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AMITABH VARSHNEY. Hierarchical Geometric Approximations (Under the di­

rection of Professor Frederick P. Brooks, Jr.) 

Abstract 

This dissertation explores some techniques for automatic approximation of geo­

metric objects. My thesis is that using and extending concepts from computational 

geometry can help us in devising efficient and parallelizable algorithms for automat­

ically constructing useful detail hierarchies for geometric objects. We have demon­

strated this by developing new algorithms for two kinds of geometric approximation 

problems that have been motivated by a single driving problem- the efficient compu­

tation and display of smooth solvent-accessible molecular surfaces. The applications 

of these detail hierarchies are in biochemistry and computer graphics. 

The smooth solvent-accessible surface of a molecule is useful in studying the struc­

ture and interactions of proteins, in particular for attacking the protein-substrate 

docking problem. We have developed a parallel linear-time algorithm for comput­

ing molecular surfaces. Molecular surfaces are equivalent to the weighted a-hulls. 

Thus our work is potentially useful in the application areas of a-hulls which include 

astronomy and surface modeling, besides biochemistry. 

We have defined the concept of interface surfaces and developed efficient algo­

rithms for computation of surfaces at the interface of two or more molecular units. 

Interface surfaces are useful for visualizing the inter and intra-molecular interfaces 

and for characterizing the fit, or complementarity, of molecular interfaces. 

We have developed an algorithm for simplification of polygonal meshes. The 

simplified polygonal mesh has the following properties: (a) every point on it is within 

a user-specifiable distance f from the input mesh, (b) it is topologically consistent 

with the input mesh (i.e. both have the same genus), (c) its vertices are a subset of 

the vertices of the input mesh, and (d) it is within a computable factor in complexity 

(in terms of number of faces) of the optimal mesh that satisfies (a), (b), and (c) 

(computing the optimal mesh is known to be NP-hard). We have accomplished this 

by transforming our problem to the set-partitioning problem. 
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Chapter I 

Overview and Results 

1.1 The Hierarchy of Detail 

We refer to the hierarchy formed by starting from a relatively simple representation 

of an object and progressively adding detail to it as a hierarchy of detail. Computer 

Science, as we know it today, has a well-developed concept of hierarchy of detail un­

derlying almost all of its sub-disciplines. For example, in software engineering and 

programming languages, the concepts of information encapsulation and data abstrac­

tion are manifestations of this hierarchy of detail. Similarly in scientific computation 

when we are modeling the laws of physics for a simulation we find a whole hierarchy 

of detail awaiting us, namely the modeling accuracy of the laws of physics. Nested 

within this hierarchy is the hierarchy of mathematical approximations for any given 

level of physics. The level in this hierarchy that we opt for depends upon the available 

computing power and the desired response time. Similarly, in computer graphics one 

can associate a hierarchy of detail with geometric object models. At one end of this 

hierarchy are low-complexity, low-fidelity approximations of a given object, whereas 

the other end has high-complexity, high-fidelity approximations. 

This dissertation addresses some issues in the automated hierarchical approxima­

tions of geometric objects. The space of various detail hierarchies for approximating 

geometric objects can be organized and described along several orthogonal dimen­

sions. Some of these dimensions are: 



• Type of approximation: When we say that an object A is an approximation of 

an object B, what we really mean is that there exists a property of B that is 

being approximated by A. This property (henceforth called the "approximat­

ing property") could be the shape, the Gauss map, the volume, etc. Various 

kinds of approximations can be defined for a given object based on the several 

approximating properties of the object. 

• Distance function: Let us assume that the approximating property of an object 

spans a multi-dimensional space. We can define various kinds of distance func­

tions that measure the distance between two objects having different values of 

this approximating property. For example, the distance could be measured in 

any of the Lp norms, or some other norm. Different distance functions give rise 

to different approximations for a given object for a given value of the approxi­

mating property. 

• Properties of geometric objects: The kinds of approximation schemes that can 

be defined depends on the kind of assumptions that one is prepared to make 

on the properties of the input objects. For example, the input objects could 

be continuous or discrete, piecewise linear or higher order algebraic functions, 

open or closed, etc. 

As can be seen, the range of possible geometric approximation schemes is enor­

mous - enough to fuel many dissertations. 

My thesis is: 

Using and extending concepts from computational geometry can help us 

in devising efficient and parallelizable algorithms for automatically con­

structing useful detail hierarchies for three-dimensional geometric objects. 

I have demonstrated this by developing new algorithms for two kinds of geometric 

approximation problems that have been motivated by a single driving problem -

the efficient computation and display of smooth solvent-accessible molecular surfaces. 

The applications of these detail hierarchies are in biochemistry and computer graphics. 
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Let a molecule M be represented by a collection of spheres { S,, ... , Sn}, each 

sphere S; corresponding to atom i of the molecule. A molecular surface for M can be 

considered to be approximated by the surface of the union of these spheres: U£=1 S;. 

Approximation of a molecule by its surface has proved to be of immense value in bio­

chemistry in visualizing and understanding the structure and functions of proteins. 

The first geometric approximation problem that we have addressed in this disser­

tation is that of approximating a molecule by its molecular surface, which we shall 

call a-approximation. The second geometric approximation problem that we have 

explored is that of approximating a polygonal representation of the molecular surface 

by another polygonal surface which is within a distance E from the original surface 

and has a lower complexity in terms of the number of polygons. We shall use the 

term €-approximation to refer to this second approximation problem. 

The a-approximation and the €-approximation are both quite general problems 

and are useful in areas other than molecular modeling. The a-approximation 

problem can be used to compute a detail hierarchy of a-hulls and a-shapes 

[Edelsbrunner & Miicke 94, Edelsbrunner 92, Edelsbrunner et al 83] that are useful 

in such diverse fields as astronomy, biochemistry, statistics, and computer graphics. 

The €-approximation problem is of immense value in a three-dimensional computer 

graphics setting in simplifying complex polygonal models under the constraints of 

topological consistency and bounded error tolerance. We have explored the use of 

our €-approximation algorithm in this general setting. 

This chapter is meant to serve as an extended abstract of the dissertation, outlining 

the problems, our approaches, and the results in brief. 

1.2 Molecular Surfaces - Our Driving Problem 

The smooth surface of a molecule is the surface which an exterior probe-sphere touches 

as it is rolled over the (assumed) spherical atoms of that molecule. This definition of a 

molecular surface was first proposed by Richards [Richards 77]. This surface is useful 

in studying the structure and interactions of proteins, in particular for attacking the 
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protein-substrate docking problem. In Figure 1.1 (a) crambin is shown as a collection 

of spheres whose radii are the van der Waal's radii of the corresponding atoms. In 

Figure 1.1 (b) the molecular surface of crambin is shown for a probe-sphere radius of 

1.4A (the radius of the spherical approximation to the water molecule). 

(a) Crambin (396 atoms) (b) Crambin Surface, Probe Radius = 1.4 A 

Figure 1.1: Cram bin and its Molecular Surface 

Present systems for computing the surfaces of molecules are batch-oriented 

[Connolly 93]. Our goal has been to compute and display these surfaces at inter­

active rates, by taking advantage of results from computational geometry, making 

further algorithmic improvements, and parallelizing the computations. 

Interactive computation and display of molecular surfaces should benefit bio­

chemists in three important ways. First, the ability to change the probe-radius in­

teractively helps one study the surface at various levels of detail. Second, it helps 

in visualizing the changing surface of a molecule as its atom positions are changed. 

These changes in atom positions could be due to user-defined forces as the user at­

tempts to modify a molecular model on a computer. Third, it assists in incorporating 

the effects of the solvent into the overall potential energy computations during the 

interactive modifications of a molecule on a computer. 
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1.3 a-Approximation of Molecules 

The a-hull has been defined as a generalization of the convex hull of point sets by 

Edelsbrunner, Kirkpatrick, and Seidel [Edelsbrunner et a183]. Given a set of points 

P, a ball b of radius a is called an empty a-ball if b n P = ¢. For 0 :S a :S oo, the 

a-hull of P is defined as the surface of the complement of the union of all empty 

a-balls [Edelsbrunner 92]. 

The smooth molecular surface (as defined by Richards [Richards 77]) for a probe 

sphere of radius R is equivalent to the three-dimensional weighted a-hull (as defined 

by Edelsbrunner in [Edelsbrunner 92]) with a= R. 

The definition for molecular surfaces that appears above is that of a complete 

molecular surface, i.e. a surface that completely envelopes a molecule. This is useful 

for visualizing the surface of a single molecule. However, when the objective is to study 

the interface between two or more molecules (or different sub-units within a single 

molecule), the complete molecular surface computed independently for each of the 

molecules is a poor visualization tool. This is due to the occlusion by the complete 

molecular surfaces which prevents one from studying the contacts that are in the 

interior of the molecular interfaces. To overcome this, we have defined the concept of 

molecular interface surfaces and devised algorithms for their efficient implementation. 

1.3.1 Complete Molecular Surfaces 

Complete molecular surfaces are commonly known as smooth molecular surfaces, 

Richards's molecular surfaces (after their inventor), Connolly surfaces, (after the in­

ventor of the most widely used surface computation algorithm), or three-dimensional 

weighted a-hulls. In this section we shall first overview our algorithm for efficiently 

computing these surfaces analytically and then present the results of our implemen­

tation. 
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Algorithm Overview 

Our goal has been to formulate a parallel analytical molecular surface algorithm 

that has expected linear complexity with respect to the total number of atoms of 

a molecule. For achieving this goal, we have avoided computation of the complete 

three-dimensional regular triangulation over the entire set of atoms - a process that 

takes time O(n2), where n is the number of atoms in the molecule. 

We construct the solvent-accessible molecular surface for the whole molecule, an 

atom at a time. For each atom we first determine its neighbors. Two atoms are defined 

as neighbors if it is possible to place a probe-sphere such that it is in simultaneous 

contact with both these atoms, without considering any hindrance due to other atoms. 

This determination is done in linear time over the whole molecule by subdividing the 

molecule using a global grid. Next, we construct a feasible cell (which is very similar 

to a power-cell [Aurenhammer 87]; for exact definition see Chapter IV) around each 

atom by using these neighbors. If there are k neighbors for an atom, this stage 

takes O(k log k) time. Next the surface is generated for each atom from its power-cell 

in O(k) time. Thus the overall complexity of our algorithm is O(nk log k). Since 

k is a constant that depends on the probe-radius, this algorithm is linear in the 

number of atoms of a molecule. Since the processing of each feasible cell can be done 

independently of others the algorithm is parallelizable to degree n. Details of this 

algorithm and its implementation are given in Chapter IV. 

Results 

Our implementation has been done on Pixel-Planes 5 [Fuchs et a/89], although it is 

general enough to be easily portable to any other parallel architecture. Table 1.1 

shows our timings for computation and display of the molecular surface for various 

molecules for a probe-radius of 1.4A (the radius of a water molecule). For these results 

we were using configurations of 8, 16, or 24 Intel i860 processors. The molecules we 

have studied are crambin, felix, dihydrofolate reductase (DHFR), and superoxide 

dismutase (SOD). At present, we are representing the molecular surface by triangles, 

and the column Tris in Table 1.1 refers to the complexity of the computed surface in 
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thousands of triangles. 

Times (sec) 

Molecule Atoms Processors k Tris 

8 16 24 

Cram bin 396 0.84 0.43 0.31 44.7 18K 

Felix 613 1.42 0.69 0.47 40.7 36K 

DHFR 3123 6.11 2.93 1.96 43.8 lOOK 

SOD 4386 8.73 4.16 2.76 46.5 127K 

Table 1.1: Molecular Surface Generation for 1.4A Probe-Radius 

As can be seen, the value of k, the average number of neighbors, is fairly con­

stant for a given probe-radius over different molecules. In fact, using concepts from 

the theory of packing of spheres and some reasonable assumptions, we will prove in 

Chapter V that for a probe-radius of 1.4A, the average number of neighbors in pro­

tein molecules can be bounded from above to be in low hundreds. This means that 

the algorithm we have presented here is more attractive than the widely used O(n 2
) 

algorithm even for medium-sized proteins that have more than a couple of thousand 

atoms. 

Table 1.2 shows the times for the generation of the molecular surface for crambin 

using 24 processors, and different probe radii varying from l.OA to lO.OA. 

Probe-Radius LOA 1.4A 2.8A. 5.oA. lO.OA 

Times (sec) 0.29 0.31 0.43 0.70 1.32 

k 32.2 44.7 102.8 224.0 384.9 . 

Triangles 22K 18K 14K 13K 13K 

Table 1.2: Crambin Molecular Surface Generation (24 Intel i860 Processors) 

Figure 1.2 shows the smooth molecular surface for crambin with variable probe­

sphere radii. 
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(a) Probe Radius = 1.4A (b) Probe Radius = 2.8..4 

(c) Probe Radius= 5.0A (d) Probe Radius= lO.OA 

Figure 1.2: Crambin Surfaces for Different Probe-Radii 

1.3.2 Molecular Interface Surfaces 

To afford a good visualization of the molecular surfaces at the interface of two or 

more molecules (or sub-units of the same molecule), we have developed the concept 

of molecular interface surfaces. 

Let the complete molecular surfaces defined for a probe-radius a for the molecules 

A and B be represented by S(A, a) and S(B, a), respectively. The molecular in­

terface surface T(A, B, a, (3) for a probe-radius a and an interface-radius (3 for the 

two molecules A and B is defined as the subset of S(A,a) and S(B,a) that includes 

exactly those points of S(A, a) that are within a distance (3 from the surface of some 

atom of Band exactly those points of S(B, a) that are within a distance (3 from the 

surface of some atom of A. Figure 1.3(a) shows the four domains of transthyretin and 
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(b) shows the molecular interface surface amongst these domains for a probe-sphere 

radius = a = 2.4A and an interface-radius = (3 = l.OA. 

(a) Transthyretin domains (b) Interface surface for a = 2.4A, (3 = LOA 

Figure 1.3: Transthyretin and its Interface Surface 

Besides proving to be a useful visualization tool, the molecular interface surfaces 

should also provide a means of efficiently characterizing the interactions during a 

protein-substrate docking. The molecular interface surfaces define a hierarchy of 

detail parametrized by a and (3 at the inter-molecular interface. Given a particular 

value of a, one can define the interface surface by choosing a suitable value for the 

parameter (3 based on the computing power available, the desired response time, and 

the modeling accuracy of the physical interactions. The interface surface thus defined 

would localize and reduce the set of possible interactions occurring at the interface and 

could therefore be used as an input to further processing for efficiently characterizing 

the interactions at the interface. 

Algorithm Overview 

The algorithm follows from the definition of the molecular interface surfaces. We next 

describe how to compute the subset of S(A, a) that belongs to T(A, B, a, (3). The 

subset of S( B, a) that belongs to T (A, B, a, (3) can be computed similarly. 

Let us define an atom b of B to be the sphere a( q, rb), where q is the center and 

rb is the van der Waal's radius of the atom b. Let us define B( + (3) to be a collection 

9 
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of spheres a( Cb, rb + f3) derived from the atoms of B. 

Let all the atoms in A that intersect the interior of UbeB a( q, rb + /3) be represented 

by the set AT· Determination of AT is efficiently done by using a cuboidal grid to 

localize the spheres of A. We next generate the surface patches of S(A, a) that are 

contributed by every atom a EAT. Every such surface patch is clipped by the union 

of the spheres in B( +/3). This clipping is efficiently done by using a cuboidal grid 

to localize the spheres in B( +f3). All the clipped surface patches that lie within the 

union of the spheres in B( +/3) are retained and form that subset of S(A, a) that 

belongs to T(A,B,a,/3). 

In Chapter VI, we describe the molecular interface surfaces in greater detail in­

cluding the simple extensions to handle more than two molecular sub-units. 

Results 

The results of our implementation on computing the interface surfaces at the interface 

of the four domains of the molecule transthyretin (prealbumin) for different values of 

a and f3 are shown in Figure 1.4. 

1.4 £-Approximation of Polygonal Models 

In three-dimensional interactive computer graphics, progressive enrichment of detail is 

a recurrent theme, more so perhaps than in any other sub-discipline within computer 

science. The main reason for this is our attempts to simultaneously satisfy the conflict­

ing goals of scene realism and real-time performance. These attempts can be broadly 

classified into two categories -image-space refinement and object-space refinement. 

In image-space refinement approaches [Bergman et al 86], the scene is first rendered 

as a low-quality image while the user is constantly changing his viewpoint. Once the 

user stops and the viewpoint is fixed, a progressively detailed rendering of the scene 

is then done by the renderer in due time. In object-space refinement approaches, a 

hierarchy of object descriptions is stored and depending on how important the object 

is to the scene, an appropriate level-of-detail of the object is used for rendering -

10 



(a) a= l.OA,,B = l.OA (b) a = LOA, ,B = 2.4A 

(c) a= 2.4A,,B =LOA (d) a= 2.4A,,B = 2.411 

Figure 1.4: Interface Surfaces Amongst Domains in Transthyretin 

[Clark 76], [Cosman & Schumacker 81], [Crow 82], and [Funkhouser & Sequin 93]. 

1.4.1 Modeling in Computer Graphics 

At present, the most common form of model representation in computer graphics 

is a planar polygonal description. There are several reasons for this. First, current 

graphics workstations can rapidly render polygonal datasets, while most cannot ren­

der higher-order algebraic surfaces (without first polygonizing them). Second, any 

given model can be approximated by a planar polygonal dataset. Examples of such 

models range from algebraic-surface based models (consisting of Bezier or B-spline 

patches or CSG solids) to datasets consisting of just scattered points (obtainable from 

three-dimensional scanners). Third, planar polygonal datasets simplify any form of 
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pre-processing computation (such as visibility computation). For these reasons it 

is likely that polygonal datasets will continue to play an important role in computer 

graphics for some time to come. For these reasons, I decided to work on simplification 

of polygonal datasets instead of any other model representation format. 

Simplification of polygonal models by approximation allows one to generate a 

detail hierarchy for objects. Such a detail hierarchy can be used in several ways: 

• In a level-of-detail-based rendering algorithm for providing desired frame update 

rates. 

• Simplifying traditionally over-sampled models such as those generated from 

volume datasets, laser scanners, and satellites. 

• Using low-detail approximations of objects in coarse visibility computations, 

collision detection, and global illumination algorithms, especially radiosity. 

1.4.2 Problem Definition 

Before we formally define our problem, let us first define the term t-approximation. 

Given two piecewise linear objects P and Q, we say that P and Q are E- approxi­

mations of each other iff every point on P is within a distance E of some point of Q 

and every point on Q is within a distance E of some point of P. 

We define our problem as follows: 

Given a polygonal representation P (I) of an object I and an approximation pa­

rameter E, generate a genus-preserving E-approximation A with minimal number of 

polygons such that the vertices of A are a subset of vertices of P {I). 

Such an approximation scheme has several benefits in computer graphics. First, 

one can very precisely quantify the maximum amount of approximation error that is 

tolerable under given circumstances. For instance, one possibility could be to define 

a tolerable approximation for rendering an object as, say, 2 screen pixels. Using this 

information in conjunction with the distance of the object from the screen, one can 

estimate the maximum deviation permissible from the surface of the object. This 
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can then be used to find which precomputed level of detail of that object is most 

suitable. Second, this approach allows one a fine control over which regions of an 

object one should approximate more and which ones less. This could be used in 

selectively preserving those features of an object that are perceptually important. 

In our problem definition we have stated that A should have a minimal number 

of polygons. It turns out that achieving minimality for A is NP-hard even for the 

simple case where I is a convex polytope (Das & Joseph 90]. Therefore we shall aim 

to compute an €-approximation A to P(I) such that (a) A has a smaller number 

of polygons than P(I) and (b) the number of polygons in A can be related to the 

minimal (optimal) number of polygons possible in any €-approximation to P(I). We 

shall henceforth refer to the polygonal representation P(I) of an object I as P. 

1.4.3 Algorithm Overview 

The basic outline of the algorithm is as follows: 

• Generate two offset surfaces to the input model, one on the outside and the 

other on the inside of the input object. 

• Then generate all candidate triangles that lie within these two offset surfaces 

and have their vertices selected from the set of vertices of the input model. 

• Find which vertices of the input model are '~covered" by which triangles. 

• Finally, use a greedy approach for selecting the approximation triangles from 

the candidate triangles. 

Why this approach works and how this can be used to get a quantitative measure 

of the quality of approximation is described in Chapter VII. 

We shall assume that all polygons in P are triangles and that P is a well-behaved 

polygonal model, i.e. every edge has either one or two adjacent triangles, no two 

triangles interpenetrate, there are no unintentional "cracks" in the model, etc. We 

will be further assuming that the vertices of P have possibly several normals (such as 
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at sharp edges in a model) that faithfully represent the normals of the object being 

modeled. 

While greedy algorithms are typically sequential in nature, our algorithm can be 

parallelized in the different stages. Vertex-vertex visibility pairs can be generated 

completely in parallel. Further, changes made to an existing mesh due to selection 

of a candidate triangle are local. Such regions that have to be retriangulated are 

well-defined and can be processed in parallel. 

1.4.4 Results 

We have been able to achieve roughly 70% reductions with minimal perceptual dif­

ference on polygonal datasets that we have attempted to reduce thus far. These 

datasets have been taken from polygonal models used in real-world problems, such 

as virtual-reality walkthroughs of proposed submarines. 

(a) First Level: 2346 triangles (b) Second Level: 1180 triangles 

(c) Third Level: 676 triangles (d) Fourth Level: 514 triangles 

Figure 1.5: Four Detail Levels for a Polygonal Model 
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A typical level-of-detail hierarchy with four levels for a polygonal model of a 

torpedo roller is shown in Figure 1.5. 

The actual level in this hierarchy that is chosen for display depends upon the 

screen-space area occupied by the polygonal model. Thus, the farther the model 

from the observer, the coarser the level of detail that is selected. In Figure 1.6 we 

show a row of rollers used for loading a torpedo into a torpedo tube. In Figure 1.6( a), 

an appropriately chosen level of detail is used for rendering each of the rollers, whereas 

in Figure 1.6(b ), no level-of-detail-based rendering is used. The frame-update rate in 

case (a) is 12 frames per second for rendering a total of 22K triangles, whereas the 

frame-update rate for case (b) is just 7 frames per second for rendering 49K triangles. 

As can be seen, there is hardly any perceptual difference between the images (a) and 

(b) in Figure 1. 6. 

We have simplified a total of 1090 objects of the AMR dataset for testing and 

validating our algorithm. These polygonal objects are from the Submarine Auxiliary 

Machine Room (AMR) dataset that was given to us by the Electric Boat Division of 

the General Dynamics. We have cumulatively reduced these objects as follows: 

Level-of-Detail Dataset Complexity %Reduction 

Original dataset 350,023 triangles 0 

First level 206,859 triangles 40.90 

Second level 141,983 triangles 59.44 

Third level 104,874 triangles 70.04 

Table 1.3: Polygonal Simplification Results 

1.5 A Guide to the Chapters 

The rest of this dissertation is organized as follows. 

In Chapter II, we will give a brief overview of proteins, the protein docking prob­

lem, the protein folding problem, and the various molecular surfaces defined in bio-
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(a) Using level-of-detail rendering. 

(b) Not using level-of-detail rendering 

Figure 1.6: Rendering With and Without Level-of-detail Models 

chemistry. 

Chapter III gives an overview of some terminology from computational geometry 

and a brief review of detail hierarchies for boundaries of points and polygonal curves. 

Chapter IV describes our approach for analytically computing the solvent­

accessible molecular surfaces in real-time and then overviews a few implementation 

details, and concludes with our results. 

In Chapter V we give a brief introduction to the mathematical theory of packing 

of spheres and present several techniques to bound the number of unit spheres that 
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can be packed inside a larger sphere of a given radius. We consider two main kinds of 

techniques- volume-based and surface-based- for deriving these bounds, and work 

with both - intersecting unit spheres as well as mutually disjoint unit spheres. These 

techniques have been illustrated by using them to estimate the number of solvent­

accessible neighbors for an atom in a protein molecule. 

In Chapter VI, we discuss computation of molecular surfaces at the interface of 

two or more molecular sub-units and give a goodness-of-fit criterion for evaluating 

molecular interfaces. 

In Chapter VII, we describe our approach to compute a level-of-detail object 

hierarchy for polygonal models and then discuss a few implementation heuristics 

followed by results. 

Finally, we discuss directions for further work in Chapter VIII. 
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Chapter II 

Molecular Surfaces 

In this chapter we shall first give a brief overview of proteins. Next we shall moti­

vate the need for computing molecular surfaces by considering the protein-substrate 

docking problem and the protein folding problem. After that we shall overview the 

two main kinds of molecular surfaces that are defined in biochemistry. 

2.1 Proteins 

Proteins are long, linear sequences of bonded amino acids. There are 20 naturally 

occurring amino acids. Of which, 19 amino acids have the same basic structure, as 

is shown in Figure 2.1(a). The only difference among these 19 amino acids is the 

difference in the chemical composition of the sidechain R. R can be as simple as a 

single hydrogen atom, or it can be a long chain consisting of carbon, nitrogen, sulfur, 

oxygen, and hydrogen atoms. R can even consist of aromatic rings. The twentieth 

amino acid, proline, is special in that it has a bond between the sidechain R and the 

nitrogen atom as shown in Figure 2.1(b). 

For clarity in presentation, we shall ignore proline and assume that the structure 

shown in Figure 2.1(a) adequately represents the structure of a generic amino acid. 

Two amino acids form a bond by releasing a water molecule as shown in Fig­

ure 2.2(a). This bond is known .as a peptide bond. In a protein, many amino acids 

link together to form a long, linear chain of peptide bonds. This is shown in Fig-
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(a) A typical amino acid 
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HN-CH ---eqH 

(b) Proline 

Figure 2.1: Amino Acids 

ure 2.2(b ). The leftover structure of an amino acid after the formation of peptide 

bonds with its neighbors (and the consequent loss of a water molecule) is known as 

the amino acid residue. Each amino acid residue consists of the sidechain R and six 

other atoms as shown in Figure 2.2(c). The group of atoms shown in Figure 2.2(d) 

behaves as a rigid unit and is known as a peptide unit. All the peptide units of a 

protein are collectively referred to as the backbone or the mainchain of the protein. 

The various amino acids can be characterized to be hydrophilic or hydrophobic 

based on the interactions of their sidechains with water. Thus all amino acids that 

have aliphatic hydrocarbon sidechains are hydrophobic, and all amino acids that have 

polar atoms such as oxygen are hydrophilic. 

For a better understanding of the fundamentals of protein structure the interested 

reader can see the textbook [Dickerson & Geis 69]. 

2.2 The Protein-Substrate Docking Problem 

The Protein-Substrate Docking Problem is to identify the position and orientation of 

the protein molecule with respect to a given substrate (another molecule that may be 

a protein, a nucleic acid, or a drug molecule) such that the energy of interaction of the 
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(a) Fonnation of a peptide bond 

(b) A protein wfth n peptide bonds 

(c) An Amino Acid Residue 
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(d) A Peptide Unit 

Figure 2.2: Bonding of Amino Acids 

two is minimized. This problem is useful in studying enzyme catalysis and antigen­

antibody interactions. These interactions have been observed to be very specific in 

their occurrence. Even slight changes in the structure of a sidechain of one of the 

participants have been observed to inhibit such interactions. 

This docking of the protein with a substrate is characterized by geometric and 

electrostatic complementarity of the two surfaces and compatible hydrophilicity. De­

termination of the molecular surfaces of the two molecules thus plays a rather impor­

tant role in solving this problem .. 
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2.3 The Protein Folding Problem 

A protein is initially synthesized in the form of a long, linear chain of amino acid 

residues by a small cellular body called a ribosome. Once fully synthesized, it rapidly 

folds into a unique three-dimensional conformation. It has long been believed, and 

indeed confirmed for relatively small proteins, that the three-dimensional shape of 

a protein is just a function of its one-dimensional sequence of amino acids. The 

problem of predicting the three-dimensional structure of a protein based on the one­

dimensional sequence of its amino acids has come to be known as the Protein Folding 

Problem. 

In general, proteins exist and interact in aqueous media in living things. This 

solvent is believed to play an important role in protein folding. The interior of most 

folded proteins has been found to be largely free of water and consisting mostly of 

hydrophobic amino acid residues. The surface of the folded proteins, in contrast, has 

mostly hydrophilic residues. The surface area of hydrophobic residues in contact with 

water provides a good means of estimating the effect of solvent at a given stage of 

protein folding. Thus, efficient determination of molecular surfaces is of considerable 

interest in gaining a better understanding of the protein folding. 

2.4 Surfaces for Molecules 

In 1971 Lee and Richards defined the solvent-accessible surface of a molecule as the 

surface that is traced by the center of a probe sphere representing a solvent molecule 

as it is rolled over the surface of the molecule [Lee & Richards 71]. The surface of a 

molecule defined in this fashion has the advantage of simplicity- all patches of the 

surface are convex spherical. However, it does suffer from some drawbacks. First, 

as the radius of the probe sphere increases to oo, the surface area of the molecule 

as computed by this method also increases to oo, which is clearly counter-intuitive. 

Second, the surface of a molecule defined in this fashion is not a useful means for 

identifying the degree of complementarity between two molecules. 
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In 1977 Richards gave an alternative solvent-accessible molecular surface defi­

nition [Richards 77]. He defined the molecular surface to be the surface which an 

exterior probe-sphere touches as it is rolled over the spherical atoms of that molecule. 

This surface is also known as the solvent-excluding surface. This is a more useful def­

inition of the molecular surface as it better approximates the van der Waal's surface 

of the solvent-accessible atoms and thus gives a more realistic value of a molecule's 

solvent-accessible surface area. The region where this molecular surface consists of 

the van der Waal's surface of an atom is called the contact surface; other regions are 

called reentrant surfaces. 

The surfaces corresponding to the two definitions are shown in Figure 2.3. 

R = Probe radius 
Reentrant Surface 

r =van der Waal's radius 

Lee and Richards's Surface Richards's Surface 

Figure 2.3: Molecular Surfaces 

In this dissertation we shall be dealing with the molecular surface defined by 

Richards in 1977. 
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Chapter III 

Detail Hierarchies in 

Computational Geometry 

3.1 Introduction 

In this chapter we shall survey the work that has been done in computational geometry 

for constructing detail hierarchies of objects. Most of this work can be subdivided 

into the following three categories: 

(i) hierarchy for the boundary of a given set of points, 

(ii) hierarchy for a given two-dimensional piecewise linear curve, and 

(iii) hierarchy for a given three-dimensional piecewise linear (polygonal) surface. 

The third category above had not received much attention till recently. We shall 

discuss the recent advances for that category in Section 7.2. 

Before we proceed further, let us introduce some basic concepts and terminology 

from computational geometry. 

3.2 Some Computational Geometry Concepts 

This section explains some terms from computational geometry that we shall be using 

in the later sections. These have been illustrated in two dimensions, though they can 

be generalized to three and higher dimensions. In the following definitions, let P be 



a finite set of points. 

We use Rd to denote the d-dimensional real space. Ed is used to denote the d­

dimensional real-space in which the distance function is the Euclidean distance or the 

L 2 norm1 

Convex Hull 

The convex hull of P can be defined as the smallest convex set that contains P. It 

can also be defined as the intersection of all half-planes that contain P. An example 

of this is shown in Figure 3.1(b ). 

(a) Point Set P (b) Convex Hull 

(c) Voronoi Diagram (d) Delaunay Triangulation 

Figure 3.1: Some Basic Computational Geometry Concepts 

1distance between two points p(a,, a,, ... ' aa) and p(b,, b,, ... ' ba) = o:::t=l (a;- b;)2)1i2 
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' Voronoi Diagram 

The Voronoi diagram for a set of points P in the plane is the subdivision of the plane 

into a set of mutually exclusive, collectively exhaustive regions such that : 

(a) each region R; corresponds to a unique point i E P. 

(b) all the points of the plane contained in that region R; are closer to its point i, than 

to any other point j # i in P. An example ofthis is shown in Figure 3.l(c). Note that 

any edge of this diagram between adjacent regions R; and Rj is the perpendicular 

bisector of the line joining the points i and j. The vertices of the Voronoi diagram 

are called the Voronoi vertices, the edges Voronoi edges, and the regions Voronoi 

regions or Voronoi cells. This diagram is named after the Russian mathematician G. 

M. Voronoi [Voronoi 07]. 

Delaunay Triangulation 

The Delaunay triangulation for a set of points Pin the plane is the dual (in the graph­

theoretic sense) of their Voronoi diagram. In this triangulation, an edge is created 

between two points if and only if their Voronoi cells share an edge. As long as there are 

no degeneracies (2 points coincident, 3 points collinear, or 4 points co-circular) this 

is guaranteed to produce a valid triangulation. This is shown in Figure 3.1( d). Note 

that the convex hull is a subset of the Delaunay triangulation. This is named after 

B. Delaunay who proved that the dual of the Voronoi diagram of P is a triangulation 

of P [Delaunay 34]. 

Power Diagrams 

Power diagrams are a generalization of the Voronoi diagrams. Voronoi diagrams are 

defined for simple points (or circles of equal radii) whereas power diagrams are defined 

for circles of possibly unequal radii. An easy way to understand this is through the 

following example. 

Let us assume that the plane of the points of P represents the map of some 

geographical region and that the points of P represent the sites of radio transmitters 
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(a) Voronoi Diagram (b) Power Diagram 

Figure 3.2: Voronoi and Power Diagrams 

m that regiOn. The signal power of the radio transmitters is assumed to have a 

conical distribution function such that the radius of the cone represents the power 

of the transmitter and is directly proportional to the transmitter's height. Thus the 

more powerful a transmitter, the greater its height. 

Let us define the dominant region for a particular transmitter as the region in 

which its signals are stronger than the signals from any other transmitter. Let us 

first assume that all transmitters transmit their signals at the same power and are 

therefore at the same height. The dominant regions of the transmitters for the case 

where all transmitters have the same power are described by the Voronoi regions 

in the Voronoi diagram of the transmitter sites. This is shown in Figure 3.2(a). 

Instead of drawing three-dimensional cones to represent the transmitter-signal's power 

distribution functions we have simply drawn the circular bases of the cones. 

It is easy to see that if we now increase the power of a particular transmitter, 

its dominant region will increase at the expense of others. The dominant regions for 

the case were the transmitters do not have the same power are described by power 

diagrams. This is shown in Figure 3.2(b ), where the radius of one circle has been 

increased. Power cells are defined analogously to the Voronoi cells. Note that a point 

i E P in a power diagram may not lie within its power cell; its power cell may not 

even exist. However, every power cell corresponds to a unique point i E P. 

A regular triangulation is to a power diagram as a Delaunay triangulation is to 
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a Voronoi diagram. Thus, in a regular triangulation an edge is created between two 

points i and j E P if and only if their power cells share an edge. 

3.3 Detail Hierarchies for Boundaries of Points 

A trivial hierarchy of detail for the boundary of a set of points in Rd can proceed from 

the minimum enclosing sphere, to the minimum enclosing ellipsoid, and then to the 

convex hull. This is a hierarchy in two senses: (a) closer and closer approximation to 

the point-set, and (b) takes more parameters to describe. This progression of detail 

is shown in Figure 3.3. 

. . 

Minimum Sphere Minimum Ellipsoid Convex Hull 

Figure 3.3: A Trivial Hierarchy of Boundary Detail 

Higher detail descriptions of boundaries of points were not systematized until the 

invention of the a-hulls. We shall discuss these in Section 3.3.2. 

3.3.1 Spheres, Ellipsoids, and Convex Hulls 

It is possible to find the smallest enclosing sphere and ellipsoid for a set of n points 

in Rd in 0(88!n) time [Welzl91], where 8 = d + 1 for a sphere and 8 = (d + 3)d/2 

for an ellipsoid. The algorithm given in [Welzl 91] is quite easy to implement and 

delivers a good performance for low-dimensional spaces. It is also possible to frame 

the problem of finding the smallest enclosing sphere as a linear programming problem 

and then use the linear programming algorithms. 

The first optimal 0( n log n) algorithm for computing the convex hull of a 
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set of points in the plane was gtven by Graham [Graham 72]. In terms of 

output-size-sensitive algorithms for computing the planar convex hull, the asymp­

totically optimal time of 0( n log h) has been achieved by Kirkpatrick and Sei­

del [Kirkpatrick & Seidel 86], where h is the number of edges in the convex hull. For 

higher dimensions, these can be computed in time O(nrd/21) for odd d [Seidel 81] and 

at logarithmic cost per face for even d ~ 4 (Seidel 86]. For good survey material on 

convex hulls see [Preparata & Shamos 85, Dobkin & Souvaine 87, Edelsbrunner 87, 

Graham & Yao 90]. 

3.3.2 a -Hull 

An elegant generalization of the convex hulls for points in a plane is done by Edels­

brunner, Kirkpatrick, and Seidel (Edelsbrunner et a/83] by defining the notion of 

a-hulls. As mentioned before, one could define the convex hull of a set of poir1ts 

P in a plane as the intersection of all half-planes that contain P . Instead of using 

half-planes, they define the hulls for points by intersecting the interiors of discs or 

their complements. For a > 0, the a-hull of a set of points P in two dimensions 

is defined to be the complement of the union of all disks of radius a containing no 

points of P. The notation used for defining the alpha hulls has changed in going from 

(Edelsbrunner et a/83] to [Edelsbrunner 92]. We shall use the more recent notation. 

The term open disc is used to refer to the points that He strictly inside a circle 

and the term closed disc is used to refer to the points that lie on or inside a circle. 

A generalized disc is a disc that either selects the points that are in the interior of a 

circle or the points t hat are exterior to a circle. In general , a generalized disc with a 

positive radius is used to refer to the points that are in the interior of a circle, whereas 

a generalized disc with a negative radius is used to refer to the points that are exterior 

to a circle. A generalized disc can be open or closed depending on whether it includes 

the points on its boundary. The complement of a generalized disc with radius (+a) 

is a generalized disc with radius (-a). 

The a -hull of a set of points Pis defined as the intersection of all closed generalized 

discs of radius (-a) that contain all the points of P. Thus, if a > 0, we consider 
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higher dimension, the worst-case combinatorial complexity of a-hulls in Rd is the 

same as that of the convex hulls in Rd+I. The a-hulls can be constructed from the 

Delaunay triangulation and their times are the same as those for convex hulls in one­

higher dimension. Thus in a plane, a-hull of a set of n points can be constructed in 

time O(n log n) and in three dimensions in time O(n2
). 

The a-hulls have been defined for weighted points in [Edelsbrunner 92]. These 

can be constructed from regular triangulations of the weighted points, which are dual 

to the power diagrams as defined by Aurenhammer (Aurenhammer 88). 

3.4 Detail Hierarchies for Polylines 

We shall use the term polyline to denote a zero-order continuous (i.e. end-point conti­

nuity) chain of line segments none of which crosses another. A function f: (x-, x+] -+ 

R is a piecewise-linear function if its graph y = f( x) is a polyline connecting the points 

PJ,p2 , ••• ,pn, in that order such that x- = x(p!) < x(p2 ) < x(p3 ) ••• < x(pn) = x+, 

where x(p) is the x-coordinate of p. Thus, for a piecewise linear function, we require 

the polyline p1 , P2, ... , Pn to be strictly x-monotone. A piecewise linear curve is a 

polyline that is not required to be x-monotone. Thus, a piecewise linear curve is an 

arbitrary polyline on a plane. 

Algorithms have been developed for generating a hierarchy of approximations for 

piecewise linear functions and piecewise linear curves. Two types of approximations 

have been considered: 

• M in -# Appr oximations: Given some error bound f. > 0, t.hP. objective is 

to minimize the number of vertices such that no point of the approximation is 

farther than f. distance away from some point on the actual curve. 

• Min- t Approximations: Given the number of vertices desired in the output 

approximation curve, minimize the error between the approximation curve and 

the input curve. 

Imai and Iri [Imai & Iri 86], [Imai & Iri 88] have shown that the min-# approxi-
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Figure 3.5: A Vertex-Subset Polyline Approximation 

mat ion to a piecewise linear function can be accomplished in an optimal 0( n) time. 

The min-E problem for the piecewise linear functions is much harder to solve and no 

efficient algorithms are known that solve it optimally for the general case. 

The vertices of the approximation of a piecewise linear curve may or may not be a 

subset of the vertices of the input piecewise linear curve. Here, we shall focus on the 

problem in which the vertices of the new piecewise linear curve are a subset of the 

vertices of the input curve. Formally, given a piecewise linear curve C whose vertices 

are p1 , p2 , ••• , Pn, in this order, an approximate piecewise linear curve for this consists 

of the vertices Pi(I),Pi(2), ••• ,pi(mb 1 = i(l) < i(2) < ... < i(m) = n, which are a 

subset of pt,p2 , ••• ,Pn· This is shown in Figure 3.5. 

Min-E as well as the min-# approximation problems have been solved for this 

approximation scheme, using different measures of the approximation error crite­

rion [Imai & Iri 88]. Let the error of approximating the curve between vertices 

p;, Pi +I, Pi+2, ... , Pj by the line segment PiPj be given by the maximum of the dis­

tance between the segment PiPj and the points Pk( i ::; k ::; j). For this error measure, 

the min-# problem can be solved in time 0( n2 log n) [Melkman & 0 'Rourke 88] while 

the min-E problem can be solved in time O(n2(1ogn) 2) [Imai & Iri 88]. 
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Chapter IV 

Linearly Scalable Computation of 

Smooth Molecular Surfaces 

The smooth molecular surface of a molecule is defined as the surface which an exterior 

probe-sphere touches as it is rolled over the spherical atoms of that molecule. For 

examples of such molecular surfaces, refer to Figures 1.1, 1.2, and 4.4, where these 

surfaces have been shown for various molecules and with different probe-sphere radii. 

Present systems for computing the surfaces of molecules are batch-oriented. They 

take a few minutes to compute the surface for a couple of thousand atoms. Our goal 

has been to compute and display these surfaces at interactive rates, by taking advan­

tage of results from the field of computational geometry, making further algorithmic 

improvements, and parallelizing the computations. 

Interactive computation and display of molecular surfaces should benefit bio­

chemists in three important ways. First, the ability to change the probe-radius in­

teractively helps one study the surface. Second, it helps in visualizing the changing 

surface of a molecule as its atom positions are changed. These changes in atom posi­

tions could be due to user-defined forces as the user attempts to modify a molecular 

model on a computer. Third, it assists in incorporating the effects of the solvent into 

the overall potential energy computations during the interactive modifications of a 

molecule on a computer. 



4.1 Previous and Related Work 

The analytic computation of the molecular surface was first done by Connolly 

[Connolly 83]. Here a molecular surface is represented by a collection of spherical 

and toroidal patches as follows: 

• The surface for a region of a molecule where the probe is in contact with only 

a single atom is modeled by a convex spherical patch. 

• The surface for a region of a molecule where the probe is in simultaneous contact 

with only two atoms is modeled by a saddle-shaped toroidal patch. 

• The surface for a region where the probe is in simultaneous contact with three 

atoms is modeled by a concave spherical triangular patch. 

Only recently have the issues of algorithmic complexity of these algorithms begun 

to be addressed. Let n be the number of atoms in a molecule and let k be the average 

number of neighboring atoms for an atom in the molecule. By neighboring we mean 

the atoms that are near enough to affect probe placement on a particular atom. Perrot 

et a/. [Perrot et a/92] present a 0( kn) algorithm that generates an approximation to 

the solvent-accessible surface. In terms of sequential algorithmic complexity this is 

good, however some issues remain unaddressed here. Their algorithm is inherently 

sequential, as it always needs to start from some concave spherical triangular region 

of the molecule and from there it proceeds by adding an adjacent face at a time. 

Besides being hard to parallelize, it fails for the cases where the solvent-accessible 

surface folds back to intersect itself or where the molecule has two or more sub-parts 

connected by only two overlapping spheres. Also, it cannot generate surfaces for the 

interior cavities of a molecule. 

We have reviewed a-hulls in Section 3.3.2. If we generalize the notion of a­

hulls over point-sets to the corresponding hulls over spheres of unequal radii in 

three dimensions, we would get the Richards's smooth molecular surface (along 

with the surfaces defining the interior cavities of the molecule). It has been shown 

in [Edelsbrunner et a/83] that it is possible to compute the a-hulls from the Voronoi 
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diagram of the points of P. For a = co the a-hull over the set of points P is the 

same as their convex hull. Richards [Richards 77] had also suggested computing the 

molecular surface by computing a 3D Voronoi diagram first and then using its faces 

to determine which nearby atoms to consider. 

Edelsbrunner and Miicke [Edelsbrunner & Miicke 94] extend the definition of a­

hulls to points in three dimensions. Here an a-shape over a set of points P has been 

defined to be the polytope that approximates the a-hull over P by replacing circular 

arcs of the a-hull by straight edges and spherical caps by triangles. An a-shape 

of a set of points P is a subset of the Delaunay triangulation of P. Edelsbrunner 

in [Edelsbrunner 92], extends the concept of a-shapes to deal with weighted points 

(i.e. spheres with possibly unequal and non-zero radii) in three dimensions. An a­

shape of a set of weighted points Pw is a subset of the regular triangulation of Pw· 

Since these methods involve computing the entire triangulation first and then culling 

away the parts that are not required, their complexity is O(n2
) in time. This is worst­

case optimal, since an a-shape in three dimensions could have a complexity of f!(n2
). 

We next discuss a different approach that is easy to parallelize and is linear in n for 

environments where the maximum density of P in a given volume is some constant 

smaller than n. Molecules are a good example of such environments. 

4.2 Our Approach 

Our goal has been to formulate a parallel analytical molecular surface algorithm 

that has expected linear complexity with respect to the total number of atoms of 

a molecule. For achieving this goal, we have avoided computation of the complete 

three-dimensional regular triangulation over the entire set of atoms - a process that 

takes time 0 ( n 2 ), where n is the number of atoms in the molecule. 

Let us consider a molecule as a collection of weighted points ( c;, r;) in three dimen­

sions, where the coordinates c; of each point correspond to the center of atom i and 

the weight r; is the radius of atom i. Such collections of weighted points representing 

molecules have two interesting properties: (i) the minimum distance d;; between any 
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two centers c; and Cj is greater than or equal to a positive constant lmin - the small­

est bond-length in the molecule and (ii) the set of all the weights can be bounded 

from above and below by strictly positive values, 0 < r min ::; r; ::; r max· We take 

advantage of the first property to arrive at better running times for our algorithm. 

Stated simply, the first property says that the number of neighboring atoms within 

a fixed distance from any atom i, is always bounded from above by a constant kmax 

that depends on the minimum spacing between any two atoms. If the average num­

ber of neighbors for an atom is k, then we can just compute an approximation to the 

power cell (the concept of a power cell is presented in [A urenhammer 87] and briefly 

reviewed in Section 4.2.1), which we call a feasible cell (the definition of a feasible 

cell appears in Section 4.2.3), by considering only these neighbors. Each feasible cell 

can be computed in parallel in time 0( k log k ). For n atoms, this task requires n 

processors, each processor computing the feasible cell for one atom. 

4.2.1 Formal Notation 

In this section we will introduce the definitions and notations that we will be using 

for the rest of the chapter. We consider the underlying space to be three-dimensional 

Euclidean Space ~, although these results can be generalized to higher dimensions. 

Let a(c,r) be a sphere of center c and radius r. Let x,y be two points. Define 

d(x,y) to be the Euclidean distance between x andy. The power of a point x with 

respect to a sphere a(c,r) is defined as p(x,a) = tP(x,c)- r 2 Thus, p(x,a) < 0,= 

0, > 0, depending on whether x lies inside a, on the boundary of a, or outside a, 

respectively. 

Let M = {S1 , ... , Sn}, be a set of spheres, where each sphere, S;, is expressed 

as a(c;, r;). We shall be assuming that the atom i of a molecule is represented by 

the sphere S; and will be using the terms atom i and S; interchangeably. Let the 

radius of the probe-sphere be R. We define the extended-radius sphere for atom i to 

be W; = a(c;,r; + R). The surface of this extended-radius sphere W; is the locus of 

the possible centers of the probe-sphere when it is in contact with atom i. 

Define a chordale II;j of the spheres W; and Wj as II;j = {xlp(x, W;) = p(x, Wj)} = 
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{ xJ2x( Cj-c;) = r; 2 -r/-c;2 +c/-2R(rj -r;) }. Thus, II;j is a plane perpendicular to 

the line joining c; and Cj. Define the halfspace H;j as H;1 = { x /p( x, W;) < p( x, W J)}. 

The chordale ll;j divides the whole space into two halfspaces. H;j is that half-space in 

which all points have a smaller power with respect to W; than Wj. In other words, all 

points selected by H;j are closer to c; than Cj under the distance function defined by 

the power metric (as defined by the power function above), instead of the conventional 

Euclidean metric. Thus, whereas II;j = llj;, H;j # Hji· 

Define the power cell, PC;, for atom i as PC; = njHij· Thus PC; is the set of 

all the points that are closer to c; than any other sphere center Cj, assuming that 

the distance is measured in the power metric. The definition and algorithms for 

computing power cells have been given by Aurenhammer in [Aurenhammer 87]. 

4.2.2 Determination of Neighboring Atoms 

Determination of neighboring atoms can be done by spatial grid subdivision into 

cubical voxels, and assigning atoms to the appropriate voxels. We recall that an 

atom j is considered a neighbor to atom i if it is possible to place a probe such 

that it is in contact with both S; and Si (without considering any hindrance due 

to other atoms). We define the region of influence, p;, for atom i to be the sphere 

o-(c;,r; + 2R + maxj=1 r1). Then for computing the list of neighboring atoms, N;, 

for atom i, one needs to find all the atoms that are close enough to affect probe 

placement on atom i. Formally, N; = {j/d(c;,cj)::; r; + 2R+ rj}, or equivalently, 

N; = {j/W; n Wj 'f <f>}. The centers of all atoms whose indices occur inN; lie inside 

the sphere p;. Formally, Vj E N;,p(cj,p;) ::; 0. Therefore to compute the list of 

neighboring atoms for atom i, one needs to look at all the atoms whose centers lie in 

the voxels that intersect p;. Let the average number of neighboring atoms be k. Note 

that k grows as R3 , assuming that the atoms are uniformly distributed. In Figure 4.1 

atoms j 1 and j 2 are neighbors to atom i, but not to each other. 
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Figure 4.1: Defining Neighbors 

4.2.3 Determination of Surface Atoms 

Here the aim is to determine the atoms that are buried in the interior of the molecule 

and would not therefore directly participate in the final definition of the smooth 

molecular surface. This step is not crucial to the linear time complexity of the overall 

algorithm but it helps in improving the execution times. 

Let us first define a feasible cell Fi as Fi = njEN; Hij. We will refine this definition 

of a feasible cell later in this section. Since a power cell PCi is defined as PCi = 

nj Hij, it is easy to see that PCi ~ F£. This difference between power and feasible 

cells arises from the fact that for the construction of a feasible cell Fi we use only 

those halfspaces Hij for which it is true that the extended-radius spheres Ill i and Ill j 

intersect. However, for forming the power cells PC£, we use all the halfspaces Hij 

regardless of whether Ill i and Ill j intersect or not. 

In Figure 4.2, we show these differences for power cells and feasible cells defined 

over circles. The power cell PC3 contains two edges and one vertex as does the 

corresponding feasible cell F3 • However, whereas the power cells PC1 and PC2 have 

two edges and one vertex each, the corresponding feasible cells F1 and F2 have only 

one edge each, with no vertices. 

As the above example shows, it is possible to get feasible cells that are not 

bounded. However, it is attractive to have all the F; closed and bounded. This 

compactness property of F; enables one to use the vertices of Fi in computing a 
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(a) Power Cells (b) Feasible Cells 

Figure 4.2: Power Cells and Feasible Cells 

tessellation of the molecular surface. 

To make all F; closed and bounded, we first construct a tetrahedron T that encloses 

the entire molecule. Let each face f of T lie in a plane II 1. Every such plane II 1 

defines two halfspaces, one that includes the molecule and the other that does not. 

L~t Hj, 0 :::; f :::; 3 be the four halfspaces, one due to each face f ofT, that select the 

molecule. We include H1 with the set of halfspaces H;j that are used in defining F;, 

for all i. With this modification we are now ready to give the final definition ofF; as: 

F; = (njEN;Hij)n(nj;oHJ)· 

With the matter of the definition ofF; having been settled, we can now determine 

the surface atoms as follows. First, for the entire molecule we compute H1, 0 :::; f :::; 3. 

Next, for every atom i, we first compute N; as described in Section 4.2.2. Then 

we compute F; = (niEN;Hii)n(nj;0H1). IfF; = ¢>, atom i is totally buried and 

cannot be a surface atom. This checking for nullity is done by Seidel's randomized 

linear programming algorithm that has linear expected time and is quite fast in 

practice [Seidel 90]. All the atoms for which F; # ¢> are classified as candidates for 

being surface atoms. 

Note that this method does not reject atoms that are completely buried but ad-
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jacent to an internal cavity of the molecule. For such atoms, F; will be non-null 

and would contribute surface patches. Thus, our algorithm correctly computes the 

surfaces for the internal cavities of the molecule. 

4.2.4 Determination of Surface Patches 

Determination of the vertices defining the convex spherical, concave spherical, and 

toroidal patches is the most crucial (and time-consuming) part of the whole algorithm. 

If one computes a three-dimensional a-shape polytope for the set of atoms in 

a molecule, with a = probe-radius, then the torii occur along the edges, the con­

cave spherical triangular patches correspond to the faces, and the convex spherical 

patches correspond to the vertices of this polytope. The method given by Edels­

brunner [Edelsbrunner 92] finds these edges by first computing the entire three­

dimensional regular triangulation, an 0( n2 ) approach. We show here a method for 

computing the three-dimensional a-hull, for a given value of a, for molecules in par­

allel time 0( k log k) over n processors 

To compute F;, we compute the convex hull of the points dual to the H;j in 

the dual-space, as described in [Preparata & Shamos 85]. This is an 0( k log k) time 

process. Next we compute the dual of the convex hull to get the feasible cell F;, 

in time O(k). The intersection of the feasible cell F; with W; gives rise to a set of 

components on W;. Since F; is convex, every component 8ep is closed, connected, and 

does not intersect any other component. Each of these closed components 8ep, divides 

W; into two connected regions, say Rp, and Rp,. For exactly one of these, say R.m, it 
will be true that RPm C F;. We define RPm to be the interior of the closed component 

8cp. We can determine all these components 8cp, by finding the intersections of the 

edges and faces ofF; with W;. This can be done in O(k) time. 

After a connected component 8cp has been determined on Iii i we generate the 

surface patches. It is important to note here the distinction between the component 

8cP and the surface patches it generates. For each component 8ep, there exists a 

one-to-one mapping, say F, with a convex spherical patch of the Richards's surface 

together with parts of its adjacent (non-convex) patches. 
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We describe the mapping :F next. Let the component fJep be composed of r arcs, 

avo, ap,, ... , aPr-!, and r vertices, Vp0, vp,, . .. , vPr-l· The· arcs av., 0 ::; q < r determine 

the locus of the center of the probe while it is in contact with two atoms. These 

arcs aP• therefore are used to generate the toroidal patches. The vertices vv. of this 

component Ocp, where two arcs intersect, define the positions of the center of the probe 

while it is in contact with three atoms. These vertices vP• are used to generate the 

concave spherical triangular patches. The interior of the component fJep corresponds 

to the positions of the center of the probe while it is tangent to only atom i. This is 

used to generate a convex spherical patch. 

In Figure 4.3 a component defined by three chordales II;j's intersecting W i has 

been shown with its interior unshaded. 

Figure 4.3: Determination of Molecular Surface Patches 

4.2.5 Parallelization 

Our approach to computing the smooth molecular surface can be parallelized over all 

the atoms of the molecule. Each of the steps as described above can be carried out 

independently for each atom. The most expensive of these steps is the construction of 

a feasible cell which takes time O(k log k), fork neighbors. Therefore the complexity 

of our algorithm over n processors would be O(k log k). If the number of available 

processors p < n, we can allocate ~ atoms per processor to get a time complexity of 
p 

O(nk!ogk). These bounds hold in a CREW (concurrent-read exclusive-write) PRAM 
p 
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(parallel random-access machine) model of parallel computation. 

In the parallel computation of molecular surface, it is important to ensure that 

two adjacent surface patches that have been generated on two different processors 

do not have any cracks between them. In other words, the tessellation of the two 

adjacent patches should share all the vertices along the common boundary edges. 

This is easy to ensure amongst the surface patches for a single surface atom that are 

generated at the same processor, as all the information about the patches is locally 

available. However, ensuring that no cracks arise in the toroidal and concave spherical 

patches that are typically shared across two or three processors, respectively, is more 

interesting. We solve this problem by having each processor generate sub-patches (half 

of a toroidal patch or a third of a concave spherical triangular patch). Tessellation at 

the boundary of the sub-patches is done based on the length of the shared sub-patch 

edges and a global maximum-triangle-edge-length parameter t. Thus, if a sub-patch 

edge has length l units, we generate (fl Jtl - 1) additional, equispaced vertices along 

the sub-patch edge independently at the two processors sharing that edge. This 

ensures a continuous tessellation of the molecular surface with hardly any cracks. 

Some cracks do arise due to precision problems when l is almost equal to a multiple 

of t. In such cases, even slight differences in the value of l evaluated on different 

processors (from different parameters) cause the introduction of an extra vertex in 

the shared boundary edge. However, such cases are reasonably rare in practice. 

4.2.6 Robustness 

In the algorithms for computing the convex hull of a set of points, it is assumed 

that the points are in a general position, ie. no more than d points lie on a same 

( d -1 )-dimensional hyperplane. In reality this assumption often fails to hold, leading 

to problems. For example, planar benzene rings occur often in proteins, causing six 

carbon and six hydrogen atoms to be coplanar. 

One of the recent approaches to solving this problem has been to perturb the 

input point set slightly to avoid these degeneracies. We are using a version of the 

generic perturbation scheme proposed by Emiris and Canny [Emiris & Canny 92], 
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which perturbs the j'h dimension of the i'h point as: 

p;,j(t) = Pi,j + t(ij mod q)1 ::0 i:::; n, 1 ::0 j:::; d (IV.1) 

where t is a symbolic infinitesimal and q is the smallest prime greater than n. 

4.3 Results 

Our implementation has been done on Pixel-Planes 5 [Fuchs et al 89], although it is 

general enough to be easily portable to any other parallel architecture. Table 4.1 

shows our timings for computation and display of the molecular surface for various 

molecules for a probe-radius of 1.4A. For these results we were using configurations 

of 8, 16, or 24 Intel i860 processors. Our configuration of p processors consists of 

one master processor and p - 1 slave processors. The master processor is responsi­

ble for distributing the work amongst the slave processors that perform the actual 

surface computations. This explains the superlinear times observed in Table 4.1. 

The molecules for which we have made these studies are crambin, felix, dihydrofo­

late reductase (DHFR), and superoxide dismutase (SOD). The Brookhaven Protein 

Data Bank files that we have used for these molecules are pdb1crn.ent, pdb1fix.ent, 

pdb2dhf.ent, and pdb2sod.ent, respectively. We have removed all the extra water 

molecules that were at the end of pdb2dhf.ent as they are not a part of the DHFR 

molecule per se. At present, we are representing the molecular surface by triangles, 

and the column Tris in Table 4.1 refers to the complexity of the computed surface in 

thousands of triangles. 

As can be seen, the value of k, the average number of neighbors, is fairly constant 

for a given probe-radius over different molecules. Using concepts from the mathemat­

ical theory of packing of spheres and some reasonable assumptions, we shall show in 

Chapter V that for protein molecules, k is expected to be less than 140. 

Table 4.2 shows the times for the generation of the molecular surface for cram bin 

using 24 processors, and different probe-radii varying from l.OA to lO.OA. 
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Times (sec) 

Molecule Atoms Processors k Tris 

8 16 24 

Cram bin 327 0.66 0.32 0.24 41.3 14K 

Felix 613 1.34 0.66 0.42 40.7 31K 

DHFR 2980 5.62 2.70 1.79 44.8 92K 

SOD 4392 8.36 3.99 2.65 46.6 127K 

Table 4.1: Molecular Surface Generation for 1.4A Probe-Radius. 

Probe-Radius LOA 1.4A 2.8Jl 5.0A 10.0A 

Times (sec) 0.23 0.24 0.32 0.53 0.95 

k 29.9 41.3 91.8 191.5 318.3 

Triangles 16K 14K 12K llK llK 

Table 4.2: Crambin Molecular Surface Generation (24 Intel i860 Processors) 

The smooth molecular surfaces for cram bin with probe-sphere radii of 1.4A, 2.8A, 

5.0A, and 10.0A are shown in Figure 1.2(a), (b), (c), and (d), respectively. The 

smooth molecular surfaces for dihydrofolate reductase and superoxide dismutase for 

a probe-sphere radius of 1.4A are shown in Figure 4.4 (a) and (b), respectively. 

4.4 Conclusions 

We have presented a parallel algorithm for computing the molecular surfaces in paral­

lel time 0( k log k) over n processors. This is sufficiently general enough to be used for 

computation of a-hulls and a-shapes for a given value of a as long as no two points 

are arbitrarily close (i.e. the ratio of the distance between the closest pair of points to 

the diameter of the set of points is bounded from below by a strictly positive number). 

Our algorithm would give an order of magnitude improvement over the previous best 

known algorithms for molecules with moderately large values of n, on the order of a 

few thousands or more, in both sequential and parallel implementations. 
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(a) Dihydrofolate reductase) (2980 atoms) (b) Superoxide dismutase (4392 atoms) 

Figure 4.4: DHFR and SOD Molecular Surfaces, 1.4A Probe-Radius 

We would like to point out here that for large globular proteins one can ex­

pect O(n213
) atoms to lie on the surface. The other O(n113

) interior atoms will not 

contribute to the molecular surface (assuming that there are no internal molecu­

lar cavities). We can check for empty feasible cells by linear programming in O(k) 

time per atom. If the feasible cells for the buried atoms are empty, we are required 

to spend 0 ( k log k) time for generating the molecular surface patches for just the 

0( n 213
) surface atoms. For such cases, the sequential complexity of our algorithm is 

O(nk + n213k log k). 
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Chapter V 

Estimating the Number of Unit 

Spheres Inside a Larger Sphere 

This chapter outlines a set of techniques that can be used for efficiently estimating 

the number of unit spheres that can be placed within a given sphere of larger ra­

dius. For the case of packing of mutually disjoint spheres these techniques provide 

upper bounds, whereas for the case of packing of intersecting spheres these techniques 

provide good estimates. These techniques are directly applicable to the problem of 

estimating the number of neighbors under the commonly used Euclidean distance 

function, the £ 2-norm. 

Thus, for instance, these techniques can be used to estimate: 

• the number of atoms that "effectively" interact via Lennard-Janes attrac­

tive/repulsive energy function (which becomes infinitesimal beyond 6 - 7 A), 

as mentioned in [Surles 92]. 

• the number of points that need to be considered in a relaxation procedure where 

the force of repulsion due to a point falls off linearly with the Euclidean distance 

from it (and thus becomes zero at a fixed radius), as used in [Turk 92]. 

• the number of atoms that could potentially define a solvent-accessible molec­

ular surface due to a given atom, as described in [Varshney et al94a, 

Varshney & Brooks 93]. 



Although we shall be primarily working in three-dimensional Euclidean space, the 

techniques presented in this chapter can be generalized to higher dimensions. 

The rest of this chapter is organized as follows. In Section 5.1 we review some of 

the concepts from the mathematical theory of packings of spheres. In Section 5.2 we 

briefly outline the problem of computing the solvent-accessible molecular surface for 

proteins which we shall use to illustrate the different techniques. Sections 5.3 and 5.4 

outline the various techniques. Finally, in Section 5.5 we present our conclusions. 

5.1 A Review of the Theory of Sphere Packings 

In this section we shall briefly review some of the relevant results from the theory of 

packing of spheres. 

5.1.1 The Sphere Packing Problem 

The classical sphere-packing problem is to find out how densely can one pack mutually 

disjoint spheres of equal radii in three-dimensional Euclidean space. The general 

sphere-packing problem is to find the densest packing of disjoint equal-radius spheres 

in n-dimensional space. 

Let us define the maximum density 6 ( n) of a packing of spheres in n-dimensions 

to be the proportion of the space that is occupied by spheres in their tightest packing. 

The value of 6(2) was proved to be 0.9069 ... in 1892 by A. Thue. The classi­

cal sphere-packing problem for three dimensions is still an open problem, perhaps 

one of the most famous open problems in mathematics. For several years, the best 

known upper bound for the densest packing of spheres was 6(3) :::; 0.7796 ... , proved 

by Rogers [Rogers 58]. This was improved by Lindsey [Lindsey 86] to 0.7784 ... in 

1986. A packing of density 1r / v18 = 0. 7 405 ... , can actually be achieved by arranging 

spheres in the form of a face-centered cubic lattice. Thus, at present, we know that 

0.7405 :::; 6(3) :::; 0.7784, though Rogers [Rogers 58] remarks - "many mathemati­

cians believe" that the correct answer is 0.7405. For the values of 6(n), n > 3, the 

interested reader can refer to [Conway & Sloane 88]. 
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5.1.2 Sphere Packings in Spherical Space 

A problem that is closely related to the problem of packing spheres in the Euclidean 

space is that of packing ( n - 1 )-dimensional spheres (spherical caps) of angular di­

ameter </> on the surface of an n-dimensional unit sphere. 

Let us define A(n, </>) to be the maximal number of mutually disjoint spherical 

caps of angular diameter </> that can be placed on the surface of a n-dimensional unit 

sphere. Rankin [Rankin 55] has found the exact values for A( n, </>) for </> 2:: 1r /2: 

A(n, </>) = 1, 1r < </>::; 21r, 

A(n,q)) = l1- sec(q))J,sec-1(-n):::; q):::; ?r, 

A(n,q)) = n+ l,?r/2 < </> < sec-1(-n), 

A( n, 1r /2) = 2n. 

5.1.3 Multiple Packings of Spheres 

Till now, we have been assuming that the spheres that are used in the packing are 

mutually disjoint. What happens if we allow them to intersect? This concept has 

been studied under the notion of multiple packings. A set of spheres is said to form 

a k-fold packing if each point of the space belongs to at most k spheres. Let the 

maximum density of a k-fold spherical packing in n-dimensions be denoted by 8k( n ). 

Fejes T6th [Fejes T6th 79] has shown that 82(3) :::; 1.826. 

The results reproduced above are those most relevant to our research. They form 

but a tiny fraction of the results from the deeply exciting mathematical theory of 

packing and covering. The interested reader can further study this subject, starting 

perhaps with the classical book by Rogers [Rogers 64]. For more recent results in this 

field see the survey article by Fejes T6th [Fejes T6th 83] and the book by Conway 

and Sloane [Conway & Sloane 88]. 
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5.2 Solvent-Accessible Protein Surfaces 

In Section 5.2.1, we shall quickly review the terminology of Section 4.2.1 and the 

concept of neighborhood as described in Section 4.2.2. After that, we shall look at 

some relevant properties of proteins, the molecules for which the solvent-accessible 

surfaces are most often computed, and then list our assumptions for this problem. 

5.2.1 Terminology 

Let u( c, r) be a sphere of center c and radius r. Let x, y be two points. Define d( x, y) 

to be the Euclidean distance between x andy. The power of a point x with respect to 

a sphere O" is defined as p(x,u) = lP(x,c) -r2 Thus,p(x,u) < 0,= 0,> 0, depending 

on whether x lies inside O", on the boundary of O", or outside O", respectively. 

We shall be assuming that the atom i of a molecule is represented as a sphere 

S; = O"( c;, ri), where c; and r; are the center and radius, respectively, of atom i. Let 

the radius of the probe sphere be rprobe· We define the extended-radius sphere for 

atom ito be W; = u(c;,r;+rprobe)· This extended-radius sphere W; is the locus of the 

possible centers of the probe-sphere when it is in contact with atom i. 

An atom j is considered a neighbor to atom i if it is possible to place a probe 

such that it is in contact with both S; and Sj (without considering any hindrance due 

to other atoms). We define the region of influence, p;, for atom i to be the sphere 

O"(c;, r; + 2rprobe + maxj=1 ri)· Then for computing the list of neighboring atoms, N;, 

for atom i, one needs to find all the atoms that are close enough to affect probe 

placement on atom i. Formally, N; = {jJd(c;, Cj) < r; + 2rprobe + rj}, or equivalently, 

N; = {jJW; n Wj # </>}. The centers of all atoms whose indices occur inN; lie inside 

the sphere p;. Formally, Vj E N;,p(cj,pi) :S 0. In Figure 5.1 atoms j 1 and hare 

neighbors to atom i, but atom j 2 is not. 

Let us define the primary region P; for atom i to be the interior of the sphere P; = 

0"( c;, Rprimary), where Rprimary is the smallest radius such that it completely encloses 

all spheres whose centers lie in the region of influence p;. Formally, Sj C P;, V j E N;. 

This has been shown in Figure 5.2. 
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Figure 5.1: Determination of Neighboring Atoms 

Let k be the average number of neighboring atoms and let kmax be an upper bound 

on k. 

5.2.2 Proteins 

We recall from Section 2.1 that a protein is an arbitrarily long chain of bonded amino 

acid residues. Each amino acid residue has an identical backbone or main-chain part 

and a side chain of one of 20 types. 

Let us consider a graph G representing the covalent bond structure of a protein 

by representing each atom of the protein by a vertex and each covalent bond by an 

edge. G will be largely acyclic except for a few exceptions. These exceptions are -

(a) the three aromatic amino acid residues (phenylalanine, tyrosine, and tryptophan), 

which have either one or two cycles each in the side chain (b) proline - which forms 

a cycle through a bond between its side chain and main chain, (c) histidine- which 

has one cycle in its side chain, and (d) disulphide bonds. To a first approximation we 

can ignore these cycles and simply consider the graph G to be a tree. 

We recall that the degree of a vertex in a graph is defined as the number of edges 

incident at that vertex. From this it follows that in any graph, including a tree, the 

sum of the degrees of the vertices equals twice the number of edges. Now, if a tree has 

n vertices, it will haven- 1 edges, and therefore the sum of degrees will be (2n- 2). 

This sum will increase by one for every cycle in the protein. Therefore, to a first 
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Figure 5.2: Primary and Influence Regions 

approximation we can assume that the average degree per vertex in G is 2. In other 

words, to a first approximation, the average number of atoms covalently bonded to 

an atom in a protein molecule is 2. 

5.2.3 Assumptions 

Since it is extremely difficult to derive bounds for kmax for the general case where the 

radii of the atoms are different and the shape of the molecule is arbitrary, we shall 

make the following assumptions: 

A: The boundary effects of the molecule will be ignored. This means that for any 

atom, we will be assuming that its entire region of influence is completely filled with 

other atoms, even though it is clear that for atoms on the boundary of the molecule 

this will not be true. Although this assumption is not always true, it can only lead 

us to overestimate the average number of neighbors. 

B: For our purposes of finding the average number of neighbors we shall con­

sider all atoms to have an equal radii r a = 1. 75A. For comparison, the radii of 

various commonly occurring atoms in proteins are indeed close to each other: Car-
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bon- l.9A, Nitrogen- l.7A, Oxygen- l.5A, Sulfur- 2.00A, Phosphorous- 2.10A 

[Richardson 94, Weiner et a/84]. These values assume implicit hydrogens. 

C: The average distance between the centers of any two bonded atoms is l = l.5A 

-the bond length of a single C-C bond [Weiner et a/84]. 

D: The radius of the probe-sphere, which determines the radius of the region of 

influence, is Tprobe = 1.4A. 

With these assumptions, the radius of the region of influence is R;nfluence = 2 X 

T 0 + 2 X Tprobe = 6.3A. 

5.3 Volume-based Techniques 

This section explores some techniques that use volume-based arguments to estimate 

the number of unit spheres that can be placed within a sphere of larger radius. These 

techniques have been explored for the cases where the unit spheres are mutually 

disjoint or intersecting. 

5.3.1 Mutually Disjoint Spheres 

If all the unit spheres are mutually disjoint, then a trivial upper bound for kmax can 

be given by the ratio of the respective volumes. Thus, 

From the theory of packing of spheres we know that the maximum density of 

packing in three dimensions is given by 8(3) = 0.7784. Thus, we can obtain an 

improved bound: 

(V.l) 

For our example of solvent-accessible surfaces, we can use (V.l) by considering 

each atom to be represented by a sphere with radius half the average bond-length 

= l /2 = 0. 75A. The radius of the primary region would be R,rimary = ( Rinfluence + 
0. 75) /0.75 = 9.4. Here we divide by 0. 75 to normalize Rprimary so that the radius of 
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each sphere representing an atom is unity. Using (V.l) we get kmax ~ 0.7784 X 9.43 = 

646. 

5.3.2 Intersecting Spheres 

If the unit spheres are allowed to overlap each other completely, it seems best to use 

results from the multiple packings of spheres. Thus, if a k-fold packing of unit spheres 

is permitted, one can essentially use (V.l) above with 8(3) replaced by 8k(3). 

However, the more common case is one where the spheres are allowed to overlap 

each other only to a limited extent. Thus, the centers of two spheres are not allowed 

to get arbitrarily close to each other. In such cases one can proceed by first finding the 

smallest volume per center, which is the volume within which the center of no other 

sphere is allowed. In certain cases one can get a better (larger) value of the smallest 

volume per center by dividing the smallest volume for a collection of m centers with 

m. We can then compute k by dividing the total volume with the smallest volume per 

center. We illustrate this method for the case of solvent-accessible surface problem. 

As shown in Figure 5.2, we are interested in computing the number of spheres 

whose centers lie within the region of influence. From Section 5.2.3, we have the radius 

of the region of influence= 6.3A, where the radius of each atom is 1. 75A. Normalizing 

the former, so that we have unit radius spheres, we have rinfluence = 6.3/1. 75 = 3.6. 

In computing the solvent-accessible molecular surface for proteins we can assume 

that each atom is covalently bonded to two other atoms on an average, as stated 

in Section 5.2.2. This in conjunction with assumption C in Section 5.2.3, implies 

that the maximum number of atom centers that can lie within a sphere of radius 

l = 1.5A is 3. Normalizing l for the coordinate system of unit spheres, we have 

l = 1.5/1.75 = 0.857. This is shown in Figure 5.3. 

Volume per center 2: H-t; (0.857]3) ,;, -t; (0.2099) and total volume= -t; rJnJiuence = 

-t; ( 46.65). 
43(46.65) -

Therefore, k ~ '; (0.2099) - 222. 

We can improve the above bound, if we are prepared to make the following as­

sumption: 
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s. 1 1-

Figure 5.3: Smallest Volume per Three Centers 

Two atoms i and j are bonded iff c; E 0'( Cj, Tj) and Cj E 0'( c;, r;), that is the center 

of atom i lies inside the sphere representing atom j and vice-versa. 

With the above assumption we have the volume per center > H~~(1)3) -

-t; (0.3333). 
.,. (46.65) -

Therefore, k :::; <,• (0.3333) - 139. 

5.4 A Surface-based Technique 

In this section we will explore a surface-based technique to bound the number of unit 

spheres that can be placed around a unit sphere centered at the origin, such that 

all of them lie inside a larger sphere of a given radius centered at the origin. First, 

we will explain the intuition behind the problem by considering a simpler version of 

the problem. Next, we will generalize the solution technique to work under general 

conditions. Finally, we will demonstrate the use of this technique to estimate the 

number of solvent-accessible neighbors in proteins. 

5.4.1 Special Case 

We recall from Section 5.2.1 that we denote a sphere of radius r centered at c by 

O'(c, r). Let us first consider the following simpler problem: "Bound the number of 
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unit spheres in o-(O,r) \o-(0,1), 1 :S:: r < 4". Here, o-(O,r) \o-(0,1) denotes the region 

that lies outside a unit radius sphere centered at the origin, but on or inside the 

sphere of radius r centered at the origin. Let us further assume for now that all the 

unit spheres are mutually disjoint. 

After some thought, we can convince ourselves that all unit spheres which lie in 

o-(0, r) \ o-(0, 1) intersect o-(0, y'r), 1 :S:: r < 4. This is shown in Figure 5.4. We shall 

henceforth use the term shell to refer to the surface of a sphere on which we are 

comoutine: the intersections of the unit soheres. Thus. in this case o-(0, y'r) is the 

Spherical cap 
on a unit sphere 

\ 
Figure 5.4: Intersections With a Single Shell 

As can be seen in Figure 5.4, a unit sphere intersects the shell forming two spherical 

caps - one on the shell and the other on the unit sphere. Let the minimum angular 

radius of the spherical caps on the unit spheres be r/>min· G. Fejes T6th [Fejes T6th 79] 

has claimed that for this case r/>min 2': arcsin ( j( 4- r )/2), and indeed it is easy enough 

to verify this. 

Now, to bound the number of unit spheres, we just need to bound the number 

of spherical caps on the shell o-(0, y'r). Using the terminology introduced in Sec-
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tion 5.1.2, we observe that kmax ::; A(3, 2cPmin)· For cPmin 2:: 1r /4, we can use the 

formulas from Rankin [Rankin 55] reproduced in Section 5.1.2 and that will give us 

a bound on kmax• 

However, the exact values of A(3, ¢>), for all values of ¢> are not yet known. For 

values of cPmin for which A(3, 2¢>min) is not known, we can simply divide the total 

surface area of the shell by the surface area of the smallest spherical cap on it, to get 

an approximate upper bound for kmax· 

5.4.2 General Case 

There are two different ways in which the problem as defined in the previous section, 

can be generalized. First, we should allow r to assume values larger than 4. Second, 

we should lift the restriction of mutually disjoint unit spheres and allow them to 

intersect. 

Before looking at the completely general case, let us first consider the case where 

1 ::; r < 6, and any sphere can intersect at most n other spheres. Thus, we are 

interested in a (n + 1)-fold packing of unit spheres. 

Consider, u(O, 1), the unit sphere centered at the origin. Since no more than n 

spheres can overlap its center, the total number of its neighbors whose centers lie 

inside u(O, 1) is at most n. We also note that any unit sphere that lies completely 

inside u(O, r) will have its center inside u(O, r -1). Thus, we are interested in placing 

a bound on the number of spheres whose centers lie in u(O, r -1) \ u(O, 1), while they 

form a (n + 1)-fold packing. Let N(i,j), i::; j denote the number of spheres forming 

a (n +I)-packing such that their centers lie in u(O,j) \ u(O, i). 

We are interested in computing N(O, r) = N(O, 1) + N(l, r -1) + N(r -1, r). For 

us, N(O,l)::; nand N(r-l,r) = 0. Thus, N(O,r)::; n+N(l,r-1)+0 and we shall 

now attempt to bound N(l,r -1). 

Theorem 1 If 1 ::; r < 6, all unit spheres whose centers lie in u(O,r -1) \ u(O, 1) 

will intersect either u(O, j(r + 2)/2) or u(O, j(r2 - r + 2)/2) in a minimum angular 

radius of cPmin =arcsin j(6- r)(r + 2)/4. 
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Proof: Let H(at,a2) denote the plane passing through the intersection of a 1(c1,rt) 

and a2( c2, r2), and let e( a 1 , a2) denote the distance of this plane from the origin. In 

Figure 5.5(a), the intersection of a 1 and a 2 is shown. Figure 5.5(b) shows a magnified 

view of the same and labels e( at, a 2), <P, etc. 

A 

A 

0 

0 - h 

8 
e(Cj,C2J 

c:;; 

H(Cj,q;l 
8 

c:;; 

H(Cj,CJ) 
(a) (b) 

Figure 5.5: Computing tPmin 

We will be using the polar coordinates (r, 0, <!>) to specify the centers of the 

spheres. Without loss of generality, let us consider the centers to lie along <!> = 0, 0 = 

0. 

We will first prove that if the center of a unit sphere lies between (1, 0, 0) and 

(r /2, 0, 0), it will intersect the sphere a(O, j(r + 2)/2) with a minimum angular radius 

of arcsin j(6- r)(r + 2)/4. Figure 5.6 shows this. 

It is easy to see from Figure 5.5 that to minimize <fo, the center of a 1 should be 

as far away from the boundary of a2 as possible. Given that the center has to lie 

between (1,0,0) and (r/2,0,0), the two possibilities for minimizing <Pare: (1,0,0) or 

(r/2,0,0). 

Let in Figure 5.5, a 1 be a unit sphere centered at (1,0,0): a((1,0,0), 1), and let 
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r _ lr+2 
a-\ 2 

Region 1 

r/2 

I 
r2-r+2 

' 2 

r- 1 

Figure 5.6: Two Nested Shells CTa and O'b 

1J2 = CT((O,O,O), ,j(r + 2)/2). The distance of their radical plane (passing through 

their intersection), from the origin is: d(0"1,CT2) = (r + 2)/4. Thus, as can be seen 

from Figure 5.5(b ), cos <P = e( O'J> 0'2 ) - c1 = (r - 2)/4 and sin <P = y'1 - cos2 <P = 

,j(6- r)(r + 2)/4. 

Similarly, if we consider CT1 = CT((r/2,0,0),1) and CT2 = CT((O,O,O),,j(r+2)/2), 

we will again get sin <P = ,j(6- r)(r + 2)/4. Therefore, in Region 1, <Pmin :2: 

arcsin ,j(6- r)(r + 2)/4. 

The proof that if the center of the unit sphere lies between (r /2, 0, 0) and (r -

1, 0, 0), it will intersect the sphere 0'(0, ,j(r2 - r + 2)/2) in at least an angular radius 

of arcsin ,j(6- r)(r + 2)/4, is quite similar and can be proved along the same lines. 

0 
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To bound N(1, r-1) we would like to bound the number of circles with a minimum 

angular radius of </>min that can occur in a (n + 1)-fold packing on the surfaces of 

a. = a(O, j(r + 2)/2) and ab = a(O, j(r2
- r + 2)/2). We do this by dividing the 

surface area of the whole sphere (a a or ab) with the surface area of one such spherical 

cap of minimum angular radius. 

The value of h (as shown in Figure 5.5(b)) for the smaller shell aa (shown in 

Figure 5.6) can be computed to be ha = j(r + 2)/2- (r + 2)/4 and for the larger 

sphere ab to be hb = j(r2 - r + 2)/2- (3r- 2)/4. 

The surface area of a spherical cap of height h on the surface of a sphere of radius 

r is given by 21rrh. 

Therefore: 

47rr2 47rr2 2r 2rb 
N(1,r-1)::0:(n+1)(

2 
h +

2 
~ )=(n+1)(-h"+-h) (V.2) 

1rr a a 7rTb b a b 

In general, for s shells, let the radii defining the various regions be given by 

x0 , x1 , •.• , x, (first region is a(O, x 1 ) \ a(O, x0 ), second region is a(O, x2) \ a(O, x1 ), 

etc.), and the radii of the shells be given by rr, r2, ... , r, (x0 < r1 < xr, x 1 < r2 < 

x2, ... , x,_1 < r, < x,). By imposing the constraint that all the unit spheres in 

a(O,r) \ a(O, 1), intersect at least one of the s shells in the same minimum angular 

radius, we have derived the following equations: 

x0 = 1 

x, = r -1 

r? = x;x;_1 + 1, 1 ::; i ::; n 

r? + rL = 2(xL + 1),2::; i::; n 

(V.3) 

(V.4) 

(V.5) 

(V.6) 

For a given value of r and s, one can solve the above system of simultaneous 

equations to get the value of the various r; and x;. The value of </>min can thus be 

computed for each shell and can then be used to compute N(O,r). 

For the problem of computing the number of solvent-accessible neighbors, we 

have: radius of an atom ra = l.75A and the probe radius rp = 1.4A. Then R1 = 
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2 x r. + 2 x rp + r. = 8.05. Normalizing it so that the original atom has unit radius, 

we have r = R,/r. = 4.6. For r = 4.6 and n = 2, we get: r. = 1.8165, h. = 

0.166, rb = 3.046, hb = 0.0963. Substituting these values in (V.2), we get: N(O, r) ::; 

n + N(1, r- 1) = 2 + 252 = 254. 

Note that due to our assumption that on an average no point in space is covered 

by more than three spheres, the number of solvent-accessible neighbors we have found 

is an estimate and not an actual upper bound. However, the technique itself is general 

and can be used to derive upper bounds for the number of unit spheres that can be 

placed inside a larger sphere, given an upper bound on the number of spheres that 

can cover any point within the larger radius sphere. 

5.5 Conclusions 

We have described several techniques to bound or estimate the number of unit spheres 

that can be accommodated inside a larger sphere of a given radius. Depending on 

the application, one of these techniques could be used to derive a good estimate on 

the number of neighbors. For our application of computing the solvent-accessible 

neighbors in a protein molecule, the best estimate that we achieved was by using 

the volume-based technique of Section 5.3.2, which yielded 139 to be the maximum 

average number of neighbors one could expect for a probe radius of 1.4lL 

59 



Chapter VI 

Molecular Interface Surfaces 

6.1 Surfaces at Molecular Interfaces 

One of the important factors that influences the position and orientation of the protein 

with respect to the substrate in protein-substrate docking is the geometric fit or 

surface complementarity between them. It is quite difficult to visualize the molecular 

surface at the interface of the protein and substrate. Traditionally, the interface has 

been studied by using a clipping plane that is moved along the z-axis in the screen­

space [Richardson 92]. This enables one to step-through the interface studying its 

cross-sections in a manner similar to that a physician employs while studying the 

various CT -scans of a patient one at a time. This essentially means studying a three­

dimensional molecular interface in a two-dimensional manner, which is quite tedious 

and hard to understand. 

Things get even harder to visualize by the clipping-plane method when one is 

studying an interface that does not lie in a plane or when one is interested in a 

simultaneous study of pairwise·interfaces across three or more molecular sub-units. 

Such cases do occur in practice, for example, in studying the packing of a-helices in 

crystalline protein structures. 

We have developed an approach that allows biochemists to visualize the inter- and 

intra-molecular interfaces in three dimensions. The clipping of the molecular surfaces 

is defined by a piecewise polygonal surface derived from the power-diagrams defined 



over the participating molecular units. This provides biochemists with a powerful 

tool to study the surface complementarity across molecular interfaces in a natural 

three-dimensional manner. 

6.2 Computation of Molecular Interface Surfaces 

Since we are most interested in visualizing the interface between two molecular units, 

let us first characterize it. 

Construct a single power-diagram of the spheres/atoms from the two molecules 

A and B consisting of n and m atoms, respectively. Let these two sets of atoms 

be represented as A= {at,az, ... ,an} and B = {b1,b2, ... ,bm}· Each face of this 

power-diagram would be defined by two atoms. If the two atoms defining a face are 

a;, 1 ::0:: i ::0:: n and bh 1 ::0:: j ::0:: m, i.e. they come from two different molecules, then let 

us label such a face as an interface-face. Interface-faces for two molecules are shown 

in Figure 6.1 in bold. Let us define an interface-cell of the power diagram to be a cell 

that has at least one interface-face. Thus, the interface-cells would occur one deep 

on either side of the inter-molecular interface as shown in Figure 6.1. Let us define 

interface-atoms to be those atoms whose cells are interface-cells. 

We note that the molecular interface between molecules A and B is completely de­

fined by the piecewise planar surface formed by the interface faces. A two-dimensional 

version of this problem is shown in Figure 6.1 in which the interface is is represented 

as a bold polyline. 

This approach is easily extensible to handle cases where more than two molecules 

form an interface. We note that every face of the power diagram is defined by exactly 

two atoms, regardless of how many molecules participate at the interface. We simply 

label a face as an interface-face if the two atoms defining it come from two different 

molecules. Interface-cells and interface-atoms are analogously determined. 

We next define the interface surfaces between the two molecules A and B. Let the 

complete molecular surfaces defined ·for a probe-radius a for the molecules A and B 

be represented by S(A, a) and S(B, a), respectively. The molecular interface surface 
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Figure 6.1: Interface Cells and Interface Faces 

T(A, B, a, /3) for a probe-radius a and an interface-radius f3 for the two molecules 

A and B is defined as the subset of S(A, a) and S(B, a) that includes exactly those 

points of S(A, a) that are within a distance (3 from the surface of some atom of B 

and exactly those points of S( B, a) that are within a distance (3 from the surface of 

some atom of A. 

To efficiently compute the surfaces at the molecular interface, we start outwards 

from the interface atoms. First, the entire layer of interface atoms of a given molecule, 

say A, are used to generate the smooth molecular surface for A. This surface is 

generated in a manner similar to that described in Section 4.2. 

Let us define an atom b of B to be the sphere a( q, rb), where q is the center and 

rb is the van der Waal's radius of the atom b. Let us define B( + (3) to be a collection 
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of spheres a( cb, rb + (3) derived from the atoms of B. The surface patches for each 

atom a of A are clipped by the union of those spheres from B( +(3) that overlap it. 

If any of the neighbors of a overlap with spheres of B( +(3), we include them in the 

list of atoms of A that have to be processed for defining the surface at the interface; 

otherwise, we continue on to the next interface atom of A. At the end of this step, all 

the interface atoms, that are one layer deep from the interface (as shown in Figure 6.1) 

would have been correctly processed and those atoms from the next layer that should 

be processed would have been added to the list of atoms of A to be processed. W~ 

keep iterating in a similar manner with the next layer of interface atoms of A, till 

we get to a stage where none of the unprocessed atoms of A intersect the union of 

B( +(3). In this manner, we construct the interface surfaces for all the molecules at 

the interface. 

Since construction of a three-dimensional power diagram could get expensive, we 

again adopt a feasible-cell approach that approximates the power diagram well enough 

for our purposes and is linear in the total number of atoms. This has been described 

in Section 4.2. 

For results of our implementation, refer to Figure 1.3 where we have shown inter­

face surfaces for various values of n and (3 for the four domains of transthyretin. 
' 

6.3 Goodness-of-fit for Molecular Interfaces 

This section outlines a possible criterion for measuring the geometric goodness-of-fit 

between two molecules or between two sub-units of the same molecule. The motiva­

tion behind this is to quantify the surface complementarity between two molecules. 

This could be used in applications like docking to measure how well two given 

molecules fit. 

We note that for a good fit, the two molecules should be close to each other. 

Volume between the two molecules provides one goodness-of-fit measure albeit a poor 

one, since it does not take into account the surface area of the interface. Similarly, 

the area of the interface surface, gives another criterion for measuring the surface 
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' complementarity, but it fails to give a sense of intervening volume between the two 

molecules. However, if we blend these two measures, we can quantify the surface 

complementarity in a better manner. 

Molecule A Molecule 8 

Figure 6.2: Computing Goodness-of-Fit 

One such useful measure could be the average intervening volume per unit area 

of interface-faces. 

Let the set of all interface-faces be given by IF, and the set of all interface-atoms 

be given by fA· Consider an interface-face fi E IF as shown in Figure 6.2. Let the 

atom on the side of molecule A defining this face be a;. In general, the face h would 

be a convex polygon. Consider the pyramid formed by connecting the vertices of h 
to the center of atom a;. Let the volume in this pyramid lying outside the atom a; 

be V;j, as shown in Figure 6.2. Similarly, let the volume that lies outside the atom 

bk but within the pyramid defined by fi and the center of atom bk be Vkj· Let us 

attribute to face fJ a volume Vj = Vij + Vkj· Let the area of the interface-face fJ be 

Aj. Then one could measure the fit between two molecules as: 

(VI.l) 

In the expression for F we have raised the volume and area terms to powers of 2 
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and 3, respectively, to make F a scale-invariant dimensionless quantity. 

The smaller F, the better the fit and vice-versa. 

An additional issue that remains to be addressed, before the above measure can 

be used, is to have a good definition of the region of interface. For this, we need to 

find a criterion to define a suitable subset of the interface-faces as belonging to the 

region of interface. We note that such a criterion cannot be simply based on local 

properties such as distances of the interface-faces from their defining atoms. This 

criterion has to be based on a global property so that in Figure 6.3, the interface 

between the molecules A and B is quantitatively evaluated to be a better fit than the 

interface between the molecules C and D. 

Region of Interface 

(a) (b) 

Figure 6.3: Defining the Region of Interface 

We propose that the region of interface be determined by rolling an exterior sphere 

of an appropriate radius (depending upon the properties of the interface being stud­

ied) over the interface. 

In Figure 6.3, the interface-faces as defined above are shown by the curve between 
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two pairs of molecules (a) A and B, and (b) C and D. For both (a) and (b) we would 

like to specify the region of interface as the subset of the interface-faces. By rolling 

an exterior sphere as shown in Figure 6.3 we can now define the region of interface, 

represented as a bold polyline in that figure for a two-dimensional version of the 

problem. With this definition of the region of interface, if the above goodness-of-fit 

measure is evaluated over both the cases (a) and (b), it would turn out to be better 

for (a) than for (b). 

Figure 6.4: Redefining Region of Interface for Molecules C and D 

For certain cases, biochemists expect the interface to be subdivided into several 

components. Our method of rolling an exterior sphere extends gracefully to allow the 

biochemist to incorporate his or her knowledge in reasonably defining the region of 

interface. Thus, for the interface of molecules C and D, the biochemist can choose a 

smaller radius of the exterior sphere, if that is more appropriate, to define a smaller, 

two component region of interface that yields a better goodness-of-fit between the 

molecules C and D. This is shown in Figure 6.4. 

In general, we expect the biochemists to arrive at a reasonable value for the 

radius of the exterior sphere, for defining the region of interface between a given 
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set of molecules, through their knowledge of the molecular interface characteristics 

and by visualizing the interface using the molecular interface surfaces defined in this 

chapter. 
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Chapter VII 

Level-of-Detail Generation for 

Polygonal Models 

7.1 Motivation 

Advantages of using simplified models of an object for efficient scene rendering 

have been well-documented in the literature- [Clark 76], [Cosman & Schumacker 81], 

[Crow 82], and [Funkhouser & Sequin 93]. The basic idea is to use simplified models 

for objects that are perceptually less important and detailed models for objects that 

are more important. Perceptual importance is in general difficult to define precisely. 

However, heuristics such as the percentage of screen area covered, distance from the 

viewer, distance from the center of the screen, etc.· have been found to work well. A 

prerequisite to this approach for rendering complex datasets is a method to simplify 

object models. Manual simplification of models is possible and has been done in 

the past [Cosman & Schumacker 81]. However, such simplification is time-consuming 

and may not even be feasible for large datasets whose complexity is in the order of 

millions of polygons. 

In this chapter, we present an algorithm for computing various levels of detail of 

a given polygonal model. Different levels of detail representations of an object can 

be used in several ways in computer graphics. Some of these are: 



• Use in a level-of-detail based rendering algorithm for providing desired frame 

update rates. 

• Using low-detail approximations of objects for illumination algorithms, espe­

cially radiosity. 

• Simplifying traditionally over-sampled models such as those generated from 

volume datasets, laser scanners, and satellites. Storing them in their original 

form as opposed to storing their approximations, amounts to wasting memory 

for storage as well as CPU cycles during processing, with disproportionately 

few benefits. 

In this chapter we discuss an approach for generating lower-complexity approxima­

tions to a given polygonal representation of an object that are guaranteed to deviate 

from the original by no more than a user-specifiable amount. Such an approach 

has several benefits in computer graphics. First, we can very precisely quantify the 

amount of approximation that is tolerable under given circumstances. For instance, 

one possibility could be to define a tolerable approximation for rendering an object 

as, say, 2 screen pixels. Using this information in conjunction with the distance of 

the object from the screen, we can estimate the maximum deviation permissible from 

the surface of the object. This can then be used to find which precomputed level of 

detail of that object is most suitable. Second, this approach allows us a fine con­

trol over which regions of an object we should approximate more and which ones 

less. This could be used in selectively preserving those features of an object that are 

perceptually important. 

In Section 7.2 we shall review some of the previous work done in the area of 

approximation of polygonal models. Then in Section 7.3 we shall formally state 

our problem and list assumptions for our algorithm. Our basic approach is to first 

generate two offset surfaces to the input model, one on the outside and the other 

on the inside of the input object. The definition and generation of offset surfaces 

is presented in Section 7 .4. Then we generate all candidate triangles that lie within 

these two offset surfaces and have their vertices selected from the set of vertices of 
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the input model. We then associate the vertices and triangles of the input model 

with the candidate triangles. Methods for these steps are describedin Section 7.5. 

Our final step is a greedy approach for selecting the approximation triangles from 

the candidate triangles. Why this approach works and how this can be used to get 

a quantitative measure of the quality of approximation is described in Section 7.6. 

In Section 7. 7 we discuss various features of this approach. Finally in Section 7.9 we 

present our results 

7.2 Previous Work 

We have seen in Chapter III some of the previous work that has been done in approx­

imation of two-dimensional piecewise linear curves. In this section we shall consider 

the work done in approximation of three-dimensional objects. 

Let us define a polygonal object to be an object with planar faces. This is a com­

puter graphics terminology. In computational geometry polygonal objects are referred 

to as piecewise linear objects. We shall be using these two terms interchangeably. 

Let us next define the term £-approximation. Given two piecewise linear objects 

P and Q, we say that P and Q are €-approximations of each other iff every point on 

P is within a distance f of some point of Q and every point on Q is within a distance 

€ of some point of P. This is also called the Hausdorff distance, H(P, Q)::; €. 

Approximation algorithms for three-dimensional polygonal models can be classi­

fied into two broad categories: 

• Min-# Approximations: For this version of the approximation problem, 

given some error bound f, the objective is to minimize the number of vertices 

such that no point of the approximation A is farther than f distance away from 

the input model I. 

• Min-f Approximations: Here we are given the number of vertices of the 

approximation A and the objective is to minimize the error, or the difference, 

between A and I. 
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In computer graphics, work in the area of min-# approximations has been done by 

[Schmitt et a/86] and [DeHaemer, Jr. & Zyda 91] where they adaptively subdivide a 

series of bicubic patches and polygons over a surface until they fit the data within 

the tolerance levels. 

[Turk 92, Schroeder et a/92, Rinker & Hansen 93] are a good representative col­

lection in the second category. Turk first distributes a given number of vertices over 

the surface depending on the curvature and then re-triangulates them to obtain the 

final mesh. Schroeder et a!., and Rinker and Hansen, operate on a set of local rules 

- such as deleting edges or vertices from almost coplanar adjacent faces, followed 

by local re-triangulation. These rules are applied iteratively till they are no longer 

applicable. A somewhat different local approach is taken in [Rossignac & Borre! 92] 

where vertices that are close to each other are clustered and a new vertex generated 

to represent them. The mesh is suitably updated to reflect this. 

Hoppe et a!. proceed by iteratively optimizing an energy function over a mesh 

to minimize both the distance of the approximating mesh from the original, as well 

as the number of approximating vertices [Hoppe et a/93]. An interesting and ele­

gant solution to the problem of polygonal simplification by using wavelets has been 

presented in [DeRose et a/93]. 

In computational geometry literature it has been shown that computing the 

minimal-facet t-approximation is NP-hard for convex polytopes [Das & Joseph 90] 

as well as polyhedral terrains [Agarwal & Suri 94]. Thus, algorithms to these prob­

lems have evolved around finding polynomial-time approximations that are close to 

the optimal. 

Let ko be the size of a min-# approximation. [Mitchell & Suri 92] present an al­

gorithm for computing an E-approximation of size 0( ko log n) for convex polytopes. 

This has recently been improved in [Clarkson 93] where Clarkson proposes a ran­

domized algorithm for computing an approximation of size 0( ko log ko) in expected 

time O(k0 n1+'), where fJ can be an arbitrarily small positive number. Working with 

polyhedral terrains, [Agarwal & Suri 94] present a polynomial-time algorithm that 

computes an t-approximation of size O(ko log ko) to a polyhedral terrain. Similar 
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results have been obtained by Mitchell [Mitchell 93]. 

7.3 Problem Definition 

In this section, we shall first identify the desirable features of an approximation 

scheme. Then we shall define our approximation problem. Finally, we shall state 

our assumptions for the rest of this paper. We will be assuming that I is a three­

dimensional compact and orientable object whose polygonal representation P(I) has 

been given to us. Our objective is to compute a piecewise linear approximation A to 

P(I). Henceforth we will be referring to P(I) as simply P. 

7.3.1 Desiderata of a Good Approximation Scheme 

Let us consider the desiderata for any "good" approximation scheme :F that maps an 

input object P to its approximation A, where :F is denoted as :F: P -+ A. It seems 

reasonable to expect the following of :F from a mathematical and aesthetical point of 

v1ew: 

• :F should be invariant under translation and rotation. 

• :F should ensure that the volume of the difference between A and P is small 

and bounded. 

• :F should be genus-preserving. 

• :F should be symmetry-preserving. 

• :F should allow adaptive approximation of different parts of an object to different 

user-specifiable degrees. 

• :F should be amenable to a parallel implementation. 

In most computer graphics models, there is a lot of useful information stored at 

the vertices such as color, normals, texture coordinates, etc. It would therefore be 

desirable if in addition to the above, we also have: 
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Vertices(A) ~Vertices (P). 

7.3.2 Problem Statement 

Keeping in mind the desiderata outlined in the previous subsection, we define our 

problem as follows: 

Given a polygonal representation P of an object I and an approximation parameter 

t, generate a genus-preserving E-approximation A with minimal number of polygons 

such that the vertices of A are a subset of vertices of P. 

We have already seen in Section 7.2 that it is NP-hard to find a minimal €­

approximation for even convex objects or polyhedral terrains. Thus, our objective 

will be to compute the €-approximation A that has a smaller number of polygons than 

P and whose number of polygons can be related to the smallest possible number of 

polygons in any €-approximation of P. 

7.3.3 Assumptions on Input 

Without loss of generality, we shall assume that all polygons in P are triangles and 

that Pis a well-behaved polygonal model, i.e. every edge has two adjacent triangles, 

no two triangles interpenetrate, there are no unintentional "cracks" in the model, no 

T -junctions, etc. 

We will be further assuming that the vertices of P have normals that faithfully rep­

resent the normals of the object being modeled. By this we mean that it should not be 

possible for an observer to distinguish (to a reasonable degree) between the polygonal 

representation of an object and the object itself, by just examining those properties 

that depend on the object normals (for instance shading). Thus, if the object is a 

sphere and its polygonal representation is an octahedron, for a faithful representation 

of the former, the latter should have unique normals at each vertex and edge that are 

equal to the normal of the sphere at those points. With this representation, shading 

models such as those of Gouraud or Phong will give an approximately sphere-like 

shading to the octahedral approximation. In general, polygonal approximations to 
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curved objects have unique vertex and edge normals to avoid the discontinuities in 

the normal-based properties of the object. 

However, if the object being modeled has sharp edges, such as an octahedron, we 

would like to retain the discontinuity in the normals across the faces. In such cases, a 

faithful polygonal representation requires that there be multiple normals associated 

with each vertex and edge - one associated with every adjacent face. An arbitrary 

object could have both kinds of vertices, with or without unique normals. We will 

first present our algorithm with the assumption that the vertex normals are unique 

(i.e. there are no normal discontinuities, or sharp edges, in the model), and then 

show that with a very simple and straightforward modification, we can handle the 

case where normal discontinuities are allowed. We shall further assume, as is done 

in most computer graphics, that bilinear interpolation of the vertex normals in the 

polygonal representation of an object is sufficient to reasonably duplicate the normal­

based properties of the object. 

7.4 Generation of Offset Surfaces 

Let the x, y, z coordinates of a three-dimensional surface parametrized by s and 

t be given as: x = ft(s, t), y = f 2(s, t), and z = !J(s, t). Using vector 

notation, we can say that the three-dimensional parametric surface f is given 

by: f(s,t) = (!1(s,t),fz(s,t),!J(s,t)). Let the unit normal to f be: n(s,t) = 
(n 1 (s,t),n 2(s,t),n3(s,t)). Then, the £-offset for f is defined as 

f'(s, t) = (!Hs, t), fHs, t),j~(s, t)) 

where, 

f;'(s, t) = j;(s, t) + m;(s, t). 

For our purposes, let us simply define an offset surface P( +<'")(respectively P( -<'")) 

for an object I to be a surface that lies within a distance of E from every point p on 

I in the same (respectively opposite) direction as the normal to I at p. 
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Since we would be generating all triangles that lie within these two offset surfaces, 

in the interests of preserving the genus of P, we desire that these offset surfaces not 

intersect each other or themselves. 

To meet this criterion we might have to reduce our level of approximation at cer­

tain places. In other words, to guarantee no intersections amongst the offset surfaces, 

we will have to be content at certain places with the distance between P and an offset 

surface being smaller than c. 

Next, we introduce the notions of edge halfspaces and the fundamental prism. 

Then using these concepts, we will discuss a method to generate a particular kind of 

non-intersecting offset surfaces that lie at an offset of no more than c from P. 

7.4.1 Edge Halfspaces 

In Section 7.3.3 we had made the assumption that the normals to the vertices in 

P faithfully represent the object I and that bilinear interpolation of the normals is 

sufficient across any triangle of P for computing the normal-based properties. 

If for every edge e = ( v1, v2 ), we have three constraints - coordinates of the 

vertices v1 and v2 and the same normal to I at both the vertices v1 and v2 , we 

can construct a plane 1r e that passes through the edge e and has a normal that is 

perpendicular to that of v1 and v2. Thus Vt, v2 and their normals all lie along 1r e· 

Such a plane defines two halfspaces for edge e, say 1r; and 1r;. This is shown in 

Figure 7.l(a). 

However, in general the normals n1 and n 2 to the vertices v1 and v2 defining an 

edge e need not be identical. How can we reasonably define the two halfspaces for an 

edge in such a case? One choice could be to use a bilinear patch that passes through 

v1 and v2 and has a tangent n 1 at v1 and n 2 at v2 • Let us call such a bilinear patch 

for e as {3 •. Let the two halfspaces for the edge e in this case be 13; and /3;. This is 

shown in Figure 7.1 (b). We shall refer to a halfspace for an edge as an edge halfspace. 
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(a) (b) 

Figure 7.1: Edge Halfspaces 

7.4.2 The Fundamental Prism 

Let us refer to the triangles of the given polygonal representation P as the fundamen­

tal triangles. Consider one such triangle. Let its vertices be vl> v2 , and v3 • Let the 

coordinates and the normal of each vertex v be represented as c( v) and n( v), respec­

tively. We next define the coordinates and the normal of a ( +t)-offset vertex vt for a 

vertex v; as: c(vt) = c(v;)+m(v;), and n(vt) = n(v;). Essentially, we translate each 

vertex in the direction of its normal by an amount E to obtain its ( +t)-offset vertex. 

The (-E)-offset vertex can be similarly defined in the opposite direction. These offset 

vertices for a fundamental triangle are shown in Figure 7.2. 

Now consider the closed object defined by vt and v;, i = 1, 2, 3. It is defined by 

two triangles, at the top and bottom, and three edge halfspaces. This object contains 

the fundamental triangle (shown shaded in Figure 7.2) and we will henceforth refer 

to it as the fundamental prism. 

7.4.3 Non-intersecting Offset Computation 

If we offset each vertex v; by the same amount E, to get the offset vertices vt and v;, 

the reason why we can get the two offset surfaces P( +t) and P( -E) to respectively 

self-intersect is because one or more offset vertices are closer to some non-adjacent 

fundamental triangle. In other words, if we define a Voronoi diagram over the funda-
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+ 

Figure 7.2: The Fundamental Prism 

mental triangles of the model, the condition for the offset surfaces to intersect is that 

there be at least one offset vertex lying in the Voronoi region of some non-adjacent 

fundamental triangle. This is shown in Figure 7.3 by means of a two-dimensional 

example. In the figure, the offset vertices b' and c' are in the Voronoi regions of edges 

other than their own, causing self-intersection of the offset surface. 

a 

Voronoi 
Edge 

a' I 
d' 

I 
'< 

Original 
I 

Surface d 

Figure 7.3: Offset Surfaces 

Once we make this observation, the solution to avoid self-intersections becomes 

quite simple - just do not allow any offset-vertex to go beyond the Voronoi regions 

of its adjacent fundamental triangles. In other words, determine the positive and 

negative £ for each vertex v; such that its offset vertices vt and v;- determined with 
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this new c do not lie in the Voronoi regions of the non-adjacent fundamental triangles. 

While this works in theory, efficient computation of the three-dimensional Voronoi 

diagrams of the fundamental triangles is difficult. To avoid this, we adopt a conser­

vative approach for recomputing the c at each vertex. This approach underestimates 

the values for the positive and negative c. In other words, it guarantees that the offset 

surfaces do not intersect, but it does not guarantee that the c at each vertex is the 

largest permissible c. We next discuss this approach for the case of computing the 

positive c for each vertex. Computation of negative c follows similarly. 

Consider a fundamental triangle t. We define a prism ip fort, which is conceptually 

the same as its fundamental prism, but uses a value of 2E instead of c for defining 

the offset vertices. Next consider all triangles Ll; that do not share a vertex with t. 

If Ll; intersects ip above t (the directions above and below t are determined by the 

direction of the normal to t, above is in the same direction as the normal to t), we 

find the point on Ll; that lies within tP and is closest to t. Since we are dealing with 

convex objects, this point would be either a vertex of Ll;, or the intersection point 

of one of its edges with the three sides of the prism ip. Once we find the point of 

closest approach, we compute the distance 6; of this point from t. This is shown in 

Figure 7.4. 

Figure 7.4: Computation of 6; 

Once we have done this for all Ll; we compute the new value of the positive c for 
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the triangle t as Enew = ~min; 8;. If the vertices for this triangle t have this value of 

positive E, their positive offset surface will not self-intersect. Once the Enew(t) values 

for all the triangles t have been computed, the Enew ( v) for each vertex v is set to be 

the minimum of the Enew(t) values for all its adjacent triangles. 

The offset surfaces are then computed with these modified values of E at each 

vertex v. Connectivity of the offset surfaces mirrors that of the given polygonal 

model P. We use an octree in our implementation to speed up the identification of 

triangles t.; that intersect a given prism. 

7.5 Generation of Candidate Triangles 

Generation of candidate triangles for the approximation involves computing visibili­

ties between vertices and edges, with occlusion being provided by the offset surfaces. 

Vertex-Vertex Visibility: We define two vertices vi and v2 to be visible to each 

other if and only if an observer at vi (or v2 ) can see the vertex v2 (or v!), with the 

two offset surfaces providing occlusion. This condition for visibility is equivalent to 

the condition that the line segment joining VI and v2 (i.e. the convex combination of 

vi and v2 ) does not intersect P(+E) or P(-E). 

Vertex-Edge Visibility: We define an edge e to be visible to a vertex v if and 

only if an observer at v can see the entire edge e, with the two offset surfaces providing 

occlusion. This condition for visibility is equivalent to the condition that the triangle 

formed by v and e (i.e. the convex combination of v and e) does not intersect P( +E) 

or P( -E). 

A valid candidate triangle is one in which every edge is visible to the vertex 

opposite it. Keeping this in mind, we first generate all tuples ( vb v 2 ) where vertices 

VI and v 2 are visible to each other. Let any such tuple define an edge e and let the 

set of all such edges be s •. Clearly, the set of all candidate triangles will have edges 

drawn from S •. To generate the exact set of candidate triangles, we can intersect all 

triangles with edges in S. with the two offset surfaces and discard those that intersect 

either of the two offset surfaces. 
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Having generated the candidate triangles, the next step is finding which of the 

vertices of P are covered by each candidate triangle. The general idea is that we 

would like to give a greater preference to those candidate triangles that cover more 

vertices of P over those that cover fewer vertices. The implementation of this step is 

quite simple. For each vertex v;, consider the line segment formed by its offset vertices 

( vt, vi). We say that a vertex v; is covered by a candidate triangle if and only if the 

line segment (vt,vi) intersects the candidate triangle. Using this approach, we find 

the vertices of P that are covered by a given candidate triangle and the candidate 

triangles that cover a given vertex of P. 

7.6 Composing the Final Solution 

At this stage we have available to us all candidate triangles that lie between the two 

non-self-intersecting offset surfaces and information about which candidate triangle 

covers which vertex. Our goal is to find a subset of those candidate triangles that (a) 

cover all the vertices of P, (b) do not mutually intersect, and (c) do not leave any 

holes in the mesh where there were none before. 

Before we go any further, let us introduce the problems of set cover and set 

partition. 

7.6.1 Set Cover and Set Partition 

Consider a set of integers P = {1, 2, ... , n} and another set T = { t 1 , t 2 , ••• , m}, where 

t; <;:; P for j E J = {1, 2, ... , m}. A subset C <;:; J defines a cover of P if U;Ec t; = P. 

Intuitively, a cover of P is a collection of those sets of T that collectively contain all 

the elements of P. Let a cost c; > 0 be associated with each element t; ofT. The 

total cost of a cover C is defined as LjEC Cj. The set covering problem is to find a 

cover of the minimum cost. 

If we impose the restriction that for all distinct elements i, j E C we must have that 

t;nt; =¢>,we then say that C defines a partition of P. In other words, a partition of 

P is a collection of those sets of T that are mutually disjoint and collectively contain 
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all the elements of P. Finding a partition of minimum cost is referred to as the set 

partition problem. 

If we let the indices of the vertices of P define the set P, and the candidate 

triangles define the set T, with i E tj if and orily if the candidate triangle tj covers 

a vertex v;, we can see that our problem reduces to that of set partitioning with one 

additional triangle disjointness constraint. The set partitioning solution guarantees 

that there are no common vertices of P in the interior of any pair of triangles of 

the final solution. However this does not prevent two triangles from overlapping 

each other if the overlapping region does not have any common vertices. Further, if 

we define the cost Cj associated with each triangle tj to be its cardinality, i.e. the 

number of vertices covered by it, solution of this set partitioning problem will yield 

the smallest number of triangles that cover all the vertices of the input model P. 

7.6.2 The Greedy Heuristic 

The set cover and the set partition problems are both known to be NP-complete 

[Garey & Johnson 79]. Therefore any hopes of computing an optimal solution to our 

polygonal approximation problem are remote. However, there exist several heuristics 

which compute approximate solutions to these problems. These heuristics generate 

solutions that have been in general found to be reasonably close to the optimal. A 

user could implement any of the heuristics for solving the polygon approximation 

problem. We are using the greedy heuristic, because of its simplicity and because it 

facilitates an easy analysis of the quality of the solution. We will discuss the issue of 

estimating quality in Section 7.6.4. 

A greedy heuristic for solving the set cover problem proceeds as follows. We start 

with an empty cover and at every step, we add that set which covers the largest 

number of thus far uncovered points. In our setting, this translates to selecting the 

triangle which covers the largest number of vertices. However, since we have an 

additional disjointness constraint to observe, we proceed slightly differently. 

At each step, out of all the candidate triangles we pick the triangle that covers the 

largest number of vertices of P in its interior. Then we check to see if it overlaps any 
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other triangles of the solution generated thus far. If it does, we discard it, otherwise 

it becomes a part of the solution. This is done till all candidate triangles have been 

seen. 

We next explain the algorithm for detecting whether two triangles overlap. First, 

for each triangle we find the fundamental prisms that it intersects. Second, for every 

fundamental prism that both triangles intersect we compute the intersection of each 

triangle with the fundamental prism and project it on to the fundamental triangle. 

Third, we check if the projections of the two triangles on the fundamental trian­

gle overlap. Since the projection of each triangle is convex, we determine whether 

two triangles overlap or not by straightforward two-dimensional linear programming. 

Figure 7.5 illustrates the overlapping projections on a fundamental triangle. 

Figure 7.5: Checking for Overlaps 

7.6.3 Modification to the Greedy Heuristic 

The greedy heuristic as we have presented above has a few drawbacks. First, its 

implementation suffers from serious numerical degeneracy problems. One of the most 

common problems with this is that cracks are left in the final mesh due to inconsisten­

cies in determining whether the long and thin, sliver, triangles overlap the partially 

constructed approximation mesh .. To overcome this we follow the following method. 

We maintain a complete mesh at every iteration of the algorithm. Let the mesh 
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at the i'h iteration of be Mi; M 0 is the input mesh. Let the triangle that covers the 

largest number of vertices of Mi-l be tj. Let the set of all the triangles of Mi-l that 

are covered by tj be denoted by Tj. We find the hole in Mi-l that is formed if we 

delete all the triangles in Tj. Our objective is to determine if we can triangulate this 

hole such that one of the triangles is tj. If such a triangulation is possible, let the 

set of triangles in this triangulation be represented by T'i· By construction, tj E T'i· 

We delete Tj from Mi-l and add the new triangles T'i to get Mi. In other words, 

If we cannot find such a triangulation T'j, we try the same with the next triangle 

that covers the maximum number of triangles of Mi-l· 

The advantage of this approach over the basic greedy heuristic is that we have a 

completely valid mesh at every stage of our algorithm and so our solution does not 

have the visible artifacts arising from numerical precision problems. 

7.6.4 Estimating Solution Quality 

It has been shown in the literature [Lovasz 75] and [Chvatal 79] that the greedy 

heuristic yields a solution which is guaranteed to be within a factor of (1 + ln d) of the 

optimal, where dis the maximum number of elements in any set tj, i.e. the maximum 

number of vertices covered by a candidate triangle. 

We can prove that if in the greedy heuristic at each stage we select the set that 

does not necessarily have the largest cost, but has a cost within a factor a of the 

largest cost, then the worst case ratio guarantee of the approximate solution to that 

of the optimal becomes a( 1 + ln d). This suggests the following scheme for estimating 

the quality of the solution. At each step, we compute the ratio of the number of 

uncovered points of the largest overlapping triangle with the number of points in the 

largest non-overlapping triangle. The maximum of all these ratios (if it is greater 

than 1), can be used as a in the above expression. Of course, if a > d / ( 1 + ln d), 

the whole exercise is debatable, since the maximum compression we can ever hope to 

achieve is no more than d. 

83 



7. 7 Algorithm Features 

7.7.1 Desiderata of a Good Approximation Scheme 

Let us see how well our algorithm measures up to the desiderata of a good approxi­

mation scheme that we had stated in Section 7.3.1: 

• Invariance under translation and rotation: The approximation produced 

by our algorithm is invariant under translation and rotation,· i.e. it does not 

change if the input object is translated or rotated. 

• Volume of difference between A and P : This depends upon the user­

specifiable parameter € and can therefore be made arbitrarily small. 

• Genus-preservation: The non-intersecting offset surface property guarantees 

genus preservation. 

• Symmetry-preservation: Our algorithm does not guarantee preservation of 

symmetry. However, since it is a greedy algorithm, it is likely to select trian­

gles with similar areas (and shapes, if that is incorporated into the selection 

criterion at each iteration). Thus, it is likely although not guaranteed, that the 

approximation produced by our algorithm will preserve the symmetry of the 

input object. 

• Adaptive Approximation: This is possible by specifying £ as a function of 

location on the object. See Section 7.7.4. 

• Parallelizability: Our algorithm is based on a greedy heuristic and is therefore 

sequential. However, as long as the regions covered by the selected candidate 

triangles do not overlap, we can process them in parallel. This is an important 

and desirable property, especially for large polygonal objects that have curved 

geometries. 

• Vertex Subset Criterion: This is accomplished by definition. Only those 

candidate triangles whose vertices belong to the existing mesh are considered. 
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7. 7.2 Interpolation 

Smooth interpolation between various levels of detail is useful to avoid any jerkiness 

of abrupt changes during switching from one level of detail to the other. Our ap­

proach lends itself naturally to this interpolation since we always generate a subset 

of the vertices of the original model. Further, during the course of the algorithm, 

we associate each vertex with the triangle that it will be replaced by. Therefore, for 

incorporating interpolation with this approach, all that we need to do is to move 

each vertex along its normal direction (or reverse normal direction), till it reaches the 

triangle that it is to be replaced with. 

7. 7.3 Preserving Sharp Edges 

One of the important properties in any approximation scheme is the way it preserves 

any normal discontinuities or sharp edges present in the input model. We next outline 

how our method easily incorporates this feature. 

Consider any edge e that a user wishes to preserve in the output approximation. 

This edge will be adjacent to two fundamental prisms corresponding to its two adja­

cent fundamental triangles. This edge can disappear from the output if and only if 

there is a candidate triangle that intersects the bilinear patch {3. or the plane 1r e that 

defines the two edge halfspaces for this edge. Therefore a simple solution to retain 

this edge is to make {3. (or 'Ire) "opaque" in the visibility computations. This will 

ensure that no candidate triangle will cross it and the edge will be retained in the 

output. 

7.7.4 Adaptive Approximation 

For certain classes of objects it is desirable to perform an adaptive approximation. 

For instance, consider large terrain datasets, models of spaceships, or submarines. 

One would like to have a higher detail near the observer and a lower detail further 

away. A possible solution could be to subdivide the model into various spatial cells 

and use a different €-approximation for each cell. However, problems would arise at 
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the boundaries of such cells where the €-approximation for one cell, say at a value t 1 

need not necessarily be continuous with the €-approximation for the neighboring cell, 

say at a different value t 2• 

Since all candidate triangles generated are constrained to lie within the two offset 

surfaces, manipulation of these offset surfaces provides one way to smoothly control 

the level of approximation. Thus, one could specify the t at a given vertex to be a 

function of its distance from the observer - the larger the distance, the greater is 

the c. 

As another possibility, consider the case where certain features of a model are very 

important and are not to be approximated beyond a certain level. Such features might 

have human-perception as a basis for their definition or they might have mathematical 

descriptions, such as regions of high curvature. In either case, a user can vary the t 

associated with a region to increase or decrease the level of approximation. 

7.8 Degeneracies 

The greedy approach of selecting the triangles from all possible triangles that approx­

imate a surface leads to the following kinds of degeneracy problems: 

• Extremely thin triangles, also known as slivers. Such triangles are characterized 

by having one or two very small angles. A better measure for detecting such 

triangles is to use the ratio of the radius of their circumcircle to the radius 

of their incircle. The bigger is this ratio for a triangle, the more slivery it 

is. Slivers are a source of several problems later in the computer graphics 

pipeline. First, any ray-casting-based processing (such as ray-tracing or ray­

casting-based radiosity) is very likely to miss slivers, leading to cracks in the 

processed model. Second, slivers tend to produce strong aliasing effects, which 

are very distracting. 

• Floating-point problems due to various geometric degeneracies. The geometric 

degeneracies could be either of the type where four or more points are coplanar, 
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or they could be due to limited-accuracy intersection computations. 

We shall next consider some heuristics to handle these degeneracies. 

7.8.1 Slivers 

Almost all the slivers that have been observed arising from the surface approximation 

algorithm are of the form shown in Figure 7.6, where a sliver triangle ( abd) is adjacent 

to a better shaped triangle (bed). 

b 

-- c 
a 

d 

Figure 7.6: Getting Rid of Slivers 

One way to handle this kind of degeneracy is to simply flip the diagonal of the 

quadrilateral abed from bd to ac, so that we get the two triangles abc and acd. Al­

though, in the worst case this can still yield slivers, in practice this is a good heuristic 

for getting rid of slivers. This step of edge-flips can be thought of as a post-processing 

step to the actual approximation algorithm [Turk 94]. 
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7.8.2 Floating-point Problems 

These are the problems that arise from limited-precision floating-point arithmetic. 

Although one could in principle switch all computation to exact arithmetic and avoid 

such problems, the resulting much higher execution times might be too big a penalty 

to pay. In practice, we are using the following heuristics to help us: 

• Check for common vertex, edge, and triangle identification labels as far as 

possible. Thus for instance consider the intersection of two candidate triangles 

abc and ade as shown in Figure 7. 7. 

e 

/ 

d 

b 

Figure 7. 7: An Intersection Degeneracy 

It is better to check the labels of the vertices to determine whether the edge ad 

of the triangle ade intersects the edges ab and ac of the triangle abc, instead of 

actually performing the intersection using floating-point arithmetic. Floating­

point arithmetic might yield the result that the edge ad intersects either only 

ab, or only ac, or neither. Similar ideas are used for detecting shared edges and 

avoiding intersection computations with them. 

• Using fuzzy coplanarity tests. The previous scheme of checking for common 

vertices and edges, although preferable, doesn't always work. For such cases, 
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explicit checking for collinearity or coplanarity needs to be done. This checking 

is done with a tolerance. This amounts to checking for nearly collinear or nearly 

coplanar degeneracies instead of the exact ones. 

7.9 Results 

We have implemented our algorithm and tried it out on more than a thousand polyg­

onal objects. These polygonal objects are from the Submarine Auxiliary Machine 

Room (AMR) dataset given to us by the Electric Boat Division of the General Dy-

nam1cs. 

On an average we were able to achieve simplifications of the order of roughly 

70% with minimal perceptual differences. Higher levels of simplifications should be 

possible with a less conservative offset-surface computation program. Our present 

implementation is somewhat overcautious in preventing offset-surface intersections. 

We simplified a total of 1090 objects of the AMR dataset for testing and validating 

our algorithm. These objects have been cumulatively reduced as follows: 

Level-of-Detail Dataset Complexity %Reduction 

Original dataset 350,023 triangles 0 

First level 206,859 triangles 40.90 

Second level 141,983 triangles 59.44 

Third level 104,87 4 triangles 70.04 

Table 7.1: Polygonal Simplification Results 

For an example object, see the four levels of details for a torpedo roller in Fig­

ure 1.5. 

The value of E that was chosen to approximate the polygonal objects varied from 

one object to the other, as it should. For this set of results, E values were chosen 

manually. However, in future, it might be a reasonable idea to automate the process 

by assigning the value of E for approximating an object as some fraction, sa;y 0.5%, 

89 



of its extents. 

For the above results, the ith level of detail was obtained by simplifying the i- 1 th 

level of detail. There are two advantages to this scheme: 

(a) It allows one to proceed incrementally, taking advantage of the work done in 

previous simplifications. As a result the time taken to simplify reduces with every 

new level-of-detail. 

(b) It builds a hierarchy of detail in which the vertices at the ith level of detail are a 

subset of the vertices at the i - 1 th level of detail. This hierarchy allows these levels 

of details to be useful in not only efficient rendering but also in a wide variety of 

accuracy-guided simulation of physical processes, such as radiosity. 
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Chapter VIII 

Future Work 

The scope for future work from this dissertation can be categorized into two broad 

classes of research topics: 

(1) Topics that are extensions of the areas directly addressed by this dissertation. 

(2) Topics that are related but not direct extensions of this dissertation. These are 

research areas which have assumed a greater importance to me as a direct result of 

this dissertation. 

In this chapter I shall outline these possible research topics. 

8.1 Real-Time Area and Volume Computation 

We have seen in Chapter IV how one can compute the molecular surfaces in real time. 

The computation of such surfaces is just the first stage towards the incorporation of 

the effects of solvent in the potential energy computations of the molecule. Accurate 

and fast computation of the molecular surface area and the molecular volumes should 

be attempted next. 

To efficiently compute the surface areas, one would have to start working from 

the higher-level spherical and toroidal patches (instead of triangles that are currently 

being generated). These patches are currently generated implicitly and then triangu­

lated for display. 

A good starting place for efficiently computing the molecular volumes would 



be [Edelsbrunner 93], where Edelsbrunner has described how to perform volume com­

putations for a union of spheres. Our problem is somewhat different and thus remains 

interesting enough. 

Another approach to computing the areas ahd volumes could be to try a Monte­

Carlo-based approximation to the actual areas and volumes. The basic idea here 

being that we can test a small number of points to determine whether they are 

inside the molecular surface, on the surface, or outside it and based on it we can 

estimate the value of the area and volume of the molecule as well as the bound on 

the error. Depending on how much error one is willing to tolerate, this approach 

might be faster than the exact analytical approach to compute the molecular areas 

and volumes. A good starting place for this would be [Spirakis 84, Spirakis 83] where 

Spirakis examines the probablistic approaches to area and volume computations of a 

union of circles and spheres. 

8.2 Determination of Molecular Interface Sur­

faces, Areas, and Volumes 

We have just opened up this new area of research and it certainly deserves much 

more attention than was possible to give in this dissertation. All of the approaches 

that have been outlined for computing the general areas and volumes of molecules in 

Section 8.1 remain equally valid here. 

The pioneering idea of boolean textures [Lorensen 93] can be also used to efficiently 

visualize these molecular interfaces. Every vertex of the molecular surface of a given 

molecule A could be given a texture value based on its distance from the molecular 

surface of another molecule B. To visualize the molecular surface of A that is within 

a distance (J of B, one could simply set the texture for A to be transparent above a 

value of (J. 

In some sense, the problem of the determination of interfaces between molecules 

is the inverse of the registration problem in medical imaging. It remains to be seen if 

any transfer of technology from that area can be brought to bear upon this problem. 
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8.3 Use of Temporal Information 

At present we are not using any incremental temporal information in constructing 

the molecular surfaces. Thus, if the atoms move even slightly from their positions, 

the whole surface has to be recomputed from the beginning. Assuming the atoms 

of the molecule move along continuous trajectories, it should be possible to com­

pute such molecular surfaces (and indeed a-hulls and a-shapes) incrementally and 

efficiently by using the information from previous time steps. Some work has been 

done in the incremental computation of Voronoi diagrams of moving points in a 

plane [Aurenhammer 91], but to the best of my knowledge no work has been done 

in three dimensions for spheres of unequal radii. Research into efficient algorithms 

that exploit the temporal coherence would also benefit interactive docking applica­

tions. To get an idea of how molecular surfaces behave with changing atom positions, 

see [Varshney et a! 94b ]. 

8.4 Molecular Surface Cusps 

Sometimes the molecular surface self-intersects due to overlap from probes that come 

from opposite sides of a surface. Traditionally, such overlapping surfaces are clipped 

away to form cusps in the molecular surface. At present, we correctly handle only 

those cases where the cusps are either minor or can be easily determined by limited 

local checks. A general approach to this problem needs to be developed. This problem 

was first addressed in [Connolly 85]. Work on this problem has also been reported by 

Sanner [Sanner 92, Sanner 94]. 

8.5 Polygonal Simplification 

We have presented an approach that is global and deterministic. Other approaches to 

this problem have been local and deterministic. Scope for further work remains in de­

veloping randomized algorithms for solving this problem, as well as developing hybrid 

approaches that fall between completely global and completely local approaches. 
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Our approach to polygonal simplification always preserves the genus of the object. 

In some cases, it might be worthwhile to simplify the genus itself and thus generate 

non-topology preserving simplifications that still look reasonably good. 

8.6 Automatic Cleaning of Polygonal Datasets 

Most of the computer graphics pipeline assumes accurate and well-behaved polygo­

nal models, whereas in reality most polygonal models do not satisfy this criterion. 

Computer graphics practitioners have been struggling against this wall of difference 

between theory and practice. Problems with polygonal datasets lead to robustness 

problems in all visibility computations, shading problems in radiosity, and topological­

consistency problems in polygonal simplification algorithms. 

The time seems about right for someone to develop a generalized approach to 

this problem that deals with degeneracies in large polygonal datasets in a unified 

manner, instead of dealing with each case in a special way. After giving some thought 

to this problem, I think that it might be fruitful to categorize these degeneracies 

based on their dimension and then to develop a general approach that works in the 

general d-dimensions. Zero-dimensional degeneracies would then include the problem 

of coincident points, one-dimensional degeneracies would cover the coincident edges . 

(T-vertices are a special case of these), and two-dimensional degeneracies would cover 

the coincident polygons. It might be educational to study how the computational 

geometers solved the somewhat similar problems of geometric degeneracies of point 

sets for general d-dimensions [Edelsbrunner & Miicke 88, Emiris & Canny 92]. 
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