
UNC is an Equal Opportunity/Affirmative Action Institution.

Predictive Tracking for
Augmented Reality

Ronald T. Azuma

TR95-007
February 1995

Department of Computer Science
CB #3175, Sitterson Hall
UNC-Chapel Hill
Chapel Hill, NC 27599-3175

U
NI

V

ERS ITAT
C

AR O
L

SE
PTENTS

I
GI

LLU
M

•

••

LUX

LIBERTAS

ii

Predictive Tracking for Augmented Reality

by

Ronald Tadao Azuma

A dissertation submitted to the faculty of the University of North Carolina at
Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of

Philosophy in the Department of Computer Science

Chapel Hill

1995

Approved by:

 Adviser
T. Gary Bishop

 Reader
Vernon Chi

 Reader
Frederick P. Brooks, Jr.

iii

ABSTRACT

Ronald Tadao Azuma. Predictive Tracking for Augmented Reality

(Under the direction of T. Gary Bishop.)

In Augmented Reality systems, see-through Head-Mounted Displays

(HMDs) superimpose virtual three-dimensional objects on the real world. This

technology has the potential to enhance a user's perception of and interaction

with the real world. However, many Augmented Reality applications will not

be accepted unless virtual objects are accurately registered with their real

counterparts. Good registration is difficult, because of the high resolution of

the human visual system and its sensitivity to small differences. Registration

errors fall into two categories: static errors, which occur even when the user

remains still, and dynamic errors caused by system delays when the user

moves. Dynamic errors are usually the largest errors. This dissertation

demonstrates that predicting future head locations is an effective approach for

significantly reducing dynamic errors.

This demonstration is performed in real time with an operational

Augmented Reality system. First, evaluating the effect of prediction requires

robust static registration. Therefore, this system uses a custom

optoelectronic head-tracking system and three calibration procedures

developed to measure the viewing parameters. Second, the system predicts

future head positions and orientations with the aid of inertial sensors.

Effective use of these sensors requires accurate estimation of the varying

iv

prediction intervals, optimization techniques for determining parameters, and

a system built to support real-time processes.

On average, prediction with inertial sensors is 2 to 3 times more

accurate than prediction without inertial sensors and 5 to 10 times more

accurate than not doing any prediction at all. Prediction is most effective at

short prediction intervals, empirically determined to be about 80 milliseconds

or less. An analysis of the predictor in the frequency domain shows the

predictor magnifies the signal by roughly the square of the angular frequency

and the prediction interval. For specified head-motion sequences and

prediction intervals, this analytical framework can also estimate the maximum

possible time-domain error and the maximum tolerable system delay given a

specified maximum time-domain error.

Future steps that may further improve registration are discussed.

v

ACKNOWLEDGEMENTS

I thank my advisor, Gary Bishop, and my committee members, Frank

Biocca, Frederick Brooks, Vern Chi, Henry Fuchs, and Jonathan Marshall, for

their advice and guidance in this work.

I would also like to thank the following people:

• Mark Ward, for doing most of the mechanical and electronic design of

the optoelectronic tracking system that was critical to this project.

• Brad Bennett and Stefan Gottschalk for writing much of the software

for the optoelectronic tracking system.

• Brad Bennett for his help with the low-level software, installation and

debugging of the single-board computers and Pixel-Planes 5.

• John Thomas, John Hughes, Kurtis Keller, and Jack Kite for making

mechanical parts for this project and expediting the ordering of

equipment.

• Vern Chi and Steven Brumback for designing analog circuitry used in

this project.

• David Harrison, Brennan Stephens, Elliot Poger, and Peggy Wetzel

for their help with video recording and editing.

• Jack Goldfeather and John F. "Spike" Hughes for explaining some of

the mathematics to me.

• Russell Taylor and Mark Finch for letting me use equipment from the

Scanning Tunneling Microscope project to test our inertial sensors.

• Marc Olano and Jonathan Cohen for creating low-latency rendering

code on Pixel-Planes 5.

• Carl Mueller, Marc Olano, and David Ellsworth for their advice on

programming Pixel-Planes 5.

• Mike Bajura, Andrei State, Rich Holloway, Jannick Rolland, and Ulrich

Neumann for discussions about see-through registration strategies.

• Devesh Bhatnagar, Suresh Balu, and the other Tracker group team

members for their general support on the tracking equipment and

software.

vi

• Fay Ward and Kathy Tesh for always being there when I needed to

mail something overnight, fill out a form that was due that day, and

for squeezing me onto my professors' schedules when necessary.

Financial help came from the following sources:

• ONR Contract N00014-86-K-0680

• the NSF/ARPA Science and Technology Center for Computer

Graphics and Scientific Visualization, NSF Prime Contract Number

8920219

• ARPA Contract DABT63-93-C-C048 "Enabling Technologies and

Application Demonstrations for Synthetic Environments"

• a Pogue Fellowship

Last, but certainly not least, I thank my parents for their support and

understanding.

vii

TABLE OF CONTENTS

 Page

LIST OF TABLES... xi

LIST OF FIGURES... xii

LIST OF ABBREVIATIONS... xviii

LIST OF SYMBOLS .. xx

Chapter

1. Introduction ... 1

1.1 Background ... 1

1.2 Motivation .. 4

1.3 The problem... 6

1.4 Sources of error ... 9

1.5 Contribution ... 14

2. Problem statement .. 20

2.1 See-through HMD systems ... 20

2.1.1 Optical see-through .. 21

2.1.2 Video see-through .. 21

2.1.3 Comparison of optical and video see-through
approaches ... 22

2.2 Tracker .. 25

2.3 System operation... 27

2.4 Registration task .. 29

viii

3. Static registration ... 32

3.1 Sources of error ... 32

3.2 Previous work .. 34

3.3 Basic approach.. 36

3.4 Optoelectronic tracker.. 38

3.5 Calibration techniques ... 44

3.5.1 Crate location.. 44

3.5.2 Crosshair... 47

3.5.3 Boresight ... 49

3.5.4 Field-of-view ... 53

3.6 Evaluation .. 56

4. Dynamic registration .. 65

4.1 Basic approach.. 65

4.2 Kalman filters ... 79

4.3 Previous work .. 84

4.3.1 Prediction of head motion ... 84

4.3.2 Prediction of related motion .. 86

4.3.3 Characteristics of head motion 88

4.4 Prediction method.. 89

4.4.1 Overview ... 89

4.4.2 Translation .. 91

4.4.3 Orientation .. 94

4.5 Evaluation .. 102

4.6 Future directions .. 120

ix

5. System and prediction details .. 127

5.1 System details ... 127

5.1.1 Optical see-through HMD ... 128

5.1.2 Rate gyroscopes and linear accelerometers............. 129

5.1.3 Optoelectronic head tracker...................................... 134

5.1.4 Scene generator: Pixel-Planes 5 135

5.1.5 Connections and communication paths.................... 137

5.2 Timing details .. 139

5.3 Prediction method details .. 147

5.3.1 Extracting angular velocity and linear acceleration... 147

5.3.2 Parameter determination .. 154

5.3.3 Miscellaneous details.. 164

6. Theoretical limits.. 166

6.1 Limits of arbitrary prediction... 167

6.2 Frequency-domain analysis techniques 169

6.2.1 Introduction ... 169

6.2.2 The Fourier Transform .. 170

6.2.3 The Z-Transform ... 173

6.2.4 Assumptions ... 174

6.2.5 Ideal predictor transfer function 175

6.2.6 RMS error metric... 177

6.3 Analysis of 2nd-order polynomial predictor 178

6.3.1 Magnitude ratio of the 2nd-order prediction
transfer function .. 180

6.3.2 Phase difference of the 2nd-order prediction
transfer function .. 181

x

6.3.3 Magnitude ratio of the 2nd-order error transfer
function ... 183

6.3.4 Interpretation... 184

6.4 Analysis of Kalman-filter-based predictor 187

6.4.1 The Discrete Kalman Filter transfer function............. 190

6.4.2 Transfer functions for combination of Kalman
Filter and predictor .. 193

6.4.3 Case 1: Measured position 200

6.4.4 Case 2: Measured position and velocity 203

6.4.5 Case 3: Measured position and acceleration............ 206

6.5 Exploring prediction parameter space 209

6.5.1 Predicted position error versus prediction interval 210

6.5.2 Estimating spectra of predicted motion sequences .. 216

6.5.3 Estimating the maximum time-domain error 218

6.6 Implementation details... 221

6.6.1 Generating the "true" original signal 222

6.6.2 Discrete Kalman Filter .. 224

6.6.3 Spectral Analysis .. 225

7. Future work .. 229

References .. 233

xi

LIST OF TABLES

Table 3.1: Variance in repeated boresight and FOV operations 63

Table 4.1: Summary of prediction errors on three motion sequences.. 108

Table 6.1: Time and Fourier domain equivalents 172

Table 6.2: Time and Z-domain equivalents .. 174

Table 6.3: Three sinusoids ... 186

Table 6.4: Four sinusoids ... 186

Table 6.5: Estimated versus actual time-domain maxima for Demo1
sequence ... 220

Table 6.6: Original set of sinusoids .. 227

xii

LIST OF FIGURES

Figure 1.1: Sutherland's HMD ... 2

Figure 1.2: User viewing molecular models with an HMD 3

Figure 1.3: Virtual fetus superimposed on pregnant patient 5

Figure 1.4: Conceptual drawing of engine maintenance application.
Diagram drawn by Andrei State... 6

Figure 1.5: Ultrasound static registration: Virtual gray trapezoid
registered with the wand tip. .. 10

Figure 1.6: Dynamic misregistration due to system delays. Virtual
trapezoid is now separated from the wand tip. 11

Figure 1.7: Histogram of head angular velocities, slow motion
sequence ... 12

Figure 1.8: Histogram of head angular velocities, fast motion
sequence ... 12

Figure 1.9: Cumulative density functions for fast and slow motion
sequences ... 13

Figure 2.1: Optical see-through HMD conceptual diagram...................... 21

Figure 2.2: Video see-through HMD conceptual diagram 22

Figure 2.3: Definition of yaw, pitch, and roll with respect to Tracker
space ... 26

Figure 2.4: Example of coordinate systems .. 27

Figure 2.5: High-level system diagram .. 28

Figure 2.6: Conceptual diagram of desired registration........................... 30

Figure 2.7: A picture of the actual wooden crate 30

Figure 2.8: Desired registration as seen inside the see-through HMD 31

Figure 3.1: Conceptual diagram of optical tracking system. Diagram
drawn by Mark Ward. .. 39

Figure 3.2: The actual system in operation.. 40

Figure 3.3: Side view of HMD equipped with four optical sensors........... 40

xiii

Figure 3.4: A pair of views of HMD equipped with four optical sensors .. 41

Figure 3.5: Lit LEDs in the ceiling .. 41

Figure 3.6: 4-hat platform for mounting optical sensors 42

Figure 3.7: 4-hat equipped with four optical sensors 43

Figure 3.8: Front view of optical see-through HMD with 4-hat................. 43

Figure 3.9: Rear view of optical see-through HMD with 4-hat 43

Figure 3.10: 4-hat with probe attached .. 45

Figure 3.11: Diagram of 4-hat coordinate system and probe 45

Figure 3.12: Digitized points on two edges of the crate 46

Figure 3.13: Conceptual view of the virtual crosshair 48

Figure 3.14: Actual view of crosshair, as seen inside the HMD................. 48

Figure 3.15: Calibration of center of the field-of-view 49

Figure 3.16: Conceptual diagram of boresight operation 50

Figure 3.17: External view of boresight ... 50

Figure 3.18: Internal view of boresight... 50

Figure 3.19: Coordinate systems in boresight ... 51

Figure 3.20: Nails specify distance along ray .. 52

Figure 3.21: Conceptual diagram of FOV calibration 54

Figure 3.22: 2-D side view of FOV calibration, in the X=0 plane 54

Figure 3.23: Computing the total FOV ... 55

Figure 3.24: Bust with hole in right eye and video camera 57

Figure 3.25: Carrying the bust with see-through HMD attached................ 57

Figure 3.26: Static registration viewpoints during walkaround................... 58

Figure 3.27: Views from static registration viewpoints #1-7 and #9........... 59

Figure 3.28: View from static registration viewpoint #8 60

xiv

Figure 3.29: Elliptical path traced out in XY plane as 4-hat rotates 360
degrees about its origin ... 62

Figure 4.1: X position in Demo1 motion sequence 67

Figure 4.2: Closeup of region A in Figure 4.1 .. 67

Figure 4.3: Yaw orientation in Demo1 motion sequence 68

Figure 4.4: Closeup of region B in Figure 4.3 .. 68

Figure 4.5: Y position in Demo2 motion sequence 69

Figure 4.6: Closeup of region C in Figure 4.5.. 69

Figure 4.7: Yaw orientation in Demo2 motion sequence 70

Figure 4.8: Closeup of region D in Figure 4.7.. 70

Figure 4.9: Spectrum of X curve from 1st motion sequence.................... 71

Figure 4.10: Spectrum of yaw orientation from 1st motion sequence........ 72

Figure 4.11: Spectrum of Y curve from 2nd motion sequence 72

Figure 4.12: Spectrum of yaw orientation from 2nd motion sequence 73

Figure 4.13 Flight simulator vs. Augmented Reality system..................... 76

Figure 4.14 Gaussian probability distribution for position d 80

Figure 4.15 High-level dataflow diagram of Kalman filter operation 81

Figure 4.16 An example of how position and standard deviation change
during the time and measurement update steps 83

Figure 4.17: Walkaround motion sequence: Translation curves.............. 104

Figure 4.18: Walkaround motion sequence: Orientation curves.............. 104

Figure 4.19: Rotation motion sequence: Translation curves 105

Figure 4.20: Rotation motion sequence: Orientation curves.................... 105

Figure 4.21: Swing motion sequence: Translation curves 106

Figure 4.22: Swing motion sequence: Orientation curves 106

Figure 4.23: Angular errors for Swing motion sequence 109

Figure 4.24: Position errors for Swing motion sequence 109

xv

Figure 4.25: Screen errors for Swing motion sequence 110

Figure 4.26: Yaw curve with no prediction... 110

Figure 4.27: Yaw curve with non-inertial-based prediction 111

Figure 4.28: Yaw curve with inertial-based prediction 111

Figure 4.29: Z curve with no prediction ... 112

Figure 4.30: Z curve with non-inertial-based prediction 112

Figure 4.31: Z curve with inertial-based prediction 113

Figure 4.32: Rotation sequence: Scatterplots for no prediction,
non-inertial-based prediction and inertial-based
prediction (B/W)... 115

Figure 4.33: Rotation sequence: Scatterplots for no prediction,
non-inertial-based prediction and inertial-based
prediction (Color) ... 115

Figure 4.34: Demo1 sequence: Scatterplots for no prediction,
non-inertial-based prediction and inertial-based
prediction (B/W)... 116

Figure 4.35: Demo1 sequence: Scatterplots for no prediction,
non-inertial-based prediction and inertial-based
prediction (Color) ... 116

Figure 4.36: Average error versus prediction interval 118

Figure 4.37: Jitter in predicted pitch curve... 119

Figure 4.38: Constant predicted velocities... 121

Figure 4.39: Linear predicted velocities ... 122

Figure 4.40: Estimated angular acceleration ... 123

Figure 4.41: Estimated linear acceleration .. 124

Figure 4.42: Why the acceleration estimate is constant 125

Figure 5.1: Overall system diagram... 127

Figure 5.2: Optical see-through HMD.. 129

Figure 5.3: One view of gyroscopes and accelerometers 130

Figure 5.4: Another view of gyroscopes and accelerometers................ 130

xvi

Figure 5.5: External view of the electronics box 132

Figure 5.6: Internal view of the electronics box 133

Figure 5.7: A/D breakout board next to the PC...................................... 133

Figure 5.8: Optoelectronic tracker architecture...................................... 134

Figure 5.9: Pixel-Planes 5 architecture.. 135

Figure 5.10: Dataflow diagram of entire system 138

Figure 5.11: Recorded total system delays in one motion sequence 140

Figure 5.12: Components of the total prediction interval 143

Figure 5.13: Components of the estimated interval 143

Figure 5.14: Predicted vs. actual prediction intervals 144

Figure 5.15: Error in estimated prediction intervals 145

Figure 5.16: Accelerometers are tiny cantilever beams........................... 149

Figure 5.17: Definitions for rigid body kinematics formula 152

Figure 5.18: Locations of accelerometers in Tracker space 152

Figure 6.1: Magnitude ratio of ideal prediction transfer function 176

Figure 6.2: Phase difference of ideal prediction transfer function 177

Figure 6.3: Magnitude ratio of 2nd-order prediction transfer function.... 181

Figure 6.4: Phase difference of 2nd-order prediction transfer function.. 183

Figure 6.5: RMS error for 2nd-order predictor 185

Figure 6.6: Portion of original and predicted signals from Table 6.3 186

Figure 6.7: Portion of original and predicted signals from Table 6.4 187

Figure 6.8: High-level dataflow for Kalman-filter-based predictor.......... 188

Figure 6.9: Transfer matrices for Kalman-Filter-based predictor 195

Figure 6.10: Case 1: Original position to predicted position magnitude
ratio, for 100 ms prediction interval 202

Figure 6.11: Case 1: Original position to predicted position phase
differences ... 202

xvii

Figure 6.12: Case 2: Original position to predicted position magnitude
ratio, for 100 ms prediction interval 204

Figure 6.13: Case 2: Original position to predicted position phase
differences ... 205

Figure 6.14: Case 2: Relative contribution of measured position and
velocity to predicted position ... 206

Figure 6.15: Case 3: Original position to predicted position magnitude
ratio, for 100 ms prediction interval 207

Figure 6.16: Case 3: Original position to predicted position phase
differences ... 208

Figure 6.17: Case 3: Relative contribution of measured position and
acceleration to predicted position .. 209

Figure 6.18: Case 1 RMS error for five prediction intervals 211

Figure 6.19: Case 2 RMS error for five prediction intervals 211

Figure 6.20: Case 3 RMS error for five prediction intervals 212

Figure 6.21: RMS errors for Case 1, 2 and 3 at 50 ms prediction
interval ... 213

Figure 6.22: RMS errors for Case 1, 2, and 3 at 150 ms prediction
interval ... 214

Figure 6.23: RMS errors for Case 1 and Modified Case 2 at 100 ms
prediction interval .. 215

Figure 6.24: Original and predicted magnitude spectrums for
Demo2 Tx sequence for 100 ms prediction interval 217

Figure 6.25: Predicted magnitude spectrums for Demo2 Tx
sequence at three prediction intervals 218

Figure 6.26: Verification of frequency-domain equations 221

Figure 6.27: A sample window function ... 224

Figure 6.28: The true magnitudes of the sinusoids 227

Figure 6.29: The estimated magnitudes of the sinusoids 228

xviii

LIST OF ABBREVIATIONS

A/D Analog to Digital conversion

ACM Association for Computing Machinery

AR Augmented Reality

CPU Central Processing Unit

CRT Cathode Ray Tube

DEC Digital Equipment Corporation

EKF Extended Kalman Filter

FFT Fast Fourier Transform

FOHMD Fiber Optic Helmet-Mounted Display

GP Graphics Processor (in Pixel-Planes 5)

GPS Global Positioning System

HIF Host InterFace board (for Pixel-Planes 5)

HMD Head-Mounted Display

HUD Head-Up Display

Hz Hertz (cycles per second)

I/O Input and Output

ID Identification

IPD Interpupillary Distance

ISA Industry Standard Architecture (bus for PC's)

LAN Local Area Network

LCD Liquid Crystal Display

LED Light Emitting Diode

MByte Megabyte (106 bytes)

MHz Megahertz (106 Hz)

xix

MIMD Multiple Instruction, Multiple Data

ms milliseconds (10-3 seconds)

MS-DOS Microsoft Disk Operating System

ns nanoseconds (10-9 seconds)

NTSC National Television System Committee

ODE Ordinary Differential Equation

OS Operating System

PC Personal Computer

Pxpl5 Pixel-Planes 5

RMS Root-Mean-Square

ROS Ring Operating System (for Pixel-Planes 5)

RP Remote Processor

SIGGRAPH Special Interest Group on Computer Graphics (a division
of ACM). Also refers to an annual conference sponsored
by that group.

SIMD Single Instruction, Multiple Data

TAXI Transparent Asynchronous Xmitter-receiver Interface

TV Television

UNC University of North Carolina

µsec microseconds (10-6 seconds)

VE Virtual Environment

VME VERSAbus Module European

VR Virtual Reality

xx

LIST OF SYMBOLS

Q, x, h() Italicized mathematical expressions are scalar variables,
labels, or functions if accompanied with parentheses

M, X Boldfaced mathematical expressions are vectors,
matrices, or quaternions

x Cross product: M x V

· Dot product: M · X

• Quaternion multiplication: Q1 • Q2

space Implied multiplication, scalar p w, or matrix M X

ṙ Derivative of r with respect to time

˙̇r Double derivative of r with respect to time

AT Transpose of A

A-1 Inverse of A

G[0] The first scalar element inside vector G. Indices are
zero-origin.

A[2, 0] Scalar element at row #2 and column #0 inside matrix A.
Indices are zero-origin.

ω Omega, a 3 by 1 vector representing angular velocity
(Used in Chapters 4 and 5.)

ω Angular frequency. ω = 2πf, where f is the frequency in
Hertz. (Used in Chapter 6.)

1. Introduction

1.1 Background

Although tremendous advances in rendering three-dimensional graphic

objects have been made in the past two decades, very little has changed in

the way that typical users manipulate and view these 3-D objects. In 1975,

graphic displays typically showed unshaded line drawings with no hidden

surfaces. Today, a consumer can buy a rendering package for her personal

computer which generates images that, in certain cases, approach

photorealism. But both today's user and her counterpart 20 years ago look at

these objects through a monitor and manipulate them with dials, keyboards,

joysticks, light pens, and other such devices. The computer graphic objects

exist in their own separate world, visible only "through the looking glass,"

remote and difficult to interact with. Consider how hard it would be to

accomplish everyday tasks if you could only look at objects in your

surrounding environment by viewing a monitor attached to a TV camera, and

you could only grasp and move those objects by manipulating dials,

keyboards, joysticks, etc.

In 1965, Ivan Sutherland proposed a different metaphor for human-

computer interaction. Sutherland's Ultimate Display is one that immerses

humans inside a three-dimensional computer-generated world

indistinguishable from reality [Sutherland65]. In this virtual world, one could

grab or sit down on a virtual chair. Being shot by a virtual bullet might prove

fatal. Inside this virtual world, humans directly view and interact with 3-D

objects using intuitive, natural skills developed since birth: walking, grasping,

etc.

Sutherland's Ultimate Display is far beyond the capabilities of current

technologies. However, it is possible to approximate parts of it. In 1968,

2

Sutherland and his team built the first Head-Mounted Display (HMD)

[Sutherland68]. The HMD system consists of three main components: the

HMD itself, a scene generator, and a tracking system. The HMD is a helmet-

like device, worn on the head, which holds two tiny display devices in front of

the user's eyes. These two displays project stereo image pairs, generated in

real time by the scene generator, which is a computer specialized for the

rapid generation of graphic images. The tracker mounted on the HMD tells

the scene generator the position and orientation of the user's head in 3-D

space. With this tracker information, the scene generator can generate

images of what the user should see at that particular position and orientation.

If the system responds quickly to user motion and generates images of

sufficient fidelity, the user experiences the illusion of being immersed inside

an intangible, virtual world that surrounds her. Now, instead of gazing into the

looking glass, she has gone through the looking glass, entering the same

space that the 3-D graphic objects inhabit. Figure 1.1 shows a picture of

Sutherland's original HMD, and Figure 1.2 shows a user inside a more

modern HMD viewing representations of molecules.

Figure 1.1: Sutherland's HMD

3

Figure 1.2: User viewing molecular models with an HMD

Recent media publicity has stirred public interest in HMDs, which are

often lumped together with other technologies into an area called Virtual

Reality (VR). Many researchers prefer the term Virtual Environment (VE) as a

more accurate description of the effect achieved. The hype surrounding this

field may have deluded the public into believing that the current state-of-the-

art is closer to Sutherland's Ultimate Display than it really is. Modern systems

fall far short of the goal of generating completely convincing Virtual

Environments. There is much room for improvement in each of the three

main technologies that drive HMDs: the display devices, the scene generator,

and the tracking system. Equally important for gaining user acceptance is the

need to demonstrate serious applications that significantly benefit from the

use of HMDs.

Some of these serious applications may come from a variant of Virtual

Environments, called Augmented Reality (AR). The difference between

Virtual Environments and Augmented Reality is in their treatment of the real

world. Virtual Environments use HMDs that completely replace the real world

with a computer-generated synthetic environment. Removing the electrical

power from such a closed-view HMD would effectively blind the user wearing

4

it. In contrast, Augmented Reality supplements, rather than supplants, the

real world. Augmented Reality systems use see-through HMDs that

superimpose virtual objects upon the wearer's view of the real world. In

theory, these virtual objects can be combined with real world objects so that

the two worlds merge together seamlessly. For example, consider a virtual

vase sitting on a real chair. When the user walks behind the chair so that the

back of the chair covers most of the vase, the see-through HMD should only

display the part of the vase that sticks up above the back of the chair,

preserving the illusion that both objects exist in the same space.

1.2 Motivation

What serious applications would benefit from Augmented Reality

technology, if it were available? Augmented Reality enhances a user's

perception of and interaction with the real world. The virtual objects display

information that the user cannot directly detect with her senses. Two areas

where this technology could help are medical applications and the assembly

and repair of complicated mechanical devices.

Doctors could use Augmented Reality as a visualization aid during

surgery. For example, a research group at UNC has conducted trial runs of

scanning the womb of a pregnant woman with an ultrasound sensor,

generating a real-time 3-D representation of the fetus inside the womb and

displaying that in a see-through HMD (Figure 1.3). The goal is to endow the

doctor with "X-ray vision," granting her the ability to see the moving, kicking

fetus lying inside the womb [Bajura92] [State94]. Another potential

application is needle biopsy. A doctor wearing a see-through HMD could see

a virtual object specifying the exact location of a tiny tumor within the patient,

helping her perform the biopsy. See-through HMDs might also help make

minimally-invasive surgery easier. While minimally-invasive techniques are

less stressful to the patient, they are difficult because of the reduced visibility

inside the patient. Combining see-through HMDs with real-time 3-D sensors

that scan the inside of the patient would enable the surgeon to see what she

was doing without cutting the patient open, reducing the trauma of the

operation.

5

Figure 1.3: Virtual fetus superimposed on pregnant patient

Another potential category of Augmented Reality applications is the

assembly, maintenance, and repair of complex machinery. Instructions might

be easier to understand if they were available, not in the form of manuals with

text and pictures, but as 3-D drawings superimposed upon the actual

equipment, showing step-by-step the tasks that need to be done and how to

do them. Steve Feiner's group at Columbia demonstrated this in a laser

printer maintenance application [Feiner93]. Storing these instructions in

electronic form might also save space and reduce costs. A group at Boeing

uses a see-through HMD to guide a technician in building a wiring harness

that forms part of an airplane's electrical system. Currently, technicians use

large physical layout boards to construct such harnesses, and Boeing uses

several warehouses to store all these boards. Such space might be emptied

for better use if this application proves successful [Janin93]. See-through

HMDs might aid other mechanical tasks as well. An architect with a see-

through HMD might be able to look out a window and see how a proposed

new skyscraper would change her view. Figure 1.4 shows a conceptual

diagram of what a jet engine maintenance application might look like.

6

Figure 1.4: Conceptual drawing of engine maintenance application.
Diagram drawn by Andrei State.

Robinett speculates that Augmented Reality may be useful in any

application that requires displaying information not directly available or

detectable by human senses by making that information visible (or hearable,

feelable, etc.) [Robinett92a]. Appropriate head-based sensors might extend

the user's visual range into the infrared or ultraviolet frequencies, and remote

sensors would let users view objects hidden by walls or hills. Conceptually,

anything not detectable by human senses but detectable by machines might

be transduced into something that a user can sense inside a see-through

HMD.

1.3 The problem

Although Augmented Reality offers tantalizing potential for increasing

worker productivity, existing technology is not able to support these tasks.

Today, Augmented Reality is barely at the demonstration phase. Existing

demos offer only a glimpse into future applications; they are not robust and

powerful tools at present. Many problems must be overcome before the full

potential of Augmented Reality is realized. One of the most basic is the

7

registration problem. The objects in the real and virtual worlds must be

properly aligned with respect to each other, or the illusion that the two worlds

coexist will be compromised. More seriously, many applications demand

accurate registration. For example, recall the needle biopsy application. If

the virtual object is not where the real tumor is, the surgeon will miss the

tumor and the biopsy will fail. Without accurate registration, Augmented

Reality will not be accepted in many applications.

Registration problems also exist in Virtual Environments, but they are

not nearly as serious because they are harder to detect than in Augmented

Reality. Since the user only sees virtual objects in VE applications,

registration errors result in visual-kinesthetic and visual-proprioceptive

conflicts. Such conflicts between different human senses may be a source of

motion sickness [Pausch92]. Because the kinesthetic and proprioceptive

systems are much less sensitive than the visual system, visual-kinesthetic

and visual-proprioceptive conflicts are less noticeable than visual-visual

conflicts. For example, a user wearing a closed-view HMD might hold up her

real hand and see a virtual hand. This virtual hand should be displayed

exactly where she would see her real hand, if she were not wearing an HMD.

But if the virtual hand is wrong by five mm, she may not detect that unless

actively looking for such errors. The same error is much more obvious in a

see-through HMD, where the conflict is visual-visual.

Furthermore, a phenomenon known as visual capture [Welch78]

makes it even more difficult to detect such registration errors. Visual capture

is the tendency of the brain to believe what it sees rather than what it feels,

hears, etc. That is, visual information tends to override all other senses.

When watching a television program, a viewer believes the sounds come from

the mouths of the actors on the screen, even though they actually come from

a speaker in the TV. Ventriloquism works because of visual capture.

Similarly, a user might believe that her hand is where the virtual hand is

drawn, rather than where her real hand actually is, because of visual capture.

This effect increases the amount of registration error users can tolerate in

Virtual Environment systems. If the errors are systematic, users might even

be able to adapt to the new environment, given a long exposure time of

several hours or days [Welch78].

8

Augmented Reality demands much more accurate registration than

Virtual Environments [Azuma93]. Imagine the same scenario of a user

holding up her hand, but this time wearing a see-through HMD. Registration

errors now result in visual-visual conflicts between the images of the virtual

and real hands. Such conflicts are easy to detect because of the resolution of

the human eye and the sensitivity of the human visual system to differences.

Even tiny offsets in the images of the real and virtual hands are easy to

detect.

What angular accuracy is needed for good registration in Augmented

Reality? A simple demonstration will show the order of magnitude required.

Take out a dime and hold it at arm's length, so that it looks like a circle. The

diameter of the dime covers about 1.2 to 2.0 degrees of arc, depending on

your arm length. In comparison, the width of a full moon is about 0.5 degrees

of arc! Now imagine a virtual object superimposed on a real object, but offset

by the diameter of the dime. Such a difference would be easy to detect.

Thus, the angular accuracy required is a small fraction of a degree. The

lower limit is bounded by the resolving power of the human eye itself. The

central part of the retina is called the fovea, which has the highest density of

color-detecting cones, about 120 per degree of arc, corresponding to a

spacing of half a minute of arc [Jain89]. Observers can differentiate between

a dark and light bar grating when each bar subtends about one minute of arc,

and under specialized circumstances they can detect even smaller

differences [Doenges85]. However, existing HMD trackers and displays are

not capable of providing one minute of arc in accuracy or resolution, so the

present achievable accuracy is much worse than that ultimate lower bound.

In practice, errors of a few pixels are detectable in modern HMDs.

These requirements are difficult to meet. The current state-of-the-art

for registration with see-through HMDs, as reported in the text and pictures of

[Bajura92] [Feiner93] [Janin93], achieves errors on the order of 13 mm for

objects at arm's length, viewed by a stationary head from a restricted range of

viewpoints. This corresponds to about 1.1 degrees of arc for a 68 cm arm

length.

9

1.4 Sources of error

Registration errors are difficult to adequately control because of the

high accuracy requirements and the numerous sources of error. The main

sources are:

• Distortion in the HMD optics

• Mechanical misalignments in the HMD

• Errors in the head-tracking system

• Incorrect viewing parameters (field of view, tracker-to-eye

position and orientation, interpupillary distance)

• End-to-end system delays

The first four are static errors, because they cause registration errors

even when the user's head remains still. The fifth category, end-to-end

delays, is a dynamic error, because it has no effect until the user's head

moves.

Although static errors are important, dynamic errors currently

contribute the most to registration errors. While previous work has

demonstrated static errors of about 13 mm, dynamic errors can easily exceed

100 mm in magnitude, or about 8.3 degrees of arc for a 68 cm arm length.

Dynamic errors occur because of system delays, or lags. I define the

end-to-end system delay as the time difference between the moment that the

tracking system measures the position and orientation of the user's head to

the moment when the generated images corresponding to that position and

orientation appear in the HMD. These delays exist because each component

in an Augmented Reality system requires some time to do its job. The delays

in the tracking subsystem, the communication delays, the time it takes the

scene generator to draw the appropriate images in the frame buffers, and the

scanout time from the frame buffer to the displays all contribute to end-to-end

lag. On our systems, end-to-end delays typically exceed 100 ms. Simpler

systems can have less delay, but other systems have more. Delays of

250 ms or more can exist on slow, heavily loaded, or networked systems.

End-to-end system delays cause registration errors only when the user

moves her head. Assume that the user stands still. Then the lag does not

10

cause registration errors. No matter how long the delay is, the images

generated are appropriate for the user's position and orientation, since the

head has not moved since the time the tracker measurement was taken.

Compare this to the case when the user moves her head. Say that the

tracker measures the head at an initial time t. The images corresponding to

time t will not appear until some future time t2, because of the end-to-end

system delays. During this delay, the user's head remains in motion, so when

the images computed at time t finally appear, the user sees them at a different

location than the one they were computed for. Thus, the images are incorrect

for the time they are actually viewed. To the user, the virtual objects appear

to "swim around" and "lag behind" the real objects. This was graphically

demonstrated in the videotape of UNC's ultrasound experiment, shown at

SIGGRAPH '92 [Bajura92]. Figure 1.5 shows what the registration looks like

when everything stands still. The virtual gray trapezoidal region represents

what the ultrasound wand is scanning. This virtual trapezoid should be

attached to the tip of the real ultrasound wand. This is the case in Figure 1.5,

where the tip of the wand is visible at the bottom of the picture, to the left of

the "UNC" letters. But when the head or the wand moves, large dynamic

registration errors occur, as shown in Figure 1.6. The tip of the wand is now

far away from the virtual trapezoid. Also note the motion blur in the

background, which is caused by the user's head motion.

Figure 1.5: Ultrasound static registration: Virtual gray trapezoid
registered with the wand tip.

11

Figure 1.6: Dynamic misregistration due to system delays. Virtual
trapezoid is now separated from the wand tip.

How rapidly do people move their heads while wearing an HMD? This

will vary with the user and the application. I collected head motion from naive

users who tried a demonstration of one of our HMD systems. The application

consisted of a virtual room of interesting objects. The users walked around

inside this environment, grabbing and manipulating various objects.

Figure 1.7 shows a histogram of the measured angular velocities for a slow-

moving head. Figure 1.8 shows a histogram for a fast motion sequence.

Both distributions are similar in form, with each user moving slowly on

average. The main difference is in the peaks: 70 degrees per second for the

slow sequence, and 120 degrees per second for the fast sequence.

12

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 e
nt

rie
s

at
 th

is
 v

el
oc

ity

Head angular velocity in degrees per second
Figure 1.7: Histogram of head angular velocities, slow motion

sequence

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 10 20 30 40 50 60 70 80 90 100 110 120 130

F
ra

ct
io

n
of

 v
al

ue
s

at
 th

is
 v

el
oc

ity

Head angular velocity in degrees per second
Figure 1.8: Histogram of head angular velocities, fast motion sequence

Some previous works have also measured rates of head motion. Uwe

List reports peak angular velocities ranging from 76 to 240 degrees per

13

second in a flight-simulator application where pilots were asked to fixate on a

target [List83]. Smith reports that peak velocities of 300 degrees per second

are seen with the CAE flight simulator [Smith84].

I can also plot the data in Figures 1.7 and 1.8 in the form of cumulative

density functions. In this case, a cumulative density function specifies the

fraction of all values in the dataset that are at or below the specified angular

velocity. Figure 1.9 shows the cumulative density functions for the slow and

fast motion sequences. In these demonstration applications, the users spend

most of their time moving slowly. About half of the values are under

10 degrees per second. However, in the fast motion sequence, a small but

significant amount of time is spent at fast velocities. Ten percent of the

values range from 40 to 120 degrees per second.

•
•
•

•

•
•
•
•
•
•
•
•
•
•
•
•
•
••
••
••
•••

•••
•••••

••••••
••••••••••••

••

•

•

•

•
•
•
•
•
•
•
••
••
••
••
••
••
••
•••

•••
••••

•••••
••••••

••••••••••
•••••••••••••

••••••••••••••••••••••••••••••••••
••••••••••••••••••

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

F
ra

ct
io

n
of

 v
al

ue
s

be
lo

w
 th

is
 v

el
oc

ity

Head angular velocity in degrees per second

• Slow

• Fast

Figure 1.9: Cumulative density functions for fast and slow motion
sequences

System delays seriously hurt the illusion that the real and virtual worlds

coexist because they cause large registration errors. With a typical end-to-

end lag of 100 ms and a moderate head rotation rate of 50 degrees per

second, the angular dynamic error is 5 degrees. At a 68 cm arm length, this

14

results in registration errors of almost 60 mm. This is 4.5 times larger than

the 13 mm static registration errors achieved in previous work.

System delays are not likely to disappear anytime soon. Some believe

that the current course of technological development will automatically solve

this problem. Unfortunately, it is difficult to reduce system delays to the point

where they are no longer an issue. Recall that registration errors must be

kept to a small fraction of a degree. At the moderate head rotation rate of

50 degrees per second, system lag must be 10 ms or less to keep angular

errors below 0.5 degrees. Just scanning out a frame buffer to a display at

60 Hz requires 16.67 ms. Modern scene generators tend to use pipelined

architectures to increase throughput, at the cost of increasing delay [Foley90].

It might be possible to build an HMD system with less than 10 ms of lag, but

the drastic cut in throughput and the expense required to construct the system

would make such a solution unattractive. Minimizing system delay is

important, but reducing delay to the point where it is no longer a source of

registration error is not practical with existing technology.

1.5 Contribution

Since sufficiently reducing end-to-end delay is too difficult, another

approach is to compensate for delay. When the tracker reads the head

location, what the scene generator should use is not the measured head

location but rather the head location at the time when the user views the

images. If this future head location can be perfectly determined, then the

system delay does not cause any registration errors. That is, compensation

requires predicting future motions of the user's head.

Predicting the future, whatever the subject, is a difficult task. Forecasts

cannot be perfect, since unanticipated events will make predictions wrong.

However, it is my belief that for this particular problem, reasonably accurate

predictions are feasible. Therefore, the goal of this dissertation is to establish:

15

Thesis Statement

Predictive tracking is an effective means of significantly

reducing registration errors caused by delays in

Augmented Reality systems.

To defend this thesis, I make the following contributions:

• Improved static registration

• Improved dynamic registration, using predictive tracking

• Evaluation of inertial-based prediction

• Demonstration of the static and dynamic improvements in a real

system

• Report of lessons learned based on experience with this system

• Autocalibration and optimization techniques for determining

system parameters

• Characterization of the theoretical behavior of this predictor

I now provide a summary of these contribution areas and where they

are covered in the rest of this dissertation. Chapter 2 begins by describing

the system at a high level and defining the registration task.

Improved static registration (Chapter 3): Pictures and videos of

existing Augmented Reality systems show registration from only a small

range of viewpoints. The user is not allowed to translate or rotate the HMD

very far from the initial viewpoint. There are two reasons for this limitation.

First, most commercially-available head-tracking systems do not provide

sufficient accuracy and range to permit such movement without greatly

increasing the static registration errors. Second, determining robust viewing

parameters is non-trivial. Viewing parameters are the values required to

generate the graphic images, given the measurements from the head tracker.

They include field-of-view, the position and orientation offsets from the head

tracker to the user's eyes, and the locations of the real objects with respect to

the HMD. Determining viewing parameters that work from just one viewpoint

is much easier than determining parameters that work from many different

viewpoints. The parameters must be correct to work at many different

viewpoints, but at a single viewpoint it is possible to find several other

16

combinations of parameters where the errors happen to cancel at that

particular viewpoint. For example, assume the position offset from the tracker

to an eye is wrong by 10 cm, but the location of the real object is incorrect by

10 cm in exactly the opposite direction. Therefore, parameters that yield good

registration from one viewpoint may result in static errors of a few degrees at

another viewpoint.

While the thesis of this dissertation is not explicitly about reducing

static registration errors, good static registration is important for evaluating

dynamic registration errors. This evaluation is based on how closely the real

and virtual objects are aligned. If the alignment is accurate when the user

remains still but inaccurate when the head is in motion, then the user can

easily see the effect of dynamic errors. However, if the alignment is

inaccurate even in the static case, then accurate registration never occurs,

making it more difficult to see the effect of prediction. Thus, good static

registration is helpful for a convincing demonstration of the effectiveness of

prediction.

My system is capable of keeping a virtual and real object closely

aligned across many widely-spaced viewpoints and view directions. The

tracker is a custom optoelectronic system built at UNC, which has less

distortion and longer range than most commercially-available trackers. I

developed calibration techniques for determining the viewing parameters.

The robust static registration is demonstrated by several still photographs

taken from a single video sequence in which the user walked 270 degrees

around the registration object. The static errors are usually within ±5 mm

from most viewpoints (0.42 degrees for a 68 cm arm length), which is less

than the ±13 mm shown in previous work.

Improved dynamic registration (Chapter 4): I developed prediction

algorithms that reduce dynamic errors caused by the system delays. Inertial

sensors (three angular rate gyroscopes and three linear accelerometers) were

added to the see-through HMD. These sensors and the head tracker

measure the head's position, orientation, angular velocity, and linear

acceleration. To generate estimates of the velocity and acceleration for both

orientation and position, I use a Kalman filter, which is described further in

Chapter 4. Given the sensor readings, the noise in the original signals and a

17

model of the user's motion, the Kalman filter produces the desired estimates.

Then the predictor uses these estimates to extrapolate head position and

orientation the required interval into the future.

This is not the first research effort to use predictive tracking. How does

my predictor differ from previous attempts at using prediction to compensate

for delays in HMD systems? It is the first to use both gyroscopes and

accelerometers to aid prediction. Most previous works based their predictions

only on the tracker readings, without inertial sensors. Of the two that included

inertial sensors, both predicted orientation only, using angular

accelerometers. Also, no previous work has attempted to use and evaluate

prediction in the context of reducing registration errors in see-through HMDs.

Evaluation of inertial-based prediction (Chapter 4): No previous work

evaluates how much inertial sensors aid head-motion prediction. I offer three

objective error metrics and compare the results of prediction on

representative motion traces that were captured in real time with the actual

system. My inertial-based predictor reduces dynamic errors by a factor of

5 to 10 over not doing any prediction at all and by a factor of 2 to 3 over a

representative predictor that does not use inertial sensors. This is also

demonstrated in a videotape that shows what the user sees inside the HMD.

Demonstration in a real system (Chapter 5): This work was not done

purely as a theoretical study or implemented solely in a simulation. I built a

real, working Augmented Reality system that runs in real time to test and

evaluate my registration techniques. My prediction routines are tested on

actual collected motion data taken from the head tracker and the head-

mounted inertial sensors, not on artificially-created simulated data. This

shows that prediction can work in real time in a real system.

Report of lessons learned from the real system (Chapter 5): In a

simulator or in a theoretical study, certain difficulties can be avoided by

redefining the problem, assuming perfect knowledge of the system, changing

definitions, or making different assumptions. But when building a real system,

these difficulties cannot be avoided. These lessons about what is hard in

building an effective Augmented Reality system have not been covered by the

18

previous work in this field. They are an important contribution to pass on to

anyone else who works in this area.

Two main lessons have come out of this system. First, accurate

prediction requires accurate knowledge of how far to predict. While this

sounds like an innocent truism, it has serious ramifications for AR system

design. Timestamps must be available at several stages in the pipeline.

Since the various components in our system run asynchronously, the

prediction interval varies from iteration to iteration, requiring continual

adjustments. Accurate estimation of this varying prediction interval requires

removing all uncontrollable sources of latency, like operating system

resources and communication pathways shared with other users. All these

requirements are not usually found in existing VE and AR systems.

The second lesson is that prediction is not a total panacea. One

cannot predict arbitrary intervals into the future and expect good results.

Prediction errors grow rapidly with increasing prediction intervals, and jitter in

the predicted outputs is disturbing at long prediction intervals. Attempts to

reduce these problems by filtering or other techniques failed because they

introduce additional lag, the very problem the predictor tries to eliminate. In

practice, the only solution is to keep prediction intervals short, below ~80 ms.

Autocalibration and optimization (Chapter 5): The prediction module

requires several parameters: the locations of the inertial sensors, the bias and

scale factors to use when processing the inertial signals, and estimates of

how much to trust the sensors and the motion model. If the parameters are

not set properly, prediction accuracy will suffer. Therefore, determining these

parameters is an important part of effective prediction. I developed

optimization and autocalibration techniques to set most of these parameters.

These routines take recorded motion runs and use nonlinear search

techniques to find the parameters that best match the recorded data. Some

of these work better than others. An evaluation of the effectiveness of these

routines is provided.

Theoretical behavior of the predictor (Chapter 6): No previous works

have provided a theoretical description of how their prediction methods

behave. I characterize the behavior of the Kalman filter and the predictor I

19

use by analyzing them in the frequency domain. This involves deriving

transfer functions for the predictor, the Kalman filter, and the combination of

the two. These transfer functions describe how the filter and predictor modify

the head-motion signals in the frequency domain, allowing the exploration of

the prediction parameter space by analysis rather than purely empirical

observations. This theoretical framework demonstrates where the observed

jitter comes from and shows what happens to the predicted signals as the

prediction interval increases. High-frequency components in the original

signal contribute the most to jitter because the predictor preferentially

magnifies signals roughly by the square of the angular frequency. Measuring

acceleration appears to increase prediction accuracy more than having

measured velocity available does. These functions also estimate the largest

possible time-domain error, given the spectral characteristics of the original

signal. That allows designers to specify the maximum tolerable prediction

error and then determine the longest system delay that will meet the

specification, given the specific predictor and the type of motion that users

perform. Unfortunately, specifying such a bound given the choice of any

arbitrary predictor is an intractable problem, but this framework might be

modified for future predictors, assuming they are linear or linearizable.

The combination of these static and dynamic techniques results in

registration that is better than any previously demonstrated. Registration

errors have been called "the swimming problem," because the virtual objects

"swim around" the real ones, making it difficult to believe that any rigid

relationship between the real and virtual objects exists. This dissertation

achieves a milestone in that viewers now see real and virtual objects as

"staying closely attached," rather than "swimming around." Noticeable

misregistrations still occur, both static and dynamic, but this dissertation

brings the field within striking distance of the ideal goal of "No Swimming,"

which would achieve adequately precise registration for all conditions

observed in actual applications. Further work must be done to achieve this

goal, and I suggest several areas to explore in Chapter 7.

2. Problem statement

Before describing the methods used to attack the registration problem,

I will describe the system and define the registration task. This description

will be at an abstract level, specifying system components by what they do

and not how they do it, whenever possible. For example, the tracking system

description will not specify the technology: optical, magnetic, mechanical, etc.

These abstract descriptions will be sufficient for understanding the methods

presented in Chapters 3 and 4 and allow these methods to be applied in

different contexts.

2.1 See-through HMD systems

Augmented Reality uses see-through HMD systems to blend real and

virtual worlds together. Such systems consist of a see-through HMD, a

tracking system, and a scene generator. The tracker measures the position

and orientation of the head. With this information and models of the virtual

objects, the scene generator can generate appropriate images of these virtual

objects, as they would appear if viewed from the measured head location.

The see-through HMD blends these virtual images with a view of the real

world, completing the illusion.

The two main ways of accomplishing this blending are by optical or

video technologies. Thus, see-through HMDs are categorized as either

optical see-through HMDs or video see-through HMDs. The next three

sections describe each technology and compare their strengths and

weaknesses, justifying the choice of an optical see-through HMD for exploring

the registration problem.

21

2.1.1 Optical see-through

Optical see-through HMDs work by placing optical combiners in front of

the user's eyes. These combiners are partially transmissive, so that the user

can look directly through them to see the real world. If the power is turned off,

the user can still see the real world. The combiners are partially reflective, so

that the user can also see virtual images bounced off the combiners from

head-mounted monitors. This approach is similar in nature to Head-Up

Displays (HUDs) commonly used in military aircraft, except that the combiners

are attached to the head. Thus, optical see-through HMDs have sometimes

been described as a "HUD on a head" [Wanstall89]. Figure 2.1 shows a

conceptual diagram of an optical see-through HMD.

Scene
generator

Head
Tracker

Monitors

Optical
combiners

Real
world

Graphic
imagesHead

locations

Figure 2.1: Optical see-through HMD conceptual diagram

2.1.2 Video see-through

In contrast, video see-through HMDs work by combining a closed-view

HMD with one or two head-mounted video cameras. The video cameras

provide the user's view of the real world. Video from these cameras is

combined with the graphic images created by the scene generator, blending

the real and virtual. The result is sent to the monitors in front of the user's

eyes in the closed-view HMD. Unlike optical see-through HMDs, the user has

no direct view of the real world, so if the power is turned off, the user is

effectively blinded. Figure 2.2 shows a conceptual diagram of a video see-

through HMD.

22

Video compositor

Head
Tracker

Monitors

Video cameras

Scene
generator

Video
of
real
world

Graphic
images

Combined video

Real
World

Head
locations

Figure 2.2: Video see-through HMD conceptual diagram

Video composition can be done in more than one way. A simple way is

to use chroma-keying, the same technique used in many video special

effects. The background of the computer graphic images is set to a specific

color, say green, which none of the virtual objects use. Then the combining

step replaces all green areas with the corresponding parts from the video of

the real world. This has the effect of superimposing the virtual objects over

the real world. A more sophisticated composition would use depth

information. If the system had depth information at each pixel for the real

world images, it could combine the real and virtual images by a pixel-by-pixel

depth comparison. This would allow real objects to cover virtual objects and

vice-versa. For example, a virtual lamp located behind a real table would be

partially obscured by the real table, just as it should be if it was really there.

2.1.3 Comparison of optical and video see-through approaches

Video see-through offers the following advantages over optical see-

through:

1) Flexibility in composition strategies: A basic problem with optical

see-through is that the virtual objects do not completely obscure the real

world objects, because the optical combiners allow light from both the virtual

and real sources. Building an optical see-through HMD that can selectively

shut out the light from the real world is difficult. Thus, the virtual objects

appear ghost-like and semi-transparent. This damages the illusion of reality

23

because occlusion is one of the strongest depth cues. In contrast, video see-

through is far more flexible about how it merges the real and virtual images.

Since both the real and virtual are available in digitized form, video see-

through compositors can, on a pixel-by-pixel basis, take the real, or the

virtual, or some blend between the two to simulate transparency. Because of

this flexibility, video see-through may ultimately produce more compelling

environments than optical see-through approaches.

2) Wide field-of-view: Distortions in optical systems are a function of

the radial distance away from the optical axis. The further one looks away

from the center of the view, the larger the distortions get. A digitized image

taken through a distorted optical system can be undistorted by applying image

processing techniques to unwarp the image, provided that the optical

distortion is well characterized. This requires significant amounts of

computation, but this constraint will be less important in the future as

computers become faster. It is harder to build wide field-of-view displays with

optical see-through techniques. Any distortions of the user's view of the real

world must be corrected optically, rather than digitally, because the system

has no digitized image of the real world to manipulate. Complex optics are

expensive and add weight to the HMD.

3) Real and virtual view delays can be matched: Video see-through

offers another approach for reducing the registration errors caused by delays.

Instead of predicting the virtual images, delay the video of the real world to

match the delay in the virtual image stream. This approach does not apply to

optical see-through, because that gives the user a direct view of the real

world. However, eliminating dynamic error through this approach comes at

the cost of delaying both the real and virtual views, so it appears to the user

as if everything lags behind. Such problems are common in telepresence

systems and are not easily solved, because "predicting" future images of the

real environment is a non-trivial task.

Optical see-through has the following advantages over video see-

through:

1) Simplicity: Optical see-through is a simpler approach than video

see-through. Optical approaches have only one "stream" of video to worry

24

about: the graphics images. The real world is seen directly through the

combiners, and that time delay is generally a few nanoseconds. Video see-

through, on the other hand, must deal with separate video streams for the real

and virtual images. Both streams have inherent delays in the tens of

milliseconds. The two streams must be properly synchronized, or temporal

distortion results. Also, optical see-through HMDs with narrow field-of-view

combiners offer views of the real world that are basically undistorted. Video

see-through cameras almost always have some amount of distortion that

must be compensated for, along with any distortion from the optics in front of

the display devices.

2) Resolution: Video see-through limits the resolution of what the user

sees, both real and virtual, to the resolution of the display devices. With

current displays, this resolution is far less than the resolving power of the

fovea. Optical see-through also shows the graphic images at the resolution of

the display device, but the user's view of the real world is not degraded.

Thus, video see-through reduces the resolution of the real world, while optical

see-through does not.

3) No eye offset: With video see-through, the user's view of the real

world is provided by the video cameras. In essence, this puts his "eyes"

where the video cameras are. In most configurations, the cameras are not

located exactly where the user's eyes are, creating an offset between the

cameras and the real eyes. This offset introduces displacements from what

the user sees compared to what he expects to see. For example, if the

cameras are above the user's eyes, he will see a view from a vantage point

slightly taller than he is used to. Video see-through can avoid the eye offset

problem with the use of mirrors to create another set of optical paths that

mimic the paths directly into the user's eyes. Using those paths, the cameras

will see what the user's eyes would normally see without the HMD. This adds

complexity to the HMD design, however. Offset is generally not a difficult

design problem for optical see-through displays.

To tackle the registration problem, I chose to use optical see-through

instead of video see-through, primarily because the former is simpler.

Digitizing video images usually adds at least one frame time of delay to the

video stream, where a frame time is how long it takes to completely update an

25

image. A monitor that completely refreshes the screen at 60 Hz has a frame

time of 16.67 ms. Dealing with two delayed video streams instead of just one

makes it harder to synchronize the two streams and to accurately determine

the required prediction intervals. For the purpose of tackling the registration

problem, the disadvantages of optical see-through HMDs are minor, while the

advantages of a single video stream and having fewer sources of optical

distortions are significant.

Note, however, that video see-through can support strategies for

achieving registration that are unavailable in optical see-through, because the

former has digitized images of the real world. This dissertation focuses only

on registration techniques implementable with optical see-through HMDs.

Additional approaches for video see-through that merit future investigation are

briefly described in Chapter 7.

2.2 Tracker

The HMD has a head tracker attached to it, which returns the position

and orientation of the HMD. I assume that the tracker is rigidly attached to

the HMD, so that once the user puts on the HMD and adjusts it, the displays

remain at fixed and constant offsets from the head tracker. The tracker is not

assumed to operate at a constant rate. Reports of head locations must

include timestamps, but they may arrive at variable intervals. Each report

consists of an HMD position and orientation measurement (which I also refer

to as "head" position and orientation for brevity). Head position, which is

returned in meters, is the offset required to move the origin of the World

coordinate system to the origin of the Tracker (i.e., HMD-centered) coordinate

system, as measured in World space. Head orientation is a quaternion that

rotates the Tracker coordinate axes so that they share the same orientation

as the World coordinate axes. The coordinate systems are right-handed.

Figure 2.3 shows how yaw, pitch, and roll are defined with respect to the

Tracker coordinate system.

26

Y

X

Z

Yaw

Pitch
Roll

Figure 2.3: Definition of yaw, pitch, and roll with respect to Tracker
space

Besides the head tracker, the HMD has inertial sensors to detect

velocity and acceleration information. Two clusters of sensors exist, one for

orientation sensors and the other for acceleration. Each cluster consists of

three one-dimensional sensors, mounted in a mutually orthogonal

configuration. Since most three-dimensional velocity and acceleration

sensors are really a cluster of three 1-D sensors internally, this is a

reasonable model to use. For orientation, angular accelerometers or angular

rate gyroscopes are available. I chose to use angular rate gyroscopes, which

detect angular velocity, because that requires only one integration step to

recover orientation, compared with two integration steps for acceleration

information. While also including angular accelerometers would provide direct

measurement capability of angular acceleration, I found I was able to

reasonably estimate that from the angular rate information, as discussed

further in Section 5.3. For position, the only choice available is linear

accelerometers. Linear rate sensors do not appear to exist, since no force is

based on linear rates. Each cluster of sensors is mounted rigidly on the HMD,

in separate locations. The position and orientation of each cluster with

respect to the Tracker coordinate system does not change with time. Each

cluster is assigned its own coordinate system: Gyroscope space and

Accelerometer space. Figure 2.4 gives examples of where these coordinate

systems may be located.

27

Tracker
space

World space

Accelerometer
space

Gyro
space

X

Y

Z
Y

X

Z

Figure 2.4: Example of coordinate systems

Each 1-D inertial sensor produces a signal that represents the angular

rate or accelerations that it detects. These signals must be digitized by an

A/D board and assigned a timestamp. To recover the angular rate in degrees

per second or the acceleration in meters per second squared, I take a

digitized value, subtract a bias, then multiply by a scale factor. Each sensor

has its own bias and scale values, which may drift with time. This drift is due

to thermal variations and one-over-f or flicker noise, which is ubiquitous to

electronic circuits. The distribution of one-over-f noise is more concentrated

at low frequencies than high frequencies, so noise at very low frequencies

causes drift over the periods of minutes, hours and even days.

2.3 System operation

Figure 2.5 provides a high-level diagram of the entire system. This

section steps through the basic operation of this abstract system. Details

about the specific system I implemented will be left for Chapter 5.

28

Scene
generator

Head
Tracker

Monitors

Optical
combiners

Real
world

Graphic
images

Head
locations

Inertial
Sensors

Tracker &
Predictor
computer

Velocity
and
acceleration

Predicted
head locations

Figure 2.5: High-level system diagram

The user wears the HMD and moves his head. The head tracker and

inertial sensors detect this motion and report it to the tracker and predictor

computer. These reports do not have to arrive at regular intervals, but they

must have associated timestamps. The tracker and predictor computer's job

is to process the readings from the various sensors and provide predicted

future head locations as requested. Each time the scene generator is ready

to begin drawing a new set of graphic images, the tracker and predictor

computer provides it with an estimated future head location to use in

generating the viewpoint. How this is done is the subject of Chapter 4.

Once the future head location is provided, the scene generator must

use that to generate appropriate images to display in the HMDs. This

requires knowing certain parameters, primarily the field-of-view of the displays

and the position and orientation offsets between the head tracker origin and

the user's eyes. Determining these parameters is the subject of Chapter 3.

Note that this system is asynchronous. Both the tracker and the scene

generator run as quickly as they can, without synchronization. This

maximizes throughput, but it also means that the system delays will vary with

time, which makes the prediction routines more complicated. This is

discussed further in Chapters 4 and 5. Most real VE and AR systems are

asynchronous. The exceptions are flight simulators, which are often

29

synchronized and place guaranteed limits on system performance

[Reisman90].

2.4 Registration task

All that remains is to specify a registration task that will be used for

evaluation purposes. This task should be something easy to replicate,

sensitive to small errors, and not tied to any particular application. Since I am

attacking the registration problem for optical see-through HMDs in general, I

want the registration task to be abstract, rather than being taken from a

specific AR application.

The task I use is the following: place a hollow wooden crate in the

environment, at a height that is slightly shorter than a standing user, so that

the user can look down upon or along the top edges of the crate to check

registration. The crate measures 15" by 20.5" by 18.75". The goal is to put

three virtual axes so that they are aligned with three edges of the crate, and

they intersect at one corner. The three virtual axes are mutually

perpendicular, forming a virtual coordinate system. Figure 2.6 is a conceptual

diagram of what the crate and virtual axes should look like with proper

registration. Figures 2.7 show what the actual crate looks like, and Figure 2.8

shows what good registration looks like as recorded inside the actual see-

through HMD. The black cylinder attached to one corner of the wooden crate

is there for calibration purposes and is explained in Chapter 3.

30

Wooden crate (hollow on inside)

Virtual magenta bar

Virtual
blue barVirtual

green bar

Figure 2.6: Conceptual diagram of desired registration

Figure 2.7: A picture of the actual wooden crate

31

Figure 2.8: Desired registration as seen inside the see-through HMD

This task satisfies the criteria previously outlined. It turns out that this

task is sensitive to both position and orientation errors, because it is easy to

see such misalignments when looking down the long edges of the wooden

crate. The virtual axes are extruded rectangles of specified thickness, which

basically act as spatial error bars. If the thick virtual bars always cover the

real edges as the user moves around, then I can claim that the apparent

registration is accurate within the width of those bars.

3. Static registration

This chapter describes the methods developed to achieve good static

registration. Chapter 1 introduced the concept of static and dynamic

registration errors. The main contribution of this dissertation lies in the

reduction of dynamic errors. But without good static registration, it is difficult

for a user to evaluate the reduction in dynamic error, as Chapter 1 explained.

Therefore, I also had to develop methods for attacking static error.

This chapter first lists the main sources of static error, then discusses

previous work. It describes the calibration methods and ends with an

evaluation of what was achieved, how that compares to previous work, and

what problems remain.

3.1 Sources of error

Static error was defined in Section 1.4, which listed the main sources

of static error as:

• Distortion in the HMD optics

• Mechanical misalignments in the HMD

• Errors in the tracker

• Incorrect viewing parameters

Optical distortions exist in most HMD systems, especially ones with

wide field-of-view displays. They are a function of the radial distance away

from the optical axis. Near the center of the field-of-view, images are

relatively undistorted, but far away from the center, image distortion can be

large. For example, straight lines may appear curved. In a see-through HMD

with narrow field-of-view displays, the optical combiners add virtually no

distortion, so the user's view of the real world is not warped. However, the

33

optics used to focus and magnify the graphic images from the display

monitors can introduce distortion. This mapping of distorted virtual images on

top of an undistorted view of the real world causes static registration errors.

Mechanical misalignments are discrepancies between the model or

specification of the HMD and the actual physical properties of the real HMD.

For example, the combiners, optics, and monitors may not be at the expected

distances or orientations with respect to each other. If the frame is not

sufficiently rigid, the various component parts may change their relative

positions as the user moves around, causing errors. Mechanical

misalignments can cause subtle changes in the position and orientation of the

projected virtual images that are difficult to compensate.

Errors in the reported outputs from the head tracking system are the

most serious type of static registration errors. As noted in Chapter 1,

Augmented Reality systems require highly accurate trackers. Almost all

commercially-available trackers lack the required accuracy, and no tracker

currently exists that provides high accuracy at long ranges in real time. For

example, commonly-used magnetic trackers give distorted readings at long

ranges because any metal in the environment warps the magnetic fields.

Today, scene generators and see-through HMDs are available with sufficient

performance to support Augmented Reality applications, but the necessary

tracking and sensing technologies are not available. More research needs to

be done to develop such technologies.

Incorrect viewing parameters are the last major source of static

registration errors. Viewing parameters specify how to convert the reported

head locations into viewing matrices used by the scene generator to draw the

graphic images. These parameters include:

• Center of projection and viewport dimensions

• Offset, both in translation and orientation, between the location

of the head tracker and the user's eyes

• Field of view

Incorrect viewing parameters cause systematic static errors. Take the

example of the vertical translation offsets between the head tracker and the

34

user's eyes. If these offsets are too small, all the virtual objects will appear

lower than they should.

3.2 Previous work

Registration of real and virtual objects is not limited to HMDs. Special-

effects artists seamlessly integrate computer-generated 3-D objects with live

actors in film and video. The difference lies in the amount of control available.

With film, a director can carefully plan each shot, and artists can spend hours

per frame, adjusting each by hand if necessary, to achieve perfect

registration. HMDs are a far more difficult medium to work with. The

Augmented Reality system cannot control the motions of the HMD wearer.

The user looks where she wants, and the system must respond within tens of

milliseconds.

Deering demonstrated an impressive registration of a virtual and real

ruler with a head-tracked stereo system [Deering92]. In this system, a user

wears stereo glasses and views images displayed on a high-resolution

monitor. Monitor-based registration has also been shown for mechanical

[Drascic93] [Oyama93] and medical applications [Taubes94]. The registration

problem is significantly easier in head-tracked stereo systems than in HMD-

based systems, because the graphic images do not change nearly as much in

the former for the same amount of head rotation [Cruz-Neira93]. The reason

is that the images displayed in a head-tracked stereo system are primarily

determined by the eye positions, rather than the head orientation.

An extensive body of literature exists in the robotics and

photogrammetry communities on camera calibration techniques; see the

references in [Lenz88] for a start. Such techniques compute a camera's

viewing parameters by taking several pictures of an object of fixed and

sometimes unknown geometry. These pictures must be taken from different

locations. Matching points in the 2-D images with corresponding 3-D points

on the object sets up mathematical constraints. With enough pictures, these

constraints determine the viewing parameters and the 3-D location of the

calibration object. Alternately, they can serve to drive an optimization routine

that will search for the best set of viewing parameters that fits the collected

35

data. These techniques should be directly applicable to video see-through

HMDs. However, it is not clear how to directly apply these techniques to an

optical see-through HMD, where no camera exists. In a typical camera

calibration routine, each image may contain a dozen or so points that must be

identified and their 2-D coordinates extracted. I judged that asking a user to

perform such a task to be unreasonably difficult. She would have to keep her

head still while simultaneously identifying the 2-D coordinates of several

points in the real world, repeating this from many different viewpoints.

At least four different people here at UNC Chapel Hill have attempted

registration with see-through HMDs in a non-systematic fashion. Such

approaches proceed as follows: place a real object in the environment and

attempt to register a virtual object with that real object. While wearing the

HMD, stand at one viewpoint or a few selected viewpoints and manually

adjust the location of the virtual object and the other viewing parameters until

the registration "looks right." These approaches require a skilled user and

generally do not achieve robust results. Achieving good registration from one

single viewpoint is much easier than registration from a wide variety of

viewpoints using a single set of parameters. Usually what happens is

satisfactory registration at one viewpoint, but when the user walks to a

significantly different viewpoint, the registration is inaccurate because of

incorrect viewing parameters or tracker distortions. This means many

different sets of parameters must be used, which is a less than satisfactory

solution.

The only two published works describing static calibration methods

come from Boeing. The printer maintenance application from Columbia

[Feiner93] and UNC's ultrasound application [Bajura92] do not describe the

calibration methods used. The first Boeing reference [Caudell92] describes a

calibration rig and a user viewing task that conceptually should measure most

of the viewing parameters. This paper does not an attempt an evaluation of

how well the method works in practice. The other Boeing reference [Janin93]

describes a method used with an optical see-through HMD and a magnetic

tracker: the Ascension Big Bird. In a personal conversation in August 1994,

Janin reported errors of up to 1.5 inches in the tracker outputs at long ranges.

Because he does not entirely trust his tracker, he spreads out the registration

36

errors evenly across the entire tracker range, thus minimizing the maximum

errors at the cost of raising typical errors. His calibration approach is based

on camera calibration techniques, asking a user to identify the 2-D location of

a single real point from about 200 different viewpoints. The results are sent

into an optimizer that searches for the parameters that minimize the maximum

error.

The best static registration in a see-through HMD claimed by previous

work, in the text and pictures of [Bajura92] [Feiner93] [Janin93], is

±0.5 inches, or about ±13 mm.

The initial inspiration for my boresight operation came from methods

used to align helmet-mounted sights used on helicopter gunships.

3.3 Basic approach

My goals and my choice of technology guided the design of calibration

techniques for static registration. Although the main contribution of this

dissertation comes from the reduction of dynamic errors, good static

registration is helpful for the evaluation of dynamic errors, as described in

Section 1.5. Therefore, the goal is to achieve static registration that keeps the

virtual and real aligned closely enough that the user believes the two to be

linked. I judged this should ideally be within ±2-3 mm, based on viewing

simulations. Also, my choice of an optical see-through HMD meant that each

user must potentially run several calibration routines. Video see-through

HMDs may require fewer calibration steps. The offset between the camera

and tracker does not change from user to user. The only parameter that

requires adjustment for each user is the interpupillary distance (IPD), which is

easily measured by an optometrist's tool. But in optical see-through, several

viewing parameters change with different users. Therefore, I set the following

guidelines:

1) The calibration tasks must be simple. Each user must be able to

perform the calibration tasks. Since most users will not be familiar

with the details of the system and how the parameters work, the

37

calibration tasks must be easily explained to and performed by any

user, not just an expert.

2) The static registration must be good, but it does not have to be

perfect. To effectively demonstrate the reduction of dynamic

errors, I want the following situation: With no prediction, the virtual

axes "swim around" the corner of the crate. With prediction turned

on, the virtual axes stick closely to the real corner, maintaining the

illusion that the two are linked. Based on simulations, this

definitely occurs when errors are kept under 2-3 mm, and it often

occurs with somewhat larger errors, such as half a centimeter.

Since a small amount of static error is tolerable, I did not feel it

necessary to tackle all sources of static registration errors, just the

biggest ones.

3) The calibration routines should trust the tracker and ask the user to

perform view-based tasks that depend on geometric constraints to

determine the parameters. While every tracking system has

errors, I believed that a tracker available at UNC was accurate

enough to allow such an approach. Furthermore, compensating

for tracker errors is most appropriately done by improving the

tracker itself, not by having the applications attempt to handle

distorted data. The emphasis on view-based tasks comes from the

belief that those can be simple to perform, satisfying criterion #1,

and accurate enough to satisfy criterion #2. In view-based tasks,

users attempt to position certain virtual lines to match

corresponding real lines. If the users can perform such tasks

accurately, the resulting registration might be good enough for my

purposes. A simple test of moving my head so that my right eye

looked straight down an edge of a bookcase convinced me that

such tasks might be feasible.

I chose not to attempt a stereo system because of the color mismatch

between the two displays. The monitors are Sony Watchmans: tiny TV sets

aimed at the consumer market. When sending color stereo images into the

two displays, I found the color mismatches to be so bad that I could not fuse

the stereo images. No matter how I adjusted the color and tint settings in the

two monitors, the mismatches prevented me from fusing the images.

38

Therefore, I only use the right eye of the HMD, treating it as a monocular

device.

I chose not to compensate for the optical distortions in the HMD. If the

distortions are known, it is possible to predistort the graphic images to remove

the effects of distortion [Robinett92c]. However, this requires considerable

computational resources to run in real time. The Pixel-Planes 5

implementation uses eight Intel i860 processors running in parallel and adds

latency to the overall system. The extra complexity and lag were major

factors in my decision not to do compensation. Also, the optical distortions

within the HMD are relatively small, becoming obvious only when the gaze

direction is significantly off the central optical axis. Looking 20 degrees off-

axis can bend a virtual object at arm's length about half a centimeter from

where it should be. Since I did not need perfect registration, I decided that it

would be simplest to attempt good registration only in the center of the field of

view. If the optical errors proved large enough to prevent me from evaluating

the improvement in dynamic errors, I could implement optical distortion

compensation later.

I chose to focus on the remaining two sources of static errors: the

tracking system and the viewing parameters. For tracking, I made use of a

custom optoelectronic tracker built at UNC Chapel Hill. To determine the

viewing parameters, I developed several calibration techniques that ask the

user to perform certain tasks. Section 3.4 briefly describes the tracker, and

Section 3.5 explains the calibration techniques.

3.4 Optoelectronic tracker

UNC's custom optoelectronic head-tracker is scalable to any room

size, without the gross distortions seen in commonly-used magnetic-based

trackers. This accuracy at long ranges makes it attractive for use with

Augmented Reality systems. Figure 3.1 shows a conceptual drawing of the

system. Head-mounted optical sensors view beacons mounted in ceiling

panels above the user's head. The beacon locations are known, as is the

geometry of the sensors on the HMD. Theoretically, the sensors must see at

least three beacons to provide enough information to compute the unknown

39

position and orientation of the HMD. In practice, viewing about a dozen

beacons with three or more sensors yields the best results. This configuration

of sources and sensors provides good orientation sensitivity while also

covering any room-sized volume. To increase the range, simply add more

panels to the ceiling. Figure 3.2 shows the actual system, covering a

10' by 12' area. Figures 3.3 and 3.4 show closeups of the HMD, outfitted with

four optical sensors. Figure 3.5 was taken with a camera sensitive to infrared

light, so it shows a pattern of LEDs lit in the ceiling as the user walks

underneath it. For details, see [Azuma91] [Gottschalk93] [Ward92]. Some

additional details will be discussed in Chapter 5.

Figure 3.1: Conceptual diagram of optical tracking system. Diagram
drawn by Mark Ward.

40

Figure 3.2: The actual system in operation

Figure 3.3: Side view of HMD equipped with four optical sensors

41

Figure 3.4: A pair of views of HMD equipped with four optical sensors

Figure 3.5: Lit LEDs in the ceiling

The optoelectronic tracker's performance makes it suitable for

Augmented Reality applications. Update rates are typically 60-80 Hz, with

typical lags of 15-30 ms. These numbers depend upon the number of

beacons viewed and how long it takes to light those beacons and read the

sensors. Thus, the update rate and lag vary with time. Absolute accuracy

has never been measured, but the resolution is well under 0.2 degrees and

2 mm under good tracking conditions. Relative accuracy has been measured

in certain test cases. For example, the HMD was mounted rigidly to a

mechanical turntable. The turntable was accurate to one minute of arc. By

rotating the turntable a certain amount, then comparing that against what the

optoelectronic tracker reported, I found that the relative accuracy for that task

was within 0.2 degrees. For a similar translation task that slid the HMD along

a horizontal bar with ruled markers, I found the relative accuracy to be under

2 mm. Because of these results, the optoelectronic tracker seemed accurate

enough for Augmented Reality applications. However, Section 3.6 will

describe some distortions that were discovered during attempts to use this

tracker with Augmented Reality applications.

42

For the AR system, I used the optical sensors from the HMD shown in

Figures 3.3 and 3.4, but I remounted them on a specially-designed platform

that holds the four sensors in a symmetrical pattern, looking upward.

Because this platform looks vaguely like a hat, it is called the "4-hat."

Figure 3.6 shows the 4-hat by itself, and Figure 3.7 shows the 4-hat with

optical sensors attached. The 4-hat is rigidly mounted to the rear of the

optical see-through HMD, providing double duty as tracking mechanism and

counterweight. Figures 3.8 and 3.9 show the 4-hat attached to the optical

see-through HMD.

Figure 3.6: 4-hat platform for mounting optical sensors

43

Figure 3.7: 4-hat equipped with four optical sensors

Figure 3.8: Front view of optical see-through HMD with 4-hat

Figure 3.9: Rear view of optical see-through HMD with 4-hat

44

3.5 Calibration techniques

Static calibration requires knowledge of the position and orientation of

the objects in the real world, the field-of-view, the center of the field-of-view,

and the position and orientation offsets from the tracker to the user's right eye.

For this system, the only real world object of interest is the wooden crate.

These values are measured in the following order:

1) Position and orientation of the crate

2) Center of the field-of-view

3) Orientation offset between the tracker and the right eye

4) Position offset between the tracker and the right eye

5) Field-of-view

The next four subsections describe these steps in detail.

3.5.1 Crate location

To measure the position and orientation of the crate, I attach a probe to

the 4-hat, as shown in Figure 3.10. The optoelectronic tracker returns the

position and orientation of the 4-hat at the origin shown in Figure 3.11. The

probe, built by Kurtis Keller, was built so that the probe tip lies exactly along

the Z-axis of the 4-hat coordinate system. Since the length of the probe is

known, I can compute the location of the probe tip through a simple

transformation, given the position and orientation of the 4-hat. Therefore, I

can use the 4-hat and the probe to measure the locations of arbitrary points in

space.

45

Figure 3.10: 4-hat with probe attached

Probe

4-hat
(without
 sensors)

Z axis

X axisY axis

Probe tip
Figure 3.11: Diagram of 4-hat coordinate system and probe

With this tool, I measure eight points on the top of the crate. These

points, labeled A through H, are shown in Figure 3.12. The goal is to

determine the locations of the two edges that points A-H lie on. Therefore,

these points must lie along the specified edges and be spaced well apart. It

is not important that the user measure exactly the same set of points across

different digitization runs. To measure each point, the user holds the probe

still and presses one button, waits 1-2 seconds, then presses another button.

The digitization program averages the measurements taken during that time

interval to reduce the noise in the measured probe tip location.

46

A
B

C
D

E F G H X axis

Y axis Z axis

Figure 3.12: Digitized points on two edges of the crate

The locations of the eight points are then sent into an optimization

program. It finds the two 3-D lines that minimize the least-squares distance to

the points A-D and E-H, respectively. Then I force both lines to intersect and

be orthogonal with each other. For each line, I find the point that is closest to

the other line. The average of these two points is declared to be the origin of

both lines. Then I adjust the vectors of both lines to force them to be

orthogonal. Normalizing the two vectors and taking their dot product yields

their angular difference. By taking their cross product, I find the normal to the

plane formed by those two lines. This normal, along with the origin of both

lines, defines the line about which I will rotate both lines to force them to be

orthogonal. Each line is rotated by half of the difference between 90 degrees

and their angular difference. Once this is done, I have two intersecting and

orthogonal lines. The cross product of the vectors yields the third axis, Z.

The three mutually orthogonal vectors and the origin define a local
coordinate system for the wooden crate. Thus, the World→Crate

transformation is now known.

47

This method assumes that the edges of the crate are mutually

orthogonal. To check this, I measured the pairs of diagonals on each of the

three faces adjoining the corner of the crate where the three vectors meet.

This measurement was done with a ruler. The largest difference between the

pairs was about 1.5 mm, on the 18.75" by 20.5" face. This corresponds to

around 0.13 degrees of error.

3.5.2 Crosshair

The center of the frame buffer does not necessarily coincide with the

center of the virtual image seen by the right eye. Therefore, off-center

projections are required to render the graphics images [Foley90], and for that

I need to know which pixel in the frame buffer corresponds to the center of the

field-of-view.

 The optics limit the extent of the virtual images. Beyond some angular

deviation away from the center of the field-of-view, it is not possible to see

any of the virtual image due to the limited range of coverage provided by the

optics. Assume that the frame buffer covers the entire range visible through

the optics. Then it is possible to measure the center of the field-of-view by the

following procedure.

In the frame buffer, draw a non-head-tracked 2-D crosshair, as shown

in Figures 3.13, 3.14 and 3.15. The crosshair is a purely 2-D object,

unaffected by head position or orientation. The crosshair is specified by four

numbers: the (X, Y) coordinates of the center and the Xradius and Yradius, in

pixels. A program allows the user to modify each of the four numbers. First,

the user adjusts the X coordinate of the center and the Xradius until the

leftmost and rightmost lines are equally spaced from the visible edges of the

field of view. This is tested by increasing the Xradius; both lines should

disappear simultaneously or the X coordinate of the center is incorrect.

Similarly, the user finds the Y coordinate of the center by adjusting it along

with the Yradius and watching the top and bottom lines of the crosshair.

48

Virtual, 2-D,
non-head-tracked
crosshair

Figure 3.13: Conceptual view of the virtual crosshair

Figure 3.14: Actual view of crosshair, as seen inside the HMD

49

(X, Y) center

Circle = limit of field-of-view

Y
radius

Xradius

Figure 3.15: Calibration of center of the field-of-view

In practice, the frame buffer is 640 by 512 pixels, generating an NTSC

signal to the monitor. I measured the center of the field-of-view at (330, 255),

which is about 10 pixels away from the center of the frame buffer.

3.5.3 Boresight

The boresight operation determines both the orientation and position

offsets from the head tracker to the right eye. These offsets determine the

transformation to apply to the tracker readings to get the viewpoint at the

user's right eye. Figure 3.16 shows a conceptual drawing of the boresight

operation. The user looks straight down the left edge of the crate with her

right eye. A 0.25" diameter pipe sticking out from the edge helps the user tell

when she is properly aligned with the left edge. Simultaneously, she also

centers the virtual crosshair with the corner of the crate and lines up the

middle horizontal and vertical lines of the crosshair with corresponding edges

of the wooden crate. Figure 3.17 is an external view of this operation,

50

showing the 0.25" diameter pipe sticking out from the corner. Figure 3.18

shows what the user sees as she performs the boresight.

User matches virtual lines
colored and
with correspondingly colored
real edges on the wooden crate

Virtual crosshair

Figure 3.16: Conceptual diagram of boresight operation

Figure 3.17: External view of boresight

Figure 3.18: Internal view of boresight

51

Eye
space

Y

Z

X
Tracker
space

Crate
spaceY

Y

Z
Z

X

X

World
space

X

Y

Z

Figure 3.19: Coordinate systems in boresight

The boresight determines the orientation offset because it locks the

user's Eye-space orientation to the Crate-space orientation. Figure 3.19

shows the various coordinate systems involved. If the boresight is performed

correctly, the Eye and Crate coordinate systems share the same orientation.

That is, it establishes:

Qwc = Qwe

where Qwc is defined as the quaternion that rotates points and vectors from

Crate space to World space, and Qwe rotates points and vectors from Eye

space to World space [Robinett92b]. Quaternions are a way of representing

orientation and rotation operations; for details, please see [Chou92]

[Shoemake89]. Also note from the List of Symbols at the beginning of this

dissertation that the symbol '•' represents quaternion multiplication. Then the

desired orientation offset Qet is computed as follows:

Qte = Qtw • Qwe [by identity]

Qte = (Qwt)−1• Qwc [substitution for Qwe]

Qet = Qte()−1

Qwt is what the head tracker returns, and Qwc was determined in the Crate

location measurement step in Section 3.5.1, so I have enough information to

compute Qet.

52

All that remains is to determine the Eye→Tracker translation offset. As

defined so far, the boresight operation only establishes that the user's right

eye lies somewhere along the ray extending from the left edge of the wooden

crate, as shown in Figure 3.16. The boresight does not measure the distance

between the eye and the corner of the frame. For that, I have to add another

constraint. Along with the previously mentioned tasks in the boresight

operation, the user must now also line up two nails mounted top of the

wooden crate, as shown in Figure 3.20. A red LED is placed on the rear nail

to help the user determine when both nails are lined up. When the front nail

covers the LED on the rear nail, the user knows that they are aligned. These

two nails are visible in the upper right part of Figure 3.18, showing what they

look like when they are not aligned. Lining up the nails forces the eye to be at

a specific distance along the ray extending from the left edge, fully

determining the position of the eye at point P.

Nails

P

T

Figure 3.20: Nails specify distance along ray

With the known location of the nails on the wooden crate, the location

of point P is known in Crate space. This location can be expressed in World

space by using the measurements determined in Section 3.5.1. Point T, the

origin of the tracker, is also known in World space because the head tracker

provides that information. The desired translation offset expresses how to

move points and vectors from Tracker space to Eye space, or equivalently

how to translate the Eye coordinate system origin to coincide with the origin of

the Tracker coordinate system, where the translation takes place in Eye

space. Therefore, all that remains is to take the vector PT
→

, currently

53

expressed in World space, and rotate it to find its value in Eye space. That is,

I need the quaternion Qew, which is computed by:

Qew = Qet • Qwt()−1

where Qet was previously computed, and Qwt is what the head tracker

provides.

In practice, the user performs two separate boresights. The first is

performed at a moderate distance from the wooden crate (about 2-3 feet), for

greater orientation sensitivity. Since this step only determines the orientation

offset, the user does not line up the nails. The second boresight is for the

position offset, requiring the user to line up both nails. This is performed at

close range (under a foot) for greater translation sensitivity.

3.5.4 Field-of-view

The final viewing parameter to measure is the field-of-view (FOV). It

suffices to measure the FOV along the vertical direction in screen space,

since scaling that by the frame buffer's aspect ratio yields the horizontal FOV,

assuming the display optics are not anamorphic. Figure 3.21 shows a

conceptual diagram of the operation. Three lines are drawn on the front

surface of the wooden crate. The locations of these lines in Crate space are

known. The crosshair's Yradius is set to 125 pixels so that the top and bottom

lines of the crosshair are easily visible. The user stands in front of the crate

and lines up the top and bottom lines of the virtual crosshair with

corresponding real lines drawn on the wooden crate. Note that the distance

between the right eye and the virtual crosshair is not known, but that will not

be required.

54

Lines colored
in the virtual crosshair are
matched with the real lines
drawn on the front of the crate

Figure 3.21: Conceptual diagram of FOV calibration

This operation forces the Eye-space X axis to be parallel to the Crate-

space X axis, because otherwise the pair of virtual lines will not appear to be

parallel with the pair of real lines. Therefore, I can reduce this to a 2-D

situation by intersecting each line with the X=0 plane in Eye space. This 2-D

situation is shown in Figure 3.22.

Eye
space

X

Z

Y ß

Virtual
top and
bottom
lines

Top
real
line

z3

z2

y3

y2

Bottom real
line

ß

Figure 3.22: 2-D side view of FOV calibration, in the X=0 plane

The locations of the top and bottom real lines drawn on the wooden

crate are known, in Crate space. From previously determined

transformations, I can convert these lines from Crate space to World space,

and then to Eye space. Intersecting each line with the plane X=0 in Eye

space yields the two points representing the top and bottom real lines, as

shown in Figure 3.22. These are specified by the numbers y2, y3, z2 and z3.

Note that as drawn, y2, y3 and z2 are positive, but z3 is negative. Also note

55

that generally speaking, y2 does not equal y3, nor does the magnitude of z2

equal the magnitude of z3, because the Eye-space Y axis is generally not

parallel to the Crate-space Y axis. However, the crosshair is parallel to the

Eye-space Z axis and bisects the viewing angle, due to the definition of the

crosshair in Section 3.5.2.

The angle ß is computed by either of the following:

ß = tan−1 z 2
y 2







ß = − tan−1 z3
y 3







However, two times ß is not the entire vertical FOV. Recall that the

crosshair's Yradius was set to 125 pixels, so the vertical extent covered by the

crosshair is only 250 pixels. The frame buffer has 512 pixels in the vertical

direction, and the normal Yradius that covers the entire visible FOV is much

larger than 125 pixels. Figure 3.23 shows the situation for computing the

entire vertical FOV.

Eye
space

X

Z

Y

R

ß
ß

ø

ø
Yfov

Y
radius

Figure 3.23: Computing the total FOV

Yfov is set to 125 pixels. Yradius is set to whatever was determined to

cover the visible FOV in Section 3.5.2, assuming the viewport was set to that

vertical extent. Otherwise, the viewport was left at the full frame buffer

vertical extent of 512 pixels, so Yradius is set to 512 pixels. Then the goal is to

compute ß + ø, which is half of the total FOV.

56

tan(ß) = Yfov
R

tan(ß + ø) = Yradius
R

R tan(ß) = Yfov

R tan(ß + ø) = Yradius

tan ß + ø()
tan(ß)

= Yradius
Yfov

ß + ø = tan−1 Yradius
Yfov

tan(ß)






FOV = 2 ß + ø()

3.6 Evaluation

The calibration steps provide enough information to render images of

the virtual objects. The location of the wooden crate specifies where the three

virtual axes should be in World space. The position and orientation offsets

determine the transformation that yields the viewpoint at the right eye, given

tracker data. The FOV has been measured. The only unusual aspect in

rendering the images is the need for an off-center projection, as specified by

the measurement of the center of the FOV.

To demonstrate static registration from a variety of viewpoints, I walked

270 degrees around the corner of the wooden frame where the three virtual

axes intersect and recorded a videotape of what the user saw. This recording

required putting a small video camera inside a bust of a human head, where

the right eye is supposed to be (Figure 3.24). Then the optical see-through

HMD is strapped to this bust and carried around (Figure 3.25). The

incandescent lights used during filming added noise to the outputs of the

optoelectronic tracker, because of the increased infrared background light.

This makes the virtual axes appear to "jump around" more than they normally

would, but it does not change the overall static registration.

57

Figure 3.24: Bust with hole in right eye and video camera

Figure 3.25: Carrying the bust with see-through HMD attached

Figures 3.27 and 3.28 show nine pictures taken from the videotape of

the walkaround. The approximate viewpoints where each picture was taken

are shown in Figure 3.26.

58

1

5

6

Virtual
blue bar

Virtual magenta bar

Virtual
green bar

2

3

1

2

3

4
5

6
7

8

9

4 9
7

8

Figure 3.26: Static registration viewpoints during walkaround

59

1 2

3 4

5 6

7 9

Figure 3.27: Views from static registration viewpoints #1-7 and #9

60

Misregistration
Figure 3.28: View from static registration viewpoint #8

Note that the corners and edges of the frame usually stay within the

width of the thick virtual axes, which act as spatial error bars. The magenta

and green bars are extruded rectangles with 5 mm by 5 mm cross-section.

The blue bar has a 7 mm by 7 mm cross-section because that color was

harder to see than the other two. Those dimensions put the registration within

±4 mm for the red and green bars and ±5 mm for the blue bar. These are not

strict boundaries, however. Figure 3.28 shows one viewpoint where the blue

bar does not cover its corresponding vertical edge, so the static error is higher

than 5 mm there.

The main improvements demonstrated in this work over the previous

work discussed in Section 3.2 is the reduction of typical static registration

errors to ±5 mm, and the demonstration of this registration from a wide variety

of viewpoints, not just one or two. Cross-system comparisons are tricky,

however. With a different see-through HMD, tracking system, and calibration

techniques, one cannot conclude that the calibration techniques alone were

responsible for the improvements.

For example, the calibration techniques previously described are

applicable to any tracking system and any see-through HMD where the frame

buffer covers the entire FOV. However, the registration will only be as good

as the tracker. The results achieved with the custom-built optoelectronic

tracker will probably not be duplicated with a different tracker that may have

61

greater distortions. The calibration techniques assume that the tracker is

accurate and do not take tracker errors into account. Therefore, I do not

recommend their use with trackers that have large distortions. In that

situation, Janin's approach may be more suitable.

The calibration steps assume that the virtual crosshair is projected

correctly. That is, when the user looks at the center of the crosshair, the

crosshair should be orthogonal to the XZ plane in Eye space, with the virtual

vertical lines parallel to the Z axis and the virtual horizontal lines parallel to the

X axis. In practice, this may not be the case, due to mechanical

misalignments in the HMD. While my calibration steps can compensate

somewhat for roll (rotation about the Y axis in Eye space), they will not detect

other rotation errors caused by mechanical misalignments.

I did not compensate for the optical distortions in the HMD, for the

reasons described in Section 3.3, and that may affect the FOV calibration.

Optical distortion is not a problem for most of the calibration steps, because

most of them involve lining things up at the center of the FOV. The distortion

is a function of the radial distance away from the center of the FOV, so at the

center itself the distortion should be practically nonexistent. If the distortion is

purely a radial function, then that should not hurt the determination of the

center of the FOV, since the distortion would affect the edges equally. There

is virtually no distortion of the real world as seen through the combiners, so

optical distortion does not affect aligning the two nails in the boresight

operation. The only calibration step that could be significantly hurt by optical

distortion is the measurement of the FOV, because that involves using virtual

lines at some distance away from the center of the FOV. To reduce this

effect, the user should try to match the top and bottom lines at the points

closest to the middle of his FOV, at the points intersected by the middle

vertical line in the crosshair.

The optoelectronic tracker is not as accurate as it needs to be for AR

registration, requiring compensation or correction. Small distortions exist that

were not discovered until several people at UNC tried using this tracker for

AR applications. Andrei State discovered one by putting the 4-hat on a

mechanical rig that rotates it in place about its origin. Since the origin does

not change as the 4-hat rotates, the reported position should remain constant.

62

Unfortunately, that is not what happens. As the 4-hat rotates, the Z position

changes by less than one or two millimeters, but the X and Y coordinates

slowly trace out an ellipse where the largest diameter is about two

centimeters. One such ellipse is shown in Figure 3.29. Such errors would

easily be visible in the registration task.

1690

1695

1700

1705

1710

1380 1385 1390 1395 1400

Y
 p

os
iti

on
 in

 m
ill

im
et

er
s

X position in millimeters
Figure 3.29: Elliptical path traced out in XY plane as 4-hat rotates 360

degrees about its origin

Since this error is very systematic and tightly coupled to the head

orientation, I was able to compensate for it. I measured the ellipse at the

approximate height of the top of the wooden crate. The calibration tasks all

occur at basically the same orientation, where the user looks toward the front

face of the crate. Therefore, I defined the position reported at this base

orientation to be "truth" and used the numbers from the ellipse to compute

offsets to this position. The result is a function, based on the yaw orientation,

that generates offsets added to the reported tracker X and Y positions to

compensate for the distortion.

Unfortunately, this elliptical error is not the only distortion that exists in

the optoelectronic tracker. Many other subtle ones occur as the user moves

around, and they are not well understood. The source of these distortions is

probably inadequate calibration of the optical sensors and errors in the

63

location of the sensors on the 4-hat. This problem is currently under

investigation. A significant fraction of the remaining static registration errors,

such as the one seen in Figure 3.28, probably comes from these distortions.

Registration accuracy depends on how well the user can perform the

calibration tasks. Users reported some difficulty in keeping their heads still

during the boresight and the FOV measurement operations. Averaging

measurements reduces the noise. Once the user presses a button to

announce that the boresight or the FOV operation has been performed, I

average the results computed from the 60 most recent tracker reports. To

learn what variation remained, I asked three users to repeat the boresight and

FOV operations five times. They moved their heads away in between each

operation. The results are shown in Table 3.1.

Quaternion offset Position offset FOV

standard deviation standard deviation standard deviation

(in degrees) (in millimeters) (in degrees)

User #1 0.27 2.6 0.12

User #2 0.18 1.1 0.17

User #3 0.52 10.9 0.03
Table 3.1: Variance in repeated boresight and FOV operations

The average standard deviations in computed orientation offsets,

position offsets, and FOV were 0.32 degrees, 4.8 mm, and 0.1 degrees,

respectively. Most of the position variation was along the Y axis in Eye

space, the distance that the operation is least sensitive to. The variation in

the orientation offset is too large. Errors in the orientation offset cause

equivalent registration errors, and an error of 0.32 degrees is easily

detectable. In practice, some users had to repeat the calibration steps more

than once before achieving satisfactory registration, probably because of this

variation. It may be the case that the boresight task is simply too difficult to

perform consistently, because it involves aligning several things

simultaneously. Or users may not be able to keep their heads sufficiently still,

especially when burdened with a heavy HMD. This suggests that alternate

approaches for measuring the viewing parameters deserve exploration.

64

The optoelectronic tracker is a line-of-sight system that loses tracking if

the head-mounted optical sensors are not aimed at the ceiling panels. It also

loses accuracy when few sensors are aimed at the ceiling, or few LEDs can

be seen, or if the LEDs are seen at grazing angles or long distances. This

means that I cannot pitch or roll the HMD steeply and retain accurate tracking.

That is why the images in Figures 3.27 and 3.28 do not show the wooden

crate from such viewing angles.

The HMD is not as rigidly attached to the user's head as it should be,

but that has not turned out to be a major problem. The HMD is attached to a

flexible support "web" that straps onto the user's head. This support web is

similar to the one inside construction or baseball helmets. Since the web is

flexible and attached to the HMD basically at only one point, the HMD can

rotate and slide around with respect to the user's head as the user moves.

Initially I feared that this non-constant relationship would ruin the registration,

but in practice it seems to have little effect after calibration. Even when the

HMD slides on the user's head, the HMD itself stays rigid, so the relationship

between the right eye display and the head tracker remains constant. The

user compensates for the sliding HMD by rotating her right eyeball. The net
change in the Tracker→Eye transformation is small, causing little difference in

apparent registration.

4. Dynamic registration

The largest source of registration error is the dynamic error caused by

end-to-end system delays as the head rotates and translates. This chapter

describes and evaluates a method of compensating for these delays:

predicting future head locations with the aid of head-mounted inertial sensors.

Inertial-based prediction reduces average dynamic errors by a factor of

5 to 10 over doing no prediction and a factor of 2 to 3 over non-inertial-based

prediction. Without prediction, virtual objects "swim around" their real

counterparts; with prediction, they stay close enough that users perceive them

to stick together. A possible future direction for further improving accuracy is

described.

4.1 Basic approach

The goal of this dissertation is to demonstrate that predicting future

head locations is an effective way to reduce dynamic registration errors, as

explained in Sections 1.4 and 1.5. In this section, I survey the prediction

problem in general, describe some basic approaches, and explain which

approach I took and why.

Prediction is like driving a car when the only available view is the rear

view mirror. The driver can see what has happened in the past, but he has no

direct view of the future. This is called a causal situation, where all past

values, but none of the future, are known. To keep the car on the road, the

driver must anticipate, or predict, where the road will be, based solely on the

past observations and his knowledge of roads in general. The difficulty of this

task depends on the shape of the road and how fast the car is going. If the

road is straight and remains so, then the task is easy. If the road twists and

turns rapidly, the task may be nearly impossible. Or the difficulty may lie

66

somewhere in between. Thus, the first question to ask about head-motion

prediction is what type of "road" it is — trivial, intractable, or tractable?

Predicting head motions for HMD systems is an interesting and

potentially tractable problem because of the motion characteristics and the

required prediction intervals. Some motions are very well characterized and

easy to accurately predict. For example, the dates and times of solar eclipses

can be predicted centuries in advance. Other motions are so random that

they are basically unpredictable except in a broad statistical sense, like

predicting the location of one particle undergoing Brownian motion. Head

motion lies somewhere in between these two extremes. It exhibits strong

temporal and spatial coherence, but the motion is not so simple that one can

easily find a model that completely characterizes it. Figures 4.1 through 4.8

show parts of two head motion segments. They were recorded from naive

users running demonstration applications of our HMD systems, so they are

called Demo1 and Demo2. The graphs show one position and one

orientation trace from each sequence, with one closeup of each section.

Each segment is about 150 seconds long, and each closeup is about

8 seconds long. In the first run, the maximum angular velocity was

70 degrees per second, while the second run had a maximum of 121 degrees

per second. In typical VE and AR systems, the required prediction intervals

range from 50 to 250 ms. By studying the closeup views, one can see that

prediction might be possible on such curves for small prediction intervals.

Note that some of the curves are noisy, which will pose problems. Chapter 6

will discuss how prediction performance is affected by noise and long

prediction intervals.

67

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1213 1263 1313 1363

P
os

iti
on

 in
 m

ill
im

et
er

s

Timestamp in seconds

A

Figure 4.1: X position in Demo1 motion sequence

1100

1150

1200

1250

1300

1350

1400

1315 1320 1325

P
os

iti
on

 in
 m

ill
im

et
er

s

Timestamp in seconds
Figure 4.2: Closeup of region A in Figure 4.1

68

-50

0

50

100

150

200

1200 1250 1300 1350

Y
aw

 in
 d

eg
re

es

Timestamp in seconds

B

Figure 4.3: Yaw orientation in Demo1 motion sequence

-50

-40

-30

-20

-10

0

10

20

30

1310 1313 1316 1319

Y
aw

 in
 d

eg
re

es

Timestamp in seconds
Figure 4.4: Closeup of region B in Figure 4.3

69

500

1000

1500

2000

2500

3000

1800 1850 1900 1950

P
os

iti
on

 in
 m

ill
im

et
er

s

Timestamp in seconds

C

Figure 4.5: Y position in Demo2 motion sequence

900

1000

1100

1200

1850 1852 1854 1856 1858

P
os

iti
on

 in
 m

ill
im

et
er

s

Timestamp in seconds
Figure 4.6: Closeup of region C in Figure 4.5

70

-150

-100

-50

0

50

100

150

200

250

300

1800 1850 1900 1950

Y
aw

 in
 d

eg
re

es

Timestamp in seconds

D

Figure 4.7: Yaw orientation in Demo2 motion sequence

-30

-25

-20

-15

-10

-5

0

5

1918 1920 1922 1924 1926

Y
aw

 in
 d

eg
re

es

Timestamp in seconds
Figure 4.8: Closeup of region D in Figure 4.7

Another way of looking at the same data is to transform it into the

frequency domain through Fourier analysis. (See Sections 6.2 and 6.6.3 for a

discussion of frequency analysis.) Figures 4.9 through 4.12 show typical

results for translation and orientation curves from a slow and fast head motion

71

sequence. The power spectrum of a curve displays the average square

magnitudes of the coefficients, plotted against frequency. These graphs show

the square root of the power spectrum values, or average magnitudes versus

frequency. Note that virtually all the signal energy in each of the four graphs

exists at frequencies under 2 Hz, which corroborates similar data collected by

[So92]. The 2 Hz value is one way of quantitatively expressing that heads

burdened with HMDs are limited in how quickly they can accelerate,

decelerate, and change direction. It also suggests that predicting long

intervals into the future is essentially intractable. Trying to accurately predict

10 seconds into the future is difficult with a signal that has significant energy

up to 2 Hz. The signal could change direction several times within that

10 second period.

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 10

M
ag

ni
tu

de
 in

 m
ill

im
et

er
s

Frequency in Hz
Figure 4.9: Spectrum of X curve from 1st motion sequence

72

0.001

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 10

M
ag

ni
tu

de
 in

 d
eg

re
es

Frequency in Hz
Figure 4.10: Spectrum of yaw orientation from 1st motion sequence

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 10

M
ag

ni
tu

de
 in

 m
ill

im
et

er
s

Frequency in Hz
Figure 4.11: Spectrum of Y curve from 2nd motion sequence

73

0.001

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 10

M
ag

ni
tu

de
 in

 d
eg

re
es

Frequency in Hz
Figure 4.12: Spectrum of yaw orientation from 2nd motion sequence

Predicting head motion is a specific example of a much larger class of

prediction and estimation problems that have received a great deal of

attention. I draw upon this previous work, adapting general techniques to this

problem as appropriate. The characteristics of this problem determine the

most appropriate approach to take. What are the characteristics of head

motion?

First, head motion is a collection of multidimensional signals that are

difficult to perfectly model. Translation may be represented by a linear model.

If orientation is represented by quaternions, then the orientation model is

nonlinear because the four quaternion terms are nonlinearly dependent on

each other. However, determining a model that closely fits head motion is

nontrivial, linear or not.

Orientation is not intrinsically nonlinear, at least in a local neighborhood

around the current orientation. One way to convert a nonlinear representation

of orientation, such as quaternions, into a linear one is to use the following

steps. First, change the initial quaternion into an equivalent Euler angle,

where the three terms represent yaw, pitch, and roll. Then by using the small

angle approximation, a small rotation away from the initial orientation can be

specified by linear yaw, pitch, and roll operations, where the order of the

74

rotations is unimportant. Integrating these small rotations over time yields

accurate yaw, pitch, and roll orientation curves that avoid gimbal-lock

problems commonly associated with Euler angles. The integration timestep

can be set as small as needed to push the integration error as low as desired.

This produces three Euler angle curves representing orientation that could be

handled by three 1-D linear predictors. However, this integration is expensive

and is not practical in real time.

Second, head motion is nonstationary, which means that the statistical

properties of the curves may change with time. For example, a user may

keep his head still for a long time, then suddenly start moving around at rapid

velocities.

Finally, the measurements of head motion will be corrupted by noise,

generally of a complicated nature. A bandlimited white noise process is one

that has equal magnitudes for all frequencies below a certain limit and zero

energy for all frequencies above the limit. White noise is well behaved, but it

is not generally the case that the tracker and inertial sensor measurement

errors are accurately modeled solely by adding white noise; the inaccuracies

are usually more complicated than that. The existence of noise requires the

use of estimators to extract the best guess of the true value of the signal. The

combination of difficult modeling, nonstationary signals and noise makes it

difficult to apply standard prediction and estimation techniques without first

simplifying the problem or violating assumptions. I now discuss how well the

following general approaches match the head-motion prediction problem:

• Curve-fitting

• Control theory

• Information theory

• Time-series analysis

• Wiener filters

• Kalman filters

Fitting curves or splines to data is a reasonable method for smoothing

but generally gives unsatisfactory results when used for prediction. Because

the data points are corrupted with noise, techniques that approximate the

points should be used, instead of ones that exactly match the data points.

75

Since high-order polynomials can introduce "wiggles" that are not

representative of the original motion, locally-applied low-order curves like

quadratic or cubic polynomials are usually the techniques of choice. I tried

extrapolating future data points with such curves and found that they were

inaccurate predictors.

Several previous works use control theory to aid predictor design;

unfortunately it is difficult to apply that to this particular problem. Control

theory applies to problems where a system attempts to follow a known input

signal as accurately as possible, within the physical limitations of the system.

For example, imagine a robot arm. The input signal tells the arm to move to a

new position. Since the arm has inertia and the motor cannot generate an

infinite amount of force, the arm cannot instantaneously move to the new

position. It requires some time to execute the move. Control theory is the

science of designing controllers that make the arm move in a way that is

optimal with respect to some criterion, such as minimizing the time required or

the energy consumed. Control theory is useful in flight simulators because

airplanes have inertial characteristics and input signals that are easily

measured. A plane cannot instantaneously change direction or speed, and

these limitations are modeled by a transfer function. The input signals come

from the pilot's controls in the cockpit. Figure 4.13 compares the flight

simulator application against the problem of head-motion prediction in an

Augmented Reality system. Within the AR system itself, there is no "inertia"

between the input and output head locations. The AR system only adds

delay. The inertia exists in the human head. To use control theory with this

problem, I would need to somehow measure the neural signals that control

the muscles that move the head. Since I do not have that information

available, it is difficult to apply standard control-theory designs to this

particular problem.

76

Flight Simulator

Augmented reality system

Pilot input
(controls)

Measured stream
of control signals

Delay
Transfer
function
(Plane)

Output
location

Output
location

Delay
Transfer
function
(Head)

Muscle
inputs
(unmeasured)

Measured stream
of head locations

Figure 4.13 Flight simulator vs. Augmented Reality system

Information theory provides some interesting results for the prediction

problem under specific conditions. Assume a 1-D signal is bandlimited,

stationary, and free of noise. Bandlimited means that the signal has no

energy in the frequency domain above a specified frequency. Stationary

means that the statistical characteristics of a signal, such as the mean and

covariances, remain constant with time. With these three assumptions, it is

theoretically possible to predict arbitrarily far into the future with complete

accuracy. This requires knowledge of all past values of the signal and that

the signal be sampled faster than the Nyquist rate. This result makes use of

the bandwidth restriction, not of any statistical properties of the signal.

Conceptually, this result is true because a stationary bandlimited signal will

eventually start repeating itself if observed long enough. By looking into the

past far enough, a predictor can extract enough information to essentially

reconstruct the entire function, allowing prediction for arbitrary intervals into

the future. If the number of past values is limited, formulas exist that minimize

the prediction error based on the number of available values. For details, see

[Splettstösser82] [Mugler90] and other related works.

Unfortunately, these theoretical results are not useful in practice

because measured head-motion signals are noisy and nonstationary. With

nonstationary signals, looking deeply into the past may not be useful for

predicting future values. The existence of noise makes the prediction

formulas impractical. The formulas are extremely sensitive to any noise in the

data. Even the limited precision of floating-point numbers causes problems in

77

practice, restricting effective prediction distances to fractions of the sampling

period, which is not a useful range for the head-motion prediction problem.

Time-series approaches work on noisy data by approximately fitting

specific models to the data. Almost all the literature in this area assumes

stationary, linear signals. Given that values in the incoming signals are

somehow correlated from current time t to a future time t + dt, the goal is to

find a model that fits the data so well that the difference between the model

and the data is white noise. In general, this is impossible, so the task

becomes one of finding or picking a model that matches reasonably well.

Standard models include linear ramps, impulse functions, constant values,

and other curves. Time-series analysis is often used in economic

applications, such as forecasting the demand for heating oil four months from

now, so models often include cyclical components like sinusoidal functions.

Regression methods can be used to find parameters that best fit a specific

model to provided data. By looking at recorded motion sequences in

Figures 4.1 through 4.8, it is clear that such simple models do not accurately

fit head motion data for more than short time intervals. More complicated

models include autoregressive (AR), moving average (MA), autoregressive

moving-average (ARMA), and Box-Jenkins approaches [Montgomery90].

Basic time-series approaches do not use any information about the

derivatives of the signals, since in most time-series applications the only

measurements available are the signals themselves. Clearly, having sensors

that directly measure the velocity or acceleration of the user's head should

make the prediction problem easier. While it is possible to estimate derivative

information from position signals, numerical differentiation is a noisy

operation, and the derivative estimates will be delayed in time from their true

values. That is, a derivative estimator requires some history of position

values to make an accurate velocity estimate, which introduces significant lag.

In contrast, sensors that directly measure velocity provide velocity

measurements with very little delay. Therefore, I chose to augment the HMD

with inertial sensors, and the chosen prediction method should make use of

the additional information those sensors provide.

Two general classes of optimal linear estimators exist: Wiener and

Kalman filters. They generally supersede the ARMA and Box-Jenkins models

78

used in time-series forecasting, at the cost of additional complexity. Both

Wiener and Kalman filters are optimal in the sense that they minimize the

expected mean-square error, given certain assumptions. Wiener filtering

assumes that the signal to be detected is described by a white-noise process,

and this signal is corrupted by a different white-noise source. Both the noise

and the signal processes must be characterized by their known

autocovariance and cross-covariance functions. The Kalman filter has a

different set of assumptions. It assumes that the signals can be modeled by a

set of variables that capture the state of the system at any time, along with a

process that determines how these state variables change with time in the

absence of any inputs. The output of this model, when subtracted from the

signal, results in white noise, and the covariances of that noise are known.

The signals are assumed to be corrupted with white noise of known

covariances. The initial values of the state variables and their covariances

are known. The signals can be nonstationary. Then the Kalman filter will

take the measurements and return the optimal estimate for the state variables

at any desired time.

Kalman filtering is a better choice than Wiener filtering for the head-

motion prediction problem. Wiener filtering assumes a noiselike signal, and

the graphs in Figures 4.1 - 4.8 show that head motion signals have far too

much structure to be accurately modeled as a noiselike signal. Wiener

filtering is also more computationally intensive than Kalman filtering,

especially when simultaneously extracting multiple outputs from a set of

signals. Kalman filtering has an efficient recursive formulation that is suitable

for computer implementation, an important factor when the predictor has to

run in real time. Finally, the Kalman filter can use the derivative information

provided by the head-mounted inertial sensors.

A linear Kalman filter may be adequate for noisy, nonstationary

translation signals, but quaternion-based orientation terms are nonlinear.

Optimal nonlinear estimation in general is either intractable or too

computationally expensive to be practical. Any nonlinear estimators that run

in real time must therefore be suboptimal. Chang [Chang84] surveys such

approaches, including the finite memory filter, the fading memory filter, and

the constant gain filter, but he recommends the Extended Kalman Filter (EKF)

79

for most purposes. A variation of the standard Kalman filter, the EKF

linearizes the model about the operating point specified by the current set of

state variables, using that approximation to make the problem tractable.

 A premium should be placed on simple and fast prediction methods.

The time it takes to run the prediction routine is added directly to the end-to-

end system delay. The difficulty of the prediction problem grows rapidly with

increasing end-to-end delay (see Chapter 6). Increasing the prediction

interval from 50 ms to 500 ms does not make the problem ten times harder; it

makes the problem virtually intractable. Therefore, execution time is a

significant factor in predictor design. A complicated predictor that takes

50 ms longer to execute than a simple predictor must be much more accurate

than the simple predictor, just to break even in terms of performance.

Because of these factors, I chose to use linear Kalman filters to

estimate and predict translation terms and an EKF to estimate and predict

orientation terms. The Kalman filter appears to be the most natural

formulation for my particular problem, which is perhaps why it is also used in

several previous works. Although the uncertainty in both the measurements

and the model are not adequately represented by white noise, the Kalman

filter tends to perform well even when those underlying assumptions are

violated. The next section describes how the Kalman filter works.

4.2 Kalman filters

This section gives an introduction to the Kalman filter. This description

is intended to provide the reader with a basic idea of what the filter does; the

actual equations are listed in Section 4.4. Full details about the Kalman filter

are beyond the scope of this dissertation; for that please read [Lewis86] or the

original papers [Kalman60] [Kalman61]. A good description of the history and

background is in [Sorenson70]. The example I use is based on [Lewis86] and

[Maybeck79].

I will illustrate the basic operation of the Kalman filter with a simple

example. Say that a train is travelling on a long, straight section of track.

Therefore, the position of the train can be described by one number d: the

80

distance of the train from some milestone. The train is equipped with a

speedometer and a sensor that measures the train's position, such as a

Global Positioning System (GPS) receiver. Say that the GPS readings are

only occasionally available. Each sensor also has limited accuracy. The

problem is to determine the position of the train at any specified time.

The Kalman filter is an estimator that combines data from sensors and

a motion model in a computationally-efficient manner. If certain assumptions

hold, the Kalman filter provides estimates that are optimal in the sense of

minimizing the expected mean-square error. The estimates are of variables

that describe the basic characteristics of the system. In this example, these

are position d and velocity v. These two variables are held in a 2 by 1 vector

X, called the state vector:

X =
d

v






The values in the state vector are only approximations of the unknown

true values. This is due to limited sensor accuracies and the fact that the

measurements are not always available. The inaccuracies in the

measurements are assumed to be accurately described by additive white

noise. The Kalman filter models this uncertainty by a Gaussian probability

distribution, as shown in Figure 4.14. This probability distribution comes from

the assumption that all noise processes are white.

d

σ

Probability

Position
Figure 4.14 Gaussian probability distribution for position d

The Gaussian represents the distribution of values where the true position

might be. The most likely position is d, the position in the state vector. The
width of the Gaussian is specified by the standard deviation σ. Large

standard deviations yield "fat" Gaussians, indicating that the estimate of d is

81

not very accurate. Smaller standard deviations yield "narrow" Gaussians,

representing a more accurate estimate.

The Kalman filter stores these uncertainties in a covariance matrix P.

P is an N by N matrix, where N is the number of entries in the state vector X.

For this example, P is a 2 by 2 matrix. The diagonal terms are the variances

of the state variables, while the non-diagonal terms are the covariances. Let
σd be the standard deviation of variable d, and let σv be the standard

deviation of variable v. Then P is:

P = σd
2 σd σv

σd σv σv
2













State X, Covariance P

Measurement Update step
(Corrector)

Time Update step
(Predictor)

Extrapolate X

Sensor
inputs

Predicted
location

Initialize X and P

Figure 4.15 High-level dataflow diagram of Kalman filter operation

Figure 4.15 shows how the Kalman filter updates X and P as

measurements are taken of the train's position. The Kalman filter starts by

setting X and P to their initial values. The filter also sets the current time t to

the initial timestamp. Now every time a GPS measurement is taken, the

Kalman filter modifies X and P to include this new information. It does this in

two steps that are similar in form to predictor-corrector methods used in

numerical integrators. Say the GPS measurement is taken at time tg, which

must be more recent than the current time t associated with X and P. The

Kalman filter runs a time update step (or predictor) that uses a motion model

82

to generate new estimates of X and P at time tg. Then the filter runs a

measurement update step (or corrector) that blends the GPS measurement

with the new estimates of X and P. The result is the final estimate of X and P.

The current time t associated with those matrices is set to tg, and the filter is

now ready for a new measurement.

The Kalman filter extrapolates the values in X to predict positions at

any specified time. Generally speaking, a request for an estimate of X will not

be for precisely the current time t, but for some future time tf. Therefore, the

filter must take the current value of X at time t and extrapolate that to a

predicted value at time tf. This is normally done by running a time update

step from t to tf, but other predictors can be used.

The motion model describes how the values of X and P change in the

absence of any input. The model is assumed to accurately specify the future

behavior of the system, except for the addition of white noise. For this

example, the model is quite simple:

pg = p +v tg − t()
v̇ = ß w (t)

where pg is the new position at future time tg, ß is some constant, and w(t) is

a white noise process. The values in the covariance matrix P always increase

as a result of running the motion model in the time update step. That is due

to the noise in the motion model. As the time update step predicts further into

the future without new measurements, the uncertainty of the estimates in X

must grow. This is similar to a particle undergoing Brownian motion. Say that

the particle's initial position is known, but none of the future positions are

measured. Then the distribution of possible particle locations grows larger

with time, as do the associated variances.

Figure 4.16 shows one example of how the estimated position and

standard deviation change as a result of the time and measurement update

steps. The initial position d at current time t, with associated standard
deviation σd, is on the left side of the diagram. A new measurement dm is

taken at time tg. That measurement has an associated standard deviation
σdm. The train is assumed to be moving from left to right on this diagram.

The time update step takes the initial position d and predicts a new position dt

83

at time tg. The new standard deviation σdt is larger than the initial standard

deviation, for reasons previously described. Then the measurement update

step combines the time update estimate with the measurement, to form the
final estimate df with standard deviation σdf. Note that the final estimate is a

blend of the time-update estimate and the measurement, and that its
associated standard deviation σdf is smaller than either σdt or σdm. By

combining the time-update estimate and the measurement, the measurement

update step provides a more accurate estimate.

Position

Probability

σ
d

td d
f

d
m

d

σ

σ

σ
dt

df

dm

Figure 4.16 An example of how position and standard deviation change
during the time and measurement update steps

The Kalman filter is efficient to implement because it mostly requires

matrix operations and has a recursive formulation. Generally speaking,

producing optimal position estimates might require knowledge of all past

positions. As the set of past positions grows larger, such an algorithm would

take longer to run. The Kalman filter avoids this by a recursive formulation

that captures the information it needs to know about all past values in just two

matrices, X and P, maintained at one timestamp t.

This example provides a high-level description of what the Kalman filter

does and how it operates. The actual equations used to implement the filter

are described in Section 4.4.

84

4.3 Previous work

This dissertation is not the first attempt at predicting head motion for

HMDs. This section surveys previous work on predicting head motion or

related motions. The more general prediction and estimation approaches

were discussed in Section 4.1.

4.3.1 Prediction of head motion

Two papers use head-motion prediction with head-tracked stereo

displays [Deering92] [Paley92]. They extrapolate future head positions based

on past positions reported by the head tracker. For example, Paley averages

the last two measured positions and adds that to the current position to form

his predicted location.

Several papers predict head motion for HMDs. Albrecht developed an

adaptive predictor to predict the yaw and pitch components of orientation

[Albrecht89]. The predictor was not operated in real time. Instead, it ran in

simulation on head-motion data recorded from an F-15 flight simulator that

used a Kaiser Agile Eye HMD and a Polhemus head tracker. His method

keeps the N most recent measurements and assigns a weight to each,

summing the weighted measurements to form the predicted output. The

weights can change with time, making this an adaptive filter. The filter uses a

fixed prediction interval of 100 ms and assumes the tracker inputs are evenly

spaced in time.

Rebo used a Kalman filter to predict head orientation for an HMD

[Rebo88]. His filter model assumes that head acceleration behaves like white

noise. He states that prediction is accurate when head motion is very slow,

but he also notes that when the user comes to an abrupt halt, the predicted

locations oscillate.

Liang also uses a Kalman filter to predict future head orientations and

positions for an HMD [Liang91]. The motion model assumes that head

rotations are infrequent and that head translations mostly occur along the

gaze direction, leading to the choice of a Gauss-Markov model for

acceleration:

85

A = −ß V + K w (t)

where ß and K are constant parameters, A is acceleration, V is velocity, and

w(t) is a unit white-noise sequence. A separate lowpass filter reduces jitter in

the position values because of the noise in their Polhemus tracker. They note

a tradeoff between the smoothness of the predicted outputs versus the

accuracy of the prediction. The predictor assumes that tracker readings are

evenly spaced in time and uses a constant prediction interval.

Smith developed an orientation-only predictor for HMDs [Smith84]. He

takes the rotation matrices that represent the last two orientations reported

from the head tracker, subtracts one matrix from the other, and uses the

resulting difference matrix to linearly extrapolate, component-by-component, a

future rotation matrix.

Rediffusion predicted future head orientations on an HMD-based flight

simulator [Murray85]. Angular rates are estimated from the orientations

reported by a Polhemus tracker. The combination of measured head

orientations and the estimated head angular velocities are used to predict

future head orientations. The method appears to be proprietary, as no other

details or references are provided.

Image deflection is a clever technique for reducing the amount of

apparent system delay for systems that only use head orientation [So92]

[Regan94] [Riner92]. It is not a prediction method per se. Instead, it is a way

to incorporate more recent orientation measurements into the late stages of

the rendering pipeline. Therefore, it is a feed-forward technique. The scene

generator renders an image much larger than needed to fill the display. Then

just before scanout, the system reads the most recent orientation report.

Alternately, one can do prediction based on the recent orientation values,

drastically reducing the required prediction intervals. The orientation value is

used to select the fraction of the frame buffer to send to the display, since

orientation changes are equivalent to shifting the frame buffer output. More

work needs to be done to extend this approach to handle head translations.

So far, all the methods I have described base their predictions on the

reported tracker positions and orientations. Only two methods also make use

86

of inertial sensors to aid head-motion prediction. Both used prototypes of

CAE's Fiber Optic Helmet-Mounted Display (FOHMD) and predict head

orientation. Uwe List mounted angular accelerometers on an HMD and

integrated the acceleration values to provide estimates of angular velocities

[List84]. These velocities are used to extrapolate future head orientations

along each local Euler axis. CAE's 1986 technical report [Welch86] uses

three angular accelerometers to cover all three orientation axes. The

accelerometer readings are filtered, then integrated to provide estimates of

future angular velocities and orientations. The predictions are blended with

estimated orientations and velocities derived from the head tracker to reduce

drift and other systematic errors. Several constant coefficients control the

blending between these values.

The prediction technique actually used in the production version of the

FOHMD is considered proprietary, so no published references are available.

On August 11, 1993, I had the opportunity to personally try the FOHMD at

NASA Ames. That unit had three angular accelerometers, mounted in a

mutually orthogonal configuration, on the back of the helmet. I wore the

helmet both with prediction turned on and prediction turned off. The predicted

motion definitely had much less apparent delay than the non-predicted

motion. However, since the FOHMD is not set up to support Augmented

Reality applications, it was extremely difficult to quantify how much error

remained after the delay compensation. Without registered pairs of real and

virtual objects, I had nothing to use as a basis of comparison. A technician

mentioned that in the past, they also used angular rate gyroscopes in place of

the angular accelerometers.

4.3.2 Prediction of related motion

Friedmann uses Kalman filters to predict the position of a drumstick

[Friedmann92]. With a Polhemus sensor taped to the drumstick, he tries to

detect when the drumstick strikes a surface so he can play a computer-

generated sound. System and tracker delays force him to predict when the

contact occurs to maintain synchronization between the graphics and the

generated sound. He uses a Multiple Model or Generalized Likelihood

87

approach that runs several Kalman filters in parallel and chooses the output of

the one that best seems to match observed measurements in the recent past.

Chu Wang mentions but does not describe a prediction system for

tracked hand motion [WangC90]. He notes problems with overshoots caused

by rapid acceleration or deceleration.

Teleoperation is a related field that also has problems with system

delays. Numerous papers in this area describe delay compensation

techniques; one example is [Bejczy92]. Some teleoperation systems, but not

all, involve head motion. Since the recorded head motion is known, all are

control problems rather than estimation problems. The goal is to make the

slave device follow the recorded motion as quickly and accurately as possible.

Most teleoperation systems have an order of magnitude more lag than typical

Virtual Environment or Augmented Reality systems. Delays of a second or

two are not unusual in teleoperation applications. When delays become that

long, the goal changes from improving real-time matching to avoiding a

complete breakdown of system usefulness.

The flight simulation community has also tackled system delay

problems; examples include [Crane84] [McFarland86] [McFarland88]

[Sobiski87]. Cardullo surveys these and other delay compensation methods

[Cardullo90]. These methods model an airplane and the pilot controlling it in

a simulator, modifying the pilot's control signals to increase stability and

reduce the apparent lag in the system. Sobiski's and McFarland’s papers, for

example, focus on aircraft roll rate.

A wealth of literature exists on prediction and tracking problems for

ships, planes, missiles, and other vehicles, primarily for military purposes.

Typical applications include tracking the path of an enemy airplane or

predicting the path of an incoming ballistic missile. Representative examples

include [Berg83] [Blom84] [Bolger87] [Chang84] [Tugnait87]. The range and

pattern of motions of the human head are significantly different from those of

aircraft, ships, and missiles.

88

4.3.3 Characteristics of head motion

It may be possible to achieve more accurate head motion prediction by

developing more sophisticated models of head motion. The references I have

listed so far basically treat the head as a rigid body and extrapolate based on

the estimated position, velocity, and sometimes acceleration. If head motion

contains other higher-order characteristics, an accurate model may be able to

exploit those to improve prediction accuracy. Not much work has been done

in this area.

The same group at the University of Alberta that wrote [Liang92]

described plans for running experiments to identify higher-order head motion

characteristics in [Shaw92]. The chosen task starts with a user keeping his

head still. A target is drawn at a random location in his field-of-view. The

user rotates his head to center the target in his display. For this task, they

hope to show that rotation paths follow a great arc of a circle and that the

velocity curves are symmetric about the temporal midpoint of the motion.

A few researchers have used Fitts' Law to predict head motion. A Fitts'

task, when applied to HMDs, is the following: Place two targets in virtual

space around the user. The user moves his head so that he aims it at one

target, then the other, then back to the original target, oscillating between the

two targets. Fitts empirically derived a function that, given the size of the

targets and the distance separating the two targets, will predict the time it

takes to complete the task [Fitts54]. This formula, called Fitts' Law, has been

found to apply to a wide variety of motor-control tasks [Meyer88], and head

motion is no exception [Andres89] [Jagacinski85] [Radwin90]. Note that Fitts'

Law does not describe the path the user's head travels, just the time that it

takes to switch between targets.

Several studies of pilots wearing Head-Mounted Sights have been

done; see [Wells87] for an overview. A pilot wearing a Helmet-Mounted Sight

can aim a gun simply by turning his head to look at the target. A typical study

presents a target moving in a somewhat random pattern to the pilot and

measures how well the pilot is able to track the target. Such data may

indicate some characteristics of head motion, at least for the target-tracking

task.

89

A book edited by Peterson describes the physiology of head movement

and may be of use to anyone interested in developing physically-based

models of head motion [Peterson88].

4.4 Prediction method

The predictor is one component of the "Tracker and predictor

computer" module shown in Figure 2.5. It receives head locations, angular

velocities and linear accelerations from the head tracker and the inertial

sensors. When the scene generator is ready to create a new set of graphic

images, it asks the predictor to produce a predicted head location for use in

generating those images. These measurement inputs and requests for

predictions can occur at any time and will not occur at evenly-spaced

intervals. This section first defines the inputs and outputs for this module,

then explains how the translation terms are handled, followed by the

orientation terms. This explanation includes the equations used to implement

the method.

To make this explanation simpler, certain implementation details are

not covered until Chapter 5. Please see Section 5.3 for those details.

4.4.1 Overview

At startup, the prediction module initializes itself. After that, it responds

to two events: 1) an input of tracker and inertial data and 2) a request to

provide a predicted output.

Each input packet supplies the following information:

Timestamp [When these values were recorded, in seconds]

qw qx qy qz [Tracker orientation, as a quaternion]

tx ty tz [Tracker position, in meters]

ω0 ω1 ω2 [Tracker angular velocity in radians per second]

ax ay az [Tracker linear acceleration in meters per second2]

The quaternion representing Tracker orientation is the quaternion

required to rotate the World coordinate axes so that it shares the same

90

orientation as the Tracker coordinate axes. The Tracker position

measurement tells how far to translate the World coordinate axes with respect

to the World coordinate system so that the origin of the World coordinate

system coincides with the origin of the Tracker coordinate system. Thus

taken together, the Tracker orientation and position describe the

transformation that moves points and vectors from Tracker space to World

space.

Angular velocity is reported as omega, a 3 by 1 vector that represents

the instantaneous angular rate of head rotation. Throughout the rest of this
chapter, ω represents omega:

ω =
ω0

ω1

ω 2

















Omega is reported in Tracker space. The 3 by 1 vector that omega specifies

is the axis about which the angular rotation takes place, and the rate of

rotation about that axis, in radians per second, is the magnitude of omega.

The rotation direction is specified by the right-hand rule applied to the axis of

rotation.

Linear acceleration is the translational acceleration, reported in the

same space as the Tracker positions are. The accelerometers do not actually

return this value (see Section 5.3.1), but to make the filter simpler, I assume

there is a "virtual sensor" that returns that value.

There is no direct output from a measurement packet. Instead, the

predictor updates its internal state based on the reported measurements.

Each request for a predicted location comes with a single parameter: a

timestamp specifying the time for the desired predicted location. In return, the

predictor sends the scene generator the following:

qw qx qy qz [Tracker orientation, as a quaternion]

tx ty tz [Tracker position, in meters]

91

The definitions of the Tracker orientation and position are the same as those

in the input measurements.

 4.4.2 Translation

The predictor runs separate filters for the translation and orientation

components. The translation terms are broken up further into the three axes

X, Y, and Z. Separating the three translation terms greatly simplifies the

filters at the cost of ignoring potential correlations across the three axes.

Section 4.5 discusses the ramifications of this decision.

Since the three filters that handle the three axes are identical in form, I

shall describe only the one that handles the Y axis.

Translation is handled by a linear Continuous-Discrete Kalman Filter.

That means the time update step is handled in continuous time, but the

measurements are available only at discrete intervals. The filter requires a

3 by 1 state vector X that holds the state variables representing the current

position, velocity, and acceleration along the Y axis.

X =
y

ẏ
˙̇y

















Associated with this state vector is a 3 by 3 covariance matrix P that

represents how accurate the filter believes the state variables are. The

matrices X and P are maintained at time t, which is considered the current

time. As new measurements arrive, t is advanced and X and P are updated

to reflect the new information from the measurements. But before that

happens, the filter must be initialized.

1) Initialization: The first measurement packet that arrives initializes

the filter. If y is the reported Y axis position in the measurement packet, then

X is initialized to:

X =
y

0

0

















92

Matrix P is initialized to P0, which makes the initial position, velocity and

acceleration covariances large so that the initial values in X will be replaced

by incoming measurements as those arrive.

P0 =
2 0 0

0 500 0

0 0 500

















The current time t is set to the timestamp from the measurement packet.

After the first measurement, any subsequent measurements are

incorporated into the filter by a time update step, followed by a measurement

update step. Say the new measurement occurs at timestamp t1, where t1 > t.

The time update step advances the state variables from time t to time t1,

based upon the motion model. Then the measurement update step blends in

the new measurements taken at time t1. Finally, the current time t is set equal

to new time t1.

2) Time update: The time update step uses a 4th-order Runge-Kutta

ODE solver [Press88] to integrate the derivatives of X and P from time t to

time t1. The derivatives are:

Ẋ = A X

Ṗ = A P + P AT + Ety

A is a 3 by 3 matrix that specifies how to get the derivatives of the state

variables from the state variables themselves. Since X contains position,

velocity and acceleration information, the matrix A simply sets the derivative

of position to velocity and the derivative of velocity to acceleration. The

derivative of acceleration is set to zero. This is the simplest reasonable

motion model given state variables of position, velocity, and acceleration.

A =
0 1 0
0 0 1
0 0 0

Ety is a 3 by 3 matrix that specifies the uncertainty in the motion model.

93

3) Measurement update: The measurement update step takes the

measured position and acceleration and incorporates that into the X and P

matrices. The 2 by 1 matrix Z holds the measured values.

ym = the measured position
˙̇ym = the measured acceleration

Z =
ym
˙̇ym











X is updated as follows:

X = X + K Z − H X()

H is a 2 by 3 matrix that describes how the measurements relate to the state

variables, by the expression Z = H X. In this case, H simply assigns the

measured position to the state variable position and the measured

acceleration to the state variable acceleration.

H = 1 0 0
0 0 1

K is a 3 by 2 matrix called the Kalman gain, which controls the blending

between the model and the new measurements.

K = P HT H P HT + Rty()−1

Rty is a 2 by 2 covariance matrix specifying the uncertainty in the

measurements. The last step is to update covariance matrix P as follows:

P = I − K H()P, where I = the 3 by 3 identity matrix

Section 5.3.2 discusses how to set covariance matrices Ety and Rty.

4) Prediction: Prediction is possible anytime after the filter has been

initialized. The scene generator requests a predicted location at time p,

where p > current time t. In the Kalman filter formulation, the optimal way to

extrapolate future values is to run a time update step from time t to time p,

except that the P matrix is not modified. Thus, extrapolation is based on the

same motion model used by the filter. If the model matches the motion

94

except for added white noise, then this prediction is the best possible in the

sense of minimizing mean-square error. However, other predictors can be

used. In that case, the Kalman filter simply serves to provide the best

estimates of the state variables for the predictor.

Because the model is simple, it is possible to solve the differential

equations and write the predictor as a closed-form expression. The estimated

position, velocity, and acceleration are drawn from the current values in X.

Let yt = the estimated position at time t

Let yt = the estimated velocity at time t

Let yt = the estimated acceleration at time t
Let yp = the computed position at time p

Then yp = yt + yt p - t + 1
2

 yt p - t 2

This result is the same as the expression for computing the position of

a falling body on Earth. This is not surprising, because both situations

assume constant acceleration from time t to time p. One can also think of it

as a 2nd-order Taylor expansion of a function y() about the point t.

In reality, this simple motion model is not a perfect fit to actual head

motion. Another possibility is discussed in Section 4.6.

4.4.3 Orientation

Orientation is handled by a single EKF. The 10 by 1 state vector X

holds the orientation, angular velocity, and angular acceleration terms. Q is a

4 by 1 vector representing the orientation quaternion. As previously defined,
ω is the 3 by 1 vector representing angular velocity.

Q =

qw

qx

qy

qz



















, ω =
ω0

ω1

ω 2

















X = qw qx qy qz ω0 ω1 ω 2 ω 0
.

ω1
.

ω 2
.








T

95

Associated with this state vector is a 10 by 10 covariance matrix P that

represents how accurate the filter believes the state variables are. As in the

translation case, the matrices X and P are maintained at time t, which is

considered the current time. As new measurements arrive, t is advanced and

X and P are updated to reflect the new information from the measurements.

Each prediction request is based on extrapolating readings from the current

values in X. So the three operations that must be supported are initialization,

incorporating a new measurement, and prediction.

1) Initialization: The first measurement packet that arrives initializes

the filter. The four quaternion terms in X are set to the measured quaternion,

while all other terms in X are set to zero. All non-diagonal terms in the

covariance matrix P are set to zero. The first four diagonal terms of P, which

are for the quaternion, are set to 1, while the other diagonal terms of P, which

are for the angular velocity and acceleration, are set to 50. As in the

translation case, these initial values for P are deliberately large so that the

initial values in X will be updated as new measurements arrive. The current

time t is set to the timestamp from the measurement packet.

After the first measurement, any subsequent measurements are

incorporated into the filter by a time update step, followed by a measurement

update step, just as in the translation case. Let the new measurement occur

at timestamp t1, where t1 > t. The time update step advances the state

variables from time t to time t1, based upon the motion model. Then the

measurement update step blends in the new measurements taken at time t1.

Finally, the current time t is set equal to new time t1.

2) Time update: The time update step integrates the derivatives of X

and P from time t to time t1 with the same ODE solver used in the translation

case. The derivatives are:

X = a X, t

Ṗ = A P + P AT + Eorient

Note that the expression for the derivative of the state vector X is

different from the translation case. The derivative is provided by the nonlinear

96

function a(X, t) which computes the quaternion's derivative by the following

formula:

Q̇ = 1
2

Q • ω()

The multiplication between Q and ω is a quaternion multiplication, and the

3 by 1 vector ω is written as a quaternion with the qw term set to zero and the

qx, qy, and qz terms set to the ω0, ω1, and ω2 angular velocity values

extracted from X, respectively [Chou92]. The function a(X, t) provides the

derivatives of the angular velocity terms by returning the angular acceleration

terms in X. The derivatives of the angular acceleration terms are set to zero.

Eorient is a 10 by 10 matrix that specifies the uncertainty in the motion

model.

 The EKF is a suboptimal nonlinear estimator that linearizes the system

about the operating point. Say that the current estimate of the state is Xc.

Then the Taylor expansion of the model around that point is:

a X,t() = a Xc ,t() + ∂a
∂X X=Xc

X − Xc() + …

To linearize this, ignore all terms after the first-order term. The result is

stored in a 10 by 10 Jacobian matrix A. If the state vector X has N variables,

x1 through xN, then the nonlinear a(X, t) function is an N-valued function.

Decompose that into N single-valued functions a1(X, t), a2(X, t), ... aN(X, t).

Then the Jacobian matrix A is defined as:

A =

∂a1
∂x1

∂a1
∂x2

L
∂a1
∂xN

∂a2
∂x1

O M

M O M

∂aN
∂x1

L L
∂aN
∂xN































97

In this case, the Jacobian matrix is set using the qw, qx, qy, qz, ω0, ω1

and ω2 terms from the X vector as follows:

A =

0
−ω0

2
−ω1

2
−ω 2

2
−qx

2
−qy

2
−qz

2
0 0 0

ω0
2

0
ω 2
2

−ω1
2

qw
2

−qz
2

qy
2

0 0 0

ω1
2

−ω 2
2

0
ω0
2

qz
2

qw
2

−qx
2

0 0 0

ω 2
2

ω1
2

−ω0
2

0
−qy

2
qx
2

qw
2

0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



































































3) Measurement update: The measurement update takes the

measured orientation and angular velocity and incorporates those into the X

and P matrices. The 7 by 1 matrix Z holds the measured values. Let the

subscript m denote the measured values:

Z = qwm qxm qym qzm ω0m ω1m ω 2m[]T

The measurement update generates new X and P matrices as follows:

K = P HT H P HT + Rorient()−1

X = X + K Z − h X()()
P = I − K H() P, where I is the 10 by 10 identity matrix

98

Rorient is a 7 by 7 covariance matrix specifying the uncertainty in the

measurements. K is the 10 by 7 Kalman gain matrix. The nonlinear function

h(X) describes how the measurements relate to the state variables by:

Z = h(X)

Z is composed of the measured quaternion Qm and the measured omega ωm.

The function h(X) computes those from the Q and ω terms in the state vector

X as follows:

Qm = Normalize(Q)
ωm = ω

H is the 10 by 7 Jacobian matrix for that function, and it is set using the

qw, qx, qy, and qz terms from X as follows:

Let D = qw 2 + qx 2 + qy 2 + qz2

Let L = D

Then H =

L − qw 2

L
D

−qw qx
L D

−qw qy
L D

−qw qz
L D

0 0 0 0 0 0

−qx qw
L D

L − qx 2

L
D

−qx qy
L D

−qx qz
L D

0 0 0 0 0 0

−qy qw
L D

−qy qx
L D

L − qy 2

L
D

−qy qz
L D

0 0 0 0 0 0

−qz qw
L D

−qz qx
L D

−qz qy
L D

L − qz 2

L
D

0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0











































At the end of the measurement update step, the quaternion part of X is

explicitly renormalized. This is not a standard part of the Kalman filter, but

without this extra step the quaternion term quickly becomes unnormalized,

due to accumulating numerical errors caused by the linearization.

99

Section 5.3.2 discusses how to set covariance matrices Eorient and
Rorient. Section 5.3.1 describes how to recover ωm from the raw gyroscope

measurements.

4) Predictor: The scene generator requests a predicted location at

time p, where p > t. As in the translation case, the standard method of

extrapolation is to do a time update from time t to time p for vector X only.

This integrates the differential equations under the assumption that angular

acceleration remains constant from time p to time t. It is possible to derive a

closed-form solution for this problem.

Let the current time be tc and the ending time be p. This notation will

let t become a dummy variable. It is possible to rewrite the expression for the

derivative of a quaternion as a matrix multiplication:

Q̇ = 1
2

Q • ω() = M(t) Q

While the multiplication of Q and ω is a quaternion multiplication, the

multiplication of M(t) and Q is a matrix multiplication. The 4 by 4 matrix M(t)

that satisfies this equation is defined as follows:

Q̇ = M(t) Q

qw
.

qx
.

qy
.

qz
.



























=

0 −ω0(t)
2

−ω1(t)
2

−ω2(t)
2

ω0(t)
2 0 ω2(t)

2
−ω1(t)

2

ω1(t)
2

−ω2(t)
2 0 ω0(t)

2

ω2(t)
2

ω1(t)
2

−ω0(t)
2 0



























qw

qx

qy

qz

























Note that the ω0, ω1, and ω2 terms change with time because the

assumption of constant angular acceleration implies that angular velocity is a

linear function with respect to time. That is:

100

ω0(t) = ω0(tc) + p − tc() ω0
.

(tc)

ω1(t) = ω1(tc) + p − tc() ω1
.

(tc)

ω 2(t) = ω 2(tc) + p − tc() ω 2
.

(tc)

The general form of the solution to the differential equation Q̇ = M(t) Q

is:

Qp = e M(t)dt∫ Qtc

where Qtc is the original quaternion at current time tc, and Qp is the predicted

quaternion at time p. Integrating M(t) is done on a component-by-component
basis. This requires integrating ω0(t), ω1(t) and ω2(t) from time tc to time p.

ω0(t) dt =
t c

p
∫ ω0(tc) + p − tc() ω0

.
(tc)





t c

p
∫ dt

= p − tc() ω0(tc) + 1
2 p − tc()2 ω0

.
(tc)

Similarly,

ω1(t) dt =
tc

p
∫ p − tc() ω1(tc) + 1

2 p − tc()2 ω1
.

(tc)

ω 2(t) dt =
tc

p
∫ p − tc() ω 2(tc) + 1

2 p − tc()2 ω 2
.

(tc)

Now define a, b, c, d and B to be the following:

a = 1
2 ω0(t) dt =

tc

p
∫ 1

2 p − tc() ω0(tc) + 1
4 p − tc()2 ω0

.
(tc)

b = 1
2 ω1(t) dt =

tc

p
∫ 1

2 p − tc() ω1(tc) + 1
4 p − tc()2 ω1

.
(tc)

c = 1
2 ω 2(t) dt =

tc

p
∫ 1

2 p − tc() ω 2(tc) + 1
4 p − tc()2 ω 2

.
(tc)

d = a2 + b2 + c2

B = M(t) dt =
tc

p
∫

0 −a −b −c

a 0 c −b

b −c 0 a

c b −a 0



















101

Now the problem is reduced to:

Qp = eB Qtc

Since B is now known, what remains is to find a closed-form expression for

eB. By applying a Taylor expansion to eB, I get the following:

eB = I + M + M2

2!
+ M3

3!
+ M4

4!
+ …

where I is the 4 by 4 identity matrix. Note the following relationships hold:

M2 = −d 2 I

M3 = −d 2 M

M4 = d 4 I

M5 = d 4 M

M6 = −d 6 I

M7 = −d 6 M

etc.

Therefore:

eB = I 1− d 2

2!
+ d 4

4!
− d 6

6!
…







+ M

d
d − d 3

3!
+ d 5

5!
− d 7

7!
…








eB = I cos(d) + M
d

sin(d)

So the closed-form solution for Qp is:

Qp = I cos(d) + M(tc)
d

sin(d)





Qtc

Once Qp is computed, I explicitly renormalize it before sending it to the

scene generator.

102

4.5 Evaluation

From the user's perspective, prediction changes dynamic registration

from "swimming around the real object" to "staying close." Without prediction,

dynamic registration errors are large enough to strain the illusion that the real

and virtual coexist. The virtual objects "swim around" the real objects as the

user moves his head, making it difficult to believe that any registration exists.

With prediction turned on, the real and virtual objects stay close enough to

each other that the user perceives them to be together. Although prediction

does not remove all dynamic errors, it demonstrably improves the dynamic

registration.

My prediction method reduces average dynamic errors by a factor of

5 to 10 over not doing any prediction at all, and it reduces errors by a factor of

2 to 3 over doing prediction without the aid of inertial sensors. The larger

factors occur when the head is moving rapidly. At slower speeds, the ratio of

improvement is not as large because of the "noise floor" caused by the noise

in the original signals. These factors are based on three objective error

metrics: angular error, position error, and screen error, where the tracker-

reported locations are assumed to be the true locations.

Angular error is the difference, in degrees, between the predicted

orientation and the actual orientation. Let Qactual be the quaternion that

represents the actual orientation and Qpredicted be the quaternion

representing the predicted orientation. Then the angular error Eang (in

degrees) is computed as follows:

Qdiff = Qactual • Qpredicted()−1

Eang = 2(180)
π

cos−1 Qdiff [0]()

The cos-1() function returns values in radians, and Qdiff[0] is the qw

term from the Qdiff quaternion.

Position error is the difference, in millimeters, between the predicted

position and the actual position. Screen error measures errors based upon

what the user sees, so it is perhaps the best overall metric. Screen error is

103

the difference, in pixels, between the 2-D coordinates of the intersection of the

three virtual axes and the 2-D projection of the real corner of the crate. This

is computed in simulation. An X-window program draws both the "real" crate,

based on the reported head locations, and the virtual axes, based on the

predicted head locations, on a hypothetical 512 by 512 screen covering a

30 degree FOV.

The angular, position and screen error metrics trust that the reported

head locations from the head tracker are the true locations, so these metrics

only measure dynamic registration error, not static error. The program that

calculates screen error computes the projection of the crate based on the

reported head locations and the measured crate location. The simulator

assumes these measurements are exact and that the see-through HMD is

perfect, resulting in perfect static registration. While this does not match

reality, it makes it possible to separate the effects of dynamic registration

error from static registration error.

I recorded three motion sequences that I consider representative for

testing the registration of the virtual axes with the corner of the real wooden

crate. These sequences are called Walkaround, Rotation, and Swing. During

each motion sequence, the user kept the corner of the crate visible in the

field-of-view. In the Walkaround sequence, the user slowly walks around the

corner of the crate, using motions similar to the 270 degree walkaround used

to test static registration in Chapter 3. The Rotation sequence has the user

yawing, pitching, and circling his head while standing in one place. The

Swing motion sequence combines fast orientation and translation motions as

the user aggressively moves and turns his head to look at the corner of the

crate from many different vantage points during a short time span. The user

does not stand in one place during the Swing motion sequence. The position

and orientation traces are shown in Figures 4.17 - 4.22.

104

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

0 5 10 15 20 25 30

P
os

iti
on

 in
 m

et
er

s

Time in seconds

Z

X

Y

Figure 4.17: Walkaround motion sequence: Translation curves

-50

0

50

100

150

200

250

0 5 10 15 20 25 30

A
ng

le
 in

 d
eg

re
es

Time in seconds

Yaw

Roll

Pitch

Figure 4.18: Walkaround motion sequence: Orientation curves

105

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 2 4 6 8 10 12 14 16

P
os

iti
on

 in
 m

et
er

s

Time in seconds

X

Y

Z

Figure 4.19: Rotation motion sequence: Translation curves

-200

-150

-100

-50

0

50

0 2 4 6 8 10 12 14 16

A
ng

le
 in

 d
eg

re
es

Time in seconds

Yaw

Pitch

Roll

Figure 4.20: Rotation motion sequence: Orientation curves

106

1

1.2

1.4

1.6

1.8

2

2.2

0 2 4 6 8 10 12 14

P
os

iti
on

 in
 m

et
er

s

Time in seconds

X

Y

Z

Figure 4.21: Swing motion sequence: Translation curves

-250

-200

-150

-100

-50

0

50

0 2 4 6 8 10 12 14

A
ng

le
 in

 d
eg

re
es

Time in seconds

Yaw

Roll

Pitch

Figure 4.22: Swing motion sequence: Orientation curves

107

I compared my inertial-based predictor against doing no prediction and

against doing prediction without the use of inertial sensors on these three

motion sequences. After examining all previous works that performed head-

motion prediction without inertial sensors and implementing some of them, I

found that predictors of the form that Alberta [Liang91] used gave the most

accurate prediction. Therefore, that is the basis of comparison. Note,

however, that this is not a comparison between my system and Alberta's,

because such cross-system comparisons are difficult to do. They have a

completely different scene generator, HMD, tracker, and application. Instead,

this comparison is within my system framework, where the only difference is

the prediction module used. All the system details covered in Chapter 5 that

improve prediction accuracy also apply to my implementation of non-inertial

prediction, which is based on the predictor described in the Alberta paper. I

found parameters that worked well on several different motion sequences,

using the same search techniques as those used to find the E and R matrices

for my predictor, as described in Section 5.3.2. Thus, the non-inertial

predictor that I compare against is not a representative implementation of

previous work; it is an improved version of previous work. What is really

being determined by this comparison is how much inertial sensors improve

prediction accuracy when the predictor uses a simple motion model.

This comparison is performed by offline simulations on the three

recorded motion sequences, with the results displayable in an X-window

program that simulates what the user would see. The predictors were also

implemented and run in real time in the actual system, with the results

captured on video. The simulation results are comparable to the video taken

in the actual system. The advantage of the simulator is that it allows head-to-

head comparisons on exactly the same motion sequences, something that is

difficult to arrange in the actual system.

108

Walkaround
Ang Pos Screen

SwingRotation
Ang Pos Screen Ang Pos Screen

Prediction
without
Inertial

No
prediction

Prediction
with

Inertial

Average error Peak error

Angular error in degrees
Position error in mm
Screen error in pixels
Prediction interval set at constant 60 ms for all runs

1.3

4.3

14.3

38.0

9.3

62.0

0.2

0.8

2.5

9.0

4.5

26.7

0.1

0.4

1.1

6.1

2.7

15.1

2.2

5.3

6.6

17.6

33.6

92.1

0.6

1.6

3.3

11.7

13.6

51.0

0.18

0.57

1.6

9.8

5.2

36.1

2.5

6.5

17.8

46.0

37.1

118.6

0.6

1.8

5.2

17.1

16.2

62.8

0.2

0.7

2.7

17.8

7.2

30.1

Table 4.1: Summary of prediction errors on three motion sequences

Table 4.1 summarizes the average and peak errors for all three

objective error metrics on the three recorded motion sequences. The average

inertial-based prediction errors are lower by a factor of 5-10 than the average

"no prediction" errors. The average inertial-based prediction errors are also

lower by a factor of 2-3 than the average non-inertial prediction errors, using

any of the error metrics. Figures 4.23 - 4.25 show the actual error curves for

the Swing motion sequence. Figures 4.26 - 4.28 show a small segment of the

yaw orientation curve from the Swing motion sequence with overlaid predicted

yaw curves that result from no prediction, non-inertial prediction, and inertial-

based prediction. Figures 4.29 - 4.31 do the same for a small part of the

Z translation curve from the Swing motion sequence.

109

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14

A
ng

ul
ar

 e
rr

or
 in

 d
eg

re
es

Time in seconds

No prediction

Pred. w/out
inertial

Pred. with inertial

Figure 4.23: Angular errors for Swing motion sequence

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 2 4 6 8 10 12 14

P
os

iti
on

 e
rr

or
 in

 m
et

er
s

Time in seconds

No prediction

Pred. w/out
inertial

Pred. with
inertial

Figure 4.24: Position errors for Swing motion sequence

110

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14

S
cr

ee
n-

ba
se

d
er

ro
r

in
 p

ix
el

s

Time in seconds

No
prediction

Pred. w/out
inertial

Pred. with
inertial

Figure 4.25: Screen errors for Swing motion sequence

-220

-210

-200

-190

-180

-170

5 5.5 6 6.5 7 7.5 8 8.5 9

Y
aw

 a
ng

le
 in

 d
eg

re
es

Timestamp in seconds

Actual Predicted

Figure 4.26: Yaw curve with no prediction

111

-220

-210

-200

-190

-180

-170

5 5.5 6 6.5 7 7.5 8 8.5 9

Y
aw

 a
ng

le
 in

 d
eg

re
es

Timestamp in seconds

Actual Predicted

Figure 4.27: Yaw curve with non-inertial-based prediction

-220

-210

-200

-190

-180

-170

5 5.5 6 6.5 7 7.5 8 8.5 9

Y
aw

 a
ng

le
 in

 d
eg

re
es

Timestamp in seconds

Actual Predicted

Figure 4.28: Yaw curve with inertial-based prediction

112

1.5

1.55

1.6

1.65

1.7

1.75

1.8

4 4.5 5 5.5 6 6.5 7 7.5 8

Z
 p

os
iti

on
 in

 m
et

er
s

Time in seconds

Actual

Predicted

Figure 4.29: Z curve with no prediction

1.5

1.55

1.6

1.65

1.7

1.75

1.8

4 4.5 5 5.5 6 6.5 7 7.5 8

Z
 p

os
iti

on
 in

 m
et

er
s

Time in seconds

Actual

Predicted

Figure 4.30: Z curve with non-inertial-based prediction

113

1.5

1.55

1.6

1.65

1.7

1.75

1.8

4 4.5 5 5.5 6 6.5 7 7.5 8

Z
 p

os
iti

on
 in

 m
et

er
s

Time in seconds

Actual

Predicted

Figure 4.31: Z curve with inertial-based prediction

Another way to view the screen-based errors is in a scatterplot

diagram. Imagine a point one meter in front of the user's right eye. This point

is rigidly attached to the user's head, so that no matter how the user turns and

moves his head, that point is always one meter in front of his right eye.

Ideally, the projection of this imaginary point should always lie in the center of

the field-of-view. However, system delays cause this projection to occur away

from the center. I can take a motion sequence and plot where these

projected points occur in screen space, for the cases of no prediction, non-

inertial-based prediction, and inertial-based prediction. The distribution of

these points indicates how much error the user sees. The wider the spread of

points, the larger the error is. Note that this is similar to, but not the same as,

the screen errors listed in Table 4.1. Those screen errors are based on a

single, static World-space point (the corner of the crate), which is assumed to

always be in the field-of-view. The scatterplot metric keeps the viewing

distance constant and does not require that the user always look at a single

point in World space, making it a more versatile metric.

The next four figures show scatterplots for the Rotation and Demo1

motion sequences. The prediction interval is a constant 80 ms for all the

114

graphs, on a hypothetical 512 by 512 display covering a 30 degree FOV. The

points were evenly sampled out of the original sequence, with one-third of the

points used in the Rotation graphs and one-twentieth of the points used in the

Demo1 graphs. Figures 4.32 and 4.33 show scatterplots for the Rotation

sequence, comparing no prediction, prediction without inertial sensors, and

prediction with inertial sensors. The two figures are identical, except that

Figure 4.33 is in color. Note that the yaw, pitch, and circling motions in the

Rotation run appear as a broad horizontal band, a vertical band, and circular

rings, respectively. This structure in the scatterplots is due to the highly

structured testing motions. In contrast, the Demo1 sequence was taken from

a first-time user running a demonstration application. It is the same sequence

shown in Figures 4.1 through 4.4. Now the scatterplots in Figures 4.34

and 4.35 are more evenly distributed. Those two figures are identical, except

Figure 4.35 is in color. For the Rotation sequence, inertial-based prediction

reduces average errors by a factor of 3.5 over non-inertial-based prediction

and by a factor of 9 over no prediction. For the Demo1 sequence, inertial-

based prediction reduces average errors by a factor of 2 over non-inertial-

based prediction and by a factor of 6 over no prediction. The difference

between the two sequences is that the average rates of motion are higher in

the Rotation sequences, so the factors are higher.

115

••• •••• • • • • • • • • • • • • •• • • •••• ••••••••••
•••••••••••••••••••••••••••••••••••••• ••• • • •••• • •••• ••••••••••••••••••••••••••••••••• •••• • •••• • • • • • • • • • • • • • • • •• • • • •••• • •••

• • ••• ••
•••
••
••
••
••
••
••
••
••
••
••

••••••••••••
••••
•
•
•••••••••••••••

•
•••

••
•
••

•••
••
•

••
•
•
•
•
•
•
•
•
•
•
••
••
••
•
•••••••••••••

•
•
••••
•
•
•
•
••••••••••••••••••••

••
••

•
•
•
•
•
•
•
•
•
•
••
••

•••
•
••••••••

••••
••
•
•
•
•
•••••••••••••••••••••••

•••••
••
••
••
••
••
••
••
••
••
••
•••

•••••••••••
•

•
••••••••••••••••••••

•••••••••••••••••••••••• • •••••••••
•••••••

••••
•••
•••••

••
••••

•••
••••

••••
•••••••

•••••••••••••••••••••••••••• •••• • •••• • ••• •••• • • •• • • • • ••••
•
• ••

••
•
••••
•
••
•••
•••

••••••••
••• • • ••• • ••• • • • • ••••• • • •••

•••
•••

••
••
•••
•••

•••
••
•••••••

•••••••••••••••••••••••••••••• ••••• • • •••••• • •••••
••••

••
••
••
••
••
••
••
•••••

•••••••••••••••••••••••••••••• • •••• • •••••• •••••••
••
•••
••
••

••
•••

••
••

•••••••••••••••
•••••••••••••••••••• • ••• ••••

••• • •• •••
•••••••••• •••••••••••••

•••••••• • • •••• • • ••••••••••••••••••
•••••• •••••••••• • ••••••••••••••••••••••••• • ••• ••••

•• • • ••••• • • ••••••••••••••• • ••••• • ••••• • • ••••••••••••••••••••••
•• • • • • •••• • • • •••••••••••••••••••••••

•••••••••••• ••••••••••••••
••••••••••••••••••••••••••••••

•••••••
••••••
••

•••••••••••••••••••••••••••
•••••••
•
•••
••••••••
••••••••

•••
•
••

••
•
•
•• ••

••
••••••••••••••
•••

•
•• •• • ••••

•
•
•
••
•••••••••
•••••••
•
•••••••
•••

•• •
••

••••••••••••
••••
••
••••

•
•
••••••••••••••

•••••
••••••••
•
••••••
••••

••
••••••••••

••••••••••••••
•
••••••••••••

••
•••
••••

••••••••••••••••••••••••••••••••
••
••••••
•••••••

••••••••
•
•

••••
•••••••••••••••••••••••

•••
•
•••
•••

•••••••••••• • ••••••• ••• ••••••
••••••••• •••
•
••••••

•
••••••••

•
•
•

••••••••••••••••••••••
••••
•••••••••••••
•
•

•••••
• ••••• •••••• • •••••

• ••••
••••••••

•••
•••

•••••••
•• •••••••••••••••••

•••••••
•••
••••••• • ••••• • • •••••• ••••••

••••••••
••
•••••••

••
• •••••••••••••••

•••••
••••••

•••••••••••••••••••••••••••••••••• ••••
•••••••••••

••••••
•• • • ••• •••••••••••••••••••••• ••••••••••••••••••••••••••

••••••••••••• • •••••••••••••••• ••••••• ••••••• •••••• ••• • ••••• • • •••••••••••••••••••••• • •••••• •••••• • • •••• ••••••••••••• •••••••• •••••••••••••••••••••••••••
•• •••

•••••••••••••••••••••••••••••
••••••••••••
•
•••••••••••
••••••
••••••
•••••
••
••••••••
••••
••••••••••••••
••

••
•
••• • • •••

••••••
••
•••
•••••••••••••
••••••
•

••
•••••••
•••••••

••••••••••••••••••
••••
••••••

••••••••••••••••••
•••
••••••••••••••••••••••••••••••••••

•
•••
••••

••••••••••••••••••••••••••••••••••
•••••••••
••••••••••••••••••••

••••
••••••
•••••••••••••••

••••
••••••••••••••••••••••••••••••
••••••••••••••••••• •
•
•••
•••••••

••••••••
••••

••••••
•••••••••••••••••••••

•••••••••••••••••••••
•••••••••••

•••••••••••
•••••••
••
••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••
••••••••••••••
•••
••••••••••••••••••
••••••••• ••
••••••••• ••••••••••••

-80

-60

-40

-20

0

20

40

60

80

-80 -60 -40 -20 0 20 40 60 80

S
cr

ee
n

Y
 c

oo
rd

in
at

e
in

 p
ix

el
s

Screen X coordinate in pixels

• No prediction

• Pred. w/out inertial

• Pred. with inertial

Figure 4.32: Rotation sequence: Scatterplots for no prediction, non-
inertial-based prediction and inertial-based prediction (B/W)

Figure 4.33: Rotation sequence: Scatterplots for no prediction, non-
inertial-based prediction and inertial-based prediction (Color)

116

•

•

•••
• •

•

•
•••

•
• •

•
•

•
•

•

•

•••
••• ••

•

•• • •

•

•
•

•
•

•

•
•

•

•
•

•
• •

•

•
••• • •

•

•
•

•

•

•

•

•
•

•

•

•••
•

•

•

•
•

•

•

•
•

•

•

•

•

• ••
•

•

•

•

•
•

•

•

•

•

••

•
•

•

•

•
•

•

••

•

•
•

•
•

•

••
•

•

•
••

••

•
••

•

•

•

•

•

• •

•
•

•
•

•

•

•

•

•
•

• •
•

•

•
••
• ••

•
•

•

•
•

• •

•
•

• •••
••

••
•

••
••

•
•

•••• •
•

•
•

•

•
•

• •
•

•
••

•

•

•

•
•

•

•

•

•

•

• •

•

•

•

• •

•

•
•

•
•

•

• ••

•
••••

•
••

•
•

•
•

•

•

•
•

• •

•

•

•

•

•

•
•

••
••

••••• • •
•

••
•

•
•

• •

•
•

•
•

•

•

••

•

•

•

•••

•
•

•

•

••

•

•

•
•

••

•
•

•

•• •

•
•

•
•

•
•••

•

•

•
•

•
••

•
•••

•

•
• • •••

• • •
• •

••
• • •

•
•

• ••
•

• ••
• •••••

• •
•
•
•

•
•

•••
• •

•

•

•

•

•

• •
•

•
•••

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•••
•
•

•

•
•

•••••
• •

• •
•

••••
•••

•
•

•
•• ••

•
••

•
••

•
• •

•

•
•
• •

••
•

•
• ••

••
•

•

•

•

•

•

•
••

•

•• •

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

••

•
••

•
••• • • •

•
•

•
•

•
• •

•

•
•

•

• •

•

•

•
••

•

•
•

•
•

••
• • • •••

••
• • ••••

• •• •

•
•

•
•

•

•
•••

••
•
• •

••

•

•
•

•

•

•••• • •

•
•

• •
••

•
•

•
•

•

•
•

•

•
••

•
•

•

•
•

•

• ••
••

•

•

•
•

•
••

•

•

•

•

•

•
•

•

•

•

•
•

•
•

•
•••

• •

••

•

••
••

• •
•

•
•

•• •

• • •

•
• ••

•
•

•

• •

•

•

•

•

•• •
••

••
•
••••
•

•
•
•
•

• •

•

•
•

•
•

••
• • ••

•

• •
•

•

• •
•

•

•

•

•

•
••

• • •••• •

•

• •• •• ••
•

•

••

•

•
••

•

•

•
• •••

•

• ••
•

•

•
•

•

•

•

•

•
•
• ••

•
• •

•

•
•

••

•

•

•
•

•

•

•
•

•••
•

•

••

•

•

•

•
•

•

•• •

•••
•

•

•

• ••

•

•

•

•

•
• •• ••

•
•

•

•
•

•
••

•

•

•

•

•

•
•

•
•

•
•

•

•

•
•
•

•
•

•

•
•

•

•

••
•

•

•
•

•

•
•

•••
••

•

•

•
•• •

•• •
• •

••
•

•
•

•••
•
••••

•
•• •

••
•

•
•

• ••

•

•

•
• •

•

•

•
•

•
•

••

•

•

•

•

•

•

• •

•

•

•

••

•
•

•

••
•

•

•

•
• •
•

•• •••
•••••

•

•

•• ••

•

•

•
•

• ••• ••
•
••

•
••
•

•
• •
••

•
•

• •
•
•• •

•
•••

•

•

• •
• • •

•
• •

• •

• •
• •

•

•

•

•
•

•• •
•• •

•
• •• ••

• •
••• •
••

•

•
•• •

• •• •
•

•• •
• •

•• ••
•
•

••••

•
•••
•
••••• ••
••

•
•

••
•••

•
•

•
•

• •
•

•
•

•

•

•
•

•••
•

•
•

•••

•
•

•
•

••
••
•

•••
•

•
•••••• •
•
•• ••• •

••• ••
•
••

•• ••• •
•

• ••
•
•

• •• •• ••• •••• • •
•

•
•

•

•
•

•

•
•

•
•

•
•

•

•• •

•

•
•

•

•

•

••
• •

•
• •

•

• •
•

• •

•

••

•
•• •

•
•

•
•• •

••

•

•

•
•

••
•

•

•
•

•

•

•

• •
••

•

•

•
•

•
•
••

•
•

•

•
•

••

•
••

••
•• •••

••••
•

•• ••
•

•• •
•

•• ••••••

•

•
•

•
•

•

•

•

•

•
•

•
••

•

•

•
•

• ••
•

•••
•

••
•
• •• •

•

•

•

•

•

•
••
••

•••
•

•

•
•

•
•

•

•
•

•

•
• •

•• ••

•

•

• ••
•

• •

•
•
•
•
• ••

•
•

• ••

•

•

•

•

•
•

•
•

•

•

•

•

•

•
•

•

••

•

•

• •
•••
•

•
••

•
•

• ••
••
•

•
•
•

•

•
• •• ••

••
•

••
• • •

•
• °

°
° °°°°°°

° °°°° °
°°
°

°

°

°

°
°° °

°° °°
°°°°°°°°°

°°
°
°

°

°

°
°° °°°°° °°°

°
°

°

°
°

°
°°°°° °
°

°°°
°°

°
°°

°
°
°°

°

°
°

°
° °°°

°° °
°

°

°

°
°

°
° °
°°°
°

°
°

°

° °° °° °°°°
°°° °°°
°°°
°
°°

°
°°
°°°° °°°° °
°

°
°

°
° ° °

°°
°°°°° °°°
°°° °
°
°
°° °°°°°°°° °°°°°°° °°°

°°

°
°

°°°° °

°° °°

°
°

°
°°

°
°

°

°

°

°

°
°

°

°°
°

°
°°° °°
°
°°°°°°°°°°°°
°

°
°
°°°°

°

°°

°
°°
°

°
°° °

°
°°

°°°
°
°

°
°

° °°°°°
°

°°
°°° °°
°

°° °°°° °
°°

°° °
°°

°
°°
°
°°

°
°°
°

°°°°°°°°° °
° °°° °

°°
°°°°°°°°

° °°
°

°°°°°°°°°°°°°°°° °°° °°°°°°°°°°°°°°
°°

°

°°
°°°°°°

°
°°°

°

°
°

°
°

°

°

°
°°° °°°

°°°°
°°
°°°°°°°°°
°°°°°°°°°°

°°°° °°°°°°°°°
°

°
°°°°°°°°° °°°°°

°

°
°

°
°

°

°°°° °°° °°
°

°° °

°

°
°

° °
°
°

°

°
°

°
°

°°

°°°

°
°

°

°°°°°

°°
° °°

°
°
°

°°
°

°°
°

° °°°° °°° °°

°
°
°
°

°°
°°

°° °°°

°
°

°°°°

°
°°

°°°°°°°°° °°° °° °° °
°
°°°°°°
°

°°

°

°
°

°

° °°°°°
°

°
°
°° °

°
°

°° °° °
°
°

°° °°°°
°
°

°
°°°°°°°

° °°
°

°
°

°

°
°°
°

°
° °°°°° °

° °°
°

°
°°

°
°

°°
°°°°
°°
°

°°° °
° °

°
°° °°

°
°

°

°°

°

°°

°
° °° °°°

°
° °°°° °°°° °°°°°°°
°
°°° °°°°°

°
°

°
°

°
°°

°

-80

-60

-40

-20

0

20

40

60

80

-80 -60 -40 -20 0 20 40 60 80

S
cr

ee
n

Y
 c

oo
rd

in
at

e
in

 p
ix

el
s

Screen X coordinate in pixels

• No prediction

• Pred. w/out inertial

° Pred. with inertial

Figure 4.34: Demo1 sequence: Scatterplots for no prediction, non-
inertial-based prediction and inertial-based prediction (B/W)

Figure 4.35: Demo1 sequence: Scatterplots for no prediction, non-
inertial-based prediction and inertial-based prediction (Color)

117

One problem with using the objective error metrics is deciding what to

use as the true, actual curves, because the readings reported by the head

tracker are noisy and have small distortions in them. If compared directly

against the predicted values, the errors in the head tracker signal will be

counted as errors in the predictor. That is the case in the scatterplot

diagrams shown above. Compensating for the distortions in the head tracker

output is very difficult, but it is possible to reduce the noise. I chose to run the

tracker positions and orientations through a lowpass filter with a 10 Hz cutoff

frequency. Since the filtering occurs offline, I can use a noncausal lowpass

filter that does not introduce any phase shifts into the signal [NASAksc]. The

result is considered the actual signal that is compared against the predicted

outputs for the results listed in Table 4.1.

How much do prediction errors grow as the prediction intervals

increase? Figure 4.36 shows a typical result with the Rotation motion

sequence. It shows how the average screen error changes for no prediction,

prediction without inertial sensors, and prediction with inertial sensors, as the

prediction interval changes from 25 ms to 200 ms in steps of 25 ms. While

this figure is for one specific motion sequence, the results from other motion

sequences and error metrics are quite similar to this one. This curve is

another measure of how much inertial sensors help in the prediction task.

While the "no prediction" curve grows linearly with time, the predicted curves

grow at faster than linear rates. By the 500 ms mark, both types of

predictions would be less accurate than doing no prediction at all. Thus,

prediction is not effective at long prediction intervals.

118

■

■

■

■

■

■

■

■

°
°

°

°

°

°

°

°

▲ ▲ ▲
▲

▲

▲

▲

▲

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
cr

ee
n

er
ro

r
in

 p
ix

el
s

Prediction interval in milliseconds

■ No prediction

° Prediction w/out inertial

▲ Prediction with inertial

Figure 4.36: Average error versus prediction interval

Besides prediction errors, the jitter in the predicted signals also grows

as the prediction interval increases. Jitter refers to noise-like high-frequency

signals in the predicted outputs that are not representative of the original head

motion. Jitter is disturbing to the viewer; it resembles motion that one might

expect from a head that was trembling or shaking at a rapid rate. Figure 4.37

demonstrates what jitter looks like. This figure graphs a small segment of a

pitch curve with an overlaid prediction generated at a prediction interval of

130 ms. The high-frequency oscillations in the predicted curve are jitter.

Jitter occurs because the predictor amplifies the high-frequency components

in the original signal. This is explained in the frequency-domain analysis

performed in Chapter 6.

Removing jitter proved impossible because that adds too much delay

to the predicted signal. Reducing jitter requires suppressing a range of

frequencies. Any such method must examine the signal for a long enough

time to identify those frequency components. Low frequencies require longer

periods than high frequencies. This examination time causes a delay in the

filtered signal. It turns out that the frequencies that must be suppressed are

low enough that identifying them adds delay on the order of tens of

119

milliseconds. Recall that delay is what the predictor is trying to remove in the

first place! I tried several approaches to reduce jitter, but anything that

significantly reduced jitter also significantly hurt prediction accuracy. In

practice, the only way to keep jitter within tolerable levels is to keep the

prediction interval short.

Empirically, in my system it is best to keep system delays to ~80 ms or

less. The actual system has a total end-to-end delay that usually varies

between 50 and 70 ms. Thus, my predictor will not be useful in AR systems

that have 200 ms of delay. To be effective, prediction must be used in

conjunction with efforts to minimize system delay.

-2

-1

0

1

2

3

4

5

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

P
itc

h
an

gl
e

in
 d

eg
re

es

Time in seconds

Actual

Predicted

Figure 4.37: Jitter in predicted pitch curve

Making the theory agree with real data proved harder than expected.

Defining a relationship, using that to generate simulated data, then running

the data through an algorithm is not a difficult test. The data and the math will

agree, because the equations used to generate the data are the same as the

ones in the algorithm. Making an algorithm work on data collected from real

sensors is a different story. For example, I struggled with several references

that gave different definitions for the derivative of a quaternion, none of which

matched my collected quaternions and omegas. I learned that this definition

changes depending upon what direction of rotation the quaternion represents

and what space the omegas are represented in. It took a while to find a

source that agreed with my collected data [Chou92]. A significant amount of

120

my effort went into finding these relationships so that the math would work on

collected data.

Simplifying the predictor by breaking it into four different Kalman filters

makes the predictor much faster. Let N be the number of variables in the

state vector X and F be the number of measurements in Z. Several matrix

multiplications involving N by N and N by F matrices are required, and one

F by F matrix inversion is needed. Therefore, the cost of operating a Kalman

filter is a function of F cubed or N cubed, whichever is larger. On an i860, the

three translation Kalman filters (N = 3) take less than one ms combined to

process a new measurement, while the orientation filter (N = 10) requires

nearly 10 ms. Putting everything into one filter (N = 19) makes the predictor

too slow. The speed gains are important, because the prediction problem

gets much harder with increasing system delay.

Using four separate Kalman filters also potentially hurts prediction

accuracy, because that prevents modeling relationships between the

separated terms. For example, the accelerometers detect angular

acceleration and gravity, which could help the orientation filter. Also, any

correlations between the orientation and translation terms cannot be

accounted for. This is a potentially serious omission, because the origin of

Tracker space does not lie along the center of rotation. That means that as

the user rotates his head, the position of the tracker origin changes. These

two motions are strongly correlated, so a more sophisticated predictor should

exploit that.

4.6 Future directions

While my predictor is sufficient to support the thesis statement, more

accurate predictors may be possible, especially if the predictor can be tuned

to a specific application. Increasing prediction accuracy basically means

building a more accurate motion model. This section shows how the models I

use approximate motion and what might be done to improve them.

One way to examine models is to see how well they extrapolate

velocity. If a predictor somehow knew exactly what the future velocities were

121

during the entire prediction interval, then the predictor could integrate those

velocities to generate essentially perfect predictions. Deviations away from

the correct future velocities result in prediction errors. I can graph how the

non-inertial-based and the inertial-based predictors extrapolate velocity.

The non-inertial-based predictors have state vectors that only contain

position and velocity terms. They usually assume that velocity is constant

across the prediction interval. Figure 4.38 shows what this looks like. The

extrapolated velocities, drawn as dashed lines, are overlaid against a 1-D
angular velocity curve. This curve is the ω2 component of omega,

representing the instantaneous angular velocity along the yaw direction in

Tracker space. Note that the approximations to velocity are flat lines, and that

they do not match the original curve well.

-1.5

-1

-0.5

0

0.5

1

1.5

3.41 3.51 3.61 3.71 3.81 3.91 4.01 4.11 4.21 4.31 4.41 4.51

A
ng

ul
ar

 v
el

oc
ity

 in
 d

eg
re

es
 p

er
 s

ec
on

d

Time in seconds
Figure 4.38: Constant predicted velocities

The inertial-based predictor includes acceleration in the state vector,

making the velocity approximations more accurate. Including measured

velocity or acceleration from the inertial sensors allows reliable estimates of

acceleration to be included in the state vector. The motion model assumes

that acceleration is constant across the prediction interval. Figure 4.39 shows

122

what these approximations look like. Again, selected extrapolated velocities

are drawn as dashed lines on top of the original angular velocity curve. Note

that the estimated velocities are now lines with constant slope. The match is

better, but not always accurate. They match most closely when the curve can

be adequately modeled as a straight line across the entire prediction interval.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

3.41 3.51 3.61 3.71 3.81 3.91 4.01 4.11 4.21 4.31 4.41 4.51

A
ng

ul
ar

 v
el

oc
ity

 in
 d

eg
re

es
 p

er
 s

ec
on

d

Time in seconds
Figure 4.39: Linear predicted velocities

It is not practical to include more than one additional derivative in the

state vector. Including more derivatives beyond acceleration in the state

vector would allow quadratic, cubic, and higher-order curves to estimate

future velocities. Much like including additional terms in a Taylor series, these

derivatives theoretically should improve the velocity estimates. However, that

is true only if accurate measurements or estimates of those higher derivatives

are available. No sensors exist that directly detect derivatives above

acceleration. In practice, it is only possible to estimate at most one derivative

above what the sensors directly detect, because numerical differentiation is a

noisy operation. Therefore, the most that can be added to the state vector is

the derivative of acceleration (sometimes called jerk). Adding more terms

also increases the amount of jitter in the predicted signal, so it is something to

be carefully considered.

123

Instead of increasing the state vector, change the assumption that

acceleration is constant across the prediction interval. This assumption is the

result of setting the derivative of acceleration to zero. Figures 4.40 and 4.41

show some estimated acceleration curves for orientation and translation,

based on captured data. Clearly, acceleration rarely stays constant. The

Alberta model assumes acceleration is proportional to velocity with added

white noise, but that model is no more accurate than the assumption that

acceleration is constant. In fact, the acceleration curves change rapidly

enough that I do not believe it possible to perfectly predict acceleration across

the required prediction intervals of 50 to 80 ms. About the only hope is to

modify the model of constant acceleration to something that is more accurate

on average.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

5 6 7 8 9 10 11 12 13 14 15A
ng

ul
ar

 a
cc

el
er

at
io

n
in

 d
eg

re
es

 p
er

 s
ec

on
d^

2

Time in seconds
Figure 4.40: Estimated angular acceleration

124

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1275 1280 1285 1290

Li
ne

ar
 a

cc
el

er
at

io
n

in
 m

et
er

s
pe

r
se

co
nd

^2

Timestamp in seconds
Figure 4.41: Estimated linear acceleration

A Bayesian approach might produce more accurate models for specific

applications. The extrapolated acceleration is constant across the prediction

interval because the predictor assumes that the probability that acceleration

will increase is equally likely as the probability that it will decrease.

Figure 4.42 shows what the range of possible accelerations looks like, based

on this assumption. In this situation, the estimate that minimizes the expected

mean-square error is simply the last known acceleration. That is, acceleration

remains constant. The assumption of even probability distributions is

essentially Fischerian. However, it may not be the case that the probability

distribution of future accelerations is even, as the white noise model suggests.

In that case, a colored noise model should be used which biases the

expected direction of acceleration. This colored noise model must be

statistically derived from recorded motion sequences, rather than high-level

assumptions. The colored noise model can be thought of as a Bayesian prior

that changes the estimate that produces the minimum expected mean-square

error.

125

current_time future_time

prediction
interval

Initial
acceleration

Time

Range of possible
future accelerations
by white noise
assumption

Acceleration

Predicted acceleration
(same as initial) that
minimizes expected
mean-square error

Figure 4.42: Why the acceleration estimate is constant

Since head motion is nonstationary, it may be possible to generate

several models and switch between them adaptively. The framework for

adaptive filters is straightforward [Magill65]. A common method is to run

several Kalman filters in parallel, each with a different model, then choose

one output or blend the various outputs. These are sometimes called Multiple

Model or Generalized Likelihood techniques. The difficult part of adaptive

filters is not in the adaptive framework; it is in building the models in the first

place.

Tuning models too tightly to specific motions can be dangerous. When

that happens, prediction will be highly accurate if the actual motion matches

expectations. But if the actual motion is different from what the model

expects, errors can become very large. In target-tracking applications this is

sometimes referred to as "losing lock" on the target. Therefore, a tradeoff will

exist between generalized models that have larger average errors versus

more specialized models that have smaller average error but large peak

errors. Because the characteristics of head motion can vary considerably, I

investigated simpler, more general models that avoid large peak errors.

However, the choice may depend upon the application being used.

126

Specializing prediction for a particular application has the potential to improve

accuracy, at the cost of generality.

5. System and prediction details

Chapter 2 provided an abstract, high-level description of the

Augmented Reality system. That was enough background to understand the

static and dynamic registration techniques described in Chapters 3 and 4.

However, understanding how the prediction routine described in Chapter 4 is

actually implemented in the real-time system requires more detailed

knowledge of the system than Chapter 2 provided. This chapter provides

those details and describes the problems and lessons learned from

implementing the predictor as part of an operational Augmented Reality

system.

5.1 System details

Pixel-Planes 5

Prediction GP

Sun-4
Tracker boards

Ceiling panels

Inertial
sensors

12-bit A/D
4 optical
sensors

Images

LCDs PC

Figure 5.1: Overall system diagram

Figure 5.1 shows a high-level overall view of the system. This figure

provides more detail than the conceptual system diagram in Figure 2.5. I now

step through the basic system dataflow shown in Figure 5.1. Four optical

sensors on the HMD view LEDs mounted in special ceiling panels above the

user's head. The head-mounted inertial sensors are read by an A/D board in

a personal computer. Both the optical sensor and inertial measurements are

128

sent into the three single-board computers that run the optoelectronic tracker.

These computers determine the head position and orientation, given the

measurements from the optical sensors. The computed head location and

the inertial measurements are sent into Pixel-Planes 5, UNC's custom-built

scene generator. Pixel-Planes 5 is a parallel machine, containing several

Graphics Processors (GPs) in a MIMD arrangement. One of the GPs is

reserved for the prediction computations. This prediction GP reads the head

location and inertial measurements, predicts a future head location, and

sends that to the other parts of Pixel-Planes 5 to generate a new set of

images that is displayed in the HMD.

The next several subsections explain the individual components

separately: the HMD, inertial sensors, optoelectronic tracker, Pixel-Planes 5,

and the communication paths. Then this section ends by showing how all the

parts connect together, in detail.

5.1.1 Optical see-through HMD

The optical see-through HMD was introduced in Chapter 3. Doug

Holmgren built it using mostly off-the-shelf parts [Holmgren92], so that

researchers at UNC would have a see-through HMD to experiment with until

better ones arrived. Other see-through HMDs existed at UNC before

Holmgren's, but none of those were as reliable, adjustable, and rigid.

Figure 5.2 shows a front view of the HMD. Figures 3.8 and 3.9 show the

HMD as I use it, equipped with optical and inertial sensors. The field-of-view

in each eye is approximately 30 degrees. The optical combiners transmit

about 30% of the light from the real environment. Each LCD display is a color

Sony Watchman monitor, with 240 rows of 340 individual pixel elements.

Since a triad of elements is required to represent one full-color pixel, the

effective true horizontal resolution is about 113 pixels. Including the optical

and inertial sensors, the HMD weighs over eight pounds.

129

Figure 5.2: Optical see-through HMD

5.1.2 Rate gyroscopes and linear accelerometers

The inertial sensors consist of three angular rate gyroscopes and three

linear accelerometers. The three gyroscopes are mounted in a mutually

orthogonal configuration. The three accelerometers are also mounted

mutually orthogonally. The two clusters are shown in Figures 5.3 and 5.4.

The small black boxes are the accelerometers, while the large silver metal

disks recessed into the metal housing are the gyroscopes. The box that

houses the gyroscopes measures 4.5" by 3.5" by 2". The total weight of all

the inertial sensors and the mounting boxes is about one pound.

130

Figure 5.3: One view of gyroscopes and accelerometers

Figure 5.4: Another view of gyroscopes and accelerometers

The gyroscopes are Systron Donner QRS-11 units. Each detects the

rate of angular rotation about one axis by using a pair of vibrating tuning forks

that detect the Coriolis force. Each gyroscope reports angular rates within the

131

range of ±300 degrees per second by generating an output voltage in the

range of ±2.5 Volts. The gyroscopes are purely analog devices that do not

require any synchronization or clock signals; the voltage generated by a

gyroscope represents the rate of rotation that it detects at that instant. These

devices are quite accurate. For a ±100 degrees per second sensor, the

manufacturer claims resolution of less than 0.002 degrees per second

[Systron91] and a net integrated drift ranging between 1.4 and 8.3 degrees

per hour [Garcia92].

The accelerometers are Lucas NovaSensor NAS-C026 linear

accelerometers, reporting accelerations within the range of ± 2 g, where g

represents the acceleration due to gravity at sea level. The accelerometers

are micromachined cantilever beams that respond to linear acceleration,

angular acceleration, and gravity along one axis. The measured acceleration

is reported as a voltage in the 0-5 Volts range. Like the gyroscopes, the

accelerometers are purely analog devices that do not use clocks or other

synchronization signals.

The analog outputs of both the accelerometers and the gyroscopes are

read by an Analog to Digital (A/D) conversion board in an Intel 80486 PC.

The A/D board is the National Instruments AT-MIO-16D, which performs the

A/D conversion to 12 bits of accuracy. This board does not have sample and

hold capability, so the six signals are read sequentially. However, the board

is capable of sampling a signal at 100,000 Hz, so the set of six signals can all

be read within a few microseconds of each other, minimizing any errors due

to the sequential sampling. Normally I set the A/D to sample each group of

six signals at 200 Hz.

Maximizing the signal-to-noise ratio on the inertial sensors was a prime

concern, especially since I have long analog lines running from the sensors to

the A/D board in the 80486 PC. The sensors are plugged into an electronics

box attached to a backpack that the user wears. This box provides power

and reroutes the analog outputs so that only one cable is needed to carry all

six signals back (Figures 5.5 and 5.6). The box converts the ±12 Volts from a

remote power supply into the voltages that the inertial sensors require. The

power lines for the accelerometers are biased by -2.5 Volts so that both the

gyroscopes and accelerometers report outputs in the ±2.5 Volts range. The

132

gyroscopes require isolated power supplies, both on the positive and negative

sources, or they produce noisy outputs due to a large negative power noise

rejection ratio at a high frequency. Consequently, the electronics box

contains six voltage regulators, two for each gyroscope (Motorola LM317M

and LM337M). The cable from the box to the PC is about 25 feet long, which

is a possible source of additional analog noise. Therefore, the A/D board runs

in differential mode, and each signal and return pair has its own twisted-pair

lines. The cable does not shield each twisted-pair individually, but it does

provide outer shielding for all the wires. The cable is Belden 9509. Before

the signals go into the A/D, they are put into a metal-shielded breakout box

that sits next to the 80486 PC (Figure 5.7). Each signal is sent into an analog

single-pole lowpass filter with 48 Hz cutoff frequency, then sent into the A/D

board. The gyroscopes have a noise spike at 262 Hz, which appears to be an

intrinsic property of all three gyroscopes, so using a notch filter for those

devices might be a better solution. The 48 Hz lowpass filters add about 3 ms

of delay to a 1 Hz input signal.

These steps appear to work well in controlling noise. When the inertial

sensors are kept still, the digitized values reported by the 80486 PC change

only in the least-significant bit, even when jostling the long cable.

Figure 5.5: External view of the electronics box

133

Figure 5.6: Internal view of the electronics box

Figure 5.7: A/D breakout board next to the PC

134

5.1.3 Optoelectronic head tracker

Pixel-Planes 5
scene
generator

Ceiling panels with LEDs

68030-based
processor

i860-based
processor

LED Manager Collinearity

Remote
VME bus

Pixel-Planes 5's
Sun-4 host VME bus

Head
location

4 Optical
sensors

RP
pack

TAXI
linkLED

commands

Bit-3
bus
extender

Queue Manager
68030-based
processor

Figure 5.8: Optoelectronic tracker architecture

The basic operation and performance of the custom-built

optoelectronic tracker were described in Chapter 3, but not the architectural

details. Figure 5.8 shows the architecture of the optoelectronic tracker.

Three single-board computers are used: two 68030 boards and one i860

board. One 68030 board resides in a standalone Sun-3 VME chassis that sits

next to the ceiling superstructure. That board runs a program called "LED

Manager," which is responsible for choosing the sets of LEDs to flash and

reading the optical sensors. The readings reported by the sensors are the

imaged 2-D photocoordinates of the viewed LEDs. These are digitized by

A/D's in the "Remote Processor" (RP) pack, which the user wears to avoid

sending analog signals across long distances. The digitized photocoordinates

are sent to LED Manager by a TAXI-based datalink. LED Manager then

sends the photocoordinates, along with the ID numbers of their associated

LEDs, to the i860 processor. This communication is handled by the "Queue

Manager," which runs on another 68030. The Queue Manager 68030 and the

i860 board both reside on the VME bus of the Sun-4 host for Pixel-Planes 5.

135

The i860 runs "Collinearity," which is the mathematical routine that uses the

imaged photocoordinates to compute the position and orientation of the head.

The head locations are then sent to Pixel-Planes 5 for rendering. Usually this

communication is done through shared memory to the Sun-4 host, which then

passes the head locations to Pixel-Planes 5 [Azuma91] [Ward92].

5.1.4 Scene generator: Pixel-Planes 5

Ring
Network

Frame
Buffers

Renderer

Graphics
Processor

(GP)

LCD
displays

Pixel-Planes 5

Master
GP

Prediction
GP

HIF
board

Sun-4 host
VME bus

HIF
board

68030-based
processor

i860-based
processor

Figure 5.9: Pixel-Planes 5 architecture

Pixel-Planes 5 is a custom-built scene generator capable of rendering

over two million polygons per second. The basic architecture is described in

[Fuchs89]. What I describe here is how the machine is normally configured

and used to render images. However, Pixel-Planes 5 is capable of running

different rendering software, and I make use of an alternate set of software,

described later in this section. This is possible because the heart of Pixel-

Planes 5 is a 640 Mbyte per second token-ring network that links all the

processors and I/O devices together. Figure 5.9 shows the basic

configuration. Pixel-Planes 5 is a highly parallel machine, with both MIMD

and SIMD components. The two main types of processor boards are the

Graphics Processors (GPs) and the Renderers. Each GP has an Intel i860

CPU with 8 Mbytes of RAM and is responsible for the transformation steps in

136

the graphics pipeline. Pixel-Planes 5 has several GPs running in a MIMD

parallel configuration. One GP, which is called the "Master GP," is

responsible for synchronizing and controlling the other GPs. Transformed

primitives (e.g., triangles) are sent from the GPs to the Renderer boards

across the token-ring network. Each Renderer is a 128 by 128 SIMD array of

pixel processors that rasterizes entire primitives in parallel. When each

128 by 128 subregion of the image is finished, the Renderer sends it across

the token-ring network to the frame buffer, where the images are scanned out

into the displays of the see-through HMD. Communication through the ring is

mediated by a low-level operating system called the Ring Operating System

(ROS).

The Sun-4 host communicates with Pixel-Planes 5 through a pair of

Host InterFace (HIF) boards. One HIF board sits on the Sun-4's VME bus,

and a matching board attaches to Pixel-Planes 5's token ring. Normally, the

Sun-4 processor is responsible for sending the head locations to Pixel-

Planes 5 through this HIF. However, I bypass the Sun-4 host by installing

another pair of HIF boards that allow the Queue Manger 68030 to send the

tracker outputs directly into Pixel-Planes 5, without going through the Sun-4

processor. This is an important capability, as Section 5.2 will show.

I use special low-latency rendering software with Pixel-Planes 5. The

standard software is built to maximize throughput, but this also generates

longer delays than one might expect. The lowest achievable lag with the

standard software is about 55 ms [Mine93], even if only a single triangle is

rendered. Most applications have much longer delays. However, Pixel-

Planes 5 is flexible enough to support different rendering techniques. Marc

Olano and Jon Cohen wrote a simpler renderer that sacrifices throughput to

dramatically reduce latency [Cohen94]. This renderer, designed for interlaced

NTSC displays, is synchronized to the vertical retrace signal and renders

stereo images at a fixed 60 Hz rate, with 16.67 ms of delay. This reduction of

40 ms or more makes the prediction problem much easier.

137

5.1.5 Connections and communication paths

Figure 5.10 puts everything together by showing how the tracker, the

inertial sensors, and the scene generator interconnect. The 80486 PC

digitizes measurements from the inertial sensors at 200 Hz and sends them

across a Bit-3 bus extender from the PC's ISA bus to the standalone VME

chassis. A small amount of shared memory is installed in the standalone

VME to hold these inertial measurements. Whenever the LED Manager

68030 collects a set of LED readings, it also reads the latest set of inertial

readings by looking at the shared memory locations on the VME bus. The

inertial data are grouped with the LED photocoordinates and shipped across

another Bit-3 bus extender to the Sun-4's VME chassis. The data are sent to

the i860, which turns the LED measurements into a head position and

orientation. The Queue Manager then grabs the computed head location and

its associated inertial measurements and sends those into Pixel-Planes 5

through a HIF, avoiding any use of the Sun-4 processor. Inside Pixel-

Planes 5, I reserve one of the GP boards, calling it the "Prediction GP." This

GP is not used to support graphics rendering. Instead, it receives the head

location and inertial measurements from the Queue Manager and runs the

prediction method described in Chapter 4 to generate a predicted head

location. This is transformed into appropriate viewing matrices, which are

sent across the token-ring network to the Master GP, which runs the low-

latency rendering software and renders the appropriate images.

138

RP
pack

Prediction
GP

Ring
Network

Frame
BuffersRenderer

Master
GP

Graphics
Processor

Pixel-Planes 5

VME backplane

Sun 4 workstation

Standalone
VME Chassis

Bit-3 bus
extenders

See-through
HMD

4 optical
sensors

Ceiling panels with beacons

Inertial
electronics

box

HIF
board

LED commands

80486 PC

Images

LED Manager
68030

processor

12-bit A/D board

Inertial
sensors

SPARC
Sun-4

processor

Collinearity
i860

HIF
board

Queue
Manager

68030

Figure 5.10: Dataflow diagram of entire system

Note that all the parts are tightly connected, using fast and dedicated

communication paths. I avoided serial lines because they are too slow.

139

Using Ethernet or other networks shared with other users makes the system

vulnerable to saturation and unpredictable delays caused by external users.

Instead, communication occurs through shared memory, bus extenders, and

Pixel-Planes 5's own token-ring network. Such tight connections are

important for making prediction work, as the next section explains.

5.2 Timing details

The end-to-end system delay typically varies from 50-70 ms. The

delay can be longer or shorter than that range, but almost all actual delays fall

within that range. This delay is the sum of the tracker lag, the time it takes to

run the predictor, the time it takes Pixel-Planes 5 to render the images, and

other delays. The optoelectronic tracker uses 15-30 ms, the predictor

consumes ~12 ms, and Pixel-Planes 5 requires 16.67 ms. The remaining lag

comes from communication delays and the time spent waiting for

synchronization. The variation in typical tracker delays is mostly due to the

varying number of beacons viewed, as explained in Section 3.4. At 30 ms,

the tracker accounts for about 43% of a 70 ms total delay, and Figure 4.36

shows what typical average errors result from such delays. Figure 5.11

shows what the actual end-to-end delays were during part of one motion

sequence, as measured in the operational system. It demonstrates how the

delays vary from iteration to iteration.

The delays sometimes appear to follow a recognizable pattern. For

example, the first twenty iterations in Figure 5.11 seem to show a regular

pattern in the prediction intervals. This pattern is broken up in later iterations.

The regular pattern occurs because of the need to synchronize with the times

when Pixel-Planes 5 is ready to render new images, as described later in this

section. The patterns change because the delay in the tracking system also

varies with time. However, if all the components took a constant amount of

time, then the variable prediction intervals could be described by a simple

model. Wloka provides an example of this with his "Orbit Models" [Wloka95].

140

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•

•

•

•

••

•

•
•

•••

•

•

•

•

•

•

•
•
•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

••

•

•

•

•

•••

•

•
•

•

•
•
••
•••

•

•

•
•

•

•
••
•

•

•

•

•

•

•

•
••

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

••

•

•

•

•

•

•••

•

•

•

••

•

••

•

••
•
•

•

•

•

•

•
•

•

•

•

••

••

••

•

•

•

•
••

•

••

•

•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•••

•

••

••
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•••

•

•

••

0.05

0.055

0.06

0.065

0.07

0.075

0 50 100 150 200 250

P
re

di
ct

io
n

in
te

rv
al

 in
 s

ec
on

ds

Frame number (each frame is 16.67 ms long)
Figure 5.11: Recorded total system delays in one motion sequence

To perform accurate prediction, one must know how far to predict into

the future. This is a truism, but one that has not been explicitly addressed.

The prediction interval is constant only in systems that synchronize every

component, with guaranteed performance specifications in each component.

Some flight simulators have constant prediction intervals, but most

commercial and academic systems do not. The result is that the prediction

interval varies with time. Misjudging the prediction interval by as little as

10 ms can lead to visible misregistrations. At the moderate rotation rate of

50 degrees per second, 10 ms of unaccounted delay yields 0.5 degrees of

error, which produces almost 9 mm of error for an object one meter away.

Therefore, for prediction to be effective, the system must accurately predict

how far to predict, before each prediction is performed.

This variable delay has serious ramifications to the system design.

Enabling accurate estimation of the prediction interval for each rendering

iteration requires accurate timestamps, removing all sources of unpredictable

delays, and an accurate characterization of how long each rendering step

takes.

1) Accurate timestamps: Accurate timestamps require synchronized

clocks. Commercial trackers, such as those from Polhemus, Ascension, and

141

Logitech, do not supply timestamps with the measured locations. The

optoelectronic tracker has a clock on the LED Manager 68030 board, so that

can assign timestamps to the head tracker measurements. It also assigns

timestamps to the inertial measurements sent from the PC. The GP boards

inside Pixel-Planes 5 also have clocks. Both the 68030 clock and the GP

clock have resolution of well under one millisecond. However, they do not

have the same offset, and they run at slightly different rates, drifting by about

8.3 ms every three minutes. Therefore, the system synchronizes the clocks

by sending a message from the Prediction GP to the LED Manager 68030

and back again. The round-trip communication time is less than one

millisecond. Two synchronizations are done several minutes apart, to

generate an estimate of the drift rate between the two clocks. This drift rate is

used to compensate for the different clock speeds, and resynchronizations

occur every three minutes or so to avoid long-term errors.

2) Removing unpredictable delays: Removing all sources of

unpredictable delays means using real-time operating systems and fast,

dedicated communication channels. Most academic VE and AR systems use

Unix as the underlying operating system. However, standard versions of Unix

are incompatible with real-time requirements, because Unix can swap out a

user's process at any time for an unbounded amount of time. Even modifying

the kernel to give maximum priority to one user's processes, which nearly

starves all other users, does not solve the problem. When I tried collecting

data on a Sun-4 running Unix with my processes granted highest priority, I

would still regularly get pauses of 60-200 ms in the data stream during a three

minute collection. The longest pause I ever saw, which was two seconds,

occurred late at night when I was the only user on the machine! Therefore,

my system does not use Unix except for the initial setup, which is not time-

critical. It bypasses the Sun-4 host, as explained in Section 5.1.4, and it uses

low-level operating systems: MS-DOS in the 80486 PC, VxWorks in the

optoelectronic tracker boards, and ROS inside Pixel-Planes 5. While these

operating systems are not strictly real time because they do not have

guaranteed performance, they have proven sufficient in practice. The

communication channels are fast, because they rely on shared memory, bus

extenders, or the high-bandwidth token ring inside Pixel-Planes 5. These

communication paths are not shared with other users, to avoid external

142

sources of delay. The main potential source of contention is accessing the

shared memory. The Sun-4 processor also uses that for accessing the disk

and other I/O devices. However, the Sun-4 processor accesses memory

through a different bus, so I do not compete against that bandwidth. In

practice, I have not observed any external source that saturates the bus. In

contrast, many VE systems rely on using a LAN shared with several other

users, any one of whom can easily monopolize the network and add

unbounded amounts of delay.

3) Characterizing rendering delays: The simplest way to do this is to

have a renderer that runs at constant rates, but the requirement is merely to

know how long each rendering step takes. The low-latency renderer

[Cohen94] that I use with Pixel-Planes 5 runs at a constant 60 Hz,

synchronized to vertical retrace, so this characterization in my system is

trivial. It is possible to estimate rendering delays for renderers that take

variable amounts of time. This is a nontrivial problem, but work has been

done in this area [Funkhouser93].

With these three properties integrated into the system, it is possible to

accurately estimate prediction intervals. The total prediction interval is

defined to start at the time when the tracker and inertial measurements are

taken and end at the time when the frame buffer begins scanning out the

images corresponding to those measurements (Figure 5.12). Later in this

section I will discuss alternate definitions for the start and end time, but for

now I will use this definition. Part of this interval is directly measurable. The

Prediction GP can read the clock at the point labeled "Prediction distance

must be set here" in Figure 5.12 and subtract that from the start timestamp to

generate the measured portion of the interval. The remaining portion must be

estimated. Why? The predictor requires an interval to predict into the future.

The predictor must also be run before viewpoint computation and rendering.

Therefore, the total prediction interval must be estimated immediately before

running the predictor, requiring an estimate of the light-shaded interval in

Figure 5.12.

143

Total prediction distance

Measured Estimated

Tracker &
inertial

measurements
taken

Prediction
interval
must be
set here

Start of
frame
buffer

scanout

Tracker,
communication,
estimator lag

Predictor,
viewpoint
computation,
rendering lag

Time

Figure 5.12: Components of the total prediction interval

Figure 5.13 shows how this estimate is generated. The key

observation is that the low-latency renderer on Pixel-Planes 5 is synchronized

to the vertical retrace signal, which occurs every 16.67 ms. Thus, the

renderer is guaranteed to render fields at 60 Hz, whether or not the tracker

can keep up with that rate. The estimated interval is made up of three

components A, B, and C.

16.67ms

Measured

Estimated

A
B

C

Times when Master GP
accepts new view matrices

A = Time to run predictor and view matrix computation
B = Delay until Master GP accepts new matrices (which
 occurs at strict 16.67 ms intervals)
C = Time for Pixel-Planes 5 to compute new images

Time

Figure 5.13: Components of the estimated interval

A, the time needed to run the predictor and compute the view matrices,

is almost constant and can be measured empirically during trial runs. In

practice, this is about 12 ms in my system.

B, the delay until the renderer accepts new matrices, is computed by

finding the next rendering start point that is greater than Measured + A. The

predictor knows when these starting points occur because it receives a

constant stream of past starting points from the renderer. Since the starting

144

points are separated by a strict 16.67 ms, it is easy to determine all future

starting points, given one point in the past.

C, the time it takes the renderer to rasterize the images and copy them

to the frame buffer, is a constant 16.67 ms.

Figure 5.14 demonstrates the effectiveness of the prediction interval

estimation. It graphs the same data shown in Figure 5.11, except that now

the predicted intervals are overlaid on top of the actual intervals. Note that

the two graphs coincide except for one point around frame number 225. This

is more easily seen in Figure 5.15, which plots the difference between the

actual and estimated intervals. When the prediction is incorrect, it is wrong by

16.67 ms. The predicted intervals were computed in real time during an

actual motion sequence, and they were recorded along with the measured

actual intervals.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

••

•

•
•

•
•
•

•

•

•

•

•

•

•
•
•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

••

•

•

•

•

•••

•

•
•

•

•
•
••
•••

•

•

•
•

•

•
••
•

•

•

•

•

•

•

•
••

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

••

•

•

•

•

•

•••

•

•

•

••

•

••

•

••
•
•

•

•

•

•

•
•

•

•

•

••

••

••

•

•

•

•
••

•

••

•

•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•••

•

••

••
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•••

•

•

••

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°°
°

°

°

°

°

°

°°

°

°
°

°°°

°

°

°

°

°

°

°
°
°

°
°

°

°

°

°

°

°

°

°

°

°

°°

°

°

°

°

°

°

°

°

°°

°

°

°

°

°°°

°

°
°

°

°
°
°°
°°°

°

°

°
°

°

°
°°°

°

°

°

°

°

°

°
°°

°

°

°

°°

°
°

°

°

°

°

°

°

°

°

°

°
°

°
°

°°

°

°

°

°

°

°°°

°

°

°

°°

°

°°

°

°°
°
°

°

°

°

°

°
°

°

°

°

°°

°°

°°

°

°

°

°
°°

°

°°

°

°

°

°
°
°

°

°

°

°

°

°

°

°

°

°

°

°°°

°

°°

°°
°

°°

°

°

°

°

°

°

°

°

°

°
°

°

°°°

°

°

°°

0.05

0.055

0.06

0.065

0.07

0.075

0 50 100 150 200 250

P
re

di
ct

io
n

in
te

rv
al

 in
 s

ec
on

ds

Frame number (each frame is 16.67 ms long)

• Actual

° Estimated

Figure 5.14: Predicted vs. actual prediction intervals

145

°°

°

°°°°°°°°°°°°°°°°°°°0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 50 100 150 200 250E
rr

or
 in

 e
st

im
at

ed
 p

re
di

ct
io

n
in

te
rv

al
 (

in
 s

ec
on

ds
)

Frame number (each frame is 16.67 ms long)
Figure 5.15: Error in estimated prediction intervals

The steps taken to accurately estimate the prediction intervals make

the system difficult to build and debug, but they are necessary to achieve the

desired performance. Unix is popular because it is a good development

environment and has debugging tools. In contrast, developing and debugging

code on several different real-time operating systems is painful. Tightly

coupling the tracker and the scene generator reduces the flexibility of the

system, making it difficult to change hosts, scene generators, trackers, or

anything else. The integration in this system more closely resembles flight

simulators than typical systems produced by academia, because flight

simulators are often concerned with guaranteed update rates. A lesson from

this work is that future AR systems that intend to use prediction will have to

either synchronize their modules or account for the variable prediction

intervals, either of which requires building a system with real-time

performance in mind.

I conclude this section by discussing three details: accounting for the

time difference between the tracker and inertial measurements, defining the

start of the prediction interval, and defining the end of the prediction interval.

146

1) Time shift between inertial and tracker measurements: Each

measurement packet sent to the Prediction GP consists of a position, an

orientation, six inertial readings, and one timestamp for all the other values.

In practice, however, the head tracker measurement is not taken at precisely

the same time as the inertial readings, because they run asynchronously.

The inertial readings are sampled and stored in a shared memory location in

the standalone VME chassis at a constant 200 Hz. The tracker typically runs

between 60-80 Hz. Each time the LED Manager collects a group of LEDs, it

reads the most recent set of inertial data and groups the two together. To

determine the average time difference between these two collection points, I

collected a motion sequence and integrated the gyroscope readings. These

should match the orientations recorded by the tracker. Powell's method

[Press88] searches for the time difference between the two sets of

measurements that generates the closest match between the integrated and

actual orientations. This difference is about six milliseconds. To compensate

for this in real time, a brief history of recent tracker measurements is kept, and

I linearly interpolate back six milliseconds from the "present" to find a set of

tracker measurements to associate with the inertial measurements.

2) Start of the prediction interval: The optoelectronic tracker usually

takes over 10 ms to collect the set of LEDs used to compute the head

location. Since 10 ms or more is a fairly large window, and the head may be

moving during this time, it is not clear exactly what time the computed location

actually represents. In practice, I assign the tracker timestamp to be the time

before the first LED is sampled, but it could be argued that averaging the

timestamps of when the first and last LEDs are sampled might be more

accurate. Since the head may be in motion during the collection interval (at

rates shown in Figures 1.7 - 1.9), the sampled LED photocoordinates may not

correspond to any particular head location during that time interval, providing

another source of distortion [Morris93]. This should be correctable, but the

existing optoelectronic tracker software does not compensate for this.

3) End of the prediction interval: I define the end time to be the start of

scanout. However, the middle of scanout (which adds 8.33 ms) or the end of

scanout (which adds 16.67 ms) are other reasonable choices. The problem is

complicated because the LCDs used in the HMD are difficult to characterize.

147

They are not as well behaved as typical CRT displays. For example, I do not

know how long the images persist on the LCD displays. I chose the start of

scanout to minimize the overall prediction interval. Also, when experimenting

with end times in the actual system, choosing the start of scanout appeared to

produce the smallest registration errors as seen inside the see-through HMD.

This was a highly subjective measurement; the differences were not blatant.

5.3 Prediction method details

Chapter 4 did not adequately describe the inertial-based prediction

method in two areas. First, it assumed that the angular rotation and linear

acceleration information provided to the filter was in Tracker space, with units

of radians per second and meters per second squared. How these values

were extracted from the raw digitized voltages was not specified. Second, it

did not say how the filter parameters were set. This section covers both of

these details.

Throughout this section, ω represents omega, a 3 by 1 vector that

specifies angular velocity.

5.3.1 Extracting angular velocity and linear acceleration

The Extended Kalman Filter (EKF) used to filter orientation requires the
measured omega ωm to be in Tracker space, with each term in radians per

second. Therefore, the raw digitized values from the gyroscopes must be

converted into those values. Fortunately, this is straightforward. Use the

biases and scales to convert the digitized readings from voltages to radians

per second. Then rotate the vector from Gyroscope space to Tracker space.

The exact details depend on how the gyroscopes are mounted on the HMD.

Thus, the procedure described below works with my system but will require

appropriate modifications for other configurations.

Let Graw be a 3 by 1 vector holding the raw digitized gyroscope values

reported by the A/D board in the 80486 PC. Because these are 12-bit values,

they fall in the range 0-4095, where 0 represents -2.5 Volts and 4095 is

148

+2.5 Volts. Graw[0] is the value from gyroscope 0, Graw[1] is from

gyroscope 1, etc. Then Graw is converted into Gradians as follows:

Gradians [2] = π
180







−Gscale [0]
2047.5





 Graw [0] − Goffset [0]()

Gradians [0] = π
180







Gscale [1]
2047.5





 Graw [1] − Goffset [1]()

Gradians [1] = π
180







−Gscale [2]
2047.5





 Graw [2] − Goffset [2]()

Gscale is a 3 by 1 vector containing the scale values for the three

gyroscopes, and Goffset is a 3 by 1 vector holding the bias values. These are

some of the filter parameters determined in Section 5.3.2. The change in

axes between Graw and Gradians is due to the way the gyroscopes happen to

be arranged in the gyro pack. For example, gyroscope #1 is oriented along

the omega X axis (index 0), rather than the omega Y axis (index 1). This

conversion will need modification for different gyro packs.

Gradians now holds omega with each term in radians per second.

However, the angular rates were recorded in Gyroscope space (see

Figure 2.3). They must be rotated into their equivalent values in Tracker
space, which yields the desired result ωm.

ωm = Qgyro • Gradians • Qgyro()−1

The two multiplications in the previous equation are quaternion

multiplications, where Gradians is written as a quaternion with the qw term set

to zero and the vector part set to the 3 by 1 vector. Qgyro is a quaternion that

rotates points and vectors from Gyroscope space to Tracker space, and that

is determined by the procedures described in Section 5.3.2.

Recovering linear acceleration from the digitized accelerometer

readings is more complicated. The accelerometers detect three things:

1) linear acceleration, 2) angular acceleration, and 3) gravity. Extracting

linear acceleration from the accelerometer outputs requires estimating the

other two terms with the other sensors. The fact that I have three 1-D

accelerometers instead of one 3-D sensor further complicates matters, since

the effect of angular acceleration varies with location on the HMD.

149

Each accelerometer is a cantilever beam that extends out over empty

space, much like a tiny diving board [Lawrence92]. The beam consists of a

mass at the end of a hinge. In the absence of motion or gravity, this beam

extends out straight horizontally. If the device is held still in the presence of

gravity, the beam sags down (Figure 5.16). As the user moves the

accelerometer up and down, the beam moves up and down with respect to

the rest of the device, due to inertia. The accelerometer electrically measures

the height of the beam with respect to the rest of the device, and that voltage

is what the sensor returns.

+

-

Sensitive
axis

No Gravity Gravity

Hinge

Proof
mass

+

-

(Tilt
exaggerated)

Figure 5.16: Accelerometers are tiny cantilever beams

Note two important properties of the accelerometer. To a first

approximation, each accelerometer detects acceleration only along one

direction in space and is insensitive to any motion perpendicular to its

sensitive axis. Also, gravity sets the "bias point" of the accelerometer. That

is, the value that the accelerometer reports when it is standing still depends

upon its orientation with respect to the gravity vector.

Recovering linear acceleration from the accelerometers requires

estimates of gravity and angular acceleration. These estimates are based on

the state vector from the orientation EKF, which must be run in conjunction

with the position Kalman filters. The estimate of the current head orientation

specifies the gravity vector, and the state vector contains an estimate of

angular acceleration. Removing gravity and angular acceleration recovers

the desired linear acceleration. This recovery is a three step process:

• Step 1: Compensate for gravity by determining the bias points.

• Step 2: Change the acceleration into World space.

• Step 3: Remove the angular acceleration component.

150

Step 1) Gravity compensation: Gravity is assumed to point straight

down in World space with an acceleration of 9.8 meters per second squared.

Rotate this vector into Tracker space by using the estimated orientation of the

tracker from the state vector of the orientation EKF. Then rotate the Tracker

space vector into Accelerometer space (Figure 2.3) by using the fixed

orientation between the accelerometer pack and the HMD. Change the

Accelerometer-space values from meters per second squared to raw digitized

values in the scale 0-4095 by using the offset and bias values. This

determines the bias point set by gravity, which is subtracted from the raw

digitized readings.

Let Araw be the 3 by 1 vector containing the raw digitized

accelerometer readings and Abiased be the vector with gravity compensation.

Gravworld, Gravtracker, and Gravaccel are the gravity vectors in World,

Tracker and Accelerometer space, respectively. Q is the quaternion extracted

from the EKF state vector that rotates points and vectors from Tracker space

to World space. Qaccel is the quaternion that rotates points and vectors from

Tracker space to Accelerometer space. Ascale and Aoffset are the scale and

bias values for the three accelerometers, converting raw digitized readings to

meters per second squared. Qaccel, Ascale, and Aoffset are all parameters to

be determined by the procedures in Section 5.3.2. The following

multiplications are quaternion multiplications, with Gravworld and Gravtracker

temporarily changed to quaternions with a zero qw component.

Gravworld =
0

0

−9.8

















Gravtracker = Q−1• Gravworld • Q

Gravaccel = Qaccel • Gravworld • Qaccel()−1

 The next few equations compute the desired Abiased. The indices

change between Gravaccel and Abiased due to the arrangement of the

accelerometers on the HMD. For example, accelerometer #0 is along the Y

axis (index 1) in Accelerometer space. Therefore, these equations will need

modification for different systems.

151

Abiased[0] = Araw [0] − Aoffset [0] + 1024
Ascale [0]







Gravaccel[1]

Abiased[1] = Araw [1] − Aoffset [1] − 1024
Ascale [1]







Gravaccel[0]

Abiased[2] = Araw [2] − Aoffset [2] + 1024
Ascale [2]







Gravaccel[2]

Step 2) Conversion to World space: Since the three accelerometers

are mutually orthogonal, they form a 3-vector in Accelerometer space.

Scaling the biased acceleration values converts them to meters per second

squared. Then I rotate that vector into World space.

Aworld is the desired acceleration in World space. Atemp1 and Atemp2

are intermediate variables. The multiplications that involve quaternion terms

are quaternion multiplications, with vectors converted to quaternions as

needed.

Atemp1[0] = Ascale [1]
1024





 Abiased[1]

Atemp1[1] = − Ascale [0]
1024





 Abiased[0]

Atemp1[2] = − Ascale [2]
1024





 Abiased[2]

Atemp2 = Qaccel()−1• Atemp1 • Qaccel

Aworld = Q • Atemp2 • Q−1

Step 3) Angular acceleration removal: The last step is to remove

the angular acceleration components from Aworld, leaving the desired linear

acceleration. I use the following formula from the kinematics of rigid bodies

[Beer88] (Figure 5.17):

152

AA = AB − ω
.

x r − ω x ω x r()
where ω = omega, the angular velocity in Tracker space

ω
.

= angular acceleration in Tracker space

AA = total acceleration at point A, origin of Tracker space

AB = total acceleration at point B, location of an accelerometer

r = vector from point A to point B

x = vector cross product

X

Y

Z

X

Y

Z

World
space

Tracker
space

A

B
r

Figure 5.17: Definitions for rigid body kinematics formula

Note that this formula assumes that Tracker space shares the same

orientation as World space, as shown in Figure 5.17. This is usually not the

case. Thus, to use this formula, everything must be rotated into World space.

A second problem comes from using three separate 1-D accelerometers.

That means three different r vectors exist, one for each accelerometer. Call

these F0, F1, and F2, as shown in Figure 5.18. Each vector results in a

different contribution from angular acceleration, and each accelerometer only

detects the component of acceleration that lies along its sensitive axis.

Therefore, the basic kinematics formula requires some modification to use

with this system.

F0

F1F2Tracker
space

Accel0

Accel1

Accel2

Z

X

Y

Vectors
F0, F1, F2
are defined
in Tracker
space

Figure 5.18: Locations of accelerometers in Tracker space

The basic idea is to start with Aworld and subtract the three angular

acceleration components detected by the three accelerometers. These can

153

be computed and subtracted individually because the three accelerometers

are mutually orthogonal.

The first step is to rotate everything into World space. Let U0, U1, and

U2 be unit vectors in Accelerometer space that lie along the sensitive axes of

accelerometer 0, accelerometer 1, and accelerometer 2, respectively. U0,
U1, U2, ω and its derivative, F0, F1, and F2 must all be rotated into World

space. These vectors are temporarily converted into quaternions as needed

for the rotation operations.

U0 =
0

1

0

















U1 =
1

0

0

















 U2 =
0

0

1

















U0world = Q • Qaccel()−1•U0 • Qaccel • Q−1

U1world = Q • Qaccel()−1•U1• Qaccel • Q−1

U2world = Q • Qaccel()−1•U2 • Qaccel • Q−1

F0world = Q •F0 • Q−1

F1world = Q •F1• Q−1

F2world = Q •F2 • Q−1

ωworld = Q • ω • Q−1

ω
.

world
= Q • ω

.
• Q−1

Now for each accelerometer, compute the angular acceleration in

World space at that accelerometer's location. Call these angular

accelerations V0, V1, and V2 for accelerometer 0, accelerometer 1, and

accelerometer 2 respectively.

V0 = ω
.

world
x F0world + ωworld x ωworld x F0world()

V1 = ω
.

world
x F1world + ωworld x ωworld x F1world()

V2 = ω
.

world
x F2world + ωworld x ωworld x F2world()

Since each accelerometer detects acceleration only along its sensitive

axis, the vectors V0, V1, and V2 are not what are actually detected. Instead,

the actual detected angular acceleration is the dot product of those vectors

154

with the unit vectors along the sensitive axes, in World space. Therefore, the

desired linear acceleration Alinear is the original World acceleration Aworld

with the three angular acceleration contributions subtracted.

Alinear = Aworld − V0 ⋅U0world − V1⋅U1world − V2 ⋅U2world

I checked these equations by testing them on simulated data before

trying them on real data. In generating the simulated datasets, I avoided

using the motion equations listed above, especially the kinematics formula

from [Beer88]. Generating simulated data by using the same equations that

are being checked does not truly verify the equations, because the simulated

data will match the equations by definition. Therefore, I instead wrote explicit

equations that described the position of any point on the head at any time,

given various control parameters. Differentiating the equations twice

generates the accelerations.

A weakness of Step 3 is the need to estimate the derivative of omega,

because the system lacks a sensor that explicitly measures it. Comparing the

estimated angular acceleration from the EKF against perfect simulated data

suggests that the estimated derivatives lag behind the true values by about

20 ms. Adding angular accelerometers to the HMD would eliminate this

problem.

5.3.2 Parameter determination

The filter requires various parameters. They are listed here, both for

the orientation EKF and the position Kalman filters:

Parameters for the orientation EKF:

Goffset = 3 by 1 vector specifying biases for the three gyroscopes

Gscale = 3 by 1 vector specifying scales for the three gyroscopes

Qgyro = quaternion that rotates points and vectors from Tracker
space to Gyroscope space

Eorient = 10 by 10 model covariance matrix

Rorient = 7 by 7 measurement covariance matrix

155

Parameters for the three position Kalman filters:

Aoffset = 3 by 1 vector specifying biases for the three
accelerometers

Ascale = 3 by 1 vector specifying scales for the three
accelerometers

Qaccel = quaternion that rotates points and vectors from Tracker
space to Accelerometer space

F0, F1, F2 = 3 by 1 vectors from the origin of Tracker space to the
locations of the three accelerometers, in Tracker space

Etx, Ety, Etz = 3 by 3 model covariance matrices

Rtx, Rty, Rtz = 2 by 2 measurement covariance matrices

It is desirable to develop techniques for measuring these parameters.

In simulation, one can simply define most of the parameters, but in a real

system they must match reality. Some of them can be directly measured or

specified by mechanical means. For example, the HMD frame and inertial

sensor mounting units could be built to precise mechanical specifications that

place the inertial sensors at known locations. Alternately, one could build the

frame, then measure the locations with a precise coordinate measuring

machine. However, these approaches require access to specialized and

expensive resources. Furthermore, the parameters might change with time if

the HMD frame is not sufficiently rigid or if the system configuration changes.

And some of the parameters, such as the model covariances, are not easily

determined by mechanical means. Therefore, methods that determine these

parameters without the use of specialized mechanical equipment would be

useful.

I use nonlinear optimization and autocalibration techniques to set these

parameters. Optimization techniques search for the best parameters that

minimize a particular cost or error function. For example, the task might be to

pick a path that a car should take to get from point A to point B. The optimal

path depends on the cost function. The path that takes the least amount of

time may not be the shortest path, and that may be different from the path

that minimizes the cost, if tolls for bridges or roads are involved.

Autocalibration techniques are optimizers that control the search by

applying geometric constraints to collected data. The geometric constraints

156

form the basis of comparison. The autocalibration routine computes a

particular value or set of values in more than one way by using these

geometrical relationships. Ideally, the results from each computation should

be equal. The optimizer searches for the parameters that make the multiple

estimates match most closely.

The basic ideas for optimizers and calibration routines are well known

and have been studied extensively. However, each optimization and

autocalibration problem has its own set of constraints. The difficult part is not

the method itself; it is finding a set of constraints for a particular problem that

works well on real data. That can be a nontrivial task, requiring creativity and

experimentation. For example, Stefan Gottschalk and John F. Hughes

developed an autocalibration technique to measure the locations of beacons

in the optoelectronic tracker [Gottschalk93]. They had to try several different

constraints and approaches before finding one that converged.

Optimization generally involves finding the minimum of a

multidimensional function. This problem has been heavily studied. In

practice, no method can guarantee finding a global minimum of a nonlinear

multidimensional function in a finite amount of time, but heuristics exist that

tend to perform well. I chose to use Powell's method [Press88] because it

does not need the derivatives of the function, and because it is an iterative

method that benefits from a good initial guess of the solution.

Determining gyroscope parameters: I developed two autocalibration

strategies for measuring the gyroscope offsets, scales, and gyroscope pack

orientation (Goffset, Gscale, and Qgyro respectively). Clearly, there are two

basic approaches available for the geometric constraints. I can differentiate

the orientation measurements taken by the tracker and compare those

against the angular rates provided by the gyroscopes. Or I can go the other

way and integrate the angular rates measured by the gyroscopes and

compare those against the tracker orientations. Both approaches work.

For either method, the first step is to have the user wear the HMD and

rotate her head. Both the inertial and tracker measurements are captured,

generating a motion dataset. The autocalibration routines operate on this

dataset offline to determine the parameters.

157

The first method differentiates the tracker orientations and compares

those against the gyroscope measurements. I run an EKF similar to the one

described in Chapter 4, except that it only takes tracker orientations as inputs

and has seven variables in the state vector: four for the current orientation

and three for the estimated angular rates. Numerical differentiation is an

inherently noisy operation, but the EKF can perform this differentiation

accurately, at the cost of adding a nearly constant amount of delay to the

estimated signals. Therefore, the estimated angular rates must be temporally

adjusted by some unknown timeshift before doing the comparison. I run the

EKF once to generate the estimated angular rates. The gyroscope readings

must be biased, scaled, and rotated in order to compare them against the

estimated angular rates, as described in Section 5.3.1. Furthermore, the

estimated omegas must be shifted in time by the unknown timeshift. Once

those are done, the cost function compares the estimated angular rates

against the gyroscope-measured angular rates at each recorded timestep.

Omega is a 3 by 1 vector. The difference between an estimated omega and a

gyroscope-measured omega is simply the distance between the two vectors.

The cost function returns the sum of all the squared differences between the

estimated and gyroscope-measured omegas at each recorded timestamp.

Powell's method finds the best rotation, bias, scale, and timeshift parameters

that minimize this cost function.

The timeshift is about 61 ms, which indicates that the rate gyroscopes

help the prediction task by providing information that would otherwise take

about 61 ms to determine. The timeshift depends on the EKF parameters,

which control the tradeoff between the timeshift and the smoothness of the

estimated velocity signals. Smooth estimates result in long delays (i.e., large

timeshifts). But if the parameters are set to minimize the timeshift, the

resulting estimates are very noisy. Neither extreme is useful for the prediction

problem. Good estimates that are greatly delayed in time are not of much

use, nor are promptly-provided estimates that are mostly noise. Empirically,

the best compromise between smoothness and delay for this particular filter

seems to be when the timeshift is 61 ms. This was determined by

experimenting with the parameters and comparing the estimated velocities

against the gyroscope-measured velocities. The way to avoid this tradeoff is

158

to directly measure the angular head velocities by using rate gyroscopes,

instead of estimating velocities from the reported orientations.

The other approach integrates the gyroscope measurements and

compares those against the quaternions reported by the tracker. Integrating

noisy measurements over long periods leads to drift problems, because errors

accumulate. Therefore, I take a slightly different approach. I run the same

EKF described in Chapter 4 to estimate the orientation terms and its

derivatives. However, I do not use the predictor described there. Instead,

imagine that, somehow, the exact future angular velocities were available to

the predictor. Then starting with the last known position and integrating those

future velocities should yield perfect predictions. Of course, this is impossible

in real time, but not in simulation. I use this "ideal noncausal predictor" that

integrates the filter-estimated velocities from the gyroscopes. The filter-

estimated velocities depend upon the bias, scale, and rotation parameters

that I am trying to find. This prediction is performed at each recorded

timestamp where sufficient "future" information is available. The difference

between a pair of predicted and actual orientations is an angle, as defined in

Section 4.5. The cost function returns the sum of the squared angles.

Powell's method runs the EKF and recomputes the cost function for each set

of parameters it tries. It finds the bias, scale, and rotation parameters that

result in the best match.

The first method is faster than the second, although speed is not really

a problem with either method. The slowest part is running an EKF across the

entire motion sequence. The first approach only does this once, while the

second must run an EKF every time Powell's method tries a new set of

parameters. The first converges in a few hundred iterations, which takes less

than one minute on a DECstation 5000. The second typically takes less than

10 minutes on the same machine.

Both methods produce results that are reasonably consistent with

themselves and each other. Verifying accuracy is difficult, because I do not

know what the true values are. Instead, I check for consistency. For

example, on two different motion datasets, the first method produced gyro

rotation parameters that differed by 0.6 degrees, offsets that were less than

2 counts apart (out of a scale of 4096), and scales that were within 2 degrees

159

per second of each other. Two different motion datasets, one analyzed by the

first method and the other by the second, produced similar results. The

rotation parameters were 0.5 degrees apart, offsets under 3 counts apart, and

scales less than 4 degrees per second apart. The gyroscope scales stay

close to 300 degrees per second, which is the manufacturer-specified scale.

Determining accelerometer parameters: I also developed two different

methods of determining the accelerometer parameters. The first makes use

of the fact that when the three accelerometers are still, they only detect

gravity. The second tries to integrate the acceleration values twice and

compare those against the tracker positions. In practice, the first method

works, but the second does not. Furthermore, neither method can reliably

measure the position vectors F0, F1, and F2.

The first method asks the user to place the HMD or tracker on a stand

that can be tilted into different static orientations. I use an ordinary camera

stand that has been modified to hold the 4-hat. At each static orientation,

record the accelerometer readings and the HMD orientation reported by the

tracker. About 20-30 different orientations suffice, and the collected

measurements form a dataset that is processed offline.

The geometric constraint that each measurement shares is that the

vector reported by the accelerometers must point straight down in World

space, because gravity is the only force that affects the accelerometers in the

static case. After biasing, scaling, and rotating the reported accelerations into

World space, they should all point straight down at 9.8 meters per second

squared. Powell's method searches for the offsets, scales, and rotation

parameters that best satisfy this criterion.

Note that this approach cannot determine the positions of the

accelerometers on the HMD (vectors F0, F1, and F2), because the positions

only affect accelerometers in motion.

This approach yields reasonably consistent results. On two separate

datasets, the rotation parameters were within 0.5 degrees, the offsets were

within 3 counts (out of 4096), and the scales were within 0.02 meters per

second squared.

160

This method is fast, converging in several hundred iterations requiring

less than 10 seconds on a DECstation 5000.

In contrast, the second method is similar in flavor to the techniques

used to compute the gyroscope parameters, but it does not work as well for

the accelerometers as it does for the gyroscopes. When comparing

accelerations with positions, three options are available: differentiate positions

twice, differentiate positions once and integrate accelerations once, or

integrate accelerations twice. The problem is that a combination of two

integration or differentiation steps is needed, versus just one in the case of

the gyroscopes. Two steps are difficult to achieve. While the Kalman filter

seems capable of doing numerical differentiation once, two differentiation

steps generate very noisy results. Integrating twice means that drift grows as

a function of t squared instead of just t, where t is the integration time.

Integrating once and differentiating once combines the two problems and is

no better than the other two choices.

The second method tries integrating the accelerometers twice. Similar

to the gyroscope case, I run the Kalman filters described in Chapter 4, then

do "ideal noncausal prediction" by integrating the estimated linear

accelerations. Theoretically, this should match the reported tracker positions.

In practice, these ideally-predicted positions do not converge on a good

match with the tracker positions. The result: the computed parameters are

not consistent across different datasets. For example, the scales varied by

over 0.6 meters per second squared. Because I could not get consistent

results, I did not consider this method a success.

Another reason why the second method does not work is that the

accelerometer outputs do not appear to correspond well with the tracker

positions. Drift is lethal when double integrating the accelerometers for

anything over 100 ms. But even with integration periods under 100 ms, the

integrated readings do not match the tracker positions well. Errors typically

exceed one cm. While double integration is clearly a major factor, another

problem may be distortion in the positions reported by the optoelectronic

tracker, which would prevent a close match with the accelerometer signals.

161

In contrast, the gyroscope outputs correspond well with the tracker

orientations, which is why the gyroscope parameter calibration routines work.

As an experiment, I recorded a long motion sequence of tracker and

gyroscope data, then used Powell's method offline to search for the

gyroscope parameters that yielded the best match between the integrated

gyroscope measurements and the reported orientations. The integration took

place across the entire duration of the motion sequence, which was four and

a half minutes. Amazingly, Powell's method was able to find a set of

parameters that resulted in an average error of 0.5 degrees between the

integrated gyroscope readings and the reported orientations! Achieving such

a close match across a long integration interval was a surprising result. It

provides confidence in the accuracy of both the rate gyroscopes and the

reported head orientations. This result also suggests that it might be possible

to solely use the gyroscopes to track head orientation across short time

intervals. This requires developing or applying alternate means of

dynamically adjusting the gyroscope parameters, since Powell's method is not

suitable for real-time searches.

I have not found a way to measure the positions of the accelerometers

(the vectors F0, F1, and F2). The first method cannot detect those, and the

second method simply was not sensitive to those values. It would converge

to ridiculous distances, such as over one meter. In practice, all I do is

measure these distances the best I can with a ruler.

The parameters that are most reliably determined appear to be the

ones that the filter is most sensitive to, which are presumably also the ones

that affect prediction accuracy the most.

Determining noise parameters: The Kalman filters require covariance

matrices that indicate how much to trust the measurements and the motion

model. These are matrices Eorient and Rorient for the orientation EKF and

Etx, Ety, Etz, Rtx, Rty, and Rtz for the position Kalman filters. The basic

approach is simple. Collect several motion sequences of recorded head

locations and inertial data. Offline, run the filters and predictors on that data,

exactly as described in Chapter 4. Let the error be the difference between the

predicted and actual positions and orientations. The cost function is the sum

of the squared errors at each timestep. Pick the covariance matrices that

162

result in the lowest prediction error. Use Powell's method to find the matrices

that yield this lowest error.

The main trick is determining which parameters to vary, because these

matrices are large. Eorient is 10 by 10, containing 100 parameters. Rorient is

7 by 7, containing 49 parameters. Etx, Ety and Etz have 9 parameters each,

and Rtx, Rty and Rtz have four each. Since the matrices should be

symmetric, that cuts down the number of unique parameters in each type of

matrix to 55, 28, 6 and 3, respectively. Even so, searching for 113 separate

parameters takes too long.

To reduce the number of parameters to something more tractable, I

make a number of simplifying assumptions. First, I assume that all cross-

covariance terms are zero. That is, all non-diagonal terms in these matrices

are declared to be zero. Next, certain terms along the diagonals are set equal

to each other, if they are linked in some way. For example, all four terms in

Rorient that specify the noises in the measured quaternions are set equal to

each other. Finally, I use the same E and R matrices for the X, Y, and Z

translation directions. To summarize:

Etx = Ety = Etz

Rtx = Rty = Rtz

Etx =
Epos 0 0

0 Evel 0
0 0 Eaccel

Rtx = Rpos 0
0 Raccel

163

Eorient

Emeasured

Emeasured

Enonmeasured

Enonmeasured

Enonmeasured

.
.

.

=

0

0

R
orient

Rquat

Rgyro

=

.
.

. 0

0

Rquat

Rgyro

Rgyro

This leaves nine scalar parameters to search for: Rquat, Rgyro,

Emeasured, Enonmeasured, Rpos, Raccel, Epos, Evel, and Eaccel. Theoretically,

Emeasured, Epos and Evel should be zero, but I include them because having a

small amount of noise there helps filter stability. Nine parameters is a

tractable number. Powell's method requires less than two hours on a

DECstation 5000 to find these parameters. I search for the orientation

parameters first, then the position parameters, because the position filtering

and prediction require the orientation terms but not vice-versa.

How reasonable are these simplifying assumptions? If the

measurements are truly independent, then setting all cross-covariances in the

R matrices to zero is accurate. This may not be the case with measured

quaternions, however, since all four terms of a quaternion are nonlinearly

related. The gyroscope, accelerometer, and translation measurements are

probably independent, though. Each individual sensor within each class

(gyroscope, accelerometer, etc.) could have different variances, but any such

differences appear to be small, based on looking at the signals generated

when the sensors stand still. For the E matrices, I doubt that the nondiagonal

164

terms should differ much from zero for the simple motion model. The main

values to worry about are Eaccel and Enonmeasured, which can be set to a wide

range of values while still generating similar prediction accuracies. Therefore,

allowing nondiagonal values near Eaccel and Enonmeasured to be nonzero is

probably not necessary; the filter is not that sensitive. Finally, the three

translation terms probably should have their own independent E matrices. I

would expect motion along the Z axis, which is the vertical direction in World

space, to have different characteristics than motion along the X and Y axes,

simply because users tend to spend more energy moving horizontally than

vertically in our demonstration HMD applications.

The parameters are not tightly tuned to specific motion sequences. It

turns out that Powell's method finds a broad "plateau" region in parameter

space where the cost does not vary much as the parameters change. There

is a broad range of parameters that seem to perform well, and these ranges

do not vary dramatically from motion sequence to motion sequence. This

may be due to the simplicity and generality of the filter and the predictor.

More sophisticated models would expect specific types of motion and require

more tightly-tuned parameters.

Letting the noise matrices change with time may yield more accurate

predictions. Right now, the optimization techniques return constant values for

the various E and R matrices. Constant covariance matrices imply a

stationary situation, but head motion is not stationary. Therefore, more

accurate estimations and predictions might result if E and R varied with time.

As a simple experiment, I tried increasing values in the R matrices as the

head velocity increased, in the belief that the tracker becomes less accurate

at fast velocities. This experiment did not improve the predictor's accuracy,

but perhaps more sophisticated ways of changing the E and R matrices could.

5.3.3 Miscellaneous details

The P matrix should always be symmetric, because it is a covariance

matrix. If the state variable is X, the covariance between X[2] and X[5], which

is stored in P[2, 5], is the same as the covariance between X[5] and X[2],

which is stored in P[5, 2]. Numerical errors can cause P to become

165

nonsymmetric as the Kalman filter runs. Therefore, in my implementation I

only operate on and retain the upper triangular part of P, which is sufficient to

specify the entire P matrix.

6. Theoretical limits

The previous chapters described a prediction method and

demonstrated its effectiveness in an operational Augmented Reality system.

This evaluation, like the evaluation of virtually all other previous head-motion

predictors, was empirical. The prediction method is run in real time or in

simulation and the resulting errors are recorded. Therefore, no simple

formulas were used to generate those error values. Without such formulas, it

is not easy to tell how the prediction errors will change if the system

parameters, such as the system delay or the input head motion, are modified.

The lack of formulas makes it difficult to compare predictors against each

other or to evaluate how well a predictor will work in a different system.

This chapter addresses the need for such formulas by characterizing

the theoretical behavior of the predictor described in Chapter 4. Expressing a

limit on how well any arbitrary predictor could do is an essentially intractable

problem, because no algorithm exists that finds the best model to a set of

data, as explained in Section 6.1. However, it is possible to analyze specific

predictors by characterizing their behavior in the frequency domain. Section

6.2 provides a brief introduction to frequency-domain analysis. One previous

work [Riner92] showed the performance of its prediction method in the

frequency domain. This chapter builds upon that work by showing the

performance of two other types of predictors in the frequency domain and

exploring how the performance changes as the system parameters are

modified. The first type is a 2nd-order polynomial used in many predictors.

Section 6.3 shows the performance of the 2nd-order polynomial, under the

assumption that perfect measurements are available. Of course, that

assumption describes an idealized situation. In reality, predictors often use

Kalman filters to smooth the noisy measurements and estimate state

variables that are not directly measured. Section 6.4 provides formulas that

specify the performance of three specific Kalman-filter-based predictors.

167

With the formulas provided by the frequency-domain analysis, I can

describe how a predictor's performance changes with different system

parameters. Section 6.5 shows how to do this with three specific examples.

First, it quantifies the distribution and growth of errors as the prediction

interval changes. Second, it shows how to estimate the spectrum of the

predicted motion, given the spectrum of the original head motion. And third, it

estimates the maximum time-domain error in the predicted signal, allowing

designers to determine the maximum acceptable system delay given the

maximum tolerable error.

Finally, Section 6.6 covers some implementation details that one

should be aware of when performing a frequency-domain analysis on

collected data. The techniques used in this chapter might be applied to any

other linear predictor and could form a basis for comparing head-motion

predictors.

Throughout this chapter, ω is angular frequency. That is, ω = 2πf,

where f is the frequency in Hertz. Also, j is the square root of —1.

6.1 Limits of arbitrary prediction

Since the inertial-based predictor described in Chapter 4 does not

produce perfect predictions, the following question is opened: Is there a

bound on how much improvement prediction can achieve, given the choice of

any possible prediction method? That is, what is the largest improvement any

predictor can hope to accomplish? Unfortunately, expressing a bound given

the availability of any arbitrary predictor is basically an intractable problem,

not because the predictors used may be nonlinear, but primarily because the

head motion prediction problem is nonstationary and difficult to model

perfectly.

Nonlinearity is not the main problem. Implementing optimal nonlinear

predictors is rarely feasible in practice, because any optimal nonlinear

predictor requires knowledge and consideration of the conditional probabilities

between the state and all previous measurements, as mentioned on p. 261 of

[Lewis86]. As Chang describes it, "the optimal (conditional mean) nonlinear

168

estimator cannot be realized with a finite-dimensional implementation, and

consequently all practical nonlinear filters must be suboptimal" [Chang84].

However, it may be possible to represent head motion adequately with linear

models. The Kalman filters used in Chapter 4 for the translation terms are

linear. While the Extended Kalman Filter used for the orientation terms is

nonlinear, Section 4.1 discussed how orientation might be linearized for

prediction purposes. Furthermore, it is theoretically possible to derive

nonlinear limits, even if those are not practical to implement.

The real problem is the combination of the following two properties:

1) Head-motion signals are nonstationary, and 2) No algorithm exists that can

select the optimal model for a given situation. The combination is important,

because perfect prediction is theoretically possible for bandlimited stationary

signals. A nonstationary signal is one where the statistical properties of the

signal, such as the mean and the covariances, change with time. For

example, the user might keep still for a while, then suddenly start moving his

head around quickly. The statistical properties will change drastically. A

stationary signal is one whose statistical characteristics do not change with

time. Bandlimited signals are ones that have no energy in the frequency

domain beyond a specified frequency. Every bandlimited stationary signal will

be periodic. If the predictor samples such a signal at several times the

Nyquist rate, and these samples have no noise, and if the predictor has

access to past measurements of the signal with no limits on how far back into

the past one can draw upon, then it is possible to make a perfect prediction of

any future value of the signal [Splettsösser82], as discussed in Section 4.1.

However, head-motion signals are nonstationary, and any practical

measurements of those signals include noise, so this theoretical result is not

achievable in practice.

The problem of finding models and their associated parameters to

match collected data is sometimes called the system identification problem,

and no systematic technique exists for finding the optimal model for arbitrary

data. What is an optimal model? Ideally, a model should be able to predict

future values so well that the error between the predicted signal and the true

signal has the characteristics of white noise. No other model can do better

because no systematic information is left to be extracted. In essence, any

169

potentially better model must predict the remaining difference, which is white

noise, and that cannot be done. Note that the definition of the Kalman filter

assumes the existence of such a model, but it does not specify how to

generate the model in the first place! In general, an optimal model does not

exist. The question then becomes, what is the model that comes closest to

the nonachievable optimal model? No algorithm exists that can determine

this model. Regression techniques specify how to find parameters that

achieve the best fit of a specific model, such as a line, a curve, or a sinusoid,

to observed data. They cannot say which model to pick, nor can they find the

best model out of the arbitrary, infinite space of potential models. A

theoretical limit of how well the best predictor could possibly do on head-

motion signals cannot be specified. In practice, system identification usually

requires experimentation to find an acceptable model [Fleming89].

6.2 Frequency-domain analysis techniques

6.2.1 Introduction

Since it is not possible to find an upper bound for how well the best

possible predictor performs, I instead focus on characterizing the properties of

the predictors and filters described in Chapter 4. This characterization is

provided by frequency-domain analysis techniques, which draw upon results

from spectral analysis, linear systems theory, the Fourier transform, and the

Z-transform. None of these techniques is new. My contribution comes from

applying them to this particular problem and analyzing the results. Although

this chapter assumes basic knowledge of these techniques, this section

provides a brief introductory background. For details, see [Brown92]

[Lewis86] [Oppenheim83] [Phillips90] [Priestley81].

The frequency domain can be introduced by comparing it against the

time domain. A time-domain function g(t) returns a value based upon the time

t. Plotting the function values versus time shows how the magnitude of the

function changes with time. However, this is not the only way to represent the

function g(t). It is possible to change the representation so that the function

outputs values based on frequency, rather than time. For example, the
function might be based upon angular (or rotational) frequency ω, so the

170

function values can be plotted versus frequency, showing the distribution of

energy at various frequencies. A function represented in this manner is said

to be in the frequency domain. By convention, time-domain functions are

written with lower-case letters and frequency-domain functions are written

with capital letters:

Time domain Frequency domain
g(t) G(ω)

A time-domain representation and a frequency-domain representation

are two different ways of looking at the same function. The representations

are equivalent, so it is possible to convert from one representation to the

other. In this context, the operation that computes the frequency-domain

representation of a function, given a time-domain representation, is called a

transform. An inverse transform performs the opposite operation, computing

the time-domain representation from a frequency-domain representation.

The next two sections focus on two specific examples of transforms:

the Fourier Transform and the Z-Transform. Both will be used later in this

chapter. Section 6.3, which characterizes the 2nd-order polynomial predictor,

uses the Fourier Transform. Section 6.4, which analyzes the Kalman-filter-

based predictor, makes use of the Z-Transform.

6.2.2 The Fourier Transform

The Fourier Transform converts time-domain functions into a domain

where the basis functions are of the form e j ω t , where e is 2.71828…, the

base of the natural logarithm. Note that the exponent is purely imaginary, and

the coefficient for each basis function is complex, in general. Complex

numbers are represented in two equivalent forms, rectangular and polar:

Rectangular (real x, imaginary y): x + j y
Polar (magnitude M, phase ø): M e jø

To convert between the two forms, use the following formulas:

171

Rectangular → Polar: M = x 2 + y 2 , ø = tan−1 y
x







Polar → Rectangular: x = M cos(ø), y = M sin(ø)

The basis functions in the Fourier domain are sinusoids. To show why

this is so, I will first derive some expressions that convert the Fourier-domain

basis functions into sinusoids. First, take power series expansions of ex,

sin(x), and cos(x):

ex = 1+ x + x 2

2!
+ x 3

3!
+…+ x N

N !
+…

sin(x) = x − x 3

3!
+ x 5

5!
−…

cos(x) = 1− x 2

2!
+ x 4

4!
−…

Then:

e j x = 1 + j x − x 2

2!
− j

x 3

3!
+ x 4

4!
+ j

x 5

5!
− …

j sin(x) = j x − j
x 3

3!
+ j

x 5

5!
…

cos(x) = 1 − x 2

2!
+ x 4

4!
− …

Therefore:

e j x = cos(x) + j sin(x)

e− j x = cos(−x) + j sin(−x) = cos(x) − j sin(x)

Combine the previous two expressions and solve for the cosine term:

cos(x) = e j x + e− j x

2

With this result, I can convert the e j ω t Fourier-domain basis functions

into sinusoids. First note that frequencies can be both positive and negative.

Also, the time-domain values in the head-motion prediction problem are

purely real. A basic property of the Fourier Transform is that if the time-

domain values are purely real, then the complex coefficients in the equivalent
Fourier-domain representation at every frequency pair ω and —ω are complex

172

conjugates. That is, the magnitudes of both complex coefficients are the

same, and the phases are also the same except that one is negative and the
other positive. Let the complex coefficient at frequency ω be A, where

A = M e j ø . Then adding the two basis functions at the frequency pair

ω and —ω, along with their complex coefficients, yields the following:

M e j ø e j ω t + M e− j ø e− j ω t

= M e j ω t +ø() + e− j ω t +ø()()
= 2M cos(ω t + ø)

by using the previously derived expression for cosine. Thus, the sum of the

two basis functions at each frequency pair is a sinusoid.

The Fourier transform applies to continuous signals or to discrete

approximations of continuous signals. In the continuous case, integrating all

the basis sinusoids yields the original time-domain function. In the discrete

case, the integral is replaced with a summation. An important property is that

it is easy to compute the derivatives of the function from the Fourier

representation. Simply take the derivatives of all the basis sinusoids,

evaluate that function at the specified time, and integrate (or sum) the results.

In Section 6.3, I treat the signal as continuous. When actually implementing

Fourier Transforms on a computer, I use a fast version of the Discrete Fourier

Transform, called the Fast Fourier Transform (FFT). Table 6.1 lists some

time-domain and Fourier-domain equivalents for the continuous Fourier

Transform that I will use in Section 6.3.

Time domain Fourier domain

Linearity A g1(t) + B g2(t) AG1(ω) + B G2(ω)

Time shift g(t − a) e− j ω a G(ω)

Differentiation
dg(t)

dt
j ω G(ω)

Table 6.1: Time and Fourier domain equivalents

173

6.2.3 The Z-Transform

The Z-Transform applies to discrete signals that are evenly spaced in

time. It uses basis functions that form a power series with terms zk , where k

is an integer representing each discrete timestep. For example, take a

discrete time signal x(k), where k ranges from 0 to ∞. This signal takes the

following values:

x (0) = 1, x (1) = 2, x (2) = 3, x (3) = 4, etc.

Then the equivalent Z-domain function X(z) is:

X (z) = 1+ 2z −1 + 3z −2 + 4z −3 + …

That is, the coefficients for the basis functions in the Z-domain are the time-

domain values.

Matrices can also be converted into the Z-domain. If a matrix is

composed of several time-domain functions, the Z-domain equivalent of that

matrix is computed by changing each separate function into the Z-domain.

For example, let the 2 by 2 matrix R(t) be:

R(t) =
r11(t) r12 (t)

r 21(t) r 22 (t)










Then the Z-domain equivalent R(z) is:

R(z) =
R11(z) R12(z)

R21(z) R22(z)










To plot a Z-domain function versus frequency, use the following

substitution:

z = e j ωT

where T is the period of the evenly spaced time-domain values, in seconds.

Table 6.2 lists the other properties of the Z-Transform that I will use in

Section 6.4.

174

Time domain Z-domain

Linearity A x1(k) + B x2(k) A X1(z) + B X 2(z)

Time shift x (k + 1), with x (0) = 0 z X (z)

Sine function sin(a t)
z sin(aT)

z 2 − 2z cos(aT) + 1

Cosine function cos(a t)
z z − cos(aT)()

z 2 − 2z cos(aT) + 1

Table 6.2: Time and Z-domain equivalents

6.2.4 Assumptions

The analysis in this chapter makes three specific assumptions. It

assumes that the predictors are linear, that head-motion is separable into

several 1-D signals, and that the input signals are sampled at evenly spaced

discrete intervals.

The first assumption is that the predictor is linear. A basic result of

linear systems theory states that any sinusoidal input into a linear system

results in an output of another sinusoid of the same frequency but with

possibly different magnitude and phase. If the input is the sum of many

different sinusoids (e.g., a Fourier-domain signal), then the output can be

computed by taking each sinusoid, changing its magnitude and phase, then

summing (or integrating) the resulting output sinusoids. This is due to the

property of linear superposition. Thus, it is possible to completely

characterize linear systems by describing how the magnitude and phase of

input sinusoids transform to the output as a function of frequency. This

characterization is called a transfer function, and that is what Sections 6.3

and 6.4 derive.

Transfer functions return the ratio of the magnitudes and the difference

of the phases between the input and output sinusoids, as a function of
frequency. Say that C(ω) is a transfer function from input X(ω) to output Y(ω):

C(ω) = Y (ω)
X (ω)

=
My e j øy

Mx e j øx
=

My

Mx
e

j øy −øx()

175

Then C(ω) returns the following magnitude ratio and phase difference:

Magnitude ratio =
My

Mx

Phase difference = øy − øx

The second assumption is that the predictor separates 6-D head

motion into six 1-D signals, each of which is handled by a separate predictor.

This makes the analysis simpler. Section 4.5 discussed why this assumption

is generally valid for head motion and listed potential problems caused by this

assumption.

The assumptions of linear predictors and separable signals are

generally reasonable for the translation terms, but not necessarily for the

orientation terms. In Chapter 4, translation is handled by three linear 1-D

predictors. However, orientation is represented by quaternions, which are

neither linear nor separable. Section 4.1 described a way of converting

quaternions into three 1-D Euler angle curves that can be handled by three

linear 1-D predictors. Although that method is not practical in real time, it

works fine in non-real-time situations and is a way to apply the analysis from

this chapter to orientation motion.

Finally, the third assumption is that the input signals are measured at

evenly spaced discrete time intervals. Chapter 5 showed that this is not the

case in the operating Augmented Reality system, but this assumption does

not seriously change the properties of the filter or the predictor as long as the

sampling is done significantly faster than the Nyquist rate, and it makes the

analysis easier. The sampling period I use for the analysis is 5 ms, which is

considerably faster than typical 15-30 ms period between measurements in

the actual system.

6.2.5 Ideal predictor transfer function

Sections 6.3 and 6.4 compute transfer functions, showing how the

predictors behave in the frequency domain. It would be useful to compare

those transfer functions against an ideal. The ideal predictor is one that does

nothing more than shift the original signal in time. While this is noncausal and

176

therefore not implementable in real time, it is useful as a basis for

comparison. Let the original signal be g(t) and the prediction interval be p

seconds. Then the ideal predicted signal h(t) is:

h(t) = g(t + p)

What does the transfer function for the ideal predictor look like? By the

timeshift formula in Table 6.1, the magnitude is unchanged. Therefore, the

magnitude ratio is one for all frequencies. However, the phase difference
varies with frequency. Since this difference is ω p, the phase difference

appears as a line of slope p. Note that the line changes as p changes.

Figures 6.1 and 6.2 graph the ideal magnitude ratio and phase difference,

respectively.

0

1

2

3

4

5

0 2 4 6 8 10

M
ag

ni
tu

de
 r

at
io

Frequency in Hz
Figure 6.1: Magnitude ratio of ideal prediction transfer function

177

0

200

400

600

800

0 2 4 6 8 10

P
ha

se
 d

iff
er

en
ce

 in
 d

eg
re

es

Frequency in Hz

50 ms

100 ms

200 ms

Figure 6.2: Phase difference of ideal prediction transfer function

6.2.6 RMS error metric

A problem with computing the error in the actual predictor transfer

function, as compared to the ideal transfer function, is that transfer functions

have two outputs: the magnitude ratio and the phase difference. Showing the

error in just one or the other is insufficient. Both contribute to the overall

error. At large magnitude ratios, the magnitude ratio difference dominates the

error, but ignoring the phase difference is not wise at low magnitude ratios.

To capture the contributions of both magnitude and phase, I define a
root-mean-square (RMS) error metric. At a particular angular frequency ω, let

M be the magnitude of the actual transfer function and ø be the difference

between the actual transfer function's phase difference and the ideal transfer

function's phase difference. Then the RMS error at that frequency is defined

as:

178

1
T

M sin(ω t + ø) − sin(ω t)[]2dt
0

T

∫

where T is the period of that frequency.

Another metric is to compute the error transfer function, which

transforms the original signal to the error signal. The error signal is the

difference between the predicted signal and the original signal. If g(t) is the

original signal and h(t) is the predicted signal, recall that the ideal relationship

is defined as:

h(t) = g(t + p)

Therefore, the error signal e(t) is:

e(t) = h(t) − g(t + p)

Ideally, the error signal is always zero, but in practice that will not be the case.

Section 6.5.1 will use the RMS error metric to compare the accuracy of

various predictors. Section 6.5.3 uses the magnitude ratio of the error

transfer function to estimate the maximum time-domain error. The phase

difference is not required for that estimate. Therefore, Sections 6.3 and 6.4

compute three formulas:

• The magnitude ratio of the prediction transfer function

• The phase difference of the prediction transfer function

• The magnitude ratio of the error transfer function

6.3 Analysis of 2nd-order polynomial predictor

In Section 4.4.2, I described the predictor used with the translation

filters as a 2nd-order Taylor expansion of a function or the equation of a

particle moving in a constant gravitational field. Let the original 1-D signal be

g(t) and the prediction interval be p seconds. Then the predicted signal h(t) is

computed as follows:

h(t) = g(t) + p g'(t) + 1
2 p2 g"(t)

179

The error e(t) between the predicted signal and the actual signal is

defined as:

e(t) = h(t) − g(t + p)

e(t) = g(t) + p g'(t) + 1
2 p2 g"(t) − g(t + p)

Now make some idealized assumptions:

• The position, velocity, and acceleration of the original signal

are perfectly known.

• The signal is continuous, and all past values are known.

None of these assumptions is true in practice. Measurements are

available only at discrete intervals, the measurements are noisy and distorted,

and the system is able to measure only a subset of position, velocity, and

acceleration. The more realistic case is analyzed in Section 6.4. This section

makes these assumptions because they provide insight into how difficult the

prediction problem is, even when perfect measurements are available.

Polynomial-based predictors used with noisy and incomplete measurements

will do worse than the ideal described here.

Now convert both the predicted signal and the error signal into the

Fourier domain:

Time domain: h(t) = g(t) + p g'(t) + 1
2 p2 g"(t)

Fourier domain: H(ω) = G(ω) + j ω p G(ω) + 1
2 j ω p()2 G(ω)

H(ω) = 1+ j ω p − ω p()2()G(ω)

Time domain: e(t) = g(t) + p g'(t) + 1
2 p2 g"(t) − g(t + p)

Fourier domain:

E (ω) = G(ω) + j ω pG(ω) + 1
2 j ω p()2 G(ω) − e j ω p G(ω)

E (ω) = 1+ j ω p − 1
2 ω p()2 − e j ω p()G(ω)

 With these Fourier-domain equations, I can compute the prediction

transfer function, which transforms the original signal into the predicted signal,

and the error transfer function, which transforms the original signal into the

error signal. The next three sections derive the magnitude ratio and phase

180

difference for the prediction transfer function and the magnitude ratio for the

error transfer function. Then Section 6.3.4 interprets the results.

6.3.1 Magnitude ratio of the 2nd-order prediction transfer function

The goal is to compute the magnitude of the predicted signal H(ω) and

divide that by the magnitude of the original signal G(ω). This is expressed as

a magnitude ratio:

Magnitude ratio =
H(ω)
G(ω)

At any frequency ω, the value of G(ω) is a particular complex number.

Call that complex number A, where:

A = x + j y

Now I can expand the expression for H(ω):

H(ω) = 1+ j ω p − 1
2 ω p()2()G(ω)

 = 1+ j ω p − 1
2 ω p()2() x + j y()

 = x − y ω p − 1
2 x ω p()2() + j y + x ω p − 1

2 y ω p()2()
Then the squared magnitude of H(ω) is:

H(ω) 2 = x − y ω p − 1
2 x ω p()2()2

+ y + x ω p − 1
2 y ω p()2()2

Expanding the right-hand side of this equation and collecting terms yields:

H(ω) 2 = x2 + y 2() 1+ 1
4 ω p()4()

Now I can define the magnitude ratio:

G(ω) 2 = x2 + y 2

H(ω) 2

G(ω) 2 =
x 2 + y 2() 1+ 1

4 ω p()4()
x 2 + y 2()

181

H(ω)
G(ω)

= 1+ 1
4 ω p()4

Note that when p = 0, the magnitude ratio is 1. That makes sense,

because the predictor should just return the original signal when the

prediction interval is zero.

Figure 6.3 graphs the magnitude ratio for three prediction intervals:

50 ms, 100 ms, and 200 ms. The ideal ratio is one at all frequencies, but the

actual predictor magnifies high frequency components, even with perfect

measurements of position, velocity, and acceleration.

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5

M
ag

ni
tu

de
 r

at
io

Frequency in Hz

200 ms

100 ms

50 ms

Ideal

Figure 6.3: Magnitude ratio of 2nd-order prediction transfer function

6.3.2 Phase difference of the 2nd-order prediction transfer function

The goal is to find the difference between the phase of the original
signal G(ω) and the predicted signal H(ω), at a particular frequency ω. Let α
be the phase of H(ω) and ø be the phase of G(ω). Using the equation:

H(ω) = x − y ω p − 1
2 x ω p()2() + j y + x ω p − 1

2 y ω p()2()
I can compute the phase of H(ω):

α = tan−1 y + x ω p − 1
2 y ω p()2

x − y ω p − 1
2 x ω p()2








182

Also, based on the definition of A, the phase of G(ω) is:

ø = tan−1 y
x







Now use the following trigonometric identity:

tan α − ø() = tan(α) − tan(ø)
1+ tan(α) tan(ø)

Substitute for tan(α) and tan(ø) in the right-hand side of the equation:

tan α − ø() =

y + x ω p − 1
2 y ω p()2

x − y ω p − 1
2 x ω p()2 − y

x

1+
y + x ω p − 1

2 y ω p()2

x − y ω p − 1
2 x ω p()2







y
x

Simplify the right-hand side:

tan α − ø() = p ω
1− 1

2 p ω()2

Therefore, the phase difference is:

α − ø = tan−1 p ω
1− 1

2 p ω()2








If the prediction interval p is zero, then the phase difference is zero,

which makes sense.

Figure 6.4 plots the actual phase difference, along with the

corresponding ideal phase difference, for three prediction intervals: 50 ms,

100 ms, and 200 ms. The actual phase differences match the ideal only at

low frequencies, with the errors becoming larger at long prediction intervals or

high frequencies. The actual phase differences asymptotically approach

180 degrees.

183

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5

P
ha

se
 d

iff
er

en
ce

 in
 d

eg
re

es

Frequency in Hz

50 ms

100 ms

200 ms

Ideal Actual

Figure 6.4: Phase difference of 2nd-order prediction transfer function

6.3.3 Magnitude ratio of the 2nd-order error transfer function

The goal is to compute the magnitude of the error signal E(ω) and

divide that by the magnitude of the original signal G(ω). This forms the

following magnitude ratio:

Magnitude ratio =
E (ω)
G(ω)

As in Section 6.3.1, call A the complex number that is the value of G(ω)

at a particular frequency ω, where:

A = x + j y

Now expand the expression for E(ω):

E (ω) = 1+ j ω p − 1
2 ω p()2 − e j ω p()()G(ω)

 = 1+ j ω p − 1
2 ω p()2 − cos ω p() − j sin ω p()() x + j y()

 = x − y ω p − 1
2 x ω p()2 − x cos ω p() + y sin ω p()()

 + j y + x ω p − 1
2 y ω p()2 − x sin ω p() − y cos ω p()()

184

Then the squared magnitude of E(ω) is:

E (ω) 2 = x − y ω p − 1
2 x ω p()2 − x cos ω p() + y sin ω p()()2

 + y + x ω p − 1
2 y ω p()2 − x sin ω p() − y cos ω p()()2

By expanding the terms on the right-hand side and simplifying, this equation

reduces to:

E (ω) 2 = 2 + 1
4 ω p()4 + ω p()2 − 2()cos ω p() − 2ω p sin ω p()() x 2 + y 2()

Now I can define the magnitude ratio:

G(ω) 2 = x2 + y 2

E (ω) 2

G(ω) 2 =
2 + 1

4 ω p()4 + ω p()2 − 2()cos ω p() − 2ω p sin ω p()() x 2 + y 2()
x 2 + y 2

E (ω)
G(ω)

= 2 + 1
4 ω p()4 + ω p()2 − 2()cos ω p() − 2ω p sin ω p()()

If prediction interval p = 0, then this magnitude ratio goes to zero. That

makes sense, because one expects no error with a prediction interval of zero.

6.3.4 Interpretation

The main result is that the magnitude of the predicted output grows

rapidly as a function of both the prediction interval and the angular frequency

of the original signal, which means it is important to keep the prediction

interval small and avoid high-frequency signals. Figure 6.5 shows how the

RMS error between the predicted and original signals changes with

frequency, for three different prediction intervals. The error grows significantly

as either the prediction interval p or the frequency of the original signal

increases. The curve for the 50 ms prediction interval grows much more

slowly than the curves representing the 100 ms and 200 ms prediction

intervals. These graphs support the observation in Chapter 4 that this

predictor must be combined with efforts to minimize system delays.

185

0

2

4

6

8

10

12

14

0 1 2 3 4 5

R
M

S
 e

rr
or

Frequency in Hz

50 ms

100 ms

200 ms

Figure 6.5: RMS error for 2nd-order predictor

Note the intimate relationship between p and ω in the formulas from

Sections 6.3.1 through 6.3.3; they always occur together as ω p. This

suggests a relationship between allowable bandwidth and the prediction

interval. Halving the prediction distance means the signal can double in

frequency while maintaining the same prediction performance. That is,

bandwidth times the prediction interval yields a constant performance level.

Even if the prediction interval is small, the error will be large if high-

frequency signals exist, even if those high-frequency signals have small

magnitudes. This can be made clear with a simple example. Table 6.3 lists

three sinusoids that form an original signal. If I set the prediction interval to

30 ms and run the predictor on that signal, the predicted outputs follow the

actual curve fairly closely, as shown in Figure 6.6 for a small portion of the

curve. The average error is 0.086, and the peak error is 0.160. Now declare

the original signal to be the sum of the sinusoids listed in Table 6.4. The only

difference between Tables 6.3 and 6.4 is the addition of one low-magnitude

sinusoid at 60 Hz, which could represent a noise source. The original signals

are almost exactly the same. However, adding the one extra sinusoid makes

the prediction noisy and much less accurate, as shown in Figure 6.7. The

average error is now 0.412 and the peak error 0.771.

186

Functions are of the form: M sin(2πf + ø):

Magnitude Frequency (Hz) Phase (radians)

Sine #1 5.0 1.0 0.5

Sine #2 3.0 2.0 -1.7

Sine #3 1.0 5.0 -0.3
Table 6.3: Three sinusoids

-8

-6

-4

-2

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
ut

pu
t v

al
ue

Time in seconds

Actual Predicted

Figure 6.6: Portion of original and predicted signals from Table 6.3

Functions are of the form: M sin(2πf + ø):

Magnitude Frequency (Hz) Phase (radians)

Sine #1 5.0 1.0 0.5

Sine #2 3.0 2.0 -1.7

Sine #3 1.0 5.0 -0.3

Sine #4 0.01 60.0 0.2
Table 6.4: Four sinusoids

187

-8

-6

-4

-2

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
ut

pu
t v

al
ue

Time in seconds

Actual Predicted

Figure 6.7: Portion of original and predicted signals from Table 6.4

This magnification of high-frequency signals shows up as "jitter" in the

predicted signal, which was discussed in Section 4.5. This means that the

original signal must not contain significant energy at high frequencies, or

prediction will be ineffective. Section 6.5 will show what prediction does to the

spectrum of a typical head-motion signal. This sensitivity to high-frequency

components makes noise a problem, because white-noise processes

contribute equally to low and high frequencies.

6.4 Analysis of Kalman-filter-based predictor

Section 6.3 assumed that the system had perfect, continuously-

available measurements of position, velocity, and acceleration. This is an

ideal situation that does not occur in reality. Instead, the measurements will

be noisy and possibly distorted, and the system is rarely able to directly

measure position and velocity and acceleration. Usually, the system is only

able to measure a subset of those values, such as position only, or perhaps

position and acceleration. Also, the measurements are not continuously

sampled, but they are instead available only at discrete intervals.

188

Because of these limitations, Chapter 4 uses the 2nd-order polynomial

predictor in combination with a Kalman filter. The Kalman filter provides

estimates of position, velocity, and acceleration, based upon measurements

and a motion model that may both be inaccurate. Depending on how the filter

parameters are set, the Kalman filter can provide smoothed estimates,

reducing the effect of high-frequency noise. Figure 6.8 shows a high-level

dataflow diagram of how the two are combined.

Discrete
Kalman

Filter

Z

(F measurements)

X

(N state
variables)

Polynomial-
based

predictor

Predicted
position

Figure 6.8: High-level dataflow for Kalman-filter-based predictor

This section analyzes the more realistic predictor. It is identical to the

predictor used for the translation terms in Chapter 4, except it assumes that

the measurements are sampled at evenly spaced discrete time intervals, as

explained in Section 6.2.4. This allows the use of the Discrete Kalman Filter

(DKF) for the analysis, which is simpler than the Continuous-Discrete Kalman

Filter used in Chapter 4. In the case that the measurements arrive at evenly

spaced intervals, the two filters can be set to generate exactly the same

outputs (see Section 6.6.2 for details), and I use those techniques to set the

DKF equations based upon the continuous-discrete equations. If the

measurements do not arrive at evenly spaced intervals, the DKF can closely

approximate the continuous case by setting the sampling period to a small

value with respect to the periods between measurements, assigning the

measurements to the closest discrete timestep, and running only time-update

steps inside the filter when measurements are not available [Lewis86]. The

DKF can also be applied to orientation if those signals are linearized by the

method suggested in Section 4.1, instead of using the Extended Kalman Filter

to do the linearization, which is what Chapter 4 does.

Because the signals are measured at evenly spaced time intervals, I

use the Z-transform to convert the signals into the frequency domain.

Therefore, the transfer functions must also be expressed in the Z-domain.

Because the Kalman Filter uses multiple inputs and produces multiple

outputs, its characterization in the frequency domain will be a transfer matrix,

rather than a single transfer function that was the case in Section 6.3. The

189

transfer matrix is composed of individual transfer functions that show how

each input is transformed to each output. For example, assume the system

has three outputs Y(z) and two inputs X(z), for a total of six individual transfer

functions. Y(z) is a 3 by 1 vector and X(z) is a 2 by 1 vector. Then the 3 by 2
transfer matrix M(z) is defined by Y(z) = M(z)X(z), where

Y(z) =
y0(z)

y1(z)

y2(z)

















X(z) =
x0(z)

x1(z)








 M(z) =

y0(z)
x0(z)

y0(z)
x1(z)

y1(z)
x0(z)

y1(z)
x1(z)

y2(z)
x0(z)

y2(z)
x1(z)



























The contributions from every input signal must be combined to produce

the true output signal. For example, computing the first output requires the

following:

Let transfer function G0(z) = y0(z)
x0(z)

Let transfer function G1(z) = y0(z)
x1(z)

Then y0(z) = G0(z)x0(z) +G1(z)x1(z)

Simply using the first measurement or the second measurement by itself is

insufficient. This also means that examining each of the two transfer

functions separately can be misleading, because they are both required to

generate the output. Note that the transfer functions are not fractions; they

are closer in form to partial derivatives, where all the partial derivatives are

required to compute the total derivative. I have verified that computing

signals in the frequency-domain in this fashion does produce the correct time-

domain signals, by the methods described in Section 6.6.

The next section derives the transfer matrix for the Discrete Kalman

Filter by itself. Then Section 6.4.2 derives the transfer matrix for the

combination of the filter with the polynomial-based predictor. I investigate

three specific configurations of the filter with the predictor: 1) only position is

190

measured, 2) position and velocity are measured, and 3) position and

acceleration are measured. The first case is representative of most previous

work, while the other two cases analyze what happens when inertial

measurements are available. Sections 6.4.3 through 6.4.5 cover these three

cases and graph the results.

6.4.1 The Discrete Kalman Filter transfer function

The Discrete Kalman Filter is similar to the Continuous-Discrete

Kalman Filter described in Section 4.4.2, except that the time update step is

now handled by a set of matrix operations instead of a numerical integrator.

See Sections 4.2 and 4.4.2 for an introduction to the Kalman filter. In this

section I list the equations and sketch the operation of the DKF, then derive

the transfer matrix based on those equations. The basic model is:

X(k + 1) = A(k)X(k) + G(k)w (k)

Z(k) = H(k)X(k) +v (k)

In these equations, k is an integer representing the discrete timestep.

Let N be the number of state variables, F be the number of measurements,

and L be the number of model noise terms. Then the matrices are:

X(k) = N by 1 state variable

A(k) = N by N model

G(k) = N by L noise control

Z(k) = F by 1 measurements

H(k) = F by N measurements to state variable relationship

w(k) = white noise source with covariances E(k)

v(k) = white noise source with covariances R(k)

E(k) = L by L model covariance matrix

R(k) = F by F measurement covariance matrix

Two other matrices are used. These are P(k), which is an N by N state

variable covariance matrix, and K(k), the N by F Kalman gain matrix. Note

that K is a matrix, while k is an integer representing the timestep number.

Also, Z(k) is a matrix, while z is the index for Z-domain representations.

191

To start the filter, set k=0 and set X(0) and P(0) to their initial values.

Then at each new timestep k+1, there is a measurement Z(k+1). The discrete

Kalman filter runs a time update step, followed by a measurement update

step, to compute the new state variables X(k+1) and covariances P(k+1).

These steps are repeated for every new measurement.

The time update step uses the following equations to update the state

variables and covariance matrix, based on the model.

X− (k + 1) = A(k)X(k)

P− (k + 1) = A(k)P(k)A(k)T + G(k)E(k)G(k)T

The minus sign in the superscript for X and P indicates that this is a partial

update of X and P.

To complete the update, run the measurement update step, which

incorporates the new measurement Z(k + 1) into X. The measurement update

uses the following equations, which are the same as the measurement update

from the Continuous-Discrete Kalman Filter listed in Section 4.4.2:

K(k + 1) = P− (k + 1)H(k + 1)T H(k + 1)P− (k + 1)H(k + 1)T + R(k + 1)[]−1

P(k + 1) = I − K(k + 1)H(k + 1)[]P− (k + 1)

X(k + 1) = X− (k + 1) + K(k + 1) Z(k + 1) − H(k + 1)X− (k + 1)[]
Note that I is the N by N identity matrix.

Now that I have explained the basic operation of the discrete Kalman

filter, I will point out three characteristics that are important for the frequency

analysis. The first is that although all the matrices can vary with time, most do

not. The models I use are simple and non-time-varying. A, G, H, E, and R

are all constant matrices. Therefore, I can remove the k index from those

matrices. The second characteristic to notice is that the values of P and K,

which do vary with time, do not depend upon the measurements Z. That

means it is possible to precompute those values for every timestep for any

input data sequence. Finally, the third characteristic results from the

combination of the first two: Matrices P and K eventually converge to constant

values. In practice, this occurs quickly with my filters. Convergence occurs

192

with one to two seconds of data, for a 5 ms timestep. This means that in the

steady-state mode, I can treat matrices P and K as constants.

I can now derive the transfer matrix for the steady-state Discrete

Kalman Filter. This filter has only two time-varying matrices: X(k) and Z(k).

When a new measurement Z(k + 1) arrives, the combined time update and

measurement update steps are:

X− (k + 1) = A X(k)

X(k + 1) = X− (k + 1) + K Z(k + 1) − HX− (k + 1)[]
Combine the two equations to get an expression for X(k + 1) in terms of X(k)

and Z(k + 1):

X(k + 1) = A X(k) + K Z(k + 1) − HA X(k)[]
X(k + 1) = A − KHA[]X(k) + K Z(k + 1)

Now convert the equation into the Z-domain.

z X(z) = A − KHA[]X(z) + z K Z(z)

z I − A + KHA[]X(z) = z K Z(z)

X(z) = z I − A + KHA[]−1z K Z(z)

Define C(z) to be the transfer matrix for the Discrete Kalman Filter.

This specifies the relationship between the inputs, which are the

measurements Z, and the outputs, which are the estimated state variables X.

X(z) = C(z)Z(z)

where C(z) = z I − A + KHA[]−1z K

Note that C(z) is an N by F matrix. This matrix contains all the N by F

transfer functions transforming each input to each output. For example, let N

be 3 and F be 2. Then X(z) has three output signals in the Z-domain, and

Z(z) has two input signals. I define them as follows:

X(z) =
x0(z)

x1(z)

x2 (z)
















 Z(z) =

z0(z)

z1(z)










193

Then the 3 by 2 transfer matrix C(z) contains six transfer functions that

specify the relationships between the individual input and output signals:

C(z) =

x0(z)
z0(z)

x0(z)
z1(z)

x1(z)
z0(z)

x1(z)
z1(z)

x2(z)
z0(z)

x2(z)
z1(z)



























Why don't noise matrices E and R appear in the final expression for

C(z)? Don't they affect the transfer matrix? They do, and their effect is felt in

the steady-state matrix K. To compute C(z), I have to run the DKF in

simulation to determine what the steady-state K is. Different values of E and

R will result in different steady-state K matrices.

I can plot the individual transfer functions inside C(z) against angular
frequencies by the following procedure. For each angular frequency ω, set

the complex number z to be e j ωT , where T is the period, in seconds,

between consecutive measurements. Therefore:

z = e j ωT = cos(ωT) + j sin(ωT)

Note that z is a complex number, so the result is a matrix C(z) where

each term is a complex number. The matrix routines must be able to multiply

and invert matrices with complex components. The magnitude and phase of

each complex number represent the magnitude ratio and phase difference for

the transfer function that position in the matrix represents.

6.4.2 Transfer functions for combination of Kalman Filter and predictor

Figure 6.8 showed how the Discrete Kalman Filter is combined with the

polynomial-based predictor. This combination has F measurements as inputs

and one predicted position as the output. The goal is to generate a transfer

function from the measured position to the predicted position, just as in

Section 6.3. However, computing this transfer function is a problem if F is

greater than one. Recall that the predicted position depends upon all the

194

inputs. If there are multiple inputs, say position and acceleration, then the

transfer function from the measured position to the predicted position does

not capture the contribution from the measured acceleration, so it is

misleading to view that as the overall transfer function. Therefore, instead of

an F by 1 matrix, the overall transfer matrix must be reduced to a 1 by 1

matrix to compute the desired transfer function.

Figure 6.9 shows how to do this. The overall 1 by 1 transfer matrix

O(z) for the Discrete Kalman Filter combined with the polynomial-based

prediction is the multiplication of three matrices. G(z) is the scalar input

position signal. The measurement generator matrix M(z) transforms the

position signal into the set of measurements required by the DKF, such as

position and velocity. This assumes that position, velocity, and acceleration

are perfectly matched. The DKF does not assume this, so it treats the inputs

as completely separate signals. However, for the purpose of this analysis, I

make this assumption so I can generate an overall transfer function from

measured position to predicted position that captures the entire operation of

the filter and the predictor. The outputs of the measurement generator are

the measurements Y(z), which the DKF takes as input. Then the output of the

DKF, the estimated states X(z), is sent into the predictor, which generates the

predicted position H(z). The desired overall transfer function O(z) transforms

the input position signal G(z) into the predicted position signal H(z).

195

Measurements Y(z) (F signals)

Estimated states X(z) (N signals)

C(z)

Polynomial-based Predictor D(z)

Predicted position H(z) (Scalar)

N by F

1 by N

Measurement generator M(z)

Input position G(z) (Scalar)

F by 1

Discrete Kalman Filter

Overall transfer matrix O(z) is a 1 by 1 matrix:

H(z) = O(z) G(z) where O(z) = D(z) C(z) M(z)

Figure 6.9: Transfer matrices for Kalman-Filter-based predictor

To compute O(z), I need expressions for D(z), C(z), and M(z). C(z)

was computed in Section 6.4.1. D(z) is the polynomial predictor. Let x(z) be

the estimated position, v(z) be the estimated velocity, a(z) be the estimated

acceleration, and p be the prediction interval. If

X(z) =
x (z)

v (z)

a(z)

















then the corresponding D(z) is

D(z) = 1 p 1
2 p2[]

M(z) requires more work to compute. M(z) takes the original position

signal g(z) and must be able to produce measured position xmeasured(z),

measured velocity vmeasured(z), and measured acceleration ameasured(z).

Now xmeasured(z) is the same signal as g(z). Therefore, what remains is to

compute the following two transfer functions:

vmeasured (z)
g(z)

 and
ameasured (z)

g(z)

196

Computing these transfer functions is more difficult in the discrete case

than in the continuous case. Differentiating position once or twice yields

velocity and acceleration, respectively. In the Fourier domain, there is a

simple relationship between a function and its derivative, which was used in

Section 6.3. Unfortunately, no such relationship exists in the Z-domain.

Therefore, I have to explicitly define the position, velocity, and acceleration

signals, convert those into the Z-domain, then determine the Z-domain

transfer function. Recall that the Fourier transform produces a set of

sinusoids that, when added together, are equal to the original time-domain
function. Therefore, at any particular angular frequency ω, the original signal

is a sinusoid with unknown magnitude M and phase ø:

g(t) = M sin ω t + ø()
Then the corresponding measured velocity and acceleration signals are

determined by taking the derivatives of g(t):

vmeasured (t) = ω M cos ω t + ø()
ameasured (t) = −ω 2 M sin ω t + ø()

Now use the following two trigonometric identities:

sin(a + b) = sin(a)cos(b) + cos(a)sin(b)

cos(a + b) = cos(a)cos(b) − sin(a)sin(b)

Expand the three time-domain signals with those identities:

g(t) = M sin(ω t)cos(ø) + cos(ω t)sin(ø)[]
vmeasured (t) = ω M cos(ω t)cos(ø) − sin(ω t)sin(ø)[]
ameasured (t) = −ω 2 M sin(ω t)cos(ø) + cos(ω t)sin(ø)[]

Convert these three signals into the Z-domain, using the substitutions listed in

Table 6.2:

197

G(z) = M
z sin(ωT)cos(ø) + z z − cos ωT()()sin(ø)

z 2 − 2z cos(ωT) + 1













Vmeasured (z) = ω M
z z − cos ωT()()cos(ø) − z sin(ωT)sin(ø)

z 2 − 2z cos(ωT) + 1













Ameasured (z) = −ω 2 M
z sin(ωT)cos(ø) + z z − cos ωT()()sin(ø)

z 2 − 2z cos(ωT) + 1













Clearly:

Ameasured (z)
G(z)

= −ω 2

Now all that remains is to compute the other transfer function from position to

measured velocity:

Vmeasured (z)
G(z)

= ω
z z − cos ωT()()cos(ø) − z sin(ωT)sin(ø)

z sin(ωT)cos(ø) + z z − cos ωT()()sin(ø)













Cancel the z and substitute z = e j ωT = cos(ωT) + j sin(ωT):

Vmeasured (z)
G(z)

= ω sin ωT()cos(ø) − sin(ωT)sin(ø)
sin(ωT)cos(ø) + j sin ωT()sin(ø)











Vmeasured (z)
G(z)

= ω j cos(ø) − sin(ø)
cos(ø) + j sin(ø)









 = j ω cos(ø) + j sin(ø)

cos(ø) + j sin(ø)










Vmeasured (z)
G(z)

= j ω

Therefore, the three transfer functions used in M(z) are:

Xmeasured (z)
G(z)

= 1
Vmeasured (z)

G(z)
= j ω Ameasured (z)

G(z)
= −ω 2

Another transfer matrix that will be useful in Section 6.5.3 is the error

transfer function, which transforms the original position signal to the error

signal. Section 6.2.6 defined the error signal as:

e(t) = h(t) − g(t + p)

198

The goal is to derive the overall error transfer matrix U(z), which is defined as

follows:

E (z) = U(z)G(z)

Define
gp (t) = g(t + p)

Since I already have an expression for H(z), I must convert gp(t) into the

Z-domain. Then I can change the entire error signal expression into the

Z-domain and determine what U(z) is. Recall that for a particular frequency
ω, the original signal g(t) = M sin(ω t + ø). Therefore:

gp (t) = g(t + p) = M sin ω t + p() + ø()
gp (t) = M sin ω t + ω p + ø()
gp (t) = M sin(ω t)cos(ω p + ø) + cos(ω t)sin(ω p + ø)[]

Now convert gp(t) to the Z-domain:

Gp (z) = M
z sin(ωT)cos(ω p + ø) + z z − cos ωT()()sin(ω p + ø)

z 2 − 2z cos(ωT) + 1













Based on the previously-derived expression for G(z), I can now derive the

transfer function from G(z) to Gp(z):

Gp (z)

G(z)
=

z sin(ωT)cos(ω p + ø) + z z − cos ωT()()sin(ω p + ø)

z sin(ωT)cos(ø) + z z − cos ωT()()sin(ø)













Substitute z = e j ωT = cos(ωT) + j sin(ωT):

Gp (z)

G(z)
= cos(ω p + ø) + j sin(ω p + ø)

cos(ø) + j sin(ø)








 = e j ω p +ø()

e j ø

Gp (z)

G(z)
= e j ω p

Now I can compute U(z) by converting the error signal expression into

the Z-domain:

199

e(t) = h(t) − gp (t)

E (z) = H(z) −Gp (z)

E (z) = O(z)G(z) −
Gp (z)

G(z)
G(z)

E (z) = O(z) −
Gp (z)

G(z)
















G(z)

Therefore, the error transfer matrix U(z) is:

U(z) = O(z) − e j ω p[]
where E (z) = U(z)G(z)

I have now derived the overall prediction and error transfer matrices for

the Discrete Kalman Filter combined with the polynomial-based predictor.

However, it is not obvious how these transfer matrices behave just from

looking at the formulas. Therefore, the next three sections graph how the

overall transfer matrices behave, as a function of frequency, for three specific

examples:

• Case 1 (Section 6.4.3): Measured position

• Case 2 (Section 6.4.4): Measured position and velocity

• Case 3 (Section 6.4.5): Measured position and acceleration

Each section graphs the overall magnitude ratio and the phase difference

from original position to predicted position. There are many other

relationships in the transfer matrices that could be graphed, but I choose to

focus on original position to predicted position because that is the crux of the

prediction problem. Other relationships in the transfer matrices are briefly

mentioned. The RMS errors for the three cases are shown in Section 6.5.1.

For each case, I specify the values of the various matrices X(z), H,

Z(z), A, K, M(z) and D(z). These provide enough information to compute the

transfer matrices O(z) and U(z) for each case. The results depend on the

steady-state K matrix, which in turn depends on the noise parameters used to

tune each Kalman Filter. For each case, I adjusted those parameters to

perform a small amount of lowpass filtering on the last measurement in the

200

Z(z) matrix. Then I ran each DKF in simulation to determine the steady-state

K matrices.

Throughout Sections 6.4.3 to 6.4.5, the following definitions apply:

X(z) = Estimated position

V(z) = Estimated velocity

A(z) = Estimated acceleration

Xmeasured(z) = Measured position

Vmeasured(z) = Measured velocity

Ameasured(z) = Measured acceleration

T = Period, in seconds, between measurements (set to 5 ms)

p = Prediction interval, in seconds

N = The number of estimated state variables in X(z)

F = The number of measurements in Z(z)

6.4.3 Case 1: Measured position

This filter has measured position and estimated position and velocity:

N = 2, F = 1

X(z) =
X (z)

V (z)





, H = 1 0[], Z(z) = Xmeasured (z)[]

A =
1 T

0 1





, K =

0.568

41.967






M(z) = 1[], D(z) = 1 p[]

I tuned the parameters so that the estimated position matched the

measured position closely, and the estimated velocity was a lowpassed

version of the true, nonmeasured velocity. The estimated velocities were

delayed by about 15 ms from the true velocities.

Acceleration is not included in X(z) because only measured positions

are available. As previously mentioned in Section 5.3.2, estimating velocity

and acceleration from measured positions requires numerical differentiation,

an inherently noisy operation. Performing two numerical differentiation steps

generates estimates that are too noisy or too delayed in time to be useful for

201

the prediction problem. Thus, without direct measurements of velocity or

acceleration (which inertial sensors provide), the Case 1 filter only includes

position and velocity in the state vector.

The DKF estimates velocity by combining numerical differentiation with

lowpass filtering. Plotting the transfer function from measured position to

estimated velocity shows that at low frequencies, the filter takes the derivative

of the function. At high frequencies the filter changes to a lowpass filter,

reducing the effect of noise at the cost of delaying the estimated velocities in

time.

Figures 6.10 and 6.11 show the magnitude ratio and phase difference

for O(z). Figure 6.10 plots the magnitude ratio for a prediction interval of

100 ms. The magnitude ratio becomes smaller at high frequencies because

the polynomial predictor does not use acceleration:

h(t) = x (t) + pv (t)

However, the phase differences in Figure 6.12 do not match the ideal phase

differences as closely as the 2nd-order predictor does with ideal

measurements (Figure 6.4). This gives some indication of the penalty

imposed by the lack of measured velocity and acceleration.

202

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

M
ag

ni
tu

de
 r

at
io

Frequency in Hz
Figure 6.10: Case 1: Original position to predicted position magnitude

ratio, for 100 ms prediction interval

0

20

40

60

80

100

0 1 2 3 4 5

P
ha

se
 d

iff
er

en
ce

 in
 d

eg
re

es

Frequency in Hz

50 ms

100 ms
200 ms

Ideal Actual

Figure 6.11: Case 1: Original position to predicted position phase
differences

203

6.4.4 Case 2: Measured position and velocity

The Case 2 filter has measured position and velocity, with estimated

position, velocity and acceleration:

N = 3, F = 2

X(z) =
X (z)

V (z)

A(z)
















, H =

1 0 0

0 1 0





, Z(z) =

Xmeasured (z)

Vmeasured (z)










A =
1 T 1

2T 2

0 1 T

0 0 1
















, K =

0.0576 0.0032

0.0034 0.568

−0.0528 41.967

















M(z) =
1

j ω





, D(z) = 1 p 1

2 p2[]

The parameters were tuned so the estimated position matched the

measured position closely, the estimated velocity is a slightly lowpassed

version of the measured velocity, and the estimated acceleration is a

smoothed, delayed version of the true, unmeasured acceleration.

The DKF computes the estimated position, velocity, and acceleration in

different ways, as described by the transfer functions from the measurements

to those estimated state variables. At low frequencies, estimated position is

basically the measured position, but at high frequencies, the filter estimates

position by integrating the measured velocities. The estimated velocity is

essentially the measured velocity; measured position has almost no effect.

And estimated acceleration is computed by a combination of numerical

differentiation and lowpass filtering at high frequencies, much as Case 1

estimated velocity from measured position.

Figures 6.12 and 6.13 show the magnitude ratio and phase differences

for O(z), the overall transfer function from original position to the predicted

position. The magnitude ratio in Figure 6.12 is for a prediction interval of

100 ms. Note that the magnitude ratio becomes much larger than the Case 1

ratio at high frequencies, because the predictor makes use of estimated

acceleration. Figure 6.13 compares the transfer function's phase differences

204

against the ideal phase differences. They match more closely than in Case 1,

shown in Figure 6.11.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

M
ag

ni
tu

de
 r

at
io

Frequency in Hz
Figure 6.12: Case 2: Original position to predicted position magnitude

ratio, for 100 ms prediction interval

205

0

40

80

120

160

200

0 1 2 3 4 5

P
ha

se
 d

iff
er

en
ce

 in
 d

eg
re

es

Frequency in Hz

50 ms

100 ms

200 ms

Ideal Actual
Figure 6.13: Case 2: Original position to predicted position phase

differences

Since the predicted position depends on both the measured position

and velocity, it is interesting to determine the relative contributions of each

measurement to the predicted output. Let Mposition be the magnitude of the

predicted position computed using only the measured position, with measured

velocity set to zero. Similarly, Mvelocity uses only measured velocity, with

measured position set to zero. Then I define the relative contributions of the

two measurements as:

Relative contribution of measured position =
Mposition

Mposition + Mvelocity

Relative contribution of measured velocity =
Mvelocity

Mposition + Mvelocity

Figure 6.14 shows what these relative contributions look like. At low

frequencies, measured position dominates, but at higher frequencies the

Case 2 predictor relies on measured velocities instead.

206

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
co

nt
rib

ut
io

n
to

 p
re

di
ct

ed
 p

os
iti

on

Frequency in Hz

Measured position

Measured velocity

Figure 6.14: Case 2: Relative contribution of measured position and
velocity to predicted position

6.4.5 Case 3: Measured position and acceleration

The Case 3 filter has measured position and acceleration, with

estimated position, velocity and acceleration:

N = 3, F = 2

X(z) =
X (z)

V (z)

A(z)
















, H =

1 0 0

0 0 1





, Z(z) =

Xmeasured (z)

Ameasured (z)










A =
1 T 1

2T 2

0 1 T

0 0 1
















, K =

0.0807 0.000016

0.342 0.00345

0.0467 0.618

















M(z) =
1

−ω 2






, D(z) = 1 p 1

2 p2[]

207

The parameters were tuned so the estimated acceleration was a

slightly lowpassed version of the measured acceleration, delayed by about

3 ms.

The transfer functions from the measurements to the estimated state

variables describe how the DKF generates the estimates from the

measurements. At low frequencies, estimated position is basically the

measured position, but at high frequencies, the estimate is a blend of

measured position and doubly-integrated acceleration. The estimated

velocity is based on numerically-differentiated measured positions at low

frequencies and integrated measured accelerations at high frequencies.

Finally, estimated acceleration relies almost entirely on measured

acceleration, with very little contribution from measured position.

Figures 6.15 and 6.16 show the magnitude ratio and phase difference

for the Case 3 O(z) transfer matrix, from original position to predicted position.

The magnitude ratio in Figure 6.15 was computed at a 100 ms prediction

interval, and this ratio grows more rapidly than either the Case 1 or Case 2

magnitude ratios. Figure 6.16 compares the O(z) phase differences against

the ideal phase differences for three prediction intervals.

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

M
ag

ni
tu

de
 r

at
io

Frequency in Hz
Figure 6.15: Case 3: Original position to predicted position magnitude

ratio, for 100 ms prediction interval

208

0

40

80

120

160

200

0 1 2 3 4 5

P
ha

se
 d

iff
er

en
ce

 in
 d

eg
re

es

Frequency in Hz

200 ms 100 ms

50 ms

Ideal Actual
Figure 6.16: Case 3: Original position to predicted position phase

differences

The relative contributions of measured position and acceleration to the

predicted position, as defined in the previous section, are shown in

Figure 6.17. At low frequencies, measured position is the largest contributor,

but at higher frequencies the measured acceleration eventually dominates.

209

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
co

nt
rib

ut
io

n
to

 p
re

di
ct

ed
 p

os
iti

on

Frequency in Hz

Measured position

Measured acceleration

Figure 6.17: Case 3: Relative contribution of measured position and
acceleration to predicted position

6.5 Exploring prediction parameter space

With the frequency-domain transfer functions, I can explore the

behavior of the prediction routines as various parameters change. The main

question: What happens as the prediction interval changes? Section 6.5.1

shows how the RMS errors for the predicted outputs change as the prediction

interval varies, for the three cases described in the previous section. Even

with the Kalman filter, it turns out that high-frequency components in the

signal cannot be tolerated. Then Section 6.5.2 predicts the spectrum of the

predicted signal, given the spectrum of the original signal. This shows what

jitter looks like in the frequency domain and characterizes the predictor for

different applications. Finally, Section 6.5.3 estimates the maximum time-

domain error of a signal, given the frequency-domain spectrum of the original

signal. This allows designers to determine the maximum acceptable system

delay based upon a specification of maximum time-domain error.

210

Although this section focuses on specific analysis examples, the

overall contribution is the frequency-domain framework in general, which

permits the analysis of how these predictors will behave on any specified

class of motion sequences and prediction intervals. Thus, by recording head

motion sequences while operating a desired HMD application, other users

can determine if these predictors will behave well on their applications and

systems. If they do not behave well, the user can also determine how much

the head motion or prediction interval must change to achieve the desired

prediction performance.

6.5.1 Predicted position error versus prediction interval

How do the errors in the prediction signal change as a function of the

prediction interval? The magnitude ratios for Case 1, 2 and 3 in Figures 6.10,

6.12 and 6.15 were for a single prediction interval of 100 ms. To show how

the errors change as the prediction interval changes, I now plot the RMS error

of all three cases for four different prediction intervals: 50 ms, 100 ms,

150 ms, and 200 ms. Recall that the RMS error, as defined in Section 6.2.6,

measures the error based on both the magnitude ratio and the phase

difference. Figures 6.18, 6.19 and 6.20 plot the RMS errors for Case 1,

Case 2, and Case 3, respectively. Note that the basic trend is for the RMS

errors to increase as the prediction interval increases.

211

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

R
M

S
 e

rr
or

Frequency in Hz

50 ms

100 ms

150 ms

200 ms

Figure 6.18: Case 1 RMS error for five prediction intervals

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30

R
M

S
 e

rr
or

Frequency in Hz

50 ms

100 ms

200 ms

150 ms

Figure 6.19: Case 2 RMS error for five prediction intervals

212

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30

R
M

S
 e

rr
or

Frequency in Hz

50 ms

100 ms

150 ms

200 ms

Figure 6.20: Case 3 RMS error for five prediction intervals

At first glance, these graphs appear to show that the non-inertial

Case 1 predictor performs better than the inertial-based Case 2 and Case 3,

even though Chapter 4 empirically demonstrated that the inertial-based

prediction was more accurate. The RMS errors for Case 1 appear to be

smaller than the errors for Case 2 and Case 3, which blow up much more

rapidly with increasing frequency.

This apparent contradiction is resolved when I reduce the scale of the

diagrams to focus on the low frequencies. Figure 6.21 shows the RMS errors

of Case 1, Case 2 and Case 3 for a 50 ms prediction interval. It is true that

the errors for Case 1 are lower at high frequencies. However, the inertial-

based Case 2 and Case 3 produce lower errors than the non-inertial Case 1

at low frequencies, where most head-motion energy exists. In Figure 6.21,

Case 2 is better for frequencies under ~7 Hz, and Case 3 is better for

frequencies under ~9.5 Hz. I call these frequencies where Case 1 becomes

better than the inertial-based predictors the switchover frequencies. If all the

head-motion energy is contained below the switchover frequency, then the

inertial-based predictors will be more accurate than the non-inertial-based.

213

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20

R
M

S
 e

rr
or

Frequency in Hz

Case 1

Case 2

Case 3

Figure 6.21: RMS errors for Case 1, 2 and 3 at 50 ms prediction interval

These switchover frequencies are reduced as the prediction interval

increases. For example, Figure 6.22 plots the errors for the three cases at a

prediction interval of 150 ms. Both axes are on a logarithmic scale to make

the differences more apparent. Now the switchover frequency is around

2.5 Hz for both Case 2 and Case 3. This indicates that the effectiveness of

the Case 2 and Case 3 predictors over Case 1 is degraded as the prediction

interval increases. Increasing the prediction interval reduces the allowable

signal bandwidth where using inertial-based prediction is better than just

doing non-inertial prediction.

214

0.1

1

10

100

0.1 1 10 50

R
M

S
 e

rr
or

Frequency in Hz

Case 1

Case 2

Case 3

Figure 6.22: RMS errors for Case 1, 2, and 3 at 150 ms prediction
interval

The reason the inertial-based predictor errors blow up more rapidly

than the non-inertial based is that Case 2 and Case 3 use estimated

acceleration in the predictor, while Case 1 only uses position and velocity.

The inertial sensors make it possible to use estimated acceleration, since with

them the filter avoids taking two numerical differentiation steps. The
magnitude of acceleration grows by a factor of ω squared, while velocity only

grows by a factor of ω. At high frequencies, this makes a large difference.

It is interesting that the Kalman filters, as tuned in Case 2 and Case 3,

do not suppress the high-frequency components sufficiently quickly to prevent

the errors from blowing up at high frequencies. The filters could be tuned to

do so, but that would cause the estimated velocities and accelerations to be

delayed significantly in time, and those delays would make it hard to do

accurate prediction. The estimated velocities and accelerations must be

close to the true ones if any derivative-based predictor is to perform well.

Consequently, practical Kalman filter and predictor combinations will be

vulnerable to signals with energy at high frequencies. If such signals are

unavoidable, then it is best not to use estimated acceleration in the predictor.

215

Instead, use the inertial sensors to estimate only velocity and base the

prediction on position and velocity. Figure 6.23 compares Case 1 against a

Modified Case 2 at a 100 ms prediction interval, where Case 2 is modified to

not use acceleration when computing the predicted output. This gives slightly

more accurate results than the non-inertial Case 1 for frequencies under

~7 Hz, without magnifying high frequencies nearly as much as the normal

Case 2 or Case 3 predictors do.

0

2

4

6

8

10

12

0 5 10 15 20 25 30

R
M

S
 e

rr
or

Frequency in Hz

Case 1

Modified Case 2

Figure 6.23: RMS errors for Case 1 and Modified Case 2 at 100 ms
prediction interval

Another trend revealed by the figures is that Case 3 appears to be

more accurate than Case 2, because Case 3 has better estimates of

acceleration. The prediction accuracy depends on how accurate the filter

estimates of position, velocity, and acceleration are. Case 3 does a better job

of estimating the accelerations than Case 2 does. In Case 3, the Kalman filter

estimates velocity from measured positions and accelerations. This is

relatively easy, so the filter can perform these estimates accurately.

However, in Case 2, acceleration must be estimated from measured positions

and velocities. This requires numerically differentiating the velocity, yielding

estimated accelerations that are either noisier or further delayed in time than

the estimates in Case 3.

216

In the system I built, the position filters are aided by measured

acceleration, but the orientation filters only receive measured angular velocity

information, not angular acceleration. What these results suggest is that,

theoretically, the orientation prediction could be more accurate with the use of

angular accelerometers than with angular rate gyroscopes. In practice, this

would depend on the accuracy of angular accelerometers and how easily they

can be calibrated with the AR system.

6.5.2 Estimating spectra of predicted motion sequences

The prediction transfer functions can generate an estimate of the

spectrum of the predicted signal, given the spectrum of the original signal.

Multiply the input spectrum by the prediction magnitude ratio computed in

Section 6.3.1 for the 2nd-order polynomial predictor or by the magnitude ratio

of O(z) for the Kalman-filter-based predictor. Since different applications

generate different input motion spectra, and a particular spectrum can

represent an entire class of inputs, this technique can specify how a particular

predictor will perform with a different application.

Figure 6.24 shows a specific example for the Case 1 predictor. It

shows the spectrum of the user's X translation, so it is called the "Tx"

sequence. This data comes from the Demo2 motion sequence mentioned in

Chapter 4. The prediction interval was set to 100 ms. Figure 6.24 also shows

the spectrum of the predicted signal. This spectrum was computed in two

ways. First, it was estimated by the frequency-domain computations

described in the previous paragraph. Second, I ran the Case 1 predictor in

simulation, reading the original time-domain signal and generating the

predicted time-domain signal. Then I used spectral-analysis techniques to

estimate the spectrum of the predicted signal from the time-domain predicted

signal. The two estimates of the spectrum of the predicted signal are virtually

identical, as shown in Figure 6.24. This does not mean that either estimate is

correct (see Section 6.6.3), but it does show that they corroborate each other.

217

0.1

1

10

100

0 1 2 3 4 5

M
ag

ni
tu

de
 in

 m
m

Frequency in Hz

Original signal spectrum

Predicted signal spectrum
(time-domain computed)

Predicted signal spectrum
(frequency-domain
computed)

Figure 6.24: Original and predicted magnitude spectrums for Demo2 Tx
sequence for 100 ms prediction interval

The spectrum of the predicted signal shows what jitter looks like in the

frequency domain. Figure 6.25 uses the same data as Figure 6.24, except

that it plots the predicted spectra for three different prediction intervals. As

the prediction interval increases, the magnification of the predicted signal

spectrum increases, especially at higher frequencies. These "humps" in the

predicted spectra represent jitter. The magnified outputs at frequencies

higher than typical head motion result in annoying "wiggles" in the time-

domain that do not seem to correspond to the user's actual motion, as seen in

Figure 4.37. This is a way to view the same effect in the frequency domain.

218

0.1

1

10

100

0 1 2 3 4 5

M
ag

ni
tu

de
 in

 m
m

Frequency in Hz

Original signal spectrum

Predicted signal spectrum (50 ms)

Predicted signal spectrum (100 ms)

Predicted signal spectrum (200 ms)

Figure 6.25: Predicted magnitude spectrums for Demo2 Tx sequence at
three prediction intervals

6.5.3 Estimating the maximum time-domain error

The previous section showed what prediction error looks like in the

frequency domain. However, it would also be useful to derive a theoretical

expression for the error in the time domain. In particular, it would be useful to

derive a bound on what the largest time-domain error could possibly be in the

predicted signal, given the predictor, the motion sequence, and the prediction

interval. For a specific motion sequence, this can be determined by running

the filter in simulation, generating the predicted output, and searching for the

maximum error. So instead, assume that the only information available about

the motion sequence is the power spectrum. This is useful because spectra

can represent entire classes of motion, rather than one specific sequence.

No phase information is available. What is the maximum time-domain error?

To determine this, I need to transform the spectrum of the original

signal to the spectrum of the error signal. This is done with the magnitude

ratio of the error transfer function from Section 6.3.3 (for the 2nd-order

polynomial predictor) or U(z) (for the Kalman-filter-based predictor).

Multiplying the error magnitude ratio by the spectrum of the original signal

219

yields an estimate of the spectrum of the error signal. Now the problem

reduces to finding the maximum time-domain value of the Fourier-domain

error signal, where the magnitudes of that signal are known but the phases

are not.

Clearly, one upper bound is to add the absolute value of all the

magnitudes. Each magnitude is a coefficient for a sinusoid that ranges

between 1 and —1. The values that each component sinusoid can generate

therefore range between ±M, where M is the magnitude of the complex

coefficient. The time-domain signal is generated by summing the

contributions from all the component sinusoids. The largest value that the

sum of sinusoids can achieve is the sum of the maximum of each sinusoid, or

the sum of the absolute value of all the magnitudes.

Unfortunately, that upper bound is also the smallest upper bound

achievable, given the few restrictions that I can impose upon the error signal.

The error signal is real, and that is the only restriction of any use. A real time-

domain signal has a Fourier representation with even magnitudes and odd

phases. The complex coefficients in the frequency domain occur in frequency
pairs, at angular frequencies ω and —ω. The constraints of even magnitudes

and odd phases mean that the coefficients for the pair take the following form:

Coefficient at frequency ω → Magnitude M, phase ø

Coefficient at frequency —ω → Magnitude M, phase —ø

It turns out that the two components added together yield the following

sinusoid:

2 M cos(ω t + ø)

Now magnitude M can either be positive or negative, but I am free to choose

the phase, as long as it is odd. If the magnitude is positive, then set phase to

zero. This forces the magnitude to be positive M at time t = 0. What if

magnitude M is negative? Then set one phase to π and the other to —π.

This satisfies the oddness constraint. At time t = 0, cos(π) = cos(—π) = —1,

which reverses the sign of the magnitude and forces it to be positive. Thus, I

can pick phases such that the worst-case upper bound of summing all the

magnitudes is actually achieved.

220

By using this procedure, a system designer could specify the maximum

allowable time-domain error, and then determine the acceptable system delay

that keeps errors below the specification. The power spectrum recorded from

the desired application would be analyzed by the previous procedure, which

produces an estimated maximum time-domain error. Unfortunately, this is

only an estimate rather than a hard upper bound because of uncertainties in

the power spectrum estimate and because the measured spectrum is an

average for the entire signal and may not represent what happens at a

particular subsection of the signal. Section 6.6.3 discusses these issues.

How closely do the estimated maximum bounds match the actual peak

errors observed in a specific time-domain signal? Table 6.5 compares the

estimated maximum against the actual observed peaks for the six signals in

the Demo2 motion sequence. The Demo2 sequence, introduced in

Chapter 4, was recorded from a first-time HMD user running a demonstration

HMD application. The prediction interval was 100 ms. The actual observed

peaks are usually within a factor of two of the estimated maximum bound, and

they are often much closer. However, for the Ty signal, the actually-observed

peak error was slightly larger than the estimated maximum! This

demonstrates that the theoretical maximum is only an estimate, rather than a

true upper bound.

Tx
Ty
Tz

Yaw
Pitch
Roll

137.2 mm 100.1 mm
153.7 mm 155.6 mm
69.2 mm 54.2 mm

6.9 degrees 2.6 degrees
8.9 degrees 5.2 degrees
13.1 degrees 11.7 degrees

Motion
sequence

name

Estimated
maximum

error

Actual
peak
error

Table 6.5: Estimated versus actual time-domain maxima for Demo1
sequence

221

6.6 Implementation details

To verify the theoretical results listed in this chapter, I implemented the

frequency-domain equations and compared their results against those

generated by their time-domain equivalents. By checking that the two match,

I made certain that the frequency-domain analysis is based on correct

equations. However, converting signals into the frequency domain and

operating on them there requires paying attention to some details that I did

not cover in my introduction in Section 6.2. This section discusses these

details.

Figure 6.26 shows how the comparison of the time-domain and

frequency-domain results is done. This figure shows the verification of O(z),

but similar approaches are taken for the other transfer matrices.

1) Measured signal

Resampling

Ramp removal

Multiply by
window

2) "True"
original signal

Predictor

Discrete
Kalman
Filter

Time domain Frequency domain

3) Predicted signal

FFT Inverse FFT

O (z)

Figure 6.26: Verification of frequency-domain equations

I start with the graph labeled 1) Measured signal. This can either be

simulated motion or a graph extracted from a motion sequence recorded from

a user wearing the see-through HMD and walking around. Section 6.6.1

describes how this signal is sent through a lowpass filter, a ramp remover,

and then multiplied by a spectral window. This results in graph #2: the "true"

222

original signal, which is suitable for conversion into the frequency-domain by

an FFT. At this point, I compute graph #3, the predicted signal, in two ways.

First, I convert the signal into the frequency domain via an FFT. Then I use

the transfer matrix to change the signal in the frequency domain. The

resulting signal is converted back into the time domain by an Inverse FFT.

The second method is to do it in the time domain by running the signal

through the combination of the Discrete Kalman Filter and the predictor. The

complex coefficients for the sinusoidal basis functions computed by the FFT

are used to determine the position, velocity, and acceleration of the time-

domain signal, which are sent into the Kalman filter. That is why an arrow

goes from the FFT to the Discrete Kalman Filter in Figure 6.26. Section 6.6.2

points out some details about the setup of the Discrete Kalman Filter. If the

frequency-domain transfer matrix is correct, then the two computations of

graph #3 should match. If they do not match, then the theoretical equations

are not correct. The equations I tested resulted in virtually perfect matches

except for the first few seconds, because the DKF does not run in steady-

state mode, as Section 6.6.2 explains.

Some of the results in Section 6.5 require estimating the power

spectrum of a signal. Section 6.6.3 discusses how this is done through

spectral-analysis techniques and why it is an inherently imperfect operation.

6.6.1 Generating the "true" original signal

The measured signal requires processing before it is suitable for

conversion into the frequency domain because the signal must be evenly

sampled and because the Fourier Transform assumes that its input signal is

periodic. That is, the endpoints of the signal should match, as well as the

endpoints of all of its derivatives. Since the measured signal need not satisfy

these conditions, it requires modification so that these conditions hold.

First, I resample the measured signal at a rate faster than the original,

uneven sampling rate, using linear interpolation as required. Then I apply a

noncausal lowpass filter that does not add any phase shift to the signal

[NASAksc]. The lowpass filter removes artifacts generated by the linear

interpolation that result in false high-frequency components in the frequency

223

domain. The filter also removes high frequencies in the original signal, which

is important if I test the predictor without the Kalman filter.

Next, I fit a line to the curve. This line, or linear ramp, is then

subtracted from the signal. The idea is to avoid large constant offsets that

skew the magnitude of the signal at very low frequencies. Large constant

signals are not interesting for the prediction problem because constant

components are easily predicted.

Finally, I multiply the entire signal by a function that forces the initial

and final values to match. It does this by forcing both endpoints to go

smoothly to zero. This operation is called windowing. An example of a

window function is shown in Figure 6.27, for a dataset that has 100 entries.

Many different types of window functions exist; see [Harris78] for a thorough

discussion. Windowing distorts the edges of the signal but keeps the middle

part mostly intact. The Fourier Transform assumes that the input signal is

periodic, so if the endpoints do not match smoothly, the Fourier Transform will

place more energy into the high-frequency components in an attempt to make

the endpoints match, even though these high-frequency components are not

an accurate reflection of the original signal. Windowing greatly reduces such

artifacts, which are called leakage, and they receive more discussion in

Section 6.6.3.

224

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

S
ca

le
 fa

ct
or

Index number
Figure 6.27: A sample window function

The resulting signal is suitable for conversion into the frequency

domain and is considered the "true" original signal for comparison purposes.

Note that it is now stationary overall, because I have forced it to be periodic,

although different parts of the signal may exhibit differing properties. Also, the

resulting signal may not look much like the measured signal, but it retains the

important spectral characteristics of the measured in the middle section, and it

can be converted into the frequency domain through a Fourier Transform

without large amounts of artifacts.

6.6.2 Discrete Kalman Filter

The Discrete Kalman Filter has two details the should be pointed out.

First, the time-domain filter does not run in steady-state mode. And second,

the A and E matrices for the Discrete Kalman Filter are not the same as those

for the Continuous-Discrete Kalman Filter.

The frequency-domain analysis assumes that the Discrete Kalman

Filter operates in steady-state mode, when matrices P and K have reached

their constant values. However, when I compute graph #3 in the time-

domain, I do not run the Discrete Kalman Filter in steady-state mode,

225

because that introduces permanent delays that skew the output signal. The

result is that the time-domain-computed graph #3 and the frequency-domain-

computed graph #3 do not match perfectly during the first second or two of

data, until the time-domain Kalman filter reaches steady-state. After that

point, the match is exact.

The Discrete Kalman Filter has different A and E matrices from the

Continuous-Discrete Kalman Filter I normally use in the actual real-time

system. Careful examination of the model definitions in both filters shows that

these matrices must be different. Since I want the Discrete Kalman Filter to

match the performance of the Continuous-Discrete Kalman Filter, I must

convert the matrices used in the continuous-discrete case (call these A and

E) into equivalent matrices for the Discrete Kalman Filter (call these Ad and

Ed). The conversion formulas are listed on p. 83 of [Lewis86]:

Ad = I + AT +
AT()2

2!
+ …

Ed = GEGT T +
A GEGT + GEGTAT()T 2

2!
+ …

The T in these formulas is the period, in seconds, separating the

evenly-spaced measurements read by the Discrete Kalman Filter. In practice,

I ignore all terms with components above T squared because I run the filters

with small values of T (e.g., 5 ms).

Note that H and R do not change, since the measurement step is

discrete in both types of Kalman filters.

I verified the equivalence of the Discrete Kalman Filter and the

Continuous-Discrete Kalman Filter by implementing both, using the above

formulas, running them on the same input and confirming that the outputs of

both filters match.

6.6.3 Spectral Analysis

Recovering the spectral properties from measured data is an

estimation task that almost always returns answers that have some error. It is

rare that spectral analysis will find the exact coefficients of the sinusoidal

226

functions that generated the time-domain signal. Parts of Section 6.5 depend

upon estimating the power spectrum of an observed signal, which is a graph

of the squared magnitudes at every frequency. This section briefly describes

how the power spectrum is computed and why the estimate of the power

spectrum has error. For details, please read [Press88] and [Harris78].

One way to compute a power spectrum is to run an FFT on a signal,

then square the computed magnitudes at each frequency. However, the

magnitudes estimated by this method are not very reliable. To understand

why, first note that all computations occur in discrete space. Therefore, a

discrete frequency of 10 Hz does not actually represent 10 Hz by itself.

Instead, it represents a "bin" of frequencies that extends halfway to the

previous discrete frequency and halfway to the next one (e.g., 9.8 Hz to

10.2 Hz). Ideally, the power at this discrete frequency should represent an

average of the power of all the frequencies in this bin. Unfortunately, this is

not the case. Instead, the result is a weighted average of a sinc function

centered at that frequency. Because the sinc function does not fall off very

quickly as the distance from the origin increases, values at frequencies far

away from the bin contribute to the power estimate at that bin. This unwanted

contribution is called leakage. Therefore, the estimate of the power at every

frequency is unreliable, making the resulting power spectrum incorrect.

Two steps can be taken to improve the power spectrum estimates.

First, rather than running the FFT once on the entire signal, run it several

times on small sections of the signal, called chunks. These chunks should

overlap each other halfway for optimum results [Childers78]. Second,

multiplying each chunk by a spectral window before running the FFT reduces

leakage. Averaging the results from all the chunks reduces the overall

variance. Using both steps produces a smooth estimate of the power

spectrum that represents an average of the entire signal, but it may not be

representative of any one particular section of that signal.

Even with the use of a window and averaging, the power spectrum

estimates will almost always have some error. Take the following example.

Table 6.6 lists several sinusoids that are added together to form a time-

domain signal. Since I know the original sinusoids and their magnitudes, I

can graph those in Figure 6.28. Then Figure 6.29 shows the estimate of

227

those magnitudes generated from the time-domain version of the sinusoids

listed in Table 6.6. The estimates were generated by a program that

computed the power spectrum, using both windowing and averaging to

reduce the variance. The square roots of the estimated power spectra are the

estimated magnitudes. Note that the outputs are no longer spikes, but rather

broader "hills." This is caused by leakage of energy from the true sinusoid

functions into neighboring frequencies. The leakage means that the two

separate peaks at 0.5 Hz and 0.6 Hz are no longer visible; they are instead

merged into one.

Functions are of the form: M sin(2πf + ø):

Magnitude Frequency (Hz) Phase (radians)

Sine #1 10.0 0.5 0.2

Sine #2 5.0 0.6 0.2

Sine #3 3.0 2.0 0.9

Sine #4 2.0 5.05 —0.9

Sine #5 1.0 9.0 —0.2
Table 6.6: Original set of sinusoids

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

M
ag

ni
tu

de

Frequency in Hz
Figure 6.28: The true magnitudes of the sinusoids

228

•

•

•

•

• • • •

•

•

•

• • • • • • • • • • • •
•

•
•

• • • • • • • • • • • • • • • • •
•
•
•
• • • •0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

M
ag

ni
tu

de

Frequency in Hz
Figure 6.29: The estimated magnitudes of the sinusoids

Given finite amounts of measured data, there is always a tradeoff

between the variance and the bandwidth of the power spectrum estimates, as

expressed by Grenader's Uncertainty Principle [Priestley81]. This result is

similar in tone to Heisenberg's Uncertainty Principle from quantum physics.

The variance is the reliability of the estimates: smaller variance indicates

more accurate estimates. The bandwidth specifies the resolution or the

spacing between the discrete frequencies. One can get accurate power

spectrum estimates with large frequency bins, or inaccurate estimates with

small frequency bins, but not accurate estimates and small frequency bins

simultaneously. The only way to improve both is to have longer data

sequences, but this is often not practical. Because the head-motion data

changes spectral characteristics with time, using longer data sequences may

not be a wise choice. Therefore, in practice, power spectrum estimates

always have some uncertainty and error.

For more examples of how the estimated power spectrum can differ

from the theoretical power spectrum, please see [Preistley81] and

[Jenkins68].

7. Future work

Section 1.5 summarized the contribution of this dissertation, which I

briefly recount here. The main result is a demonstration of a prediction

technique that reduces dynamic errors by a factor of five to ten over not doing

any prediction at all and by a factor of two to three over doing prediction

without inertial sensors. This demonstration is supported by static registration

that is usually within ±5 mm. A frequency-domain analysis of the predictor

specifies the conditions under which prediction is effective. Overall, users

now perceive the virtual and real objects to be "sticking closely together"

instead of "swimming around each other."

While this dissertation demonstrates improved registration between

virtual and real objects, many applications demand even closer registration

than what this work achieves. Still, the results shown suggest that the ideal of

"no swimming" may be reached in the future. This section outlines some

areas that require improvement and suggests future directions worth pursuing

to achieve this goal.

Much work remains to further improve static registration. Although I

have demonstrated static registration from a wide variety of view positions

and directions, this registration is subject to several limitations:

1) It matches only one virtual object with one real object, where the real

object is the calibration rig itself. While it should not be difficult to

register multiple objects if the locations of the real objects are

precisely known and the head tracker is accurate, this has not been

demonstrated.

2) The optoelectronic tracker has several limitations. Because the

tracker loses accuracy when few of the optical sensors on the HMD

are aimed at the ceiling beacons, the HMD cannot move far away

from the wooden frame, nor can the HMD tilt far from horizontal.

230

This limits the range of supportable viewpoints. Also, the

optoelectronic tracker has subtle distortions that limit the registration

accuracy achievable in this system.

3) The system is monocular. Registration is demonstrated for only one

eye in the HMD. While the static registration procedure could be

applied to both eyes, stereo displays involve additional issues like

convergence that this work does not address.

4) No compensation is done for the optical distortion in the see-through

HMD. Because the HMD has narrow field-of-view displays, this

distortion is small, becoming a significant problem only toward the

edges of the displays. Eliminating this error requires mapping the

distortion, then predistorting the graphic images before displaying

them [Robinett92c]. Doing this quickly requires specialized

hardware or several fast processors.

5) The variance in the measured viewing parameters is too large. This

means the user may have to repeat the registration task several

times to get satisfactory registration. As see-through HMDs become

lighter, performing the registration tasks should become easier,

reducing the variance. Also, more research must be done in

developing different methods for measuring viewing parameters that

generate less variance.

More sophisticated prediction methods might further reduce dynamic

registration errors. Adaptive methods that adjust to varying head motion

deserve more exploration. Using a nonadaptive predictor is like trying to race

a car at constant speed; slowing down on the curves and speeding up on the

straight-aways will improve your time. This adaptation might take the form of

using non-white noise models, varying the model and measurement

covariance matrices, or running several different models in parallel and

selecting between them. Analyzing head motion for recognizable patterns or

high-level characteristics may aid prediction. If one can assume a specific

task, then more accurate prediction may be possible because a more specific

model can be built. Other researchers have begun looking for such patterns

[Shaw92]. For example, Fitts' Law has been shown to apply to head motion

[Andres89] [Jagacinski85]. The drawback of building a specific, tuned model

231

of head motion is that the predictor is likely to be less accurate when the

actual head motion does not match the model's assumptions.

This dissertation has not dealt with video see-through HMDs, where a

video camera provides a view of the real world and the graphics are

combined with the digitized images of the real world. With this class of see-

through HMD, standard camera calibration techniques could determine the

viewing parameters. And since the computer has digitized images of what the

user sees, it may be possible to use image processing or computer vision

techniques to detect features in these images and use them to aid

registration. Such feature detection must run in real time and is often difficult

to make robust, but it may be possible in some applications. Another

limitation of the technology is that the video camera and digitization hardware

impose inherent delays on the user's view of the real world. Therefore, even

if the graphics are perfectly matched with the digitized images, a problem

remains: the latency in the video stream will cause the user to perceive both

the real and virtual objects to be delayed in time. While this may not be

bothersome for small delays, it is a major problem in the related area of

telepresence systems and may not be easy to overcome.

Augmented Reality is an area ripe for psychophysical studies. How

much lag can a user detect? How much registration error is detectable, when

the head is moving? Besides questions on perception, psychological

experiments that explore performance issues are also needed. How much

does head-motion prediction improve user performance on a specific task?

How much registration error is tolerable for a specific application before

performance on that task degrades substantially? Is the allowable error larger

while the user moves her head versus when she stands still?

Such studies could help guide the development of future head motion

prediction routines. For example, assume some studies determined that at

certain times during head motion, users are not sensitive to registration

errors. Evidence exists that suggests this may be the case. For example,

parts of the human visual system "shut down" during large saccades

[Chekaluk90]. If errors during such motions do not matter, that makes the

prediction task somewhat easier and may lead to different prediction

strategies.

232

The biggest single obstacle to building effective Augmented Reality

systems is the requirement of accurate, long-range sensors and trackers that

report the locations of the user and the surrounding objects in the

environment. Right now, scene generators exist that can generate images in

real time with sufficient fidelity to be useful in many Augmented Reality

applications. Because the virtual objects supplement, rather than replace, the

real world, the graphic images do not have to be as realistic as those

demanded by Virtual Environment applications. Right now, high-resolution

see-through HMDs exist. However, existing sensor and tracker technologies

are inadequate. Commercial trackers are aimed at the needs of Virtual

Environments and motion-capture applications. Motion capture is the tracking

of an actor's body parts to control a computer-animated character or for the

analysis of an actor's movements. Compared to those two applications,

Augmented Reality has much stricter accuracy requirements and demands

larger working volumes. More work needs to be done to develop sensors and

trackers that can meet these stringent requirements.

The optical see-through HMD shown in Figures 3.8 and 3.9 weighs

over eight pounds. Future see-through HMDs must be much lighter and less

bulky. Ideally, they should be similar to a pair of glasses that does not

change its position with respect to the wearer's eyes even under rapid head

motion.

REFERENCES

Albrecht89 Albrecht, R. E. An Adaptive Digital filter to Predict Pilot
Head Look Direction for Helmet-Mounted Displays. M.S.
Thesis, Electrical Engineering, University of Dayton, Ohio
(July 1989).

Andres89 Andres, Robert O., and Kenny J. Hartung. Prediction of
Head Movement Time Using Fitts' Law. Human Factors
31,6 (1989), 703-713.

Ascen89 Ascension Technology Corporation. The Bird 6D Input
Device (Burlington, Vermont, 1989).

Ascen91 Ascension Technology Corporation. A Flock of Birds
Product Description Sheet (Burlington, Vermont, April
1991).

Axt87 Axt, Walter E. Evaluation of a Pilot's Line-of-Sight Using
Ultrasonic Measurements and a Helmet Mounted
Display. Proceedings IEEE National Aerospace and
Electronics Conference (Dayton, OH, 18-22 May 1987),
921-927.

Azuma91 Azuma, Ronald, and Mark Ward. Space-Resection by
Collinearity: Mathematics Behind the Optical Ceiling
Head-Tracker. UNC Chapel Hill Department of Computer
Science technical report TR 91-048 (November 1991).

Azuma93 Azuma, Ronald. Tracking Requirements for Augmented
Reality. Communications of the ACM 36, 7 (July 1993),
50-51.

Azuma94 Azuma, Ronald, and Gary Bishop. Improving Static and
Dynamic Registration in a See-Through HMD.
Proceedings of SIGGRAPH ‘94 (Orlando, FL, 24-29 July
1994). In Computer Graphics, Annual Conference Series,
1994, 197-204.

Bajura92 Bajura, Mike, Henry Fuchs, and Ryutarou Ohbuchi.
Merging Virtual Reality with the Real World: Seeing
Ultrasound Imagery within the Patient. Proceedings of
SIGGRAPH ‘92 (Chicago, IL, 26-31 July 1992). In
Computer Graphics 26, 2 (July 1992), 203-210.

Beer88 Beer, Ferdinand P. and E. Russell Johnston, Jr. Vector
Mechanics for Engineers: Statics and Dynamics (5th
edition). Mc-Graw Hill (1988).

234

Bejczy92 Bejczy, Antal K., Won S. Kim, and Steven C. Venema.
The Phantom Robot: Predictive Displays for
Teleoperation with Time Delay. NASA Tech Brief 16, 7,
item #104. From JPL new technology report NPO-
18277/7794. (July 1992).

Berg83 Berg, Russell F. Estimation and Prediction for
Maneuvering Target Trajectories. IEEE Transactions on
Automatic Control AC-28, 3 (March 1983), 294-304.

Blom84 Blom, H. A. P. An Efficient Filter for Abruptly Changing
Systems. Proceedings of 23rd Conference on Decision
and Control (Las Vegas, NV, December 1984), 656-658.

Bolger87 Bolger, Philip L. Tracking a Maneuvering Target Using
Input Estimation. IEEE Transactions on Aerospace and
Electronic Systems AES-23, 3 (May 1987), 298-310.

Brooks88 Brooks Jr., Frederick P. Grasping Reality Through
Illusion -- Interactive Graphics Serving Science.
Proceedings of SIGCHI ‘88 (Washington D.C., 15-19 May
1988), 1-11.

Brown92 Brown, Robert Grover, and Patrick Y.C. Hwang.
Introduction to Random Signal and Applied Kalman
Filtering (2nd edition). John Wiley & Sons. (1992) ISBN
0-471-52573-1.

CAE86 Flight Simulator Wide Field-of-View Helmet-Mounted
Infinity Display System. Technical report AFHRL-85-59,
Williams AFB, AZ: Operations Training Division Air Force
Human Resources Laboratory (May 1986), 48-64.

Cardullo90 Cardullo, Frank M., and Yorke J. Brown. Visual System
Lags: The Problem, The Cause, The Cure. Proceedings
of IMAGE V Conference (Phoenix, Arizona, 19-22 June
1990), 31-42.

Caudell92 Caudell, Thomas P. and David W. Mizell. Augmented
Reality: An Application of Heads-Up Display Technology
to Manual Manufacturing Processes. Proceedings of
Hawaii International Conference on System Sciences
(January 1992), 659-669.

Chang84 Chang, Chaw-Bing, and John Tabaczynski. Application
of State Estimation to Target Tracking. IEEE
Transactions on Automatic Control AC-29, 2 (February
1984), 98-109.

235

Chekaluk90 Chekaluk, Eugene. Visual Stimulus Input, Saccadic
Suppression, and Detection of Information from the
Postsaccade Scene. Perception and Psychophysics 48,
2 (August 1990), 135.

Childers78 Childers, Donald G. Modern Spectrum Analysis. IEEE
Press (1978).

Chou92 Chou, Jack C. K. Quaternion Kinematic and Dynamic
Differential Equations. IEEE Transactions on Robotics
and Automation 8, 1 (February 1992), 53-64.

Cohen94 Cohen, Jonathan, and Marc Olano. Low Latency
Rendering on Pixel-Planes 5. UNC Chapel Hill
Department of Computer Science technical report TR94-
028 (1994).

Cook88 Cook, Anthony. The Helmet-Mounted Visual System in
Flight Simulation. Proceedings Flight Simulation: Recent
Developments in Technology and Use (Royal
Aeronautical Society, London, England, 12-13 April
1988), 214-232.

Crane84 Crane, D. Francis. The Effects of Time Delay in Man-
Machine Control Systems: Implications for Design of
Flight Simulator Visual-Display-Delay Compensation.
Proceedings of the IMAGE III conference (Phoenix, AZ,
30 May - 1 June 1984), 331-343.

Cruz-Neira93 Cruz-Neira, Carolina, Daniel Sandin, and Thomas
DeFanti. Surround-Screen Projection-Based Virtual
Reality: The Design and Implementation of the CAVE.
Proceedings of SIGGRAPH '93 (Anaheim, CA, 1-6
August 1993). In Computer Graphics, Annual
Conference Series, 1993, 135-142.

Deering92 Deering, Michael. High Resolution Virtual Reality.
Proceedings of SIGGRAPH '92 (Chicago, IL, 26-31 July
1992). In Computer Graphics 26, 2 (July 1992), 195-202.

Doenges85 Doenges, Peter K. Overview of Computer Image
Generation in Visual Simulation. SIGGRAPH '85 Course
Notes #14 on High Performance Image Generation
Systems (San Francisco, CA, 22 July 1985).

Drascic93 Drascic, D., J.J. Grodski, P. Milgram, K. Ruffo, P. Wong,
and S. Zhai. ARGOS: A Display System for Augmenting
Reality. Video Proceedings of INTERCHI '93: Human
Factors in Computing Systems (Amsterdam, the
Netherlands, 24-29 April 1993).

236

Feiner93 Feiner, Steven, Blair MacIntyre, and Dorée Seligmann.
Knowledge-based Augmented Reality. Communications
of the ACM 36, 7 (July 1993), 52-62.

Ferrin91 Ferrin, Frank J. Survey of Helmet Tracking Technologies.
SPIE Vol. 1456 Large-Screen Projection, Avionic, and
Helmet-Mounted Displays (1991), 86-94.

Fitts54 Fitts, Paul M. The Information Capacity of the Human
Motor System in Controlling the Amplitude of Movement.
Journal of Experimental Psychology 47, 6 (June 1954),
381-391.

Fleming89 Fleming, Wendell H., chairman. Report of the Panel on
Future Directions in Control Theory: a Mathematical
Perspective. Society for Industrial and Applied
Mathematics (1989).

Foley90 Foley, James D., Andries van Dam, Steven K. Feiner,
and John F. Hughes. Computer Graphics: Principles and
Practice (2nd edition). Addison-Wesley (1990).

Friedmann92 Friedmann, Martin, Thad Starner, and Alex Pentland.
Device Synchronization Using an Optimal Linear Filter.
Proceedings of 1992 Symposium on Interactive 3D
Graphics (Cambridge, MA, 29 March - 1 April 1992). A
special issue of Computer Graphics, 57-62.

Fuchs89 Fuchs, Henry, John Poulton, John Eyles, Trey Greer,
Jack Goldfeather, David Ellsworth, Steve Molnar, Greg
Turk, Brice Tebbs, and Laura Israel. Pixel-Planes 5: A
Heterogeneous Multiprocessor Graphics System Using
Processor-Enhanced Memories. Proceedings of
SIGGRAPH ‘89 (Boston, MA, 31 July - 4 August 1989). In
Computer Graphics 23, 3 (July 1989), 79-88.

Funkhouser93 Funkhouser, Thomas A. and Carlo H. Séquin. Adaptive
Dislay Algorithm for Interactive Frame Rates During
Visualization of Complex Virtual Environments.
Proceedings of SIGGRAPH '93 (Anaheim, CA, 1-6
August 1993). In Computer Graphics, Annual
Conference Series, 1993, 247-254.

Garcia92 Garcia, F. M. Rate Output Integration (Angle) vs. Time:
Test Report of the Quartz Rate Sensor. Systron Donner
Inertial Division engineering department technical report
DO 92-23 (28 October 1992),10 pages.

Gottschalk93 Gottschalk, Stefan, and John F. Hughes. Autocalibration
for Virtual Environments Tracking Hardware.

237

Proceedings of SIGGRAPH '93 (Anaheim, CA, 1-6
August 1993). In Computer Graphics, Annual
Conference Series, 1993, 65-72.

Harris78 Harris, Frederic J. On the Use of Windows for Harmonic
Analysis with the Discrete Fourier Transform.
Proceedings of the IEEE 66, 1 (January 1978), 51-83.

Holmgren92 Holmgren, Douglas E. Design and Construction of a 30-
Degree See-Through Head-Mounted Display. UNC
Chapel Hill Department of Computer Science technical
report TR 92-030 (July 1992), 4 pages.

Jagacinski85 Jagacinski, Richard J., and Donald L. Monk. Fitts' Law in
Two Dimensions with Hand and Head Movements.
Journal of Motor Behavior 17, 1 (1985), 77-95.

Jain89 Jain, Anil K. Fundamentals of Digital Image Processing.
Prentice Hall (1989). ISBN 0-13-336165-9.

Janin93 Janin, Adam L., David W. Mizell, and Thomas P. Caudell.
Calibration of Head-Mounted Displays for Augmented
Reality Applications. Proceedings of IEEE VRAIS '93
(Seattle, WA, 18-22 September 1993), 246-255.

Jenkins68 Jenkins, Gwilym M. and Donald G. Watts. Spectral
Analysis and its Applications. Holden-Day (1968).
Library of Congress number 67-13840.

Kalman60 Kalman, R.E. A New Approach to Linear Filtering and
Prediction Problems. Transactions of the ASME, J. Basic
Eng 82, D (March 1960), 35-45.

Kalman61 Kalman, R.E., and R.S. Bucy. New Results in Linear
Filtering and Prediction Theory. Transactions of the
ASME, J. Basic Eng 83, D (March 1961), 95-108.

Krueger92 Krueger, Myron W. Simulation Versus Artificial Reality.
Proceedings of IMAGE VI Conference (Scottsdale, AZ,
14-17 July 1992), 147-155.

Lawrence92 Lawrence, Anthony. Modern Inertial Technology:
Navigation, Guidance, and Control. Springer-Verlag
(1992). ISBN 0-387-97868-2.

Lenz88 Lenz, Reimar K. and Roger Y. Tsai. Techniques for
Calibration of the Scale Factor and Image Center for High
Accuracy 3-D Machine Vision Metrology. IEEE
Transactions of Pattern Analysis and Machine
Intelligence 10, 5 (September 1988), 713-720.

238

Lewis86 Lewis, Frank L. Optimal Estimation with an Introduction
to Stochastic Control Theory. John Wiley & Sons, Inc.
(1986). ISBN 0-471-83741-5.

Liang91 Liang, Jiandong, Chris Shaw, and Mark Green. On
Temporal-Spatial Realism in the Virtual Reality
Environment. Proceedings of the 4th Annual ACM
Symposium on User Interface Software & Technology
(Hilton Head, SC, 11-13 November 1991), 19-25.

List83 List, Uwe H. Nonlinear Prediction of Head Movements
for Helmet-Mounted Displays. Technical report AFHRL-
TP-83-45, William AFB, AZ: Operations Training Division
Air Force Human Resources Laboratory (December
1983), 21 pages

Magill65 Magill, D. T. Optimal Adaptive Estimation of Sampled
Stochastic Processes. IEEE Transactions on Automatic
Control AC-10, 4 (October 1965), 434-439.

Maybeck79 Maybeck, Peter S. Stochastic Models, Estimation and
Control, Volume 1. Academic Press (1979).

McFarland86 McFarland, Richard E. CGI Delay Compensation. NASA
Technical Memorandum S6703 (1986) [N88-12932].

McFarland88 McFarland, Richard E. Transport Delay Compensation
for Computer-Generated Imagery Systems. NASA
Technical Memorandum 100084 (January 1988) [N88-
17645].

Meyer88 Meyer, David E, Sylvan Kornblum, Richard A. Abrams,
Charles E. Wright, and J.E. Keith Smith. Optimality in
Human Motor Performance: Ideal Control of Rapid Aimed
Movements. Psychological Review 95, 3 (1988), 340-
370.

Mine93 Mine, Mark R. Characterization of End-to-End Delays in
Head-Mounted Display Systems. UNC Chapel Hill
Department of Computer Science technical report TR 93-
001 (March 1993), 11 pages.

Montgomery90 Montgomery, Douglas C., Lynwood A. Johnson, and
John S. Gardiner. Forecasting and Time Series Analysis
(2nd edition). McGraw-Hill (1990) ISBN 0-07-042858-1.

Morris93 Morris, Ted and Max Donath. Using a Maximum Error
Statistic to Evaluate Measurement Errors in 3D Position
and Orientation Tracking Systems. Presence 2, 4 (Fall
1993), 314-343.

239

Mugler90 Mulger, Dale H. Computationally Efficient Linear
Prediction from Past Samples of a Band-Limited Signal
and its Derivative. IEEE Transactions of Information
Theory 36, 3 (May 1990), 589-596.

Murray85 Murray, P. M. and B. Barber. Visual Display Research
Tool. AGARD Conference Proceedings No. 408 Flight
Simulation. (Cambridge, UK, 30 September - 3 October
1985).

NASAksc Digital Low-Pass Filter Without Phase Shift. NASA Tech
Briefs KSC-11471. John F. Kennedy Space Center,
Florida.

Oppenheim83 Oppenheim, Alan V. and Alan S. Willsky. Signals and
Systems. Prentice-Hall (1983). ISBN 0-13-809731-3.

Oyama93 Oyama, Eimei, Naoki Tsunemoto, Susumu Tachi, and
Yasuyuki Inoue. Experimental Study on Remote
Manipulation Using Virtual Reality. Presence 2, 2 (Spring
1993), 112-124.

Paley92 Paley, W. Bradford. Head-Tracking Stereo Display:
Experiments and Applications. SPIE Vol. 1669
Stereoscopic Displays and Applications III (San Jose,
CA, 12 - 13 February 1992), 84-89.

Pausch92 Pausch, Randy, Thomas Crea, and Matthew Conway. A
Literature Survey for Virtual Environments: Military Flight
Simulator Visual Systems and Simulator Sickness.
Presence 1, 3 (Summer 1992), 344-363.

Peterson88 Peterson, Barry W. and Frances J. Richmond. Control of
Head Movement. Oxford University Press (1988). ISBN
0-19-504499-1.

Phillips90 Phillips, Charles L., and H. Troy Nagle. Digital Control
System Analysis and Design (2nd edition). Prentice-Hall
(1990). ISBN 0-13-213596-5.

Press88 Press, William H, Brian P. Flannery, Saul A. Teukolsky,
and William T. Vetterling. Numerical Recipes in C.
Cambridge University Press (1988). ISBN 0-521-35465-
X.

Priestley81 Priestley, M.B. Spectral Analysis and Time Series,
Volume 1. Academic Press (1981). ISBN 0-12-564901-
0.

240

Raab79 Rabb, Frederick H., Ernest B. Blood, Terry O. Steiner,
and Herbert R. Jones. Magnetic Position and Orientation
Tracking System. IEEE Transactions on Aerospace and
Electronic Systems AES-15 , 5 (September 1979), 709-
718.

Radwin90 Radwin, Robert G., Gregg C. Vanderheiden, and Mei-Li
Lin. A Method for Evaluating Head-Controlled Computer
Input Using Fitts' Law. Human Factors 32, 4 (August
1990), 423-438.

Rebo88 Rebo, Robert. A Helmet-Mounted Virtual Environment
Display System. M.S. Thesis, Air Force Institute of
Technology (December 1988).

Regan94 Regan, Matthew, and Ronald Pose. Priority Rendering
with a Virtual Reality Address Recalculation Pipeline.
Proceedings of SIGGRAPH ‘94 (Orlando, FL, 24-29 July
1994). In Computer Graphics, Annual Conference Series,
1994, 155-162.

Reisman90 Reisman, Ron. A Brief Introduction to the Art of Flight
Simulation. Virtuelle Welten, Ars Electronica (Linz,
Austria, 1990) 159-170.

Riner92 Riner, Bruce and Blair Browder. Design Guidelines for a
Carrier-Based Training System. Proceedings of IMAGE
VI (Scottsdale, AZ, July 14-17, 1992), 65-73.

Robinett92a Robinett, Warren. Synthetic Experience: A Proposed
Taxonomy. Presence 1, 2 (Spring 1992), 229-247.

Robinett92b Robinett, Warren and Richard Holloway. Implementation
of Flying, Scaling and Grabbing in Virtual Worlds.
Proceedings of 1992 Symposium on Interactive 3D
Graphics (Cambridge, MA, 29 March - 1 April 1992). A
special issue of Computer Graphics, 189-192.

Robinett92c Robinett, Warren and Jannick Rolland. A Computational
Model for the Stereoscopic Optics of a Head-Mounted
Display. Presence 1, 1 (Winter 1992), 45-62.

Shaw92 Shaw, Chris and Jiandong Liang. An Experiment to
Characterize Head Motion in VR and RR Using MR.
Proceedings of 1992 Western Computer Graphics
Symposium (Banff, Alberta, Canada, 6-8 April 1992), 99-
101.

Shoemake89 Shoemake, Ken. Quaternion Calculus For Animation.
SIGGRAPH '89 Course Notes #23 on Math for

241

SIGGRAPH (Boston, MA, 31 July - 4 August 1989), 187-
205.

Sims94 Sims, Dave. New Realities in Aircraft Design and
Manufacture. IEEE Computer Graphics and Applications
14, 2 (March 1994), 91.

Slama80 Slama, C.C, editor. Manual of Photogrammetry (4th
edition). American Society of Photogrammetry (1980).

Smith84 Smith Jr., Bernard. R. Digital Head Tracking and Position
Prediction for Helmet Mounted Visual Display Systems.
Proceedings of AIAA 22nd Aerospace Sciences Meeting,
(Reno, NV, 9-12 January 1984) [AIAA-84-0557].

So92 So, Richard H. Y. and Michael J. Griffin. Compensating
Lags in Head-Coupled Displays Using Head Position
Prediction and Image Deflection. Journal of Aircraft 29, 6
(November - December 1992), 1064-1068.

Sobiski87 Sobiski, Donald J., and Frank M. Cardullo. Predictive
Compensation of Visual System Time Delays.
Proceedings of AIAA Flight Simulation Technologies
Conference (Monterey, CA), 59-70. [AIAA 87-2434].

Sorenson70 Sorenson, Harold W. Least-squares estimation: from
Gauss to Kalman. IEEE Spectrum (July 1970), 63-68.

Splettsösser82 Splettstösser, W. On the Prediction of Band-Limited
Signals from Past Samples. Information Sciences 28
(1982), 115-130.

State94 State, Andrei, David T. Chen, Chris Tector, Andrew
Brandt, Hong Chen, Ryutarou Ohbuchi, Mike Bajura and
Henry Fuchs. Case Study: Obseving a Volume
Rendered Fetus within a Pregnant Patient. Proceedings
of IEEE Visualization '94 (Washington D.C., 17-21
October 1994), 364-368.

Sutherland65 Sutherland, Ivan E. The Ultimate Display. Proceedings
of the IFIP Congress 2 (1965), 506-509.

Sutherland68 Sutherland, Ivan. A Head-Mounted Three Dimensional
Display. Fall Joint Computer Conference, AFIPS
Conference Proceedings 33 (1968), 757-764.

Systron91 QRS-11 Summary Specifications Sheet. Systron Donner
Inertial Division (9 July 1991).

242

Taubes94 Taubes, Gary. Surgery in Cyberspace. Discover 15, 12
(December 1994), 84-94.

Tugnait82 Tugnait, Jitendra K. Detection and Estimation for
Abruptly Changing Systems. Automatica 18, 5
(September 1982), 607-615.

WangC90 Wang, Chu P., Lawrence Koved, and Semyon Dukach.
Design for Interactive Performance in A Virtual
Laboratory. Proceedings of 1990 Symposium on
Interactive 3D Graphics (Snowbird, UT, 1990). In
Computer Graphics 24, 2 (March 1990), 39-40.

Wanstall89 Wanstall, Brian. HUD on the Head for Combat Pilots.
Interavia 44 (April 1989), 334-338. [A89-39227].

Ward92 Ward, Mark, Ronald Azuma, Robert Bennett, Stefan
Gottschalk, and Henry Fuchs. A Demonstrated Optical
Tracker With Scalable Work Area for Head-Mounted
Display Systems. Proceedings of 1992 Symposium on
Interactive 3D Graphics (Cambridge, MA, 29 March - 1
April 1992). A special issue of Computer Graphics, 43-
52.

Welch78 Welch, Robert B. Perceptual Modification: Adapting to
Altered Sensory Environments. Academic Press (1978).
ISBN 0-12-741850-4.

Welch86 Welch, Brian L., Ron V. Kruk, Jean J. Baribeau, Charles
L. Schlef, Martin Shenker, and Paul E. Weissman. Flight
Simulator: Wide-Field-Of-View Helmet-Mounted Infinity
Display System, Air Force Human Resources Laboratory
technical report AFHRL-TR-85-59 (May 1986), 48-60.

Wells87 Wells, Maxwell J. and Michael J. Griffin. A Review and
Investigation of Aiming and Tracking Performance with
Head-Mounted Sights. IEEE Transactions on Systems,
Man, and Cybernetics SMC-17, 2 (March - April 1987),
210-221.

Wloka95 Wloka, Matthias M. Lag in Multiprocessor Virtual Reality.
To be published in Presence 4, 1 (Winter 1995).

