
Chapter 4The Geometry of Scale Space4.1 IntroductionThe necessity of using a multiscale analysis of images has clearly been established in theliterature. The introduction of a continuous scale space can be found in Koenderink (1984),Witkin (1983), and Yuille & Poggio (1986). The fundamental constraint on a continuous scalespace is that it be causal; that is, no spurious detail should be generated with increasing scale.Additional constraints involving linearity and symmetry lead to the fact that the Gaussiankernel is the unique scale space �lter. A detailed investigation of scale space, including itsnatural di�erential operators and di�erential invariants is found in ter Haar Romeny, Florak,Koenderink & Viergever (1991). The issues of discretization of the operators are found inLindeberg (1990).The essential foundations of a scale space are that an image I(~x) is a physical observablewith an inner scale �0, determined by the resolution of the sampling device, and an outer scale�1, limited by the �eld of view. A front{end vision system which allows for superpositionof input stimuli (linearity), which samples and preprocesses its input in a symmetric way(rotational and translational invariance) and which has no preferred scale of measurement(scale invariance), can be modeled by the di�usion equation B�(~x; �) = �r2B(~x; �) for~x 2 IRn and � 2 [�0; �1], with initial conditions B(~x; �0) = I(~x) for ~x 2 IRn. The informationderived at scale � is B(~x; �) = K(~x; �)�I(~x), which is the convolution of a radially symmetricGaussian kernel of standard deviation � with the input data. Researchers have investigated



nonlinear di�usion processes as models of a front{end vision system (Grossberg 1984, Perona& Malik 1987, Whitaker 1993), where the assumption of linearity is not made so that objectinteractions within the image can be accounted for.A key idea in ter Haar Romeny et al. (1991) is the invoking of dimensional analysis: Afunction relating physical observables must be independent of dimensional units. A set ofnatural spatial coordinates is proposed, namely ~y = ~x=�. The natural distance between twopoints ~x1 and ~x2 at scale � is k~x1� ~x2k=�. Moreover, a natural scale parameter is proposed,namely � = ln(�=�), where � is a hidden scale whose units are dimension of length and whichis image{dependent. The main consequence of their development is that di�erentiation atsome selected scale � can be made a well{posed operation if kernels constructed as derivativesof a Gaussian at the same scale are used. At a �xed scale �, �rst{order dimensionlessderivatives are �Bxi for each spatial component xi. Second{order dimensionless derivativesare �2Bxixj . In general, the dimensionless spatial derivatives are obtained from the usualpartial derivatives by multiplying by the appropriate power of scale.I propose a de�nition for scale space that is similar, but fundamentally di�erent, fromthat described in ter Haar Romeny et al. (1991). It is desired that the front{end vision systemshow rotational invariance, translational invariance, and zoom invariance.1 The change ofvariables to obtain the natural spatial coordinates ~y = ~x=� preserves translational invarianceif scale � is assumed to be a constant. It does not preserve translational invariance throughvarying scale; that is, the natural coordinates place an unnatural emphasis on the spatialorigin ~0. I want to develop a de�nition for scale space which has all the desired invariancesfor all scales, not just for a �xed scale.To obtain the desired invariances, I assume that a measured spatial di�erence is mean-ingful only in the context of the scale at which it is measured. Similarly, when makingmultiscale measurements, a measured scale di�erence is meaningful only in the context ofthe scale at which it is measured. These assumptions suggest specifying di�erential forms asthe measurement tools. I propose that the dimensionless 1{forms to be used for scale space1I use the term zoom invariance rather than scale invariance, which is used in (ter Haar Romeny et al.1991). The term refers to invariance with respect to changes in the scale (units) of measurement, which isequivalent to a uniform magni�cation in the space and scale variables. I seek to avoid confusion betweenthe scale parameter and scale as units of measurement.69



measurements are d~x� and d�� :In contrast, the di�erential forms induced by the change of variables ~y = ~x=� and � = ln(�=�)proposed in ter Haar Romeny et al. (1991) ared~y = d~x� � ~x� d�� and d� = d�� :Note that for a �xed scale �0, the induced forms for natural coordinates are d~y = d~x=�0,which agree with my proposed forms. But for non{constant scale, the spatial forms arefundamentally di�erent. In fact, one major consequence of using my forms is that thegeometry of scale space is non{Euclidean, whereas the geometry of scale space using d~y andd� is still Euclidean.This chapter provides the mathematical formalism of scale space as a geometric entity.A concise coverage of the mathematics used in this paper can be found in Kay (1988). Inparticular the reference covers tensor calculus, Riemannian geometry, Christo�el symbols,and covariant derivatives. Section 4.2 gives the de�nition for the metric tensor of scale spaceand shows how di�erentiation must be de�ned. Scale space is shown to be Riemannianwith constant negative curvature. The isometries of the space verify that scale space hasthe desired invariance under rotation, translation, and zoom. Section 4.3 describes how tocompute the gradient and Hessian of a real{valued function de�ned on scale space. Thetheory of curves, geodesics, distance, integration, and curvature of surfaces is discussed.Section 4.4 gives an extension of the de�nitions of ridges and valleys for Euclidean space,found in Chapter 2, to ones for scale space. Section 4.5 introduces a more general metricfor scale space which depends on the image data itself. I show how the selection of themetric automatically determines which anisotropic di�usion process must be used to generatemultiscale data. The conductance term and the density term which occur in the moregeneral model for heat transfer show up as parameters in the metric. Finally, Section 4.6 isa discussion of the applicability of the ideas to construction of multiscale medial axes andsurfaces (cores of objects). In particular, I discuss briey the application of the ideas toimage registration. 70



4.2 The Structure of Scale SpaceLet scale space be denoted by S = IRn � (0;1) with typical element denoted by ~� = (~x; �).The vector ~x 2 IRn represents the spatial information of the point and � > 0 represents thescale information of the point. For indexing purposes, we have �i = xi for 1 � i � n and�n+1 = �.4.2.1 Metric TensorThe measuring tool used for component �i is the 1{form d�i=�. The motivation is that ameasured (spatial or scale) di�erence d�i is meaningful only in the context of the scale atwhich it is measured. That is, we need only be concerned with the relative measurementd�i=�. Note that the 1{forms are dimensionless quantities. The metric of the space istherefore determined byds2 = nXi=1 �2i dx2i�2 + �2 d�2�2 = �2 nXi=1 �2i dx2i�2 + d�2�2 ! ;where the parameters �i > 0 may be selected to account for nonuniform scaling in spatialcoordinates. For example, di�erent units of measurements may be used for di�erent coor-dinate directions, or the aspect ratio of an imaging device may not be 1. The parameter� = �n+1 > 0 may be selected to account for the fact that units of space and units of scaleare not necessarily equally weighted. The second form above, where �i = �i=�, will be usefulin the later developments. De�ne the n�n matrix P = diag(�1; . . . ; �n). The (n+1)�(n+1)metric tensor (as a 2� 2 block diagonal matrix) isG = [gij] = �2�2diag(P 2; 1):Given two vectors ~Vi = ( ~Wi; i) 2 IRn � IR, i = 1; 2, with initial point at (~x; �) 2 S,their dot product with respect to the metric G is de�ned as~V1 � ~V2 = ~V t1 G~V2 = �2�2 �(P ~W1) � (P ~W2) + 12� ;where the single dot symbol on the right{hand side of the de�nition represents regularEuclidean dot product. Note that, unlike the regular Euclidean dot product, the scale71



space dot product does depend on the initial point of the vectors. The length of a vector~V = ( ~W; ) with initial point at (~x; �) 2 S is de�ned byk~V k :=q~V � ~V = ��qjP ~W j2 + 2;where the single bars represent regular Euclidean length. The angle between the two vectorsis determined by cos � = ~V1 � ~V2k~V1k k~V2k ; � 2 [0; �]:The angle is well{de�ned since the right{hand side can be shown to be no larger than 1in magnitude (i.e. the Cauchy{Schwartz inequality holds in this space). The condition fororthogonality of vectors is ~V1 � ~V2 = 0.4.2.2 Christo�el Symbols and Covariant DerivativesMy analysis involves tensor quantities which need to be di�erentiated. In general, the partialderivative of a tensor is not necessarily a tensor. Tensor di�erentiation requires the use ofsome nontensorial objects called Christo�el symbols.Let ~ek 2 IRn+1 denote the (n + 1) � 1 unit length vector whose components are all 0except for the kth component which is 1. The Christo�el symbols of the second{kind arede�ned by �kij = 12 n+1X̀=1 gk`�@gj`@xi + @gi`@xj � @gij@x` �where the gij are the components of G and the gij are the components of the inverse matrixG�1. For my metric G, de�ne the matrix �k = [�kij]; then�k = � 1� 8><>: ~ek~e tn+1 + ~en+1~e tk ; 1 � k � n~en+1~e tn+1 �Pǹ=1 �2̀~e`~e t̀; k = n+ 1 9>=>; :For example, if n = 1, �1 = � 1� 264 0 11 0 375 ; �2 = � 1� 264 ��21 00 1 37572



and if n = 2,�1 = � 1� 266664 0 0 10 0 01 0 0 377775 ; �2 = � 1� 266664 0 0 00 0 10 1 0 377775 ; �3 = � 1� 266664 ��21 0 00 ��22 00 0 1 377775 :Note that each �k is a symmetric matrix.Let ~T : IRn+1 ! IRn+1 be a vector �eld, say ~T (~x) = [Ti(~x)]. As a vector �eld de�nedon Euclidean space, the derivative of ~T is the (n+ 1)� (n+ 1) matrix of partial derivativesgiven by d~T =d~� = [@Ti=@�j ], where i is the row index and j is the column index. In a spacewhose curvature is not identically zero, the matrix of partial derivatives is not a tensor.The derivative of a tensor should again be a tensor. Intuitively, the measured di�erencesare in a curved space, so the the usual derivative measurements need to be \corrected"to be consistent with the curvature of the space. Covariant di�erentiation is the correctgeneralization of ordinary di�erentiation. The application of covariant di�erentiation tovectors requires knowing whether the vector is covariant or contravariant. A covariant vectoris analogous to the gradient of a function, which is normal to level surfaces. A contravariantvector is analogous to tangent vectors of the level surfaces. Let ~U = [Ui] = ( ~W; ) be acovariant vector de�ned on scale space. The covariant derivative of ~U is the second{ordertensor de�ned by dl~Udl~� = "@Ui@�j � n+1Xk=1�kijUk# = d~Ud~� + 1� 264 �P 2 ~W~W t  375 :Let ~V = [V i] = ( ~W; ) be a contravariant vector. The covariant derivative of ~V is thesecond{order tensor de�ned bydl~Vdl~� = "@V i@�j + n+1Xk=1 �ijkV k# = d~Vd~� + 1� 264 �I � ~WP 2 ~W t � 375 :In either case, the covariant derivative de�nitions include not only the usual partial deriva-tives but also correction terms dependent on the Christo�el symbols. A contravariant vector~V can be converted to a covariant vector by ~U = G~V . The two covariant derivative tensorsare related by dl~Udl~� = dl(G~V )dl~� = Gdl~Vdl~� ;73



that is, the metric tensor is treated as a constant by covariant di�erentiation.4.2.3 Riemann Tensor and CurvatureThe implication of using the 1{forms d�i=� for relative measurements is that the geometryof scale space is Riemannian. The Riemann tensor of the second kind is de�ned byRijk` = @�ij`@xk � @�ijk@x` + n+1Xm=1�mj`�imk � n+1Xm=1�mjk�im`:The Riemann curvature relative to the metric G is de�ned for each pair of contravariantvectors ~U = [U i] and ~V = [V i] asK(~x; ~U; ~V ) = Pi;j;k;`Rijk`U iV jUkV `Pi;j;k;`Gijk`U iV jUkV `where Rijk` = Pn+1m=1 gimRmjk` and Gijk` = gikgj` � gi`gjk. It can be shown that the onlynonzero independent components areRijij = ���4� �i�j�n+1�2 and Gijij = ��4(�i�j)2;where 1 � i < j � n + 1. The other components are either 0 or are determined by thevalues of the terms mentioned above. Consequently, the Riemann curvature of the spaceis identically a constant, K = �1=�2. Surprisingly enough, the curvature of scale spacedepends on the weight � of the 1{form d�=�, but not on the spatial weights �i. When�i = � = 1 for all i, this particular Riemannian geometry is called hyperbolic geometry andhas been studied extensively in the di�erential geometry literature. A basic description ofhyperbolic geometry is found in Fenchel (1989). An advanced treatise on the subject isBenedetti & Petronio (1987).4.2.4 IsometriesWhen analyzing an image using multiscale techniques, the measurements should be invariantwith respect to certain transformations. In particular, they should be invariant under spatialrotations, spatial translations, and spatial reections. Object shape information produced byan algorithm should not depend on the orientation of the object being measured. Invariancewith respect to zoom is also required. That is, if scale measurements are made for a given74



object, the scale measurements for a magni�ed version of the object should be the magni�edmeasurements for the original object.An isometry for scale space is a function ~ : S ! S whose di�erential preserves the dotproduct of vectors. Speci�cally, if ~ = ( 1; . . . ;  n+1) and d~ =d~� is the matrix whose (i; j)thentry is @ i=@�j , then ~ is an isometry i� d~ d~� ~V1!�  d~ d~� ~V1! = ~V1 � ~V2;where the vectors ~Vi are positioned at ~� and the vectors (d~ =d~�)~Vi are positioned at ~ (~�).Scale space has the following isometries which provide the invariances described previously.It has an additional isometry which is mentioned for completeness.~ (~x; �) = (~x+ ~a; �); translation by constant vector ~a~ (~x; �) = (P�1RP~x; �); R is a rotation or reection matrix~ (~x; �) = (�~x; ��); for any � > 0 (zoom with magni�cation �)~ (~x; �) = (~x;�)�2(jP~xj2+�2) ; inversion with respect to a hyperellipsoidIntuitively, the �rst three isometries indicate that if measurements involving angles or lengthsare made at a given point, the measurements will be the same if you translate or rotate(assuming P = I) the spatial coordinates or if you change the units of measurement byzooming both both space and scale. A more detailed discussion of the isometries is found inThorpe (1985).4.3 Measurements in Scale SpaceIn this section I derive some basic formulas that are needed in multiscale algorithms. Sincethe space is Riemannian, the measurements must take into account the curvature of thespace.4.3.1 Gradient and HessianLet f : S ! IR be a twice{di�erentiable function. Let f�i denote the partial derivative of fwith respect to �i and let f�i�j denote the second partial derivative of f with respect to �i75



and �j . In Euclidean space the gradient of f is the vector rf = [f�i], and the Hessian of fis the matrix Hf = [f�i�j ]. The di�erential of f is given bydf = n+1Xi=1 f�id�i| {z }Euclidean = n+1Xi=1 ��f�i�i � �id�i�| {z }scale space :Therefore, the scale space gradient of f is de�ned to bebrf := pG�trf = ��fx1�1 ; . . . ; �fxn�n ; �f�� � :The natural derivative operator is (�=�i)@=@�i, as indicated in Lindeberg (1993b) and terHaar Romeny et al. (1991). The relationship of scale space gradient and Euclidean gradientis reminiscent of the equation obtained when making a change of variables ~� = M~� andg(~�) = f(~�), whererg =M�trf . (The notationM�t is a concise representation of (M�1)t.)Taking second derivatives yields Hg = M�t drfd~� M�1 = M�tHfM�1. The similarity carriesover to de�ning the scale space Hessian of f , but use covariant di�erentiation of the covariantvector rf must be used, denoted by dl:bHf = pG�t dlrFdl~� pG�1= 1�2diag(P�1; 1)0B@�2Hf + �264 �f�P 2 r~xfr~xf t f� 3751CA diag(P�1; 1);where Hf is the usual Hessian matrix of f in Euclidean space and where rf = (r~xf; f�). InLindeberg (1993b) and ter Haar Romeny et al. (1991) it is suggested that the natural secondderivatives are just �2f�i�j . But in this Riemannian setting, the correction terms must beincluded. The derivatives �2f�i�j are natural only if the scale is �xed and the di�erentialcalculations are made on the manifold � = �0, which is embedded in scale space.4.3.2 CurvesConsider curves ~�(t) = (~x(t); �(t)) in scale space. The speed of a particle traveling along thecurve is ds=dt = k~�0(t)k, the length of the tangent vector ~�0(t). If t 2 [t0; t1], the arc lengthof the curve is R t1t0 ds=dt. A curve is parametrized by arc length if ds=dt � 1. To obtain aunit length tangent vector ~T (t), make the usual adjustment ~T (t) = ~�0(t)=k~�0(t)k.76



If the curve is parameterized by arc length s, the unit length tangent vector is just ~T (s) =~�0(s). In Euclidean geometry, the s{ derivative of ~T (s) is taken to obtain a vector whichis normal to the curve. In Riemannian geometry the ordinary derivative is not necessarilya tensor. The analog is to take the absolute derivative along the curve, which does yielda tensor quantity. For a contravariant vector ~V (~�) de�ned on a curve ~�(t), its absolutederivative is de�ned by dl~Vdlt = dl~Vdl~� d~�dt :For a curve parametrized by arc length s, the unit principal normal is the contravariantvector ~N(s) de�ned by dl~T =dls = �(s) ~N , where �(s) = kdl~T =dlsk � 0 is the curvature of thecurve. The explicit components of the absolute derivative of the tangent vector are�dlTdls �i = d2�ids2 +Pn+1j=1 Pn+1k=1 �ijk d�jds d�kds= 8><>: d2xids2 � 2� dxids d�ds ; 1 � i � nd2�ds2 � 1� ��d�ds �2 �Pnj=1 ��j dxjds �2� ; i = n+ 1 9>=>; :4.3.3 GeodesicsA curve is a geodesic if its curvature is identically zero, which means (dl~T =dls)i = 0 for all i.The geodesics are then solutions to the system of ordinary di�erential equationsd2~xds2 = 2� d�ds d~xds and d2�ds2 = 1� "�d�ds�2 � ����P d~xds ����2# :These can be solved in closed form to obtain either(~x(s); �(s)) = (~c; r exp(s=�)) (4:1)for some constants ~c and r > 0, in which case the geodesic is a line in the direction of thescale axis, or (~x(s); �(s)) = (~c+ r tanh(s=�)P�1~u; r sech(s=�)) (4:2)for constants ~c; ~u 2 IRn with j~uj = 1, and r > 0, in which case the geodesics are curves onhalf{ellipses of the form jP (~x� ~c)j2 + �2 = r2 with center on the hyperplane � = 0.Geodesics act as paths of minimum distance between points in scale space; see thenext subsection. They also can be used to illustrate why scale space derivatives (of �rst77



- x
6� v(x; �)t = 0# s = 0Figure 4.1: Geodesic coordinate axesand second order) are the natural derivatives to compute in this space. De�ne ~�(s; t) =(~x + �et=� tanh(s=�)~ek ; �et=� sech(s=�)). The curve ~�(s; 0) is a half{ellipse geodesic whosenorth pole is at (~x; �), and the curve ~�(0; t) is a straight{line geodesic. The point (~x; �) canbe thought of as the origin of a coordinate system (corresponding to (s; t) = (0; 0)). Figure4.1 shows typical (local) coordinate axes given by the curves when s = 0 and t = 0. De�ne�(s; t) = f(~�(s; t)). Some computations will show that �s(0; 0) = �fxk=�k , �t(0; 0) = �f�=�,�ss(0; 0) = (�2fxkxk��2k�f�)=�2k, �st(0; 0) = (�2fxk�+�fxk)=(�k�), and �tt(0; 0) = (�2f��+�f�)=�2, where the derivatives of f are all evaluated at (~x; �). These relationships show thatat the origin of the geodesic coordinates (s; t) the components of the �rst{ and second{ordercovariant derivatives for f are the same as the �rst{ and second{order partial derivativesof the function �(s; t) at the origin. The analogy does not hold for third and higher orderderivatives of � since covariant di�erentiation of those orders is not necessarily commutativebecause of the e�ects of the curvature of the space.4.3.4 Distance Between PointsGiven two points (~xk; �k) for k = 1; 2, the distance between them is measured along theunique geodesic path connecting the points. Let (~x(s); �(s)) be a parameterization by scale{space arc length of a geodesic such that (~xk; �k) = (~x(sk); �(sk)) for some sk, k = 1; 2.Without loss of generality assume that �1 � �2 and s1 � s2. The distance between the two78



-x6� q qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq qqq qqq qq qqq qqq qqq qqqq qqq qqq qqqqq qqqqq qqqqq qqqqqqq qqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqs = 0s = �1 s = +1s (x1; �1) s (x2; �2)-~u -x6� s = �1s (x1; �1)s (x2; �2)Figure 4.2: Geodesics as shortest pathspoints is s2 � s1.If the geodesic is a line in the � direction, then ~x1 = ~x2 and the distance between thetwo points is dist((~x1; �1); (~x2; �2)) = � ln��1�2� :Otherwise, the geodesic connecting the two points is a half{ellipse, and the distance betweenthe two points is derived as follows. Let ~u = P (~x2 � ~x1)=L where L = jP (~x2 � ~x1)j.The choice of ~u and the ordering of scales �1 � �2 implies that s1 < 0 and s2 > s1(see Figure 4.2). From the geodesic equations, sech(sk=�) = �k=r. Using the identitytanh2(z) + sech2(z) � 1, tanh(s1=�) = �[1 � sech2(s1=�)]1=2 = �[1 � (�1=r)2]1=2, wherethe minus sign is a result of s1 < 0. Also, P (~x2� ~x1) = r[tanh(s2=�)� tanh(s1=�)]~u, whichleads to tanh(s2=�) = L=r �p1� (�1=r)2. Finally, it can be shown that� = 1r = 2Lq(�21 � �22)2 + L2[L2 + 2(�21 + �22)] ;where r is the quantity that appears in the parameterization in equation (4.2). The distancebetween the two points isdist((~x1; �1); (~x2; �2)) = ��ln� sech(s2=�)1�tanh(s2=�)�� ln� sech(s1=�)1�tanh(s1=�)��= � ln��2�1 1+p1�(��1)21+p1�(��1)2��L� :Note that this distance formula also applies in the case ~x1 = ~x2 because L = 0. Figure 4.2illustrates two geodesic curves and the relative position of the points on them.Example 4.1: Let �1 = �2 = 1. De�ne a = 1=p2 and let (x(t); �(t)) = (t; a) for jtj � a.The scale space arc length between (�a; a) and (a; a) along the speci�ed constant scale arc79



is ` = Z a�a p _x2(t) + _�2(t)�(t) dt = Z a�a 1adt = 2:Along the geodesic circular arc (x(s); �(s)) = (tanh(s); sech(s)) between (x1; �1) = (�a; a)and (x2; �2) = (a; a), the scale space distance is� = �����ln aa 1 +p1� a2 � 2a1 +p1� a2 !����� = 2 ln(p2 + 1) := 1:763 < `:If the same lengths were computed in Euclidean space, the circular arc would have had alarger length than the straight line segment. The reason the circular arc has smaller lengththan the straight line segment in scale space is that the spatial domain is in e�ect \lessdense" at larger scales. The distance between spatial locations x1 and x2 at scale � = 2is half the distance between the same locations at scale � = 1. Initially traversing thecircular arc through increasing scale will accumulate a total distance which is smaller thanthat accumulated by traversing the line segment at a given scale. The north pole of thegeodesic represents the point at which further increasing the scale of the path is no longercost e�ective (as measured by total distance traveled). 24.3.5 Volume Integrals, HyperspheresIntegration in scale space must also take into account the relative 1{forms that de�ne thespace. If f(~x; �) is a real{valued function de�ned on a region V , the scale space integral off over V is given by ZV f(~x; �) n+1Yi=1 �id�i� :For example, let �i = 1 for all i, and consider the scale space hypersphere of radius Rcentered at (~x1; �1). The set consists of all points (~x; �) which are R units of scale spacedistance from the central point. The de�ning equation is����ln� sech(s)1� tanh(s) 1� tanh(s1)sech(s1) ����� = R;where s and s1 are the arc length parameter values for the points (~x; �) and (~x1; �1), respec-tively, along the unique geodesic containing the points. Some algebraic computation willshow that this equation is equivalent toj~x� ~x1j2 + [� � �1 cosh(R)]2 = [�1 sinh(R)]2 ;80



which is the equation of a Euclidean hypersphere centered at (~x1; �1 cosh(R)) and whoseradius is �1 sinh(R). Note that the center of the scale space hypersphere is not the sameas the center of the Euclidean hypersphere. Let Sn+1 be the set of points (~x; �) satifsyingj~x� ~x1j2+[���1 cosh(R)]2 � [�1 sinh(R)]2. In scale space the volume of the hypersphere isV (n+1)sc (R) = ZSn+1 d~x�n d�� = 2� n+12� �n+12 � Z R0 sinhn(r) dr:Note that the volume is independent of the center of the hypersphere, even though thehypersphere appears to be \larger" as the scale component of the center is increased. Incomparison, in Euclidean space the volume of the hypersphere isV (n+1)eu (R) = ZSn+1 d~x d� = 2� n+12� �n+12 � Z R0 rn dr:For the special cases n = 1; 2; 3, the scale space volumes are 2�[cosh(R)�1], �[sinh(2R)�2R],and 2�2[cosh3(R)� 3 cosh(R)+2]=3, respectively. For the same special cases, the Euclideanvolumes are �R2, 4�R3=3, and 2�2R4, respectively.4.3.6 Curvature of SurfacesGiven an n{dimensional surface embedded in (n+1){dimensional Euclidean space, principalcurvatures and principal directions can be constructed at each point on the surface. I derivethe analogous quantities for an n{dimensional surface embedded in (n + 1){dimensionalRiemannian space. For a self{contained discussion, I give the constructions for Euclideanspace �rst.Graphs in Euclidean SpaceLet f : IRn ! IR be a function, say � = f(~x), whose graph lives in Euclidean spaceIRn � IR. If (~x(s); �(s)) is a curve on the graph which is parametrized by arc length, then�(s) = f(~x(s)), �0 = ~x0 � rf and �00 = ~x00 � rf + ~x0 � (Hf)~x0. Unit tangent vectors to thecurve are ~T (s) = (~x0(s); �0(s)). A unit normal to the graph of f is ~N(s) = (�rf; 1)=`N ,where `2N = 1 + jrf j2. For an arbitrary vector ~V 2 IRn, the unit tangents to the graphare ~T = (~V ; ~V � rf)=`T , where `2T = ~V t(I +rfrf t)~V . The curvature of the curve in the81



normal section determined by ~V and ~N is given by� = ~N � d~Tds = ~V t h 1`NH(f)i ~V~V t(I +rfrf t)~V :The principal curvatures � and principal directions ~V are the eigenvalues and eigenvectorssolving the general eigensystem H(f)p1 + jrf j2 � ��I +rfrf t�! ~V = ~0:The matrices representing the �rst and second fundamental forms for the graph of f areI +rfrf t and H(f)=p1 + jrf j2, respectively. The shape operator is the matrixW = �I +rfrf t��1 H(f)p1 + jrf j2 ;so the principal curvatures and principal directions are also solutions to the regular eigen-system W ~V = �~V .Graphs in Scale SpaceLet f : IRn ! IR be a function, say � = f(~x), whose graph lives in scale space IRn � (0;1)with metric G = (�=�)2diag(P 2; 1). As in the Euclidean case, a curve (~x(s); �(s)) on thegraph and which is parameterized by arc length satis�es �(s) = f(~x(s)), �0 = ~x0�rf and �00 =~x00 �rf+~x0 �(Hf)~x0. The unit tangent vectors are still ~T (s) = (~x0(s); �0(s)), but unit normalsto the graph of f are now ~N(s) = (�P�2rf; 1)=`N , where `2N = (�=�)2(1 + jP�1rf j2).Select a constant vector ~V 2 IRn such that the unit tangents are ~T = (~V ; ~V � rf)=`T ,where `2T = (�=�)2~V t(P 2 +rfrf t)~V . The curvature of the curve in the normal sectiondetermined by ~V and ~N is given by� = ~N � dl~Tdls = ~V t h 1`NH � jP~xj2+f22 �i ~V~V t(P 2 +rfrf t)~V :The principal curvatures � and principal directions ~V are the eigenvalues and eigenvectorssolving the general eigensystem0@ H� jP~xj2+f22 �p1 + jP�1rf j2 � �(P 2 +rfrf t)1A ~V = ~0:82



The matrices representing the �rst and second fundamental forms for the graph of f , as asurface embedded in scale space, are P 2 +rfrf t and H((jP~xj2 + f2)=2)=p1 + jP�1rf j2,respectively. The shape operator is the matrixW = �P 2 +rfrf t��1 H� jP~xj2+f22 �p1 + jP�1rf j2 ;so the principal curvatures and principal directions are also solutions to the regular eigen-system W ~V = �~V .Implicitly De�ned Surfaces in Euclidean SpaceLet F : IRn � (0;1)! IR be a function whose level surfaces implicitly de�ned by F (~�) = clive in Euclidean space IRn � (0;1). If ~�(s) is a curve parametrized by arc length and liveson the level surface de�ned by F � 0, then F (~�(s)) � 0. The unit tangent vectors are~T (s) = ~�0(s). Unit scale space length normals are given by ~N(s) = brF (~�(s))=j brF (~�(s)j.Assume that the curve is such that ~T and ~N determine a normal section. The curvature ofthe curve is � = ~N � d~Tds = �~T � d ~Nds = �~T � d ~Nd~� ~T = � ~T t d ~Nd~� ~T~T t ~T ;where the identities ~T � ~N � 0 and ~T � ~T � 1 were used. The principal curvatures � andprincipal directions ~T are the eigenvalues and tangential eigenvectors solving�d ~Nd~� ~T = �~T :The matrix �d ~N=d~� represents the shape operator as an operation applied to the tangentspaces in the ambient (n + 1){dimensional space, as compared to the usual representationas an operator on the n{dimensional tangent spaces.Implicitly De�ned Surfaces in Scale SpaceLet F : IRn � (0;1)! IR be a function whose level surfaces implicitly de�ned by F (~�) = clive in scale space IRn�(0;1) with metric G = (�=�)2diag(P 2; 1). As in the Euclidean case,a curve ~�(s) parametrized by arc length and living on the level surface de�ned by F � 0satis�es F (~�(s)) � 0. The unit tangent vectors are still ~T (s) = ~�0(s). Unit normals are83



now given by ~N(s) = rF (~�(s))=krF (~�(s)k, where the length calculation is with respect tothe metric. Assume that the curve is such that ~T and ~N determine a normal section. Thecurvature of the curve is� = ~N � dl~Tdls = �~T � dl ~Ndls = �~T � dl ~Ndl~� ~T = � ~T t dl ~N=dl ~� ~T~T t ~T ;where the identities ~T � ~N � 0 and ~T � ~T � 1 were used. The principal curvatures � andprincipal directions ~T are the eigenvalues and tangential eigenvectors solving�dl ~Ndl~� ~T = �~T :Note that the development for scale space is identical to that for Euclidean space, exceptthat di�erentiation of tangents and normals is replaced by covariant di�erentiation.4.4 Ridges in Scale SpaceRepresentation of object shape by medial structures is an important aspect of image analysis.For 2{dimensional binary images, the Blum medial axis (Blum & Nagel 1978) encodes theshape information in the form of centers and radii of maximal disks contained in the objects.For 3{dimensional binary images, medial surfaces encode shape information in the same way.Construction of medial structures for objects in gray scale images has also been consideredby researchers. For example, in many types of medical images, the intensity tends to bebright at pixels which are centrally located in objects and tends to be dark near boundariesof objects. The bright centers of objects show up as ridges on the graph of intensity. Theprojection of the ridges onto the image plane may be treated as medial structures.In Chapter 2, various de�nitions for ridges of n{dimensional images are given, but theywere formulated for graphs or hypersurfaces which are embedded in Euclidean space. Assuch, the ridge structures obtained from any one of the de�nitions do not provide informationabout object size. The absence of a scale parameter in the process does not allow measure-ment of global information such as object width. The de�nitions are, however, suitable for(n+0:5){dimensional applications (for example, see Chapter 3, (Lindeberg 1993a)) where asequence of increasingly Gaussian{blurred images is built from the initial image. The ridgestructures on the graph of each blurred image give information about object widths where the84



widths are proportional to the scale (standard deviation of the Gaussian) of measurement,but no measurements through scale are made.A true (n+1){dimensional analysis (n spatial variables and 1 scale variable) should usethe scale space geometry I have described here. A general discussion of cores (formerly calledmultiscale medial axes) is found in Pizer, Burbeck, Coggins, Fritsch & Morse (1992). Speci�capproaches to constructing cores from gray scale images using scale space ideas can be foundin Eberly, Fritsch & Kurak (1992), Fritsch (1993), and Morse, Pizer & Liu (1993). The mainidea in each of these papers is to apply a �lter to the image to build a functionM(~x; �) whichmeasures the \medialness" of a position ~x relative to object boundaries (if any) located ata \distance" � > 0 away from the position and using boundariness measurements relativeto the aperture size �. In Eberly et al. (1992) and Fritsch (1993), functions of the form� = f(~x) are constructed by requiring at each position ~x that �(M)(~x; �) = 0 for someappropriate di�erential operator �. Cores are then derived as ridges on the graph of f as asurface in scale space. In Morse et al. (1993), the medialness measurements are iterativelyre�ned using a Hough{like transformation to obtain a function F (~x; �). Medial structuresare derived directly as ridges of the function values for F . In all cases, the extraction ofmedial structures was based on geometric methods applied to scale space with only theEuclidean metric.I extend the (Euclidean) ridge de�nitions in Chapter 2 to ones that apply in scale spaceS with metric G. The height de�nition and level de�nition are suitable for real{valuedfunctions F (~x; �). Each de�nition depends only on the metric associated with the domainspace of the function, not on the metric associated with the space in which the graph of Flives. Thus, for functions � = f(~x), the height and level de�nitions are exactly those givenin Chapter 2. The principal direction de�nition is suitable for functions � = f(~x) where thegraph of f is contained in (Riemannian) scale space.4.4.1 Height RidgesI briey review the concepts of relative extreme points and height ridges and valleys forfunctions f : IRn ! IR, where IRn has the usual Euclidean metric. The extension of theideas is then given for functions f : S ! IR where S has metric G.85



Euclidean SpaceLet ~V1; . . . ; ~Vd be a set of constant linearly independent vectors in IRn, where 1 � d � n.Let V be the n� d matrix whose columns are the given vectors. The function has a relativeminimum (maximum) of type n � d at ~x if V trf(~x) = 0 and V tH(f(~x))V is positive(negative) de�nite. Such points ~x are called relative extreme points of type n� d for f withrespect to V . When d = n, the classi�cation is the usual one for extreme points. Generally,the solution sets of V trf = 0 are (n� d){dimensional manifolds since there are d equationsin n unknowns; hence the use of \type n� d" in the de�nition.The condition V trf = 0 is a �rst derivative test. The test for de�niteness of V t(Hf)Vis a second derivative test. Both tests can be phrased in terms of directional derivativescomputed on a special hypersurface which is a subset of the domain of f . Without loss ofgenerality, let the ~Vk be orthonormal vectors. Let ~s 2 IRd and de�ne �(~s) = f(~x+V ~s); then�(~0) = f(~x); r�(~0) = V trf(~x) and H�(~0) = V tHf(~x)V:A point ~x is a relative extreme point of type n� d for f with respect to V if and only if ~0is an extreme point (in the usual sense) for the function �(~s).It is important to note that the �rst{order directional derivatives are independent of thechoice of parameterization of the domain of f , but the second{order directional derivativesare dependent on that choice. Generally, let ~y(~s) be a parameterized hypersurface containedin the domain of f , ~y : IRd ! IRn, such that ~y(~0) = ~x and d~y(~0)=d~s = V . De�ne �(~s) =f(~y(~s)); then �(~0) = f(~x) and r�(~0) = V trf(~x);but H�(~0) = V tHf(~x)V + d2~y(~0)d~s2 rf(~x);where d2~y(~0)=d~s2 is a triply{indexed quantity (d�d�n) and its product with the n�1 vectorrf is a contraction on the index with common range n. For the special case ~y(~s) = ~x+ V ~s,the only term on the right{hand side is the Hessian of f (as seen earlier). But in general,the second term on the right is not identically zero, which means that the second derivativecalculations for � depend on more than just the vector directions V at ~s = ~0.86



The height de�nition for ridges and valleys in Euclidean space is described now. Let �iand ~Vi, 1 � i � n, be the eigenvalues and eigenvectors for the matrix �Hf . Assume thatthe eigenvalues are ordered as �1 � � � � � �n. Since �Hf is symmetric, the eigenvectors areorthonormal.� A point ~x is a ridge point of type n � d if �d(~x) > 0 and ~x is a relative maximumpoint of type n � d for f with respect to V = [~V1j � � � j~Vd]. Since �V t(Hf)V =diagf�1j~V1j2; . . . ; �dj~Vdj2g and the eigenvalues are ordered, the test for a ridge pointreduces to V trf(~x) = 0 and �d(~x) > 0. A ridge point ~x is a strong ridge point if�d(~x) > j�n(~x)j; otherwise, it is a weak ridge point.� A point ~x is a valley point of type n� d if �n�d+1(~x) < 0 and ~x is a relative maximumpoint of type n � d for f with respect to V = [~Vn�d+1j � � � j~Vn]. Since �V t(Hf)V =diagf�n�d+1 j~Vn�d+1 j2; . . . ; �nj~Vn j2g and the eigenvalues are ordered, the test for a val-ley point reduces to V trf(~x) = 0 and �n�d+1(~x) < 0. A valley point ~x is a strongvalley point if �n�d+1(~x) > j�1(~x)j; otherwise, it is a weak valley point.Scale SpaceThe generalization of the relative extreme point de�nitions to scale space is technicallysomewhatmore complicated, but intuitively, the idea of relative extreme points for a functionf : S ! IR is clear. In Euclidean space, I restricted f to a hypersurface ~y(~s) = ~x+ V ~s, say�(~s) = f(~x+V~t), and computed extreme points for �. The selected hyperspace is at in thesense that d2~y(~0)=d~s2 = 0. Moreover, since j~Vij = 1, as you walk in that direction along thehypersurface, the induced parametrization of the path is one of arc length.In scale space, I restrict f to a \at" hypersurface ~y(~s) and compute extreme points forthe restricted function �(~s). The concept of atness depends on the metric for scale space;the at hypersurfaces will lie on hyperellipsoids with center on the � = 0 hyperplane. TheHessian that occurs in the second derivative test for � will be the scale space Hessian.More speci�cally, for 1 � k � d let ~Vk = ( ~Wk; k) 2 IRn+1 be orthonormal vectors:~Vi � ~Vj = �ij . De�ne the at hypersurface ~� : IRd ! S by~�(~s) =  ~x+ dXi=1 �i(~s) ~Wi; ��(~s)! ;87



where jdiag(P; 1)[~�(~s)� (~c; 0)]j = r for some constant ~c 2 IRn and constant r > 0, and where�i(~0) = 0 and �(~0) = 1. Thus, ~�(~0) = (~x; �). Also, I require that @~�(~0)=@si = ~Vi, a unitlength vector with respect to the scale space metric. Consequently, @�i(~0)=@sj = �ij and@�(~0)=@si = i=�. Di�erentiating jdiag(P; 1)[~� � (~c; 0)]j = r with respect to sk and s`, andthen evaluating at ~0, yields � @2�(~0)@sk@s` + �k`�2 ! = dXi=1 i@2�i(~0)@sk@s` : (4:3)De�ne �(~s) = f(~�(~s)). Taking a derivative and evaluating at ~0 yields@�(~0)@sk = ~Vk � rf(~x; �) = ~Tk � brf(~x; �);where ~Tk = pG~Vk and brf = pG�trf . Taking a second derivative and evaluating at ~0yields @2�(~0)@sk@s` = ~V tk (Hf(~x; �)) ~V` + @2~�(~0)@sk@s` � rf(~x; �):The second term on the right{hand side of the previous equation needs to be evaluated.Let (~x; �) be a point such that ~Vi � rf(~x; �) = 0 for all i = 1; . . . ; d. Let ~Nj = (~Uj; �j ),1 � j � n+ 1� d, be vectors such that ~Vi � ~Nj = 0 for all valid i and j, and ~Ni � ~Nj = �ij .The gradient of f therefore can be expressed in this basis asrf(~x; �) = n�d+1Xi=1 �i ~Ni:Also ~Vi � ~Nj = 0 implies that ~Wi � ~Uj = �i�j . At ~s = ~0 for each j,@2~�(~0)@sk@s` � ~Nj = Pdi=1 @2�i(~0)@sk@s` ~Wi � ~Uj + � @2�(~0)@sk@s` �j= �j �� @2�(~0)@sk@s` �Pdi=1 i @2�i(~0)@sk@s` �= � ��2 �j�k`;where I have used equation (4.3). Therefore,@2~�(~0)@sk@s` � rf = 0@� ��2 n�d+1Xj=1 �j�j1A �k` = � ��2 f��k`:Replacing this in the equation for the second derivatives of � yields the following formula:@2�(~0)@sk@s` = ~V tk (Hf(~x; �)) ~V` � ��2 f�(~x; �)�k` = ~T tk bHf(~x; �)~T`:88



The last equality follows by a direct application of the de�nitions for ~Tk and the scale spaceHessian matrix.The de�nitions for relative extreme points in scale space is given by the following. Let~V1; . . . ; ~Vd be a set of constant (Euclidean) orthonormal vectors in IRn � IR where 1 � d �n+ 1. Let V be the (n+ 1)� d matrix whose columns are the given vectors. The functionf : S ! IR has a relative minimum (maximum) of type n + 1� d at ~� if V t brf(~�) = 0 andV t bH(f(~�))V is positive (negative) de�nite. This de�nition is identical in structure to thatof the Euclidean one, except that the Euclidean gradient and Hessian are replaced by thescale space gradient and Hessian.The generalization of the height ridge/valley de�nitions to scale space is straightforwardnow that I have de�ned relative extreme points for functions f : S ! IR. Let �i and ~Vi,1 � i � n + 1, be the eigenvalues and eigenvectors for the matrix � bHf . Assume that theeigenvalues are ordered as �1 � � � � � �n+1.� A point ~� is a ridge point of type n + 1� d if �d(~�) > 0 and ~� is a relative maximumpoint of type n+1� d for f with respect to V = [~V1 � � � ~Vd]. The test for a ridge pointis equivalent to V t brf(~�) = 0 and �d(~�) > 0.� A point ~� is a valley point of type n+1�d if �n�d+2(~�) < 0 and ~� is a relative maximumpoint of type n + 1 � d for f with respect to V = [~Vn�d+2 � � � ~Vn+1]. The test for avalley point is equivalent to V t brf(~�) = 0 and �n�d+2(~�) < 0.The additional classi�cations as strong or weak points still hold.4.4.2 Principal Direction RidgesI briey review the principal direction de�nition for ridges and valleys on the graph offunctions f : IRn ! (0;1) and on level surfaces of functions F : IRn � (0;1) ! IR, whereIRn � (0;1) has the Euclidean metric. The extension of the ideas is then given for graphsof functions f : IRn ! (0;1) and for level surfaces of functions F : IRn � (0;1)! IR whereIRn � (0;1) is scale space with metric G. 89



Euclidean SpaceConsider functions f : IRn ! (0;1), say � = f(~x). The matrices representing the �rst andsecond fundamental forms are A = I + rfrf t and B = H(f)=p1 + jrf j2, respectively.The shape operator is W = A�1B. The principal curvatures �i and principal directions ~Vi,1 � i � n, are the eigenvalues and eigenvectors of W . Assume that the eigenvalues areordered as �1 � � � � � �n, and assume that d is such that 1 � d � n. The principal directionde�nition for ridges and valleys is formulated so that such points correspond to local extremaof the principal curvatures as the surface is traversed along integral curves of the principaldirections.� The point ~x is a ridge point of type n�d if �d(~x) > 0,D~Vi�i(~x) = 0, andD~ViD~Vi�i(~x) <0 for 1 � i � d. Additionally ~x is a strong ridge point if �d(~x) > j�n(~x)j; otherwise itis a weak ridge point.� The point ~x is a valley point of type n � d if �n�d+1(~x) < 0, D~Vi(x)�i(~x) = 0, andD~Vi(x)D~Vi(x)�i(~x) > 0 for n� d + 1 � i � n. Additionally ~x is a strong valley point if�n�d+1(~x) > j�1(~x)j; otherwise it is a weak valley point.For a vector �eld ~V (~x) and real{valued function �(~x), the indicated directional derivativesare de�ned asD~V �(~x) = ~V (~x)tr�(~x) and D~VD~V �(~x) = ~V tH(�(~x))~V +r�(~x)t d~Vd~x ~V :Now consider functions F : IRn � (0;1) ! IR. Consider the hypersurface implicitlyde�ned by F (~�) = 0. The principal curvatures �i and principal directions ~Vi are the eigen-values and tangential eigenvectors of the matrix W = �d ~N=d~x where ~N = rF=jrF j. Theridge and valley de�nitions are identical to the ones given above, except now the curvatures,directions, and derivatives depend on ~� 2 IRn�(0;1) as compared to the previous de�nitionwhere they depended on ~x 2 IRn.Scale SpaceAs pointed out in the section on scale space measurements, the principal curvatures andprincipal directions for graphs of � = f(~x) and implicit surfaces de�ned by F (~x; �) = c are90



computed exactly as in the Euclidean setting, except that the Euclidean shape operators arereplaced by their scale space counterparts, which depend on covariant di�erentiation.For the graph of � = f(~x), the matrices representing the �rst and second fundamentalforms are A = P 2 +rfrf t and B = H((jP~xj2 + f2)=2)=p1 + jP�1rf j2, respectively. Theshape operator is W = A�1B. For the hypersurface de�ned by F (~x; �) = 0, the shapeoperator is W = �dl ~N=dl~x where ~N = brF=k brFk. The scale space principal directionde�nitions are identical to those for Euclidean space, except that the scale space shapeoperators are used in place of the Euclidean ones.4.4.3 Level RidgesThe Euclidean level de�nition for ridges and valleys for a function f : IRn ! IR, n � 2,involved applying the principal direction de�nition to �nding ridges and valleys for all ofthe level surfaces f(~x) = c. The set of all principal direction ridges and valleys for the levelsurfaces makes up the level ridges and valleys.The extension to a scale space level de�nition for ridges and valleys is also straight-forward. In the Euclidean de�nition, for each level surface de�ned by f(~x) = c, the shapeoperator for the surface is W = �d ~N=d~x where ~N = rf=jrf j. In scale space, the shapeoperator is W = �dl ~N=dl~x, where ~N = brF=k brFk.4.4.4 Invariance PropertiesThe ridges constructed by the level de�nition for functions f : IRn ! IR, where IRn hasthe Euclidean metric, are invariant under rotations, reections, translations, and uniformmagni�cations in IRn. That is, if ridges(f(~x)) � IRn denotes the set of ridges for f incoordinates ~x, and if ~ (~x) represents a rotation, reection, translation, or magni�cation~x ! �~x, then ~ (ridges(f(~x)) = ridges(f(~ (~x))). The level ridges are also invariant withrespect to monotonic transformations of f , ridges(g � f(~x)) = ridges(f(~x)), where g0 > 0.The ridges constructed by the height and principal direction de�nition are also invariantunder rotations, reections, and translations, but not with respect to uniform magni�cationsin IRn.The scale space level ridge de�nitions for functions f : S ! IR produces ridges which are91



invariant under rotations, reections, and translations in the spatial components. The ridgesare additionally invariant to zoom, (~x; �)! �(~x; �), for � > 0. The level ridges are invariantwith respect to monotonic transformations in f , as in the Euclidean case. The scale spaceheight and principal direction de�nition for functions f : IRn ! (0;1) also produces ridgeswhich are invariant to rotations, reection, and translations in the spatial components. Asin the Euclidean case, the ridges are not invariant to uniform spatial magni�cations, butthey are invariant to zoom (uniform magni�cation in both space and scale).4.5 Anisotropic Di�usion as a Consequence of the MetricThe purpose of this section is to show that the generation of multiscale data via anisotrophicdi�usion is intimately related to the geometry of the underlying scale space. In particular,I will show that anisotropic di�usion is in a loose sense \linear" di�usion in non{Euclideanspace. This is in contrast to the view that anisotropic di�usion is a nonlinear di�usion inEuclidean space. Moreover, the selection of the metric for scale space based on invariancerequirements for a front{end vision system is a more natural approach to solving visionproblems. Once the metric is selected, the anisotropic di�usion process for generating themultiscale data is automatically determined. I conclude with some ideas on how the met-ric may be useful in image analysis and in developing stable numerical algorithms whendiscretizing the di�usion equation.4.5.1 Linear Di�usion in Euclidean SpaceThe simplest di�usion process is, of course, given byu� = r � (ru); x 2 IRn; � > 0:As a heat transfer process, the conductance is a constant (c � 1). No preference is given fordirection of transfer (rotational invariance) or for location of origin (translational invariance).The units of measurement are signi�cant here (no scale invariance). For example, if space andscale are transformed by (x; �)! �(x; �) and if v(x; �) = u(�x; ��), then v� = ��1r� (rv).To retain invariance, the temperatures must also be transformed by u! �v.92



The standard analysis of the linear di�usion equation assumes that the underlying spaceis Euclidean. That is, the metric of the space is determined by the form for arc lengthds2 = dx � dx+ d�2;and the total derivative is given bydu = ru � dx+ u�d�:Any measurements in the (x; �) space are independent of the multiscale data u(x; �). Forexample, distance between points in scale space are measured using the standard formula forEuclidean distance. Objects in the initial image I(x) are analyzed essentially independentlyof the image intensities and of the proximity of other objects.The standard �nite di�erence scheme (forward di�erence in scale, central di�erence inspace) in solving the linear di�usion equation uses a grid consisting of a rectangular latticeof points. In one spatial dimension, the approximationsu� := u(x; � + k)� u(x; �)kand uxx := u(x+ h; �)� 2u(x; �) + u(x� h; �)h2lead to the di�erence schemeu(x; � + k) = u(x; �) + kh2 [u(x+ h; �)� 2u(x; �) + u(x� h; �)] :For n spatial variables, the scheme is stable if 2nk < h2. For a given scale, a spatial gridpoint is always a constant (Euclidean) distance h from any other neighbors at the same scale.For a given spatial location, a scale grid point is always a constant (Euclidean) distance kfrom its neighbors at adjacent scales.4.5.2 Linear Di�usion in Non{Euclidean SpaceIn addition to requiring rotational and translational invariance in space, a front{end visionsystem might be required to have invariance with respect to units of measurement. A metricwhich has all three invariances is determined by the arc length formds2 = dx � dx�2 + d�2�2 :93



Consequently scale space becomes non{Euclidean (the geometry is hyperbolic). The totalderivative is given by du = �ru � dx� + �u� d�� :Any measurements in the (x; �) space are still independent of the multiscale data u(x; �),but there is interaction between the space and scale variables. Geodesics are now semicircleswith centers at � = 0 as compared to lines, which are the geodesics in Euclidean space.Objects in the initial image I(x) are still analyzed independently of the image intensitiesand of the proximity of other objects, but the dependence on units of measurement has beenremoved.The linear di�usion process corresponding to this metric is given by�u� = �2r � (ru); x 2 IRn; � > 0:In Euclidean space, if the di�usion scale is t (ut = uxx), then the relationship to the scale inthis non{Euclidean space is t = �2=2. However, now the derivatives are in a unitless form dueto the scale invariance of the metric. Note that the left{hand side of the di�usion equationis a single application of the scale space � derivative (as speci�ed in the total derivativeformula for du) and the right{hand side of the equation is two applications of the scale spacex gradient operator: (�@=@�)u = (�r)2u.A �nite di�erence scheme for the one spatial dimension case may be used to solvethe di�usion equation in the current setting. The extension to more spatial dimensions isapparent. The following approximations are used,�u� := u(x; b�)� u(x; �)ln b ;and �2uxx := u(x+ h�; �)� 2u(x; �) + u(x� h�; �)h2 ;where b > 1. The di�erence scheme isu(x; b�) = u(x; �) + ln bh2 [u(x+ h�; �)� 2u(x; �))+ u(x� h�; �)] :For n spatial variables with the same pixel spacing h > 0, the scheme is stable as long as2n ln b < h2. Note that this �nite di�erence scheme will get you to a larger scale more quickly94



than the one using the Euclidean metric, since the scale parameter increases as a geometricsequence rather than as an arithmetic sequence.Now notice that the implied grid of points is no longer a \rectangular" grid as in theEuclidean case. The implied sampling in scale requires us to use a geometric sequence ofscales. As scale increases, the implied spatial samples are sparsely placed as compared tothe placement at small scale. A closer look shows that in fact the implied grid points area \constant" distance apart, but now distance is measured with respect to the metric. Forexample, the distance between (x; b�) and (x; �) is ln b, a constant distance in this non{Euclidean space. For a given scale �, the distance between (x+ h�; �) and (x; �) is h units,again a constant.4.5.3 Anisotropic Di�usionThe last two sections have a common theme. The linear di�usion equation is related tothe metric assigned to the space. In both cases, the left{hand side of the di�usion is oneapplication to u of the scale derivative which is natural to the metric. The right{hand side istwo applications to u of the spatial gradient which is natural to the metric. In the Euclideanmetric case, the di�usion is � @@�� u = (r)2 uand in the non{Euclidean metric case, it is�� @@��u = (�r)2 u:More generally, anisotropic di�usion can be viewed as the multiscale process one mustapply given an appropriate metric for scale space. Let c() denote the conductance functionfor anisotropic di�usion. The conductance may be a function of space, scale, or image data(and its derivatives). Let �() denote the density function which also appears in the moregeneral model of heat transfer: @u@� = 1�r � (cru) :In the Perona{Malik model (Perona & Malik 1987), no density term is included, so � � 1.Some candidates for the conductance arec(jruj) = exp(�jruj2=k2) or c(jruj) = �1 + jruj2=k2��195



for some parameter k > 0. Of course this makes the di�usion process nonlinear. The ideais that \homogeneous regions" (where gradient intensity is small) have large conductanceand are di�used signi�cantly, but \edge regions" (where gradient intensity is large) havesmall conductance and are not di�used much. In this way the image is smoothed to preservenoticeable boundaries.The conductance function has been viewed as a \stretching" of space. This notion ismade formal by introducing a metric on scale space which contains both the conductanceand density functions. Speci�cally, let the metric be determined by the arc length formds2 = �dx � dxc2 �2 + �d��c �2 :Both c and � are allowed to depend on space, scale, and image data. It makes sense thata front{end vision system will make measurements (via a metric) that are data{dependent.Object interference is a natural phenomena, so the metric should reect this and depend onfunctionals of the intensity. The total derivative in this metric is thereforedu = cru � dxc + �cu� d��c :The natural di�usion equation for this metric has left{hand side given by one application ofthe scale derivative and right{hand side given by two applications of the spatial gradient,namely ��c @@��u = (cr)2 u:This simpli�es to the anisotropic di�usion equation mentioned earlier: u� = ��1r � (cru).As special cases, for the linear di�usion equation in Euclidean space, the parameters arec � 1 and � � 1. For the linear di�usion in a non{Euclidean space, the parameters are c � �and � � 1. Finally, a number of researchers have been studyingu� = jrujr � � rujruj�either in the context of embedded curve evolution or for edge and corner detection (Alvarez,Lions & Morel 1992, Florack 1993, Kimia, Tannenbaum & Zucker 1992). In this case,c = 1=jruj = �.Now that I have quanti�ed what the metric is in scale space, appropriate choices can bemade for c and � so that the metric has the desired invariances for the given application. The96



construction of multiscale data is then a consequence of metric selection. Any object analysisin the image is performed with respect to the metric, for example, measuring distancesbetween objects. Such distances now naturally depend on the multiscale image data, sophenomena such as object interference can be accounted for.Moreover, the metric should be used in constructing �nite di�erence schemes for solv-ing the anisotropic di�usion equation. In the linear di�usion cases, the grid points werepositioned at constant distances from each other, distance being measured according to themetric. Grid selection for the general anisotropic case could be done similarly. But now,the selection is adaptive depending on what the values of conductance and density are. Forexample, if conductance is c(x; �) and density is �(x; �) (no image dependence for now), thenthe �rst derivative approximations arecux := u(x+ h2 c(x; �); �)� u(x� h2 c(x; �); �)hand �cu� := u(x; � + k�(x; �)c(x; �))� u(x; �)kfor some small positive constants h and k. The second derivative spatial approximationis somewhat more complicated, but it just involves the �rst{order di�erence operator ap-plied twice to the function. In the following equation, I drop the dependence on � just fornotational simplicity. The second derivative is approximated byc(cux)x := 1h2 hu(x+ h2 c(x) + h2 c(x+ h2 c(x)))� u(x+ h2 c(x)� h2 c(x+ h2 c(x)))�u(x� h2 c(x) + h2 c(x� h2 c(x))) + u(x� h2 c(x)� h2 c(x� h2 c(x)))iIt can be shown that the right{hand side converges to c(cux)x as h ! 0. Notice that whenc � 1 and � � 1, the �nite di�erence method is exactly the one given earlier for u� = uxx.When c = � and � � 1, the scale derivative approximation is slightly di�erent. The scalesare sampled geometrically, but in place of the term ln b appearing in the approximation wehave b � 1. The replacement by ln b can be viewed as a minor re�nement which has somee�ect on the approximation error and on the range of b which provide a stable algorithm.If the conductance and/or density depend on image values, now the di�erence schemesbecome implicit. They may be more di�cult to implement, but hopefully, like many implicitschemes, they will exhibit unconditional stability.97
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Figure 4.3: Objects to be registered4.6 DiscussionThe development of the properties of scale space is not to be viewed as simply an exercise inmathematics. The consequences of scale space measurements are far{reaching in applicationsto image analysis. Objects in an image impose their own \geometry" in the image. Anymeasurements made should depend on both position and scale of measurement. As oneexample, consider the problem of image registration. Let an object in a 2{dimensionalimage have core computed as (~x(t); ~y(t); �(t)) = (0; �t; (1 � t)�0 + t�1) for t 2 [0; 1], where� 6= 0 and 0 < �0 < �1. In a second image, the same object has been zoomed by a factor� > 0, rotated by an angle �, and translated by an amount (a; b) from its original location.Its core will be computed as (a� t�� sin �; b+ t�� cos �; �[(1� t)�0+ t�1]). Figure 4.3 belowshows the two views of the same object.If an attempt is made to register the two objects using chamfer matching, the resultswill be acceptable if the zoom factor is close to 1. In this case, the matching will provideinformation about how much the second object has been rotated and translated relative tothe �rst object. But if the zoom factor is not close to 1, the matching becomes less reliable.A better registration will occur if the matching is done in scale space. In fact, the two objects98



match exactly. Note that the scale space arc length of the core of the �rst object is`1 = Z 10 p _x2 + _y2 + _�2�(t) dt = Z 10 p�2 + (�1 � �0)2(1� t)�0 + t�1 dtThe scale space arc length of the core of the second object is`2 = Z 10 p(��� sin �)2 + (�� cos �)2 + [�(�1 � �0)]2�[(1� t)�0 + t�1] dt = Z 10 p�2 + (�1 � �0)2(1� t)�0 + t�1 dt = `1;as expected based on the invariances which were built into the de�nition of the metric forscale space.One problem that was encountered in experiments with 2D registration was the 4{to{3pixel sampling scheme which is used for display devices with the related aspect ratio. Tomake sure the true distances are calculated correctly, the values �1 = 1 and �2 = 3=4 wereused in the metric G. Moreover, the scale samples were selected as a geometric sequencewith base b > 1, so � = 1= ln(b) was used. As a consequence, the scales �bk and �bk+1 areone unit distance apart in scale space for any k.More general distortions can occur in the sampling of pixels. If one knows the type ofdistortion a priori, then perhaps the same development given in this paper could be modi�edfor more general metrics G = ��2diag(J tJ; �2) where J is an n� n matrix representing thederivative of the distortion ~y = ~F (~x). By using such a metric, the calculations made shouldbe true to the coordinates of the original scene rather than to the distorted coordinates ofthe image representing the scene.Another application currently being investigated is object{based interpolation of images(Pu�, Eberly & Pizer 1994). The usual interpolation schemes simply compute a weightedaverage of intensities through various slices, but at a �xed spatial location. This approachtreats pixels at this location, but in di�erent slices, equally without regard to the pixelclassi�cation. If in one slice the pixel is white matter, but in the next slice it is gray matter,there is no anatomical justi�cation for interpolating the two intensities. The interpolationshould be based on relating pixels of the same classi�cations.A solution to this problem is to phrase it in a scale space setting. The adjacent imageslices are each segmented using multiscale methods to obtain a collection of objects and theircorresponding cores. The objects are registered between pairs of slices. Interpolation of theintensities for a pair of registered objects now involves both interpolation of positions and of99



the intensities at those positions. The interpolation of positions is performed in a scale spacesetting. Pairs of points are identi�ed with each point being in the same relative locationto one object as the other point is relatively located to the paired object. The scale spacedistance measurements that are used essentially incorporate \width" information about theobjects themselves. The geography of the objects should naturally tell how to pair up points.Once paired, the intensities between those points can be interpolated.For objects that consist of a hierarchy of �gures, each �gure having its own core, aninterpolation can be based on pairs of �gures that are registered, but now one must takeinto account how the �gures interrelate. The problem is being currently investigated.The algorithms being developed in the Medical Image Processing group at UNC aresuccessful because of their foundations in scale space geometry. I predict that many otherimaging applications will succeed only if the problems are similarly formulated in a scalespace setting. As indicated in the section relating anisotropic di�usion to the scale spacemetric, the metric selection for scale space becomes a very important aspect of any programof image analysis. Once selected, all the corresponding geometric tools such as distance,curvature, and ridges come to play in the analysis of the original image.
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