
HIERARCHICAL GEOMETRIC
APPROXIMATIONS

TR-050
1994

Amitabh Varshney

Department of Computer Science

The University of North Carolina

Chapel Hill, NC 27599-3175

This work was supported by NIH National Center for ResearchResoures Grant# 5-P41-RR02170.

UNC is an Equal Opportunity/Affirmative Action Institution.

HIERARCHICAL GEOMETRIC

APPROXIMATIONS

by

Amitabh Varshney

A Dissertation submitted to the faculty of The University of North Carolina at

Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of

Philosophy in the Department of Computer Science.

Chapel Hill

1994

Approved by: ···

~\ ~~~.n Advisor

Reader

Reader

Reader

@1994

Amitabh Varshney

ALL RIGHTS RESERVED

AMITABH VARSHNEY. Hierarchical Geometric Approximations (Under the di­

rection of Professor Frederick P. Brooks, Jr.)

Abstract

This dissertation explores some techniques for automatic approximation of geo­

metric objects. My thesis is that using and extending concepts from computational

geometry can help us in devising efficient and parallelizable algorithms for automat­

ically constructing useful detail hierarchies for geometric objects. We have demon­

strated this by developing new algorithms for two kinds of geometric approximation

problems that have been motivated by a single driving problem- the efficient compu­

tation and display of smooth solvent-accessible molecular surfaces. The applications

of these detail hierarchies are in biochemistry and computer graphics.

The smooth solvent-accessible surface of a molecule is useful in studying the struc­

ture and interactions of proteins, in particular for attacking the protein-substrate

docking problem. We have developed a parallel linear-time algorithm for comput­

ing molecular surfaces. Molecular surfaces are equivalent to the weighted a-hulls.

Thus our work is potentially useful in the application areas of a-hulls which include

astronomy and surface modeling, besides biochemistry.

We have defined the concept of interface surfaces and developed efficient algo­

rithms for computation of surfaces at the interface of two or more molecular units.

Interface surfaces are useful for visualizing the inter and intra-molecular interfaces

and for characterizing the fit, or complementarity, of molecular interfaces.

We have developed an algorithm for simplification of polygonal meshes. The

simplified polygonal mesh has the following properties: (a) every point on it is within

a user-specifiable distance f from the input mesh, (b) it is topologically consistent

with the input mesh (i.e. both have the same genus), (c) its vertices are a subset of

the vertices of the input mesh, and (d) it is within a computable factor in complexity

(in terms of number of faces) of the optimal mesh that satisfies (a), (b), and (c)

(computing the optimal mesh is known to be NP-hard). We have accomplished this

by transforming our problem to the set-partitioning problem.

1i

Acknowledgments

I would like to thank my advisor Dr. Frederick P. Br<:>oks, Jr., for his excellent advice

and constant cheering all through my doctoral research. He has not only taught me

computer science but has also given me a lifetime philosophy, of working on real­

world problems, to pursue. Meeting him every week was an uplifting experience for

me - both intellectually and spiritually. His systematic, devoted, and well-organized

approach to work has been and shall remain a major source of inspiration to me.

I would like to thank my other committee members for their insightful comments

and cheerful encouragement during the course of my research. In particular I should

like to thank Pankaj Agarwal for teaching me computational geometry, sharing his

bright ideas on research problems in geometry, and for being always available for

any advice I needed; Dinesh Manocha for clarifying the numerous doubts I had in

algebraic geometry and for several discussions on the molecular surfaces; Jan Prins

for his amazingly quick grasp and a ready solution for whatever problem I went to

him for (I now wish I had taken the P = NP problem to him, it might have been

solved by now) and his unfailing good humor; David Richardson for being exceedingly

kind and patient during his several hours of tutoring me biochemistry and for his

infectious enthusiasm; and Bill Wright for his calm, sober, and always correct analysis

of my ideas and for discussing several versions of the algorithms that appear in this

dissertation.

I would like to thank all members of the Walkthrough and GRIP teams for their

support during my research. In particular, I would like to thank Hans Weber, Olivier

Garamfalvi, Chris Georges, David Luebke, and Brian Upton for spending countless

hours on the submarine datasets with me. Their good humor and enthusiasm kept

111

my spirits up all along. I would also like to thank John Airey, for suggesting me a

long time ago that simplification of polygonal meshes might be a good research area.

I would also like to thank all the Sittersonites for their good cheer and support.

My memories of Sitterson Hall and indeed Chapel Hill shall easily last me through

this life.

My parents have taught me the importance of hard work, patience, and persever­

ance though example. I thank them for everything.

IV

Contents

I Overview and Results

The Hierarchy of Detail 1.1

1.2

1.3

Molecular Surfaces - Our Driving Problem

a-Approximation of Molecules

1.3.1 Complete Molecular Surfaces

1.3.2 Molecular Interface Surfaces .

1.4 €-Approximation of Polygonal Models .

1.4.1 Modeling in Computer Graphics .

1.4.2 Problem Definition

1.4.3 Algorithm Overview

1.4.4 Results

1.5 A Guide to the Chapters

II Molecular Surfaces

2.1 Proteins

2.2 The Protein-Substrate Docking Problem

2.3 The Protein Folding Problem

2.4 Surfaces for Molecules

III Detail Hierarchies in Computational Geometry

3.1 Introduction

3.2 Some Computational Geometry Concepts .

3.3 Detail Hierarchies for Boundaries of Points

v

1

1

3

5

5

8

10

11

12

13

14

15

18

18

19

21

21

23

23

23

27

3.3.1 Spheres, Ellipsoids, and Convex Hulls .

3.3.2 a-Hull

27

28

3.4 Detail Hierarchies for Polylines 30

IV Linearly Scalable Computation of Smooth Molecular Surfaces 32

4.1

4.2

4.3

4.4

Previous and Related Work

Our Approach

4.2.1 Formal Notation

4.2.2 Determination of Neighboring Atoms

4.2.3 Determination of Surface Atoms .

4.2.4 Determination of Surface Patches

4.2.5 Parallelization .

4.2.6 Robustness

Results ...

Conclusions

33

34

35

36

37

39

40

41

42

43

V Estimating the Number of Unit Spheres Inside a Larger Sphere 45

5.1 A Review of the Theory of Sphere Packings

5.1.1 The Sphere Packing Problem ...
5.1.2 Sphere Packings in Spherical Space

5.1.3 Multiple Packings of Spheres .

5.2 Solvent-Accessible Protein Surfaces

5.2.1 Terminology .

5.2.2 Proteins ...
5.2.3 Assumptions .

5.3 Volume-based Techniques

5.3.1 Mutually Disjoint Spheres

5.3.2 Intersecting Spheres

5.4 A Surface-based Technique .

5.4.1 Special Case .

5.4.2 General Case

VI

46

46

47

47

48

48

49

50

51

51

52

53

53

55

5.5 Conclusions

VI Molecular Interface Surfaces

6.1

6.2

6.3

Surfaces at Molecular Interfaces

Computation of Molecular Interface Surfaces

Goodness-of-fit for Molecular Interfaces . . .

VII Level-of-Detail Generation for Polygonal Models

7.1 Motivation ...

7.2 Previous Work

7.3 Problem Definition

7.3.1

7.3.2

7.3.3

Desiderata of a Good Approximation Scheme

Problem Statement . .

Assumptions on Input

7.4 Generation of Offset Surfaces

7.4.1 Edge Halfspaces

7.4.2 The Fundamental Prism

7.4.3 Non-intersecting Offset Computation

7.5 Generation of Candidate Triangles

7.6 Composing the Final Solution ...

7.6.1

7.6.2

7.6.3

7.6.4

Set Cover and Set Partition

The Greedy Heuristic

Modification to the Greedy Heuristic

Estimating Solution Quality

7.7 Algorithm Features

7.7.1 Desiderata of a Good Approximation Scheme

7. 7.2 Interpolation

7.7.3 Preserving Sharp Edges

7.7.4 Adaptive Approximation .

7.S Degeneracies .

7.S.1 Slivers

VII

59

60

60

61

63

68

6S

70

72

72

73

73

74

75

76

76

79

so
so
S1

S2

S3

S4

S4

S5

S5

S5

S6

S7

7.8.2 Floating-point Problems

7.9 Results

VIII Future Work

8.1 Real-Time Area and Volume Computation

88

89

91

91

8.2 Determination of Molecular Interface Surfaces, Areas, and Volumes 92

8.3 Use of Temporal Information. 93

8.4 Molecular Surface Cusps 93

8.5 Polygonal Simplification 93

8.6 Automatic Cleaning of Polygonal Datasets 94

Bibliography 95

V111

List of Figures

1.1 Crambin and its Molecular Surface

1.2 Crambin Surfaces for Different Probe-Radii

1.3 Transthyretin and its Interface Surface . . .

1.4 Interface Surfaces Amongst Domains in Transthyretin .

1.5 Four Detail Levels for a Polygonal Model

1.6 Rendering With and Without Level-of-detail Models .

2.1 Amino Acids

2.2 Bonding of Amino Acids

2.3 Molecular Surfaces . . .

3.1 Some Basic Computational Geometry Concepts

3.2 Voronoi and Power Diagrams

3.3 A Trivial Hierarchy of Boundary Detail .

3.4 a-Hulls

3.5 A Vertex-Subset Polyline Approximation

4.1 Defining Neighbors

4.2 Power Cells and Feasible Cells .

4.3 Determination of Molecular Surface Patches

4.4 DHFR and SOD Molecular Surfaces, 1.4A Probe-Radius

5.1 Determination of Neighboring Atoms

5.2 Primary and Influence Regions . . .

5.3 Smallest Volume per Three Centers

IX

4

8

9

11

14

16

19

20

22

24

26

27

29

31

37

38

40

44

49

50

53

5.4 Intersections With a Single Shell . 54

5.5 Computing </>min • • • • • • • • 56

5.6 Two Nested Shells a a and ab 57

6.1 Interface Cells and Interface Faces 62

6.2 Computing Goodness-of-Fit .. 64

6.3 Defining the Region of Interface 65

6.4 Redefining Region of Interface for Molecules C and D . 66

7.1 Edge Halfspaces 76

7.2 The Fundamental Prism 77

7.3 Offset Surfaces .. 77

7.4 Computation of fi; 78

7.5 Checking for Overlaps 82

7.6 Getting Rid of Slivers . 87

7.7 An Intersection Degeneracy 88

X

List of Tables

1.1 Molecular Surface Generation for 1.4A Probe-Radius 7

1.2 Crambin Molecular Surface Generation (24 Intel i860 Processors) 7

1.3 Polygonal Simplification Results 15

4.1 Molecular Surface Generation for 1.4A Probe-Radius. 43

4.2 Cram bin Molecular Surface Generation (24 Intel i860 Processors) 43

7.1 Polygonal Simplification Results 89

XI

Chapter I

Overview and Results

1.1 The Hierarchy of Detail

We refer to the hierarchy formed by starting from a relatively simple representation

of an object and progressively adding detail to it as a hierarchy of detail. Computer

Science, as we know it today, has a well-developed concept of hierarchy of detail un­

derlying almost all of its sub-disciplines. For example, in software engineering and

programming languages, the concepts of information encapsulation and data abstrac­

tion are manifestations of this hierarchy of detail. Similarly in scientific computation

when we are modeling the laws of physics for a simulation we find a whole hierarchy

of detail awaiting us, namely the modeling accuracy of the laws of physics. Nested

within this hierarchy is the hierarchy of mathematical approximations for any given

level of physics. The level in this hierarchy that we opt for depends upon the available

computing power and the desired response time. Similarly, in computer graphics one

can associate a hierarchy of detail with geometric object models. At one end of this

hierarchy are low-complexity, low-fidelity approximations of a given object, whereas

the other end has high-complexity, high-fidelity approximations.

This dissertation addresses some issues in the automated hierarchical approxima­

tions of geometric objects. The space of various detail hierarchies for approximating

geometric objects can be organized and described along several orthogonal dimen­

sions. Some of these dimensions are:

• Type of approximation: When we say that an object A is an approximation of

an object B, what we really mean is that there exists a property of B that is

being approximated by A. This property (henceforth called the "approximat­

ing property") could be the shape, the Gauss map, the volume, etc. Various

kinds of approximations can be defined for a given object based on the several

approximating properties of the object.

• Distance function: Let us assume that the approximating property of an object

spans a multi-dimensional space. We can define various kinds of distance func­

tions that measure the distance between two objects having different values of

this approximating property. For example, the distance could be measured in

any of the Lp norms, or some other norm. Different distance functions give rise

to different approximations for a given object for a given value of the approxi­

mating property.

• Properties of geometric objects: The kinds of approximation schemes that can

be defined depends on the kind of assumptions that one is prepared to make

on the properties of the input objects. For example, the input objects could

be continuous or discrete, piecewise linear or higher order algebraic functions,

open or closed, etc.

As can be seen, the range of possible geometric approximation schemes is enor­

mous - enough to fuel many dissertations.

My thesis is:

Using and extending concepts from computational geometry can help us

in devising efficient and parallelizable algorithms for automatically con­

structing useful detail hierarchies for three-dimensional geometric objects.

I have demonstrated this by developing new algorithms for two kinds of geometric

approximation problems that have been motivated by a single driving problem -

the efficient computation and display of smooth solvent-accessible molecular surfaces.

The applications of these detail hierarchies are in biochemistry and computer graphics.

2

Let a molecule M be represented by a collection of spheres { S,, ... , Sn}, each

sphere S; corresponding to atom i of the molecule. A molecular surface for M can be

considered to be approximated by the surface of the union of these spheres: U£=1 S;.

Approximation of a molecule by its surface has proved to be of immense value in bio­

chemistry in visualizing and understanding the structure and functions of proteins.

The first geometric approximation problem that we have addressed in this disser­

tation is that of approximating a molecule by its molecular surface, which we shall

call a-approximation. The second geometric approximation problem that we have

explored is that of approximating a polygonal representation of the molecular surface

by another polygonal surface which is within a distance E from the original surface

and has a lower complexity in terms of the number of polygons. We shall use the

term €-approximation to refer to this second approximation problem.

The a-approximation and the €-approximation are both quite general problems

and are useful in areas other than molecular modeling. The a-approximation

problem can be used to compute a detail hierarchy of a-hulls and a-shapes

[Edelsbrunner & Miicke 94, Edelsbrunner 92, Edelsbrunner et al 83] that are useful

in such diverse fields as astronomy, biochemistry, statistics, and computer graphics.

The €-approximation problem is of immense value in a three-dimensional computer

graphics setting in simplifying complex polygonal models under the constraints of

topological consistency and bounded error tolerance. We have explored the use of

our €-approximation algorithm in this general setting.

This chapter is meant to serve as an extended abstract of the dissertation, outlining

the problems, our approaches, and the results in brief.

1.2 Molecular Surfaces - Our Driving Problem

The smooth surface of a molecule is the surface which an exterior probe-sphere touches

as it is rolled over the (assumed) spherical atoms of that molecule. This definition of a

molecular surface was first proposed by Richards [Richards 77]. This surface is useful

in studying the structure and interactions of proteins, in particular for attacking the

3

protein-substrate docking problem. In Figure 1.1 (a) crambin is shown as a collection

of spheres whose radii are the van der Waal's radii of the corresponding atoms. In

Figure 1.1 (b) the molecular surface of crambin is shown for a probe-sphere radius of

1.4A (the radius of the spherical approximation to the water molecule).

(a) Crambin (396 atoms) (b) Crambin Surface, Probe Radius = 1.4 A

Figure 1.1: Cram bin and its Molecular Surface

Present systems for computing the surfaces of molecules are batch-oriented

[Connolly 93]. Our goal has been to compute and display these surfaces at inter­

active rates, by taking advantage of results from computational geometry, making

further algorithmic improvements, and parallelizing the computations.

Interactive computation and display of molecular surfaces should benefit bio­

chemists in three important ways. First, the ability to change the probe-radius in­

teractively helps one study the surface at various levels of detail. Second, it helps

in visualizing the changing surface of a molecule as its atom positions are changed.

These changes in atom positions could be due to user-defined forces as the user at­

tempts to modify a molecular model on a computer. Third, it assists in incorporating

the effects of the solvent into the overall potential energy computations during the

interactive modifications of a molecule on a computer.

4

1.3 a-Approximation of Molecules

The a-hull has been defined as a generalization of the convex hull of point sets by

Edelsbrunner, Kirkpatrick, and Seidel [Edelsbrunner et a183]. Given a set of points

P, a ball b of radius a is called an empty a-ball if b n P = ¢. For 0 :S a :S oo, the

a-hull of P is defined as the surface of the complement of the union of all empty

a-balls [Edelsbrunner 92].

The smooth molecular surface (as defined by Richards [Richards 77]) for a probe

sphere of radius R is equivalent to the three-dimensional weighted a-hull (as defined

by Edelsbrunner in [Edelsbrunner 92]) with a= R.

The definition for molecular surfaces that appears above is that of a complete

molecular surface, i.e. a surface that completely envelopes a molecule. This is useful

for visualizing the surface of a single molecule. However, when the objective is to study

the interface between two or more molecules (or different sub-units within a single

molecule), the complete molecular surface computed independently for each of the

molecules is a poor visualization tool. This is due to the occlusion by the complete

molecular surfaces which prevents one from studying the contacts that are in the

interior of the molecular interfaces. To overcome this, we have defined the concept of

molecular interface surfaces and devised algorithms for their efficient implementation.

1.3.1 Complete Molecular Surfaces

Complete molecular surfaces are commonly known as smooth molecular surfaces,

Richards's molecular surfaces (after their inventor), Connolly surfaces, (after the in­

ventor of the most widely used surface computation algorithm), or three-dimensional

weighted a-hulls. In this section we shall first overview our algorithm for efficiently

computing these surfaces analytically and then present the results of our implemen­

tation.

5

Algorithm Overview

Our goal has been to formulate a parallel analytical molecular surface algorithm

that has expected linear complexity with respect to the total number of atoms of

a molecule. For achieving this goal, we have avoided computation of the complete

three-dimensional regular triangulation over the entire set of atoms - a process that

takes time O(n2), where n is the number of atoms in the molecule.

We construct the solvent-accessible molecular surface for the whole molecule, an

atom at a time. For each atom we first determine its neighbors. Two atoms are defined

as neighbors if it is possible to place a probe-sphere such that it is in simultaneous

contact with both these atoms, without considering any hindrance due to other atoms.

This determination is done in linear time over the whole molecule by subdividing the

molecule using a global grid. Next, we construct a feasible cell (which is very similar

to a power-cell [Aurenhammer 87]; for exact definition see Chapter IV) around each

atom by using these neighbors. If there are k neighbors for an atom, this stage

takes O(k log k) time. Next the surface is generated for each atom from its power-cell

in O(k) time. Thus the overall complexity of our algorithm is O(nk log k). Since

k is a constant that depends on the probe-radius, this algorithm is linear in the

number of atoms of a molecule. Since the processing of each feasible cell can be done

independently of others the algorithm is parallelizable to degree n. Details of this

algorithm and its implementation are given in Chapter IV.

Results

Our implementation has been done on Pixel-Planes 5 [Fuchs et a/89], although it is

general enough to be easily portable to any other parallel architecture. Table 1.1

shows our timings for computation and display of the molecular surface for various

molecules for a probe-radius of 1.4A (the radius of a water molecule). For these results

we were using configurations of 8, 16, or 24 Intel i860 processors. The molecules we

have studied are crambin, felix, dihydrofolate reductase (DHFR), and superoxide

dismutase (SOD). At present, we are representing the molecular surface by triangles,

and the column Tris in Table 1.1 refers to the complexity of the computed surface in

6

thousands of triangles.

Times (sec)

Molecule Atoms Processors k Tris

8 16 24

Cram bin 396 0.84 0.43 0.31 44.7 18K

Felix 613 1.42 0.69 0.47 40.7 36K

DHFR 3123 6.11 2.93 1.96 43.8 lOOK

SOD 4386 8.73 4.16 2.76 46.5 127K

Table 1.1: Molecular Surface Generation for 1.4A Probe-Radius

As can be seen, the value of k, the average number of neighbors, is fairly con­

stant for a given probe-radius over different molecules. In fact, using concepts from

the theory of packing of spheres and some reasonable assumptions, we will prove in

Chapter V that for a probe-radius of 1.4A, the average number of neighbors in pro­

tein molecules can be bounded from above to be in low hundreds. This means that

the algorithm we have presented here is more attractive than the widely used O(n 2
)

algorithm even for medium-sized proteins that have more than a couple of thousand

atoms.

Table 1.2 shows the times for the generation of the molecular surface for crambin

using 24 processors, and different probe radii varying from l.OA to lO.OA.

Probe-Radius LOA 1.4A 2.8A. 5.oA. lO.OA

Times (sec) 0.29 0.31 0.43 0.70 1.32

k 32.2 44.7 102.8 224.0 384.9 .

Triangles 22K 18K 14K 13K 13K

Table 1.2: Crambin Molecular Surface Generation (24 Intel i860 Processors)

Figure 1.2 shows the smooth molecular surface for crambin with variable probe­

sphere radii.

7

(a) Probe Radius = 1.4A (b) Probe Radius = 2.8..4

(c) Probe Radius= 5.0A (d) Probe Radius= lO.OA

Figure 1.2: Crambin Surfaces for Different Probe-Radii

1.3.2 Molecular Interface Surfaces

To afford a good visualization of the molecular surfaces at the interface of two or

more molecules (or sub-units of the same molecule), we have developed the concept

of molecular interface surfaces.

Let the complete molecular surfaces defined for a probe-radius a for the molecules

A and B be represented by S(A, a) and S(B, a), respectively. The molecular in­

terface surface T(A, B, a, (3) for a probe-radius a and an interface-radius (3 for the

two molecules A and B is defined as the subset of S(A,a) and S(B,a) that includes

exactly those points of S(A, a) that are within a distance (3 from the surface of some

atom of Band exactly those points of S(B, a) that are within a distance (3 from the

surface of some atom of A. Figure 1.3(a) shows the four domains of transthyretin and

8

(b) shows the molecular interface surface amongst these domains for a probe-sphere

radius = a = 2.4A and an interface-radius = (3 = l.OA.

(a) Transthyretin domains (b) Interface surface for a = 2.4A, (3 = LOA

Figure 1.3: Transthyretin and its Interface Surface

Besides proving to be a useful visualization tool, the molecular interface surfaces

should also provide a means of efficiently characterizing the interactions during a

protein-substrate docking. The molecular interface surfaces define a hierarchy of

detail parametrized by a and (3 at the inter-molecular interface. Given a particular

value of a, one can define the interface surface by choosing a suitable value for the

parameter (3 based on the computing power available, the desired response time, and

the modeling accuracy of the physical interactions. The interface surface thus defined

would localize and reduce the set of possible interactions occurring at the interface and

could therefore be used as an input to further processing for efficiently characterizing

the interactions at the interface.

Algorithm Overview

The algorithm follows from the definition of the molecular interface surfaces. We next

describe how to compute the subset of S(A, a) that belongs to T(A, B, a, (3). The

subset of S(B, a) that belongs to T (A, B, a, (3) can be computed similarly.

Let us define an atom b of B to be the sphere a(q, rb), where q is the center and

rb is the van der Waal's radius of the atom b. Let us define B(+ (3) to be a collection

9

•
l

of spheres a(Cb, rb + f3) derived from the atoms of B.

Let all the atoms in A that intersect the interior of UbeB a(q, rb + /3) be represented

by the set AT· Determination of AT is efficiently done by using a cuboidal grid to

localize the spheres of A. We next generate the surface patches of S(A, a) that are

contributed by every atom a EAT. Every such surface patch is clipped by the union

of the spheres in B(+/3). This clipping is efficiently done by using a cuboidal grid

to localize the spheres in B(+f3). All the clipped surface patches that lie within the

union of the spheres in B(+/3) are retained and form that subset of S(A, a) that

belongs to T(A,B,a,/3).

In Chapter VI, we describe the molecular interface surfaces in greater detail in­

cluding the simple extensions to handle more than two molecular sub-units.

Results

The results of our implementation on computing the interface surfaces at the interface

of the four domains of the molecule transthyretin (prealbumin) for different values of

a and f3 are shown in Figure 1.4.

1.4 £-Approximation of Polygonal Models

In three-dimensional interactive computer graphics, progressive enrichment of detail is

a recurrent theme, more so perhaps than in any other sub-discipline within computer

science. The main reason for this is our attempts to simultaneously satisfy the conflict­

ing goals of scene realism and real-time performance. These attempts can be broadly

classified into two categories -image-space refinement and object-space refinement.

In image-space refinement approaches [Bergman et al 86], the scene is first rendered

as a low-quality image while the user is constantly changing his viewpoint. Once the

user stops and the viewpoint is fixed, a progressively detailed rendering of the scene

is then done by the renderer in due time. In object-space refinement approaches, a

hierarchy of object descriptions is stored and depending on how important the object

is to the scene, an appropriate level-of-detail of the object is used for rendering -

10

(a) a= l.OA,,B = l.OA (b) a = LOA, ,B = 2.4A

(c) a= 2.4A,,B =LOA (d) a= 2.4A,,B = 2.411

Figure 1.4: Interface Surfaces Amongst Domains in Transthyretin

[Clark 76], [Cosman & Schumacker 81], [Crow 82], and [Funkhouser & Sequin 93].

1.4.1 Modeling in Computer Graphics

At present, the most common form of model representation in computer graphics

is a planar polygonal description. There are several reasons for this. First, current

graphics workstations can rapidly render polygonal datasets, while most cannot ren­

der higher-order algebraic surfaces (without first polygonizing them). Second, any

given model can be approximated by a planar polygonal dataset. Examples of such

models range from algebraic-surface based models (consisting of Bezier or B-spline

patches or CSG solids) to datasets consisting of just scattered points (obtainable from

three-dimensional scanners). Third, planar polygonal datasets simplify any form of

11

' I
pre-processing computation (such as visibility computation). For these reasons it

is likely that polygonal datasets will continue to play an important role in computer

graphics for some time to come. For these reasons, I decided to work on simplification

of polygonal datasets instead of any other model representation format.

Simplification of polygonal models by approximation allows one to generate a

detail hierarchy for objects. Such a detail hierarchy can be used in several ways:

• In a level-of-detail-based rendering algorithm for providing desired frame update

rates.

• Simplifying traditionally over-sampled models such as those generated from

volume datasets, laser scanners, and satellites.

• Using low-detail approximations of objects in coarse visibility computations,

collision detection, and global illumination algorithms, especially radiosity.

1.4.2 Problem Definition

Before we formally define our problem, let us first define the term t-approximation.

Given two piecewise linear objects P and Q, we say that P and Q are E- approxi­

mations of each other iff every point on P is within a distance E of some point of Q

and every point on Q is within a distance E of some point of P.

We define our problem as follows:

Given a polygonal representation P (I) of an object I and an approximation pa­

rameter E, generate a genus-preserving E-approximation A with minimal number of

polygons such that the vertices of A are a subset of vertices of P {I).

Such an approximation scheme has several benefits in computer graphics. First,

one can very precisely quantify the maximum amount of approximation error that is

tolerable under given circumstances. For instance, one possibility could be to define

a tolerable approximation for rendering an object as, say, 2 screen pixels. Using this

information in conjunction with the distance of the object from the screen, one can

estimate the maximum deviation permissible from the surface of the object. This

12

can then be used to find which precomputed level of detail of that object is most

suitable. Second, this approach allows one a fine control over which regions of an

object one should approximate more and which ones less. This could be used in

selectively preserving those features of an object that are perceptually important.

In our problem definition we have stated that A should have a minimal number

of polygons. It turns out that achieving minimality for A is NP-hard even for the

simple case where I is a convex polytope (Das & Joseph 90]. Therefore we shall aim

to compute an €-approximation A to P(I) such that (a) A has a smaller number

of polygons than P(I) and (b) the number of polygons in A can be related to the

minimal (optimal) number of polygons possible in any €-approximation to P(I). We

shall henceforth refer to the polygonal representation P(I) of an object I as P.

1.4.3 Algorithm Overview

The basic outline of the algorithm is as follows:

• Generate two offset surfaces to the input model, one on the outside and the

other on the inside of the input object.

• Then generate all candidate triangles that lie within these two offset surfaces

and have their vertices selected from the set of vertices of the input model.

• Find which vertices of the input model are '~covered" by which triangles.

• Finally, use a greedy approach for selecting the approximation triangles from

the candidate triangles.

Why this approach works and how this can be used to get a quantitative measure

of the quality of approximation is described in Chapter VII.

We shall assume that all polygons in P are triangles and that P is a well-behaved

polygonal model, i.e. every edge has either one or two adjacent triangles, no two

triangles interpenetrate, there are no unintentional "cracks" in the model, etc. We

will be further assuming that the vertices of P have possibly several normals (such as

13

at sharp edges in a model) that faithfully represent the normals of the object being

modeled.

While greedy algorithms are typically sequential in nature, our algorithm can be

parallelized in the different stages. Vertex-vertex visibility pairs can be generated

completely in parallel. Further, changes made to an existing mesh due to selection

of a candidate triangle are local. Such regions that have to be retriangulated are

well-defined and can be processed in parallel.

1.4.4 Results

We have been able to achieve roughly 70% reductions with minimal perceptual dif­

ference on polygonal datasets that we have attempted to reduce thus far. These

datasets have been taken from polygonal models used in real-world problems, such

as virtual-reality walkthroughs of proposed submarines.

(a) First Level: 2346 triangles (b) Second Level: 1180 triangles

(c) Third Level: 676 triangles (d) Fourth Level: 514 triangles

Figure 1.5: Four Detail Levels for a Polygonal Model

14

A typical level-of-detail hierarchy with four levels for a polygonal model of a

torpedo roller is shown in Figure 1.5.

The actual level in this hierarchy that is chosen for display depends upon the

screen-space area occupied by the polygonal model. Thus, the farther the model

from the observer, the coarser the level of detail that is selected. In Figure 1.6 we

show a row of rollers used for loading a torpedo into a torpedo tube. In Figure 1.6(a),

an appropriately chosen level of detail is used for rendering each of the rollers, whereas

in Figure 1.6(b), no level-of-detail-based rendering is used. The frame-update rate in

case (a) is 12 frames per second for rendering a total of 22K triangles, whereas the

frame-update rate for case (b) is just 7 frames per second for rendering 49K triangles.

As can be seen, there is hardly any perceptual difference between the images (a) and

(b) in Figure 1. 6.

We have simplified a total of 1090 objects of the AMR dataset for testing and

validating our algorithm. These polygonal objects are from the Submarine Auxiliary

Machine Room (AMR) dataset that was given to us by the Electric Boat Division of

the General Dynamics. We have cumulatively reduced these objects as follows:

Level-of-Detail Dataset Complexity %Reduction

Original dataset 350,023 triangles 0

First level 206,859 triangles 40.90

Second level 141,983 triangles 59.44

Third level 104,874 triangles 70.04

Table 1.3: Polygonal Simplification Results

1.5 A Guide to the Chapters

The rest of this dissertation is organized as follows.

In Chapter II, we will give a brief overview of proteins, the protein docking prob­

lem, the protein folding problem, and the various molecular surfaces defined in bio-

15

(a) Using level-of-detail rendering.

(b) Not using level-of-detail rendering

Figure 1.6: Rendering With and Without Level-of-detail Models

chemistry.

Chapter III gives an overview of some terminology from computational geometry

and a brief review of detail hierarchies for boundaries of points and polygonal curves.

Chapter IV describes our approach for analytically computing the solvent­

accessible molecular surfaces in real-time and then overviews a few implementation

details, and concludes with our results.

In Chapter V we give a brief introduction to the mathematical theory of packing

of spheres and present several techniques to bound the number of unit spheres that

16

can be packed inside a larger sphere of a given radius. We consider two main kinds of

techniques- volume-based and surface-based- for deriving these bounds, and work

with both - intersecting unit spheres as well as mutually disjoint unit spheres. These

techniques have been illustrated by using them to estimate the number of solvent­

accessible neighbors for an atom in a protein molecule.

In Chapter VI, we discuss computation of molecular surfaces at the interface of

two or more molecular sub-units and give a goodness-of-fit criterion for evaluating

molecular interfaces.

In Chapter VII, we describe our approach to compute a level-of-detail object

hierarchy for polygonal models and then discuss a few implementation heuristics

followed by results.

Finally, we discuss directions for further work in Chapter VIII.

17

Chapter II

Molecular Surfaces

In this chapter we shall first give a brief overview of proteins. Next we shall moti­

vate the need for computing molecular surfaces by considering the protein-substrate

docking problem and the protein folding problem. After that we shall overview the

two main kinds of molecular surfaces that are defined in biochemistry.

2.1 Proteins

Proteins are long, linear sequences of bonded amino acids. There are 20 naturally

occurring amino acids. Of which, 19 amino acids have the same basic structure, as

is shown in Figure 2.1(a). The only difference among these 19 amino acids is the

difference in the chemical composition of the sidechain R. R can be as simple as a

single hydrogen atom, or it can be a long chain consisting of carbon, nitrogen, sulfur,

oxygen, and hydrogen atoms. R can even consist of aromatic rings. The twentieth

amino acid, proline, is special in that it has a bond between the sidechain R and the

nitrogen atom as shown in Figure 2.1(b).

For clarity in presentation, we shall ignore proline and assume that the structure

shown in Figure 2.1(a) adequately represents the structure of a generic amino acid.

Two amino acids form a bond by releasing a water molecule as shown in Fig­

ure 2.2(a). This bond is known .as a peptide bond. In a protein, many amino acids

link together to form a long, linear chain of peptide bonds. This is shown in Fig-

I
I
'

(a) A typical amino acid

/~~
~c Cf2

\ I
HN-CH ---eqH

(b) Proline

Figure 2.1: Amino Acids

ure 2.2(b). The leftover structure of an amino acid after the formation of peptide

bonds with its neighbors (and the consequent loss of a water molecule) is known as

the amino acid residue. Each amino acid residue consists of the sidechain R and six

other atoms as shown in Figure 2.2(c). The group of atoms shown in Figure 2.2(d)

behaves as a rigid unit and is known as a peptide unit. All the peptide units of a

protein are collectively referred to as the backbone or the mainchain of the protein.

The various amino acids can be characterized to be hydrophilic or hydrophobic

based on the interactions of their sidechains with water. Thus all amino acids that

have aliphatic hydrocarbon sidechains are hydrophobic, and all amino acids that have

polar atoms such as oxygen are hydrophilic.

For a better understanding of the fundamentals of protein structure the interested

reader can see the textbook [Dickerson & Geis 69].

2.2 The Protein-Substrate Docking Problem

The Protein-Substrate Docking Problem is to identify the position and orientation of

the protein molecule with respect to a given substrate (another molecule that may be

a protein, a nucleic acid, or a drug molecule) such that the energy of interaction of the

19

(a) Fonnation of a peptide bond

(b) A protein wfth n peptide bonds

(c) An Amino Acid Residue

Rii~---:c---­
H

? <C"""" ~--------b
H ~

R
i+l

(d) A Peptide Unit

Figure 2.2: Bonding of Amino Acids

two is minimized. This problem is useful in studying enzyme catalysis and antigen­

antibody interactions. These interactions have been observed to be very specific in

their occurrence. Even slight changes in the structure of a sidechain of one of the

participants have been observed to inhibit such interactions.

This docking of the protein with a substrate is characterized by geometric and

electrostatic complementarity of the two surfaces and compatible hydrophilicity. De­

termination of the molecular surfaces of the two molecules thus plays a rather impor­

tant role in solving this problem ..

20

2.3 The Protein Folding Problem

A protein is initially synthesized in the form of a long, linear chain of amino acid

residues by a small cellular body called a ribosome. Once fully synthesized, it rapidly

folds into a unique three-dimensional conformation. It has long been believed, and

indeed confirmed for relatively small proteins, that the three-dimensional shape of

a protein is just a function of its one-dimensional sequence of amino acids. The

problem of predicting the three-dimensional structure of a protein based on the one­

dimensional sequence of its amino acids has come to be known as the Protein Folding

Problem.

In general, proteins exist and interact in aqueous media in living things. This

solvent is believed to play an important role in protein folding. The interior of most

folded proteins has been found to be largely free of water and consisting mostly of

hydrophobic amino acid residues. The surface of the folded proteins, in contrast, has

mostly hydrophilic residues. The surface area of hydrophobic residues in contact with

water provides a good means of estimating the effect of solvent at a given stage of

protein folding. Thus, efficient determination of molecular surfaces is of considerable

interest in gaining a better understanding of the protein folding.

2.4 Surfaces for Molecules

In 1971 Lee and Richards defined the solvent-accessible surface of a molecule as the

surface that is traced by the center of a probe sphere representing a solvent molecule

as it is rolled over the surface of the molecule [Lee & Richards 71]. The surface of a

molecule defined in this fashion has the advantage of simplicity- all patches of the

surface are convex spherical. However, it does suffer from some drawbacks. First,

as the radius of the probe sphere increases to oo, the surface area of the molecule

as computed by this method also increases to oo, which is clearly counter-intuitive.

Second, the surface of a molecule defined in this fashion is not a useful means for

identifying the degree of complementarity between two molecules.

21

In 1977 Richards gave an alternative solvent-accessible molecular surface defi­

nition [Richards 77]. He defined the molecular surface to be the surface which an

exterior probe-sphere touches as it is rolled over the spherical atoms of that molecule.

This surface is also known as the solvent-excluding surface. This is a more useful def­

inition of the molecular surface as it better approximates the van der Waal's surface

of the solvent-accessible atoms and thus gives a more realistic value of a molecule's

solvent-accessible surface area. The region where this molecular surface consists of

the van der Waal's surface of an atom is called the contact surface; other regions are

called reentrant surfaces.

The surfaces corresponding to the two definitions are shown in Figure 2.3.

R = Probe radius
Reentrant Surface

r =van der Waal's radius

Lee and Richards's Surface Richards's Surface

Figure 2.3: Molecular Surfaces

In this dissertation we shall be dealing with the molecular surface defined by

Richards in 1977.

22

r
'

'
' ' ' ' '

Chapter III

Detail Hierarchies in

Computational Geometry

3.1 Introduction

In this chapter we shall survey the work that has been done in computational geometry

for constructing detail hierarchies of objects. Most of this work can be subdivided

into the following three categories:

(i) hierarchy for the boundary of a given set of points,

(ii) hierarchy for a given two-dimensional piecewise linear curve, and

(iii) hierarchy for a given three-dimensional piecewise linear (polygonal) surface.

The third category above had not received much attention till recently. We shall

discuss the recent advances for that category in Section 7.2.

Before we proceed further, let us introduce some basic concepts and terminology

from computational geometry.

3.2 Some Computational Geometry Concepts

This section explains some terms from computational geometry that we shall be using

in the later sections. These have been illustrated in two dimensions, though they can

be generalized to three and higher dimensions. In the following definitions, let P be

a finite set of points.

We use Rd to denote the d-dimensional real space. Ed is used to denote the d­

dimensional real-space in which the distance function is the Euclidean distance or the

L 2 norm1

Convex Hull

The convex hull of P can be defined as the smallest convex set that contains P. It

can also be defined as the intersection of all half-planes that contain P. An example

of this is shown in Figure 3.1(b).

(a) Point Set P (b) Convex Hull

(c) Voronoi Diagram (d) Delaunay Triangulation

Figure 3.1: Some Basic Computational Geometry Concepts

1distance between two points p(a,, a,, ... ' aa) and p(b,, b,, ... ' ba) = o:::t=l (a;- b;)2)1i2

24

p
' Voronoi Diagram

The Voronoi diagram for a set of points P in the plane is the subdivision of the plane

into a set of mutually exclusive, collectively exhaustive regions such that :

(a) each region R; corresponds to a unique point i E P.

(b) all the points of the plane contained in that region R; are closer to its point i, than

to any other point j # i in P. An example ofthis is shown in Figure 3.l(c). Note that

any edge of this diagram between adjacent regions R; and Rj is the perpendicular

bisector of the line joining the points i and j. The vertices of the Voronoi diagram

are called the Voronoi vertices, the edges Voronoi edges, and the regions Voronoi

regions or Voronoi cells. This diagram is named after the Russian mathematician G.

M. Voronoi [Voronoi 07].

Delaunay Triangulation

The Delaunay triangulation for a set of points Pin the plane is the dual (in the graph­

theoretic sense) of their Voronoi diagram. In this triangulation, an edge is created

between two points if and only if their Voronoi cells share an edge. As long as there are

no degeneracies (2 points coincident, 3 points collinear, or 4 points co-circular) this

is guaranteed to produce a valid triangulation. This is shown in Figure 3.1(d). Note

that the convex hull is a subset of the Delaunay triangulation. This is named after

B. Delaunay who proved that the dual of the Voronoi diagram of P is a triangulation

of P [Delaunay 34].

Power Diagrams

Power diagrams are a generalization of the Voronoi diagrams. Voronoi diagrams are

defined for simple points (or circles of equal radii) whereas power diagrams are defined

for circles of possibly unequal radii. An easy way to understand this is through the

following example.

Let us assume that the plane of the points of P represents the map of some

geographical region and that the points of P represent the sites of radio transmitters

25

(a) Voronoi Diagram (b) Power Diagram

Figure 3.2: Voronoi and Power Diagrams

m that regiOn. The signal power of the radio transmitters is assumed to have a

conical distribution function such that the radius of the cone represents the power

of the transmitter and is directly proportional to the transmitter's height. Thus the

more powerful a transmitter, the greater its height.

Let us define the dominant region for a particular transmitter as the region in

which its signals are stronger than the signals from any other transmitter. Let us

first assume that all transmitters transmit their signals at the same power and are

therefore at the same height. The dominant regions of the transmitters for the case

where all transmitters have the same power are described by the Voronoi regions

in the Voronoi diagram of the transmitter sites. This is shown in Figure 3.2(a).

Instead of drawing three-dimensional cones to represent the transmitter-signal's power

distribution functions we have simply drawn the circular bases of the cones.

It is easy to see that if we now increase the power of a particular transmitter,

its dominant region will increase at the expense of others. The dominant regions for

the case were the transmitters do not have the same power are described by power

diagrams. This is shown in Figure 3.2(b), where the radius of one circle has been

increased. Power cells are defined analogously to the Voronoi cells. Note that a point

i E P in a power diagram may not lie within its power cell; its power cell may not

even exist. However, every power cell corresponds to a unique point i E P.

A regular triangulation is to a power diagram as a Delaunay triangulation is to

26

I
p

a Voronoi diagram. Thus, in a regular triangulation an edge is created between two

points i and j E P if and only if their power cells share an edge.

3.3 Detail Hierarchies for Boundaries of Points

A trivial hierarchy of detail for the boundary of a set of points in Rd can proceed from

the minimum enclosing sphere, to the minimum enclosing ellipsoid, and then to the

convex hull. This is a hierarchy in two senses: (a) closer and closer approximation to

the point-set, and (b) takes more parameters to describe. This progression of detail

is shown in Figure 3.3.

. .

Minimum Sphere Minimum Ellipsoid Convex Hull

Figure 3.3: A Trivial Hierarchy of Boundary Detail

Higher detail descriptions of boundaries of points were not systematized until the

invention of the a-hulls. We shall discuss these in Section 3.3.2.

3.3.1 Spheres, Ellipsoids, and Convex Hulls

It is possible to find the smallest enclosing sphere and ellipsoid for a set of n points

in Rd in 0(88!n) time [Welzl91], where 8 = d + 1 for a sphere and 8 = (d + 3)d/2

for an ellipsoid. The algorithm given in [Welzl 91] is quite easy to implement and

delivers a good performance for low-dimensional spaces. It is also possible to frame

the problem of finding the smallest enclosing sphere as a linear programming problem

and then use the linear programming algorithms.

The first optimal 0(n log n) algorithm for computing the convex hull of a

27

set of points in the plane was gtven by Graham [Graham 72]. In terms of

output-size-sensitive algorithms for computing the planar convex hull, the asymp­

totically optimal time of 0(n log h) has been achieved by Kirkpatrick and Sei­

del [Kirkpatrick & Seidel 86], where h is the number of edges in the convex hull. For

higher dimensions, these can be computed in time O(nrd/21) for odd d [Seidel 81] and

at logarithmic cost per face for even d ~ 4 (Seidel 86]. For good survey material on

convex hulls see [Preparata & Shamos 85, Dobkin & Souvaine 87, Edelsbrunner 87,

Graham & Yao 90].

3.3.2 a -Hull

An elegant generalization of the convex hulls for points in a plane is done by Edels­

brunner, Kirkpatrick, and Seidel (Edelsbrunner et a/83] by defining the notion of

a-hulls. As mentioned before, one could define the convex hull of a set of poir1ts

P in a plane as the intersection of all half-planes that contain P . Instead of using

half-planes, they define the hulls for points by intersecting the interiors of discs or

their complements. For a > 0, the a-hull of a set of points P in two dimensions

is defined to be the complement of the union of all disks of radius a containing no

points of P. The notation used for defining the alpha hulls has changed in going from

(Edelsbrunner et a/83] to [Edelsbrunner 92]. We shall use the more recent notation.

The term open disc is used to refer to the points that He strictly inside a circle

and the term closed disc is used to refer to the points that lie on or inside a circle.

A generalized disc is a disc that either selects the points that are in the interior of a

circle or the points t hat are exterior to a circle. In general , a generalized disc with a

positive radius is used to refer to the points that are in the interior of a circle, whereas

a generalized disc with a negative radius is used to refer to the points that are exterior

to a circle. A generalized disc can be open or closed depending on whether it includes

the points on its boundary. The complement of a generalized disc with radius (+a)

is a generalized disc with radius (-a).

The a -hull of a set of points Pis defined as the intersection of all closed generalized

discs of radius (-a) that contain all the points of P. Thus, if a > 0, we consider

28

• I

higher dimension, the worst-case combinatorial complexity of a-hulls in Rd is the

same as that of the convex hulls in Rd+I. The a-hulls can be constructed from the

Delaunay triangulation and their times are the same as those for convex hulls in one­

higher dimension. Thus in a plane, a-hull of a set of n points can be constructed in

time O(n log n) and in three dimensions in time O(n2
).

The a-hulls have been defined for weighted points in [Edelsbrunner 92]. These

can be constructed from regular triangulations of the weighted points, which are dual

to the power diagrams as defined by Aurenhammer (Aurenhammer 88).

3.4 Detail Hierarchies for Polylines

We shall use the term polyline to denote a zero-order continuous (i.e. end-point conti­

nuity) chain of line segments none of which crosses another. A function f: (x-, x+] -+

R is a piecewise-linear function if its graph y = f(x) is a polyline connecting the points

PJ,p2 , ••• ,pn, in that order such that x- = x(p!) < x(p2) < x(p3) ••• < x(pn) = x+,

where x(p) is the x-coordinate of p. Thus, for a piecewise linear function, we require

the polyline p1 , P2, ... , Pn to be strictly x-monotone. A piecewise linear curve is a

polyline that is not required to be x-monotone. Thus, a piecewise linear curve is an

arbitrary polyline on a plane.

Algorithms have been developed for generating a hierarchy of approximations for

piecewise linear functions and piecewise linear curves. Two types of approximations

have been considered:

• M in -# Appr oximations: Given some error bound f. > 0, t.hP. objective is

to minimize the number of vertices such that no point of the approximation is

farther than f. distance away from some point on the actual curve.

• Min- t Approximations: Given the number of vertices desired in the output

approximation curve, minimize the error between the approximation curve and

the input curve.

Imai and Iri [Imai & Iri 86], [Imai & Iri 88] have shown that the min-# approxi-

30

lnpul Polyline

/

Figure 3.5: A Vertex-Subset Polyline Approximation

mat ion to a piecewise linear function can be accomplished in an optimal 0(n) time.

The min-E problem for the piecewise linear functions is much harder to solve and no

efficient algorithms are known that solve it optimally for the general case.

The vertices of the approximation of a piecewise linear curve may or may not be a

subset of the vertices of the input piecewise linear curve. Here, we shall focus on the

problem in which the vertices of the new piecewise linear curve are a subset of the

vertices of the input curve. Formally, given a piecewise linear curve C whose vertices

are p1 , p2 , ••• , Pn, in this order, an approximate piecewise linear curve for this consists

of the vertices Pi(I),Pi(2), ••• ,pi(mb 1 = i(l) < i(2) < ... < i(m) = n, which are a

subset of pt,p2 , ••• ,Pn· This is shown in Figure 3.5.

Min-E as well as the min-# approximation problems have been solved for this

approximation scheme, using different measures of the approximation error crite­

rion [Imai & Iri 88]. Let the error of approximating the curve between vertices

p;, Pi +I, Pi+2, ... , Pj by the line segment PiPj be given by the maximum of the dis­

tance between the segment PiPj and the points Pk(i ::; k ::; j). For this error measure,

the min-# problem can be solved in time 0(n2 log n) [Melkman & 0 'Rourke 88] while

the min-E problem can be solved in time O(n2(1ogn) 2) [Imai & Iri 88].

31

I

'

Chapter IV

Linearly Scalable Computation of

Smooth Molecular Surfaces

The smooth molecular surface of a molecule is defined as the surface which an exterior

probe-sphere touches as it is rolled over the spherical atoms of that molecule. For

examples of such molecular surfaces, refer to Figures 1.1, 1.2, and 4.4, where these

surfaces have been shown for various molecules and with different probe-sphere radii.

Present systems for computing the surfaces of molecules are batch-oriented. They

take a few minutes to compute the surface for a couple of thousand atoms. Our goal

has been to compute and display these surfaces at interactive rates, by taking advan­

tage of results from the field of computational geometry, making further algorithmic

improvements, and parallelizing the computations.

Interactive computation and display of molecular surfaces should benefit bio­

chemists in three important ways. First, the ability to change the probe-radius in­

teractively helps one study the surface. Second, it helps in visualizing the changing

surface of a molecule as its atom positions are changed. These changes in atom posi­

tions could be due to user-defined forces as the user attempts to modify a molecular

model on a computer. Third, it assists in incorporating the effects of the solvent into

the overall potential energy computations during the interactive modifications of a

molecule on a computer.

4.1 Previous and Related Work

The analytic computation of the molecular surface was first done by Connolly

[Connolly 83]. Here a molecular surface is represented by a collection of spherical

and toroidal patches as follows:

• The surface for a region of a molecule where the probe is in contact with only

a single atom is modeled by a convex spherical patch.

• The surface for a region of a molecule where the probe is in simultaneous contact

with only two atoms is modeled by a saddle-shaped toroidal patch.

• The surface for a region where the probe is in simultaneous contact with three

atoms is modeled by a concave spherical triangular patch.

Only recently have the issues of algorithmic complexity of these algorithms begun

to be addressed. Let n be the number of atoms in a molecule and let k be the average

number of neighboring atoms for an atom in the molecule. By neighboring we mean

the atoms that are near enough to affect probe placement on a particular atom. Perrot

et a/. [Perrot et a/92] present a 0(kn) algorithm that generates an approximation to

the solvent-accessible surface. In terms of sequential algorithmic complexity this is

good, however some issues remain unaddressed here. Their algorithm is inherently

sequential, as it always needs to start from some concave spherical triangular region

of the molecule and from there it proceeds by adding an adjacent face at a time.

Besides being hard to parallelize, it fails for the cases where the solvent-accessible

surface folds back to intersect itself or where the molecule has two or more sub-parts

connected by only two overlapping spheres. Also, it cannot generate surfaces for the

interior cavities of a molecule.

We have reviewed a-hulls in Section 3.3.2. If we generalize the notion of a­

hulls over point-sets to the corresponding hulls over spheres of unequal radii in

three dimensions, we would get the Richards's smooth molecular surface (along

with the surfaces defining the interior cavities of the molecule). It has been shown

in [Edelsbrunner et a/83] that it is possible to compute the a-hulls from the Voronoi

33

diagram of the points of P. For a = co the a-hull over the set of points P is the

same as their convex hull. Richards [Richards 77] had also suggested computing the

molecular surface by computing a 3D Voronoi diagram first and then using its faces

to determine which nearby atoms to consider.

Edelsbrunner and Miicke [Edelsbrunner & Miicke 94] extend the definition of a­

hulls to points in three dimensions. Here an a-shape over a set of points P has been

defined to be the polytope that approximates the a-hull over P by replacing circular

arcs of the a-hull by straight edges and spherical caps by triangles. An a-shape

of a set of points P is a subset of the Delaunay triangulation of P. Edelsbrunner

in [Edelsbrunner 92], extends the concept of a-shapes to deal with weighted points

(i.e. spheres with possibly unequal and non-zero radii) in three dimensions. An a­

shape of a set of weighted points Pw is a subset of the regular triangulation of Pw·

Since these methods involve computing the entire triangulation first and then culling

away the parts that are not required, their complexity is O(n2
) in time. This is worst­

case optimal, since an a-shape in three dimensions could have a complexity of f!(n2
).

We next discuss a different approach that is easy to parallelize and is linear in n for

environments where the maximum density of P in a given volume is some constant

smaller than n. Molecules are a good example of such environments.

4.2 Our Approach

Our goal has been to formulate a parallel analytical molecular surface algorithm

that has expected linear complexity with respect to the total number of atoms of

a molecule. For achieving this goal, we have avoided computation of the complete

three-dimensional regular triangulation over the entire set of atoms - a process that

takes time 0 (n 2), where n is the number of atoms in the molecule.

Let us consider a molecule as a collection of weighted points (c;, r;) in three dimen­

sions, where the coordinates c; of each point correspond to the center of atom i and

the weight r; is the radius of atom i. Such collections of weighted points representing

molecules have two interesting properties: (i) the minimum distance d;; between any

34

two centers c; and Cj is greater than or equal to a positive constant lmin - the small­

est bond-length in the molecule and (ii) the set of all the weights can be bounded

from above and below by strictly positive values, 0 < r min ::; r; ::; r max· We take

advantage of the first property to arrive at better running times for our algorithm.

Stated simply, the first property says that the number of neighboring atoms within

a fixed distance from any atom i, is always bounded from above by a constant kmax

that depends on the minimum spacing between any two atoms. If the average num­

ber of neighbors for an atom is k, then we can just compute an approximation to the

power cell (the concept of a power cell is presented in [A urenhammer 87] and briefly

reviewed in Section 4.2.1), which we call a feasible cell (the definition of a feasible

cell appears in Section 4.2.3), by considering only these neighbors. Each feasible cell

can be computed in parallel in time 0(k log k). For n atoms, this task requires n

processors, each processor computing the feasible cell for one atom.

4.2.1 Formal Notation

In this section we will introduce the definitions and notations that we will be using

for the rest of the chapter. We consider the underlying space to be three-dimensional

Euclidean Space ~, although these results can be generalized to higher dimensions.

Let a(c,r) be a sphere of center c and radius r. Let x,y be two points. Define

d(x,y) to be the Euclidean distance between x andy. The power of a point x with

respect to a sphere a(c,r) is defined as p(x,a) = tP(x,c)- r 2 Thus, p(x,a) < 0,=

0, > 0, depending on whether x lies inside a, on the boundary of a, or outside a,

respectively.

Let M = {S1 , ... , Sn}, be a set of spheres, where each sphere, S;, is expressed

as a(c;, r;). We shall be assuming that the atom i of a molecule is represented by

the sphere S; and will be using the terms atom i and S; interchangeably. Let the

radius of the probe-sphere be R. We define the extended-radius sphere for atom i to

be W; = a(c;,r; + R). The surface of this extended-radius sphere W; is the locus of

the possible centers of the probe-sphere when it is in contact with atom i.

Define a chordale II;j of the spheres W; and Wj as II;j = {xlp(x, W;) = p(x, Wj)} =

35

{ xJ2x(Cj-c;) = r; 2 -r/-c;2 +c/-2R(rj -r;) }. Thus, II;j is a plane perpendicular to

the line joining c; and Cj. Define the halfspace H;j as H;1 = { x /p(x, W;) < p(x, W J)}.

The chordale ll;j divides the whole space into two halfspaces. H;j is that half-space in

which all points have a smaller power with respect to W; than Wj. In other words, all

points selected by H;j are closer to c; than Cj under the distance function defined by

the power metric (as defined by the power function above), instead of the conventional

Euclidean metric. Thus, whereas II;j = llj;, H;j # Hji·

Define the power cell, PC;, for atom i as PC; = njHij· Thus PC; is the set of

all the points that are closer to c; than any other sphere center Cj, assuming that

the distance is measured in the power metric. The definition and algorithms for

computing power cells have been given by Aurenhammer in [Aurenhammer 87].

4.2.2 Determination of Neighboring Atoms

Determination of neighboring atoms can be done by spatial grid subdivision into

cubical voxels, and assigning atoms to the appropriate voxels. We recall that an

atom j is considered a neighbor to atom i if it is possible to place a probe such

that it is in contact with both S; and Si (without considering any hindrance due

to other atoms). We define the region of influence, p;, for atom i to be the sphere

o-(c;,r; + 2R + maxj=1 r1). Then for computing the list of neighboring atoms, N;,

for atom i, one needs to find all the atoms that are close enough to affect probe

placement on atom i. Formally, N; = {j/d(c;,cj)::; r; + 2R+ rj}, or equivalently,

N; = {j/W; n Wj 'f <f>}. The centers of all atoms whose indices occur inN; lie inside

the sphere p;. Formally, Vj E N;,p(cj,p;) ::; 0. Therefore to compute the list of

neighboring atoms for atom i, one needs to look at all the atoms whose centers lie in

the voxels that intersect p;. Let the average number of neighboring atoms be k. Note

that k grows as R3 , assuming that the atoms are uniformly distributed. In Figure 4.1

atoms j 1 and j 2 are neighbors to atom i, but not to each other.

36

R

Atom
'If

Figure 4.1: Defining Neighbors

4.2.3 Determination of Surface Atoms

Here the aim is to determine the atoms that are buried in the interior of the molecule

and would not therefore directly participate in the final definition of the smooth

molecular surface. This step is not crucial to the linear time complexity of the overall

algorithm but it helps in improving the execution times.

Let us first define a feasible cell Fi as Fi = njEN; Hij. We will refine this definition

of a feasible cell later in this section. Since a power cell PCi is defined as PCi =

nj Hij, it is easy to see that PCi ~ F£. This difference between power and feasible

cells arises from the fact that for the construction of a feasible cell Fi we use only

those halfspaces Hij for which it is true that the extended-radius spheres Ill i and Ill j

intersect. However, for forming the power cells PC£, we use all the halfspaces Hij

regardless of whether Ill i and Ill j intersect or not.

In Figure 4.2, we show these differences for power cells and feasible cells defined

over circles. The power cell PC3 contains two edges and one vertex as does the

corresponding feasible cell F3 • However, whereas the power cells PC1 and PC2 have

two edges and one vertex each, the corresponding feasible cells F1 and F2 have only

one edge each, with no vertices.

As the above example shows, it is possible to get feasible cells that are not

bounded. However, it is attractive to have all the F; closed and bounded. This

compactness property of F; enables one to use the vertices of Fi in computing a

37

(a) Power Cells (b) Feasible Cells

Figure 4.2: Power Cells and Feasible Cells

tessellation of the molecular surface.

To make all F; closed and bounded, we first construct a tetrahedron T that encloses

the entire molecule. Let each face f of T lie in a plane II 1. Every such plane II 1

defines two halfspaces, one that includes the molecule and the other that does not.

L~t Hj, 0 :::; f :::; 3 be the four halfspaces, one due to each face f ofT, that select the

molecule. We include H1 with the set of halfspaces H;j that are used in defining F;,

for all i. With this modification we are now ready to give the final definition ofF; as:

F; = (njEN;Hij)n(nj;oHJ)·

With the matter of the definition ofF; having been settled, we can now determine

the surface atoms as follows. First, for the entire molecule we compute H1, 0 :::; f :::; 3.

Next, for every atom i, we first compute N; as described in Section 4.2.2. Then

we compute F; = (niEN;Hii)n(nj;0H1). IfF; = ¢>, atom i is totally buried and

cannot be a surface atom. This checking for nullity is done by Seidel's randomized

linear programming algorithm that has linear expected time and is quite fast in

practice [Seidel 90]. All the atoms for which F; # ¢> are classified as candidates for

being surface atoms.

Note that this method does not reject atoms that are completely buried but ad-

38

jacent to an internal cavity of the molecule. For such atoms, F; will be non-null

and would contribute surface patches. Thus, our algorithm correctly computes the

surfaces for the internal cavities of the molecule.

4.2.4 Determination of Surface Patches

Determination of the vertices defining the convex spherical, concave spherical, and

toroidal patches is the most crucial (and time-consuming) part of the whole algorithm.

If one computes a three-dimensional a-shape polytope for the set of atoms in

a molecule, with a = probe-radius, then the torii occur along the edges, the con­

cave spherical triangular patches correspond to the faces, and the convex spherical

patches correspond to the vertices of this polytope. The method given by Edels­

brunner [Edelsbrunner 92] finds these edges by first computing the entire three­

dimensional regular triangulation, an 0(n2) approach. We show here a method for

computing the three-dimensional a-hull, for a given value of a, for molecules in par­

allel time 0(k log k) over n processors

To compute F;, we compute the convex hull of the points dual to the H;j in

the dual-space, as described in [Preparata & Shamos 85]. This is an 0(k log k) time

process. Next we compute the dual of the convex hull to get the feasible cell F;,

in time O(k). The intersection of the feasible cell F; with W; gives rise to a set of

components on W;. Since F; is convex, every component 8ep is closed, connected, and

does not intersect any other component. Each of these closed components 8ep, divides

W; into two connected regions, say Rp, and Rp,. For exactly one of these, say R.m, it
will be true that RPm C F;. We define RPm to be the interior of the closed component

8cp. We can determine all these components 8cp, by finding the intersections of the

edges and faces ofF; with W;. This can be done in O(k) time.

After a connected component 8cp has been determined on Iii i we generate the

surface patches. It is important to note here the distinction between the component

8cP and the surface patches it generates. For each component 8ep, there exists a

one-to-one mapping, say F, with a convex spherical patch of the Richards's surface

together with parts of its adjacent (non-convex) patches.

39

We describe the mapping :F next. Let the component fJep be composed of r arcs,

avo, ap,, ... , aPr-!, and r vertices, Vp0, vp,, . .. , vPr-l· The· arcs av., 0 ::; q < r determine

the locus of the center of the probe while it is in contact with two atoms. These

arcs aP• therefore are used to generate the toroidal patches. The vertices vv. of this

component Ocp, where two arcs intersect, define the positions of the center of the probe

while it is in contact with three atoms. These vertices vP• are used to generate the

concave spherical triangular patches. The interior of the component fJep corresponds

to the positions of the center of the probe while it is tangent to only atom i. This is

used to generate a convex spherical patch.

In Figure 4.3 a component defined by three chordales II;j's intersecting W i has

been shown with its interior unshaded.

Figure 4.3: Determination of Molecular Surface Patches

4.2.5 Parallelization

Our approach to computing the smooth molecular surface can be parallelized over all

the atoms of the molecule. Each of the steps as described above can be carried out

independently for each atom. The most expensive of these steps is the construction of

a feasible cell which takes time O(k log k), fork neighbors. Therefore the complexity

of our algorithm over n processors would be O(k log k). If the number of available

processors p < n, we can allocate ~ atoms per processor to get a time complexity of
p

O(nk!ogk). These bounds hold in a CREW (concurrent-read exclusive-write) PRAM
p

40

(parallel random-access machine) model of parallel computation.

In the parallel computation of molecular surface, it is important to ensure that

two adjacent surface patches that have been generated on two different processors

do not have any cracks between them. In other words, the tessellation of the two

adjacent patches should share all the vertices along the common boundary edges.

This is easy to ensure amongst the surface patches for a single surface atom that are

generated at the same processor, as all the information about the patches is locally

available. However, ensuring that no cracks arise in the toroidal and concave spherical

patches that are typically shared across two or three processors, respectively, is more

interesting. We solve this problem by having each processor generate sub-patches (half

of a toroidal patch or a third of a concave spherical triangular patch). Tessellation at

the boundary of the sub-patches is done based on the length of the shared sub-patch

edges and a global maximum-triangle-edge-length parameter t. Thus, if a sub-patch

edge has length l units, we generate (fl Jtl - 1) additional, equispaced vertices along

the sub-patch edge independently at the two processors sharing that edge. This

ensures a continuous tessellation of the molecular surface with hardly any cracks.

Some cracks do arise due to precision problems when l is almost equal to a multiple

of t. In such cases, even slight differences in the value of l evaluated on different

processors (from different parameters) cause the introduction of an extra vertex in

the shared boundary edge. However, such cases are reasonably rare in practice.

4.2.6 Robustness

In the algorithms for computing the convex hull of a set of points, it is assumed

that the points are in a general position, ie. no more than d points lie on a same

(d -1)-dimensional hyperplane. In reality this assumption often fails to hold, leading

to problems. For example, planar benzene rings occur often in proteins, causing six

carbon and six hydrogen atoms to be coplanar.

One of the recent approaches to solving this problem has been to perturb the

input point set slightly to avoid these degeneracies. We are using a version of the

generic perturbation scheme proposed by Emiris and Canny [Emiris & Canny 92],

41

which perturbs the j'h dimension of the i'h point as:

p;,j(t) = Pi,j + t(ij mod q)1 ::0 i:::; n, 1 ::0 j:::; d (IV.1)

where t is a symbolic infinitesimal and q is the smallest prime greater than n.

4.3 Results

Our implementation has been done on Pixel-Planes 5 [Fuchs et al 89], although it is

general enough to be easily portable to any other parallel architecture. Table 4.1

shows our timings for computation and display of the molecular surface for various

molecules for a probe-radius of 1.4A. For these results we were using configurations

of 8, 16, or 24 Intel i860 processors. Our configuration of p processors consists of

one master processor and p - 1 slave processors. The master processor is responsi­

ble for distributing the work amongst the slave processors that perform the actual

surface computations. This explains the superlinear times observed in Table 4.1.

The molecules for which we have made these studies are crambin, felix, dihydrofo­

late reductase (DHFR), and superoxide dismutase (SOD). The Brookhaven Protein

Data Bank files that we have used for these molecules are pdb1crn.ent, pdb1fix.ent,

pdb2dhf.ent, and pdb2sod.ent, respectively. We have removed all the extra water

molecules that were at the end of pdb2dhf.ent as they are not a part of the DHFR

molecule per se. At present, we are representing the molecular surface by triangles,

and the column Tris in Table 4.1 refers to the complexity of the computed surface in

thousands of triangles.

As can be seen, the value of k, the average number of neighbors, is fairly constant

for a given probe-radius over different molecules. Using concepts from the mathemat­

ical theory of packing of spheres and some reasonable assumptions, we shall show in

Chapter V that for protein molecules, k is expected to be less than 140.

Table 4.2 shows the times for the generation of the molecular surface for cram bin

using 24 processors, and different probe-radii varying from l.OA to lO.OA.

42

Times (sec)

Molecule Atoms Processors k Tris

8 16 24

Cram bin 327 0.66 0.32 0.24 41.3 14K

Felix 613 1.34 0.66 0.42 40.7 31K

DHFR 2980 5.62 2.70 1.79 44.8 92K

SOD 4392 8.36 3.99 2.65 46.6 127K

Table 4.1: Molecular Surface Generation for 1.4A Probe-Radius.

Probe-Radius LOA 1.4A 2.8Jl 5.0A 10.0A

Times (sec) 0.23 0.24 0.32 0.53 0.95

k 29.9 41.3 91.8 191.5 318.3

Triangles 16K 14K 12K llK llK

Table 4.2: Crambin Molecular Surface Generation (24 Intel i860 Processors)

The smooth molecular surfaces for cram bin with probe-sphere radii of 1.4A, 2.8A,

5.0A, and 10.0A are shown in Figure 1.2(a), (b), (c), and (d), respectively. The

smooth molecular surfaces for dihydrofolate reductase and superoxide dismutase for

a probe-sphere radius of 1.4A are shown in Figure 4.4 (a) and (b), respectively.

4.4 Conclusions

We have presented a parallel algorithm for computing the molecular surfaces in paral­

lel time 0(k log k) over n processors. This is sufficiently general enough to be used for

computation of a-hulls and a-shapes for a given value of a as long as no two points

are arbitrarily close (i.e. the ratio of the distance between the closest pair of points to

the diameter of the set of points is bounded from below by a strictly positive number).

Our algorithm would give an order of magnitude improvement over the previous best

known algorithms for molecules with moderately large values of n, on the order of a

few thousands or more, in both sequential and parallel implementations.

43

(a) Dihydrofolate reductase) (2980 atoms) (b) Superoxide dismutase (4392 atoms)

Figure 4.4: DHFR and SOD Molecular Surfaces, 1.4A Probe-Radius

We would like to point out here that for large globular proteins one can ex­

pect O(n213
) atoms to lie on the surface. The other O(n113

) interior atoms will not

contribute to the molecular surface (assuming that there are no internal molecu­

lar cavities). We can check for empty feasible cells by linear programming in O(k)

time per atom. If the feasible cells for the buried atoms are empty, we are required

to spend 0 (k log k) time for generating the molecular surface patches for just the

0(n 213
) surface atoms. For such cases, the sequential complexity of our algorithm is

O(nk + n213k log k).

44

Chapter V

Estimating the Number of Unit

Spheres Inside a Larger Sphere

This chapter outlines a set of techniques that can be used for efficiently estimating

the number of unit spheres that can be placed within a given sphere of larger ra­

dius. For the case of packing of mutually disjoint spheres these techniques provide

upper bounds, whereas for the case of packing of intersecting spheres these techniques

provide good estimates. These techniques are directly applicable to the problem of

estimating the number of neighbors under the commonly used Euclidean distance

function, the £ 2-norm.

Thus, for instance, these techniques can be used to estimate:

• the number of atoms that "effectively" interact via Lennard-Janes attrac­

tive/repulsive energy function (which becomes infinitesimal beyond 6 - 7 A),

as mentioned in [Surles 92].

• the number of points that need to be considered in a relaxation procedure where

the force of repulsion due to a point falls off linearly with the Euclidean distance

from it (and thus becomes zero at a fixed radius), as used in [Turk 92].

• the number of atoms that could potentially define a solvent-accessible molec­

ular surface due to a given atom, as described in [Varshney et al94a,

Varshney & Brooks 93].

Although we shall be primarily working in three-dimensional Euclidean space, the

techniques presented in this chapter can be generalized to higher dimensions.

The rest of this chapter is organized as follows. In Section 5.1 we review some of

the concepts from the mathematical theory of packings of spheres. In Section 5.2 we

briefly outline the problem of computing the solvent-accessible molecular surface for

proteins which we shall use to illustrate the different techniques. Sections 5.3 and 5.4

outline the various techniques. Finally, in Section 5.5 we present our conclusions.

5.1 A Review of the Theory of Sphere Packings

In this section we shall briefly review some of the relevant results from the theory of

packing of spheres.

5.1.1 The Sphere Packing Problem

The classical sphere-packing problem is to find out how densely can one pack mutually

disjoint spheres of equal radii in three-dimensional Euclidean space. The general

sphere-packing problem is to find the densest packing of disjoint equal-radius spheres

in n-dimensional space.

Let us define the maximum density 6 (n) of a packing of spheres in n-dimensions

to be the proportion of the space that is occupied by spheres in their tightest packing.

The value of 6(2) was proved to be 0.9069 ... in 1892 by A. Thue. The classi­

cal sphere-packing problem for three dimensions is still an open problem, perhaps

one of the most famous open problems in mathematics. For several years, the best

known upper bound for the densest packing of spheres was 6(3) :::; 0.7796 ... , proved

by Rogers [Rogers 58]. This was improved by Lindsey [Lindsey 86] to 0.7784 ... in

1986. A packing of density 1r / v18 = 0. 7 405 ... , can actually be achieved by arranging

spheres in the form of a face-centered cubic lattice. Thus, at present, we know that

0.7405 :::; 6(3) :::; 0.7784, though Rogers [Rogers 58] remarks - "many mathemati­

cians believe" that the correct answer is 0.7405. For the values of 6(n), n > 3, the

interested reader can refer to [Conway & Sloane 88].

46

5.1.2 Sphere Packings in Spherical Space

A problem that is closely related to the problem of packing spheres in the Euclidean

space is that of packing (n - 1)-dimensional spheres (spherical caps) of angular di­

ameter </> on the surface of an n-dimensional unit sphere.

Let us define A(n, </>) to be the maximal number of mutually disjoint spherical

caps of angular diameter </> that can be placed on the surface of a n-dimensional unit

sphere. Rankin [Rankin 55] has found the exact values for A(n, </>) for </> 2:: 1r /2:

A(n, </>) = 1, 1r < </>::; 21r,

A(n,q)) = l1- sec(q))J,sec-1(-n):::; q):::; ?r,

A(n,q)) = n+ l,?r/2 < </> < sec-1(-n),

A(n, 1r /2) = 2n.

5.1.3 Multiple Packings of Spheres

Till now, we have been assuming that the spheres that are used in the packing are

mutually disjoint. What happens if we allow them to intersect? This concept has

been studied under the notion of multiple packings. A set of spheres is said to form

a k-fold packing if each point of the space belongs to at most k spheres. Let the

maximum density of a k-fold spherical packing in n-dimensions be denoted by 8k(n).

Fejes T6th [Fejes T6th 79] has shown that 82(3) :::; 1.826.

The results reproduced above are those most relevant to our research. They form

but a tiny fraction of the results from the deeply exciting mathematical theory of

packing and covering. The interested reader can further study this subject, starting

perhaps with the classical book by Rogers [Rogers 64]. For more recent results in this

field see the survey article by Fejes T6th [Fejes T6th 83] and the book by Conway

and Sloane [Conway & Sloane 88].

47

5.2 Solvent-Accessible Protein Surfaces

In Section 5.2.1, we shall quickly review the terminology of Section 4.2.1 and the

concept of neighborhood as described in Section 4.2.2. After that, we shall look at

some relevant properties of proteins, the molecules for which the solvent-accessible

surfaces are most often computed, and then list our assumptions for this problem.

5.2.1 Terminology

Let u(c, r) be a sphere of center c and radius r. Let x, y be two points. Define d(x, y)

to be the Euclidean distance between x andy. The power of a point x with respect to

a sphere O" is defined as p(x,u) = lP(x,c) -r2 Thus,p(x,u) < 0,= 0,> 0, depending

on whether x lies inside O", on the boundary of O", or outside O", respectively.

We shall be assuming that the atom i of a molecule is represented as a sphere

S; = O"(c;, ri), where c; and r; are the center and radius, respectively, of atom i. Let

the radius of the probe sphere be rprobe· We define the extended-radius sphere for

atom ito be W; = u(c;,r;+rprobe)· This extended-radius sphere W; is the locus of the

possible centers of the probe-sphere when it is in contact with atom i.

An atom j is considered a neighbor to atom i if it is possible to place a probe

such that it is in contact with both S; and Sj (without considering any hindrance due

to other atoms). We define the region of influence, p;, for atom i to be the sphere

O"(c;, r; + 2rprobe + maxj=1 ri)· Then for computing the list of neighboring atoms, N;,

for atom i, one needs to find all the atoms that are close enough to affect probe

placement on atom i. Formally, N; = {jJd(c;, Cj) < r; + 2rprobe + rj}, or equivalently,

N; = {jJW; n Wj # </>}. The centers of all atoms whose indices occur inN; lie inside

the sphere p;. Formally, Vj E N;,p(cj,pi) :S 0. In Figure 5.1 atoms j 1 and hare

neighbors to atom i, but atom j 2 is not.

Let us define the primary region P; for atom i to be the interior of the sphere P; =

0"(c;, Rprimary), where Rprimary is the smallest radius such that it completely encloses

all spheres whose centers lie in the region of influence p;. Formally, Sj C P;, V j E N;.

This has been shown in Figure 5.2.

48

Atom

Atomj
1

Atomj
2

Atomj
3

Figure 5.1: Determination of Neighboring Atoms

Let k be the average number of neighboring atoms and let kmax be an upper bound

on k.

5.2.2 Proteins

We recall from Section 2.1 that a protein is an arbitrarily long chain of bonded amino

acid residues. Each amino acid residue has an identical backbone or main-chain part

and a side chain of one of 20 types.

Let us consider a graph G representing the covalent bond structure of a protein

by representing each atom of the protein by a vertex and each covalent bond by an

edge. G will be largely acyclic except for a few exceptions. These exceptions are -

(a) the three aromatic amino acid residues (phenylalanine, tyrosine, and tryptophan),

which have either one or two cycles each in the side chain (b) proline - which forms

a cycle through a bond between its side chain and main chain, (c) histidine- which

has one cycle in its side chain, and (d) disulphide bonds. To a first approximation we

can ignore these cycles and simply consider the graph G to be a tree.

We recall that the degree of a vertex in a graph is defined as the number of edges

incident at that vertex. From this it follows that in any graph, including a tree, the

sum of the degrees of the vertices equals twice the number of edges. Now, if a tree has

n vertices, it will haven- 1 edges, and therefore the sum of degrees will be (2n- 2).

This sum will increase by one for every cycle in the protein. Therefore, to a first

49

Primary
Region

Region of Influence

Figure 5.2: Primary and Influence Regions

approximation we can assume that the average degree per vertex in G is 2. In other

words, to a first approximation, the average number of atoms covalently bonded to

an atom in a protein molecule is 2.

5.2.3 Assumptions

Since it is extremely difficult to derive bounds for kmax for the general case where the

radii of the atoms are different and the shape of the molecule is arbitrary, we shall

make the following assumptions:

A: The boundary effects of the molecule will be ignored. This means that for any

atom, we will be assuming that its entire region of influence is completely filled with

other atoms, even though it is clear that for atoms on the boundary of the molecule

this will not be true. Although this assumption is not always true, it can only lead

us to overestimate the average number of neighbors.

B: For our purposes of finding the average number of neighbors we shall con­

sider all atoms to have an equal radii r a = 1. 75A. For comparison, the radii of

various commonly occurring atoms in proteins are indeed close to each other: Car-

50

bon- l.9A, Nitrogen- l.7A, Oxygen- l.5A, Sulfur- 2.00A, Phosphorous- 2.10A

[Richardson 94, Weiner et a/84]. These values assume implicit hydrogens.

C: The average distance between the centers of any two bonded atoms is l = l.5A

-the bond length of a single C-C bond [Weiner et a/84].

D: The radius of the probe-sphere, which determines the radius of the region of

influence, is Tprobe = 1.4A.

With these assumptions, the radius of the region of influence is R;nfluence = 2 X

T 0 + 2 X Tprobe = 6.3A.

5.3 Volume-based Techniques

This section explores some techniques that use volume-based arguments to estimate

the number of unit spheres that can be placed within a sphere of larger radius. These

techniques have been explored for the cases where the unit spheres are mutually

disjoint or intersecting.

5.3.1 Mutually Disjoint Spheres

If all the unit spheres are mutually disjoint, then a trivial upper bound for kmax can

be given by the ratio of the respective volumes. Thus,

From the theory of packing of spheres we know that the maximum density of

packing in three dimensions is given by 8(3) = 0.7784. Thus, we can obtain an

improved bound:

(V.l)

For our example of solvent-accessible surfaces, we can use (V.l) by considering

each atom to be represented by a sphere with radius half the average bond-length

= l /2 = 0. 75A. The radius of the primary region would be R,rimary = (Rinfluence +
0. 75) /0.75 = 9.4. Here we divide by 0. 75 to normalize Rprimary so that the radius of

51

each sphere representing an atom is unity. Using (V.l) we get kmax ~ 0.7784 X 9.43 =

646.

5.3.2 Intersecting Spheres

If the unit spheres are allowed to overlap each other completely, it seems best to use

results from the multiple packings of spheres. Thus, if a k-fold packing of unit spheres

is permitted, one can essentially use (V.l) above with 8(3) replaced by 8k(3).

However, the more common case is one where the spheres are allowed to overlap

each other only to a limited extent. Thus, the centers of two spheres are not allowed

to get arbitrarily close to each other. In such cases one can proceed by first finding the

smallest volume per center, which is the volume within which the center of no other

sphere is allowed. In certain cases one can get a better (larger) value of the smallest

volume per center by dividing the smallest volume for a collection of m centers with

m. We can then compute k by dividing the total volume with the smallest volume per

center. We illustrate this method for the case of solvent-accessible surface problem.

As shown in Figure 5.2, we are interested in computing the number of spheres

whose centers lie within the region of influence. From Section 5.2.3, we have the radius

of the region of influence= 6.3A, where the radius of each atom is 1. 75A. Normalizing

the former, so that we have unit radius spheres, we have rinfluence = 6.3/1. 75 = 3.6.

In computing the solvent-accessible molecular surface for proteins we can assume

that each atom is covalently bonded to two other atoms on an average, as stated

in Section 5.2.2. This in conjunction with assumption C in Section 5.2.3, implies

that the maximum number of atom centers that can lie within a sphere of radius

l = 1.5A is 3. Normalizing l for the coordinate system of unit spheres, we have

l = 1.5/1.75 = 0.857. This is shown in Figure 5.3.

Volume per center 2: H-t; (0.857]3) ,;, -t; (0.2099) and total volume= -t; rJnJiuence =

-t; (46.65).
43(46.65) -

Therefore, k ~ '; (0.2099) - 222.

We can improve the above bound, if we are prepared to make the following as­

sumption:

52

s. 1 1-

Figure 5.3: Smallest Volume per Three Centers

Two atoms i and j are bonded iff c; E 0'(Cj, Tj) and Cj E 0'(c;, r;), that is the center

of atom i lies inside the sphere representing atom j and vice-versa.

With the above assumption we have the volume per center > H~~(1)3) -

-t; (0.3333).
.,. (46.65) -

Therefore, k :::; <,• (0.3333) - 139.

5.4 A Surface-based Technique

In this section we will explore a surface-based technique to bound the number of unit

spheres that can be placed around a unit sphere centered at the origin, such that

all of them lie inside a larger sphere of a given radius centered at the origin. First,

we will explain the intuition behind the problem by considering a simpler version of

the problem. Next, we will generalize the solution technique to work under general

conditions. Finally, we will demonstrate the use of this technique to estimate the

number of solvent-accessible neighbors in proteins.

5.4.1 Special Case

We recall from Section 5.2.1 that we denote a sphere of radius r centered at c by

O'(c, r). Let us first consider the following simpler problem: "Bound the number of

53

unit spheres in o-(O,r) \o-(0,1), 1 :S:: r < 4". Here, o-(O,r) \o-(0,1) denotes the region

that lies outside a unit radius sphere centered at the origin, but on or inside the

sphere of radius r centered at the origin. Let us further assume for now that all the

unit spheres are mutually disjoint.

After some thought, we can convince ourselves that all unit spheres which lie in

o-(0, r) \ o-(0, 1) intersect o-(0, y'r), 1 :S:: r < 4. This is shown in Figure 5.4. We shall

henceforth use the term shell to refer to the surface of a sphere on which we are

comoutine: the intersections of the unit soheres. Thus. in this case o-(0, y'r) is the

Spherical cap
on a unit sphere

\
Figure 5.4: Intersections With a Single Shell

As can be seen in Figure 5.4, a unit sphere intersects the shell forming two spherical

caps - one on the shell and the other on the unit sphere. Let the minimum angular

radius of the spherical caps on the unit spheres be r/>min· G. Fejes T6th [Fejes T6th 79]

has claimed that for this case r/>min 2': arcsin (j(4- r)/2), and indeed it is easy enough

to verify this.

Now, to bound the number of unit spheres, we just need to bound the number

of spherical caps on the shell o-(0, y'r). Using the terminology introduced in Sec-

54

I
~
I
!
'

tion 5.1.2, we observe that kmax ::; A(3, 2cPmin)· For cPmin 2:: 1r /4, we can use the

formulas from Rankin [Rankin 55] reproduced in Section 5.1.2 and that will give us

a bound on kmax•

However, the exact values of A(3, ¢>), for all values of ¢> are not yet known. For

values of cPmin for which A(3, 2¢>min) is not known, we can simply divide the total

surface area of the shell by the surface area of the smallest spherical cap on it, to get

an approximate upper bound for kmax·

5.4.2 General Case

There are two different ways in which the problem as defined in the previous section,

can be generalized. First, we should allow r to assume values larger than 4. Second,

we should lift the restriction of mutually disjoint unit spheres and allow them to

intersect.

Before looking at the completely general case, let us first consider the case where

1 ::; r < 6, and any sphere can intersect at most n other spheres. Thus, we are

interested in a (n + 1)-fold packing of unit spheres.

Consider, u(O, 1), the unit sphere centered at the origin. Since no more than n

spheres can overlap its center, the total number of its neighbors whose centers lie

inside u(O, 1) is at most n. We also note that any unit sphere that lies completely

inside u(O, r) will have its center inside u(O, r -1). Thus, we are interested in placing

a bound on the number of spheres whose centers lie in u(O, r -1) \ u(O, 1), while they

form a (n + 1)-fold packing. Let N(i,j), i::; j denote the number of spheres forming

a (n +I)-packing such that their centers lie in u(O,j) \ u(O, i).

We are interested in computing N(O, r) = N(O, 1) + N(l, r -1) + N(r -1, r). For

us, N(O,l)::; nand N(r-l,r) = 0. Thus, N(O,r)::; n+N(l,r-1)+0 and we shall

now attempt to bound N(l,r -1).

Theorem 1 If 1 ::; r < 6, all unit spheres whose centers lie in u(O,r -1) \ u(O, 1)

will intersect either u(O, j(r + 2)/2) or u(O, j(r2 - r + 2)/2) in a minimum angular

radius of cPmin =arcsin j(6- r)(r + 2)/4.

55

Proof: Let H(at,a2) denote the plane passing through the intersection of a 1(c1,rt)

and a2(c2, r2), and let e(a 1 , a2) denote the distance of this plane from the origin. In

Figure 5.5(a), the intersection of a 1 and a 2 is shown. Figure 5.5(b) shows a magnified

view of the same and labels e(at, a 2), <P, etc.

A

A

0

0 - h

8
e(Cj,C2J

c:;;

H(Cj,q;l
8

c:;;

H(Cj,CJ)
(a) (b)

Figure 5.5: Computing tPmin

We will be using the polar coordinates (r, 0, <!>) to specify the centers of the

spheres. Without loss of generality, let us consider the centers to lie along <!> = 0, 0 =

0.

We will first prove that if the center of a unit sphere lies between (1, 0, 0) and

(r /2, 0, 0), it will intersect the sphere a(O, j(r + 2)/2) with a minimum angular radius

of arcsin j(6- r)(r + 2)/4. Figure 5.6 shows this.

It is easy to see from Figure 5.5 that to minimize <fo, the center of a 1 should be

as far away from the boundary of a2 as possible. Given that the center has to lie

between (1,0,0) and (r/2,0,0), the two possibilities for minimizing <Pare: (1,0,0) or

(r/2,0,0).

Let in Figure 5.5, a 1 be a unit sphere centered at (1,0,0): a((1,0,0), 1), and let

56

r _ lr+2
a-\ 2

Region 1

r/2

I
r2-r+2

' 2

r- 1

Figure 5.6: Two Nested Shells CTa and O'b

1J2 = CT((O,O,O), ,j(r + 2)/2). The distance of their radical plane (passing through

their intersection), from the origin is: d(0"1,CT2) = (r + 2)/4. Thus, as can be seen

from Figure 5.5(b), cos <P = e(O'J> 0'2) - c1 = (r - 2)/4 and sin <P = y'1 - cos2 <P =

,j(6- r)(r + 2)/4.

Similarly, if we consider CT1 = CT((r/2,0,0),1) and CT2 = CT((O,O,O),,j(r+2)/2),

we will again get sin <P = ,j(6- r)(r + 2)/4. Therefore, in Region 1, <Pmin :2:

arcsin ,j(6- r)(r + 2)/4.

The proof that if the center of the unit sphere lies between (r /2, 0, 0) and (r -

1, 0, 0), it will intersect the sphere 0'(0, ,j(r2 - r + 2)/2) in at least an angular radius

of arcsin ,j(6- r)(r + 2)/4, is quite similar and can be proved along the same lines.

0

57

To bound N(1, r-1) we would like to bound the number of circles with a minimum

angular radius of </>min that can occur in a (n + 1)-fold packing on the surfaces of

a. = a(O, j(r + 2)/2) and ab = a(O, j(r2
- r + 2)/2). We do this by dividing the

surface area of the whole sphere (a a or ab) with the surface area of one such spherical

cap of minimum angular radius.

The value of h (as shown in Figure 5.5(b)) for the smaller shell aa (shown in

Figure 5.6) can be computed to be ha = j(r + 2)/2- (r + 2)/4 and for the larger

sphere ab to be hb = j(r2 - r + 2)/2- (3r- 2)/4.

The surface area of a spherical cap of height h on the surface of a sphere of radius

r is given by 21rrh.

Therefore:

47rr2 47rr2 2r 2rb
N(1,r-1)::0:(n+1)(

2
h +

2
~)=(n+1)(-h"+-h) (V.2)

1rr a a 7rTb b a b

In general, for s shells, let the radii defining the various regions be given by

x0 , x1 , •.• , x, (first region is a(O, x 1) \ a(O, x0), second region is a(O, x2) \ a(O, x1),

etc.), and the radii of the shells be given by rr, r2, ... , r, (x0 < r1 < xr, x 1 < r2 <

x2, ... , x,_1 < r, < x,). By imposing the constraint that all the unit spheres in

a(O,r) \ a(O, 1), intersect at least one of the s shells in the same minimum angular

radius, we have derived the following equations:

x0 = 1

x, = r -1

r? = x;x;_1 + 1, 1 ::; i ::; n

r? + rL = 2(xL + 1),2::; i::; n

(V.3)

(V.4)

(V.5)

(V.6)

For a given value of r and s, one can solve the above system of simultaneous

equations to get the value of the various r; and x;. The value of </>min can thus be

computed for each shell and can then be used to compute N(O,r).

For the problem of computing the number of solvent-accessible neighbors, we

have: radius of an atom ra = l.75A and the probe radius rp = 1.4A. Then R1 =

58

2 x r. + 2 x rp + r. = 8.05. Normalizing it so that the original atom has unit radius,

we have r = R,/r. = 4.6. For r = 4.6 and n = 2, we get: r. = 1.8165, h. =

0.166, rb = 3.046, hb = 0.0963. Substituting these values in (V.2), we get: N(O, r) ::;

n + N(1, r- 1) = 2 + 252 = 254.

Note that due to our assumption that on an average no point in space is covered

by more than three spheres, the number of solvent-accessible neighbors we have found

is an estimate and not an actual upper bound. However, the technique itself is general

and can be used to derive upper bounds for the number of unit spheres that can be

placed inside a larger sphere, given an upper bound on the number of spheres that

can cover any point within the larger radius sphere.

5.5 Conclusions

We have described several techniques to bound or estimate the number of unit spheres

that can be accommodated inside a larger sphere of a given radius. Depending on

the application, one of these techniques could be used to derive a good estimate on

the number of neighbors. For our application of computing the solvent-accessible

neighbors in a protein molecule, the best estimate that we achieved was by using

the volume-based technique of Section 5.3.2, which yielded 139 to be the maximum

average number of neighbors one could expect for a probe radius of 1.4lL

59

Chapter VI

Molecular Interface Surfaces

6.1 Surfaces at Molecular Interfaces

One of the important factors that influences the position and orientation of the protein

with respect to the substrate in protein-substrate docking is the geometric fit or

surface complementarity between them. It is quite difficult to visualize the molecular

surface at the interface of the protein and substrate. Traditionally, the interface has

been studied by using a clipping plane that is moved along the z-axis in the screen­

space [Richardson 92]. This enables one to step-through the interface studying its

cross-sections in a manner similar to that a physician employs while studying the

various CT -scans of a patient one at a time. This essentially means studying a three­

dimensional molecular interface in a two-dimensional manner, which is quite tedious

and hard to understand.

Things get even harder to visualize by the clipping-plane method when one is

studying an interface that does not lie in a plane or when one is interested in a

simultaneous study of pairwise·interfaces across three or more molecular sub-units.

Such cases do occur in practice, for example, in studying the packing of a-helices in

crystalline protein structures.

We have developed an approach that allows biochemists to visualize the inter- and

intra-molecular interfaces in three dimensions. The clipping of the molecular surfaces

is defined by a piecewise polygonal surface derived from the power-diagrams defined

over the participating molecular units. This provides biochemists with a powerful

tool to study the surface complementarity across molecular interfaces in a natural

three-dimensional manner.

6.2 Computation of Molecular Interface Surfaces

Since we are most interested in visualizing the interface between two molecular units,

let us first characterize it.

Construct a single power-diagram of the spheres/atoms from the two molecules

A and B consisting of n and m atoms, respectively. Let these two sets of atoms

be represented as A= {at,az, ... ,an} and B = {b1,b2, ... ,bm}· Each face of this

power-diagram would be defined by two atoms. If the two atoms defining a face are

a;, 1 ::0:: i ::0:: n and bh 1 ::0:: j ::0:: m, i.e. they come from two different molecules, then let

us label such a face as an interface-face. Interface-faces for two molecules are shown

in Figure 6.1 in bold. Let us define an interface-cell of the power diagram to be a cell

that has at least one interface-face. Thus, the interface-cells would occur one deep

on either side of the inter-molecular interface as shown in Figure 6.1. Let us define

interface-atoms to be those atoms whose cells are interface-cells.

We note that the molecular interface between molecules A and B is completely de­

fined by the piecewise planar surface formed by the interface faces. A two-dimensional

version of this problem is shown in Figure 6.1 in which the interface is is represented

as a bold polyline.

This approach is easily extensible to handle cases where more than two molecules

form an interface. We note that every face of the power diagram is defined by exactly

two atoms, regardless of how many molecules participate at the interface. We simply

label a face as an interface-face if the two atoms defining it come from two different

molecules. Interface-cells and interface-atoms are analogously determined.

We next define the interface surfaces between the two molecules A and B. Let the

complete molecular surfaces defined ·for a probe-radius a for the molecules A and B

be represented by S(A, a) and S(B, a), respectively. The molecular interface surface

61

Interface
Cells

I

Molecule A

Interface Faces

//

·~ "'-----/
Molecule B

Figure 6.1: Interface Cells and Interface Faces

T(A, B, a, /3) for a probe-radius a and an interface-radius f3 for the two molecules

A and B is defined as the subset of S(A, a) and S(B, a) that includes exactly those

points of S(A, a) that are within a distance (3 from the surface of some atom of B

and exactly those points of S(B, a) that are within a distance (3 from the surface of

some atom of A.

To efficiently compute the surfaces at the molecular interface, we start outwards

from the interface atoms. First, the entire layer of interface atoms of a given molecule,

say A, are used to generate the smooth molecular surface for A. This surface is

generated in a manner similar to that described in Section 4.2.

Let us define an atom b of B to be the sphere a(q, rb), where q is the center and

rb is the van der Waal's radius of the atom b. Let us define B(+ (3) to be a collection

62

of spheres a(cb, rb + (3) derived from the atoms of B. The surface patches for each

atom a of A are clipped by the union of those spheres from B(+(3) that overlap it.

If any of the neighbors of a overlap with spheres of B(+(3), we include them in the

list of atoms of A that have to be processed for defining the surface at the interface;

otherwise, we continue on to the next interface atom of A. At the end of this step, all

the interface atoms, that are one layer deep from the interface (as shown in Figure 6.1)

would have been correctly processed and those atoms from the next layer that should

be processed would have been added to the list of atoms of A to be processed. W~

keep iterating in a similar manner with the next layer of interface atoms of A, till

we get to a stage where none of the unprocessed atoms of A intersect the union of

B(+(3). In this manner, we construct the interface surfaces for all the molecules at

the interface.

Since construction of a three-dimensional power diagram could get expensive, we

again adopt a feasible-cell approach that approximates the power diagram well enough

for our purposes and is linear in the total number of atoms. This has been described

in Section 4.2.

For results of our implementation, refer to Figure 1.3 where we have shown inter­

face surfaces for various values of n and (3 for the four domains of transthyretin.
'

6.3 Goodness-of-fit for Molecular Interfaces

This section outlines a possible criterion for measuring the geometric goodness-of-fit

between two molecules or between two sub-units of the same molecule. The motiva­

tion behind this is to quantify the surface complementarity between two molecules.

This could be used in applications like docking to measure how well two given

molecules fit.

We note that for a good fit, the two molecules should be close to each other.

Volume between the two molecules provides one goodness-of-fit measure albeit a poor

one, since it does not take into account the surface area of the interface. Similarly,

the area of the interface surface, gives another criterion for measuring the surface

63

' complementarity, but it fails to give a sense of intervening volume between the two

molecules. However, if we blend these two measures, we can quantify the surface

complementarity in a better manner.

Molecule A Molecule 8

Figure 6.2: Computing Goodness-of-Fit

One such useful measure could be the average intervening volume per unit area

of interface-faces.

Let the set of all interface-faces be given by IF, and the set of all interface-atoms

be given by fA· Consider an interface-face fi E IF as shown in Figure 6.2. Let the

atom on the side of molecule A defining this face be a;. In general, the face h would

be a convex polygon. Consider the pyramid formed by connecting the vertices of h
to the center of atom a;. Let the volume in this pyramid lying outside the atom a;

be V;j, as shown in Figure 6.2. Similarly, let the volume that lies outside the atom

bk but within the pyramid defined by fi and the center of atom bk be Vkj· Let us

attribute to face fJ a volume Vj = Vij + Vkj· Let the area of the interface-face fJ be

Aj. Then one could measure the fit between two molecules as:

(VI.l)

In the expression for F we have raised the volume and area terms to powers of 2

64

and 3, respectively, to make F a scale-invariant dimensionless quantity.

The smaller F, the better the fit and vice-versa.

An additional issue that remains to be addressed, before the above measure can

be used, is to have a good definition of the region of interface. For this, we need to

find a criterion to define a suitable subset of the interface-faces as belonging to the

region of interface. We note that such a criterion cannot be simply based on local

properties such as distances of the interface-faces from their defining atoms. This

criterion has to be based on a global property so that in Figure 6.3, the interface

between the molecules A and B is quantitatively evaluated to be a better fit than the

interface between the molecules C and D.

Region of Interface

(a) (b)

Figure 6.3: Defining the Region of Interface

We propose that the region of interface be determined by rolling an exterior sphere

of an appropriate radius (depending upon the properties of the interface being stud­

ied) over the interface.

In Figure 6.3, the interface-faces as defined above are shown by the curve between

65

two pairs of molecules (a) A and B, and (b) C and D. For both (a) and (b) we would

like to specify the region of interface as the subset of the interface-faces. By rolling

an exterior sphere as shown in Figure 6.3 we can now define the region of interface,

represented as a bold polyline in that figure for a two-dimensional version of the

problem. With this definition of the region of interface, if the above goodness-of-fit

measure is evaluated over both the cases (a) and (b), it would turn out to be better

for (a) than for (b).

Figure 6.4: Redefining Region of Interface for Molecules C and D

For certain cases, biochemists expect the interface to be subdivided into several

components. Our method of rolling an exterior sphere extends gracefully to allow the

biochemist to incorporate his or her knowledge in reasonably defining the region of

interface. Thus, for the interface of molecules C and D, the biochemist can choose a

smaller radius of the exterior sphere, if that is more appropriate, to define a smaller,

two component region of interface that yields a better goodness-of-fit between the

molecules C and D. This is shown in Figure 6.4.

In general, we expect the biochemists to arrive at a reasonable value for the

radius of the exterior sphere, for defining the region of interface between a given

66

set of molecules, through their knowledge of the molecular interface characteristics

and by visualizing the interface using the molecular interface surfaces defined in this

chapter.

67

Chapter VII

Level-of-Detail Generation for

Polygonal Models

7.1 Motivation

Advantages of using simplified models of an object for efficient scene rendering

have been well-documented in the literature- [Clark 76], [Cosman & Schumacker 81],

[Crow 82], and [Funkhouser & Sequin 93]. The basic idea is to use simplified models

for objects that are perceptually less important and detailed models for objects that

are more important. Perceptual importance is in general difficult to define precisely.

However, heuristics such as the percentage of screen area covered, distance from the

viewer, distance from the center of the screen, etc.· have been found to work well. A

prerequisite to this approach for rendering complex datasets is a method to simplify

object models. Manual simplification of models is possible and has been done in

the past [Cosman & Schumacker 81]. However, such simplification is time-consuming

and may not even be feasible for large datasets whose complexity is in the order of

millions of polygons.

In this chapter, we present an algorithm for computing various levels of detail of

a given polygonal model. Different levels of detail representations of an object can

be used in several ways in computer graphics. Some of these are:

• Use in a level-of-detail based rendering algorithm for providing desired frame

update rates.

• Using low-detail approximations of objects for illumination algorithms, espe­

cially radiosity.

• Simplifying traditionally over-sampled models such as those generated from

volume datasets, laser scanners, and satellites. Storing them in their original

form as opposed to storing their approximations, amounts to wasting memory

for storage as well as CPU cycles during processing, with disproportionately

few benefits.

In this chapter we discuss an approach for generating lower-complexity approxima­

tions to a given polygonal representation of an object that are guaranteed to deviate

from the original by no more than a user-specifiable amount. Such an approach

has several benefits in computer graphics. First, we can very precisely quantify the

amount of approximation that is tolerable under given circumstances. For instance,

one possibility could be to define a tolerable approximation for rendering an object

as, say, 2 screen pixels. Using this information in conjunction with the distance of

the object from the screen, we can estimate the maximum deviation permissible from

the surface of the object. This can then be used to find which precomputed level of

detail of that object is most suitable. Second, this approach allows us a fine con­

trol over which regions of an object we should approximate more and which ones

less. This could be used in selectively preserving those features of an object that are

perceptually important.

In Section 7.2 we shall review some of the previous work done in the area of

approximation of polygonal models. Then in Section 7.3 we shall formally state

our problem and list assumptions for our algorithm. Our basic approach is to first

generate two offset surfaces to the input model, one on the outside and the other

on the inside of the input object. The definition and generation of offset surfaces

is presented in Section 7 .4. Then we generate all candidate triangles that lie within

these two offset surfaces and have their vertices selected from the set of vertices of

69

the input model. We then associate the vertices and triangles of the input model

with the candidate triangles. Methods for these steps are describedin Section 7.5.

Our final step is a greedy approach for selecting the approximation triangles from

the candidate triangles. Why this approach works and how this can be used to get

a quantitative measure of the quality of approximation is described in Section 7.6.

In Section 7. 7 we discuss various features of this approach. Finally in Section 7.9 we

present our results

7.2 Previous Work

We have seen in Chapter III some of the previous work that has been done in approx­

imation of two-dimensional piecewise linear curves. In this section we shall consider

the work done in approximation of three-dimensional objects.

Let us define a polygonal object to be an object with planar faces. This is a com­

puter graphics terminology. In computational geometry polygonal objects are referred

to as piecewise linear objects. We shall be using these two terms interchangeably.

Let us next define the term £-approximation. Given two piecewise linear objects

P and Q, we say that P and Q are €-approximations of each other iff every point on

P is within a distance f of some point of Q and every point on Q is within a distance

€ of some point of P. This is also called the Hausdorff distance, H(P, Q)::; €.

Approximation algorithms for three-dimensional polygonal models can be classi­

fied into two broad categories:

• Min-# Approximations: For this version of the approximation problem,

given some error bound f, the objective is to minimize the number of vertices

such that no point of the approximation A is farther than f distance away from

the input model I.

• Min-f Approximations: Here we are given the number of vertices of the

approximation A and the objective is to minimize the error, or the difference,

between A and I.

70

In computer graphics, work in the area of min-# approximations has been done by

[Schmitt et a/86] and [DeHaemer, Jr. & Zyda 91] where they adaptively subdivide a

series of bicubic patches and polygons over a surface until they fit the data within

the tolerance levels.

[Turk 92, Schroeder et a/92, Rinker & Hansen 93] are a good representative col­

lection in the second category. Turk first distributes a given number of vertices over

the surface depending on the curvature and then re-triangulates them to obtain the

final mesh. Schroeder et a!., and Rinker and Hansen, operate on a set of local rules

- such as deleting edges or vertices from almost coplanar adjacent faces, followed

by local re-triangulation. These rules are applied iteratively till they are no longer

applicable. A somewhat different local approach is taken in [Rossignac & Borre! 92]

where vertices that are close to each other are clustered and a new vertex generated

to represent them. The mesh is suitably updated to reflect this.

Hoppe et a!. proceed by iteratively optimizing an energy function over a mesh

to minimize both the distance of the approximating mesh from the original, as well

as the number of approximating vertices [Hoppe et a/93]. An interesting and ele­

gant solution to the problem of polygonal simplification by using wavelets has been

presented in [DeRose et a/93].

In computational geometry literature it has been shown that computing the

minimal-facet t-approximation is NP-hard for convex polytopes [Das & Joseph 90]

as well as polyhedral terrains [Agarwal & Suri 94]. Thus, algorithms to these prob­

lems have evolved around finding polynomial-time approximations that are close to

the optimal.

Let ko be the size of a min-# approximation. [Mitchell & Suri 92] present an al­

gorithm for computing an E-approximation of size 0(ko log n) for convex polytopes.

This has recently been improved in [Clarkson 93] where Clarkson proposes a ran­

domized algorithm for computing an approximation of size 0(ko log ko) in expected

time O(k0 n1+'), where fJ can be an arbitrarily small positive number. Working with

polyhedral terrains, [Agarwal & Suri 94] present a polynomial-time algorithm that

computes an t-approximation of size O(ko log ko) to a polyhedral terrain. Similar

71

results have been obtained by Mitchell [Mitchell 93].

7.3 Problem Definition

In this section, we shall first identify the desirable features of an approximation

scheme. Then we shall define our approximation problem. Finally, we shall state

our assumptions for the rest of this paper. We will be assuming that I is a three­

dimensional compact and orientable object whose polygonal representation P(I) has

been given to us. Our objective is to compute a piecewise linear approximation A to

P(I). Henceforth we will be referring to P(I) as simply P.

7.3.1 Desiderata of a Good Approximation Scheme

Let us consider the desiderata for any "good" approximation scheme :F that maps an

input object P to its approximation A, where :F is denoted as :F: P -+ A. It seems

reasonable to expect the following of :F from a mathematical and aesthetical point of

v1ew:

• :F should be invariant under translation and rotation.

• :F should ensure that the volume of the difference between A and P is small

and bounded.

• :F should be genus-preserving.

• :F should be symmetry-preserving.

• :F should allow adaptive approximation of different parts of an object to different

user-specifiable degrees.

• :F should be amenable to a parallel implementation.

In most computer graphics models, there is a lot of useful information stored at

the vertices such as color, normals, texture coordinates, etc. It would therefore be

desirable if in addition to the above, we also have:

72

Vertices(A) ~Vertices (P).

7.3.2 Problem Statement

Keeping in mind the desiderata outlined in the previous subsection, we define our

problem as follows:

Given a polygonal representation P of an object I and an approximation parameter

t, generate a genus-preserving E-approximation A with minimal number of polygons

such that the vertices of A are a subset of vertices of P.

We have already seen in Section 7.2 that it is NP-hard to find a minimal €­

approximation for even convex objects or polyhedral terrains. Thus, our objective

will be to compute the €-approximation A that has a smaller number of polygons than

P and whose number of polygons can be related to the smallest possible number of

polygons in any €-approximation of P.

7.3.3 Assumptions on Input

Without loss of generality, we shall assume that all polygons in P are triangles and

that Pis a well-behaved polygonal model, i.e. every edge has two adjacent triangles,

no two triangles interpenetrate, there are no unintentional "cracks" in the model, no

T -junctions, etc.

We will be further assuming that the vertices of P have normals that faithfully rep­

resent the normals of the object being modeled. By this we mean that it should not be

possible for an observer to distinguish (to a reasonable degree) between the polygonal

representation of an object and the object itself, by just examining those properties

that depend on the object normals (for instance shading). Thus, if the object is a

sphere and its polygonal representation is an octahedron, for a faithful representation

of the former, the latter should have unique normals at each vertex and edge that are

equal to the normal of the sphere at those points. With this representation, shading

models such as those of Gouraud or Phong will give an approximately sphere-like

shading to the octahedral approximation. In general, polygonal approximations to

73

curved objects have unique vertex and edge normals to avoid the discontinuities in

the normal-based properties of the object.

However, if the object being modeled has sharp edges, such as an octahedron, we

would like to retain the discontinuity in the normals across the faces. In such cases, a

faithful polygonal representation requires that there be multiple normals associated

with each vertex and edge - one associated with every adjacent face. An arbitrary

object could have both kinds of vertices, with or without unique normals. We will

first present our algorithm with the assumption that the vertex normals are unique

(i.e. there are no normal discontinuities, or sharp edges, in the model), and then

show that with a very simple and straightforward modification, we can handle the

case where normal discontinuities are allowed. We shall further assume, as is done

in most computer graphics, that bilinear interpolation of the vertex normals in the

polygonal representation of an object is sufficient to reasonably duplicate the normal­

based properties of the object.

7.4 Generation of Offset Surfaces

Let the x, y, z coordinates of a three-dimensional surface parametrized by s and

t be given as: x = ft(s, t), y = f 2(s, t), and z = !J(s, t). Using vector

notation, we can say that the three-dimensional parametric surface f is given

by: f(s,t) = (!1(s,t),fz(s,t),!J(s,t)). Let the unit normal to f be: n(s,t) =
(n 1 (s,t),n 2(s,t),n3(s,t)). Then, the £-offset for f is defined as

f'(s, t) = (!Hs, t), fHs, t),j~(s, t))

where,

f;'(s, t) = j;(s, t) + m;(s, t).

For our purposes, let us simply define an offset surface P(+<'")(respectively P(-<'"))

for an object I to be a surface that lies within a distance of E from every point p on

I in the same (respectively opposite) direction as the normal to I at p.

74

Since we would be generating all triangles that lie within these two offset surfaces,

in the interests of preserving the genus of P, we desire that these offset surfaces not

intersect each other or themselves.

To meet this criterion we might have to reduce our level of approximation at cer­

tain places. In other words, to guarantee no intersections amongst the offset surfaces,

we will have to be content at certain places with the distance between P and an offset

surface being smaller than c.

Next, we introduce the notions of edge halfspaces and the fundamental prism.

Then using these concepts, we will discuss a method to generate a particular kind of

non-intersecting offset surfaces that lie at an offset of no more than c from P.

7.4.1 Edge Halfspaces

In Section 7.3.3 we had made the assumption that the normals to the vertices in

P faithfully represent the object I and that bilinear interpolation of the normals is

sufficient across any triangle of P for computing the normal-based properties.

If for every edge e = (v1, v2), we have three constraints - coordinates of the

vertices v1 and v2 and the same normal to I at both the vertices v1 and v2 , we

can construct a plane 1r e that passes through the edge e and has a normal that is

perpendicular to that of v1 and v2. Thus Vt, v2 and their normals all lie along 1r e·

Such a plane defines two halfspaces for edge e, say 1r; and 1r;. This is shown in

Figure 7.l(a).

However, in general the normals n1 and n 2 to the vertices v1 and v2 defining an

edge e need not be identical. How can we reasonably define the two halfspaces for an

edge in such a case? One choice could be to use a bilinear patch that passes through

v1 and v2 and has a tangent n 1 at v1 and n 2 at v2 • Let us call such a bilinear patch

for e as {3 •. Let the two halfspaces for the edge e in this case be 13; and /3;. This is

shown in Figure 7.1 (b). We shall refer to a halfspace for an edge as an edge halfspace.

75

(a) (b)

Figure 7.1: Edge Halfspaces

7.4.2 The Fundamental Prism

Let us refer to the triangles of the given polygonal representation P as the fundamen­

tal triangles. Consider one such triangle. Let its vertices be vl> v2 , and v3 • Let the

coordinates and the normal of each vertex v be represented as c(v) and n(v), respec­

tively. We next define the coordinates and the normal of a (+t)-offset vertex vt for a

vertex v; as: c(vt) = c(v;)+m(v;), and n(vt) = n(v;). Essentially, we translate each

vertex in the direction of its normal by an amount E to obtain its (+t)-offset vertex.

The (-E)-offset vertex can be similarly defined in the opposite direction. These offset

vertices for a fundamental triangle are shown in Figure 7.2.

Now consider the closed object defined by vt and v;, i = 1, 2, 3. It is defined by

two triangles, at the top and bottom, and three edge halfspaces. This object contains

the fundamental triangle (shown shaded in Figure 7.2) and we will henceforth refer

to it as the fundamental prism.

7.4.3 Non-intersecting Offset Computation

If we offset each vertex v; by the same amount E, to get the offset vertices vt and v;,

the reason why we can get the two offset surfaces P(+t) and P(-E) to respectively

self-intersect is because one or more offset vertices are closer to some non-adjacent

fundamental triangle. In other words, if we define a Voronoi diagram over the funda-

76

+

Figure 7.2: The Fundamental Prism

mental triangles of the model, the condition for the offset surfaces to intersect is that

there be at least one offset vertex lying in the Voronoi region of some non-adjacent

fundamental triangle. This is shown in Figure 7.3 by means of a two-dimensional

example. In the figure, the offset vertices b' and c' are in the Voronoi regions of edges

other than their own, causing self-intersection of the offset surface.

a

Voronoi
Edge

a' I
d'

I
'<

Original
I

Surface d

Figure 7.3: Offset Surfaces

Once we make this observation, the solution to avoid self-intersections becomes

quite simple - just do not allow any offset-vertex to go beyond the Voronoi regions

of its adjacent fundamental triangles. In other words, determine the positive and

negative £ for each vertex v; such that its offset vertices vt and v;- determined with

77

this new c do not lie in the Voronoi regions of the non-adjacent fundamental triangles.

While this works in theory, efficient computation of the three-dimensional Voronoi

diagrams of the fundamental triangles is difficult. To avoid this, we adopt a conser­

vative approach for recomputing the c at each vertex. This approach underestimates

the values for the positive and negative c. In other words, it guarantees that the offset

surfaces do not intersect, but it does not guarantee that the c at each vertex is the

largest permissible c. We next discuss this approach for the case of computing the

positive c for each vertex. Computation of negative c follows similarly.

Consider a fundamental triangle t. We define a prism ip fort, which is conceptually

the same as its fundamental prism, but uses a value of 2E instead of c for defining

the offset vertices. Next consider all triangles Ll; that do not share a vertex with t.

If Ll; intersects ip above t (the directions above and below t are determined by the

direction of the normal to t, above is in the same direction as the normal to t), we

find the point on Ll; that lies within tP and is closest to t. Since we are dealing with

convex objects, this point would be either a vertex of Ll;, or the intersection point

of one of its edges with the three sides of the prism ip. Once we find the point of

closest approach, we compute the distance 6; of this point from t. This is shown in

Figure 7.4.

Figure 7.4: Computation of 6;

Once we have done this for all Ll; we compute the new value of the positive c for

78

the triangle t as Enew = ~min; 8;. If the vertices for this triangle t have this value of

positive E, their positive offset surface will not self-intersect. Once the Enew(t) values

for all the triangles t have been computed, the Enew (v) for each vertex v is set to be

the minimum of the Enew(t) values for all its adjacent triangles.

The offset surfaces are then computed with these modified values of E at each

vertex v. Connectivity of the offset surfaces mirrors that of the given polygonal

model P. We use an octree in our implementation to speed up the identification of

triangles t.; that intersect a given prism.

7.5 Generation of Candidate Triangles

Generation of candidate triangles for the approximation involves computing visibili­

ties between vertices and edges, with occlusion being provided by the offset surfaces.

Vertex-Vertex Visibility: We define two vertices vi and v2 to be visible to each

other if and only if an observer at vi (or v2) can see the vertex v2 (or v!), with the

two offset surfaces providing occlusion. This condition for visibility is equivalent to

the condition that the line segment joining VI and v2 (i.e. the convex combination of

vi and v2) does not intersect P(+E) or P(-E).

Vertex-Edge Visibility: We define an edge e to be visible to a vertex v if and

only if an observer at v can see the entire edge e, with the two offset surfaces providing

occlusion. This condition for visibility is equivalent to the condition that the triangle

formed by v and e (i.e. the convex combination of v and e) does not intersect P(+E)

or P(-E).

A valid candidate triangle is one in which every edge is visible to the vertex

opposite it. Keeping this in mind, we first generate all tuples (vb v 2) where vertices

VI and v 2 are visible to each other. Let any such tuple define an edge e and let the

set of all such edges be s •. Clearly, the set of all candidate triangles will have edges

drawn from S •. To generate the exact set of candidate triangles, we can intersect all

triangles with edges in S. with the two offset surfaces and discard those that intersect

either of the two offset surfaces.

79

Having generated the candidate triangles, the next step is finding which of the

vertices of P are covered by each candidate triangle. The general idea is that we

would like to give a greater preference to those candidate triangles that cover more

vertices of P over those that cover fewer vertices. The implementation of this step is

quite simple. For each vertex v;, consider the line segment formed by its offset vertices

(vt, vi). We say that a vertex v; is covered by a candidate triangle if and only if the

line segment (vt,vi) intersects the candidate triangle. Using this approach, we find

the vertices of P that are covered by a given candidate triangle and the candidate

triangles that cover a given vertex of P.

7.6 Composing the Final Solution

At this stage we have available to us all candidate triangles that lie between the two

non-self-intersecting offset surfaces and information about which candidate triangle

covers which vertex. Our goal is to find a subset of those candidate triangles that (a)

cover all the vertices of P, (b) do not mutually intersect, and (c) do not leave any

holes in the mesh where there were none before.

Before we go any further, let us introduce the problems of set cover and set

partition.

7.6.1 Set Cover and Set Partition

Consider a set of integers P = {1, 2, ... , n} and another set T = { t 1 , t 2 , ••• , m}, where

t; <;:; P for j E J = {1, 2, ... , m}. A subset C <;:; J defines a cover of P if U;Ec t; = P.

Intuitively, a cover of P is a collection of those sets of T that collectively contain all

the elements of P. Let a cost c; > 0 be associated with each element t; ofT. The

total cost of a cover C is defined as LjEC Cj. The set covering problem is to find a

cover of the minimum cost.

If we impose the restriction that for all distinct elements i, j E C we must have that

t;nt; =¢>,we then say that C defines a partition of P. In other words, a partition of

P is a collection of those sets of T that are mutually disjoint and collectively contain

80

all the elements of P. Finding a partition of minimum cost is referred to as the set

partition problem.

If we let the indices of the vertices of P define the set P, and the candidate

triangles define the set T, with i E tj if and orily if the candidate triangle tj covers

a vertex v;, we can see that our problem reduces to that of set partitioning with one

additional triangle disjointness constraint. The set partitioning solution guarantees

that there are no common vertices of P in the interior of any pair of triangles of

the final solution. However this does not prevent two triangles from overlapping

each other if the overlapping region does not have any common vertices. Further, if

we define the cost Cj associated with each triangle tj to be its cardinality, i.e. the

number of vertices covered by it, solution of this set partitioning problem will yield

the smallest number of triangles that cover all the vertices of the input model P.

7.6.2 The Greedy Heuristic

The set cover and the set partition problems are both known to be NP-complete

[Garey & Johnson 79]. Therefore any hopes of computing an optimal solution to our

polygonal approximation problem are remote. However, there exist several heuristics

which compute approximate solutions to these problems. These heuristics generate

solutions that have been in general found to be reasonably close to the optimal. A

user could implement any of the heuristics for solving the polygon approximation

problem. We are using the greedy heuristic, because of its simplicity and because it

facilitates an easy analysis of the quality of the solution. We will discuss the issue of

estimating quality in Section 7.6.4.

A greedy heuristic for solving the set cover problem proceeds as follows. We start

with an empty cover and at every step, we add that set which covers the largest

number of thus far uncovered points. In our setting, this translates to selecting the

triangle which covers the largest number of vertices. However, since we have an

additional disjointness constraint to observe, we proceed slightly differently.

At each step, out of all the candidate triangles we pick the triangle that covers the

largest number of vertices of P in its interior. Then we check to see if it overlaps any

81

other triangles of the solution generated thus far. If it does, we discard it, otherwise

it becomes a part of the solution. This is done till all candidate triangles have been

seen.

We next explain the algorithm for detecting whether two triangles overlap. First,

for each triangle we find the fundamental prisms that it intersects. Second, for every

fundamental prism that both triangles intersect we compute the intersection of each

triangle with the fundamental prism and project it on to the fundamental triangle.

Third, we check if the projections of the two triangles on the fundamental trian­

gle overlap. Since the projection of each triangle is convex, we determine whether

two triangles overlap or not by straightforward two-dimensional linear programming.

Figure 7.5 illustrates the overlapping projections on a fundamental triangle.

Figure 7.5: Checking for Overlaps

7.6.3 Modification to the Greedy Heuristic

The greedy heuristic as we have presented above has a few drawbacks. First, its

implementation suffers from serious numerical degeneracy problems. One of the most

common problems with this is that cracks are left in the final mesh due to inconsisten­

cies in determining whether the long and thin, sliver, triangles overlap the partially

constructed approximation mesh .. To overcome this we follow the following method.

We maintain a complete mesh at every iteration of the algorithm. Let the mesh

82

at the i'h iteration of be Mi; M 0 is the input mesh. Let the triangle that covers the

largest number of vertices of Mi-l be tj. Let the set of all the triangles of Mi-l that

are covered by tj be denoted by Tj. We find the hole in Mi-l that is formed if we

delete all the triangles in Tj. Our objective is to determine if we can triangulate this

hole such that one of the triangles is tj. If such a triangulation is possible, let the

set of triangles in this triangulation be represented by T'i· By construction, tj E T'i·

We delete Tj from Mi-l and add the new triangles T'i to get Mi. In other words,

If we cannot find such a triangulation T'j, we try the same with the next triangle

that covers the maximum number of triangles of Mi-l·

The advantage of this approach over the basic greedy heuristic is that we have a

completely valid mesh at every stage of our algorithm and so our solution does not

have the visible artifacts arising from numerical precision problems.

7.6.4 Estimating Solution Quality

It has been shown in the literature [Lovasz 75] and [Chvatal 79] that the greedy

heuristic yields a solution which is guaranteed to be within a factor of (1 + ln d) of the

optimal, where dis the maximum number of elements in any set tj, i.e. the maximum

number of vertices covered by a candidate triangle.

We can prove that if in the greedy heuristic at each stage we select the set that

does not necessarily have the largest cost, but has a cost within a factor a of the

largest cost, then the worst case ratio guarantee of the approximate solution to that

of the optimal becomes a(1 + ln d). This suggests the following scheme for estimating

the quality of the solution. At each step, we compute the ratio of the number of

uncovered points of the largest overlapping triangle with the number of points in the

largest non-overlapping triangle. The maximum of all these ratios (if it is greater

than 1), can be used as a in the above expression. Of course, if a > d / (1 + ln d),

the whole exercise is debatable, since the maximum compression we can ever hope to

achieve is no more than d.

83

7. 7 Algorithm Features

7.7.1 Desiderata of a Good Approximation Scheme

Let us see how well our algorithm measures up to the desiderata of a good approxi­

mation scheme that we had stated in Section 7.3.1:

• Invariance under translation and rotation: The approximation produced

by our algorithm is invariant under translation and rotation,· i.e. it does not

change if the input object is translated or rotated.

• Volume of difference between A and P : This depends upon the user­

specifiable parameter € and can therefore be made arbitrarily small.

• Genus-preservation: The non-intersecting offset surface property guarantees

genus preservation.

• Symmetry-preservation: Our algorithm does not guarantee preservation of

symmetry. However, since it is a greedy algorithm, it is likely to select trian­

gles with similar areas (and shapes, if that is incorporated into the selection

criterion at each iteration). Thus, it is likely although not guaranteed, that the

approximation produced by our algorithm will preserve the symmetry of the

input object.

• Adaptive Approximation: This is possible by specifying £ as a function of

location on the object. See Section 7.7.4.

• Parallelizability: Our algorithm is based on a greedy heuristic and is therefore

sequential. However, as long as the regions covered by the selected candidate

triangles do not overlap, we can process them in parallel. This is an important

and desirable property, especially for large polygonal objects that have curved

geometries.

• Vertex Subset Criterion: This is accomplished by definition. Only those

candidate triangles whose vertices belong to the existing mesh are considered.

84

7. 7.2 Interpolation

Smooth interpolation between various levels of detail is useful to avoid any jerkiness

of abrupt changes during switching from one level of detail to the other. Our ap­

proach lends itself naturally to this interpolation since we always generate a subset

of the vertices of the original model. Further, during the course of the algorithm,

we associate each vertex with the triangle that it will be replaced by. Therefore, for

incorporating interpolation with this approach, all that we need to do is to move

each vertex along its normal direction (or reverse normal direction), till it reaches the

triangle that it is to be replaced with.

7. 7.3 Preserving Sharp Edges

One of the important properties in any approximation scheme is the way it preserves

any normal discontinuities or sharp edges present in the input model. We next outline

how our method easily incorporates this feature.

Consider any edge e that a user wishes to preserve in the output approximation.

This edge will be adjacent to two fundamental prisms corresponding to its two adja­

cent fundamental triangles. This edge can disappear from the output if and only if

there is a candidate triangle that intersects the bilinear patch {3. or the plane 1r e that

defines the two edge halfspaces for this edge. Therefore a simple solution to retain

this edge is to make {3. (or 'Ire) "opaque" in the visibility computations. This will

ensure that no candidate triangle will cross it and the edge will be retained in the

output.

7.7.4 Adaptive Approximation

For certain classes of objects it is desirable to perform an adaptive approximation.

For instance, consider large terrain datasets, models of spaceships, or submarines.

One would like to have a higher detail near the observer and a lower detail further

away. A possible solution could be to subdivide the model into various spatial cells

and use a different €-approximation for each cell. However, problems would arise at

85

the boundaries of such cells where the €-approximation for one cell, say at a value t 1

need not necessarily be continuous with the €-approximation for the neighboring cell,

say at a different value t 2•

Since all candidate triangles generated are constrained to lie within the two offset

surfaces, manipulation of these offset surfaces provides one way to smoothly control

the level of approximation. Thus, one could specify the t at a given vertex to be a

function of its distance from the observer - the larger the distance, the greater is

the c.

As another possibility, consider the case where certain features of a model are very

important and are not to be approximated beyond a certain level. Such features might

have human-perception as a basis for their definition or they might have mathematical

descriptions, such as regions of high curvature. In either case, a user can vary the t

associated with a region to increase or decrease the level of approximation.

7.8 Degeneracies

The greedy approach of selecting the triangles from all possible triangles that approx­

imate a surface leads to the following kinds of degeneracy problems:

• Extremely thin triangles, also known as slivers. Such triangles are characterized

by having one or two very small angles. A better measure for detecting such

triangles is to use the ratio of the radius of their circumcircle to the radius

of their incircle. The bigger is this ratio for a triangle, the more slivery it

is. Slivers are a source of several problems later in the computer graphics

pipeline. First, any ray-casting-based processing (such as ray-tracing or ray­

casting-based radiosity) is very likely to miss slivers, leading to cracks in the

processed model. Second, slivers tend to produce strong aliasing effects, which

are very distracting.

• Floating-point problems due to various geometric degeneracies. The geometric

degeneracies could be either of the type where four or more points are coplanar,

86

or they could be due to limited-accuracy intersection computations.

We shall next consider some heuristics to handle these degeneracies.

7.8.1 Slivers

Almost all the slivers that have been observed arising from the surface approximation

algorithm are of the form shown in Figure 7.6, where a sliver triangle (abd) is adjacent

to a better shaped triangle (bed).

b

-- c
a

d

Figure 7.6: Getting Rid of Slivers

One way to handle this kind of degeneracy is to simply flip the diagonal of the

quadrilateral abed from bd to ac, so that we get the two triangles abc and acd. Al­

though, in the worst case this can still yield slivers, in practice this is a good heuristic

for getting rid of slivers. This step of edge-flips can be thought of as a post-processing

step to the actual approximation algorithm [Turk 94].

87

7.8.2 Floating-point Problems

These are the problems that arise from limited-precision floating-point arithmetic.

Although one could in principle switch all computation to exact arithmetic and avoid

such problems, the resulting much higher execution times might be too big a penalty

to pay. In practice, we are using the following heuristics to help us:

• Check for common vertex, edge, and triangle identification labels as far as

possible. Thus for instance consider the intersection of two candidate triangles

abc and ade as shown in Figure 7. 7.

e

/

d

b

Figure 7. 7: An Intersection Degeneracy

It is better to check the labels of the vertices to determine whether the edge ad

of the triangle ade intersects the edges ab and ac of the triangle abc, instead of

actually performing the intersection using floating-point arithmetic. Floating­

point arithmetic might yield the result that the edge ad intersects either only

ab, or only ac, or neither. Similar ideas are used for detecting shared edges and

avoiding intersection computations with them.

• Using fuzzy coplanarity tests. The previous scheme of checking for common

vertices and edges, although preferable, doesn't always work. For such cases,

88

explicit checking for collinearity or coplanarity needs to be done. This checking

is done with a tolerance. This amounts to checking for nearly collinear or nearly

coplanar degeneracies instead of the exact ones.

7.9 Results

We have implemented our algorithm and tried it out on more than a thousand polyg­

onal objects. These polygonal objects are from the Submarine Auxiliary Machine

Room (AMR) dataset given to us by the Electric Boat Division of the General Dy-

nam1cs.

On an average we were able to achieve simplifications of the order of roughly

70% with minimal perceptual differences. Higher levels of simplifications should be

possible with a less conservative offset-surface computation program. Our present

implementation is somewhat overcautious in preventing offset-surface intersections.

We simplified a total of 1090 objects of the AMR dataset for testing and validating

our algorithm. These objects have been cumulatively reduced as follows:

Level-of-Detail Dataset Complexity %Reduction

Original dataset 350,023 triangles 0

First level 206,859 triangles 40.90

Second level 141,983 triangles 59.44

Third level 104,87 4 triangles 70.04

Table 7.1: Polygonal Simplification Results

For an example object, see the four levels of details for a torpedo roller in Fig­

ure 1.5.

The value of E that was chosen to approximate the polygonal objects varied from

one object to the other, as it should. For this set of results, E values were chosen

manually. However, in future, it might be a reasonable idea to automate the process

by assigning the value of E for approximating an object as some fraction, sa;y 0.5%,

89

of its extents.

For the above results, the ith level of detail was obtained by simplifying the i- 1 th

level of detail. There are two advantages to this scheme:

(a) It allows one to proceed incrementally, taking advantage of the work done in

previous simplifications. As a result the time taken to simplify reduces with every

new level-of-detail.

(b) It builds a hierarchy of detail in which the vertices at the ith level of detail are a

subset of the vertices at the i - 1 th level of detail. This hierarchy allows these levels

of details to be useful in not only efficient rendering but also in a wide variety of

accuracy-guided simulation of physical processes, such as radiosity.

90

Chapter VIII

Future Work

The scope for future work from this dissertation can be categorized into two broad

classes of research topics:

(1) Topics that are extensions of the areas directly addressed by this dissertation.

(2) Topics that are related but not direct extensions of this dissertation. These are

research areas which have assumed a greater importance to me as a direct result of

this dissertation.

In this chapter I shall outline these possible research topics.

8.1 Real-Time Area and Volume Computation

We have seen in Chapter IV how one can compute the molecular surfaces in real time.

The computation of such surfaces is just the first stage towards the incorporation of

the effects of solvent in the potential energy computations of the molecule. Accurate

and fast computation of the molecular surface area and the molecular volumes should

be attempted next.

To efficiently compute the surface areas, one would have to start working from

the higher-level spherical and toroidal patches (instead of triangles that are currently

being generated). These patches are currently generated implicitly and then triangu­

lated for display.

A good starting place for efficiently computing the molecular volumes would

be [Edelsbrunner 93], where Edelsbrunner has described how to perform volume com­

putations for a union of spheres. Our problem is somewhat different and thus remains

interesting enough.

Another approach to computing the areas ahd volumes could be to try a Monte­

Carlo-based approximation to the actual areas and volumes. The basic idea here

being that we can test a small number of points to determine whether they are

inside the molecular surface, on the surface, or outside it and based on it we can

estimate the value of the area and volume of the molecule as well as the bound on

the error. Depending on how much error one is willing to tolerate, this approach

might be faster than the exact analytical approach to compute the molecular areas

and volumes. A good starting place for this would be [Spirakis 84, Spirakis 83] where

Spirakis examines the probablistic approaches to area and volume computations of a

union of circles and spheres.

8.2 Determination of Molecular Interface Sur­

faces, Areas, and Volumes

We have just opened up this new area of research and it certainly deserves much

more attention than was possible to give in this dissertation. All of the approaches

that have been outlined for computing the general areas and volumes of molecules in

Section 8.1 remain equally valid here.

The pioneering idea of boolean textures [Lorensen 93] can be also used to efficiently

visualize these molecular interfaces. Every vertex of the molecular surface of a given

molecule A could be given a texture value based on its distance from the molecular

surface of another molecule B. To visualize the molecular surface of A that is within

a distance (J of B, one could simply set the texture for A to be transparent above a

value of (J.

In some sense, the problem of the determination of interfaces between molecules

is the inverse of the registration problem in medical imaging. It remains to be seen if

any transfer of technology from that area can be brought to bear upon this problem.

92

8.3 Use of Temporal Information

At present we are not using any incremental temporal information in constructing

the molecular surfaces. Thus, if the atoms move even slightly from their positions,

the whole surface has to be recomputed from the beginning. Assuming the atoms

of the molecule move along continuous trajectories, it should be possible to com­

pute such molecular surfaces (and indeed a-hulls and a-shapes) incrementally and

efficiently by using the information from previous time steps. Some work has been

done in the incremental computation of Voronoi diagrams of moving points in a

plane [Aurenhammer 91], but to the best of my knowledge no work has been done

in three dimensions for spheres of unequal radii. Research into efficient algorithms

that exploit the temporal coherence would also benefit interactive docking applica­

tions. To get an idea of how molecular surfaces behave with changing atom positions,

see [Varshney et a! 94b].

8.4 Molecular Surface Cusps

Sometimes the molecular surface self-intersects due to overlap from probes that come

from opposite sides of a surface. Traditionally, such overlapping surfaces are clipped

away to form cusps in the molecular surface. At present, we correctly handle only

those cases where the cusps are either minor or can be easily determined by limited

local checks. A general approach to this problem needs to be developed. This problem

was first addressed in [Connolly 85]. Work on this problem has also been reported by

Sanner [Sanner 92, Sanner 94].

8.5 Polygonal Simplification

We have presented an approach that is global and deterministic. Other approaches to

this problem have been local and deterministic. Scope for further work remains in de­

veloping randomized algorithms for solving this problem, as well as developing hybrid

approaches that fall between completely global and completely local approaches.

93

Our approach to polygonal simplification always preserves the genus of the object.

In some cases, it might be worthwhile to simplify the genus itself and thus generate

non-topology preserving simplifications that still look reasonably good.

8.6 Automatic Cleaning of Polygonal Datasets

Most of the computer graphics pipeline assumes accurate and well-behaved polygo­

nal models, whereas in reality most polygonal models do not satisfy this criterion.

Computer graphics practitioners have been struggling against this wall of difference

between theory and practice. Problems with polygonal datasets lead to robustness

problems in all visibility computations, shading problems in radiosity, and topological­

consistency problems in polygonal simplification algorithms.

The time seems about right for someone to develop a generalized approach to

this problem that deals with degeneracies in large polygonal datasets in a unified

manner, instead of dealing with each case in a special way. After giving some thought

to this problem, I think that it might be fruitful to categorize these degeneracies

based on their dimension and then to develop a general approach that works in the

general d-dimensions. Zero-dimensional degeneracies would then include the problem

of coincident points, one-dimensional degeneracies would cover the coincident edges .

(T-vertices are a special case of these), and two-dimensional degeneracies would cover

the coincident polygons. It might be educational to study how the computational

geometers solved the somewhat similar problems of geometric degeneracies of point

sets for general d-dimensions [Edelsbrunner & Miicke 88, Emiris & Canny 92].

94

Bibliography

[Agarwal & Suri 94] P. Agarwal and S. Suri. Surface approximation and geometric

partitions. In Proceedings Fifth Symposium on Discrete Algorithms, pages

24-33, 1994.

[Aurenhammer 87] F. Aurenhammer. Power diagrams: Properties, algorithms and

applications. SIAM Journal of Computing, 16(1):78-96, February 1987.

[Aurenhammer 88] F. Aurenhammer. Improved algorithms for discs and balls using

power diagrams. J. Algorithms, 9:151-161, 1988.

[Aurenhammer 91] F. Aurenhammer. Voronoi diagrams- a survey of a fundamental

geometric data structure. ACM Computing Surveys, 23(3):345-405, 1991.

[Bergman et al86] L. Bergman, H. Fuchs, E. Grant, and S. Spach. Image render­

ing by adaptive refinement. In Computer Graphics: Proceedings of SIG­

GRAPH'86, volume 20, No. 4, pages 29-37. ACM SIGGRAPH, 1986.

[Chvatal 79] V. Chvatal. A greedy heuristic for the set-covering problem. Math.

Oper. Res., 4:233-235, 1979.

[Clark 76] J. Clark. Hierarchical geometric models for visible surface algorithms.

Communications of the ACM, 19(10):547-554, 1976.

[Clarkson 93] K. 1. Clarkson. Algorithms for polytope covering and approximation.

In Proc. 3rd Workshop Algorithms Data Struct., Lecture Notes in Computer

Science, 1993.

[Connolly 83] M. L. Connolly. Analytical molecular surface calculation. Journal of

Applied Crystallography, 16:548-558, 1983.

[Connolly 85] M. L. Connolly. Molecular surface triangulation. Journal of Applied

Crystallography, 18:499-505, 1985.

[Connolly 93] M. L. Connolly. The molecular surface package. Journal of Molecular

Graphics, 11:139-141, June 1993.

[Conway & Sloane 88] J. H. Conway and N. J. A. Sloane. Sphere Packing, Lattices,

and Groups. Springer-Verlag, New York, NY, 1988.

[Cosman & Schumacker 81] M. Cosman and R. Schumacker. System strategies to

optimize CIG image content. In Proceedings of the Image II Conference,

Scottsdale, Arizona, June 10-12 1981.

[Crow 82] F. C. Crow. A more flexible image generation environment. In Computer

Graphics: Proceedings of SIGGRAPH'82, volume 16, No.3, pages 9-18. ACM

SIGGRAPH, 1982.

[Das & Joseph 90] G. Das and D. Joseph. The complexity of minimum convex nested

polyhedra. In Proc. 2nd Canad. Conf. Comput. Geom., pages 296-301, 1990.

[DeHaemer, Jr. & Zyda 91] M. J. DeHaemer, Jr. and M. J. Zyda. Simplification

of objects rendered by polygonal approximations. Computers & Graphics,

15(2):175-184, 1991.

[Delaunay 34] B. Delaunay. Sur Ia sphere vide. Bull. Acad. Sci. USSR: Class. Sci.

Math. Nat., 7:793-800, 1934.

[DeRose et a/93] T. D. DeRose, M. Lounsbery, and J. Warren. Multiresolution anal­

ysis for surface of arbitrary topological type. Report 93-10-05, Department

of Computer Science, University of Washington, Seattle, WA, 1993.

[Dickerson & Geis 69] R. E. Dickerson and I. Geis. The Structure and Action of

Proteins. Harper & Row, New York, NY, 1969.

96

[Dobkin & Souvaine 87] D. P. Dobkin and D. L. Souvaine. Computational geometry:

a user's guide. In J. T. Schwartz and C.-K. Yap, editors, Advances in Robotics

1: Algorithmic and Geometric Aspects of Robotics, pages 43-93. Lawrence

Erlbaum Associates, Hillsdale, NJ, 1987.

[Edelsbrunner & Miicke 88] H. Edelsbrunner and E. P. Miicke. Simulation of sim­

plicity: a technique to cope with degenerate cases in geometric algorithms.

In Proc. 4th Annu. ACM Sympos. Comput. Geom., pages 11.8-133, 1988.

[Edelsbrunner & Miicke 94] H. Edelsbrunner and E. P. Miicke. Three-dimensional

alpha shapes. ACM Transactions on Graphics, 13(1):43-72, January 1994.

[Edelsbrunner 87] H. Edelsbrunner. Algorithms in Combinatorial Geometry, vol­

ume 10 of EATCS Monographs on Theoretical Computer Science. Springer­

Verlag, Heidelberg, West Germany, 1987.

[Edelsbrunner 92] H. Edelsbrunner. Weighted alpha shapes. Technical Report

UIUCDCS-R-92-1760, Department of Computer Science, University of Illi­

nois at Urbana-Champaign, 1992.

[Edelsbrunner 93] H. Edelsbrunner. The union of balls and its dual shape. In Proc.

9th Annu. ACM Sympos. Comput. Geom., pages 218-231, 1993.

[Edelsbrunner et al83] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On the

shape of a set of points in the plane. IEEE Transactions on Information

Theory, IT-29(4):551-559, July 1983.

[Emiris & Canny 92] I. Emiris and J. Canny. An efficient approach to removing

geometric degeneracies. In Eighth Annual Symposium on Computational Ge­

ometry, pages 74-82, Berlin, Germany, June 1992. ACM Press.

[Fejes T6th 79] G. Fejes T6th. Multiple packing and covering of spheres. Acta Math­

ematica Academiae Scientiarum Hungarica, 34:165-176, 1979.

97

[Fejes T6th 83] G. Fejes T6th. New results in the theory of packing in covering. In

P. M. Gruber and J. M. Wills, editors, Convexity and Its Applications, pages

318-359. Birkhiiuser Verlag, 1983.

[Fuchs et al89] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather, D. Ellsworth,

S. Molnar, G. Turk, B. Tebbs, and L. Israel. Pixel-planes 5: A heterogeneous

multiprocessor graphics system using processor-e~hanced memories. In Com­

puter Graphics: Proceedings of SIGGRAPH'89, volume 23, No. 3, pages 79-

88. ACM SIGGRAPH, July 1989.

[Funkhouser & Sequin 93] T. A. Funkhouser and C. H. Sequin. Adaptive display al­

gorithm for interactive frame rates during visualization of complex virtual

environments. In Computer Graphics (SIGGRAPH '93 Proceedings), vol­

ume 27, pages 247-254, August 1993.

[Garey & Johnson 79] M. R. Garey and D. S. Johnson. Computers and Intractability:

A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, NY,

1979.

[Graham & Yao 90] R. Graham and F. Yao. A whirlwind tour of computational

geometry. Amer. Math. Monthly, 97(8):687-701, 1990.

[Graham 72] R. L. Graham. An efficient algorithm for determining the convex hull

of a finite planar set. Inform. Process. Lett., 1:132-133, 1972.

[Rinker & Hansen 93] P. Rinker and C. Hansen. Geometric optimization. In Gre­

gory M. Nielson and Dan Bergeron, editors, Proceedings Visualization '93,

pages 189-195, October 1993.

[Hoppe et al93] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuet­

zle. Mesh optimization. In James T. Kajiya, editor, Computer Graphics

(SIGGRAPH '93 Proceedings), volume 27, pages 19-26, August 1993.

[Imai & Iri 86] H. Imai and M. Iri. An optimal algorithm for approximating a piece­

wise linear function. Journal of Information Processing, 9(3):159-162, 1986.

98

[Imai & Iri 88] H. Imai and M. Iri. Polygonal approximations of a curve- Formula­

tions and Algorithms. In G. T. Toussaint, editor, Computational Morphology,

pages 71-86. North-Holland, Amsterdam, Netherlands, 1988.

[Kirkpatrick & Seidel 86] D. G. Kirkpatrick and R. Seidel. The ultimate planar con­

vex hull algorithm? SIAM J. Comput., 15:287-299, 1986.

[Lee & Richards 71] B. Lee and F. M. Richards. The interpretation of protein struc­

tures: Estimation of static accessibility. Journal of Molecular Biology, 55:379-

400, 1971.

[Lindsey 86] J. H. Lindsey, II. Sphere-packing in R3 • Mathematika, 33:137-147, 1986.

[Lorensen 93] W. E. Lorensen. Geometric clipping using boolean textures. In G. M.

Nielson and D. Bergeron, editors, IEEE Visualization '93 Proceedings, pages

268-274, October 1993.

[Lovasz 75] L. Lovasz. On the ratio of optimal integral and fractional covers. Discrete

Mathematics, 13:383-390, 1975.

[Melkman & O'Rourke 88] A. Melkman and J. O'Rourke. On polygonal chain ap­

proximation. In G. T. Toussaint, editor, Computational Morphology, pages

87-95. North-Holland, Amsterdam, Netherlands, 1988.

[Mitchell & Suri 92] J. Mitchell and S. Suri. Separation and approximation of poly­

hedral surfaces. In Proceedings of 3rd ACM-SIAM Symposium on Discrete

Algorithms, pages 296-306, 1992.

[Mitchell93] J. S. B. Mitchell, 1993. Approximation Algorithms for Geometric Sep­

aration Problems, Unpublished Manuscript.

[Perrot et a/92] G. Perrot, B. Cheng, K. D. Gibson, J. Vila, K. A. Palmer, A. Nay­

eem, B. Maigret, and H. A. Scheraga. MSEED: A program for the rapid ana­

lytical determination of accessible surface areas and their derivatives. Journal

of Computational Chemistry, 13(1):1-11, 1992.

99

[Preparata & Shamos 85] F. P. Preparata and M. I. Shamos. Computational Geom­

etry: an Introduction. Springer-Verlag, New York, NY, 1985.

[Rankin 55] R. A. Rankin. The closest packing of spherical caps in n dimensions.

Proceedings of the Glasgow Mathematical Association, 2:139-144, 1955.

[Richards 77] F. M. Richards. Areas, volumes, packing and protein structure. Ann.

Rev. Biophys. Bioengg., 6:151-176, 1977.

[Richardson 92] D. C. Richardson, 1992. Private Communication.

[Richardson 94] D. C. Richardson, 1994. Private Communication.

[Rogers 58] C. A. Rogers. The packing of equal spheres. Proceedings of the London

Mathematical Society, 8:609-620, 1958.

[Rogers 64] C. A. Rogers. Packing and Covering. Cambridge University Press, Lon­

don, UK, 1964.

[Rossignac & Borre! 92] J. R. Rossignac and P. Borre!. Multi-resolution 3D approxi­

mations for rendering complex scenes. Technical Report RC 17697 (#77951),

IBM Research Division, T. J. Watson Research Center, Yorktown Heights,

NY 10958, 1992.

[Sanner 92] M. F. Sanner. Modeling and applications of molecular surfaces. PhD

thesis, Universite de Haute-Alsace, France, 1992.

[Sanner 94] M. F. Sanner. Reduced surface, an efficient way to compute solvent

excluded surfaces, 1994. To be published.

[Schmitt et a186] F. J. Schmitt, B. A. Barsky, and W. Du. An adaptive subdivision

method for surface-fitting from sampled data. Computer Graphics {SIC­

GRAPH '86 Proceedings), 20(4):179-188, 1986.

[Schroeder et a192] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decima­

tion of triangle meshes. In Edwin E. Catmull, editor, Computer Graphics

(SIGGRAPH '92 Proceedings), volume 26, pages 65-70, July 1992.

100

[Seidel 81] R. Seidel. A convex hull algorithm optimal for point sets in even dimen­

sions. M.Sc. Thesis and Report 81/14, Dept. Comput. Sci., Univ. British

Columbia, Vancouver, BC, 1981.

[Seidel 86] R. Seidel. Constructing higher-dimensional convex hulls at logarithmic

cost by face. In Proc. 18th Annu. ACM Sympos. Theory Comput., pages

404--413, 1986.

[Seidel 90] R. Seidel. Linear programming and convex hulls made e~sy. In Sixth An­

nual ACM Symposium on Computational Geometry, pages 211-215, Berkeley,

California, June 1990. ACM Press.

(Spirakis 83] P. G. Spirakis. Very fast algorithms for the area of the union of many

circles. Report 98, Dept. Comput. Sci., New York Univ., New York, NY,

1983.

[Spirakis 84] P. G. Spirakis. The volume of the union of many spheres and point

inclusion problems. Report TR 133, Courant Inst. Math. Sci., New York

Univ., New York, NY, 1984.

[Surles 92] M. C. Surles. An algorithm with linear complexity for interactive,

physically-based modeling of large proteins. In Computer Graphics (SIC­

GRAPH '92 Proceedings), volume 26, pages 221-230, July 1992.

[Turk 92] G. Turk. Re-tiling polygonal surfaces. In Computer Graphics (SIGGRAPH

'92 Proceedings), volume 26, pages 55-64, July 1992.

[Turk 94] G. Turk, 1994. Private Communication.

[Varshney & Brooks 93] A. Varshney and F. P. Brooks, Jr. Fast analytical computa­

tion of Richards's smooth molecular surface. In G. M. Nielson and D. Berg­

eron, editors, IEEE Visualization '93 Proceedings, pages 300-307, October

1993.

101

[Varshney et al 94a] A. Varshney, Jr. F. P. Brooks, and W. V. Wright. Comput­

ing smooth molecular surface. IEEE Computer Graphics €9 Applications,

September 1994.

[Varshney et al 94b] A. Varshney, Jr. F. P. Brooks, and W. V. Wright. Interactive

visualization of weighted three-dimensional alpha hulls. In Video Review,

Proceedings of the Tenth Annual Symposium on Computational Geometry,

pages 395-396. ACM Press, June 1994.

[Voronoi 07] G. M. Voronoi. Nouvelles applications des parametres continus a la

theorie d es formes quadratiques. premier Memoire: Sur quelques proprietes

des formes quadratiques positives parfaites. J. Reine Angew. Math., 133:97-

178, 1907.

[Weiner et al84] S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio,

G. Alagona, S. Profeta Jr., and P. Weiner. A new force field for molecular

mechanical simulation of nucleic acids and proteins. Journal of the American

Chemical Society, 106(3):765-784, 1984.

[Welzl 91] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer,

editor, LNCS 555 (New Results and New Trends in Computer Science), pages

359-370. Springer-Verlag, 1991.

102

