
Chapter 1IntroductionThe driving problem of this dissertation is image segmentation, a process which identi�esand labels objects in an image. Given an image, we ourselves can recognize objects. Forexample, the image in Figure 1.1 contains sun
owers. The 
owers in the foreground areclearly recognized, including the individual petals. The background also contains 
owers,but the individual petals are not so easily seen. A person could label the pixels, one at
Figure 1.1: Illustration of objects in an imagea time, with the appropriate object name, such as stem, petal, etc. Some pixels are not



easily identi�ed since objects are at times blurred together. For such a pixel, a person couldprovide some likelihood that the pixel is, for example, a stem or petal.A pixel{by{pixel segmentation of an image that has thousands of pixels is a tedious andtime{consuming task. I would like to automate the segmentation process to reduce the timeit takes to segment, but in a way that models how the human visual system identi�es objects.A full automation may be di�cult. Humans can rely on previous experience and knowledgeto aid in object recognition. Providing a computer with a knowledge base is certainly withinreason, but is in the realm of arti�cial intelligence. Instead my goals are to process an imagein the way that a front{end visual system1 would, by using the local geometry induced bythe intensity values of the image, and to create a representation of the objects that allowsthe user to explore the details of the image via an interactive computer system.1.1 The Need for Ridges in Image AnalysisMethods for representing shapes of objects in gray{scale images have typically fallen intotwo categories: edge{based or region{based. Edge{based algorithms are developed underthe assumption that large gradients of image intensity indicate the presence of an edge. Theproperty of edgeness at a pixel is determined by measuring the dissimilarity between the pixelintensity and its neighbors' intensities, for example, by using the magnitude of the gradientof intensity. These algorithms additionally must handle edge orientation, edge strength, andedge connectivity. The method of edge detection essentially consists of following ridges ofedgeness. Figure 1.2 illustrates this for a simple object. Many edge{based methods arede�cient since the presence of noise can make it di�cult to detect an edge and determine itsorientation. Moreover, the characterization of the global structure and shape of an object byits boundary depends greatly on the correctness of the edge connectivity scheme.Region{based algorithms are developed under the assumption that an object is locallyhomogeneous. The property of interiorness at a pixel is determined by measuring the sim-ilarity between the pixel intensity and its neighbors' intensities. Regions are essentially1The term front{end is used by Florack (1993) and denotes the primary stage of a biological or arti�cialvision system. It is a syntactical system which establishes a representation of the input data in a formatthat can be interpreted easily by semantical systems in later stages of processing.2



graph of intensity graph of magnitude of gradient of intensityFigure 1.2: Edges as ridges of the magnitude of gradient of intensitysets of positive measure whereas edges are sets of zero measure, so region{based algorithmstend to be less sensitive to noise. However, the region growing is still stopped at ridges ofedge strength, and without the use of global information, there are still problems with noisesensitivity.A good model for representing object shape should encapsulate the ideas of both edge{and region{based methods. The Blum medial axis construction for 2{dimensional binaryobjects was one of the �rst attempts at providing both region and edge information. Thestructure of the axis itself encodes the shape information of the object. The axis points arecentrally located in an object. That is, each axis point pairs two opposing boundary points,called involutes, in the sense that a maximal disk (contained entirely inside the object)centered at the axis point touches the boundary tangentially in at least two points. Theradii of the disks determine boundary locations in that the contour of the union of all themaximal disks is the boundary of the object.Given a binary object, each point inside the object can be assigned its distance to theboundary of the object. The points outside the object are assigned a value of zero. Thefunction corresponding to this assignment is called the Euclidean distance transform of theobject. Ridges on the graph of the distance transform can be projected onto the plane toobtain medial{like structures. In Figure 1.3 the outline in the left picture is that of a binaryobject which resembles a face. The medial axis for the object is also shown. The right image3



Figure 1.3: Binary object and medial axis, graph of distance function
Figure 1.4: MR image and graph of its intensity valuesis a shaded rendering of the graph of the Euclidean distance transform for the object.The Blum medial axis construction requires a binary object whose edge locations arealready known. Objects in gray{scale images are not binary and edge locations are notknown, so the algorithm is of no practical use in this setting. However, for some types ofimages, the ridges of the intensity function may be medial{like. Figure 1.4 shows a MagneticResonance (MR) image and its corresponding intensity graph. Note how the ridges on thegraph tend to be in the \middle" of objects such as the scalp or brain stem. The examplesabove clearly show that the analysis of images, and of objects in an image, necessarilyrequires the study of ridge structures of the underlying intensity surface.4



In Chapter 2 I review many of the de�nitions for ridges that are found in the literature.Computational vision models require that medial structures should remain invariant undercertain transformations of the spatial locations and intensities. For each ridge de�nition Ipoint out which invariances the de�nition satis�es. The previous �gures provide motivationfor a ridge as a 1{dimensional structure in a 2{dimensional image. I also give extensionsof the concepts so that d{dimensional ridge structures can be located within n{dimensionalimages. A comparison of the ridge structures produced by the di�erent de�nitions is givenby mathematical examples and by an application to the MR image of Figure 1.4.1.2 Object Construction via Multiscale MethodsRidges provide only partial information about the shapes of objects; they indicate only loca-tions of object middles. A decision is needed about what radius or object width information toassign to the ridge points. Medial axes for binary objects capture the information about bothcentral location and object width. Given the medial axis, the object can be reconstructedexactly. In gray scale images, it is not always clear precisely where object boundaries are.The object width values which are assigned to ridges should correspond to an estimate ofhow far the boundary of an object is from a ridge. Thus, the concept of scale of an object isneeded, which is an indication of how wide an object is at any given central location. Thescale need only be proportional to width, since measurements can always be made in unitsof the scale.The introduction of a scale parameter in the image analysis is very powerful. Detailsin an image can occur at small scale or at large scale. Many early attempts failed atidentifying objects, in particular methods which tried to locate edges of an object, becausethe measurements were made at the pixel scale. Small scale noise can easily interfere withthe identi�cation of edges. Moreover, the process of locating the entire closed contour of anobject by following individual edge segments is bound to fail in that the contour is an entitywhich has a larger scale than its individual components. By analyzing an image at multiplescales, both local and global shape information can be extracted.In Chapter 3 I present a general method for segmenting medical images which usesmultiscale methods. The scale parameter is introduced by blurring the original image with a5



radially symmetric Gaussian kernel whose standard deviation is the scale. At each scale theblurred image is segmented into primitive regions. These regions are constructed by �ndingridges on the intensity surface of the image, followed by associating pixels with each ridge viaa process called ridge 
ow. The area/volume of the regions is approximately proportionalto the scale of the blurring process.The segmented image is represented by a tree structure, which naturally relates localinformation obtained at small scale to more global information obtained at large scale. Theleaf nodes of the tree represent small{scale primitive regions. The interior nodes of the treerepresent increasingly larger scale regions as the tree is traversed toward the root. The rootnode corresponds to a single region at essentially in�nite scale. The interior nodes of the treerelate the regions in a way that re
ects the natural object structure of the image. Objectsare obtained as unions of subtrees of the hierarchy.1.3 Scale Space: A Foundation for Image AnalysisThe segmentation process described in the last section is based on a multiscale analysis, butit does not rely on information about changes in scale. That is, a scale of measurement isselected (the standard deviation of the Gaussian kernel), then the image is segmented at that�xed scale. As an analogy, the medial axis of a binary object stores central locations andobject widths, but one can derive from these quantities information such as curvature of theobject boundaries and rate of expansion or contraction of the object as the axis is traversedin a speci�ed direction. These derived quantities are just as important in shape analysis asthe medial locations and object widths. Moreover, the derived quantities are dependent onscale changes in the objects.Successful algorithms for image analysis should be based therefore on making measure-ments in both space and scale. The collection of all pairs of spatial locations and scaleswill be denoted as scale space. The essential foundations of a scale space are that an imageis a physical observable with an inner scale, determined by the resolution of the samplingdevice, and an outer scale, limited by the �eld of view. Basing the analysis on the modelof a front{end visual system, I require that the methods preprocess input in a symmetricway (rotational and translational invariance), and they should have no preferred scale of6



measurement (scale invariance). These fundamental assumptions lead naturally to the ideathat the scale parameter must be introduced by a possibly nonlinear blurring process. Buteven more importantly, they lead to the idea that measurements are only meaningful relativeto the scale at which they are made. The most signi�cant consequence is that the geometryof scale space is not Euclidean.Chapter 4 provides the mathematical formalism for scale space as a geometric entity.All the familiar measurement tools in Euclidean geometry are derived in the scale spacesetting using tensor calculus and di�erential geometry. The basic concepts of distance, area,volume, curvature, and di�erentiation are developed. I also de�ne what it means to be aridge for a function de�ned on scale space. Just as the medial axis for a binary object can beviewed as a curve whose points have spatial and radial components, cores (formerly calledmultiscale medial axes) for gray scale images can be constructed as ridges in scale space.Although the material �rst appears unintuitive and perhaps formidable, further re
ectionwill show that the quantities really do support the intuition about the concept of scale.

7


