will have
as its vertices all of the mesh points of the full simulation mesh, and wil l capture all the detail
of the reaction-diffusion pattern. From the nested poim set example above, this re-tiled model
would have 64,000 vertices. Then a 16,000 venex model can be made by removing rhe
48,000 vertices in the original model that are not present in the more simple level of detail.
These vertices can be removed using constrained triangulation, just as was used earlier to
create re-tiled models. The venices of this l6,(X)() vertex model should be colored according
to the blurred pattern that was described in the previous section. Simplified polygonal models
with 4,000 and 1,000 vertices can then be made by removing more un-shared vertices from
this 16,000 venex model. Figure 5.23 shows four such polygonal models for a minimal
surface that has a striped texture.

- 100 -

Figure 5.23: Three re-tiled versions of a minimal surface with texturing. From left
to right the models cont<un 16000, 4000, and 1000 vertices.

- I 0 I -

6 Conclusion
This dissertation has demonstrated that a wide range of tex tures can be generated by
simulation of reaction-diffusion systems. Thesekindsoftexturesexpand thearrayof patterns
that have been generated by procedural textures. The two sections below list the specific
comributions of this dissenation and outline directions for future work in this area.

6.1 Summary of Contributions

This di ssertation demonstra tes that reaction-diffusion textu res can be integrated into the three
stages of texturing: acquisition, mapping, and rendering. Here is a list of the contributions:

• lntroduced reaction-diffusion patterns tO the field of computer graphics.

• Demonsrrated that cascades of reaction-di ffusion systems can produce a variety of two­
dimensional patterns. Several of these arc patterns found in nature and have not previously
been created by any other model of pattern formation: stripes-with in-stripes of the lionfish,
the mixed size spots on a cheemh, the rosette s of jaguars and leopards, and the stripe-and-spot
pattern on the thirteen-lined f,'TOund squirreL

• Presented a procedure by which a reaction-diffusion system can be simulated over an
arbitrary polygonal model. This is done by c reating a simulation mesh that is tailor-made for
the given model. This mesh is made by generating the Voronoi regions of a set of po ints that
have been evenly distributed over the surface. Simulating a reaction-diffusion system over
such a mesh resultS in textures that march the geometry of a model.

• Demonsrrated two methods of rendering reaction-diffusion texrurescreated on a simulation
mesh. One of these methods re-tiles the surface into triangles and incorporates a pattern by
specifying the colors at the vertices of th is mesh. This results in fast rendering of reasonable
quality. A higher-quality method of rendering retains the original polygonal model and uses
a weighted average of mesh values to color each textured pixel.

• Presented a new method of re-riling a polygonal model given a new set of vertices. This
technique was used to render reaction-diffusion textures, but it has applications wider than
that of texturing. The basic technique is useful for the automatic simplification of polygonal
models [Turk 92].

6.2 Future Work

A grand challenge of textu re synthesis is the ability tO create an arbitrary amount of texture
to fit a partic ular model upon being given a tex ture sample or a texture description. For
instance, a user might present a scanned image of tree bark tO a hypothetical texturing system
and request the creation of more bark for a tree model based on this sample. Such a system
is still a distant goal and should provide fuel for future research on synthetic texturing. Any
attempt to solve this problem must address the aspects of a tex ture that are imponant to the
human visual system. A step towards this was w.ken by Coggins and Jain, who recognized
that texture in the perceptual domain is the local average energy across scales [Coggins and
Jain 85]. A loj,>lcal step towards bringing together reaction-diffusion textures and perceptual
issues is to examine reaction-diffusion patterns in the frequency domain. Perhaps a bridge
could be formed between the addition of texture detail in cascaded systems and the features
detected by the human visual system at different scales.

There are still a number of areas related to reaction-diffusion textures that can be explored.
One area of research is to increase the variety of patterns that can be generated using reaction­
diffusion. New pauemscould be created bycombininganisorropic systems [Witkin and Kass
91] with the cascade systems described here. It is likely that this would yield a rich set of new
textures. Exploring the patterns created by other equations is another open area of research.
Cascade could be enhanced to allow a user to enter new reaction-diffusion equations that
would cause code to be compiled and dynamically linked into the program. This would make
creating new reaction-diffusion systems easy and would greatly speed their exploration.

This dissertation focuses on two-dimensional reaction-diffusion panems. It would be useful
to see how three-dimensional reaction-diffusion patterns could benefit computer graphics.
For instance. reaction-diffusion could be incorporated into a system such as Perl in and
Hoffert's hypenexrures [Perlin and Hoffert 89]. Hypertextures are a way to extend the
function composition idea for creating solid textures to making three dimensional shapes.
These shapes are created by applying various shape-changing functions tO volume elements.
Adding reaction-diffusion to a hypenexture system could add tO the variety of available
primitive shapes and could also provide new operators for modifying objects that are defined
by o ther means.

Reaction-diffusion is only one of many models of physical systems that might be used to
create synthetic textures. The meshes used to simulate reaction-diffusion systems could be
used to simulate some of these other physical systems. These other systems include
chemotaxis (for snake pauems). diffusion-limited aggregation (for dendritic patterns) and
crack propagation (to create dried mud beds or patterns of rree bark). Nature is rich with
patterns that are waiting to be explored, understood and recreated .

. 103 .

Appendix A: Cascade Language

Cascade is an interacti ve program for exploring cascades of reaction-diffusion systems. At
the core of this program are the routines for simulating three reaction diffusion systems, two
for creating spots and one for making stripes. These simulation routines are provided in
Appendix B. Sitting above these simulation routines is a small language for specifying initial
values of parameters to the reaction-diffusion systems. This appendix describes the
language.

Cenu·al to a user's interaction with Cascade is an interpreter for a language that specifies the
initia l values of parameters for a reaction-diffusion system. It is t11is language that allows a
user tO try new ideas abou t cascade systems without writing new code and performing
program re-compilation. There are three main sources of values for a parameter: 1) a user­
specified constant, 2} another parameter in the same system, 3) another parameter in the
previous system. It is this abil ity to ser one parameter based on a parameter in a previous
sy~tem that makes it easy to explore new cascade systems. Suppose, as is shown in Figure
3.5, that we arc running Cascade with two systems, each having the parameters a and b. We
can set both parameters a and b of the secorld system to the value 4 by entering the following
in the parameter section:

a:...±Jl
b: ...±!2

We could just as well specify that b gets its value from the parameter a of the same system:

a: ...1.Q
b: _w

The square brackets denote copying from a parameter in the same system. If we wanted b
to acquire its values from b of the previous system. we would enter:

a:...±Jl
b:....J2

T he above specification for b causes infom1ation from the first system to be passed on to the
second reaction-diffusion system, creating a cascade. Notice that t11e brackets are omitted if
a value is being copied from the previous system. Cascade also provides a set of arithmetic
operators to form more complex expressions. These operators include: addition, subrraction.
multiplication, division, minimum, maximum. Also included are boolean operators: and , or,

- 104-

not, as well as relational operators: greater than, less than, equals, not equals. There is a
function that produces random numbers and there is a conditional expression "if' that selects
between two values based on the result of a boolean expression.

It is imponam to understand that these expressions that specify the initia l values of each
parameter are computed only once for a given simulation. This is why these expressions can
be c hanged easily and evaluated interpretively without sacrificing interactivity. The
reaction-cliffusion simulation code, however, is hard-coded into the program, and thus is
compiled. A typical reac tion-diffusion system requires several thousand simulation steps
before the wstem has produced a final pauern, so speed is critical. The simulation routines
for the three basic reaction-diffusion systems that are built into Cascade are provided in
Appenclix B. For this particular implementation of Cascade, a MasP.ar MP-1 parallel
computer is used to perfomlthe simulations. The MasPar is panicularly well suited to such
computations. It consists of a 64 x 64 anay of processing elements (PEs), all executing the
same code in s ingle-instruction multiple-data (SIMD) fashion . In Cascade, th is grid of PEs
maps one-to-one with the simulation grid of the reaction-diffus ion system. Each PE retains
a value for each of the parameters in the sysrem. Each of the PEs can rapidly communicate
with its eight nearest neighbors, and this communication makes calculating the diffusion
terms simple and fasr. The MasPar can run 2000 simulation steps for a 64 x 64 cell Turing
spot-forming system in under 1.5 seconds. This speed is quite adequate for interactive
exploration of cascade patterns. T he same simulation on a 64 x 64 grid takes 160 seconds
on a DECstation 5000- 125.

- 105 -

Appendix B: Reaction-Diffusion
Equations

T his appendix gives code for the three reaction-diffusion systems that were used to create the
textures in this thesis. The systems are:

Alan Turing's spot-formation system [Turing 52]:

oa 2

01
= s(l6 - ab) + Da'V a

oa 2 - = s(ab - b - {J) + Db 'V b or

Hans Meinhardt's spot-formation Sy>tem fMeinhardt 82):

Hans Meinhardt's soipe-fom1ation system rMeinhardt 82]:

CJg1 CSoD 21 2 Tr = -";-· -· ag1 + Dg'V g1 +Po

0g2 CSt8i 2
-= --· ag2 + Dg'V 82 +Po or r
or 2 ') {3
dl = CS281 + CStgi • r

OSJ 2 ar= y(gi • St) + Ds'V St + PI

OS? 0 2
-· = r(g2·sz)+Dsv s2+Pt
dl

- 106 .

The procedure~ listed below are written in a variant of C for the Maspar MP- I that has
extensions for SfMD parallel execution. A variable declared as plural is an indication that
each of the 4096 PEs (processing elements) are to allocate room to store a value for a given
variable name. Expressions that use plural variables look the same as normal C expressions
but they operate in a data-parallel fash ion across all processing elements. Portions of
expressions such as xnet N[1]. a are near-neighbor communications, using the Mas par's xnet
communication network. This particular expression gets the value of the variable a from the
neighbor that is one PE to the north across the grid of PEs.

B.l Thring Spots

/" -~· ... ·-~, "
Turing's spot-forming reaction-diffusion equations.

Entry:
iters - number of iterations to pertorm

• • •••*!It• •• * • • • "•·•-· • • • ••• • ••• • • • • •. • •.• , •• •• ·-·· • • ••• I

visible void turing(iters)
int iters;

{
ir-~ i ~
register plural float a,b;
register plural float be1a,ka;
register plural float diff_a,diff_b;
reg ister plural float delta_a,delta_b:
register plural float laplace_a,laplace_b;
register plural float speed;
register plural int frozen;

a = load_float ("a");
b = load_float {"b");
diff_a = load_float ("diff_a"};
diff_b = load_float ("diff_b");
speed = load_float ("speed");
beta = load_float ("beta"};
ka = load_float ("ka"):
frozen = load_int ("frozen"};

for (i = 0; i < iters: i++) {

I' diffuse ·;

laplace_a = xnetN[1].a + xnetS[1].a + xnetE[1].a + xnetW[1].a - 4 ·a;
laplace_b = xnetN[1].b + xnetS[1].b + xnetE(1].b + xnetW[1].b- 4 • b;

- 107 -

r react'/

delta_a = ka • (16 - a • b) + diff_a • laplace_a;
delta_b = ka • (a • b - b - beta) + diff_b • laplace_b:

r affect change .,

i1 (!frozen) {

}
}

a += speed • delta_ a:
b +=speed • delta_b ;
if (b <0)

b = 0;

store_float (a, "a");
store_float (b, "b");

l

B.2 Meinhardt Spots

, .. " .. ,. ,.
Meinhardt's spot-making system that uses autocatalysis with lateral inhibition.

Entry:
iters - number of iterations to perform

···················· ··· ····· · ··········· ···~· ········ ··· ··· ········ · · ·········t

visible void auto_simulate(iters)
int iters:

{
inti ;
register plural float a,b,ai;
register plural float diff1,di ff2 ;
register plural float delta_a,delta_b;
register plural float laplace_a,laplace_ b;
register plural float speed;
register plural float ka,kb:
register plural float temp;
register plural float s;
register plural int frozen;
plural float p1 ,p2,p3;

- 108-

a = load_float ("a"):
b = load_float ("b"):
ai = load_float ("ai");
diff1 = load_float ("diff1 ");
diff2 = load_float ("diff2");
speed = load_float ("speed");
p 1 = load_float ("p 1"};
p2 = load_float ("p2");
p3 = load_float ("p3");
s = load_float ("s");
frozen = load_int ("frozen");

r initial setup.,

ka = -s • p1 - 4 • diff1 ;
kb = -s • p2- 4 • diff2;

for (i = 0; i < iters: i++} {

r diffuse .,

laplace_a = xnetN[1).a + xnetS[1).a + xnetE(1).a + xnetW[1).a;
laplace_b = xnetN[t].b + xnetS[1].b + xnetE(1].b + xnetW[1].b;

r react.,

temp = 0.01 • ai • a· a;

delta_ a= a • ka + diff1 • laplace_a + s ·(temp I b + p3);
delta_b = b • kb + diff2 • laplace_b + s ·temp;

}

r affect change 'I

if (!frozen) {
a +=speed • delta_ a;
b +=speed • delta_b;

}

store_float (a, "a");
store_float (b, "b"};

}

- 109 -

B.3 Meinhardt Stripes

1'*~"*1<11 ,. '" '",. • " · -······ ·-···,

Meinhardt's stripe-making reaction-diffusion system.

Entry:
iters • number of iterations to perform

visible void stripe_simulate(iters)
int iters:

(
inti ;
register plural float a.b.c,d.e,ai:
register plural float diflt .difl2;
register plural float delta_a,delta_b.delta_c,delta_d .delta_e;
register plural float laplace_a,laplace_ b.laplace_d.laplace_e:
register plural float speed;
register plural float ka,kc,kd;
register plural float temp1 .temp2:
register plural int frozen;
pI ural float p 1 ,p2 ,p3:

a = load_float ("a"):
b = load_float ("b"):
c = load_float ("c");
d = load _float {" d");
e = load_float ("e");
ai = load_float ("ai");
difft = load_float ("diff1");
diff2 = load_float ("diff2") :
speed = load_float ("speed"):
p1 = load_float ("pt ");
p2 = load_float ("p2");
p3 = load_float ("p3");
frozen = load_int ("frozen");

r initial setup */

ka = -p1 - 4 • diff1:
kc = -p2;
kd = -p3 - 4 • dilf2;

- 110-

}

for (i = 0; i < iters; i++) {

r diffuse .,

laplace_a = xnetN[t].a + xnetS[t].a + xnetE[t].a + xnetW[t].a;
laplace_b = xnetN[t].b + xnetS(1].b + xnetE[t].b + xnetW[t].b;
laplace_d = xnetN[t].d + xnetS[t].d + xnetE[t].d + xnetW(t].d ;
laplace_e = xnetN[t].e + xnetS[t].e + xnetE[t].e + xnetW[1].e;

r react ' I

tempt =O.Ot • a· a· e • ai ;
temp2 = O.Ot • b • b • d;

delta_a = a • ka + ditf t • laplace_a + tempt I c;
delta_b = b • ka + ditt t • laplace_b + temp2 I c;
delta_c = c • kc + temp1 + temp2;
delta_d = d • kd + diff2 • laplace_d + p3 ·a;
delta_e = e • kd + diff2 • laplace_e + p3 • b;

/* affect change ' I

if ('frozen) {

}
}

a += speed· delta_a;
b += speed· delta_b;
c += speed • delta_c:
d +=speed • delta_d;
e +=speed' delta_e;

store_float (a, "a");
store_ float (b, "b"):
store_float (c. "c");
store_float (d, "d");
store_float (e, "e");

· I l l ·

Appendix C: Cascaded Syste1ns

This section provides the exact parameter specifications for the cascade textures presented
in Section 3.4.2. Parameters in the left column are for the flist reaction-diffusion system, and
those in the right column are for the second , cascaded system.

Cheetah

sysc~m_name : turing_ spcts
iterat ions : 13000
interval: 400 0
frozen: 0
speed : 1 . 0
a : 4. 0
b : q . 0
diff a: 1/8
<liEf_b; 1/32
beta; random (12 , 0 . 1)
ka : l/200

Lion fish

system_name: stripes
i c erations: 20000
interval ; 4000
frozen: 0
speed: 1 . 0
pl : 0.04
p2: 0. 0 6
p3: 0 . 0 4
a : fp2J I {2 • fp1]}
b : fa !
c: 0 . 02 • [aj • [a] • [a] I [p2)
d: [a)

e: [a)
ai: random(l,0 . 02)
diffl ; 0.04
diff2 : 0 .06

system_name-: turing_spor.s
iterations : 3000
interval : 1000
fro zen : b < 4
speed: 1 . 0
a: a
b: b
diff_a : 1 / 8
diff_ b : 1/JZ
beta: beta
kii : 1/60

system_ name: stripes
ite<ations : 8000
interval : 1000
fro>:en: b < 0.7
speed : 1. 0
p1: 0 . 0 4
p2: 0.06
p3: 0 . 0 4
a : if (I frozen], a , [p2) I (2• (p1]))
b: if([frozen],b,[a])
c : if([frozen],c,0 . 0 2• [a]•[a] *[a) /[p2])
d: i f(lfrozen],d, [a))
e: if([frozenLe, [a))
ai; if([frozen] ,ai , random(1,0 . 02))
diffl : 0.009
d iff2 ; 0 . 06

- 112 -

Leopard

sys~em_name: Luring_spots
iterations: 28000
i nc erva l : 400 0
frozen : 0
speed: 1 . 0
a: 4 . 0
b: 4 .o
diff a : 1 /8
di ff_b: 1/32
beta : randcm(12 , 0 . 1)
ka : 0 . 05 • l/1 6

Autocatalytic Spots

system_name : autocatalysis
iterations: 200.00
interval : 4000
frozen : 0
speed: 1. o
pl: 0.03
p2 : 0 . 04
p3: 0 . 0
a: [p2J I [p l l
b: 0 . 01 • [a) • [a) I [p2]
ai : rando~<l , 0 . 2}

diffl : 0.01
d i ff2: 0 . 2
s: 0 . 2

Vary SpOts

system_name: autocat.alysis
i terations: 6000
inte~va l : 2000
frozen: 0
speed: 1. 0
p l : 0. 03
p2; 0.04
p3 : 0 . 0
a: [p2] I [pl]

b : 0 .01 ~ [a] • [a] I [p2]
ai: r andom(l,0 . 2)
diffl: 0.0 1
diff2 : 0 .2
s: X + 0 .2

system_name : turin9_spo~s
iterations ; 7000
io-terva 1: 1000
frozen : b < 4
speed : 1. 0
a: if([frozen],4,a)
b : if([frozen], 4,b)
diff_a : l/8
diff_b : 1/32
beta: beta
ka: 0 . 2 • l/16

s y stem_name: turi ng_$pots
iterations : 0
interval: 1000
frozen : 0
speed : 1.0
a: 4. 0
b: 4 . 0
diff_ a : 1/8
diff_b: 1/32
beta: random(l2,0.1J
ka : 1/ 80

sys~em_name : turing_ spots
iterations : 0
incerval: 1000
f co :ten: 0
speed: 1. 0
a : 4. 0
b : 4 . 0
diff a : 1/B
diff_ b : l/32
beta : randomC12,0 . l)
ka : 1/80

- 1 13 -

Eroded Stripes

syscem_narne: s~ripes
iLeration~ : 16000
interval: 4000
frozen : 0
speed : 1. 0
p1: 0.04
p2: 0 . 0 6
p3: 0.04

system_name : stripes
iterations : 4000
i nt.erva l : 1000
frozen : 0
speed: 1.0
p l : 0.04
p2: 0.06
p3 : 0.04

a : [p2] I (2 • (p1))
b : [a)

a: a + 0 • (p2J I (2 • (p1])

c : 0 . 02 ~ (a] • [a) • [a] I (p21
d : [a!
e : [a]
ai: raodom(l , 0 . 02)
diffl : 0.04
diff2 : 0 . 06

Thin Lines

system_na~e : stripes
iterations: 12000
interval : 4000
frozen: 0
sp-,ed : 1. 0
p l: 0.04
p2 : 0 . 06
p3 : 0.04
a : (p2J I
b : (a]

(2 " [pl)l

b : b + 0 • {a)

c: c + 0 • 0 . 02
d : d + 0 •
e: e + Q •
a i : ai
dif:'1: 0 .01
dif~2 : 0 . 06

[a)

(a I

• ! a I .. (a]

system_name : turing_ spots
iterations : 3000
in<erval: lOCO
trozen : 0
speed: 1.0
a : 4 .0
b: 4.0
dli.ff a : 1/ 8
dliff b : 1/32
beta: 12 + (a - . 7 l • 2

c: 0.02 *
d: (a)

!a! • !a l • [a! I (p2] lea : !180

e: (a)
ai : random(l , 0 . 02)
diffl : 0 . 03
diff2 : 0 . 06

Small Spots

systern_name: turing_spots
iterations: 20000
interva l : 4000
frozen: 0
speed: 1 .0
a: 4.0
b: 4.0
diff_a: 11a
diff b: 1132
beta: random(12 , 0. 1)
ka: 1/200

system_name : ~uring_spots
iterations~ 1000
ir.te~;val : 1000
frozen : 0
speed: 1. 0
a: 4.0
b: 4.0
diff_a : 118
ctiff b: 1132
beta : a ·* 2
ka: 1180

• I 14 .

... (a) I (p21

Honeycomb

sys t em_name; t uring_spo~s

iceratio ns: 20000
interval: 4000
frozen : 0
speed: 1 . 0
a : 4. 0
b: 4. 0
diff_ a : l / 8
diff b: l/32
beta : random(12 , 0.1l
ka: 1/200

Wide Spots

syst ero_ name : t uring_spots
icerations : 200 00
i nter·•al: 4000
frozen : 0
speed: 1.0
a: 4 . 0
b: 4.0
d i ff_ a : 1/8
diff b : 1 / 32
beca: random(l 2,0. 1)
l<a: 1 / 250

Pla tes

system_ name: turing_spo~s
ite rations : 20000
interval : ~00 0

fi'O<en: 0
speed : 1.0
a: 4.0
b : 4.0
cti H_a : l /8
diff_ b : 1/3.2
beta: random(l2 , 0 . l)
l<a: 1/250

s~stem_name: ~uring_spots

i terations: 1000
int.erva l : 1000
frozen: 0
speed : 1..0

a : q . 0
b: 4. 0

diff_a: 1/8
d if f _b : l/32
beta: b • 2 . 7
ka : 1180

system_ name : stripes
i t erations : 20 00
interval : 1000
fcozen: 0
speed : 1.0

p l : 0.04
p2: 0. 0 6
p3: 0.04
a: [p2] I (2 * (pl])
b: (a] + 0 . 04 ' b
c : 0 .02 • [a j • [a] • [a] I [p2]
d : [aJ
e: (a]

ai : rando~(l , 0 . 02)

diffl: 0 . 02
dif£2: 0.06

syscem_n~me : stzipes
i~era~ions : 2000
i nte r va l : 100 0
frozen : 0
speed: 1. 0
pl : 0.04
p2 : 0 .06
p3 : 0.04
a: (p2] I (2 • (p l]}

b' (a] + 0. 0 4 • b
c;. 0.02 • [a] • [a] • [a] I l p2 i
d;, (a]

e' (a]
ai : randcm(l, 0 . 02)
dif~ l : O. Ol
diff2 : 0 . 06

• 115 •

Broken Lines

system_ name: turing_spots
iteracions: 16000
int:erval : ~000

fro zen : 0
speed : l. o
a: 4.0
b : 4 . 0
diff a: 118
diff_b: 1132
beta : random(12, 0 . i)
ka : 112 50

Bumpy Stripes

systern_:'lame: autocatalysis
iceracions : 28000
interval: 4000
frozen: 0
speed: 1.0
p1: 0 . 03
p2: 0 . 1
p3: 0. 0
a: (p2) I (p1]
b: 0.01 * (a] * [a} I [p2 :
ai : random(l , O. l)
diffl : 0.01
diff2 : 0 . 2
s : 0 . 5

Mixed Spots

system_name: stripes
iterations: 12000
i nterva l : 4000
frozen: 0
speed : 1 . 0
pl: 0.04
p2: 0 . 06
p3: 0.04
a: [p2] I {2 • [p1])
b: [al
c: 0 . 02 • (a] • [a] • [a] I [p2]
d; [a J
e: [a]
ai : random(1,0.02)
diff l : 0.04
diff2 : 0 . 06

s ~·s tem_narne : turing_spots
iterations: 32000
i nterval : 4 000
frozen : 0
s9eed: 0.5

a : 4. 0
b: 4 . 0
d iH_a : l/6 + 0.02 * b
diff_b : 1/32
beta: random(l 2 , 0 . 1)
ka: 1160

syste~_name : ~u~ing_spots

iterations : 0
i<:terval : 1000
frozen : 0
speed : 1 . 0
a : 4. 0
b : 4 . 0
diff <>: 118
difE_b: 1/32
beca : =andom{l2,0.1)
ka: 1180

system_ name: autocatalysis
i terations : 2000
interva l : 1000
frozen : 0
s;>eed : 1 . 0
p1: 0 . 03
p.2: 0.04
p3: 0 . 0
a : [p2) /[pl1
b : 0 . 01 • [a] • (a] I [p2]
ai: random(1, 0 . 2)
d~ffl: 0 . 0 1
d.iff2: 0 . 2
s: 4.0 * (1.45 - b) + 0.3

. 116 .

Squirrel

system_ name : stripes
iterations : JOOO
interva l : 1000
frozen : 0
speed: 1.0
pl: 0 . 0 4
p 2: 0. 06

(2 • (pl))

system_name : turing_spo~s
i~erations : 6000
irnte~val : 100 0
f r ozen : b < 0.5
speed : 0 .5
a: if(lfrozen].4.1S,al
b: i f ([f ro~en l , 4. 15, b)
diff a: .25
diff_ b: . 0625

p3 : 0 . 0 4
a : (p2) I
b: (a l
c : 0.02 *

beta: <andom(l 2 , 0 . 1)
[a) ~ [a) * [a) I (p2] ka : 0 . 01875

d : [a l
e : [a]
ai : random(l , 0 . 003) + (x > 0 . 9)
d if:' l : 0 . 0 4
diff2: 0 .06

- 117 -

References

lAibens ct a!89j Albens, Bruce, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts and
James D. Wat~on. Molecular Biologyo[Ihe Cell, Garland Publishing, Inc .. 1989, New York.

[Anderson and Nusslein-Volhard 841 Anderson, K. V. and C. Nusslein-Volhard, "Informa­
tion for the Dorsal-Ventral Pauem of the Drosophila Embryo is Stored in Maternal mRNA,"
Namre, Vol. 331, pp. 223-227 (1984).

[Bard 81) Bard, Jonathan B. L.. "A Model for Generating Aspects of Zebra and Other
Mammalian Coat Patterns," Journal o[Theorerical Biology, Vol. 93, No. 2, pp. 363- 385
(November 1981).

[Bard and Lauder74] Bard, Jonathan and Ian Lauder, "How Well Does Turing's Theory of
Morphogenesis Work?," Journal ofTheoretical Biology, Vol. 45, No.2, pp. 50 1-53 1 (June
1974).

[Bier and Sloan 86] Bier, Eric A. and Kenneth R. Sloan, Jr., "Two-Pan Texture Mapping,"
IEEE Computet Graphics and Applications. Vol 6. No. 9. pp. 40-53 (September 1986).

[Blinn and Newell 761 Blinn, James F. and Martin E. Newell, "Texture and Reflection in
Computer Generated Images," Communications of the ACM, Vol. 19, No. 10, pp. 542-547
(October 1976).

lBiinn 77] Blinn, James F., "Models of Light Reflection for Computer Synthesized Pictures,"
SIGGRAPH '77, pp. 192-198.

[Blinn 78] Blinn, James F., "Simulation ofWrinkled Surfaces," Computer Graphics, Vol. 12,
No.3 (SIGGRAPH '78), pp. 286-292 (August 1978).

[Bloomenthal 851 Bloomenthal, Jules, ''Modeling the Mighty Maple," Compuier Graphics,
Vol. 19, No.3 (SfGGRAPH '85), pp. 305-311 (July 1985).

[Borgens 82) Borgens. R. B., "What i~ the Role of Naturally Produced Electric Current in
Vertebrate Regeneration and Healing?" lruemational Review of Cytology, Vol. 76, pp. 245-
300 (1982).

[Burt 81] Burt. Peter J., "Fast Filter Tran·sfomlarions for [mage Processing," Computer
Graphics and !mage Processing. VoL 16. No.1, pp. 20- 51 (May 1981) .

. 118 .

rcastleman 79] Castleman, Kenneth R., Digital/mage Processing, Prentice-Hall, 1979,
Englewood Cliffs, New Jersey.

[Catmull 74] Catmull, Edwin E., ' 'A Sulxllvision Algorithm for Computer Display of Curved
Surfaces," Ph.D. Thesis, Department of Computer Science, University of Utah (December
1974).

[Child 41) Child, Charles Manning, Pauerns and Problems of Developmem. University of
Chicago Press, 1941, Chicago, Illinois.

[Coggins and Jain 85] Coggins, James M. and Ani I K. Jain, "A Spatial Filtering Approach
to Texture Analysis," Pauern Recognition Leuers, Vol. 3, No.3, pp. 195-203 (May 1985).

[Cook 84] Cook, Robert L.. "Shade Trees," Computer Graphics, Vol. 18, No.3 (SlGGRAPH
'84), pp. 223-231 (Ju ly 1984).

[Cook 86] Cook, Robert L., "Stochastic Sampling in Computer Graphics," ACM TrarlSac­
cions on Graphics, Vol. 5, No. l. (January 1986).

[Crow 84 J Crow, Franklin C., "Summed-Area Tables for Texture Mapping," Compwer
Graphics, Vol. 18, No.3 (SIGGRAPH '84), pp. 207- 2 12 (Ju ly 1984).

[de Reffye 88] de Reffye, Phillippe, Claude Edelin, Jean Francon, Marc Jaeger and Claude
P uech, "Plant Models Faithful to Botanical Structure and Development," Computer Graph·
ics, VoL 22, No.4 (SIGGRAPH '88), pp. 151-158 (August l988).

[Fournier and Fiume 881 Fournier. Alan and Eugene Fiume, "Constant-Time Filtering with
Space-Variant Kernels," CompwerGraphics, Vol. 22, No.4 (SIGGRAPH '88), pp. 229-238
(August 1988).

[Fowler et al 92] Fowler, Deborah R. , Hans Meinhardt and Przemyslaw Prusinkiewicz,
"Modeling Seashells,'' Compwer Graphics, Vol. 26, No.2 (SIGGRAPH '92), pp. 379-387
(Ju ly 1992).

[Fuchs etal89] Fuchs, Henry. John Poulton, John Eyles , TreyGreer, JackGoldfeather, David
Ellsworth, Steve Molnar, Greg Turk , Brice Tebbs and Laura Israel, "Pixel-Planes 5: A
Heterogeneous Multiprocessor Gmphics System Using Processor-Enhanced Memories,"
Compwer Graphics, Vol. 23, No.3 (SIGGRAPH '89), pp. 79-88 (July 1989).

[Gardner 84] Gardner, Geoffrey Y .. "Simulation of Natu ral Scenes Using Textured Quadric
Surface.s," Compwer Graphics, Vol. 18, No.3 (SlGGRAPH '84), pp. 11-20 (July 1984).

[Gardner 851 Gardner, Geoffrey Y., " Visual Simulation of Clouds," Computer Graphics,
Vol. 19, No.3 (SIGGRAPH '85), pp. 297- 303 (July 1985).

- 119 -

[Gilbert 88] Gilbert, Scott F., Developmental Biology, Sinauer Associates, Inc., 1988,
Sunderland, Massachusetts.

[Glassner 86) Glassner, Andrew, "Adaptive Precision in Texwre Mapping," Computer
Graphics, Vol. 20, No.4 (SIGGRAPH '86), pp. 297- 306 (Augus t 1986).

[Greene and Heck bert 86) Greene, Ned and Paul S. Heck ben, "Creating Ra~ter Omnimax
Images from Multiple Perspective Views Using The Elliptical Weighted Average Filler,"
IEEE Computer Graphics and Applications, Vol. 6. No.6. pp. 21-27 (June 1986).

[Harris 731 Harris, Albert K., "Behavior of Cultured Cells on SubsrrateofVariousAdhesive­
ness," Experimemal Cell Research, Vol. 77, pp. 285-297 (1973).

[Harris et al 84) Harris, Albert K., David Stopak and Patricia Warner, "Generation of
Spatially Periodic Patterns by a Mechanical Instability: A Mechanical Alternative to the
Turing Model," Journal of Embryology and £xperimemal Morphology, Vol. 80, pp. 1-20
(1984).

[Harris 921 Harris. Albert K.. personal communication.

[Heetal91 1 He, XiaoD., Kenneth E. Torrance, Francois X. Sill ion and Donald P. Greenberg.
"A Comprehensive Physical Model for Light Reflection," CompwerGraphics, Vol. 25, No.
4 (SIGGRAPH '91), pp. 175- 186 (July 1991).

[Heckbert 86] Heck bert. PaulS .. "Filtering by Repeated Integration," Computer Graphics,
Vol. 20, No. 4 (SIGGRAPH '86). pp. 317-321 (August 1986).

[Heckbert 39] Heck bert, PaulS., "Fundamentals of Texture Mapping and lmage Warping,"
M.S. Thesis, Department of Electrical Engineering and Computer Science, University of
California at Berkeley (June 1989).

[Ho-Le 88] Ho-Le, K., "Finite Element Mesh Generation Methods: A Review and
Classification," Computer Aided Design, Vol. 20, No. l, pp. 27- 38 (January/Febn1ary 1988).

[Bubel and Wiesel 79] Hubel, David H. and Torsten N. Wiesel, "Brain Mechanisms of
Vision," Scientific American, Vol. 241, No. 3, pp. 150-162 (September 1979).

[Hunding 901 Hunding, Axel, Stuart A. Kauffman, and Brian C. Goodwin, "Drosophila
Segmentation: Supercomputer Simulation of Prepauern Hierarchy," Journal ofTheorerical
Biology, Vol. 145, pp. 369-384 (1990).

lJaffe and Stem 79] Jaffe, L. F. and C. D. Stern, "Strong Electrical Currents Leave the
Primitive Streak of Check Embryos," Science, Vol. 206, pp. 569- 571 (1979).

- 120-

[Kauffman et al78] Kauffman. Stuart A .. Ronald M. Shymko and Kenneth Trabert, "Control
of Sequential Companment Formation in Drosophila," Science, Vol. 199, No. 4326, pp.
259-270 (January 20, 1978).

[Koenderink84] Koenderink, JanJ., "The Structure oflmages," Biological Cyberne1ics, Vol.
50, No. 5, pp. 363- 370 (August 1984).

[Lacall i 90) Lacalli, Thurston C. . "Modeling the Drosophila Pair-Rule Pattern by Reaction­
Diffusion: Gap Input and Pattern Control in a 4-Morphogen System," Journal ojT!Jeore1ical
Biology, Vol. 144, pp. 171-194 (1990).

[Lengyel and Epstein 91) Lengyel, lsrvan and Irving R. Epstein, "Modeling of Turing
Structures in the Chlorite- Iodide- Malonic Acid-Starch Reaction System," Science, Vol.
251, No. 4994, pp. 650-652 (February 8, 1991).

[Levoy and Whitted 85] Levoy, Marc and Turner Whitted, "The Use of Points as a DiSplay
Primitive,"Technical Report TR 85-022, University of North Carolina at Chapel Hill (1985).

!Lewis 84] Lewis, John-Peter, ''TexmreSynthesis for Digital Painting," Compu1erGraphics,
Vol. 18, l'o. 3 (SlGGRAPH '84), pp. 245- 252 (July 1984).

[Lewis 89) Lewis, J . P., "Algorithms for Solid Noise Synthesis," Compwer Graphics, Vol.
23, No.3 (SIGGRAPH '89), pp. 263-270 (July 1989).

[Lorensen and Cline 87] Lorensen, William E. and H. E. Cline. "Marching Cubes: A High
Resolution 3D Surface Construction Algorithm," Compwer Graphics, Vol. 21, No. 3
(S!GGRAPH '87), pp. 163-169 (July 1987).

fMax 811 Max, Nelson, "Vectorized Procedural Models for Natural Terrain: Waves and
Islands in the Sunset," Computer Graphics, Vol. 15, No.3 (SlGGRAPH '81), pp. 317-324
(August 1981).

[Meinhardt 82] Meinhardt, Hans, Models of Biological Pauem Formation, Academic Press,
London, 1982.

[Meinhardt and Kl inger 87] Meinhardt, Hans and Martin Klinger, "A Model for Pattern
Formation on the Shells of Molluscs,'' Journal o[Theore1ical Biology, Vol. 126, No. I, pp.
63-89 (May 1987).

[Melhorn 841 Melhom, Kurt, Multi-dimensional Searching and Compwmional Geometry,
Springer-Verlag, !984.

[Mitchell87] Mitchell, Don P. , "GeneratingAntialiased Images at Low Sampling Densities,"
Compwer Graphics, Vol. 2 1, No.4 (S!GGRAPH ' 87}, pp. 65- 72 (July 1987).

- 12 1 -

[Mitchell and Netravali 881 Mitchell, Don P. and Arun N. Nerravali, "Reconstruction filters
in Computer Graphics,'' Computer Graphics. Vol. 22, No.4 (SIGGRAPH '88), pp. 221- 228
(August 1988).

[Mount 85] Mount, David M., "Voronoi Diagrams on the Surface of a Polyhedron,"
Technical Repon 1496, University of Maryland (l985).

[Murray and Kirschner 89] Murray, Andrew W. and Marc W. Kirschner, "Dominoes and
Clocks: The Union of Two Views of the Cell Cycle," Science, Vol. 246, No. 4930, pp. 614-
62 1 (November 3, 1989).

[Murray 811 Murr.1y, J. D., "On Pattern Formation Mechanisms for Lepidopteran Wing
Pan ems and Mammalian Coat Markings," Philosophical Transactions of the Royal Society
8, Vol. 295, pp. 473-496.

[Murray and Myerscough 91] Murray, J. D. and M. R. Myerscough, "Pigmentation Pattern
Forrnarion on Snakes." Journal ofTheoretica/Biology, Vol. 149, pp. 339-360 (1991).

[O'Neill 66) O'Neill , Barrett, Elementary Oiffereruial Geometry, Academic Press, 1966,
New York.

[Oppenheim and Schafer75] Oppenheim, A. V. and R. W. Schafer, Oigical Signal Process­
ing, Prentice-Hall, 1975, Englewood Cliffs. New Jersey.

[Oster 88] Oster, George F., "Lateral Inhibition Models of Developmental Processes,"
Mathematical Biosciences, Vol. 90, No. 1 & 2, pp. 265-286 (1988).

fOster, Murray and Hams 83) Oster. G. F., J. D. Murray and A. K Harris, "Mechanical
Aspects of Mesenchymal Morphogenesis," Journal of Embryology and Experimental
Morphology, Vol 78. pp. 83-125 (1983).

[Peachey 85] Peachey, Darwyn R., "Solid Texturing of Complex Surfaces," Computer
Graphics, Vol 19, No.3 (SIGGRAPH '85), pp. 279..c286 (Ju ly 1985).

[Perlin 85] Perlin, Ken, "An Image Synthesizer," Computer Graphics, VoL 19, No. 3
(SIGGRAPH '85), pp. 287-296 (July 1985).

[Perlin and Hoffert 89] Perlin, Ken and Eric M. H.offen, "Hypertexture," Compwer
Graphics, VoL 23, 1\o. 3 (SIGGRAPH '89), pp. 253-262 (July 1989).

[Phong 7 5] Bui-Tuong, Phong, "Illumination for Computer Generated Pictures," Communi­
car ions ofrhe ACM, Vol. 18, No.6. pp. 311-317 (June 1975).

- 122-

[Poole and Steinberg 82] Poole, T. J. and M. S. Steinberg, .. Evidence for the Guidance of
Pronephric Duct Migrarion by a Cranio-caudally Traveling Adhesive Gradient,'' Develop­
mema/Biology, Vol. 92, pp. 144-158 (1982).

[Preparata and Shamos 85] Preparata, Franco P. and Michael Ian Shamos, Computational
Geome1ry: An lmroducrion, Springer-Verlag, 1985, New York.

[Press 88] Press, William H., Brian P. Flannery, Saul A. Teukolsky and William T.
Venerling, Numerical Recipes in C. Cambridge University Press. 1988.

[Rhoades et aJ 92] Rhoades, John, Greg Turk, Andrew Bell, Andrei State, Ulrich Neumann
and Amitabh Varshney, "Real-Time Procedural Textures," !992 Symposi1un on lmerac1ive
3D Graphics, Cambridge, Massachusetts, March 29 - April I , 1992.

[Rosavio et al83j Rosavio, R. A .. A. Delouvee, K. M. Yamada. R. Timpl and J.-P. Thiery,
"Neural Crest Cell Migration: Requiremems for Exogenous Fibronecrin and High Cell
Densi ty,'' Journal ojCel/Biology, Vol. 96, pp. 462-473 (1983).

[Samek 86] Samek, Marcel, Cheryl Slean and Hank Weghorst, "Texrure Mapping and
Distortion in DigitalGraphics,"The Visual Computer, Vol. 2, No.5, pp. 313- 320 (September
1986).

[Schachter 80) Schachter, Bruce, "Long Crested Wave Models," Computer Graphics and
Image Processing, Vol. 12, pp. 187-201 (1980).

[Schachter 83) Schachter, Bruce, Compwer Image Generation, Wiley, 1983, New York.

[Stopak and Harris 82j Stopak, David and Alben K. Harris, "Connective Tissue Morphogen­
esis by Fibroblast Tmction,'' Developmental Biology, Vol. 90, No. 2, pp. 383- 398 (Apri l
1982).

[Swindale 80'] Swindale, N. V., ''A Model for the Fom1arion of Ocular Dominance Stripes ...
Proceedings of the Royal Sociery of London, Series 8, Vol. 208, pp. 243-264 (1980).

[Thompson eta! 85] Thompson, Joe F., z. U. A Warsi and C. Wayne Mastin,Nwnerica1 Grid
Generation, Nonh Holland, 1985, New York.

[Turing 52] Turing, Alan. "The Chemical Basis of Morphogenesis," Philosophical Transac·
rions of the Royal Sociery 8 , Vol. 237, pp. 37-72 (August 14, 1952).

[Turk90] Turk, Greg, "Generating Random Points in Triangles," in Graphics Gems, edited
by Andrew Glassner, Academic Press. 1990.

(Turk 91] Turk, Greg, "Generating Textures on Arbitrary Surfaces Using Reacrion-Diffu·
sion," Compwer Graphics. Vol. 25, No.4 (SJGGRAPH '91) pp. 289- 298.

- 123 -

[Turk 92] Turk, Greg, "Re-Tiling Polygon<ll Surfaces," Computer Graphics, Vol. 26. No. 2
(SIGGRAPH '92). pp. 55-64 (Ju ly 1992).

l Weiss 34] Weiss, P., "ln Vitro Experiments on the Factors Detennining the course of the
Outgrowing Verve Fiber," Journal of Experimemal Zoology, Vol. 68, pp. 393-448 (1934).

[Westover 90) Westover, Lee, "Footprint Evaluation for Volume Rendering," Computer
Graphics, Vol. 24, No.4 (SIGGRAPH '90·), pp. 367- 376 (August 1990).

[Whitted 80] Whitted, Turner, "An Improved Illumination Model for Shaded Display,"
Communications of the ACM, Vol. 23, No.6, pp. 343-349 (June 1980).

[Williams 83] Williams, Lance, "Pyramidal Parametrics,'' Computer Graphics, Vol. 17, No.
3 (SIGGRAPH '83), pp. l-11 (July !983).

[Witkin and Kass 91] Witkin, Andrew and Michael Kass, "Reaction-Diffusion Textures,"
Computer Graphics, Vol. 25, No.4 (SIGGRAPH '91), pp. 299-308 (July 1991).

[Wolpert 71] Wolpert, Lewis, "Positional Infonnation and Pattern Formation," Current
Topics in Deve/opmemal Biology, Vol. 6, Edited by A. A. Moscona and Alberto Monroy,
Academic Press, 197 I. ·

!Yeager and Upson] Yeager, Larry and Craig Upson, "Combining Physical and Visual
Simulation- Creation of the Planet 1 up iter for the Film 20 !0," Compwer Graphics. Vol.
20, No.4 (STGGRAPH '86), pp. 85-93 (August 1986).

[Young 84) Young, David A., "A Local Activator-Inh ibitor Model of Vertebrate Skin
Patterns," Mathematical Biosciences, Vol. 72, pp. 5 1-58 (1984) .

. 124.

