
Chapter 5Numerical IssuesThe computer implementations of most components of the segmentation process are straight-forward. I describe here three components which are not found in the standard numericalanalysis references. The fourth component is an algorithm for �nding the 1{dimensionsalskeleton of an n{dimensional binary object.The �rst component is the construction of centralized �nite di�erences for general orderderivatives. Although the current segmentation code contains only routines for �rst{orderdi�erentiation, later versions may conceivably use higher{order derivatives and higher{orderapproximations. Most numerical analysis texts mention a few �nite di�erences for low or-der di�erentiation. The construction I give is not di�cult, but it does allow constructionof the appropriate template for convolution for a given order derivative and given orderapproximation.The second component is Gaussian blurring using �nite di�erences, but where the dis-cretization is in terms of the scale variable � (sampled according to a geometric sequence)rather than the usual time variable t (sampled according to an arithmetic sequence). Inaddition to stating the numerical method for blurring, I give a proof of stability when thebase of the sequence is suitably restricted. The question of what base to use for the geo-metric sampling to guarantee that no information is missed by the sampling has been anopen question. Since the front end of the human visual system appears to handle scale in away that is similar to �nite di�erence methods, the bounds obtained on the base may be ofimportance in understanding how the human visual system handles scale.

The third component is the solution of eigensystems of the form A~v = �B~v where Aand B are real symmetric matrices. In the height de�nition for ridges, A is the negative of aHessian matrix and B is the identity matrix, so the usual numerical methods apply in �ndingeigenvalues and eigenvectors. I give a variation on a method using Householder reductionwhich does some of the initial matrix manipulations analytically rather than numerically. Inthe principal direction and level de�nitions for ridges, A represents the second fundamentalform and B represents the �rst fundamental form. The generalized eigensystem is equivalentto B�1A~v = �~v, a regular eigensystem, but B�1A is usually not symmetric. I give a methodwhich takes advantage of the symmetry of A and B, still uses Householder reduction, andtherefore retains the stability inherent in Householder methods.The fourth component involves �nding 1{dimensional skeletons of an n{dimensionalobject. The skeleton construction preserves the topology (connectivity) of the original object.If the original object has k holes, then the skeleton had k holes. Also, the constructionpreserves the general geometric shape of the original object by thinning the object layer{by{layer from the outside to inside.5.1 Finite Di�erencesThis section contains the construction for templates corresponding to central di�erence for-mulas for derivatives of functions of a single variable. Derivatives for multivariable functionscan be obtained from the one{variable templates by tensor products.5.1.1 Derivatives of Univariate FunctionsCentral �nite di�erences are computed using Taylor polynomial approximations to functions.Probably the most familiar �nite di�erences aref 0(x) := f(x+ h)� f(x� h)2h and f 00(x) := f(x+ h)� 2f(x) + f(x� h)h2for a given step size h > 0. Each of these approximations is of order O(h2). In imageapplications, usually the step size is speci�ed to be h = 1 (the pixel spacing), so as atemplate applied to 1{dimensional images,D1 = 12(�1; 0; 1) and D2 = (1;�2; 1)102

for the �rst and second derivative templates, respectively. Note that the entries of thetemplate, read from left to right, correspond to the coe�cients of f(x � h), f(x), andf(x + h). One way to compute these approximations is by expanding the terms f(x + h)and f(x � h) as Taylor polynomials. I use Taylor series in a formal way and ignore theconvergence properties.f(x+ h) = f(x) + hf 0(x) + 12h2f 00(x) + � � � + 1n!hnf (n)(x) + � � �f(x� h) = f(x)� hf 0(x) + 12h2f 00(x)� � � � + (�1)nn! hnf (n)(x) + � � �Subtracting the two expansions yieldsf(x+ h)� f(x� h) = 2hf 0(x) + 23!h3f 000(x) + � � � = 2hf 0(x) +O(h3);so f 0(x) = f(x+ h)� f(x� h)2h +O(h2):Similarly, adding the two expansions yieldsf(x+ h) + f(x� h) = 2f(x) + h2f 00(x) + 24!h4f (4)(x) + � � � = 2f(x) + h2f 00(x) +O(h4);so f 00(x) = f(x+ h)� 2f(x) + f(x� h)h2 +O(h2):The same ideas apply to constructingO(h2) approximations to higher{order derivatives.For example, it can be shown that O(h2) approximations to the third and fourth derivativesare f (3)(x) := f(x+ 2h)� 2f(x+ h) + 2f(x� h)� f(x� 2h)2h3and f (4)(x) := f(x+ 2h)� 4f(x+ h) + 6f(x)� 4f(x� h) + f(x� 2h)h4 :Higher{order approximations can also be constructed. For example, the O(h4) approxima-tions for the �rst four derivatives aref (1)(x) := �f(x+2h)+8f(x+h)�8f(x�h)+f(x�2h)12h ;f (2)(x) := �f(x+2h)+16f(x+h)�30f(x)+16f(x�h)�f(x�2h)12h2 ;f (3)(x) := �f(x+3h)+8f(x+2h)�13f(x+h)+13f(x�h)�8f(x�2h)+f(x�3h)8h3 ; andf (4)(x) := �f(x+3h)+12f(x+2h)�39f(x+h)+56f(x)�39f(x�h)+12f(x�2h)�f(x�3h)6h4 :103

Of course, given the approximation, one can use the expansions to verify its correctness.The problem is to construct the approximations from the expansions where the order ofapproximation is speci�ed a priori. For any integer i, the Taylor expansionf(x+ ih) = 1Xn=0 (ih)nn! f (n)(x)is used.Because I am concerned only with central di�erences, the order of the approxima-tion will be even. Suppose an approximation to f 0(x) with error of order O(h2p) forsome speci�ed p � 1 is desired. Observe that the number of template terms in the �rst{derivative approximations appears to be odd and is in fact 2p + 1. Construct a templateT = (T�p; . . . ; T0; . . . ; Tp) so thathf 0(x) +O(h2p+1) = Ppi=�p Tif(x+ ih)= Ppi=�p Ti �P1n=0 (ih)nn! f (n)(x)�= P1n=0 �f (n)(x)Ppi=�p inn!Ti�hn:The equalities are true if for 0 � n � 2p the following condition is required:pXi=�p inn!Ti = 8><>: 1; n = 10; n 6= 1 9>=>; :This gives 2p + 1 equations in 2p + 1 unknowns. For p = 1, an O(h2) approximation,the solution is T = 12(�1; 0; 1) and for p = 2, an O(h4) approximation, the solution isT = 112(1;�8; 0; 8;�1).To compute approximations for any derivative f (m)(x) the above construction can bemodi�ed. From observation of the second, third, and fourth derivative approximations listedearlier, it appears that a template with 2c+1 coe�cients where c = p+b(m�1)=2c is needed.The function bxc is the \oor" function. Construct template T = (T�c; . . . ; T0; . . . ; Tc) sothat 1m!hmf (m)(x) +O(h2p+m) = cXi=�c Tif(x+ ih) = 1Xn=00@f (n)(x) cXi=�c inn!Ti1A hn:The equalities are true if for 0 � n � 2c the following condition is required:cXi=�c inn!Ti = 8><>: 1; n = m0; n 6= m 9>=>; :104

This gives us 2c+1 equations in 2c+1 unknowns. For p = 2, an order O(h4) approximation,and m = 3, the value c = 3 and the solution is T = 18(1;�8; 13; 0;�13; 8;�1).In general, the system of equations for T can be written as AT = B where A is a(2c+1)�(2c+1) matrix, B is a (2c+1)�1 matrix, each containing only integer coe�cients.The system can be solved symbolically for T .5.1.2 Derivatives of Multivariate FunctionsFor functions with more variables, the partial derivatives can be approximated by groupingtogether all of the same variables and applying the univariate approximation for that group.For now I assume that the pixel spacing is uniform in all dimensions, but that is not neces-sarily so in applications. For nonuniform spacing, the �nite di�erences need to be adjustedappropriately. The �rst and second partial derivatives of f(x; y) arefx(x; y) = f(x+h;y)�f(x�h;y)2h + O(h2);fy(x; y) = f(x;y+h)�f(x;y�h)2h + O(h2);fxx(x; y) = f(x+h;y)�2f(x;y)+f(x�h;y)h2 + O(h2);fyy(x; y) = f(x;y+h)�2f(x;y)+f(x;y�h)h2 + O(h2); andfxy(x; y) = f(x+h;y+h)�f(x+h;y�h)�f(x�h;y+h)+f (x�h;y�h)4h2 + O(h2):Let �m;p denote the central �nite di�erence operator for derivative m of order O(h2p).For example,�1;1f(x) = f(x+ h)� f(x� h)2h and �2;1f(x) = f(x+ h)� 2f(x) + f(x� h)h2 :For any p, de�ne �0;pf(x) = f(x), the identity operator. Thus, f 0(x) = �1;1f(x)+O(h2) andf 00(x) = �2;1f(x) +O(h2).For functions f(x; y) I use tensor notation to indicate application of �nite di�erencescorresponding to di�erent variables. For example,�0;1
 �1;1f(x; y) = f(x+h;y)�f(x�h;y)2h ;�1;1
 �0;1f(x; y) = f(x;y+h)�f(x;y�h)2h ; and�1;1
 �1;1f(x; y) = f(x+h;y+h)�f(x+h;y�h)�f(x�h;y+h)+f(x�h;y�h)4h2 :Thus, fx(x; y) = �0;1
�1;1f(x; y)+O(h2), fy(x; y) = �1;1
�0;1f(x; y)+O(h2), and fxy(x; y) =�1;1
 �1;1f(x; y) + O(h2). Note that the derivatives on f are evaluated from left to right,whereas the di�erence operators are performed right to left. This convention is used to105

distinguish between �nite di�erences corresponding to di�erent variables. For example, toobtain an O(h4) approximation to fxxyyy , compute fxxyyy(x; y) = �3;2
 �2;2f(x; y) +O(h4).The application of �2;2 to f approximates the second derivative in x. The application of �3;2to f approximates the third derivative in y.Now I show how to construct the templates to compute the di�erences as convolutionswith templates. Let �m;p have corresponding template Tm;p, and let �n;p have correspondingtemplate Tn;p, as constructed in the previous section. The template corresponding to �n;p
�m;p is just the tensor product Tn;p
 Tm;p.For example, �1;1 has template T1;1 = 12(�1; 0; 1), so �1;1
 �1;1 has templateT1;1
 T1;1 = 14 266664 1 0 �10 0 0�1 0 1 377775 ;where the upper left corner is the weight for f(x�h; y�h) and the lower right corner is theweight for f(x+h; y+h). This template is used to approximate fxy for an image. As anotherexample, �2;1 has template (1;�2; 1) and �3;1 has template 12(�1; 2; 0;�2; 1), so �2;1
 �3;1has template T1;1
 T3;1 = 12 266664 �1 2 0 �2 12 �4 0 4 �2�1 2 0 �2 1 377775 :5.2 Gaussian BlurringThe most popular method used for blurring appears to be convolution of a Gaussian kernelwith the image via a fast Fourier transform (FFT). However, the implementations of FFTsusually have two problems. The �rst problem is that a nonnegative image when blurred by anFFT may have negative values as a result of numerical round{o� errors. A region of positivemeasure for which the initial image is identically zero becomes a region for which there aremany sign uctuations on numbers of small magnitude. The uctuations create problems inmy applications that require Gaussian blurring, such as �nding ridges in a blurred image.The second problem is that for large scale blurring, the FFTs produce artifacts near the106

four corners of 2{dimensional images which look like bright four{point stars. This causesproblems in my applications when scale is large; false ridges are detected in the images.An alternate approach to Gaussian blurring is to notice that it is equivalent to solvingan initial value problem for the partial di�erential equation ut = r2u over IRn where theinitial data is the image to be blurred. Large t corresponds to large scale blurring. The �nitedi�erence method in the time variable is stable only for relatively small time increments.To get a blurred image at large time (scale) requires a tremendous number of iterations,so the method is not cost{e�ective. However, nonnegative initial data leads to nonnegativesolutions, and the method is asymptotically stable; that is, as t approaches in�nity, thenumerical solution approaches the true solution.I have implemented Gaussian blurring with a similar �nite di�erence scheme, but interms of the scale variable � where t = �2=2. The scale samples will form a geometricsequence, unlike the former method which samples time arithmetically. This means blurringto a larger scale can be accomplished by many fewer steps if the scale version is used ratherthan the time version of the numerical method. Stability is still an issue, except that theconstraint will be on the base of the geometric sequence. The partial di�erential equation inspace and scale is �u� = �2r2u. The following argument is based on one spatial variable.Similar arguments can be given when there are more spatial variables.5.2.1 An Approximation to Di�usionConsider the initial value problem �u�(x; �) = �2uxx(x; �) for � > �0 and x 2 IR, whereu(x; �0) = I(x) is the initial image. Assume that I(x) is zero outside the interval [�r; r]. Iwill approximate the partial derivatives by �nite di�erences as follows. Let � = b� for somebase b > 1 and let w(x; �) = u(x; �). By the Mean Value Theorem (Fulks 1978),w(x; � + 1) = w(x; �) + w� (x; �) + 12w��(x; �̂(x))for some �̂(x) 2 [�; � + 1]. Transforming back to the old coordinates yieldsu(x; b�) = u(x; �) + (ln b)�u�(x; �) + (ln b)22 [�̂2u��(x; �̂(x)) + �̂u�(x; �̂(x))]for some �̂(x) 2 [�; b�]. Therefore,�u�(x; �) = u(x; b�)� u(x; �)ln b + ln b2 [�̂2u��(x; �̂(x)) + �̂u�(x; �̂(x))]: (5:1)107

A similar application of the Mean Value Theorem yields�2uxx(x; �) = u(x+ h�; �)� 2u(x; �) + u(x� h�; �)h2 + h224[�4uxxxx(x̂; �) + �4uxxxx(�x; �)] (5:2)for h > 0, for some x̂ 2 [x; x+ h�], and for some �x 2 [x� h�; x]. An approximation to thedi�usion equation is thereforeu(x; b�) = u(x; �) + ln bh2 [u(x+ h�; �)� 2u(x; �) + u(x� h�; �)]: (5:3)At this point discretize only the scale variable, say �j = �0bj for j � 0, and let vj(x) =u(x; �j). The approximation is nowvj+1(x) = vj(x) + ln bh2 �vj(x+ h�j)� 2vj(x) + vj(x� h�j)� : (5:4)Now discretize the spatial variable, say xi = ih for integers i, and let vi;j = u(xi; �j). Thequantities xi�h�j are not necessarily spatial grid points. I make another approximationusingcubic interpolation, which keeps the error the same order as that for the second derivativeapproximation. De�ne �1 = bi+�jc, �0 = �1�1, �2 = �1+1, and �3 = �1+2. The points h�kare all valid spatial grid points with h�1 � xi+ h�j � h�2. The cubic Lagrange polynomialscorresponding to the indices �k are Lk(�) = Q3m=0;m6=k(���m)=(�k��m). The tabular valuesto be interpolated are v�k;j = u(h�k; �j), so the interpolating polynomial for the indices isp(�) = 3Xk=0 v�k;jLk(�):Similarly de�ne �1 = bi��jc, �0 = �1�1, �2 = �1+1, and �3 = �1+2, with correspondingLagrange polynomials Mk(�) = Q3m=0;m6=k(� � �m)=(�k � �m). The tabular values to beinterpolated are v�k ;j = u(h�k; �j), so the interpolating polynomial isq(�) = 3Xk=0 v�k ;jMk(�):The approximation to the di�usion equation now becomesvi;j+1 = vi;j + ln bh2 �p(i+ �j)� 2vi;j + q(i� �j)�= vi;j + ln bh2 �P3k=0 v�k;jLk(i+ �j)� 2vi;j +P3k=0 v�k;jMk(i� �j)� : (5:5)Finally, the initial image data is given only for a �nite set of indices, say vi;0 = u(xi; �0),0 � i � N � 1. If one of the quantities xi � h�0 is outside the valid range of indices, then108

u(xi � h�0; �0) is unde�ned. I remedy this problem by assuming that vi;0 = v0;0 for i < 0and vi;0 = vN�1;0 for i > N � 1. The same restriction is made for other scales: vi;j = v0;j fori < 0 and vi;j = vN�1;j for i > N � 1. Other methods could be used instead for handling theboundary conditions and the occurrence of sample positions being outside the image. Forexample, one could apodize the boundary values as a way of extending the image outsidethe sample grid.5.2.2 Stability of the MethodIn equation (5.4), try a separation of variables by vj(x) = �jf(x) where f(x) is a non{constant bounded function and �0 = 1. The equation becomes�j+1�j = 1 + ln bh2 �f(x+ h�j)� 2f(x) + f(x� h�j)f(x) � :Since the left{hand side is independent of x for all j,@@x �f(x+ h�j)� 2f(x) + f(x� h�j)f(x) � � 0for all x 2 IR and � � �0. A solution is f(x) = sin(�x) for any constant � 6= 0. Moreover,for this choice of f , �j+1�j = 1� 4 ln bh2 sin2��h�j2 � ; �0 = 1;which has the solution �n = n�1Yj=0 �1� 4 ln bh2 sin2��h�j2 ��for n � 1. To guarantee that the numerical method is stable, in fact asymptotically stable, itis necessary that �n ! 0 as n!1. This limiting condition is ensured if 0 < ln(b)=h2 < 1=2,in which case all the terms of the product are bounded away from 1 in magnitude.For d spatial variables with the same grid sizes h, a similar construction will yield thestability condition 0 < ln(b)=h2 < 1=(2d). If the spatial measurements are in pixel units,h = 1, then b < exp(1=2) := 1:649 for dimension 1, b < exp(1=4) := 1:284 for dimension 2,and b < exp(1=6) := 1:181 for dimension 3. 109

5.2.3 Bounds on Approximation ErrorI now construct bounds on the approximation errors made by using equations (5.3) and(5.5). Let � = q�2 � �20 and w(x;�) = u(x; �); then w is a solution to w� = �wxx for � > 0and x 2 IR, with initial condition w(x; 0) = I(x), where I represents the input image. Thesolution to the di�erential equation is the integral convolutionw(x;�) = ZIR 1p2�� exp � y22�2! I(x� y) dy: (5:6)By equation (5.1), the error made in using the �nite di�erence approximation for �u�(x; �)is bounded by a general bound obtained for j�2u�� + �u�j. Note that �2u�� + �u� =�4uxxxx+2�2uxx, so only bounds need be obtained bounds on the second{ and fourth{orderspatial derivatives of u. By equation (5.2), the error made in using the �nite di�erence for�2uxx is bounded by a general bound obtained for j�4uxxxxj.From the change of variables follows the identities �2uxx = �2wxx and �4uxxxx =�4wxxxx. Di�erentiating equation (5.6) twice, multiplying by �2, and setting z = y=� yields�2wxx = Z x+rx�r �2p2��3 (z2 � 1) exp(�z2=2)I(x� y) dy;where I have also used the assumption that I(x) is 0 outside of the interval [�r; r]. It canbe shown that j(z2 � 1) exp(�z2=2)j � 1. Thus,j�2wxxj � 2rmax jI jp2�� 0@ �q�2 � �201A3 : (5:7)Similarly, taking more derivatives yields�4wxxxx = Z x+rx�r �4p2��5 (z4 � 6z2 + 3) exp(�z2=2)I(x� y) dy:It can also be shown that j(z4 � 6z2 + 3) exp(�z2=2)j � 3, soj�4wxxxxj � 6rmax jI jp2�� 0@ �q�2 � �201A5 : (5:8)The approximation error in equation (5.1) is therefore bounded by�����u�(x; �)� u(x; b�)� u(x; �)ln b ���� � C ln b� 2640@ �q�2 � �201A3 + 30@ �q�2 � �201A5375110

where C = rmax jI j=p2�. The approximation error in equation (5.1) is bounded by�����2uxx(x; �)� u(x+ h�; �)� 2u(x; �) + u(x� h�; �)h2 ���� � C h22� 0@ �q�2 � �201A5 :The approximation error of the method in equation (5.3) is O(ln b) in scale discretizationand O(h2) in space discretization. Note that as � gets large, the derivative approximationsbecome increasingly better. For � near �0, a di�erent argument can be used to get tighterbounds.The bound on approximation error in equation (5.5) can be found in any standardnumerical analysis which discusses Lagrange interpolation of polynomials. The interpolationerrors are bounded byjv(xi + h�j)� p(i+ �j)j � max jI(4)jh424 and jv(xi � h�j)� q(i� �j)j � max jI(4)jh424 :A bound on the additional error in approximating the �nite di�erence for �2uxx by a cu-bic interpolation is max jI(4)jh2=24 since the denominator of the �nite di�erence cancelsh2. This additional error is O(h2), the same order as that of the original �nite di�erenceapproximation.5.2.4 TimingA simple test on a fast workstation (phong, a DEC 5500) for a 256 � 256 � 128 dataset showed that for a single step Gaussian blurring via a general purpose FFT program(/usr/image/bin.MIPS/gauss) took about 1 hour, which included some swap time, butthe �nite di�erence scheme as described took about 5 minutes. For larger scales, the �nitedi�erence scheme must be iterated. As long as the number of iterations keeps the total timeless than that for the FFT program, the algorithm is e�ective. Of course, the tradeo� isthat the FFT generally has smaller errors than the �nite di�erence method. But the realmeasure needed for processing large data sets is the cost, which balances error and executiontime. 111

5.3 Solving EigensystemsThe height de�nition and nonmetric de�nition require solving eigenvalue problems of theform A~v = �~v, where A is a real, symmetric matrix. Standard packages may be used;in particular, for general dimensions I use routines from Numerical Recipes in C (Press,Flannery, Teukolsky & Vetterling 1988). I use the routine tred2 for reduction of the matrixto tridiagonal form, followed by tqli for computing eigenstu� for a tridiagonal matrix.However, for dimensions 2 through 4, I have written special reduction routines which runabout 3 times faster than tred2.The principal direction de�nition and level de�nition require solving generalized eigen-value problems of the form A~v = �B~v where A and B are both real, symmetric matrices.The matrix B turns out to be positive de�nite, so the problem could be transformed to aregular eigenvalue problem via a Cholesky decomposition. However, B has a very specialform which allows me to make an even simpler transformation using orthogonal matrices.5.3.1 Eigenstu� for A~v = �~vThe standard way to solve A~v = �~v is to compute an orthogonal matrix Q such thatT = QtAQ is tridiagonal. The equivalent eigensystem is T ~w = �~w where ~w = Qt~v. Suchsystems are fairly easy to solve numerically since roots of det(T � �I) = 0 can be boundeda priori and then located using standard root{�nding techniques.The reduction T = QtAQ is obtained where Q is a product of a sequence of n � 2Householder transformations, where n is the size of the matrix. Since A is symmetric, thematrix T is symmetric, so only the main diagonal and the adjacent subdiagonal need to becomputed. A description of the algorithm is given in (Press et al. 1988). The routine whichimplements the reduction isvoid NRC_tred2 (int n, float **mat, float *diag, float *subd)// input: n = size of matrix// mat = nxn real, symmetric A// output: mat = orthogonal Q// diag = diagonal entries of tridiagonal T, diag[0..n-1]// subd = subdiagonal entries of T, subd[0..n-2]{ 112

int i, j, k, ell;for (i = n-1, ell = n-2; i >= 1; i--, ell--) {float h = 0, scale = 0;if (ell > 0) {for (k = 0; k <= ell; k++)scale += fabs(mat[i][k]);if (scale == 0)subd[i] = mat[i][ell];else {for (k = 0; k <= ell; k++) {mat[i][k] /= scale;h += mat[i][k]*mat[i][k];}float f = mat[i][ell];float g = (f > 0 ? -sqrt(h) : sqrt(h));subd[i] = scale*g;h -= f*g;mat[i][ell] = f-g;f = 0;for (j = 0; j <= ell; j++) {mat[j][i] = mat[i][j]/h;g = 0;for (k = 0; k <= j; k++)g += mat[j][k]*mat[i][k];for (k = j+1; k <= ell; k++)g += mat[k][j]*mat[i][k];subd[j] = g/h;f += subd[j]*mat[i][j];}float hh = f/(h+h);for (j = 0; j <= ell; j++) {f = mat[i][j];subd[j] = g = subd[j] - hh*f;for (k = 0; k <= j; k++)mat[j][k] -= f*subd[k]+g*mat[i][k];}}}elsesubd[i] = mat[i][ell];diag[i] = h;}diag[0] = subd[0] = 0;for (i = 0, ell = -1; i <= n-1; i++, ell++) {if (diag[i]) {for (j = 0; j <= ell; j++) {float sum = 0; 113

for (k = 0; k <= ell; k++)sum += mat[i][k]*mat[k][j];for (k = 0; k <= ell; k++)mat[k][j] -= sum*mat[k][i];}}diag[i] = mat[i][i];mat[i][i] = 1;for (int j = 0; j <= ell; j++)mat[j][i] = mat[i][j] = 0;}// re-ordering if NR_tqli is used subsequentlyfor (i = 1, ell = 0; i < n; i++, ell++)subd[ell] = subd[i];subd[n-1] = 0;}I modi�ed the code so that array indexing starts at 0 rather than at 1. I also have the �rstn�1 entries of subd storing the subdiagonal values rather than the last n�1 (subd[1..n-1])as in NRC. In the book, routine tred2 returns the subdiagonal entries in the last n � 1positions. The code tqli for �nding eigenstu� of tridiagonal matrices rotates the inputsubdiagonal entries so that the �rst n� 1 entries are valid, and the last entry is arbitrary. Iplaced the rotation in tred2 because I have my own reduction code which can be called inplace of tred2, so there would be no reason to waste time rotating in tqli.The computation of eigenstu� for tridiagonal T is accomplished by factoring T = QLwhereQ is orthogonal and L is lower triangular. The diagonal entries of L are the eigenvaluesof T and the columns of Q are the corresponding eigenvectors. The routine below is foundin (Press et al. 1988) and uses implicit shifting to accelerate the convergence and avoid lossof precision of the eigenvalues.void NRC_tqli (int n, float *diag, float *subd, float **mat)// input: n = size of matrix// diag = diagonal entries of tridiagonal T, diag[0..n-1]// subd = subdiagonal entries of T, subd[0..n-2]// mat = the output matrix from NRC_tred2 if the eigenstuff// of real, symmetric A is desired (run NRC_tred2 on A// first), otherwise just the identity matrix if// eigenstuff desired for T only// output: diag = eigenvalues of T (and of A if NRC_tred2 used first)// mat = eigenvectors of T (or of A if NRC_tred2 used first),// column k of mat is an eigenvector for the eigenvalue114

// diag[k]{ const int eigen_maxiter = 30;for (int ell = 0; ell < n; ell++) {for (int iter = 0; iter < eigen_maxiter; iter++) {for (int m = ell; m <= n-2; m++) {float dd = fabs(diag[m])+fabs(diag[m+1]);if ((float)(fabs(subd[m])+dd) == dd)break;}if (m == ell)break;float g = (diag[ell+1]-diag[ell])/(2*subd[ell]);float r = sqrt(g*g+1);if (g < 0)g = diag[m]-diag[ell]+subd[ell]/(g-r);elseg = diag[m]-diag[ell]+subd[ell]/(g+r);float s = 1, c = 1, p = 0;for (int i = m-1; i >= ell; i--) {float f = s*subd[i], b = c*subd[i];if (fabs(f) >= fabs(g)) {c = g/f;r = sqrt(c*c+1);subd[i+1] = f*r;c *= (s = 1/r);}else {s = f/g;r = sqrt(s*s+1);subd[i+1] = g*r;s *= (c = 1/r);}g = diag[i+1]-p;r = (diag[i]-g)*s+2*b*c;p = s*r;diag[i+1] = g+p;g = c*r-b;for (int k = 0; k < n; k++) {f = mat[k][i+1];mat[k][i+1] = s*mat[k][i]+c*f;mat[k][i] = c*mat[k][i]-s*f;}}diag[ell] -= p;subd[ell] = g;subd[m] = 0; 115

}if (iter == eigen_maxiter) {printf("NR_tqli - exceeded maximum iterations");exit(1);}}}As before, all array indexing has been modi�ed to start at 0 rather than at 1.For my applications I need the eigenvalues to be sorted. The following routine is aselection sort. The order of the parameters is di�erent than in NRC.void NRC_eigsrt (int n, float *eigval, float**eigvec)// input: eigval = eigenvalues in arbitrary order// eigvec = column k of matrix is eigenvector for eigval[k]// output: eigval = eigenvalues in descending order, maximum in// eigval[0], minimum in eigval[n-1]// eigvec = column k of matrix is eigenvector for eigval[k]{ // sort eigenvalues so that eigval[i] >= eigval[j] for i < jfor (int i = 0, k; i <= n-2; i++) {float max = eigval[k=i];for (int j = i+1; j < n; j++)if (eigval[j] > max)max = eigval[k=j];if (k != i) {// swap eigenvalueseigval[k] = eigval[i];eigval[i] = max;// swap eigenvectorsfor (j = 0; j < n; j++) {float tmp = eigvec[j][i];eigvec[j][i] = eigvec[j][k];eigvec[j][k] = tmp;}}}}Array indexing also starts at 0 rather than at 1.5.3.2 Symbolic TridiagonalizationThe majority of my image analysis is on images of dimensions 2, 3, and 4. I worked outthe Householder reductions for tridiagonalization symbolically and then implemented them116

N time for NRC tred2 time for tridiag N2 9.23 5.993 43.52 15.334 99.12 27.98Table 5.1: Timing for numeric versus symbolic tridiagonalizationto see if they were faster. The routines are tridiag N for N = 2; 3; 4. I did pro�ling byiterating 100; 000 times a block of code which assigned a matrix its values, tridiagonalized(using NRC tred2 or tridiag N), and computed eigenstu� with NRC tqli. I did the timingon an Intel 80486 at 33 MHz running under Microsoft Windows 3.1. Table 5.1 gives thetiming information where the times are total seconds of execution time as measured byusing the clock() routine in time.h. The reduction routines were timed on matrices of theform M = [mij] where mij = i + j + 1.Reduction of 2� 2 matricesSince a 2 � 2 matrix is already tridiagonal, there is nothing to do theoretically. However,the implementation must do the assignment of numbers to the actual parameters needed forfurther processing. The method which does this isvoid tridiag_2 (float **mat, float *diag, float *subd)// input: mat = 2x2 real, symmetric A// output: mat = identity matrix I// diag = diagonal entries of A, diag[0] = a00, diag[1] = a11// subd = subdiagonal entry of A, subd[0] = a01{ // matrix is already tridiagonaldiag[0] = mat[0][0];diag[1] = mat[1][1];subd[0] = mat[0][1];subd[1] = 0;mat[0][0] = 1; mat[0][1] = 0;mat[1][0] = 0; mat[1][1] = 1;} 117

Reduction of 3� 3 matricesThere are many ways to reduce A to tridiagonal form. I used a Householder transformationwhich does a rotation and a reection in the x1x2{plane, where ~x = (x0; x1; x2). Let thematrix entries be labeled A = 266664 a b cb d ec e f 377775 :If c = 0, the matrix is already tridiagonal, so the orthogonal transformation is just the iden-tity matrix Q = I . If c 6= 0, a Householder transformation Q and corresponding tridiagonalmatrix T = QtAQ areQ = 266664 1 0 00 u v0 v �u 377775 and T = 266664 a L 0L d + vq e� uq0 e� uq f � vq 377775where L = pb2 + c2, u = b=L, v = c=L, and q = 2ue + v(f � d). The method for thereduction isvoid tridiag_3 (float **mat, float *diag, float *subd)// input: mat = 3x3 real, symmetric A// output: mat = orthogonal matrix Q// diag = diagonal entries of T, diag[0,1,2]// subd = subdiagonal entry of T, subd[0,1]{ float a = mat[0][0], b = mat[0][1], c = mat[0][2],d = mat[1][1], e = mat[1][2],f = mat[2][2];diag[0] = a;subd[2] = 0;if (c != 0) {float ell = sqrt(b*b+c*c);b /= ell;c /= ell;float q = 2*b*e+c*(f-d);diag[1] = d+c*q;diag[2] = f-c*q;subd[0] = ell;subd[1] = e-b*q;mat[0][0] = 1; mat[0][1] = 0; mat[0][2] = 0;118

mat[1][0] = 0; mat[1][1] = b; mat[1][2] = c;mat[2][0] = 0; mat[2][1] = c; mat[2][2] = -b;}else {diag[1] = d;diag[2] = f;subd[0] = b;subd[1] = e;mat[0][0] = 1; mat[0][1] = 0; mat[0][2] = 0;mat[1][0] = 0; mat[1][1] = 1; mat[1][2] = 0;mat[2][0] = 0; mat[2][1] = 0; mat[2][2] = 1;}}Reduction of 4� 4 matricesThe reduction of a 4 � 4 matrix is more complicated. The orthogonal transformationis a motion in the x1x2x3{plane where the general 4{ dimensional coordinates are ~x =(x0; x1; x2; x3). Let the matrix entries be labeledA = 266666664 a b c db e f gc f h id g i j 377777775 = 264 a ~vt~v S 375where the right{hand side is in block matrix form where ~v is a 3� 1 column vector and Sis a symmetric 3 � 3 submatrix of A. I seek an orthogonal transformation in block formQ = diag(1; P) where 1 is a scalar, P is a 3 � 3 orthogonal matrix, and T = QtAQ istridiagonal. The tridiagonal matrix T is then given byT = QtAQ = 264 a ~vtPP t~v P tSP 375 :Let the columns of P be labeled ~pk, k = 1; 2; 3. For T to be tridiagonal, ~vtP must beparallel to (1; 0; 0). This implies that ~v is orthogonal to both ~p2 and ~p3. If ~v = (0; 0; 0),choose ~p1 = (1; 0; 0); otherwise, set ~p1 = ~v=j~vj.Also for T to be tridiagonal, the upper right{hand corner entry of P tSP must be 0;that is, ~pt1S~p3 = 0. This implies that the vector S~p1 is in the plane of ~p1 and ~p2. If S~p1is parallel to ~p1 (i.e. ~p1 is an eigenvector for S), then choose any ~p2 and ~p3 such that P is119

orthogonal. If ~p1 = (�; �;), chooseP = 2666664 � �� �� 1 + (��1)�2p�2+2 (��1)�p�2+2 (��1)�p�2+2 1 + (��1)2p�2+2 3777775if p�2 + 2 6= 0. If this square root is zero, simply choose ~p2 = (0; 1; 0) and ~p3 = (0; 0; 1). IfS~p1 is not parallel to ~p1, choose~p3 = ~p1 � S~p3j~p1 � S~p3j and ~p2 = ~p3 � ~p1:After constructing P , the code also includes construction of the entries for P tSP whichis itself a tridiagonal matrix, so only 5 values need be computed. The method for thereduction isvoid tridiag_4 (float **mat, float *diag, float *subd)// input: mat = 4x4 real, symmetric A// output: mat = orthogonal matrix Q// diag = diagonal entries of T, diag[0,1,2,3]// subd = subdiagonal entry of T, subd[0,1,2]{ // save matrix Mfloat a = mat[0][0], b = mat[0][1], c = mat[0][2], d = mat[0][3],e = mat[1][1], f = mat[1][2], g = mat[1][3],h = mat[2][2], i = mat[2][3],j = mat[3][3];diag[0] = a;subd[3] = 0;mat[0][0] = 1; mat[0][1] = 0; mat[0][2] = 0; mat[0][3] = 0;mat[1][0] = 0;mat[2][0] = 0;mat[3][0] = 0;if (c != 0 || d != 0) {float q11, q12, q13;float q21, q22, q23;float q31, q32, q33;// build column Q1float len = sqrt(b*b+c*c+d*d);q11 = b/len; 120

q21 = c/len;q31 = d/len;subd[0] = len;// compute S*Q1float v0 = e*q11+f*q21+g*q31;float v1 = f*q11+h*q21+i*q31;float v2 = g*q11+i*q21+j*q31;diag[1] = q11*v0+q21*v1+q31*v2;// build column Q3 = Q1x(S*Q1)q13 = q21*v2-q31*v1;q23 = q31*v0-q11*v2;q33 = q11*v1-q21*v0;len = sqrt(q13*q13+q23*q23+q33*q33);if (len > 0) {q13 /= len;q23 /= len;q33 /= len;// build column Q2 = Q3xQ1q12 = q23*q31-q33*q21;q22 = q33*q11-q13*q31;q32 = q13*q21-q23*q11;v0 = q12*e+q22*f+q32*g;v1 = q12*f+q22*h+q32*i;v2 = q12*g+q22*i+q32*j;subd[1] = q11*v0+q21*v1+q31*v2;diag[2] = q12*v0+q22*v1+q32*v2;subd[2] = q13*v0+q23*v1+q33*v2;v0 = q13*e+q23*f+q33*g;v1 = q13*f+q23*h+q33*i;v2 = q13*g+q23*i+q33*j;diag[3] = q13*v0+q23*v1+q33*v2;}else { // S*Q1 parallel to Q1, choose any valid Q2 and Q3subd[1] = 0;len = q21*q21+q31*q31;if (len > 0) {float tmp = q11-1;q12 = -q21;q22 = 1+tmp*q21*q21/len;q32 = tmp*q21*q31/len;q13 = -q31;q23 = q32; 121

q33 = 1+tmp*q31*q31/len;v0 = q12*e+q22*f+q32*g;v1 = q12*f+q22*h+q32*i;v2 = q12*g+q22*i+q32*j;diag[2] = q12*v0+q22*v1+q32*v2;subd[2] = q13*v0+q23*v1+q33*v2;v0 = q13*e+q23*f+q33*g;v1 = q13*f+q23*h+q33*i;v2 = q13*g+q23*i+q33*j;diag[3] = q13*v0+q23*v1+q33*v2;}else { // Q1 = (+-1,0,0)q12 = 0; q22 = 1; q32 = 0;q13 = 0; q23 = 0; q33 = 1;diag[2] = h;diag[3] = j;subd[2] = i;}}mat[1][1] = q11; mat[1][2] = q12; mat[1][3] = q13;mat[2][1] = q21; mat[2][2] = q22; mat[2][3] = q23;mat[3][1] = q31; mat[3][2] = q32; mat[3][3] = q33;}else {diag[1] = e;subd[0] = b;mat[1][1] = 1;mat[2][1] = 0;mat[3][1] = 0;if (g != 0) {float ell = sqrt(f*f+g*g);f /= ell;g /= ell;float Q = 2*f*i+g*(j-h);diag[2] = h+g*Q;diag[3] = j-g*Q;subd[1] = ell;subd[2] = i-f*Q;mat[1][2] = 0; mat[1][3] = 0;mat[2][2] = f; mat[2][3] = g;mat[3][2] = g; mat[3][3] = -f;}else {diag[2] = h;diag[3] = j; 122

subd[1] = f;subd[2] = i;mat[1][2] = 0; mat[1][3] = 0;mat[2][2] = 1; mat[2][3] = 0;mat[3][2] = 0; mat[3][3] = 1;}}}5.3.3 Eigenstu� for A~v = �B~vIf the matrix B is invertible, a simple reduction to regular eigenvalue problems is B�1A~v =�~v. However, the matrix B�1A may not be symmetric, so more general numerical schemesare needed for computing eigenstu�, for example, reduction to Hessenberg form followed byinverse iteration.The case of interest is when bothA andB are symmetric. In the principal direction ridgeconstruction, B corresponds to the �rst fundamental form and A corresponds to the secondfundamental form, both of which are symmetric. The same type of generalized eigenvalueproblem arises in statistical pattern recognition where the two matrices represent scatterwithin clusters and scatter between clusters. Generally the cases to consider are� B is positive de�nite (all eigenvalues are positive),� B is nonnegative de�nite (all eigenvalues are nonnegative),� B is inde�nite (some eigenvalues positive, some negative).The matrixB could also be negative de�nite or nonpositive de�nite, but in that case you canmultiply the eigensystem by �1 to obtain the cases above. The same cases hold for matrixAif you consider instead the system B~v = (1=�)A~v. Thus, if either A or B is positive de�nite,use the associated method on the corresponding eigensystem.A positive de�nite matrix B can be factored into B =M tM for some square matrixM ,called the Cholesky decomposition. Usually the factorization is done via the LDU decom-position, B = LDU where L is lower triangular, D is diagonal, and U is upper triangular.Since B is positive de�nite, L = U t and D has all positive diagonal terms. Thus,M = pDUwhere pD is the diagonal matrix whose diagonal terms are the square roots of the diagonal123

terms of D. The eigensystem can be rewritten asC ~w = �M�tAM�1� (M~v) = �(M~v) = �~w:The matrix C is symmetric, so the eigenstu� construction described earlier can be usedto compute eigenvalues � and eigenvectors ~w. The generalized eigenvectors to the originalsystem are obtained by computing ~v =M�1 ~w.In the principal direction de�nition for ridges, the principal curvatures � and princi-pal directions ~v are determined by the generalized eigensystem A~v = �B~v, where A =H(f)=p1 + jrf j2 in Euclidean space or A = 12H(j~xj2 + f2)=p1 + jrf j2 in scale space, andwhere B = I+rfrf t when constructing ridges in Euclidean space or scale space (assumingno spatial distortion). The special form for B allows a di�erent decomposition for B. Let~d = rf(x). Let Q be an orthogonal matrix such thatQt~d = j~dj~u, where ~u is the vector whosecomponents are all 0 except for the last one which is 1; then QtBQ = diag(1; . . . ; 1; 1+ j~dj2).De�ne D = diag(1; . . . ; 1; (1 + j~dj2)�1=2). The eigensystem now becomesC ~w = �DtQtAQD��D�1Qt~v� = ��D�1Qt~v� = �~w:Again, C is symmetric, so the regular eigenstu� construction can be used. The matrix Qmay be chosen as follows. Let ~d = (d1; . . . ; dn) and de�ne ~� = (d1; . . . ; dn�1). If ~� = ~0, justchoose Q to be the identity matrix. Otherwise, de�ne ~� = ~�=j~�j and letQ = 264 I + (dn � 1)~�~�t ~��~� dn 375 ;where I is the (n� 1)� (n� 1) identity matrix.5.4 Skeletons of ObjectsRidges were de�ned as points which were zeros to certain systems of equations. My segmenta-tion algorithm requires 1{dimensional ridge structures. In the discrete algorithm, candidateridges were identi�ed as those points for which the de�ning equations showed sign changesrather than those points for which the equations yielded zeros. The candidate ridges form abinary set which is generally more than 1 pixel thick, but appears to consist of curvilinear124

components. I needed a thinning algorithm which would take the candidates and reduce thecomponents to the thickness of 1 pixel. The thinning algorithm makes use of distance trans-forms and connected component labeling. I discuss the implementations of these algorithms�rst. A description of the thinning algorithm is given with an example of how it works on a2{dimensional binary object.5.4.1 Distance TransformsIn order to thin the candidate ridges in a way that preserves the general geometric shape,I wanted to thin from the outside to inside of the sets. This requires computing a distancetransform of the original binary set so that pixels are labeled with their distances from theboundary of the set. I have implemented a distance transform for the L1 metric where thedistance between two points is the maximum of the absolute di�erences of the individualcoordinates. The algorithm computes the transform in{place. The routine takes as input ann{dimensional binary image whose pixels are labeled as 0 (outside an object) or 1 (insidean object). The input image may have multiple binary objects. Each of the output imagepixels has an integer value corresponding to its distance to the nearest object boundary pixelof the object which contains it. The distances are measured in pixel units.The L1 distance transform is slow for large binary objects. IfD is the maximum distancefrom a pixel to its component's boundary, and if the image has N pixels, the routine isO(DN). If the binary objects are small and sparse, the routine runs much faster. I believethat I have already optimized the transform as much as possible. The algorithm is essentiallya simulation of a recursive routine. On the �rst pass, any pixel with value 1 and whose 2nneighbors one unit distance away all have value 1 is assigned the value 2. On completionof the pass, the boundary pixels of objects have value 1, and the interior pixels of objectshave value 2. The same labeling scheme is applied to the subobjects which have all pixelvalues 2. The boundary pixels of the subobjects have value 2 and the interior pixels havevalue 3. The process is repeated until the pixels of maximum distance are reached. The Cpseudocode for the L1 distance transform is given below.Input: binary image, imOutput: L1 distance transform, im (in-place algorithm)125

for (change_made = TRUE, value = 1; change_made; value++) {change_made = FALSE;for (each pixel x with im(x) == value) {if (all y with L1_dist(x,y) == 1 satisfy im(y) >= value) {im(x) = value+1;change_made = TRUE;}}}I have also implemented a distance transform for the L2 metric which is the usual Eu-clidean distance metric. This transform approximates the true Euclidean distance transform.It is based on integer arithmetic, and distances from a pixel to its adjacent neighbors (asa fully connected graph) are approximated by rational numbers. The real distances are1;p2; . . . ;pn. For example, at pixel x 2 IR3, the distance to neighbor x+ (1; 0; 0) is 1 unit,the distance to neighbor x+(1; 1; 0) isp2 units, and the distance to neighbor x+(1; 1; 1) isp3units. The rational number approximations are based on a user{speci�ed denominator, callit D, whose default value is 10. The numerator Nd for the approximation to pd, 1 � d � n,is determined at run{time to be the positive integer which minimizes jNd � Dpdj. In theprevious example with D = 10, we have N1 = 10, N2 = 14 and N3 = 17. We additionallyde�ne N0 = 0 as an aid in implmenting the algorithm.The algorithm takes as input an n{dimensional binary image whose pixels are labeledas 0 (outside an object) or 1 (inside an object). The input may have multiple binary objects.The algorithm computes the transform using the original image and a temporary bu�er,but the transform values are stored in the input image bu�er. The routine is essentially anin{place algorithm. Each of the output image pixels has an integer value proportional to itsdistance to the nearest object boundary pixel of the object which contains it. The distancesare not in pixel units.The input is an n{dimensional binary image. Pixels with initial value 0 retain thatvalue, but pixels with initial value 1 are initialized to INFINITY, an integer which is largerthan any quantity obtained from the arithmetic operations performed in the algorithm. Thealgorithm makes multiple passes and updates the distances from the boundary of objects.The algorithm terminates when no changes are made to the current distance values. Let�k(x) be the current distance value at pixel x after k iterations. Let S(x) be the set of126

immediate neighbors of x. For each y 2 S(x), let d(y) denote the L1 distance from x to y.Note that d(x) = 0 and 1 � d(y) � n for y 6= x. The update of distance on each pass isde�ned by �k+1(x) = miny2S(x)��k(y) +Nd(y)� :The C pseudocode for the L2 distance transform is given below.Input: binary image, imN[0..n], numerators for rational approximations of distance toneighbors of pixelsOutput: L2 distance transform, im (in-place algorithm)for (each pixel x with im(x) == 1)im(x) = INFINITY;image temp; // same dimensions as im, initialized to zerochange_made = TRUE;while (change_made) {change_made = FALSE;for (each pixel x with im(x) > 0) {temp(x) = im(x);for (each pixel y adjacent to x)if (im(y)+N[L1_dist(x,y)] < temp(x))temp(x) = im(y)+N[L1_dist(x,y)];if (temp(x) != im(x))change_made = TRUE;}im = temp;}5.4.2 Component LabelingIn order to label ridge segments obtained from a 1{dimensional skeleton with unique positiveinteger values, I need a routine to label connected components in an n{dimensional binaryimage. The components are treated as fully connected; that is, connections are checkedbetween a pixel and all its 3n � 1 neighbors. I have implemented the component labelingusing a scan approach. Treating the image as 1{dimensional, all components are labeled. Asa prerequisite, the image boundary values must all be zero. To get back to the n{dimensionalsetting, labels are merged based on how \scan hyperplanes" and labeled pixels are adjacentto each other. All the previously scanned immediate neighbors of a labeled pixel are analyzedand cycles of related labels are created using associative memory. The idea is best illustratedby some examples. 127

0 1 2 3 4 50 0 0 0 0 0 01 0 1 0 0 1 02 0 0 1 0 1 03 0 0 1 1 0 04 0 0 0 1 0 05 0 0 0 0 0 0
0 1 2 3 4 50 0 0 0 0 0 01 0 1 0 0 2 02 0 0 3 0 4 03 0 0 5 5 0 04 0 0 0 6 0 05 0 0 0 0 0 0binary image 1D labelingFigure 5.1: Illustration of component labelingConsider the 6 � 6 binary image shown in Figure 5.1. The second image is the oneobtained after labeling components if the �rst image was treated as a 1{dimensional image(in row major order). The associative array is initially a[] = (0,1,2,3,4,5,6). The zerocomponent never changes since the background is not associated with any other regions.After the 1{dimensional labeling, the image is scanned a second time. Each step belowindicates reaching a positive{labeled pixel and shows the actions taken.1. (1; 1) (label 1) has no previously scanned neighbors. No action taken on a[].2. (4; 1) (label 2) has no previously scanned neighbors. No action taken on a[].3. (2; 2) (label 3) has previously scanned neighbor (1; 1) (label 1). Swap a[1] and a[3].The array is now a[] = (0,3,2,1,4,5,6). We have a single cycle h1; 3i.4. (4; 2) (label 4) has previously scanned neighbor (4; 1) (label 2). Swap a[2] and a[4].The array is now a[] = (0,3,4,1,2,5,6). We have two cycles h1; 3i and h2; 4i.5. (2; 3) (label 5) has previously scanned neighbor (2; 2) (label 3). Swap a[3] and a[5].The array is now a[] = (0,3,4,5,2,1,6). We have two cycles h1; 3; 5i and h2; 4i.6. (3; 3) (label 5) has three previously scanned neighbors.(a) (2; 2) (label 3): The labels 3 and 5 are already part of a cycle in a[], so no actionis taken. 128

(b) (2; 3) (label 5): The labels are the same so no action is taken.(c) (4; 2) (label 4): Swap a[4] and a[5]. The array is now a[] = (0,3,4,5,1,2,6).We now have a single cycle h1; 3; 5; 2; 4i.7. (3; 4) (label 6) has previously scanned neighbor (3; 3) (label 5). Swap a[5] and a[6].The array is now a[] = (0,3,4,5,2,6,1). We have a single cycle h1; 3; 5; 6; 2; 4i.Note that it is important not to swap array locations if the labels are already part of thesame cycle. Doing so will not yield the correct component labeling.After scanning, the associative memory contains disjoint cycles of labels. A pass is madethrough the memory and values are replaced by their minimum cycle value. This approachto identifying cycles produces a nonconsecutive numbering. Alternatively, number the cyclesand replace the array values by the cycle number to get consecutive numbering. Once thishas been done, a last pass is made through the image and pixels are relabeled pixels via im[i]= a[im[i]]. In the above example we would have a single labeled connected component.The C pseudocode for connected component labeling is given below.Input: binary image, im (image boundaries labeled with 0)Output: image with labeled components, im (in-place algorithm)// scan image as 1D array and label componentscomponent = 0;for (i = 0; i < im.pixel_count; i++)if (im[i]) { // found an objectcomponent++;while (im[i] == 1) // label the object with a component numberim[i++] = component;}if (image is 1 dimensional) return; // no merging to do// merge equivalent components, use associate memoryint assoc[component+1]; // memory size = number of components+backgroundfor (i = 0; i < component+1; i++) // initially components are distinctassoc[i] = i;for (each pixel x with im(x) > 0) {for (each already scanned pixel y with L1_dist(x,y) == 1) {if (im(y) > 0 && im(x) != im(y)) {// check if component is already in cyclesearch = im(y);do { 129

search = assoc[search];} while (search != im(x) && search != im(y));// add to cycle if necessaryif (search == im(y)) {temp = assoc[im(x)];assoc[im(x)] = assoc[im(y)];assoc[im(y)] = temp;}}}}// replace each cycle by a single labelcompact_count = 0;for (i = 1; i <= component; i++)if (i <= assoc[i]) {compact_count++;current = i;while (assoc[current] != i) {next = assoc[current];assoc[current] = compact_count;current = next;}assoc[current] = compact_count;}// compact_count = number of connected components// relabel imagefor (i = 0; i < im.pixel_count; i++)if (im[i])im[i] = assoc[im[i]];5.4.3 Thinning AlgorithmThe skeletonizing process should preserve the topology of the original set; that is, the numberof holes in the original set should be the same as the number in the thinned set. Also, theprocess should produce a skeleton that is as \central"in the original set as possible. Segment-ing the skeleton into curvilines or simple closed curves might also be desired. Classi�cationof a skeleton point can be made based on how many neighbors it has. Isolated points haveno neighbors. End points typically have 1 neighbor unless they occur in a small clump, suchas a 5 point \plus", in which case end points can have more than 1 neighbor. Interior linepoints typically have 2 neighbors, and branch points typically have 3 or more neighbors. Isegment the ridge set by removing the branch points and labeling the remaining connected130

components.SkeletonizingThe skeletonizing is designed to produce 1{dimensional structures. For a 3{dimensionalbinary object, such as an ellipsoid, the output of the routines will be a line segment in thedirection of the longest axis. The output will not be a 2{dimensional manifold such as theplate contained in the plane of the two largest axes. These structures fall under the categoryof medial manifolds and are not discussed here.The binary object is thinned from the outside to inside, one \layer" at a time. On eachpass, each interior pixel (in the L1 distance sense) is marked as 2, so we have a ternary imagewith exterior pixels marked as 0, object boundary pixels marked as 1, and interior pixelsmarked as 2. Each object boundary pixel which is adjacent (in the fully connnected sense)to an interior pixel is removed if it does not disconnect the binary object and if it does notcreate a new hole. Once pixels are removed, the original interior pixels (marked as 2) arereset to 1 to allow the next pass of the trimming.The test for disconnection involves all the immediate neighbors (fully connected, testall object pixels in the 3n neighborhood). At each 1{pixel in the binary image a copy ismade of the adjacent pixels. The center pixel is removed. The remaining graph is searchedfor connected components assuming (3n � 1){connectedness and using a depth �rst search.The center pixel is labeled as a branch point if and only if there is more than one connectedcomponent.The test for creating a hole by removal of a pixel involves only the neighbors which areone unit distance away (2n{connectedness). An inverted copy of the binary image in theimmediate neighborhood is made. The center pixel is set to 1. The graph is searched forconnected components using a depth �rst search assuming 2n{connectedness. The centerpixel is labeled as a cork point (if removed, a new hole has been added) if and only if thereis more than one connected component.After this initial trimming step, there may remain some positive measure pixels. A 1{pixel is said to be positive measure if it has at least one adjacent 1{pixel for every coordinatedirection. For example, in 2 dimensions, the pixel (0; 0), with value 1, is positive measure131

when (0; 1) or (0;�1) is a 1 and when (1; 0) or (�1; 0) is a 1. These pixels are not interiorpixels of the object, but are \almost" interior in that they can be identi�ed by a structuringelement which is \almost" the entire plus symbol template. The removal of positive measurepixels is similar to the original thinning step and is done iteratively until no change is made.In e�ect, the �rst trimming step is an erosion using a full{plus structuring element, whereasthe second trimming step is an erosion using partial{plus structuring elements at 2n di�erentorientations.Even with the above two trimming steps, some nonessential pixels remain due to thegrid geometry. Two additional trimming steps are used. The �rst removes pixels which havemore than 2 neighbors, but are neither branch points nor cork points. The second removespixels which have more than 1 neighbor, but are not branch points.Classi�cation of PixelsAfter skeletonizing, I classify pixels by doing a neighborhood count. Pixels are labeled asend points if they have 0 or 1 neighbor, as interior points if they have exactly 2 neighbors,and as branch points if they have 3 or more neighbors. This classi�cation is not alwaysaccurate, but other than an exhaustive consideration of all possible pixel con�gurations ina 3n cube, I see no way to derive an algorithm that gives you always what you want. Thepathological problem is illustrated in the 2{dimensional case with a 5{point plus, say pixelsat (0; 0), (�1; 0), and (0;�1). Clearly the center point should be labeled as a branch point,but probably the other four points should be labeled as end points since they appear to beend points of very short line segments (too small to detect based on the scale of the grid).My classi�cation scheme labels all 5 pixels as branch points. Perhaps arti�cially increasingthe resolution (by subdivision), applying the same algorithm, and labeling the original pixelwith the most frequent type of its subpixels, would work better.Segmenting the SkeletonA copy is made of the skeleton minus its branch points. This copy is passed to the connectedcomponent labeler so that each curviline or closed curve in the skeleton is uniquely identi�ed(with positive integer labels). An attempt is then made to reinsert the branch points. Each132

such point has its neighborhood searched for an already labeled pixel. If one is found, thenthe branch point inherits its label. If one is not found (the pathological case, such as the5{point plus), then a new label is created and assigned to the pixel. The skeleton is thereforesegmented into small pieces.ExampleIn all the �gures the periods indicate zero pixel values. The original binary image is shownin the left in Figure 5.2. The right image shows the interior pixels (using 4{connectedness)marked with values 2.. ..11111111111111111 111111 111111 11111 11111 11111 1111 1111 111111 11111111111 111111111111111 11111111111111111 1111111111 . . 11111111.. . . . 1111111111 111.. . . . 11111 . 1111 1111 . 11111 1111 . 11111 1111 . 11111 111111111 1111111111111111111111111
. ..11111111111122221 122221 112221 12221 12221 12221 1221 1221 112221 11222222111 122222222222111 12222222211222211 1222222221 . . 11111211.. . . . 1222212221 111.. . . . 12221 . 1221 1221 . 12221 1221 . 12221 1221 . 12221 122212221 1222222111222222111111111Figure 5.2: Original image, marked image after pass 1The left image in Figure 5.3 shows the result after trimming those outermost 1{pixelswhich neither disconnected the set nor created any new holes. The right image was obtainedby resetting all the pixels in the left image to 1 and then marking all interior pixels with 2.The left image in Figure 5.4 shows the result after the next pass of trimming thoseoutermost 1{pixels which neither disconnected the set nor created any new holes. The rightimage was obtained by resetting all the pixels in the left image to 1 and then marking allinterior pixels with 2. 133

The left image in Figure 5.5 shows the result after the next pass of trimming thoseoutermost 1{pixels which neither disconnected the set nor created any new holes. The rightimage was obtained by resetting all the pixels in the left image to 1 and then marking allinterior pixels with 2.The left image in Figure 5.6 shows the result after the next pass of trimming thoseoutermost 1{pixels which neither disconnected the set nor created any new holes. The rightimage was obtained by resetting all the pixels in the left image to 1 and then marking allinterior pixels with 2.The second trimming removes nonessential positive measure pixels without disconnect-ing the skeleton or creating new holes. The left image of Figure 5.7 shows the result of the�rst trimming. The right image shows the result after removing positive measure pixels.The third trimming, removing nonbranch{noncork pixels with 3 or more neighbors,and the fourth trimming, removing nonbranch{noncork pixels with 2 or more neighbors, donothing in this example. The �nal skeleton is therefore the last image shown. However, insome simple 3{dimensional examples, both trimmings are needed. I tried the algorithm ona binary object which was the dilated union of two objects. The �rst was a rectangular solidwhich was 2�2�16 in dimension and the second was a thick diagonal line (i; i; i), (i; i; i+1),(i; i + 1; i), and (i; i + 1; i + 1) for 16 di�erent values of i. I arranged for the two objects tointersect, then dilated them. The resulting skeletonization looked good, but the region ofintersection still looked a bit thick.
134

. ..111 ..11112222 2222 222 222 222 222 22 22 222 222222 22222222222 22222222 . . 2222 22222222 12 . 1.. 2222 . 222 11.. 2221 . . 22 221 . 1222 22 . . 1222 22 . . . 222 222 . 222 2222221 . 22222211 .. .
. ..111 ..11111111 1121 121 121 121 121 11 11 121 112221 11222222111 12222221 . . 1111 12221221 11 . 1.. 1221 . 121 11.. 1221 . . 11 111 . 1121 11 . . 1221 11 . . . 121 121 . 121 1221211 . 11111111 .. .Figure 5.3: Trimmed image (not reset) after pass 3, marked image after pass 2. ..111 ..111111 112 2 2 2 2 1 1 2 222 222222111 222222 . . . 1111 222 . 22 11 . 1.. 22 . . . 2 11.. 221 . . . 1 111 . 1 . 2 11 . . 122 1 2 2 . . . 2 22 . 21 . 11 . . 111 .. .
. ..111 ..111111 111 1 1 1 1 1 1 1 121 112221111 121221 . . . 1111 121 . 11 11 . 1.. 11 . . . 1 11.. 121 . . . 1 111 . 1 . 1 11 . . 111 1 1 1 . . . 1 11 . 11 . 11 . . 111 .. .Figure 5.4: Trimmed image (not reset) after pass 2, marked image after pass 3135

. ..111 ..111111 111 1 1 1 1 1 1 1 2 2221111 2122 1111 2 . . . 1 11 . 1.. 1 . . . 1 11.. 21 . . . 1 111 . 1 . 1 11 . . 111 1 1 1 . . . 1 11 . 11 . 11 . . 111 .. .
. ..111 ..111111 111 1 1 1 1 1 1 1 1 1211111 1111 1111 1 . . . 1 11 . 1.. 1 . . . 1 11.. 11 . . . 1 111 . 1 . 1 11 . . 111 1 1 1 . . . 1 11 . 11 . 11 . . 111 .. .Figure 5.5: Trimmed image (not reset) after pass 3, marked image after pass 4. ..111 ..111111 111 1 1 1 1 1 1 1 1 211111 111 1111 1 . . . 1 11 . 1.. 1 . . . 1 11.. 11 . . . 1 111 . 1 . 1 11 . . 111 1 1 1 . . . 1 11 . 11 . 11 . . 111 .. .
. ..111 ..111111 111 1 1 1 1 1 1 1 1 111111 111 1111 1 . . . 1 11 . 1.. 1 . . . 1 11.. 11 . . . 1 111 . 1 . 1 11 . . 111 1 1 1 . . . 1 11 . 11 . 11 . . 111 .. .Figure 5.6: Trimmed image (not reset) after pass 4, result of �rst trimming136

. ..111 ..111111 111 1 1 1 1 1 1 1 1 111111 111 1111 1 . . . 1 11 . 1.. 1 . . . 1 11.. 11 . . . 1 111 . 1 . 1 11 . . 111 1 1 1 . . . 1 11 . 11 . 11 . . 111 .. .
. 1 ..11 . 11 111 1 1 1 1 1 1 1 1 11111 111 1111 1 . . . 1 11 . 1.. 1 . . . 1 1 1 . . . 1 11 . 1 . 1 1 . . 1 . 1 1 1 1 . . . 1 11 . 11 . 11 . . 1 1 .. .Figure 5.7: Result of �rst trimming, positive measure pixels removed

137

