
Chapter 6SummaryThe main goal of this dissertation is to provide the foundation for image analysis via geo-metric methods, in particular using the concept of ridges. I provide here a summary of thechapters of my thesis together with what I believe are my contributions to the theory.6.1 RidgesI have provided various formal de�nitions for ridges and discussed each de�nition from ageometric point of view. The de�nitions are discussed in terms of their invariance propertiesand locality of construction.Ridges constructed according to the reverse gravity watershed de�nition are invariantwith respect to spatial rotations, spatial translations, uniform spatial magni�cations, andmonotonic intensity transformations, but the construction is a nonlocal process. The nonlo-cality makes the de�nition suspect in applications where medial structures are to be found.What a viewer identi�es as a ridge should not be a�ected by image structure at locationsfar away from the region of attention.Ridges constructed according to the height de�nition are invariant with respect to spatialrotations, spatial translations, and uniform spatial magni�cations, but are not invariant withrespect to monotonic intensity changes. The construction is a local process. The lack ofinvariance under monotonic intensity transformations requires care in constructing ridgesthat are visually meaningful. Usually the true image data is monotonically transformed for



display on monitors with a limited number of gray values. What a viewer identi�es as aridge might just be an artifact introduced by the transformation. Conversely, a ridge in thetrue data might be eliminated by the display transformation.Ridges on the graph of intensity constructed according to the principal direction de�ni-tion are invariant with respect to spatial rotations, spatial translations, but not with respectto uniform spatial magni�cations and monotonic intensity transformations. The constructionis a local process. For surfaces obtained as level surfaces of functions, the ridges constructedby this de�nition are invariant with respect to rotations, translations, and uniform magni-�cations of the space in which the surface is embedded. As in the height de�nition, somecare is required when constructing ridges because of the lack of invariance under monotonicintensity transformations (for graphs). The principal direction de�nition appears to be mostuseful for analyzing n{dimensional surfaces embedded in (n + 1){dimensional space wherethe surface information is purely spatial and not relating to image intensities. A contribu-tion I have made for this de�nition is to show that the ridge construction can be performedwithout having to parameterize the surface of interest.Ridges constructed according to the level de�nition are invariant with respect to spa-tial rotations, spatial translations, uniform spatial magni�cations, and monotonic intensitytransformations. The construction is also local. The de�nition is a special case of the prin-cipal direction de�nition whereby level ridges are the union of all principal direction ridgesof the level surfaces of the intensity function. Since the level de�nition has all the desiredinvariances, it is a theoretically good choice for applications. However, in practice I havefound that the height de�nition appears to produce more meaningful ridges than the levelde�nition. A reason for this di�erence might be that the level de�nition requires computinghigher order derivatives than does the height de�nition. Many of the supposed ridge pointsoccur because of noise in the signal.I have not fully investigated the implications of using the nonmetric de�nition for con-structing ridges. This de�nition has the same invariance properties as the principal directionde�nition, and it is a local process. Computationally it is an attractive alternative to theprincipal direction de�nition, but I need to investigate whether or not the nonmetric ridgesare visually meaningful and useful in applications.139



Most of the ridge constructions found in the literature are applied to 2{dimensionalimages, the resulting ridges being 1{dimensional structures. A contribution I have made toridge analysis is to provide ridge de�nitions for general n{dimensional images. Moreover,I have extended the notion of a 1{dimensional ridge structure to that of a d{dimensionalstructure, allowing image analysts a more general and exible tool for studying images.6.2 Object ConstructionRidges appear to play a major role in local object de�nition and recognition, but obtainingmore global information about objects necessarily requires the concept of scale. My ridgeow segmentation algorithm is an attempt at providing such global information.Segmentation based on reverse gravity watershed methods is not adequate. The prim-itive regions are built by constructing ridges via a nonlocal process. The identi�cation of aregion as \anks" associated with a ridge should also be a local process, at least near thealready identi�ed ridges. Originally it was thought that the ows one should follow in iden-tifying pixels with ridges are just the gradients of intensity. The problem with these ows isthat for smooth intensity functions, the ows originate/terminate at critical points for thefunction (local extrema and saddles), but they generally do not intersect ridges transversely.Our intuition is that ows to a ridge should terminate orthogonally at a ridge, at least forthe purposes of identifying pixels with ridges. In all of my local ridge de�nitions, I haveindicated which ows should be followed, such ows always terminating orthogonally at aridge. The ows are naturally related to the equations which de�ne the ridges.My algorithm for constructing image hierarchies is based on annihilations and merg-ing of primitive regions through scale. As such, the algorithm captures global informationabout the objects in the image. Merging of primitive regions via nonlinear blurring signi�esthat previously distinct portions of an image at one scale are indistinguishable at a largerscale. The hierarchy construction therefore relates regions that are initially geometricallydistinct, but records the scales at which they become indistinct. The idea of geometric simi-larity/dissimilarity in the algorithmmay be useful in other multiscale segmentation schemes.One implementation issue of interest is the segmentation of ridge structures into dis-tinct components. I developed a thinning algorithm which is designed to take candidate140



1{dimensional ridge structures and reduce them to a form in which pixel{thin curvilinearsegments could be labeled. The algorithm works for any dimension image, preserves thetopological properties of the input set (i.e., it preserves the number of holes in the inputset), and generally preserves the shape of the original set by using operations of mathemat-ical morphology to thin the input from the outside{to{inside. The connected componentroutine I use also works for an image of any dimension and is quite e�cient. These routinescan be useful for other image analysis applications.The segmentation algorithms I developed based on ridges and multiscale methods haveproved to be successful in terms of an interactive, user{assisted computer environment. Thecurrent Magic Crayon prototype, which is an interactive tool for visualizing the hierarchy,will eventually become a tool used by clinicians.6.3 Scale SpaceI have shown how the basic assumptions about front{end vision systems lead naturally to ade�nition of scale space which requires speci�cation of a metric. In most cases, the metric isdata dependent and imposes a geometry on scale space which is non{Euclidean. Moreover,once the metric is chosen, the anisotropic di�usion process used to create multiscale imagedata is automatically determined.For the scale space metric where conductivity is just the scale parameter, I have usedthe standard tools from tensor calculus to derive formulas that are necessary for makingscale space measurements. These measurements exhibit invariance under spatial rotations,spatial translations, and uniform magni�cations in space and scale since the arc length formhas the same invariances. In particular, I have derived the formulas for computing distancebetween points in scale space, the gradient and the Hessian in the covariant sense, volumesof scale space regions, and principal curvatures and directions of surfaces.I have also generalized the ridge de�nitions for Euclidean space to ones for scale space.The height de�nition for ridges remains essentially the same except that the Hessian matrixused is the one derived for functions de�ned on scale space. In Euclidean space, ridges arede�ned as those points for which the intensity function has local maxima when restricted toa linear (at) subspace of the domain. In this restricted sense, the second derivative test is a141



test for de�niteness of the Hessian restricted to the at subspace. In scale space, ridges arede�ned in the same way, except now the \at" subspaces are geodesic surfaces (surfaces ofzero curvature). The principal direction de�nition also remains essentially the same exceptnow the matrices representing the �rst and second fundamental forms are the ones whichtake into account the curvature of scale space. Similar to the Euclidean case, the scale spacelevel de�nition for ridges is equivalent to applying the principal direction de�nition to allthe level surfaces and then taking the union of the results. The invariance properties for thescale space ridge de�nitions are the same as those for the Euclidean space de�nitions.The necessity for scale space ridge de�nitions is apparent in the application of �ndingcores of objects in images. Unlike the Euclidean case where ridges are de�ned on graphsof intensity functions, the important functions to consider in scale space are medialnessfunctions. A core of medialness is naturally modeled as a ridge of the medialness function.Cores of objects should be invariant with respect to rotation, translation, and zooming ofthe objects. Scale space ridges satisfy these invariance properties because of the choice ofmetric. The consequences of imposing the correct metrics on scale space are far{reaching,and we expect the working out of their inuence on image analysis applications to occupyus for years.6.4 Future ResearchFor future research, I plan on investigating the following topics. Almost all of our applicationsrequire computation of the cores of objects. Although the geometric ideas I developed forscale space, namely ridge and valley structures, lead directly to construction of cores, thereare a few issues of implementation to be dealt with. The sampling of scale as a geometricsequence creates a few problems in discrete derivative calculations.Another issue of importance is labeling subcomponents of cores which are built as d{dimensional structures with d > 1. Such labeling is necessary to allow the construction ofmultiscale image hierarchies. Labeling subcomponents is not a trivial issue since the topologyof a medial surface can be fairly complicated. Further research is needed on the topologiesand singularities of cores. In particular, research is needed for understanding how primitiveconstructs such as curves and surfaces combine to form a complicated core which contains142



many holes and branching structures.Using a single scale parameter, we can construct the core for a �gure as a 2{dimensionalstructure embedded in a 4{dimensional space. The core contains information about �gureshape and detail, and as indicated may be topologically complicated. I propose to extendmy scale space analysis to handle a \recursive descent" description of shape. The core itselfinherits its geometric nature from scale space and could possibly be represented compactlywith yet another core, which conceivably has a simpler positional representation, but withmore than one scale attribute attached to it.One of our applications is object{based interpolation. The conventional method forinterpolation of two adjacent slices in a 3{dimensional data set is to pair up pixels with thesame x and y locations and interpolate their image intensities in the z direction. This pairingis ignorant of the type of the pixels. It is meaningless to pair up a pixel representing hearttissue with one representing lung tissue. Pixels should instead be paired based on what typethey are and/or what objects they come from. Initial studies have convinced us that thepairing must be based on spatial and scale information. However, the question of assigninga scale to spatial locations remains open. Each object in the image imposes a geography ofits own. Multiple objects impose multiple geographies, so the assignment of scale must bebased on the geographies. The complication is that of handling points which are inuencedby the geography of more than one object. The same complication arises in the analysis of�gure{sub�gure hierarchies, where the geometry of sub�gures is related to the geometry ofthe �gures.Our multiscale analysis involves real{valued functions of both space and scale, for exam-ple, the medialness and boundariness functions. It is my opinion that a better understandingof these functions must be developed by studying the geometry of their graphs. Thus, forexample, an investigation is needed to decide on an appropriate metric for the Cartesianproduct of scale space and the reals. The consequences, such as how to construct ridges onthe functions' graphs, must then be studied.143


