
Chapter 3Ridge Flow Segmentation3.1 IntroductionSegmentation of images into meaningful regions has been an important area in medicalimage analysis. Rapid, accurate, automated identi�cation and measurement of anatomicalobjects in medical images, such as organs and tumors, is a desirable goal. Three typicalapplications requiring segmentation are display from regions of interest, measurement ofobject information, and atlas identi�cation. A 3{dimensional image contains a large amountof data, so rendering of the complete data set can be time consuming. Selecting regions ofinterest will reduce the amount of data to process and will reduce the rendering time. Also,objects that the user wants to display may be obscured by other irrelevant objects in thedata. To display a single unobscured object, the selection of a region of interest containingonly the object becomes an important issue. A good segmentation algorithm should producea region just slightly larger than the object. Display of an object gives a good qualitativedescription, but quantitative measurements might also be required, for example, the volumeof a tumor. Current clinical tools allow radiologists to \hand{segment" objects in images bydrawing contours around the objects of interest on a slice{by{slice basis. Volume estimatescan be made by calculating the enclosed area on each slice and then adding up the areas. Thisprocess is slow and tedious. A good segmentation algorithm should allow the radiologiststo make more accurate measurements with far less cost of user time. Finally, if the objectsin an image are precisely located and represented by an abstract structure such as a tree or



graph, then the objects can be identi�ed by matching their representations against an atlas ofrepresentations stored as a data base of previously segmented objects. The resulting namingcan be fed back to allow a model to improve the segmentation. It can allow object{speci�cmeasurements to be made, including deviation from normality.Automated segmentation processes are not as adept as humans at recognizing objects.The chances are small that the segmentation process will correctly associate with each objecta single primitive region. Realizing this limitation, a good design goal is to create many smallprimitive regions and attempt to semantically link them into a hierarchy. The semanticrules can be based on such constructs as pyramids (Burt, Hong & Rosenfeld 1981, Burt &Adleson 1983), the di�erence{of{low{pass transform (Crowley& Parker 1984), tree matching(Beaulieu & Goldberg 1989), or multiscale methods (Gauch, Oliver & Pizer 1988, Gauch& Pizer 1988, Lifshitz 1990, Pizer, Cullip & Fredericksen 1990) where the scale space isconstructed via Gaussian blurring. A goal of this chapter is to show how such hierarchiescan be used for interactive object de�nition. The hierarchies also have the potential forobject recognition using tree matching algorithms.Hierarchy construction via multiscale methods focuses on annihilation of certain ge-ometric features as a means of identifying both primitive regions and parent{child links.Primitive regions consist of points which are similar with respect to a selected geometricfeature. The boundaries (and nearby points) of primitive regions are points which are notsimilar to the interior points. For example, one might choose to group points based on mag-nitude of gradient intensity, as is so often the case in edge detection algorithms. A primitiveregion contains points for which the gradient magnitude is small. At the boundaries of theregions, the gradient magnitude is relatively larger. Each level of a hierarchy correspondsto viewing the initial image at a larger scale. The parent{child links are established by ob-serving how the geometric features are annihilated through increasing scale. In the exampleof gradient magnitude, if two regions have part of their boundaries (points of large gradientmagnitude) close together at one scale, and if at a larger scale part of the common boundaryblurs together, then the common boundary was annihilated and the two objects blur into asingle object. The links in the hierarchy will capture this annihilation information.In Lifshitz (1990), the initial image I(~x) is blurred using Gaussian kernels of increasing38



standard deviation � (scale) to form the functionB(~x; �), withB(~x; 0) = I(x). The hierarchyconstruction is based on the nesting of light and dark regions at varying scales, each suchregion containing a local extremum of intensity. The local extrema are tracked throughincreasing scale until annihilation, producing extremum paths in scale space. The pathsare necessarily solutions to r~xB(x; �) � 0, where the gradient is taken only in the spatialcomponents.I give a brief description of the algorithm and its intended result. As noted in the nextparagraph, the experimental results showed that the algorithm did not always produce whatwas expected. At a point (~x0; �0) on the extremum path with B(~x0; �0) = c, there is anisointensity surface of the blurred function, implicitly de�ned by B(~x; �) � c, which containsthe point. At zero scale, the isointensity contour implicitly de�ned by I(~x) � c is associatedwith the given extremum path. In particular, at the point of annihilation, the associatedisointensity contour of I forms the boundary of an extremal region which is assigned to theextremum path. At annihilation, another region's isointensity contour (for B at the scale ofannihilation) encloses the region associated with the annihilating extremum. This induces acontainment relationship among extremal regions which can be represented as a hierarchy.The above construction has some drawbacks. One problem is that pixels which visuallyall belong to one region may be linked to di�erent extremum paths; that is, only portions oflevel curves were mapped to single extremum paths. This is contrary to the intuition one hasabout nesting of regions. Another problem is that the algorithm places too much emphasison intensity. The links in the hierarchy are created based on the intensity of annihilation.A better algorithm would be one which emphasizes higher order geometric e�ects.In Gauch & Pizer (1988), the initial image I(~x) is also blurred to construct a scale spaceimage B(~x; �). Shape of objects in the image is described in terms of the level sets of theimage, thus providing a description which is invariant to monotonic rescaling of intensities.At zero scale, for each intensity c a level disk is Dc = f~x : I(~x) � cg. The Blum medialaxis (Blum & Nagel 1978) was constructed for each level disk, call it Mc. The totality ofall such axes is called the intensity axis of symmetry (IAS), given by A = [f(~x; c) : c 2range(I); ~x 2 Mcg. The axis consists of branching and looping sheets which �t under thegraph of intensity. The shape and placement of the sheets are a�ected most by the vertices39



of the level curves. Visually, the sheets �t under the graph at places one would call ridgesof the surface.The IAS is computed for the blurred image B(~x; �) through increasing scale. At eachscale, primitive regions are constructed based on the decomposition of the IAS sheets intosimpler structures. For each simple structure the boundary of the region is built usingwatershed methods. The hierarchy relating these regions is produced by tracking the IASthrough scale space. The links between scales are constructed based on how branches of theIAS are annihilated. The algorithms are based on active surfaces, a generalization of activecontours (Kass, Witkin & Terzopoulos 1987).The IAS construction is computationally expensive and requires careful handling of thetopological problems that can arise in the active surface algorithm. Numerical di�culties intracking the level curve vertices through scale can be a problem. A drawback to both thehierarchy constructions of Lifshitz (1990) and Gauch & Pizer (1988) is that object boundariesare created as level sets of intensity. Typically object boundaries are not level sets, especiallyin images with noise, and they depend on higher{order geometric information.In Fredericksen, Coggins, Cullip & Pizer (1990) and Pizer et al. (1990), a segmentationalgorithm is developed using a peak ow model. In the model the local maxima of the intensityfunction are identi�ed. The primitive regions are built using a reverse watershed method.A local maximum point is assigned a region of points, each point being the initial value fora ow line on the graph of intensity such that the ow terminates at the local maximum.The ow line directions are determined by the gradient of intensity. This process segmentsthe pixels into a disjoint union of primitive regions. The main problem with the peak owmodel is that visually important regions may not correspond to watershed regions. Forexample, consider the subgraph of intensity over a watershed region. The subgraph containsa single peak (by de�nition) but may also contain ridge structures. A ank associated with aridge may itself contain subridge structures. Visually, the subridge and an associated regioncontaining it are important, but such a region is never identi�ed in the peak ow process.In Section 3.2 I present a general method for segmenting medical images which is basedon the ridge de�nitions discussed in Chapter 2. Ridges of an image appear to be associ-ated with regions of perceptual importance. The hierarchies I construct are also based on40



annihilation, but now the selected geometric features are ridges. The segmented image isrepresented by a hierarchy which is built using multiscale and di�erential geometric methods.The leaf nodes of the hierarchy represent small, primitive regions of an image. These regionsare constructed by using a ridge ow model which is a generalization of the peak ow modelin the sense that peaks are local maxima of intensity and ridges are a generalization of localmaxima. The ridges are segmented into curvilinear segments. A ridge segment is assigneda region of points, each point being the initial value for a ow line in the image plane suchthat the ow terminates at the ridge segment. The ow process is a generalization of thereverse watershed method, but in our case the ow line directions are determined not by thegradient of intensity, but by the gradient of a function which is in some sense natural to theridge construction. A re�nement of the ridge ow model which uses both ridges and valleysto form primitive regions is the ridge{valley ow model, discussed in Section 3.3.The interior nodes of the hierarchy relate the primitive regions in a way that reectsthe natural object structure of the image. Each level of nodes in the hierarchy representsprimitive regions of an image which has been blurred to a selected scale using variableconductance di�usion (Grossberg 1984, Perona & Malik 1987, Whitaker 1993). As comparedto the regions obtained in Lifshitz (1990) and Gauch & Pizer (1988), our region boundariesare not level sets; rather they delimit those points which form the anks associated withthe ridge segment. The blurred image is also segmented using a ridge ow model. The ideais that small regions at one scale are blurred into a single larger region at a larger scale.Such small regions will be linked to a parent node at the next level in the hierarchy. Asthe scale increases without bound, the blurring process yields a constant image. Thus, at alarge scale, all nodes will eventually have a single ancestor{the root of the tree. Anatomicalobjects are obtained as unions of subtrees of the hierarchy. A detailed description of thehierarchy construction is given in Section 3.4.I have implemented the algorithms for any dimension n � 1, not just for the usual 2and 3 dimensions. The image and corresponding hierarchy are used as input to two objectde�nition and visualization tools, called the Magic Crayon (Beard, Faith, Eberly, Pizer,Kurak & Johnston 1993, Beard, Eberly, Faith, Kurak, Paramasivam & Pizer 1994) and theInteractive Hierarchy Viewer (Fredericksen et al. 1990, Pizer et al. 1990), which allow the41



Figure 3.1: MR image, MR intensity surface, and ridges of intensityuser to interactively de�ne objects by rapidly traversing the hierarchy and displaying theregions of interest with color overlays. A discussion of these tools is given in Section 3.5.The results of the segmentation applied to 2{ and 3{dimensional images are also provided.3.2 Ridge Flow ModelsFor many types of medical images, the intensity values tend to be large at pixels which arecentrally located in objects, and tend to be small near boundaries of objects. For example,in the MR image of Figure 3.1, the scalp tends to show up as bright along the center ofthe scalp, but darker as you move towards the scalp boundaries. Similarly, the brain stemtends to show up as bright along its center, but darker near its boundaries. Other objectsappear dark on a light background, but since these can be thought of as light objects on adark background in a \negative" of the image, I will consider for now only light objects on adark background. The graph of the intensity is shown in the center image. Notice how thebright centers of objects show up as ridges on the surface. Let the image be represented bya smooth function f : D � IRn ! IR, where D is a rectangular solid. A ridge ow model isa method for segmenting D into a disjoint union of primitive regions which are determinedby the ridge structure of the graph of f . There are numerous de�nitions for ridges, but theone I use to illustrate the ideas is based on the height de�nition, a generalization of localmaximum points for real{valued functions. The right{most image shows the ridge structurefor the MR image. 42



3.2.1 Height RidgesAs indicated in Chapter 2, there are a number of choices for ridge de�nitions. Each of thede�nitions has its own invariance properties. Invariance with respect to rigid motions isdesirable in that our construction of primitive regions should not depend on the orientationof the objects in the image. For example, if an object is the union of primitive regions andif that object is rotated by 45�, then the primitive regions of the rotated object should bethe rotated primitive regions for the original object. Invariance with respect to monotonicchanges in intensity is also desirable since the construction of primitive regions should notdepend on the actual intensities. For example, if the intensity of every pixel of an image isdoubled, the primitive regions should not change. Only the level de�nition was shown tohave invariance with respect to monotonic changes in intensity. However, my experimentalresults seemed to show that the height de�nition produces a qualitatively better set of ridgesthan does the level de�nition. The results in this section will therefore be based on theheight de�nition for ridges.I give a brief summary of the height de�nition for ridges found in Section 2.3. Thepartial derivatives of f are denoted by subscripting f with the appropriate variable. Ifx = (x1; . . . ; xn), then fxi is the �rst partial derivative of f with respect to xi. The gradientof f is the vector rf = (fx1; . . . ; fxn ). The matrix of second partial derivatives of f , calledthe Hessian of f , is denoted by H(f) = [fxixj ]. The function f is said to be Ck if its partialderivatives through order k are continuous functions.The following de�nitions for local maxima and local minima are from standard calculus.Let f : IRn ! IR be a C2 function. A point x0 2 IRn is a critical point for f if rf(x0) = 0.The function has a minimum (maximum) at x0 if H(f(x0)) is positive (negative) de�nite.Any such point is called an extreme point and the value f(x0) is called an extreme value.The concept of local extrema for f can be generalized. Let v1; . . . ; vn be a set of nlinearly independent vectors in IRn. Let V be the n � n matrix whose columns are the vk.The set of solutions to rf(x) = 0 are identical to those of V trf(x) = 0 since V is invertible.Moreover, the matrices H(f(x)) and V tH(f(x))V have the same de�niteness by Sylvestor'sTheorem (Horn & Johnson 1991). Therefore, the tests for local extrema can be rephrasedas follows. A point x0 is a minimum (maximum) point if V trf(x0) = 0 and V tH(f(x0))V43



is positive (negative) de�nite.Now consider a set of d linearly independent vectors v1; . . . ; vd where 1 � d < n. Iwant points for which f has extreme values, but only with respect to the speci�ed directions.Let V be the n � d matrix whose columns are the vectors v1 through vd. Say that f hasa relative minimum (maximum) of type n � d at x0 if V trf(x0) = 0 and V tH(f(x0))V ispositive (negative) de�nite. Such points x0 are called relative extreme points of type n � dfor f with respect to V . The classi�cation of extreme points has the same form as the cased = n, but the x0 are now solutions to d equations in n unknowns. The solution sets areusually (n� d){dimensional manifolds, hence the use of \type n� d" in the de�nition.Note that the extrema depend on choice of vectors vk, which hopefully are natural tothe application. In my segmentation application I require 1{dimensional ridge structures, sod = n�1. Let �i(x) and vi(x), 1 � i � n, be the eigenvalues and eigenvectors of H(f(x)) suchthat �1 � � � � � �n. Let v1 through vn�1 be the vectors used in testing for relative maxima off . A point x is a ridge point (of type 1) if �n�1(x) < 0 and x is a relative maximum of type1 for f with respect to V = [v1 � � � vn�1]. Since V tH(f)V = diagf�1jv1j2; . . . ; �n�1 jvn�1j2g,and since the eigenvalues are ordered, the test for a ridge point reduces to V trf(x) = 0 and�n�1(x) < 0. Additionally, x is a strong ridge point if j�n�1j > j�nj, otherwise it is a weakridge point. If all the eigenvalues are negative at ridge point x, it is automatically a strongridge point. But if �n > 0, the de�nition intuitively says that a strong ridge point occurs ina region where the convexity of the graph dominates the concavity.As a mathematical example, consider the function f(x; y) = x2y. It can be shown thatthe points (0; y) for y < 0 are strong ridge points, whereas the points (�yp2; y) for y > 0are weak ridge points. (See Example 2.1 in Section 2.3.4.) As indicated earlier, Figure 3.1shows the ridge points for the MR image of the head.3.2.2 Flow RegionsThe construction of primitive regions is analogous to the reverse gravity watershed methodsfound in the peak ow models (Fredericksen et al. 1990, Pizer et al. 1990) and in the networkmodels (Colchester 1990, Gri�n, Colchester & Robinson 1991). In the peak ow model, theregion points are labeled by starting at a point and following the ow line, whose direction44



is the gradient of intensity, to a local maximum. Since the gradient points in the direction ofmaximum increase for f , the ows are in the \uphill" direction. In the network models, theboundaries of regions are constructed by following ow lines in the gradient direction fromlocal minima to saddles (course lines) and from saddles to local maxima (ridge lines). Thepoints contained in such a boundary lie on ows which are also in the uphill direction.In my application, following the gradient of intensity direction is not helpful in con-structing primitive regions. Generally, a curve consisting of height ridge points is not anintegral curve of rf(x). It is possible for a ow line corresponding to rf(x) to transverselycross a height ridge and continue to ow away from the ridge (cf. the examples in Chapter2). Even if ridges were ow lines, it must be that the ows can only intersect at a criticalpoint for f (for su�ciently smooth f). The ridges would never take part in the segmentationand the process reduces to just peak ow.Associated with our ridge construction is a ow vector �eld whose ows terminateorthogonally at the ridges. The functionQr(x) =vuutn�1Xi=1 [vi(x) � rf(x)]2has the property that Qr(x) = 0 at ridges. The vectors �rQ2r(x) = �2Qr(x)rQr(x) areorthogonal to the level sets of Qr, so such ows will meet the ridges as indicated. However,I want the ows to terminate rather than originate at the ridges; that is, the ows shouldgenerally be in uphill direction on the graph of intensity. To force the ows to terminate atridges, I adjust the sign on �rQr(x) so that the ow has positive component in the rf(x)direction, thereby forcing the ows to move in the uphill direction. In the continuous model,the ows are determined bydxdt = sign[rf(x) � rQ2r(x)]rQ2r(x); t > 0; x(0) = x0;where x0 is the initial position for the ow. Note that the minus signs from the two occur-rences of rQ2r cancel. In the discrete model where the computations are on a rectangularlattice, there are only 3n � 1 discrete directions to ow in. The direction selected is the onewhich minimizes the angle between the true and discrete directions.The ridge structures are initially segmented into curvilinear segments which are then as-signed distinct labels. In the discrete implementation, candidate ridge points are represented45



as pixels in a binary image. The sets are not necessarily 1{pixel thick, a requirement for iden-tifying the curvilinear segments. I designed a thinning algorithm which takes the candidateridges and thins them so that the resulting set can be easily segmented into curvilinear seg-ments. The thinning algorithm preserves the topology of the original set in that the numberof holes is invariant. The algorithm also thins sets from outside to inside, thereby preservingthe general shapes of the initial sets. A detailed discussion of the thinning algorithm can befound in Section 5.4.After the ridges are segmented and labeled, the ow algorithm is executed. At eachpixel in the image the ow line is followed until the ow intersects a ridge. Every pixel alongthe path is assigned the label of the terminal ridge point. In this way every pixel obtainsa label and the image is segmented into primitive regions. Each region contains the pixelswhich ow to the ridge of the same label.Example 3.1: In Figure 3.2, the left image is a simulated gray scale image which wasconstructed by taking a binary blob object, computing the Euclidean distance transformof it, and smoothing the transform by blurring with a circular Gaussian kernel of standarddeviation 2 pixel widths. The middle image shows a shaded rendering of the graph of theimage intensities. The right image shows the height ridges and associated ridge ow regions.Small scale ridges due to the discretization of the algorithm were eliminated by keeping onlythose ridge points x for which the largest eigenvalue of the Hessian of the image was suitablylarge. 2This example gives an idea of the primitive regions for a simple image. The ridge owalgorithm applied to the image in Figure 3.1 yields approximately 1500 ow regions, so itis di�cult to get a feeling for the distribution of regions. On a color workstation an idea ofthe distribution can be obtained by using a random coloring of the regions.3.3 Ridge{Valley Flow ModelsSegmentation using only ridges produces primitive regions which typically overestimatewhere object boundaries are. This is to be expected since the ow regions tend to haveboundaries at valleys on the graph of intensity, whereas the object boundaries tend to occur46



Gray scale image Intensity surface Ridges and ow regionsFigure 3.2: Ridge segmentation of gray scale imagesomewhere between ridges and valleys. As an illustration in one dimension, consider thegraphs in Figure 3.3.Rather than segmenting an image based only on its ridge structures, segment it usingboth ridges and valleys. In Section 3.2.1 I gave a de�nition for height ridges. A similarde�nition for height valleys is the following, and uses the same notation as in the ridgede�nition. Let �1 through �n be the eigenvectors of H(f(x)) with corresponding eigenvectorsv1 through vn. Let v2 through vn be the vectors used in testing for relative minima of f .A point x is a valley point (of type 1) if �2 > 0 and x is a relative minimum of type 1 forf with respect to V = [v2 � � � vn]. The test for a valley point reduces to V trf(x) = 0 and�2(x) > 0. Additionally, x is a strong valley point if j�2j > j�1j; otherwise it is a weak valleypoint. If all the eigenvalues are positive at valley point x, then it is automatically a strongvalley point.For each ridge or valley segment I want to assign a primitive region which is built byfollowing ows, but now the ows should terminate orthogonally at ridges and at valleys.The ow region boundaries will occur between ridges and valleys in positions which arenatural to the underlying ow �eld. In Section 3.2.2 I showed that ridges are zeros of thefunction Qr(x). Valleys are zeros of a di�erent function,Qv(x) =vuut nXi=2[vi(x) � rf(x)]2:Therefore, ridges and valleys can be located simultaneously by �nding the zeros to Q(x) =47
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Qr(x)Qv(x). The ow �eld vectors are given by �rQ2(x), and the ows are determined bydxdt = �rQ2(x); t > 0; x(0) = x0;where x0 is the initial position for the ow.Similar to the ridge ow model, the ridge and valley structures are initially segmentedinto curvilinear segments which are assigned distinct labels. At each pixel, the ow line isfollowed until it intersects either a ridge or a valley. Every pixel along the path is assignedthe label of the terminal ridge or valley point. Every pixel of the image obtains a label bythis method, so the image is segmented into primitive regions. Generally, the number ofregions obtained by ridge{valley ow is larger than the number obtained by only ridge ow.3.4 Image HierarchyThe image hierarchy for image f : IRn ! IR is constructed as a multiscale process. The scaleis introduced by blurring the initial image via variable conductance di�usion (Grossberg1984, Perona & Malik 1987, Whitaker 1993). As a continuous process, the blurred imageB(x; �) at position x and scale � is the solution to the initial value problemB�(x; �) = �r � (C(x; �;B;rB; . . .)rB(x; �)) ; x 2 IRn; � > �0B(x; �0) = f(x); x 2 IRn;where C is a conductance function (treating the blurring process as a heat transfer process).The initial scale �0 is called the inner scale of the process. If C � 1, then the blurred imageis simply the convolution of a Gaussian kernel of standard deviation � with the input image,B(x; �) = G(x; �)� f(x). I used C � 1 in my experiments with images.In practice, images are speci�ed on a compact set D � IRn. The blurring must becomputed on D with initial data f(x), but conditions at the boundary @D must also beimposed. I choose Neumann conditions @B(x; �)=@� = 0 for x 2 @D and � > �0, wherethe derivative above indicates a directional derivative taken in the direction normal to theboundary ofD. As a heat transfer process, this condition says that the boundary is insulated.Initially f(x) has small scale geometric details. As � increases, the geometric details areannihilated, including ridge structures. Since the equation has no heat source, one expects49



that as scale becomes in�nite, B(x; �) tends to a constant; that is, all details are eventuallyannihilated. In contrast to the interest of physicists in the steady{state behavior of suchdi�erential equations, I am concerned with short{time properties which will directly a�ecthow the hierarchy is built.The algorithm to construct the hierarchy is as follows. Select a geometric sequence of Nscales, say �j = �0bj for some b > 1 and for 1 � j � N . The �nal scale �N is called the outerscale for the process. For each �j, j � 0, compute the blurred image B(x; �j) and segmentit using the ridge ow model to obtain D = [Mji=1R(j)i where R(j)i is a primitive ridge owregion and Mj � 1 is the number of primitive regions at scale �j . Identify each primitiveregion R(j)i with a node at height j in a general tree. The leaf nodes of the tree correspondto the primitive regions occurring at inner scale �0.The links in the tree are inserted based on how primitive regions at one scale becomeblurred into single regions at the next scale. Two primitive regions at one scale may blurtogether to form part of a single primitive region at the next scale. This single primitiveregion is considered to be the parent of the original two regions since it overlaps those tworegions more than any other region at the current scale. More speci�cally, to link the nodes(regions), the parent of region R(j)i will be a region R(j+1)m which overlapsR(j)i more than anyother region R(j+1)` . At the outer scale �N , one expects very few regions in the segmentation.The root node of the tree is the parent for all primitive regions at the outer scale. Thee rootnode essentially corresponds to a constant image with a single region (in�nite scale).The implementation of the tree construction is a discrete algorithm which is an approxi-mation to the continuous model described here. Two technical problems can arise as a resultof the discretization. First, it is possible in the tree construction that blurring from onescale to the next does not annihilate features (in at least one subregion). Thus, the tree maycontain nodes which have exactly one child. Second, even though the variable conductancedi�usion process is causal (no new features are introduced as scale increases), the discretizedprocess may introduce regions whose corresponding tree nodes have no children. These nodesare not essential to the hierarchy and can be removed; consequently all leaf nodes of the treecorrespond to primitive regions only at the initial scale.Example 3.2: Consider a hypothetical hierarchy, shown in Figure 3.4, produced by the ridge50



m0 m1 m2 m3 m4 m5m-1 m6 m7 m-1m-1 m8m9�� �� AA @@ AA�� �� AA HHHHH�� SSFigure 3.4: Hierarchy for an imageow segmentation algorithm. The leaf nodes and internal nodes with 2 or more children arelabeled with distinct positive integers. The �1 labels indicate that the node has a singlechild, so the regions of the subtree have not blurred together with any other regions of thehierarchy.At inner scale �0, the number of primitive regions is M0 = 6. Each region was assignedto a leaf node in the tree. After blurring the image at scale �1, the ridge ow segmentationproduced M1 = 4 primitive regions. Leaf regions 1 and 2 blurred together so that region 6(at the next scale) overlapped them the most. Similarly regions 3 and 4 blurred togetherand were overlapped the most by region 7. However, regions 0 and 5 did not signi�cantlyblur together with other regions, so they are not linked to other regions. Intuitively, smalladjacent and similar regions should be linked at small scales, but large adjacent and similarregions should be linked at large scales. The number of primitive regions at scale �2 isM2 = 2. Regions 6, 7, and the one corresponding to the parent of 5 blurred together, soin e�ect leaf regions 1 through 5 blurred together at this scale. Region 0 is still dissimilarto the regions represented by the other subtrees at height 2, so its subtree is again an onlychild. Finally, no more blurring was performed, so the root node is added and correspondsto a constant image (single region) at in�nite scale. 23.5 Object De�nition and VisualizationThe image and corresponding ridge ow hierarchy are used as input to two experimental toolsdesigned for object de�nition and visualization, the Interactive Hierarchy Viewer (Freder-51



icksen et al. 1990, Pizer et al. 1990) and the Magic Crayon (Beard et al. 1993, Beard etal. 1994). Both tools provide a graphical user interface which allows the user to traversethe hierarchy and quickly \color" objects of interest. The Interactive Hierarchy Viewer wasdeveloped to run both on workstations and on Pixel Planes, an extremely fast graphics com-puter designed and built at the University of North Carolina. One of its major functions is toallow the user to interact with the hierarchy to rapidly de�ne and extract anatomical objectsfrom the data set, then to quickly volume render the data with Pixel Planes. The MagicCrayon was developed to run on workstations in a clinical setting. In addition to allowingthe user to rapidly de�ne and extract anatomical objects, the tool provides the means formaking accurate volume and surface area measurements of the extracted objects. Both toolswork on the principle that objects of interest can be identi�ed as unions and di�erences ofsubtrees of the hierarchy. Of course the details of the data structures of the tree and thesubtree identi�cation are hidden from the user. The remainder of the section illustrates howone uses the Magic Crayon to de�ne objects by manipulating the hierarchy in a way thatidenti�es the relevant subtrees.As a simple example, consider the hierarchy shown in Figure 3.4. The original imageis displayed by the Magic Crayon, and the hierarchy is already loaded into memory. Theuser moves the mouse cursor to a region of interest in the image and clicks the left button.Suppose that the pixel at the cursor is in region 1. All pixels in region 1 are subsequentlycolored. The user has the option of coloring nearby related regions by clicking on an \addmore" button. This corresponds to moving up the hierarchy from node 1 to its parent, node6, and then traversing to all children of node 6. All regions corresponding to the children aredrawn. In my example, only region 2 is newly visited, and all pixels in region 2 are colored.The left tree of Figure 3.5 shows the hierarchy after the initial click on a pixel in region 1.A shaded node indicates that the corresponding region has been colored. The right tree ofFigure 3.5 shows the state of the hierarchy after the \add more" operation. If instead theoriginal colored region is 5, an \add more" operation does not produce any newly coloredregions. At height 1 in the tree, region 5 did not merge (through blurring) with any otherregions. However, a second \add more" operation will merge region 5 with regions 1 through4. 52



m0 m1 m2 m3 m4 m5m-1 m6 m7 m-1m-1 m8m9�� �� AA @@ AA�� �� AA HHHHH�� SS} m0 m1 m2 m3 m4 m5m-1 m6 m7 m-1m-1 m8m9�� �� AA @@ AA�� �� AA HHHHH�� SS} }}Hierarchy after region 1 colored Hierarchy after \add more" operationFigure 3.5: Hierarchy traversal and coloringMore generally, given that the user is at height H in the hierarchy, an \add more"operation corresponds to moving up the hierarchy from the current node to its parent atheightH+1, followed by traversal of all subtrees of the parent. Any leaf nodes visited duringthe traversal, for which the corresponding regions are not colored, are marked as visited andthe regions are all colored. If the user is far up the hierarchy, sometimes unwanted objectsare colored. The Magic Crayon provides \undo" operations and also allows for user{initiatedediting of the current colored objects.For some anatomical objects, moving up the hierarchy will not completely color theobject. For example, if the user attempts to color the brain stem in the image of Figure 3.1,a single click on a region at height 0 followed by \add more" operations will not completelycolor the stem. The user must start the process again, at height 0, in an uncolored portionof the object. The Magic Crayon provides a more e�cient way of drawing elongated objectslike the brain stem. A operation is provided for moving up the hierarchy from many regionscolored initially at height 0, called the \add more all" operation. The user can press the leftmouse button and drag the cursor through the object. All encountered regions are colored,so quite a few leaf nodes are visited in the hierarchy. By pressing the \add more all" button,the user moves up the hierarchy to parent nodes for all of the currently colored regions; thatis, the \add more" operation is applied at multiple regions.As an illustration, suppose that regions 1 and 3 were initially colored. After an \addmore all" operation, regions 1 through 4 will be colored. The left tree of Figure 3.6 showsthe hierarchy after the initial clicks on pixels in regions 1 and 3. The right tree of Figure 3.653



m0 m1 m2 m3 m4 m5m-1 m6 m7 m-1m-1 m8m9�� �� AA @@ AA�� �� AA HHHHH�� SS} } m0 m1 m2 m3 m4 m5m-1 m6 m7 m-1m-1 m8m9�� �� AA @@ AA�� �� AA HHHHH�� SS} } } }} }Hierarchy after regions 1 and 3 colored Hierarchy after \add more all" operationFigure 3.6: More hierarchy traversal and coloringshows the state of the hierarchy after the \add more all" operation.In addition to the \addmore" controls, the user can delete subtrees using a Magic Eraser.For each of the addition operations there corresponds an analogous deletion operation. Byusing both sets of controls, the user in e�ect can move freely through the hierarchy markingthe appropriate subtrees that make up the objects of interest. The �nal marked nodes yieldunions and/or di�erences of subtrees of the original hierarchy.The Magic Crayon currently does not support coloring multiple objects, but the Inter-active Hierarchy Viewer does. (The Interactive Hierarchy Viewer, however, does not have an\add more all" operation.) Figure 3.7 shows some colored objects from the 2{dimensionalimage of Figure 3.1. The image was segmented using the ridge ow model with Gaussianblurring. The number of primitive regions at initial scale � = 1 is 1450 for ridge ow and2698 for ridge{valley ow. I used a geometric sequence of 8 scales with multiplier b = 1:1.Each object was colored by starting at various places, clicking on a primitive region, andadding or deleting regions by traversing the hierarchy. The total object coloring requiredabout 2 minutes of user interaction.The same image was segmented using the ridge{valley ow model with Gaussian blur-ring. Figure 3.8 shows an attempt at de�ning the objects shown in Figure 3.7. The totaltime for coloring was about 5 minutes. The primitive regions were smaller, so it took moretime to try to �ll in the objects close to their boundaries.I also segmented a 3{dimensional image containing 20 slices, each slice being 256� 256.The number of primitive regions at initial scale � = 1 is 31679. I used a geometric sequence54



Figure 3.7: Visualization of hierarchy subtrees (ridge ow)
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Figure 3.8: Visualization of hierarchy subtrees (ridge{valley ow)
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of 16 scales using multiplier b = 1:1. Therefore, the hierarchy is a tree with 17 levels and31679 leaf nodes. Figure 3.9 shows four consecutive slices (8,9,10,11) of the original image.The panel of buttons is part of the Magic Crayon interface.The mouse was initially dragged down the middle of the brain stem in slice 9, coloringprimitive regions along the way. Since the primitive regions are 3{dimensional, the cor-responding regions in the other slices have also been colored, including the slices that arenot currently displayed (but bu�ered in memory). Figure 3.10 shows the colored primitiveregions.The next sequence of 5 �gures corresponds to clicking the \add more all" button. Thecolored regions correspond to the visited subtrees of the hierarchy. Note that on the lastclick the coloring appears to be fairly solid.The �nal two �gures show the colored regions on slices that were not currently displayed.Figure 3.16 shows slices 12 through 15 and Figure 3.17 shows slices 4 through 7 for the currentstatus after clicking 5 \add more all" operations.The Magic Crayon was run on a DECstation 5000/125 running at 25 MHz and rated at21 MIPS (machine name is \phong"). The machine has 224 Megabytes of physical memoryand 1 Gigabyte of virtual memory. The initialization of the Magic Crayon takes about 2minutes. During this time the hierarchy and primitive region image are read from disk �lesand converted to internal representations. Bounding boxes are built for each primitive regionto help speed up access time during later stages of program execution.Once the program is loaded and the X{Window interface appears, the user is free toexplore the hierarchy. The time to color the brain stem region as shown in Figure 3.15 tookabout 10 seconds. Of course more time will be taken to completely segment the brain stem.The user can color the regions in the currently displayed slices, then move to other slices andstart from new leaf nodes, traverse the hierarchy, and �ll in the object on those slices. Forthis particular data set, it took me about 2 minutes to identify (what I think is) the brainstem. 57



Figure 3.9: Magic Crayon Interface with 3D head image58



Figure 3.10: Colored regions after brain stem partially colored59



Figure 3.11: Regions after add{more{all 160



Figure 3.12: Regions after add{more{all 261



Figure 3.13: Regions after add{more{all 362



Figure 3.14: Regions after add{more{all 463



Figure 3.15: Regions after add{more{all 564



Figure 3.16: Slices 12{15 after add{more{all 565



Figure 3.17: Slices 4{7 after add{more{all 566



3.6 DiscussionThe ridge ow algorithm was applied to two slices from di�erent 3{dimensional MR imagesof heads, to two full 3{dimensional MR images of heads, to a 3{dimensional abdominalimage, and to a 3{dimensional angiogram. In all these images my experiments with theridge ow algorithm indicate that it successfully identi�es objects whose boundaries andbackground have a moderate{to{good contrast. Objects whose boundaries contrast poorlywith background are not as precisely constructed. The problem is that primitive regionssometimes \bleed" outside one object into the background, or into a neighboring object.This bleeding is a function of the current blurring method, Gaussian blurring. It is a linearprocess which typically averages object information with background data when applied nearan object boundary. A better blurring method is needed which is sensitive to boundaries andwill not average across them. If an object boundary is approximately a level curve of intensity,then a good conductance function is one which will force the level curves to propagatein the directions normal to the curves with speed proportional to the local curvature. Aconsequence is that object shapes tend to be preserved throughout the blurring process.The di�usion equation, B� = �jrBjr � (rB=jrBj), does have the desired properties. Ipropose this as a better alternative blurring method for ridge ow or for ridge{valley ow.A long term goal is to use variable conductance di�usion of higher{order geometric imageinformation (Whitaker 1993). Additionally, the image could be preprocessed with localcontrast enhancement algorithms such as adaptive histogram equalization (Pizer, Amburn,Austin, Cromartie, Geselowitz, Greer, ter Haar Romeny & Zimmerman 1987) or generalizedorder{statistic �lters (Longbotham & Eberly 1992, Longbotham & Eberly 1993).
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