
Chapter 2Ridge De�nitions2.1 Ridge De�nitionsNumerous attempts have been made to construct ridges for use in image and shape analysis.Consequently many de�nitions for ridges can be found in the literature. Each de�nition hasits advantages and disadvantages, but it is desirable that ridges satisfy certain properties.Firstly, the process which identi�es ridges should be local. That is, a ridge point should bedetermined solely by the information in a local neighborhood of the point. Secondly, theridges should be invariant with respect to the following transformations:� translations in the spatial variables,� rotations in the spatial variables,� uniform magni�cation in the spatial variables, and� monotonic transformations of the intensity function.The �rst two invariances simply mean that the operations of ridge construction and rigidmotions should commute. The ridges of a rotated/translated object should be the ro-tated/translated ridges of the original object. The third invariance means that the ridgeconstruction should be independent of the units of measurement, since a change of units isequivalent to a uniform magni�cation in the spatial variables. The ridges of an object whichis doubled in size should be the ridges, doubled in size, of the original object. The fourth



property is desired since the data, as sampled by the imaging device, may be modi�ed in amonotonic way to meet the requirements of a display device. For example, if 12{bit data areto be displayed on an 8{bit display, the data are typically transformed using a monotonica�ne transformation. We would like the ridge structures not to be a�ected by this transfor-mation. A study of invariance and its applications to computer vision can be found in terHaar Romeny, Florak, Koenderink & Viergever (1991).The de�nition for ridges as slope district boundaries is used in Colchester (1990) andGri�n, Colchester & Robinson (1991) for segmenting intensity images. The graph of theintensity values is searched for maxima, minima, and saddle points. Slope lines, which areintegral curves of the intensity gradient, are drawn from minima to saddles (course lines)and from saddles to maxima (ridge lines). The regions enclosed by the slope lines are calledslope districts and are the primitive regions of the segmentation.The slope district construction has also been used on hypersurfaces. The Blum medialconstruction for 3{dimensional objects (Blum 1973, Blum & Nagel 1978) yields a medialsurface which encodes the shape of the object. Each surface point has an associated radiusfor the maximal sphere centered at the point and contained entirely inside the object. Themedial surface is typically as complicated as the object itself. Attempts have been madeto simplify this surface by segmenting it using slope districts (Nackman 1982, Nackman1984). In this case the domain of the radius function is the medial surface, as comparedto the planar domain for intensity images. The graph of the radius function is searched formaxima, minima, and saddle points. As before, ridge and course lines are drawn connectingthe critical points.The ridges from the slope district de�nition are clearly invariant under spatial transla-tions, spatial rotations, and uniform spatial magni�cations. They are also invariant undermonotonic transformations of intensity since the gradient vector �elds of the intensity andthe transformed intensity have the same directions (but not necessarily the same lengths).An undesirable consequence of the slope district construction is that the ridge andcourse lines are determined by a nonlocal process. Consider a ridge line whose endpointsare a maximum and a saddle. Each ridge point occurs simply because it is on the ow lineconnecting the maximum and saddle. No local geometric information at the point is used to9



establish its identity as a ridge. If the intensity function is perturbed in a small neighborhoodof the saddle, the e�ect of the perturbation is propagated to all the ridge points on the owto the maximum, even if the intensity values near the maximum have not been perturbed atall. Thus, the ridge points at the maximum have been relocated even though no change inintensity has occurred in that region. Another de�ciency in the slope district constructionis that it may ignore small ridges which lie on the ank of a larger ridge. The small ridgesare frequently not formed by the presence of local extrema of the intensity.A discrete de�nition for ridges appears in Crowley& Parker (1984), where the underlyingfunction is the intensity convolved with a di�erence of low{pass transforms. Given a discrete2{dimensional image, ridges are de�ned as those pixels for which the function has a positivelocal maximum in one of the 4 directions associated with the 8{neighborhood of the pixel.The generated ridges are invariant under spatial translations and monotonic transformationsof the function. The ridges are not preserved by rotations. At any point where the functionhas a local maximum with respect to some direction V , that point will be labeled as a ridgein an orientation which aligns V with one of the 4 special directions, even if the point wasnot labeled as a ridge in its original orientation.A more successful de�nition for ridges is called the height de�nition. A history of the at-tempt to de�ne ridges of this type, dating back to 1852, is found in Koenderink & van Doorn(1993). More recent work can be found in Haralick (1983) and Morse, Pizer & Liu (1993).The de�nition is based on computing local maxima for the intensity (or height) function inspecial directions. The ridge construction by this de�nition is a local process. Moreover, theridges are invariant under spatial translations, spatial rotations, uniform spatial magni�ca-tions, but not under monotonic transformations of the height function. I discuss the heightde�nition in Section 2.3.Other researchers have considered de�ning ridges using the ideas of di�erential geometry.The de�nitions are local and involve measurements of curvatures associated with graphs orsurfaces in general. I will consider two such de�nitions.The �rst of the di�erential geometric de�nitions, called the principal direction de�ni-tion, applies to n{dimensional hypersurfaces. The standard analysis of hypersurfaces usesa parameterization to represent the hypersurface. For example, if the hypersurface is the10



graph for a function f(x), the parameterization is (x; f(x)). Some computational visionapplications involve hypersurfaces for which a natural parameterization is not immediatelyapparent. If the hypersurface is implicitly de�ned as the level set for a function, a de�nitioncan still be given for ridges on the hypersurface. Every hypersurface (for example, graphsof functions de�ned on IRn) can be described this way, so there is no not loss of generality.Whereas other ridge de�nitions require a spatial parameterization of the graph, the principaldirection de�nition does not require one to de�ne ridges.The ridges are constructed as local extrema of principal curvatures, where the di�erenti-ation is taken in principal directions. A geometrically intuitive discussion of this type ridge isfound in Koenderink (1991); a formal mathematical analysis is given in Bucchi (1991). Theridge construction by the principal direction de�nition is a local process. For a parameterizedhypersurface, the ridges are invariant under di�eomorphisms on the parameter space. Also,the ridges are invariant under spatial translations, spatial rotations, and uniform spatialmagni�cations, where the transformations are applied to the full space IRn+1 which containsthe hypersurface. In regard to graphs of functions with domain IRn, the ridges are not in-variant under monotonic changes of the de�ning function. An application of the principaldirection de�nition can be found in Thirion & Gourdon (1992). Surfaces representing a skullwere obtained from 3{dimensional data sets. Ridges on the surfaces were constructed andused as landmarks for image registration. The principal direction de�nition is discussed inSection 2.4.The second of the di�erential geometric de�nitions, called the level de�nition, considerscurvature properties of level sets for smooth functions. The constraint of smoothness forintensity functions is consistent with the way that a scene is observed using �nite widthapertures (Florack, ter Haar Romeny, Koenderink & Viergever 1993). A motivating exampleis the function f(x; y) = 1 � (x=a)2 � (y=b)2 where a > b, where for illustration suppose ais very much larger than b. Treating the graph as mountain terrain, a person walking atconstant altitude around the mountain might label the ridges as those points where thechange in his direction of walking changes the most. In this case, the ridge points areidenti�ed at places along the path where y = 0. The paths of constant altitude are thelevel curves of the function. The places where the direction (level curve tangent) changes11



most rapidly are those points for which the level curve curvature is locally optimal. Theridge construction is local, and the ridges are invariant under spatial translations, spatialrotations, uniform spatial magni�cations, and monotonic transformations of the intensityfunction. Applications of the level de�nition to computer vision problems are found inGauch, Oliver & Pizer (1988). I discuss the level de�nition in Section 2.5. It turns out to beexactly the principal direction de�nition, but applied to level surfaces of the graph insteadof the entire graph itself.Finally, I give a ridge de�nition, called the nonmetric de�nition, which is similar to theprincipal direction de�nition, but applies only to graphs of functions. The ridges producedby this de�nition are often qualitatively similar to those produced by the principal directionde�nition. However, unlike the principal direction de�nition, this ridge construction doesnot use the metric of the graph. I discuss the nonmetric de�nition in Section 2.6.Section 2.7 contains the application of the height, principal direction, level, and non-metric de�nitions of ridges to the MR image of Figure 1.4. A discussion of the �ndings forthe di�erent ridge de�nitions is given in Section 2.8.The wide range of results on ridges in image analysis described above clearly indicatesthat numerous authors have found a need for ridges in image analysis as a means of describingobject shape. The purpose of this chapter is to provide a formal mathematical setting forridge de�nitions, to generalize the ideas to higher dimensions, and to analyze the propertiesof the various de�nitions. Although the emphasis of the development is on ridges, theconstructions naturally include the counterparts of ridges, namely valleys. For completeness,I include de�nitions for both ridge and valley points. Collectively all such points will be calledcrease points. They are located on the graph of f and therefore have the form (x; f(x));however, I will also refer to x as a crease point. This identi�cation should not create anyconfusion in the development.2.2 Directional DerivativesThroughout the chapter I use the following notations. The partial derivatives of a functionf : IRn ! IR are denoted by subscripting f with the appropriate variable. If x = (x1; . . . ; xn),then fxi is the �rst partial derivative of f with respect to xi. The gradient of f is the vector12



rf = (fx1 ; . . . ; fxn). The matrix of second partial derivatives of f , called the Hessian off , is denoted by H(f) = [fxixj ]. The function f is said to be a Ck function if its partialderivatives through order k are continuous.All crease de�nitions require �nding local extrema of functions in special directions.Directional derivatives measure how a function varies when restricted to a subset of itsdomain. The zeros of �rst{order directional derivatives will be the candidate crease points.A candidate crease point will be classi�ed as a ridge point or valley point depending on theinformation obtained from second{order directional derivatives. I present two de�nitionsfor each order directional derivative. The �rst de�nition assumes that the direction vectorsare constant, but the second de�nition allows the vectors to be variable. For �rst{orderdirectional derivatives, the two de�nitions are equivalent. However, second{order directionalderivatives are computed as iterations of di�erential operators which depend on the directionvectors, so the two de�nitions produce di�erent results.Let f : IRn ! IR be a C2 function. Let v =2 IRn be a constant nonzero vector. The�rst derivative of f at x in the direction v is de�ned by(v � r)f(x) = nXi=1 vi@f(x)@xi ;where `�' indicates the dot product of vectors. The de�nition is motivated by calculus ofa function of a single variable. At a point p 2 IRn, let �(t) be a di�erentiable curve suchthat �(0) = x and �0(0) = v. De�ne the function �(t) = f(�(t)) and compute the ordinaryderivative with respect to t. An application of the chain rule yields �0(t) = �0(t) � rf(�(t)).At t = 0, �0(0) = v � rf(x). Note that the �rst directional derivative is independent of thechosen path as long as the tangent vector at t = 0 is v.Now let the directions be dependent on the points x at which the derivative measurementis made. Let v(x) be a nonzero vector. The �rst derivative of f at x in the direction v(x) isde�ned by Dvf(x) = nXi=1 vi(x)@f(x)@xi :At a particular point y, let u = v(y); then (u � r)f(y) = Dvf(y), so the de�nitions areequivalent.Second derivatives in speci�ed directions can be similarly de�ned. Let v be a constant13



nonzero vector. The second derivative of f at x in the direction v is de�ned by(v � r)2f(x) = nXi=1 nXj=1 vi @2f(x)@xi@xj vj = vtH(f)v:If �(t) = x+tv and �(t) = f(�(t)), then �(0) = f(x), �0(0) = v �rf(x), and �00(0) = vtH(f)v.Therefore, (v � r)2f(x) measures the second derivative along a linear path through x in thedirection v. Mixed directional derivatives are also allowed. Let u and v be constant nonzerovectors. The second derivative of f at x in the directions u and v is de�ned by(v � r)(u � r)f(x) = nXi=1 nXj=1ui @2f(x)@xi@xj vj = utH(f)v:Since f is C2, the order of di�erentiation is irrelevant (the matrix H(f) is symmetric), so(v �r)(u �r)f(x) = (u �r)(v �r)f(x). Now de�ne �(s; t) = x+su+tv and �(s; t) = f(�(s; t));then �(0; 0) = f(x), �s(0; 0) = u � rf(x), �t(0; 0) = v � rf(x), and �st(0; 0) = utH(f(x))v =vtH(f(x))u= �ts(0; 0).The second derivative de�nition using constant direction vectors is dependent on theparameterization �(s; t) = x + su + tv. Other parameterizations may lead to di�erent re-sults. If variable nonzero vector �elds u(x) and v(x) are speci�ed and second derivatives arecomputed, there are some problems to consider. The parameterization �(s; t) must have theproperties �(0; 0) = x, �s(s; t) = u(�(s; t)), and �t(s; t) = v(�(s; t)). For a smooth solution�(s; t) to exist, it is necessary that �st = �ts, which implies that0 = @@tu(�(s; t))� @@sv(�(s; t)) = du(�)dx v(�)� dv(�)dx u(�) = [u; v](�);where du=dx is the n�n matrix whose ith row contains the partial derivatives of componentui, and where [u; v] is the Lie product of vector �elds. Therefore, at every x it is necessarythat the vector �elds commute in the sense of Lie products: [u; v](x) = 0 for all x. If thevector �elds commute, the second directional derivative of f at x in the directions u(x) andv(x) is de�ned by DuDvf(x) = u(x)tH(f(x))v(x)+rf(x)t dudxv(x)= v(x)tH(f(x))u(x)+rf(x)t dvdxu(x)= DvDuf(x):Note that this de�nition reduces to the previous one when u and v are constant vectors.14



The directional derivative de�nitions using constant vectors are what the height def-inition for creases uses; the quadratic form involving the Hessian will be used for secondderivative tests. But in the principal direction de�nition variable vectors are used, so theother directional derivative de�nitions will be used in this case.2.3 Height De�nitionThe height de�nition for ridges and valleys is based on a generalization of local extrema forreal{valued functions of a vector variable. I give a brief summary of the construction of localextrema; the construction can be found in standard calculus books (Fulks 1978).2.3.1 Extreme PointsLet f : IRn ! IR be a C2 function. A point x0 2 IRn is said to be a critical point for f if(v �r)f(x0) = 0 for every direction v, which is equivalent to rf(x0) = 0. Critical points areclassi�ed via the following. The function f has� a minimum at x0 if (v � r)2f(x0) > 0 for every direction v;� a maximum at x0 if (v � r)2f(x0) < 0 for every direction v.Any such point x0 is called an extreme point and the corresponding function value is called anextreme value. It is only necessary to perform the tests for n linearly independent directions.Thus, x0 is a critical point if rf(x0) = 0, and f(x0) is� a minimum at x0 if H(f(x0)) is positive de�nite (all eigenvalues are positive);� a maximum at x0 if H(f(x0)) is negative de�nite (all eigenvalues are negative).2.3.2 Relative Extreme PointsI consider a more general de�nition for extreme points f . Let v1; . . . ; vd be a set of constantlinearly independent vectors in IRn, where 1 � d � n. When d = n, the vectors can bethought of as the columns of an n�n invertible matrix V . The matrices H(f) and V tH(f)Vhave the same de�niteness by Sylvester's Theorem (Horn & Johnson 1991). Therefore, the15



construction of local extrema in the previous subsection is equivalent to the following. Thefunction f has� a minimum at x0 if V trf(x0) = 0 and V tH(f(x0))V is positive de�nite;� a maximum at x0 if V trf(x0) = 0 and V tH(f(x0))V is negative de�nite.Now consider the cases d < n. Let V be the n�d matrix whose columns are the vectorsv1; . . . ; vd. A search is made for local extrema of f restricted to the subspace spanned bythe vi. The function has� a relative minimum of type n� d at x0 if V trf(x0) = 0 and V tH(f(x0))V is positivede�nite;� a relative maximum of type n� d at x0 if V trf(x0) = 0 and V tH(f(x0))V is negativede�nite.Such points x0 are called relative extreme points of type n � d for f with respect to V . Theclassi�cation has the same form as the case d = n, but the x0 2 IRn are now solutions tod equations in n unknowns. The solution sets are usually (n � d){dimensional manifolds,hence the use of \type n�d " in the de�nition. Ridges and valleys will be de�ned as relativeextreme points with respect to eigenvectors of the Hessian of f .2.3.3 Crease De�nitionsDe�ne W = �H(f) and let �i and vi, 1 � i � n, be its eigenvalues and eigenvectors. Apositive (negative) eigenvalue corresponds to convexity (concavity) of the graph of f in thecorresponding eigendirection. Assume that the eigenvalues are ordered as �1 � � � � � �n. Inthe de�nition assume that 1 � d � n.� A point x is a ridge point of type n � d if �d(x) > 0 and x is a relative maxi-mum point of type n � d for f with respect to V = [v1 � � � vd]. Since �V tH(f)V =diagf�1jv1j2; . . . ; �djvdj2g and since the eigenvalues are ordered, the test for a ridgepoint reduces to V trf(x) = 0 and �d(x) > 0.16



� A point x is a valley point of type n� d if �n�d+1(x) < 0 and x is a relative minimumpoint of type n � d for f with respect to V = [vn�d+1 � � � vn]. Since �V tH(f)V =diagf�n�d+1 jvn�d+1j2; . . . ; �n jvnj2g and since the eigenvalues are ordered, the test fora valley point reduces to V trf(x) = 0 and �n�d+1(x) < 0.This de�nition disallows the existence of ridges (valleys) of type n � d in regions where Whas fewer than d positive (negative) eigenvalues. However, ridges and valleys can occur inhyperbolic regions, where W has both positive and negative eigenvalues. It is possible thata ridge exists at a point where a negative eigenvalue has larger magnitude than any of thepositive eigenvalues. A re�ned de�nition takes into account the relative magnitudes of theeigenvalues.� A ridge point x of type n�d is a strong ridge point if �d(x) > j�n(x)j; otherwise, it is aweak ridge point. Strong ridge points occur in regions where the convexity dominatesthe concavity.� A valley point x of type n�d is a strong valley point if j�n�d+1(x)j > �1(x); otherwise,it is a weak valley point. Strong valley points occur in regions where the concavitydominates the convexity.2.3.4 ExamplesExample 2.1: Let f(x; y) = x2y. The eigenvalues of W are �1 = �y + p4x2 + y2 and�2 = �y�p4x2+ y2. Observe that �1(x; y) � 0 � �2(x; y) for all (x; y). Also, �1 > j�2j fory < 0 and j�2j > �1 for y > 0. The corresponding eigenvectors arev1 = 8><>: (�y +R;�2x); y � 0(2x;�y �R); y � 0 9>=>; ; v2 = 8><>: (2x;�y +R); y � 0(�y �R;�2x); y � 0 9>=>;where R = p4x2 + y2. The two di�erent sets of eigenvectors are used since at x = 0 onevector in each set degenerates to the zero vector. The �rst directional derivatives areDv1f = 8><>: 2x(yR� x2 � y2); y � 0x2(3y �R); y � 0 9>=>; ; Dv2f = 8><>: x2(3y +R); y � 0�2x(yR+ x2 + y2); y � 0 9>=>; :17



Figure 2.1: Height ridges of x2yLet V be the 2� 2 matrix whose columns are v1 and v2. Since H(f) is a symmetric matrix,its eigenvectors v1 and v2 are orthogonal; thus we have �V tH(f)V = diagf�1jv1j2; �2jv2j2g.There are no ridges of type 0 since �2 � 0 for all (x; y). However, there are ridges oftype 1. Firstly, note that �1(x; y) > 0 as long as not both x = 0 and y � 0. Secondly, ifx = 0 and y < 0, then Dv1f = 0 and Dv1v1f < 0. Also, if y > 0 and x2 = y2, then Dv1f = 0and Dv1v1f < 0. Therefore, the ridges of type 1 lie on three rays with origin (0; 0). The rayx = 0, y < 0 is a strong ridge since �1 > j�2j at those points. The rays x2 = 2y2, y > 0 areweak ridges since �1 < j�2j at those points.Figure 2.1 contains a contour plot with the ridges drawn as thick lines. The origin is atthe center of the picture and the coordinates are right{handed. 2Example 2.2: Consider f(x; y; z) = 12(ax2 + by2 + cz2) where 0 < a < b < c. The �rstderivatives are rf = (ax; by; cz), and the second derivatives are H(f) = diag(a; b; c). Thematrix W has ordered eigenvalues �1 = �a, �2 = �b, and �3 = �c, with correspondingeigenvectors v1 = (1; 0; 0), v2 = (0; 1; 0), and v3 = (0; 0; 1). Since the eigenvalues are allnegative, valley points are expected, but not ridge points.The only valley point of type 0 is the local minimum point (0; 0; 0). The valley points oftype 1 consist of the x{axis since Dv2f = Dv3f = 0 imply y = z = 0. Intuitively this seemsreasonable since the longest axes of the ellipsoidal level sets lie on the x{axis. The valleypoints of type 2 consist of the xy{plane since Dv3f = 0 implies z = 0. This set also makes18



intuitive sense since the ellipsoidal level sets are attest in the z{direction. 22.3.5 Invariance PropertiesThe ridges constructed by the height de�nition are invariant under spatial translations,spatial rotations, and uniform spatial magni�cations. They are not invariant with respectto monotonic transformations of the intensity function. The following notation is used inthe proofs. Let x 2 IRn. Let u = u(x) be an invertible change of spatial variables, andlet �f(u) = f(x). De�ne du=dx = [@ui=@xj ] to be the matrix of partial derivatives of thecomponents of u with respect to the components of x. All functions u of the class of spatialtransformations mentioned above have the property @2uk=@xi@xj = 0. Consequently, thefollowing relationships hold:rf = �dudx�tr �f and H(f) = �dudx�tH( �f)dudx:Finally, de�ne W = �H(f) and �W = �H( �f). The generic eigenvalues and eigenvectors forthese matrices will be denoted by �, v, ��, and �v, accordingly.Invariance under spatial translations. Let u = x+ a where a is a constant vector;then rf = r �f and H(f) = H( �f). Consequently, �v = v, �� = �, and x0 is a solution toDvf = 0 if and only if u0 = x0 + a is a solution to D�v �f = 0. The eigenvalue comparison inthe strong ridge de�nition must hold since the eigenvalues have not changed magnitude.Invariance under spatial rotations. Let u = Rx where R is a rotation matrix; thenrf = Rtr �f and H(f) = RtH( �f)R. Consequently, �v = Rv, �� = �, and x0 is a solution toDvf = 0 if and only if u0 = Rx0 is a solution to D�v �f = 0. The eigenvalue comparison in thestrong ridge de�nition must hold since the rotation does not change the magnitudes of theeigenvalues.Invariance under uniform spatial magnification. Let u = cx where c is a positivescalar; then rf = cr �f and H(f) = c2H( �f). Consequently, �v = v, �� = �=c2, and x0 isa solution to Dvf = 0 if and only if u0 = cx0 is a solution to D�v �f = 0. The eigenvaluecomparison in the strong ridge de�nition must hold since dividing a set of numbers by a19



positive value does not change the ordering of the set.Lack of invariance under monotonic transformations. Let f(x; y) = 1� x2� 2y2.The eigenvalues of �H(f) are �1 = 4 and �2 = 2 with corresponding eigenvectors v1 = (0; 1)and v2 = (1; 0). The point (1; 0) is a ridge point since v1 �rf(1; 0) = 0 and �1(1; 0) > 0. Letg : IR! IR be a di�erentiable function such that g0 > 0. De�ne the composition of functions� = g�f . The derivatives are related byr� = g0(f)rf and H(�) = g0(f)H(f)+g00(f)rfrf t.The eigenvalues of �H(�(1; 0)) are 2g0(0)�4g00(0) and 4g0(0) with corresponding eigenvectors(1; 0) and (0; 1), respectively. In order that (1; 0) be a ridge point for � it is necessary that�1 = 4g0(0) > 2g0(0)� 4g00(0) = �2. In this case v1 = (0; 1) and v1 � r�(1; 0) = 0. But thecondition 4g0(0) > 2g0(0)� 4g00(0) is not satis�ed by all monotonic functions, for exampleg(t) = ln(1 + t), where g0(0) = 1 and g00(0) = �1.For a discussion of second{order invariance properties under general intensity transfor-mations, see Florack, ter Haar Romeny, Koenderink & Viergever (n.d.).2.4 Principal Direction De�nitionThe principal direction de�nition for ridges and valleys is motivated by the di�erential geom-etry of n{dimensional hypersurfaces in IRn+1. I de�ne creases as loci of extrema of principalcurvatures along associated lines of curvature. The curvature measurements are made withrespect to the metric on the tangent hyperplanes. For a geometric motivation, compare with(Scharlach 1993).In standard di�erential geometry textbooks, hypersurfaces are described by a param-eterization which is used in obtaining principal curvatures and principal directions. Forexample, if the hypersurface is the graph of a function f(x), it is parameterized by (x; f(x)).In some applications there may not be a natural parameterization for the hypersurface ofinterest. For example, if the skull is segmented in a three dimensional data set as a surface,it is not naturally parameterized by spatial coordinates. But the surface may be thought ofas a level surface for a function of three spatial variables. I want to construct principal cur-vatures and principal directions for surfaces de�ned as level sets of functions F : IRn+1 ! IR.Assume that F is a C4 function for which rF 6= 0. The normal vectors to the surface are20



N = rF=jrF j.Construction With Parameterization. Let the surface be parameterized by positionx : IRn ! IRn+1, say x = x(u). De�ne J = dx=du, an (n+1)�nmatrix whose entries are thepartial derivatives of the components of x with respect to the components of u. The matrixhas rank n and satis�es the property N tJ = 0. That is, the columns of J are a basis of thetangent space and are orthogonal to N at position x(u). The �rst and second fundamentalforms are given by the n�n matrices I = J tJ and II = �J tdN=du, respectively. The matrixrepresenting the shape operator on the tangent space is S = I�1II. Consider the eigenvectorproblem Sp = �p. Each eigenvector p is a principal direction. The corresponding eigenvalue� is a principal curvature. The vector p is an n{vector given in terms of tangent spacecoordinates, but its representation in IRn+1 is � = Jp.Construction without Parameterization. Let the surface be de�ned implicitly byF (x) = 0 where F : IRn+1 ! IR. The variable x represents position, but is not parameterizedas it was in the previous paragraph. De�ne W = �dN=dx, an (n+1)� (n+1) matrix whoseentries are the partial derivatives of the components of the normal vector N with respectto the components of position x. Note that N � N = 1 implies N tW = 0. I claim that ifSp = �p, then � = Jp satis�es W� = ��. Firstly, note that I = J tJ . Secondly, by thechain rule, dN=du = (dN=dx)J , so II = J tWJ . The eigenvector problem (II � �I)p = 0 istherefore transformed to J t(W � �E)� = 0, where E is the (n+ 1)� (n+1) identity matrixand where � = Jp.Since J t has full rank n, the general solution to J t(W � �E)� = 0 is(W � �E)� = [E � J(J tJ)�1J t]c =Mcwhere M = E � J(J tJ)�1J t and c is an arbitrary vector (see Pearson (1983) for leastsquare solutions of linear systems using generalized inverses). Observe that MJ = 0, sorange(M) = span(N). Therefore, �N = Mc = (W � �E)� for some scalar �. Multiplyingon the left by N t yields � = N t(W � �E)� = ��N t� = 0;where I have used the facts thatN tW = 0, � = Jp, andN tJ = 0. Consequently (W��E)� =0. Conversely, it is easy to see that (W � �E)� = 0 implies (II � �I)p = 0 as long as � is a21



tangent vector, say � = Jp.Additionally, W (x) has an eigenvalue which is identically zero for all x, but the cor-responding eigenvector is not a tangent vector. This follows from the identity W = (E �NN t)H(F )=jrF j which can be derived by explicitly computing @Ni=@xj for N = rF=jrF j.The eigenvector is adj(H(F ))rF where adj indicates the adjoint of a matrix, the trans-pose of the matrix of cofactors of the input matrix. A short computation shows thatW adj(H(f))rF = 0.2.4.1 Creases on GraphsLet f : IRn ! IR be a C4 function with graph g : IRn ! IRn+1 given by g(x) = (x; f(x)).The principal curvatures �i and directions pi, 1 � i � n, are determined by Spi = �ipiwhere S is the shape operator described earlier. Assume that the curvatures are ordered as�1 � . . . � �n. In the height de�nition, I de�ned creases as relative extrema of a single real{valued function. The principal direction de�nition is di�erent in that creases will occur asextreme points of each principal curvature with respect to its principal direction. Moreover,the classi�cation of an extreme point will depend on following the integral curves of theprincipal direction vector �eld, so the second directional derivative test must be used ratherthan considering the de�niteness of a Hessian matrix. Like the height de�nition, I willcharacterize the creases according to the dimension of the manifold we expect when �ndingroots to equations. I also can re�ne the de�nitions to include the concepts of strong andweak creases. In the de�nition, assume that 1 � d � n.� The point x is a ridge point of type n�d if �d(x) > 0,Dpi�i(x) = 0, andDpiDpi�i(x) <0 for 1 � i � d. Additionally x is a strong ridge point if �d(x) > j�n(x)j; otherwise itis a weak ridge point.� The point x is a valley point of type n � d if �n�d+1(x) < 0, Dpi�i(x) = 0, andDpiDpi�i(x) > 0 for n � d + 1 � i � n. Additionally x is a strong valley point ifj�n�d+1(x)j > �1(x); otherwise it is a weak valley point.I briey contrast the height and principal direction de�nitions. In the height de�nition,I searched for the local extrema of a single function f whose domain was restricted to a22



subspace of IRn (so the search was in multiple directions). That is, if V is the n� d matrixwhose columns span the desired subspace and if s is a d� 1 vector{ valued parameter, thenthe search was for extrema of �(s) = f(x+ V s) using the standard de�nition for extrema.The second derivative test involved determining the de�niteness of the second derivativematrix for �(s) when s = 0. In the principal direction de�nition, the search is for localextrema of multiple functions �i. Each such function has a single direction pi associatedwith it, so the construction of extrema is the usual one for functions of a single real variable.That is, if s is a real variable, for each i search for extrema along a path �(s) of a function�i(s) = �i(�(s)), where the path is determined by �0(s) = pi(�(s)), �(0) = x. The secondderivative test involves testing the sign of �00i (0).2.4.2 Creases on Level SurfacesLet F : IRn+1 ! IR be a C4 function, and consider the hypersurface de�ned implicitly byF (x) = 0. As shown before, a parameterization of the hypersurface is not necessary toconstruct its principal curvatures �i(x) and principal directions �i(x) 2 IRn+1. They arethe eigenvalues and eigenvectors of the matrix W = �dN=dx, where N = rF=jrF j and�(x)tN(x) = 0. In the de�nition, assume that 1 � d � n. Also, the points x 2 IRn of interestmust be solutions to F (x) = 0.� The point x is a ridge point of type n�d if �d(x) > 0,D�i�i(x) = 0, andD�iD�i�i(x) < 0for 1 � i � d. Additionally x is a strong ridge point if �d(x) > j�n(x)j; otherwise it isa weak ridge point.� The point x is a valley point of type n � d if �n�d+1(x) < 0, D�i�i(x) = 0, andD�iD�i�i(x) > 0 for n � d + 1 � i � n. Additionally x is a strong valley point ifj�n�d+1(x)j > �1(x); otherwise it is a weak valley point.2.4.3 Graph ExamplesExample 2.3: In dimension n = 1, the matrix S is 1 � 1 and its single entry is � =�fxx=(1 + f2x)3=2. The graph of f(x) is a planar curve whose curvature at (x; f(x)) is �(x).Ridges (valleys) are local maxima (minima) of �(x). For example, let f(x) = xp where p is23
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Figure 2.2: Graphs of f(x) = x2 and f(x) = x4a positive even integer. The curvature is � = �p(p� 1)xp�2=(1+ p2x2p�2)3=2. The solutionsto �x = 0 are x = 0; �� p� 2p2(2p� 1)�1=(2p�2) :For p = 2 the only solution is x = 0. The curvature has a negative local minimum of �2, sox = 0 is a valley point. For p > 2, � has a local maximum of 0 at x = 0, so the graph of fhas a at spot which is neither a ridge nor a valley. At the other two critical points, � hasnegative local minima, so the points are valley points. Note that as p!1, the graph of xpapproaches 0 pointwise on (�1; 1) and the valley points approach �1. Figure 2.2 shows thegraphs and valley points for two di�erent values of p. The valley points are labeled on thegraphs as V . When p = 4, the valleys are �(1=56)1=6 := 0:51. 2The example f(x) = x4 shows that creases according to the principal direction de�nitionare not necessarily local extrema in the function. However, the creases obtained may bebetter suited for functions which correspond to measurements other than intensity or forwhich the independent variable is not a spatial one. For example, f might be a function oftime for which we are interested in knowing a �rst time when f has a transition between24



Figure 2.3: Principal direction ridges of x2yslowly decreasing and greatly decreasing. The crease points can be viewed as such transitions.Example 2.4: Let f(x; y) = x2y. The matrix for the shape operator isS = 1L3 264 �2y(x4� 1) 2x(1+ x4)2x(1+ 2x2y2) �4x4y 375where L = p1 + jrf j2 =p1 + 4x2y2 + x4. The principal curvatures are � = (y(3x4� 1)�R)=L3 where R = p(1 + x4)[y2(9x4+ 1) + 4x2], and corresponding principal directions arep1 = 8><>: (�(1 + x4)y +R;�2x(1 + 2x2y2)); y < 0(2x(1+ x4);�(1 + x4)y �R); y > 0 9>=>;and p2 = 8><>: (2x(1+ x4);�(1 + x4)y +R); y < 0(�(1 + x4)y �R;�2x(1 + 2x2y2)); y > 0 9>=>; :A closed form solution for the ridges is not tractable. Figure 2.3 shows numericalresults for computing the ridges. The �gure contains a contour plot with the ridges drawn asthick lines. The origin is at the center of the picture and the coordinates are right{handed.(Compare with the ridges in Figure 2.1). 225



2.4.4 Level Surface ExampleExample 2.5: Consider an ellipsoid de�ned as a level surface of the function F (x; y; z) =(ax2 + by2 + cz2)=2, say F (x; y; z) = p > 0, where 0 < a < b < c. The unit normal vectorsare N = (ax; by; cz)=L where L =pa2x2 + b2y2 + c2z2. The matrix W isW = 1L3 266664 a(b2y2 + c2z2) �ab2xy �ac2xz�ba2xy b(a2x2 + c2z2) �bc2yz�ca2xz �cb2yz c(a2x2 + b2y2) 377775 :The principal curvatures of the surface are �1 = (�+p�)=L3 and �2 = (��p�)=L3 where� = a2(b+ c)x2+ b2(a+ c)y2+ c2(a+ b)z2 and � = a4(b� c)2x4+ b4(a� c)2y4+ c4(a� b)2z4+2(a� c)(b� c)a2b2x2y2 + 2(a� b)(c� b)a2c2x2z2 + 2(b� a)(c� a)b2c2y2z2. Correspondingprincipal directions arep1 = ab(cxz; cyz;�ax2 � by2) + L�1(acxz; bcyz;�a2x2 � b2y2)andp2 = ab(�y(abx2+ b2y2 + c2z2); x(a2x2 + aby2 + c2z2); c(a � b)xyz) + L3�1(�by; ax; 0):Clearly �1 > 0 for all (x; y; z), so I attempt to locate ridges of type 1. Taking derivativesyields the formula L3r�1 + 3L2�rL = r� + 12p�r�:At z = 0, some calculations will show that p1 = ��(0; 0; 1). It is easily shown that p1 �r� =p1 � r� = p1 � rL = 0 when z = 0. Thus, Dp1�1(x; y; 0) = 0 for all x and y which lie on thecurve ax2 + by2 = 2p.The second directional derivative when z = 0 can be shown to be Dp1Dp1�1 = �[�zz ��r�t(@p1=@z)], where all quantities involved are evaluated at z = 0. Some tedious algebraiccalculations lead toDp1Dp1�1(x; y; 0) = 2c2L3p� �!1a4x4 + !2a2b2x2y2 + !3b4y4�where !1 = (c � b)[a(4b+ 5c)� (b+ c)(b+ 6c)], !2 = f(c � a)[ac+ 3(b+ c)(b� 6c)] + (c �b)[bc+3(a+ c)(a�6c)]g and !3 = (c�a)[b(4a+5c)� (a+ c)(a+6c)]. Using 0 < a < b < c, it26



can be shown that all !i < 0, so Dp1Dp1�1(x; y; 0) < 0. Therefore the points on the ellipsoidfor which z = 0 are ridges of type 1.More calculations will show that when y = 0 and z = 0, Dp2�2 = 0 and Dp2Dp2�2 < 0.The vertices (�p2p=a; 0; 0) are therefore ridges of type 0. 22.4.5 Invariance PropertiesFor parameterized hypersurfaces, the ridge construction is invariant under di�eomorphismson the parameter space. This result follows from standard di�erential geometry where theprincipal curvatures and principal directions do not change under these transformations.With regard to transformations applied to the entire space IRn+1 in which the level surfaceF (x) = 0 lives, the ridges constructed are invariant under spatial translations and spatialrotations (Euclidean motions), and under uniform spatial magni�cations. The proofs arenearly identical to those in Section 2.3.5.In the special case of a graph de�ned by F (x; z) = z � f(x) = 0, where x 2 IRn andz 2 IR, the ridge construction is not invariant to uniform magni�cation in x. Note thatthe magni�cation is not a reparameterization of the original surface; the transformationdoes change the surface. For example, if n = 1 and f(x) = 1 � x4 for x > 0, a ridge isx0 = 56�1=6. Let x = c�x for some c > 0 and de�ne �f(�x) = f(x) = 1 � c4�x4. The ridge forthis new function is �x0 = (56c8)�1=6 6= x0=c, so the ridge is not invariant.2.5 Level De�nition2.5.1 Creases on Level SurfacesLet f : IRn ! IR, n � 2, be a C4 function such that rf 6= 0 (except at isolated points).The domain of f can be partitioned into its level sets de�ned by f(x) = c for constantsc. Note that a single level set can be viewed as a hypersurface in IRn implicitly de�nedby F (x) = f(x) � c = 0. Therefore, the principal direction de�nition may be appliedto �nd creases on the hypersurface for each c in the range of f . The normals for thehypersurface are N = rF=jrF j, and the eigenvalues and (tangential) eigenvectors of thematrix W = �dN=dx are the principal curvatures and principal directions. I will construct27



creases on the graph of f by applying the principal direction de�nition to each of its levelsurfaces. The set of all creases of all the level surfaces make up the creases of the graph.The eigenvalues of W are �1 � . . . � �n�1 and 0, with corresponding eigenvectors�1; . . . ; �n�1 and adj(H(f))rf . The �i(a) and �i(a) are the principal curvatures and principaldirections for the level surface f(x) = f(a). An attempt can be made to construct creasesets of dimension d where 1 � d � n� 1. The de�nition is similar to the principal directionde�nition, but with one subtle di�erence. In the principal direction de�nition, creases weresolutions to equations of the type D��i(x) = 0 where F (x) = 0 for a single function F . Inthe level de�nition, creases are solutions to the same equations, but now for an entire familyof functions F (x; c) = f(x)� c = 0.� The point x is a ridge point of type n � 1 � d if �d(x) > 0, D�i�i(x) = 0, andD�iD�i�i(x) < 0 for 1 � i � d. Additionally x is a strong ridge point if �d(x) > j�n(x)j;otherwise it is a weak ridge point.� The point x is a valley point of type n � 1 � d if �n�d(x) < 0, D�i�i(x) = 0, andD�iD�i�i(x) > 0 for n � d � i � n � 1. Additionally x is a strong valley point ifj�n�d(x)j > �1(x); otherwise it is a weak valley point.Example 2.6: Consider the case n = 2. Normal and tangent vectors to the level curvesare given by N(x; y) = (fx; fy)=(f2x + f2y )1=2 and T (x; y) = (fy;�fx)=(f2x + f2y )1=2, and thecurvature of the level curves is �(x; y) = �(f2xfyy � 2fxfyfxy + f2y fxx)=(f2x + f2y )3=2.Consider the function f(x; y) = x2y for x > 0 and y > 0. The tangents to level curvesare T = (x;�2y)=(x2 + 4y2)1=2. The curvature and its derivative in the T direction are� = 6xy=(x2 + 4y2)3=2 and DT� = �24xy(x2 � 5y2)=(x2 + 4y2)3. Setting DT� = 0 in the�rst quadrant yields x = p5y, y > 0. Some calculations will show that DTDT� < 0, so thepoints are ridge points.Figure 2.4 shows a contour plot for the entire plane. The origin is at the center of thepicture, and the coordinates are right{handed. The ridges drawn as thick lines, althoughthe curve x = 0 for y < 0 is degenerate in that the gradient of f is identically zero on it and� = 0. (Compare with the ridges in Figures 2.1 and 2.3). 228



Figure 2.4: Level ridges of x2y2.5.2 1{Dimensional Creases from Mean CurvatureIn the numerical implementation of the level de�nition, the eigenvalues and eigenvectorsmust be computed for the matrix W at each point in an image. This process is typicallytime{consuming. A variation on the level de�nition for constructing 1{dimensional creasescomputes the local extrema of the mean curvature � = trace(W )=(n� 1) rather than com-puting local extrema of principal curvatures. The trace of W is more easily computed thanits eigenvalues.Let f : IRn ! IR and let x : IRn�1 ! IRn denote a level surface; thus, f(x(s)) � cfor some constant c and for all s. Let �(s) = �(x(s)) be the mean curvature of the levelsurface at position x(s). In the construction I use the following abbreviations for the tensorquantities for the gradients and Hessians of the functions of interest:r� = @�@si ;r� = @�@xk ;rf = @f@xkand H� = @2�@si@sj ;H� = @2�@xk@xm ;Hf = @2f@xk@xm :I also use the following abbreviations for the tensor quantitites for the �rst and secondderivatives of position x(s): x0(s) = @xk@si and x00(s) = @2xk@si@sj :29



The local extrema of � occur when r� = 0 and H� is positive de�nite (local maximum)or negative de�nite (local minimum). I want to determine the local extrema without havingto choose a particular parameterization x(s). Select a smoothly varying basis of tangentvectors vi(x), 1 � i � n� 1, which can be used in the derivative tests instead of the tangentvectors @x=@si. I will show later that there is such a basis. Let V be the n � (n � 1)matrix whose columns are vi(x). The two matrices V and x0(s) are related by an invertible(n� 1)� (n� 1) matrix C (a change of basis), x0(s) = V C.Using the chain rule, the derivatives of � arer� = x0(s)tr� and H� = x0(s)t H� x0(s) + x00(s)r�:The �rst derivative test is 0 = r� = CtV tr�. Since C is invertible, the critical points aresolutions to V tr� = 0. The second derivative test involves second derivatives of position,which I want to avoid computing. Note that V tr� = 0 implies that r� is orthogonal to thetangent space of the level surface since the columns of V span the tangent space; that is,r� = �rf where � = (r� � rf)=(rf � rf). Moreover, since f(x(s)) � c, taking derivativesyields 0 = x0(s)trf and 0 = x0(s)tHfx0(s) + x00(s)rf:Consequently at a critical point,x00(s)r� = �x00(s)rf = ��x0(s)tHfx0(s);so the second derivative of � at such points isH� = x0(s)t (H�� �Hf)x0(s):In terms of the matrix V , C�tH�C�1 = V t (H�� �Hf)V:By Sylvester's Theorem (Horn & Johnson 1991), C�tH�C�1 and H� have the same de�nite-ness, so only the de�niteness of V t(H���Hf)V needs to be checked for the second derivativetest.The remaining problem is to �nd a smoothly varying basis vi for the tangent space tolevel surfaces which is easier to compute than the principal directions. Such a basis is given30



by the columns of a rotation matrix which maps the vector en = (0; . . . ; 0; 1) to the normalN = rf=jrf j of the surface. A rotation matrix is given in block form byR = 264 E + (Nn � 1)PP t Q�Qt Nn 375where E is the (n � 1) � (n � 1) identity matrix, Q = (N1; . . . ;Nn�1)t are the �rst n � 1components of the normal vector, Nn is the last component of N , and P = Q=jQj whenQ 6= 0. If Q = 0, the rotation matrix is just the identity matrix.The crease de�nitions for this variation are given below. Let V be the matrix whosecolumns are the vi vectors. A point x 2 IRn is� a ridge point if �(x) > 0, V tr�(x) = 0, and V t(H�� �Hf)V is negative de�nite, or� a valley point if �(x) < 0, V tr�(x) = 0, and V t(H�� �Hf)V is positive de�nite,where �(x) = (r� � rf)=(rf � rf). The directional derivatives and eigenvalues are allevaluated at the point in question. Note that the mean curvature de�nition is identical tothe level de�nition in the case n = 2. The qualitative di�erences between ridges obtained bythe level de�nition and those obtained by the variation involving mean curvature should beminimal in convex regions (all �i > 0). Some noticeable di�erences may occur in hyperbolicregions.2.5.3 Invariance PropertiesThe ridges constructed by the level de�nition are invariant with respect to spatial transla-tions, spatial rotations, and uniform spatial magni�cations, just as in the principal directionde�nition since the ridges are located on level surfaces using the principal de�nition.The ridges are also invariant under monotonic transformations of the function f : IRn !IR. Intuitively, think of IRn as a 1{parameter family of level sets of f , each having its functionvalue as an \attribute". Monotonic transformations on f will not change the geometricstructure of the level sets; rather it will only change the attributes of the level sets.The mathematical proof is straightforward. Let N [f ] be the normal vectors correspond-ing to f and let W [f ] = dN [f ]=dx. Let g : IR! IR be a smooth increasing function (g0 > 0),31



and de�ne h : IRn ! IR to be the composition h = g � f . Let N [h] be the normal vectorscorresponding to h and let W [h] = dN [h]=dx; thenN [h] = rhjrhj = g0(f(x))rf(x)jg0(f(x))rf(x)j = rfjrf j = N [f ]:Consequently W [h] = W [f ], and the principal curvatures and principal directions are thesame for f and h. The construction of creases is identical in either case.2.6 Nonmetric De�nitionThe principal direction de�nition applied to graphs of functions involved �nding those values� and vectors p 6= 0 which solve IIp = �Ip where I is the �rst fundamental form and II isthe second fundamental form. The presence of I means that measurements are made inthe tangent spaces to the graph. The nonmetric de�nition is a variation on the principaldirection de�nition. Consider instead solving IIv = �v where the metric I of the graph isignored. This change takes us out of the realm of di�erential geometry. Only graphs offunctions are considered with this de�nition.2.6.1 General DimensionsThe crease de�nitions are essentially those for principal directions. Let f : IRn ! IR. Let�i and vi be the eigenvalues and eigenvectors of II for 1 � i � n. Let the eigenvalues beordered as �1 � � � � � �n. In the de�nition, assume that 1 � d � n.� The point x is a ridge point of type n�d if �d(x) > 0, Dvi�i(x) = 0, andDviDvi�i(x) <0 for 1 � i � d. Additionally x is a strong ridge point if �d(x) > j�n(x)j; otherwise itis a weak ridge point.� The point x is a valley point of type n � d if �n�d+1(x) < 0, Dvi�i(x) = 0, andDviDvi�i(x) > 0 for n � d + 1 � i � n. Additionally x is a strong valley point ifj�n�d+1(x)j > �1(x); otherwise it is a weak valley point.Example 2.7: In dimension n = 1, the eigenvalue formula is � = �fxx=(1+f2x)1=2. Considerf(x) = exp(�x2=2)=p2�, a Gaussian distribution with standard deviation 1. The function32



has a relatively slow decrease for small x. For larger x the graph drops o� sharply and thenremains close to 0 as x ! 1. The creases obtained from the nonmetric de�nition will beused as markers of where the rate of decrease of f has transitions from slow to fast.For this example, �x = 0 when x0 = 0 or when x is a solution to 2�(x2� 3) exp(x2) =x2 + 1. Using Newton's method to �nd an approximate solution yields x1 := 1:741. Also,�(x0) = 1, �xx(x0) = �4, �(x1) := �0:176, and �xx(x1) := 0:557, so x0 is a ridge point andx1 is a valley point. 2Example 2.8: In dimension n = 2 consider the same function f(x; y) = x2y as before,so the ridge de�nitions can be compared. De�ne L = p1 + jrf j2 = p1 + 4x2y2 + x4 andR = p4x2+ y2. The eigenvalues of W are �1 = (�y + R)=L and �2 = (�y � R)=L withcorresponding eigenvectorsv1 = 8><>: (�y +R;�2x); y � 0(2x;�y �R); y � 0 9>=>; and v2 = 8><>: (2x;�y +R); y � 0(�y �R;�2x); y � 0 9>=>; :The eigenvalues satisfy �1(x; y) � 0 � �2(x; y) for all (x; y). The �rst directional derivativeof �1 is Dv1�1 = 8><>: 2x(�y+R)g(x; y)=(RL3); y � 04x2g(x; y)=(RL3); y � 0 9>=>;where g(x; y) = 3� (x2 � y2)(x2 � 2y2) +Ry(5x2 + 2y2).A �rst set of solutions to Dv1�1 = 0 is given by the line x = 0. A second set of solutionscan be constructed by setting y = mx in the equation g(x; y) = 0. The curve of solutionsfor x > 0 is given parametrically byx(m) = " 3(1�m2)(1� 2m2)�m(5 + 2m2)p4 +m2 #1=4 ; y(m) = mx(m);wherem � m0 andm0 is the positive solution to 52m6+92m4+106m2�1 = 0. The solutionsfor x < 0 are obtained by reection through the y{axis. Note that limm!�1 x(m) = 0 andlimm!�1 y(m) = �(3=4)1=4.It can be shown by the second derivative test that the points (x; y) for which x = 0 andy < �(3=4)1=4 are ridge points, and all points (x(m); y(m)) given above are ridge points.33



Figure 2.5: Nonmetric ridges of x2yFigure 2.5 shows a contour plot with the ridges drawn as thick lines. The origin is atthe center of the picture and the coordinates are right{handed. (Compare with the ridgesin Figures 2.1, 2.3, and 2.4). 22.6.2 Invariance PropertiesThe ridges constructed by the nonmetric de�nition have the same invariance as those of theprincipal direction de�nition; the proofs are similar. The ridges are invariant under spatialtranslations and spatial rotations (in IRn). The ridges are not invariant under uniform spatialmagni�cations and monotonic transformations of f .2.7 Experiments on ImagesI tested the four basic ridge de�nitions (height, principal direction, level, and nonmetric)on a slightly blurred version of the MR image shown in Figure 1.4. The original image wasassumed to have a (inner) scale value � = 1. The image was Gaussian blurred to scale � = 2to help remove small scale noise. I ignored the valleys for clarity in the resulting images inFigure 2.6.The ridges were constructed by �nding zero{crossings of the appropriate directionalderivatives. Both pixels involved in a zero{crossing were marked as ridges. The resulting34



height de�nition principal direction de�nition
level de�nition nonmetric de�nitionFigure 2.6: Ridges of MR head image
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binary set was thinned using morphological operations. The ridges from the height de�nitionappear to give the best qualitative information about structure of the image. The ridgesfrom both the principal direction and nonmetric de�nitions seem to be overly abundant.The level de�nition appears to produce more dendritic{like ridge structures, but the ridgesare fragmented. The reduction in detail through increasing scale seems to happen sooner forthe height de�nition than for the other de�nitions. In the principal direction case, no objectstructures are apparent at the selected scale. In the nonmetric case you can see the scalp,corpus colosum, and brain stem.2.8 DiscussionThe four crease de�nitions: height, principal direction, level, and nonmetric, appear to pro-duce qualitatively di�erent structures. When applied to graphs of functions all four provideinvariance under rotations and translations in the spatial variables. The level de�nition isadditionally invariant under monotonic transformations of the function values. Based onthe images of Figure 2.6, the height de�nition seems to capture the most large scale shapeinformation about the image. The dendritic structures occurring from the level de�nitionseem to be suitable for providing small scale descriptions of objects in the image.The principal direction and nonmetric de�nitions applied to graphs do not provide in-variance under uniform spatial magni�cations and monotonic changes in intensity. Moreover,the fact that the ridges tend not to correspond to object centers makes these de�nitions notsuitable for medical image analsis. However the principal direction de�nition does apply tosurfaces whose coordinates all correspond to spatial information, so the de�nition is suitablefor locating ridges on surfaces and using them for 3D image registration.The true test of the usefulness of ridges in image analysis lies in multiscale analysis.Ridge structure at a single scale can give information about structures of an appropriate size,but the behavior of ridge structures as the scale parameter is increased allows one to capturemore global object information. An application of ridge analysis to image segmentationusing a multiscale approach is given in Chapter 3. The basis for applying ridge analysis tomedial analysis based on cores is given in Chapter 4.36


