
Interactive Numerical Flow Visualization
Using Stream Surfaces

TR95-014
1995

Jeff P.M. Hultquist

Department of Computer Science

The University of North Carolina
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Affirmative Action Institution.

Interactive
Numerical Flow Visualization

Using Stream Surfaces

by

Jeff P.M. Hultquist

A dissertation submitted to the faculty of the University
of North Carolina at Chapel Hill in partial fulfillment of
the requirements for the degree of Doctor of Philosophy
in the Department of Computer Science.

Chapel Hill
1995

@1995

Jeff P.M. Hultquist

ALL RIGHTS RESERVED

II

JEFFREY PAUL MCCURDY HULTQUIST

Interactive Numerical Flow Visualization Using Stream Surfaces

(Under the direction of Frederick P. Brooks, Jr.)

Three-dimensional steady fluid flows are often numerically simulated over mul­

tiple overlapping curvilinear arrays of sample points. Such flows are often visualized

using tangent curves or streamlines computed through the interpolated velocity field.

A stream surface is the locus of an infinite number of streamlines rooted at all points

along a short line segment or rake. Stream surfaces can depict the structure of a

flow field more effectively than is possible with mere streamline curves, but careful

placement of the rakes is needed to most effectively depict the important features

of the flow.

I have built visualization software which supports the interactive calculation

and display of stream surfaces in flow fields represented on composite curvilinear

grids. This software exploits several novel methods to improve the speed with which

a particle may be advected through a vector field. This is combined with a new

algorithm which constructs adaptively sampled polygonal models of stream surfaces.

These new methods make stream surfaces a viable tool for interactive numerical flow

visualization. Software based ori these methods has been used by scientists at the

NASA Ames Research Center and the Wright-Patterson Air Force Base. Initial use

of this software has demonstrated the value of this approach.

Ill

ACKNOWLEDGMENTS

I wish to thank my wife, Mary, for her constant encouragement over many years.

Her faith in my eventual completion of this project is the only thing which made

that completion a reality. My sons, Michael, Kyle, and Joseph, have brought me

much love and joy, and they place this present work in its true perspective. My own

parents have always encouraged me to find what I enjoy doing and to work hard

doing it. I thank them for their love and support.

This project has benefited from extensive discussions with my colleagues at

NASA, particularly Eric Raible, Kris Miceli, and David Kenwright. Tom Lasinski

has been the most patient of bosses and a most helpful member of my dissertation

committee. Pieter Burring graciously brought his expertise to my committee. The

balance of my committee, Fred Brooks, James Coggins, and Henry Fuchs, allowed

me the freedom to pursue my research on the other end of the country. I thank each

of them very much.

The application software built during this project incorporates the work of Eric

Raible, Kris Miceli, and David Betz. Fluid flow datasets were provided by Michael

Aftosmis, Pieter Burring, Neal Chaderjian, John Ekaterinaris, Datta Gaitonde, Cetin

Kiris, Goetz Klopfer, Stuart Rogers, and Miguel Visbal.

All the work described herein was conducted at the Numerical Aerodynamic

Simulation Facility at the NASA Ames Research Center.

IV

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS .

I. . OVERVIEW ...

CONTENTS

1.1 COMPUTATIONAL FLUID DYNAMICS

1.1.1

1.1.2

Grid Generation

Flow Simulation

1.1.3 Numerical Flow Visualization .

1.2 VECTOR FIELD VISUALIZATION

1.2.1 Arrows

1.2.2 Tangent Curves

1.2.3 Ribbons

1.2.4 Stream Surfaces

1.2.5 Rake Placement

1.3 CONSTRUCTION OF SURFACES .

1.3.1 Surface Particles

1.3.2 Stream Function Methods .

1.3.3 Streamline-based Methods .

1.4 ORIGINAL CONTRIBUTIONS .

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

Thesis Statement

The "Flora" Application .

Mixed-Space Integration .

Node Tagging

Exploiting Spatial Coherence

Constructing Stream Surfaces .

Better Flow Visualization . . .

v

X

XI

XIV

1

1

1

7

10

11

12

13

16

17

18

19

19

20

22

25

25

27

28

29

29

31

32

1.5 SUMMARY . . .

II. IMPLEMENTATION

2.1 SUPERGLUE

2.1.1 Scheme

2.1.2 The Interpreter .

2.1.3 The Garbage Collector .

2.1.4 The Foreign Function Interface

2.2 THE OBJECT SYSTEM

2.2.1 Object-Oriented Programming

2.2.2 Classes and Instances

2.2.3 Subclassing and Inheritance .

2.2.4 The Class Hierarchy

2.3 FLORA

2.3.1 Architecture .. .

2.3.2 Data Management

2.3.3 The User Interface .

2.3.4 Repositioning a Rake

2.4 INTERACTIVITY

2.4.1 Placing the Rake .. .

2.4.2 Constructing the Model

2.4.3 Displaying the Model

2.5 SUMMARY

III. MIXED-SPACE INTEGRATION .

3.1 COORDINATES AND INTERPOLATION.

3.1.1 Coordinate Spaces ...

3.1.2 Trilinear Interpolation .

3.1.3 Interpolation Error .

3.2 POINT FINDING ...

3.2.1 Coarse Search

3.2.2 Stencil-Walking

3.2.3 Implementing the Newton-Raphson Method .

3.3 PHYSICAL-SPACE INTEGRATION

VI

32

34

34

34

35

36

38

38

39

40

41

42

44

44

45

47

48

48

49

50

50

51

53

53

53

55

56

58

59

60

63

64

3.3.1 Implementing the Integration Method .

3.3.2 Adjusting the Stepsize

3.4 COMPUTATIONAL-SPACE INTEGRATION .

3.4.1 Implementing the Integration Method

3.4.2

3.4.3

3.4.4

Isoparametric Mapping

Performance

Accuracy

3.4.5 Constrained Integration

3.4.6 Block Transitions . . .

3.5 MIXED-SPACE INTEGRATION

3.5.1 Node Tagging

3.5.2 Calculation of the Tag Values .

3.5.3 Implementing the Integration Method

3.5.4 Evaluation

3.6 SUMMARY

IV. EXPLOITING SPATIAL COHERENCE .

4.1 CELL CACHING

4.1.1 Implementing the Caching

4.1. 2 Working Set Size . . .

4.2 INTERPOLATION

4.2.1 Trilinear Interpolation

4.2.2 Operation Counts . . .

4.2.3 A General Implementation .

4.3 COMPUTATIONAL-SPACE EXTRAPOLATION .

4.3.1 Implementation

4.3.2 Performance Measurement .

4.4 FURTHER USE OF CELL TAGS .

4.4.1 Valid Cells ..

4.4.2 Wall Cells . .

4.4.3 Overlap Cells

4.5 DONOR POINTS ..

4.5.1

4.5.2

Storing the Donor-Receiver Equivalences

Computing the Donor Points

VII

64

67

69

69

71

73

76

81

82

83

83

85

86

87

90

92

92

92

95

97

97

98

. 100

. 101

. 102

. 103

. 104

. 105

. 105

. 105

. 106

. 107

. 107

4.6 SELF-ABUTTING BLOCKS

4.6.1 Implicit Connection . .

4. 7 SUMMARY

V. CONSTRUCTION OF STREAM SURFACE MODELS

5.1 OVERVIEW

5.1.1 Parameterization

5.1.2 Earlier Work

5.2 THE ADVANCING FRONT METHOD

5.2.1 Implementation .

5.3 HANDLING SHEAR ...

5.3.1 Ribbon Tiling

5.3.2 Incremental Tiling

5.3.3 Implementing the Orthogonal Advance

5.3.4 Recovering the Timelines ..

5.4 HANDLING DIVERGENCE ..

5.4.1 Hierarchical Splitting . . .

5.4.2 Splitting a Ribbon

5.4.3 Placing the New Particle .

5.4.4 Ripping the Surface

5.5 HANDLING CURVATURE

5.5.1 Measuring Surface Curvature .

5.5.2 Modifying the Effective Facet-Size

5.6 HANDLING CONVERGENCE

5.7 DISCUSSION .

5.8 SUMMARY

VI. CONCLUSIONS

6.1 EARLY USES OF FLORA .

6.1.1 Video Production

6.1.2 Topological Analysis .

6.1.3 Vortex Roll-Up

6.1.4 Summary

6.2 CONTRIBUTIONS OF THIS WORK

Vlll

. 109

. 110

. 111 .

. 113

. 113

. 115

. 117

. 118

. 119

. 121

. 122

. 123

. 126

. 129

. 130

. 131

. 132

. 133

. 134

. 137

. 137

. 138

. 138

. 140

. 140

. 142

. 142

. 143

. . 147

. 150

. 152

. 152

6.2.1 Mixed-Space Integration

6.2.2 Test Cases

6.2.3 Retroactive Stepsize Adjustment

6.2.4 Node Tags

6.2.5 Exploiting Spatial Coherence . .

6.2.6 Tracing through Self-Abutting Blocks

6.2.7 Stream Surface Construction

6.2.8 Publications

6.2.9 Better Flow Visualization

6.3 OPEN QUESTIONS

6.3.1

6.3.2

6.3.3

Query Optimization . .

Time-Varying Surfaces .

Distributed Implementation .

6.4 SUMMARY

A. CODE FOR THE TEST GRID AND SOLUTION

B. THE FLORA USERS' GUIDE

BIBLIOGRAPHY

IX

. 153

. 153

. 153

. 154

. 154

. 154

. 155

. 155

. 156

. 156

. 157

. 157

. 158

. 158

. 159

. 162

. 185

LIST OF TABLES

Table 3.1 Relative performance of four differencing methods. 75

Table 3.2 Performance of mixed-spaced streamline computation .. 89

Table 4.1 Effect of cache size. 96

Table 4.2 Implementations of trilinear interpolation. . 100

Table 4.3 Effect of computational-space extrapolation. . 103

Table 4.4 Effect of extrapolation in finding donor points. . 108

X

LIST OF FIGURES

Figure 1.1 Curvilinear cells in the volume surrounding a vehicle. 2

Figure 1.2 Computational and physical coordinate spaces. 3

Figure 1.3 Grid cells surrounding the nose of the Shuttle Orbiter. 4

Figure 1.4 Multiple grid blocks around the Space Shuttle assembly. 5

Figure 1.5 Grid slices around the Space Shuttle assembly. . 5

· Figure 1.6 Top and side views of the beveled delta wing. 11

Figure 1. 7 Arrow glyphs in a velocity field. 12

Figure 1.8 Streamlines in the flow above a delta wing. . 14

Figure 1.9 The Frenet frame on a three-dimensional curve. 16

Figure 1.10 Stream surfaces above a delta wing ..

Figure 2.1 The architecture of Flora. .

Figure 2.2 The user interface of Flora.

Figure 2.3 Moving a seed point in three dimensions.

Figure 3.1 A grid with a line of singularity

Figure 3.2 Interpolation error in a quadratically-varying flow ..

Figure 3.3 Point-finding with the Newton-Raphson method.

Figure 3.4 Heun's method.

Figure 3.5 Smooth grid with physical-space streamlines ..

Figure 3.6 A grid with a strong discontinuity.

Figure 3. 7 Streamlines computed in physical space, in a smooth grid

18

45

49

50

54

57

62

66

74

77

(left) and a creased grid (right). 78

XI

Figure 3.8 Streamlines computed with local Jacobians, in a smooth grid
(left) and a creased grid (right). 79

Figure 3.9 Streamlines computed with edge-differencing, in a smooth grid
(left) and a creased grid (right). 79

Figure 3.10 Streamlines computed with central-differences, in a smooth
grid (left) and a creased grid (right). 79

Figure 3.11 Detail of streamlines computed with local Jacobians.

Figure 3.12 Heun's method with cell-local differencing.

Figure 3.13 A tag word.

Figure 3.14 Streamlines computed with local Jacobians in a creased grid,

80

80

84

by computational (left) and mixed space (right) methods. . . . 88

Figure 3.15 Streamlines computed with edge-differencing in a creased grid,
by computational (left) and mixed space (right) methods. . . . 88

Figure 3.16 Streamlines computed with central-differencing in a creased
grid, by computational (left) and mixed space (right) methods. 88

Figure 4.1 Trilinear interpolation by seven linear interpolations. 99

Figure 4.2 0-type and C-type grid blocks. 109

Figure 5.1 Streamlines in the flow over a delta wing. . . 114

Figure 5.2 Stream surfaces in the flow over a delta wing. . 114

Figure 5.3 Parametric space over a stream surface. 116

Figure 5.4 Appending quadrilaterals to a growing surface. . . 119

Figure 5.5 Shearing of a front in lockstep advance. . . . 121

Figure 5.6 Regular and non-regular tiling of a ribbon. . 122

Figure 5. 7 A ribbon structure connecting two particles. . 124

Figure 5.8 Appending a triangle to a ribbon. 125

Figure 5.9 Extending the surface using orthogonal advance. . 128

Figure 5.10 Timeline textures on a stream surface modeL . 130

Figure 5.11 Full-length and hierarchical ribbon splitting. . . 131

Xll

Figure 5.12 Splitting a ribbon with a new particle. . 133

Figure 5.13 Ripping a heavily divergent surface. . . . 135

Figure 5.14 Ripping a surface on the leading-edge of a wing. . 136

Figure 5.15 Removing a particle and merging two ribbons. . 139

Figure 6.1 Flow inside a heart-implant pump. 145

Figure 6.2 Flow behind a magnetically levitated train .. . 145

Figure 6.3 Laminar juncture flow around a vertical post. . 149

Figure 6.4 Stream surfaces above a delta wing. 151

Figure 6.5 Contours extracted from stream surfaces. . 151

XJII

LIST OF SYMBOLS

e energy

f,g arbitrary fields

p pressure

s streamline parameter

t time

.\ interpolation coefficient

p density

if; stream function

D distance function

I interpolating function

:r Jacobian matrix

~

physical-space point X

x,y,z physical-space coordinates
~

~ computational-space point

~,I],(computational-space coordinates

i,j, k grid indices

a,/3,/ offsets within grid cell

g gravity force vector

~ ~

arbitrary points p,q

i1 velocity vector

~

freestream velocity Uoo

u,v,w velocity components

XIV

CHAPTER I

OVERVIEW

1.1 COMPUTATIONAL FLUID DYNAMICS

The study of fluid flow is typically comprised of three phases: the construction

of a grid of node points, the calculation of the flow field sample values at these points,

and the post-process visualization of the resulting data. The requirements of the

first two tasks motivate the use of unusual data structures, which pose difficulty for

the interactive visualization of the results.

1.1.1 Grid Generation

The flow simulation effort begins with a description of the surface of an object,

usually by a sequence of digitized cross-sections or a collection of surface spline

patches. The object may be as simple as a sphere or as intricate as the Space Shuttle

Orbiter with solid rocket boosters, external fuel tank, and interconnection hardware

[Pearce et al. 1993]. Some volume surrounding the object is then tessellated into

cells. These cells are small enough that the flow field may be expected to vary only

slightly through each one. The partial differential equations which govern fluid flow

are then discretized and numerically solved over the collection of points which are

the vertices of these cells.

In Finite Element Analysis, the cells of an unstructured computational grid

may have a variety of shapes and each node point may be shared by any num­

ber of cells. These general cells can be easily positioned around intricate domain

boundaries, but this generality requires increased bookkeeping during the simulation

Figure 1.1: Curvilinear cells in the volume surrounding a vehicle.

and increased memory to store the grid information. This overhead is acceptable for

work with structures, since a grid of a few thousand cells typically provides adequate

resolution of the computed deformation and stress fields.

Unstructured meshes are not often used in Computational Fluid Dynamics

(CFD). Fluid flows contain regions of detail which must be sampled at very small

spatial intervals. The bookkeeping overhead of unstructured grids consumes storage

space which could otherwise be used to record additional node point positions and

flow field samples. Furthermore, many flow simulation codes are run on traditional

vector supercomputers which cannot reach peak performance when processing over

the arbitrary connectivity of an unstructured grid.

The ever greater detail of vehicle surface descriptions and the increasing avail-

. ability of massively parallel computers may eventually increase the use of unstruc­

tured grids in CFD, but the majority of present-day flow calculations are performed

on structured, body-conforming, curvilinear grids. These grids maintain a regular

interconnection of hexahedral. cells, but allow the placement of the node points to

2

computational
J3 : .. !p

(i,j) a

y

physical

X

Figure 1.2: Computational and physical coordinate spaces.

follow the curved contours of the vehicle surface. As a result, the six faces of each

cell are not planar, but are instead double-ruled bilinear patches. Figure 1.1 shows

some nodes taken from a three-dimensional grid which has been wrapped around the

surface of the Shuttle Orbiter. This data, provided by Dr. Pieter Buning, was con­

structed for a simulation of the Space Shuttle launch [Buning et al. 1988, Martin et

al. 1990].

The position of each node point is recorded in the (x,y,z) coordinates of the

Cartesian physical space. The interconnection of these node points is implicitly

defined by their placement in three-dimensional storage arrays. This ordering also

defines a computational coordinate space (~, 'T), () in which each cell is a unit cube.

Integer-valued computational coordinates map directly onto the array indices of each

node point. Figure 1.2 depicts the relationship between these two spaces in two cells

of a two-dimensional grid.

In simulations of the flow of a viscous fluid, the cells near the solid boundaries

of the vehicle must be small enough to adequately resolve the details of the boundary

3

Figure 1.3: Grid cells surrounding the nose of the Shuttle Orbiter.

layer. On the other hand, for the sake of computational efficiency, the cells further

from the vehicle may be rather large. This is allowable since the flow far from vehicle

is relatively undisturbed. In a typical grid, the largest cells may be several thousand

times larger than the smallest ones (see figure 1.3). In the grid block shown earlier,

the entire Orbiter vehicle has been assigned a length of about 1.2 physical-space

units. The innermost layer of cells surrounding the body has a thickness of only

about 5 x 10-5 . The real Orbiter is about 120 feet long. If the innermost cells

were scaled to fit the full-size vehicle, they would be less than one-tenth of an inch

thick and about two feet across. In this same block, the outermost layer of cells is

almost five hundred times thicker. This range of cell-size, two or even three orders of

magnitude along each grid dimension, is typical for CFD grids and this is necessitated

by the widely varying scale of the features present in real flows.

For numerical stability in the flow simulation, each cell should be approxi­

mately rectilinear and of generally the same size as its immediate neighbors. The

spatial relationship of fuselage, wings, engines, and control surfaces can make these

4

Figure 1.4: Multiple grid blocks around the Space Shuttle assembly.

Figure 1.5: Grid slices around the Space Shuttle assembly.

5

restrictions very difficult to satisfy. The task of grid construction can be simplified

by dividing the flow domain into sub-regions, and then sampling the flow field us­

ing multiple, partially overlapping blocks of cells. These so-called multiple-block or

composite grid schemes [Benek et al. 1985] can allow a better positioning of the node

points around vehicles for which a single block would be unsuitable. For example,

figure 1.4 shows the innermost slice from the Orbiter grid block now combined with

other blocks which have been constructed around the fuel tank and solid boosters.

In figure 1.5, we see a frontal view of a few slices taken from this composite grid

and then reflected about the mid-line of the vehicle. A single large grid has been

wrapped around the main fuel tank. Holes or voids has been excised into this grid,

and the flow in these regions is represented by other grid blocks with smaller cells.

The irregularly shaped void at the upper center of the image will be filled by the

body-conforming Orbiter grid block. A similar void has already been filled by a

circular block surrounding the solid rocket booster. Note that this smaller block has

itself been partially voided to eliminate those node points which otherwise would

have penetrated the interior of the main fuel tank.

Each node point in a composite grid is marked with an integer mask to indicate

which other block, if any, also occupies the same region of the flow domain. These

integer tags are called iblank numbers, because the technique is called blanking

and because most flow simulation codes are written in FORTRAN, in which integer

variables traditionally begin with the letter "i."

Node points in the void regions are marked with an iblank value of 0. Usable

node points in the interior of a block are marked with the value 1. The node points

in the coincident regions carry a negative iblank number. The absolute value of this

tag is the identifying number, counting from one, of some locally overlapping block.

The meaning encoded by the iblank values must be preserved by the visualization

software. The interpolation of field samples at some query point location must

6

be preceded by a check of the iblank values at the eight corners of the cell which

contains that query point. Field values may be interpolated only within cells for

which all eight vertex nodes are marked with non-zero iblank numbers.

1.1.2 Flow Simulation

The equations that describe fluid flow may be written using the material

derivative (Df I Dt), which expresses the rate of change of a field value when mea­

sured at the changing location of a massless particle that is being carried (or ad­

vected) by the moving fluid. This derivative is equal to the sum of the change of the

field over time and the change due to the shifting position of the particle itself in

the three spatial dimensions of the domain.

Df

Dt
of (of ax of 8y of oz)

- at + ax at + oy at + az at

of _ f
- at +u·v

In the above equation, the term a f I ot describes the simple rate of change of the

field f, while the second term is the inner product of the velocity vector i1 with the

gradient of this field. The gradient of a field is a vector which indicates the direction

of maximal increase. The product of the velocity and the gradient vector gives the

rate of change introduced by the motion of the particle through that field.

The Euler equation, which describes the flow of an inviscid (frictionless) and

incompressible fluid, specifies that the material derivative of the momentum is re­

duced by the pressure gradient and increased by the force of gravity.

DiJ n _
p- = -vp+pg

Dt

Here we see that the material derivative of the momentum field is the sum of two

terms. The first is t)fe negative value of the gradient of the fluid pressure. This

7

indicates that each moving particle is shifted in the direction of lowest pressure.

The other term is product of the density p and the gravitational force vector g.

This merely represents the influence of gravity on the motion of the fluid.

Additional terms must be included if the fluid can be compressed, if it is vis­

cous, and if the viscosity is dependent on temperature. Each new term increases

the computational effort required to compute the flow field samples at each node

point. In practice, the primary terms of the flow equations are accounted for di­

rectly, while the less significant and the more computationally expensive terms are

approximated.

The governing equations are discretized over the node points of the grid and

solved numerically with respect to a given set of boundary conditions. These con­

straints typically specify the undisturbed freestream velocity (il~) far from the ve­

hicle. The constraints might also require that the velocity magnitude be zero at the

vehicle surface (the no-slip condition). A flow solver program then computes the

solution of these discretized equations at each node point in every grid block. On a

composite grid, the evolving flow-field values must be averaged across neighboring

blocks to reach a consensus in the regions of overlap.

For compressible flows, the values typically computed at each node are the lo­

cal fluid density (p), the momentum vector (pii), and the local energy (e). Ancillary

fields can be derived as functions of these fundamental quantities. For example, the

dynamic pressure of the fluid at each node is equal to (!Piiil2
). Differential quanti­

ties, such as the vorticity (Y' x ii) or the density gradient (Y' p), can be approximated

using finite difference methods. These last calculations must include spatial met­

rics to account for the non-regular placement of the node points. These terms are

included by a straightforward application of the chain rule:

8

which combines the computational-space derivatives of the field (a! 1 aij with a spa­

tial metric term (a[; ax), the inverse of the Jacobian matrix which describes the local

shape of the grid. The field derivatives are approximated by finite differences taken

across samples recorded at a few neighboring node points. The spatial derivatives

may be approximated using differences over the physical-space coordinates of these

same node points.

This numerical approximation of the spatial term introduces error into the

calculation of the flow field [Bernard 1988, Mastin 1982]. Grids must be constructed

such that this approximation error is minimized; each line of node points should

define a smooth curve and these curves should cross almost orthogonally at each

node point. Flaws in the grids can induce error or even non-convergence in the flow

field calculation process. We shall later see that numerical error in the calculation

of these spatial derivatives can also pose a problem in interactive visualization.

Once the solution has been computed to sufficient accuracy at each node point,

the field data must be processed to allow evaluation of the results. The solution

of a large problem can consume several tens of hours on a large supercomputer,

so economy would suggest that maximal information be extracted from each new

dataset. The most faithful representation of numerical data is a listing of the sample

values of interest, each printed to its full significance. Although correct, this form

of presentation is useless for all but the smallest of results. The total lift on a wing

or the bending moment on a flap could be presented in this manner, but larger

collections of data must be depicted graphically. Such qualitative depictions might

9

be studied by a scientist studying flow behavior, a programmer debugging a solver,

or by an engineer improving a vehicle design.

1.1.3 Numerical Flow Visualization

The term flow visualization has traditionally referred to the methods used to

reveal the structure of empirical flows [vanDyke 1982]. This term has been adopted

for the graphical depiction of computed flow fields, an activity more accurately

termed numerical flow visualization. Techniques for numerical flow visualization

have advanced with the incre~sed availability of computational power. Ten years

ago, most flow simulations were done in two dimensions, so simple plots were ade­

quate. The simulation of increasingly convoluted three-dimensional flows has intro­

duced the need for new visualization tools.

Visualization packages depict the raw data by constructing geometric models or

idioms [Haber 1988]. Each of these constructs is the result of a functional mapping

of some sub-domain of the data volume. The points of this sub-domain may be

specified explicitly, such as for a two-dimensional slice taken from a block of node

points. The sub-domain might also be selected implicitly, as when creating an iso­

valued surface on which all of the selected points have the same interpolated value

in some scalar field. The spatial coordinates of the model usually depend only on

the spatial dimensions of the data, but the mapping of dimensions need not follow

this pattern. A surface plot of a function of two variables z = f (x, y) maps a scalar

function value onto the third spatial dimension of the model.

Each point on a graphical model has a number of secondary attributes or

retinal variables [Bertin 1983] including color, texture, and transparency. These

variables may be assigned values which are functions of the coincident data fields, or

they may be used to represent depth information in the final two-dimensional image.

(Of course, the characteristics of the intended display medium determine which

10

Figure 1.6: Top and side views of the beveled delta wing.

variables are available. Since many professional journals publish only monochrome

line-art, color raster stills and video are currently of limited use in the archival

publication of scientific results.)

1.2 VECTOR FIELD VISUALIZATION

The usefulness of any visualization method depends partly on how well it

satisfies the Visualization Principle of Hanson and Heng [1991], which states:

A useful data depiction must allow the viewer to reconstruct a consistent
and relevant [mental] model of the original data.

In this section, we will examine the traditional models used to depict steady three­

dimensional vector fields. The poverty of many of these methods with respect to

the Visualization Principle motivated my further development of the stream surface

method. The figures in this section depict the flow over a beveled triangular plate,

flying at Mach 0.3 at an angle of attack of 40 degrees and a Reynolds number of 106
.

This flow was computed by Ekaterinaris and Schiff [1990]. The grid contains a single

11

Figure 1. 7: Arrow glyphs in a velocity field.

block of (56 x 54 x 70) = 211680 node points. (This is a small dataset; newer grids

may contain a few million node points distributed over tens of blocks.) Primary

and secondary vortices are formed over the leading edges of this delta shape. Near

the back, the main vortex bursts into a tangle of intertwined flow. The solution was

computed over only half of the vehicle; these images have been mirrored about the

midline symmetry plane.

1.2.1 Arrows

Vector fields are often depicted with collections of discrete tokens or glyphs

[Elison and Cox 1988, de Leeuw and van Wijk 1993]. Figure 1.7 shows a collection

of arrows placed on a slice through the three-dimensional domain of the flow. Each

symbol depicts the magnitude and the direction of a vector quantity sampled at some

point in the flow field. Notice how these arrows form a circular pattern surrounding

each primary vortex above the vehicle.

12

This visualization method leaves the majority of the data unrepresented, but

filling the whole volume with arrows would be utterly confusing and useless. These

simple arrows are also ambiguous for three-dimensional fields; the length and direc­

tion of each segment cannot be determined from its two-dimensional image. This

problem has led some researchers to place a small arrowhead on each segment [We­

ston 1987b]. This helps to convey the orientation of each individual arrow, but it

can still be difficult to mentally fuse a collection of discrete symbols into an under­

standing of a continuous field.

1.2.2 Tangent Curves

Several useful methods of vector field visualization are based on the calculation

of tangent curves. Each curve is the solution of the initial value problem posed by

a vector field ii(x) and an initial point x0 • This curve can be approximated by

computing a sequence of points (x0 , Xt, ... Xn) such that

for a closely spaced sequence of values (t;). Each adjacent pair of points is then

linked with a line segment to produce a piecewise-linear model of the ideal curve.

When the vector field is the velocity of a fluid flow, each curve defines the path

traveled by a massless advecting particle. Such paths are called particle traces or

streamlines.

Most flow visualization packages allow the user to specify a set of initial points

from which a family of streamlines is computed. This set of starting positions is often

called a rake, a name adopted from the tubing used to introduce multiple streams

of smoke into a wind tunnel. Figure 1.8 shows a set of streamlines tracing out the

same flow that was depicted in the previous figure. Note that the two vortices are

more evident, but that the structure of each vortex is still quite difficult to discern.

13

Figure 1.8: Streamlines in the flow above a delta wing.

Streamlines are the most commonly used model for investigating the struc­

ture of flow fields. As scientists have begun to study more convoluted flows, this

approach has become increasingly inadequate. Some researchers [Ying et al. 1987]

have expressed these reservations:

It should be pointed out that even with the relatively good graphics
hardware and software at our disposal, the representation of details of the
flow structures, and in particular the form of multi-coiled surfaces such as
depicted here, remains open to judgment, and is subject to imprecision.

Researchers ought to be working to understand their data; yet they often must work

instead to understand their pictures!

Careful use of depth cues can aid in the visual interpretation of streamlines.

Intensity cuing, stereopsis, and motion are perhaps the most commonly applied

methods. Another aid is the representation of each path, not as a curved line, but as

a space-filling and shaded cylindrical tube. These "3D space tubes" [Dickinson 1988]

14

provide shading and occlusion to help the viewer interpret the shapes of the three­

dimensional curves depicted in a two-dimensional image. Note that these bent

·cylinders have been called streamtubes by some authors, but this is a misnomer. A

true streamtube is the locus of the infinite number of streamlines originating from

a continuous and closed loop of rake points. (A streamtube is simply a special case

of the stream surface!) These true tubes typically change their cross-sectional size

and shape as they extend through the flow.

Schroeder et al. [1991] devised a model called the stream polygon. The defor­

mation of an infinitesimal fluid element is tracked along the length of a streamline.

This deformation is depicted graphically by the differing shapes of a sequence of

polygons placed at regular intervals along the computed curve. This method con­

veys an impression of the fluid rotation and divergence along this path, but it shares

the difficulty of the other glyph-based methods which force the viewer to perform a

"mental interpolation" across a collection of discrete representations within a con­

tinuous field.

A related model is the cloud tracing technique of Ma and Smith [1993]. This

IS a depiction of flow within a combustor, with a single streamline forming the

centerline of a tube of monotonically increasing radius. This distance was used to

indicate the amount of mixing which had occured within the flow. Comparable to

this is the turbulence depictions produced by Hin [1993,1994], in which an advecting

particle is randomly displaced by an amount proportional to the flow diffusivity.

Both of these methods augment a simple streamline model with some method of

representing a scalar term obtained from the simulation data.

15

binormal

Figure 1.9: The Frenet frame on a three-dimensional curve.

1.2.3 Ribbons

A useful method for conveying the shape of a three-dimensional curve is to

construct a narrow ribbon which is everywhere aligned with the Frenet frame or

moving trihedron of differential geometry [Kerlick 1990]. This coordinate frame con­

sists of three orthogonal vectors, shown in figure 1.9. These vectors are: the tangent

to the curve, the normal in the osculating plane1 which contains an infinitesimal

neighborhood of the curve, and the binormal orthogonal to that plane. This coordi­

nate frame is not defined where the curve is straight, and it flips 180 degrees about

the normal vector at points of inflection. Bloomenthal [1990] has devised similar

coordinate frames which avoid these problems.

Instead of orienting the ribbon with respect to purely differential measures

of the tangent curve, Darmofal and Haimes [1992] constructed ribbons which twist

about the normal vector at a rate proportional to the local value of the flow helicity

1osculate- 1. trans. to kiss, ... 4. Math. trans. to have contact of a higher order with, esp.
the highest contact possible for two loci ... Oxford English Dictionary

16

(it· (V' x it)). This produces "corkscrews" wherever the fluid is rotating strongly

about an axis defined by the local velocity.

Shirley and Neeman [1989] constructed ribbons by advecting three particles,

one to trace the central spine and two others to form the edges. Belie [1985,1987]

depicted flow field rotation by computing pairs of streamlines from nearby starting

positions. The gap between these curves was bridged with a sequence of polygons

to construct a ribbon. In divergent flow this gap can grow quite large, so he con­

strained the advecting particles to a constant physical-space separation distance.

This restriction ensured that the apparent width of the created ribbon in the image

would unambiguously encode its orientation relative to the viewing direction; how­

ever, the artificial constraint on particle motion casts some doubt on the fidelity of

this method.

Ribbons provide information regarding the rotational component of the flow

motion near a curved path. These models also provide visual cues to help observers

interpret a two-dimensional image. Nevertheless, it can still be difficult to derive

an adequate understanding of flow field structure from the image of a collection of

ribbons.

1.2.4 Stream Surfaces

Flow ribbons are ruled surfaces; they can twist and bend lengthwise, but are

flat across their narrow dimension and bordered by only two curves. A stream

surface is the locus of all the streamlines swept out by particles rooted at every

point along an initial segment rake. Stream surfaces can curve in both dimensions,

both downstream and across their width. Figure 1.10 suggests that the stream

surfaces computed from a few carefully positioned rakes can depict a flow field more

effectively than is possible with mere curves. Surfaces can stretch in diverging flow

and may fold under the influence of flow curvature. Shading, obscuration, and

17

Figure 1.10: Stream surfaces above a delta wing.

texturing provide visual cues which help the viewer to interpret a two-dimensional

image. Surfaces can be rendered with variable transparency to mimic the appearance

of empirical smoke injections. Alternatively, surfaces can be clearly depicted in line­

art.

1.2.5 Rake Placement

Each stream surface is uniquely defined by the position of its originating rake.

Rakes must be positioned such that the resulting surfaces clearly depict the interest­

ing aspects of the flow field, but most of the possible rake placements yield models

which do not effectively illustrate the structure of the flow.

Some researchers have tried to automate the task of effectively placing the

rakes for streamlines and stream surfaces [Globus et al. 1991, Helman et al. 1989,1991].

The stationary points in the flow, at which the velocity magnitude is zero, are found

and classified by the eigenvalues of the local partial derivatives of the velocity field.

18

These saddle points and spirals are then interconnected by streamlines. This as­

semblage of points and curves diagrams the structure of the flow field. Helman's

software identified the topologically significant curves on the solid boundaries of a

vehicle. The program then constructed polygonal models of the topological sepam­

trices, that is, the stream surfaces which emanate from these lines and extend into

the flow domain.

The automated analysis of flow field data can serve as a useful tool in the visu­

alization of flow field structure. It is an area which deserves much greater attention

in the coming years. Nevertheless, interactive placement of the rakes, coupled with

the rapid calculation of the resulting surfaces, is essential for the effective exploration

of non-trivial flow fields. Buning [1988] reminds us that "graphical analysis is first

and foremost an interactive process." Visualization tools must allow the scientist to

bring his own expertise to bear on the analysis task; they should not limit a user's

access to the data.

1.3 CONSTRUCTION OF SURFACES .

Several researchers have written software which can construct models of stream

surfaces. This software offers varying levels of speed, accuracy, and level of detail.

None have been fully suitable for the interactive exploration of intricate flow fields

defined over composite curvilinear grids.

1.3.1 Surface Particles

A very general approach to stream surface construction was devised by Stolk

and van Wijk [1991,1992]. They placed a large number of particles in the flow

domain. Each of these surface particles carried an associated normal vector and

thereby represented an infinitesimal portion of an oriented surface. The changing

direction of each normal was tracked during the advection of the points through the

19

velocity field. After the particles had been moved over some specified time interval,

the points were shaded and rendered. The lighting conveys a sense of the overall

motion of the collection. With an adequate number of particles, this conveys the

appearance of a surface distorted by the flow.

Unfortunately, this approach can be quite time-consuming. One image of

a simple flow field contains 34,84 7 particles and required 32 minutes to perform

the advection calculations on a Sun 3/50 workstation. The surface-particle method

depicts the positions reached by a set of particles after all of them have been advected

for some interval of time. It represents a time-surface of particles placed into the flow

and advected en masse. A stream surface model, on the other hand, is comprised of

all those points visited by a line of advecting particles during some time interval. Far

less calculation is required, since each integration step of every particle contributes

a vertex to the model.

A more serious limitation of the surface-particle method is its failure to adapt

the sampling density of the model in response to the varying conditions of the flow

field. Some regions of the flow will diverge, and this will yield an underpopulated

region of the represented surface. This attenuation is a good mimic of some empir­

ical methods of flow visualization, but it can be a poor method of depicting flow

structure.

1.3.2 Stream Function Methods

The particle-based construction methods require the advection of many par­

ticles to form a "cloud" with a density sufficient to convey the visual impression

of a coherent structure. An alternative method for constructing stream surfaces

uses scalar fields which describe the behavior of the flow. The particle method is

a Langrangian approach, which considers the flow field as one follows each moving

20

point. The alternative Eulerian approach considers the flow field from a fixed spatial

reference frame.

Paradoxically, it was Lagrange (1736-1813) who is generally credited2 with

showing that the velocity field of a flow in two dimensions can be described by a

single scalar stream function (1/1), such that the separate components of the vector

field can be obtained from the partial derivatives of the scalar field:

_ = [a,p -a,pl
u 8y, ax

The stream function field has the interesting property that iso-valued contours in

this scalar field are coincident with streamlines in the velocity field. (It is helpful to

notice that the velocity vector is simply a ninety degree rotation of the gradient of

,P.) The numerical difference of the stream function values of any two streamlines

indicates the total mass flux or material transport of the fluid between those two

curves.

The stream function concept was generalized to three dimensions by Yih (1957]

to describe a steady three-dimensional compressible flow using two coincident scalar

fields. Streamlines in a three-dimensional vector field can be described as the inter-

section of iso-valued surfaces in these two scalar fields.

Kenwright (1992,1993] developed software which computes these dual stream

functions in a numerical flow field. The software then constructs streamlines by

locating the intersections of iso-valued surfaces computed in these two fields. This

approach supports the very rapid and accurate creation of streamline models. At

each new cell, the two stream functions are computed by evaluating the total mass

flux through each cell face. He then found the stream function values (!,g) of the

point at which the particle has entered this cell. The exit point, having those same

coordinates, is then identified and the process is repeated to advance the particle

2 Robertson [1965] gives precedence to D'Alembert (1717-1783).

21

across subsequent cells. The greatest limitation of this method is that features within

each cell are represented by a single line segment or polygonal facet. Resolution of

smaller structures would require a subdivision of the grid cells.

Some numerical problems currently prevent the pre-processed calculation of

the two scalar fields across the entire flow domain. If this difficulty can be overcome,

then the two fields could be pre-computed at high accuracy, and then interactively

explored with a variation of an iso-surface construction technique. Arbitrary stream

surfaces could be constructed as iso-surfaces in a single scalar field which is the

algebraic combination of the dual stream-function fields. That is, if we can derive

a function which produces a constant scalar value at all points on a user-specified

rake, then the iso-surface constructed at that value in the new field will contain the

stream surface emanating from that rake. Of course, some provision must be made

for trimming the surface to eliminate those regions of the iso-surface which do not

lie downstream of the rake and between the streamlines which define the left and

right edges of the surface.

Van Wijk [1993,1994] implemented such a scheme, using a variety of methods

to calculate the single scalar function in which to compute the iso-/stream-surfaces.

Each new scalar field defines a family of nested iso-surfaces, and thus a family of

adjacent stream surfaces. Arbitrary placement of the rakes must be accompanied by

the calculation of a new scalar field. Some questions remain regarding the accuracy

· of the methods used to calculate this scalar field; different calculation methods have

been shown to produce different stream surfaces from the same rake position in the

same original flow data.

1.3.3 Streamline-based Methods

Alternative, and less controversial, methods of surface construction are based

on the numerical integration of streamlines. A family of these curves is used to form

22

the framework over which a polygonal model of a stream surface is constructed.

Volpe (1989] constructed stream surfaces using a family of neighboring streamlines.

Each adjacent pair of streamlines was joined by a sequence of polygons to form a

ribbon. Ribbons wider than some threshold were not displayed, thus ripping the

surface in diverging regions of the flow.

Belk et al. (1993] and Helman et al. (1989,1991] also used a ribbon-tiling ap­

proach to construct surfaces. Any ribbon which grew too wide was split down its

entire length by the insertion of a new streamline rooted at the rake, midway be­

tween its older neighbors. The new streamline formed the common edge of two

contiguous ribbons which replaced the previous wider ribbon.

Eder [1991] developed a distributed system for computing stream surfaces.

After the user positioned the rake for a new surface, the system would compute be­

tween fifty and two hundred streamlines using a vectorized integration code running

on a remote vector computer. The points on this family of curves were then copied

into an array in the local memory of a workstation, a two-pass filtering eliminated

points which were packed too closely, and those that remained were irregularly tiled

with triangles to create the model.

These methods all use streamlines which are rooted at the rake and extend

along the entire length of the stream surface. Since flow fields can diverge greatly,

some adjacent streamlines will separate quite widely. Volpe computed a fixed num­

ber of streamlines and suppressed the display of regions which were inadequately

sampled. Helman and Belk computed a small number of streamlines to form a coarse

representation of the surface, then computed additional streamlines to improve the

resolution of the poorly resolved regions. Eder created an abundance of streamlines

and then reduced the detail of the overly sampled regions.

All of these methods compute each streamline along the entire length of the

stream surface, and thereby expend computational effort across parts of the model

23

which are already adequately sampled. The methods of Volpe and Eder can fail to

adequately resolve the downstream regions of a surface in divergent flow. Helman

and Belk improved the model resolution at the expense of an overabundance of

points in the upstream regions.

Krueger implemented a proof-of-concept visualization system using a novel

user interface called VideoDesk [Krueger 1991,1992]. In this system, a video camera

was used to merge a real-time image of the user's hands onto a plane embedded in

the three-dimensional space of the computed models. A user could then interactively

and intuitively position a rake by dragging its endpoints across this plane with the

image of his fingertips. The stream surface model was constructed using adaptive

refinement [Bergman et al. 1986]. This interaction technique improves an initially

coarse representation using an iterative sequence of calculation and redisplay. This

gradual improvement of the model continues as long as the input conditions remain

unchanged. The initial stream surface was constructed with a polygonal tiling of

adjacent pairs of streamlines, as in the manner used by Volpe. In later phases

of refinement, any ribbon which exceeded a specified width was truncated. The

deleted downstream portion was then replaced by two narrower ribbons separated

by a common new streamline. This new streamline was computed from a seed point

placed at the middle of the truncated end of the wide ribbon.

An extension of this method was devised by Max, Becker, and Crawfis [1993],

who began with a polygonal rake. A family of streamlines was then constructed from

points placed at regular intervals across the two dimensions of this user-specified

origin. An interconnection of these curves was then used to construct a set of

tetrahedra. Overly large tetrahedra were split by the insertion of new advecting

particles. This collection of cells was then rendered with partial translucency to

mimic the appearance of a column of smoke.

24

Krueger's hierarchical splitting of ribbons produces a more equitable distri­

bution of points in the model than does the full-length splitting method used by

Helman and Belk. Neither approach allows for the merging of adjacent ribbons

.which may later grow too narrow in a convergent region of the flow field. Once a

wide ribbon is split, the new streamline extends to the far downstream end of the

surface. Thus, converging regions of flow become overpopulated by sample points.

This oversampling wastes computational resources and can create excessively many

small polygons in the model.

1.4 ORIGINAL CONTRIBUTIONS

Previous methods of calculating streamlines have been too slow for interactive

use or else they do not provide acceptable accuracy or detail. Previous methods

of constructing stream surfaces have not adequately allocated the calculation effort

to produce a well-distributed set of sample points over the surface. The adaptive

refinement methods are slowed by the need to fully repaint the image after each

improvement of the model. I have resolved some of these problems with a set

of algorithms which can allow the interactive exploration of flow field data using

streamlines and stream surfaces.

1.4.1 Thesis Statement

I have devised new algorithms for the rapid and robust advection of particles

through vector fields defined over composite curvilinear grids. I have devised a new

algorithm which interleaves the advection of a set of particles to produce adaptively

sampled stream surface models. Taken together, these methods make stream surfaces

a viable tool for interactive numerical flow visualization.

More specifically, I have devised several algorithms and implemented these

in the context of an interactive flow visualization application. This software can

25

construct streamlines and stream surfaces in vector fields defined over multiple­

block curvilinear grids. The dataset is presumed to contain no more than about two

million node points, such that the node position data and the vector field samples

can reside entirely in the local memory of a large workstation. I further assume

that the workstation is capable of performing between one million and five million

floating-point operations per second, and that it is supplied with graphics hardware

capable of rendering a few thousand shaded polygons per second.

The performance tests in this thesis were all recorded on a Silicon Graphics

320-VGX workstation. This machine has dual processors running at 33 megahertz,

and it is configured with 64 megabytes of memory. This hardware was about four

years old at the time of these tests. Comparable performance could have been

obtained from a midrange configuration of the SGI Indigo family. At the time of

this writing (1995), such equipment costs in the neighborhood of $25,000 US.

Using these resources, my software is able to calculate and display a newly

positioned streamline in about one second. The display of partial results, combined

with the ability to abort and restart streamline calculations, allows the interactive

placement of streamline seed points at a useful interactive rate of five to ten iterations

per second. (The limiting factor here is the necessary redisplay of the static portions

of the scene.) Stream surfaces are more time-consuming than individual streamlines

to compute and display, but the construction algorithm described here minimizes

this extra burden and allows the construction of complete stream surfaces at the

"near interactive" rate of five to ten seconds to complete a typical surface in a typical

flow field.

26

1.4.2 The "Flora" Application

I have implemented my advection and construction algorithms as part of a

visualization package called "Flora." This application and its underlying imple­

mentation are described in chapter 2. (The "Flora Users' Guide" is reprinted in

Appendix B.)

Flora was built within a programming system called "SuperGlue" [Hultquist

and Raible 1992]. This environment was built by the author in cooperation with

Eric Raible. It was written primarily in an object-oriented dialect of Scheme, using

a heavily modified version of an interpreter originally written by David Betz [1988].

Scheme serves as the command language for a central executive process which re­

ceives input from the user and calculates geometric models of the data. Compiled

primitive functions are used in this calculation. The resulting models are placed in

a display list, which is accessed by a separate process that maintains the images of

these models on the workstation screen.

The interpreted programming environment of SuperGlue was used to evolve

the user interface of Flora during extensive trial use. The interactive framework also

provided an ideal scaffolding for algorithm development, implementation testing,

and performance measurement.

The source code for Flora and SuperGlue may be obtained via the World-Wide

Web from the server maintained at NAS, the Numerical Aerodynamic Simulation

Facility at the NASA Ames Research Center at Moffett Field, California. The

URL for the NAS homepage is http:/ /www.nas.nasa.gov. From this page, follow

the hyperlink for "Software distribution" and then find "Flora" in the listing of

available packages. All code obtained from this server is to be used only by the direct

recipient; redistribution of this software to third parties is presently disallowed by

NASA regulations.

27

1.4.3 Mixed-Space Integration

Streamlines are usually calculated by numerical integration through interpo­

lated physical-space vector field samples, but the interpolation function is usually

defined in the computational-space coordinates of each query point. Every time

an interpolated field value is needed, the interpolating function must be inverted to

find the computational-space coordinates which correspond to the specified physical­

space coordinates of the query point. These grid-local coordinates are then used as

the weights in the interpolation of the vector field. This conversion of query point

coordinates greatly limits the speed of streamline construction.

An alternative method converts the vector field sample at each node from the

original physical-space coordinates to the equivalent computational-space represen­

tation [Eliasson et al. 1989, Shirayama 1989]. The streamlines are then computed

through the cubical cells of computational space and the resulting curves are mapped

into physical-space coordinates for display. Since the interpolation and the integra­

tion are expressed in the same regularly sampled space, the calculation of the traces

can proceed much more rapidly.

The great speed of the computational space method is attractive, but irregu­

larities in the physical placement of the grid node points can introduce error into the

conversion of the vector field samples. In chapter 3, I describe a novel mixed-space

approach which can efficiently compute curves while still preserving accuracy in the

presence of grid flaws. The rapid computational-space method is used where the

node points are well positioned. The slower and more robust physical-space method

is used where flaws in the grid would otherwise reduce the accuracy of the com­

puted streamlines. The mixed-space method computed a set of test streamlines in

83% of the CPU time required by the more commonly used physical-space method,

while maintaining comparable accuracy. In smoother grids, the mixed space method

delivers the full speed of the computational-space method.

28

1.4.4 Node Tagging

Multiple-block CFD datasets include a single integer value for each node point.

This mask, called the iblank number, indicates which node points carry valid sample

data. They also indicate which other block of samples, if any, overlaps the current

block in the neighborhood of a given node. This simple tag does not provide suf­

ficient information for rapid calculation of streamlines. I have replaced the iblank

values with a more descriptive form of grid annotation. Each node is still associated

with a full word, but this node tag is divided into a several single-bit flags and a

short index into a small secondary array.

One of the flags indicates if the grid lines in each computational-space dimen­

sion pass smoothly through a given node point. This indicates that the transfor­

mation from the physical to the computational coordinate space can be computed

with acceptable accuracy. The logical conjunction of this bit for the eight vertices

of each cell is recorded in a second flag in the tag word of the lowest-indexed vertex

of that cell. This provides a rapid means of determining the local quality of the grid

and the consequent reliability of the computational-space vectors which are to be

interpolated within each cell.

1.4.5 Exploiting Spatial Coherence

In chapter 4, I present several methods which can further enhance the efficiency

of numerical integration. The cumulative effect of these enhancements allows the

interactive placement of accurate streamlines.

cell caching : Each field value interpolated at a given query point depends upon

the flow field samples recorded at the eight vertices of the enclosing cell. These

samples can be copied from the large arrays of raw field data into a small local

buffer. This copying of the flow data isolates the interpolation code from

the varying formats of the data files, it improves the speed of interpolating

29

subsequent samples within a given cell, and it provides a convenient mechanism

for on-the-fly evaluation of new vector field quantities. I apply the working

set concept of virtual memory systems to the problem of cell caching, and

demonstrate the relative performance gains to be had from increasingly larger

cell caches. In a simple example, cell caching reduced the time to compute a

set of streamlines by 48%.

computational-space extrapolation : When calculating a streamline in physi­

cal space, the computational-space coordinates of each query point must be

found. This is usually done with a Newton-Raphson iteration which is be­

gun from the computational-space location of a previous query point. By

extrapolating along the previously computed curve, we can produce a better

computational-space position from which to begin the iterative point-finding

method. This improvement trims a further 11% from the time required to

compute streamlines.

donor points : The separate blocks of a composite grid allow more effective place­

ment of node points around a vehicle. In the overlap regions, the position

of each node point can be described in the computational space defined by

the neighboring block. These computational-space donor points are used by

the flow solver to interpolate sample values between adjacent blocks. The

points can also provide a rapid means of continuing the calculation of stream­

lines from one block and into the next. I describe how each donor point can

be calculated from the original node position and iblank field data. I also

demonstrate that computational extrapolation eliminates 8% from the CPU

time consumed by this task.

implicit connection : Some blocks are bent or folded such that node points along

one face of the block are coincident with other nodes on the exterior of this

30

same block. A torus is a simple example from the world of two dimensional

geometry. These self-abutting blocks are typically not annotated with iblank

values to indicate this geometric connectivity. Because of this, many visual­

ization packages fail to compute streamlines across these internal boundaries

in the flow domain. I have devised a simple method which allows the efficient

resumption of streamlines across these false boundaries.

With the algorithm improvements described above, streamlines can be computed

through a single block in less than half of the time required by an unimproved

physical-space method. Transitions between blocks are also handled more quickly,

yielding an significant improvement over any method which might use iblank num­

bers alone.

1.4.6 Constructing Stream Surfaces

Images of streamlines are often difficult to interpret. Stream surfaces can

more clearly depict the structure of a flow field, but the rakes must be positioned

interactively for these models to be truly useful. Previous work in constructing

stream surface models has been limited in efficiency, accuracy, or resolution. This

has limited the adoption of stream surfaces as a tool for numerical flow visualization.

In chapter 5, I present a novel method for the construction of stream surfaces.

The rake is discretized into a set of closely spaced particles. This sequence of points

is then adaptively advected such that the collection is held roughly orthogonal to the

local flow direction. The sampling density along this cross-flow curve is adjusted as

the points are moved downstream. Triangles are added to the downstream edge of

the growing surface, and these new polygons are rendering into an otherwise static

background image.

31

This adaptive orthogonal advancing front technique uses a single pass of the

particles through the flow field to produce a good distribution of points over the sur­

face. Equitable sampling of the surface leads to increased performance, since fewer

particles, fewer integration steps, and fewer polygons are used in the construction

of the model.

1.4.7 Better Flow Visualization

Stream surfaces can be more effective than streamlines for the visualization of

fluid flows. The most convincing proof of this assertion is the use of my software by

NASA and Air Force scientists for the exploration of their data and the presentation

of results to their peers. The sixth and final chapter shows some images produced

using this software.

1.5 SUMMARY

The simulation of fluid flow begins with the construction of a grid of node

points. A set of boundary conditions is imposed on some of these points and the

remainder are assigned values which form a solution to the partial differential equa­

tions which govern fluid flow. The computed flow must then be visualized to judge

the accuracy of the simulation or the effectiveness of a proposed vehicle design.

Three-dimensional steady vector fields are often depicted using collections of stream­

lines, but stream surfaces offer a much more effective means of visualizing intricate

flow fields.

The most effective use of stream surfaces is obtained by enabling scientists to

interactively drag the originating rakes through the flow domain. I have developed

rapid and accurate methods for advecting particles through steady three-dimensional

vector fields. I have teamed this numerical software with an efficient and robust

method for the construction of stream surface models. I have implemented these

32

algorithms within a software package which can support the interactive exploration

of CFD datasets. This software has been used by scientists at the NASA Ames

Research Center and the Wright:Patterson Air Force Base. This experience has

demonstrated the value of these improvements.

33

CHAPTER II

IMPLEMENTATION

I implemented various stream surface construction methods in several prototype

applications. I reported some of this work in a previous paper [Hultquist 1990]

and images created using this early software were published in a research paper

by Ekaterinaris and Schiff [1990]. Each of these prototypes collapsed under its

own weight before the complete set of desired features had been implemented. In

cooperation with Eric Raible, I then developed an object-oriented and interpreted

programming environment called "Superglue." Using this platform I was able to

complete my research on stream surface construction and implement a deliverable

application. This chapter describes the programming environment and the "Flora"

flow visualization tool.

2.1 SUPERGLUE

This section outlines some of the significant features of the programmmg

environment. 3

2.1.1 Scheme

Superglue contains over 1.2 megabytes of source code, divided between the

languages C, FORTRAN, and Scheme. Scheme is a small dialect of LISP. As such,

it offers interpreted execution, garbage collection, dynamic type-checking, first-class

3 A description of SnperGlue has been published in the paper "Superglue: a Programming
Environment for Scientific Visualization" [Hultquist and Raible 1992]'.

treatment of functions, and a powerful macro facility. These features are not typi­

cally supported by the more traditional choices of FORTRAN, C, or even C++.

Scheme is concise; a given algorithm implemented in Scheme often requires

much less text than its equivalent in many other languages. For example, the func­

tion that computes the magnitude of a vector would typically be implemented in C

with these lines:

float v_magnitude (int n, float *vee)
{

int i;
float sum = 0.0;
for (i=O; i<n; i++) {

sum += (vee [i] * vee [i]) ;
}
return(fsqrt(sum));

}

In Scheme, this same calculation can be implemented by:

(define (v-magnitude vee)
(sqrt (apply+ (map * vee vee)))))

The Scheme version can accept lists of integers or floating-point numbers, and the

length of the list does not need to be provided explicitly. The brevity of Scheme,

which here reduces nine lines to two, is invaluable when used to reduce nine hundred

lines to two hundred.

2.1.2 The Interpreter

Another advantage of Scheme is that it is usually interpreted, rather than

compiled; this allows for rapid development of code. Complex functions can be

built piecemeal and tested repeatedly, without the delays of compiling, linking and

restarting the application. Programmers are able to test their code more easily and

to compare alternative solutions to a given problem.

35

Superglue is based on the "Xscheme" interpreter written by Betz [1989]. This

software compiles Scheme expressions into the bytecode language of a simple stack­

based virtual machine implemented in C. This interpreter originally supported little

more than the features described in the de facto language standard [R4Rs 1990]. We

have extended the system to support the additional requirements of visualization

and large-scale programming. We built a debugger, rewrote the garbage collector,

and added support for incremental loading of compiled foreign functions. We have

also constructed an object-oriented class hierarchy which implements the maJOr

components needed for interactive visualization.

Much of this extension effort could have been avoided through the use of

a commercial system such as ParcPlace Small talk or Allegro Common LISP. We

choose to use a freeware system instead of a commercial platform since many of

our scientist-clients are unwilling or unable to spend money for licensing. It is our

further hope that widespread distribution of the full source code will result in more

rapid growth of the system. Superglue is available on the World-Wide Web, from the

site maintained at the Numerical Aerodynamic Simulation Facility at NASA-Ames

(http: I /www .nas .nasa.gov).

2.1.3 The Garbage Collector

Scheme systems automatically reclaim storage which is no longer in use; that is,

the garbage collector reclaims the storage occupied by data structures which are no

longer accessible from the namespace of the interpreter.4 This liberates programmers

from the responsibility of explicitly deallocating the storage which is no longer used

by their programs. This avoids the gradual accumulation of consumed storage which

is no longer in use, yet not released for possible reuse (a memory leak). It also avoids

4 For a survey of garbage collection technology, see Wilson [1992].

36

the even worse problem of inadvertent release of storage which is still being accessed

from elsewhere in the program (a dangling pointer).

We found that excessive wall-clock time was being consumed by the mark­

sweep algorithm used in the original implementation of Xscheme. This collector

would repeatedly traverse the data structures of our large and mostly unchanging

class hierarchy. To improve the responsiveness of the system, we replaced the original

collector with a stop-copy implementation. Under this approach, when the system

has exhausted the available free memory, the execution of the program is temporarily

suspended. All memory allocated by the program is then scanned and those data

structures which are in use are copied to a second region of free storage space.

Unused structures are ignored and the space which they occupied is then marked

as available for the next collection phase. The class hierarchy was placed in a non­

collected block of memory, called the root buffer. Only the much smaller collection

of short-lived data structures is repeatedly copied between two working buffers (or

semi-spaces) of active storage.

Simple reclamation of unused memory is acceptable for most data, but some

items require explicit action (or finalization) to properly deallocate the system re­

sources which these values represent. For example, some Scheme data items rep­

resent windows on the workstation screen. When one of these is collected, the

corresponding window also should be destroyed. We extended the garbage collector

to maintain a private list of items for which explicit destructor functions have been

defined. When the garbage collector completes its scan of active ·storage, collected

objects on this list are transferred to a namespace-visible list of reclaimed objects

which are ready for explicit destruction. This approach requires only a single scan

of the list of registered items after each invocation of the garbage collector. The

actual execution of the destructor functions is deferred until the system is otherwise

idle.

37

2.1.4 The Foreign Function Interface

Most of the manipulation of flow field data requires the speed which is available

from compiled low-level languages such as C and FORTRAN. We have extended

Xscheme to support the incremental loading of foreign functions written in these

languages. Briefly, new routines are compiled into the object code of the workstation.

These binary data are linked against the symbol table of the application, and these

routines are then loaded into memory. Finally, entry points to these new functions

are entered into the global symbol table (the obarray) of the Scheme interpreter.

The new functions may then be called from the interpreter in the same manner as

any statically linked routine.

Our interpreter maintains its own call stack. This simplifies the implemen­

tation of the system and enhances its portability. Foreign functions must remove

their arguments from this stack, and push their single result onto the stack upon

completion. Removing an argument from the stack involves ensuring that the stack

is non-empty and that the uppermost item is of the desired type. The value of each

argument must then be copied from the Scheme data item into a local variable in

the format required by the implementation language of the foreign function. Once

the body of the function has been executed, the result is converted into its equiva­

lent Scheme representation and this item is returned to the interpreter. All of these

data-handling actions have been encapsulated in a number of macros and utility

functions.

2.2 THE OBJECT SYSTEM

Superglue gains much of its usefulness from a large hierarchy of class defini­

tions. This structure provides organized access to a collection of pre-defined data

types and operations on items of those types. The Superglue class mechanism most

closely resembles that used in the language Smalltalk [Goldberg and Robson 1983].

38

(This includes single inheritance and dynamic method-lookup based on the message

and the class of the receiver.) This section reviews some of the concepts of object­

oriented programming and then describes the pre-defined classes of Superglue.

2.2.1 Object-Oriented Programming

Good software (and bad software) can be written in any language, but object­

oriented languages encourage good practice by encouraging (or enforcing!) three

design principles [Booch, 1991]:

abstraction : Users of assembly language must concern themselves with the words

and bytes of computer memory. In FORTRAN, numbers and arrays form the

basis of discourse. An object-oriented language encourages programmers to

work with conceptual entities more closely related to those of the target appli­

cation. The data types defined in Superglue include the computational grids

used in CFD, the windows and events found in a graphical user interface, and

the remote connections used in distributed computing.

encapsulation : The ease with which a system can be extended is inversely related

to the number of interdependencies built into that system by the original de­

signers. Objects can interact only through well-defined interfaces; implemen­

tation details within each object are protected from external access. This helps

reduce the overall complexity and thereby facilitates further development of

the system.

inheritance : A major problem of code development is its agonizingly slow pace.

Object-oriented languages provide mechanisms which encourage the re-use of

previously written software. The features of the old software can be inherited

into a new package, which can then augment those features to satisfy new

requirements.

39

The three principles of abstraction, encapsulation, and inheritance can increase

programmer productivity and can help one to produce software systems which are

easier to maintain. The hierarchy itself serves as an organizing framework which

guides the future growth of the software investment.

2.2.2 Classes and Instances

An object (or instance) is a self-contained collection of data which is a member

of some class. The class of an object defines the structure and the behavior of that

object. For example, the class <stack> 5 is defined by this expression:

(defclass <stack>
(instance top))

The single instance variable (top) forms the internal state of each instance of this

class. It holds a pointer to the first link (or cons cell) in a chain of previously

inserted items.

In traditional imperative programming, we say that a function is called. In

object-oriented programming, instances send messages to other instances. The re­

ceiving instance then finds and executes the executable code (the method) which

corresponds to that message and which implements the requested behavior. This

change of terminology shifts the conceptual focus from a single abstract flow-of-

control to the cooperative actions of a set of distinct and autonomous entities.

A Superglue method is written very much like any other function definition in

Scheme. The syntax changes slightly to include the name of the class with which

the new method is to be associated.

(defmethod <stack> (PUSH item)
(set! top (cons item top)))

5Class names are enclosed within angle brackets as a syntactic convention.

40

This method uses the built-in allocation function cons to create a new link in the

chain, and it replaces the previous value of top with a pointer to the newly created

cell.

2.2.3 Subclassing and Inheritance

Classes are nested hierarchically, such that a child class or subclass of another

inherits and then augments the format and the behavior defined by its ancestors in

the class hierarchy. All classes have a single superclass, except the class <object>

which is the root of the class inheritance tree. A class may have any number of

subclasses.

An instance of <counting-stack> has same internal state as an ordinary

stack, plus one more instance variable which records the number of items which

that instance contains.

(defclass <counting-stack>
(super <stack>)
(instance size))

(defmethod <counting-stack> (PUSH item)
(set! size (+ size 1))
(send-super 'push item))

This new push method increments the count then re-sends the message to this same

instance, but now in the guise of a generic stack. Only this difference in behavior

need be specified in the implementation of the subclass. Shared format and behavior

is provided by the mechanism of class inheritance.

But what happens when a message is sent to an instance which has no corre-

spending method? This triggers an error-handling routine, which sends the receiving

instance a new message: does-not-understand. This message is handled by all ob­

jects, in a method defined by the uppermost class <object> from which all instances

41

inherit. In the language Smalltalk-80, this method invokes the debugger. In Super­

glue, the method first requests from the receiving instance a delegate; that is, some

other instance which is able to handle the original message in place of the original

recipient. An instance representing a streamline calculates curves through vector

fields. Messages sent to this instance and intended to specify a color are delegated

to the instance of <visual> which handles the graphical presentation of this curve.

The debugger is invoked only when no delegate is provided by the receiving instance.

Some languages, notably C++ and Common LISP, allow multiple inheritance,

by which a single class can combine the characteristics of more than one superclass.

A streamline class could then be a subclass of the class of computed models and

also of the class of drawable entities. Other languages, such as Self [Ungar and

Smith 1991), have a weak notion of class and handle all similarity of behavior us­

ing delegation. In Superglue, the combination of single inheritance and delegation

provides most of the benefit of multiple inheritance with very small conceptual and

implementation overhead.

2.2.4 The Class Hierarchy

Superglue currently offers the programmer a hierarchy of about 200 classes

and over 2200 methods. The class hierarchy is built atop the fundamental classes

<object> and <class>, which define the behavior of all of the instances and classes

in the system. The class system of Superglue is reflexive. This means that the

class hierarchy is implemented using objects. All classes are objects, thus <class>

is a subclass of <object>. All classes are themselves instances of the class called

<class>; this class is an instance of itself. Actually, each class is the sole instance of

its meta-class, which is a subclass of <class>. (All this can be safely ignored most

of the time!)

42

All instances in the system inherit the methods defined in the class <object>.

Any instance can be assigned a destructor function. Any instance can report its

class and can be assigned a name. Each instance can produce a list of the messages

to which it will respond.

A class maintains the list of messages which its instances will accept, and the

methods which implement the corresponding behaviors. Each class also maintains

a list of all of its instances which have been assigned names. Every class can return

its superclass or the entire chain of superclasses, ending with the most generic class

<object>.

The remainder of the class hierarchy is divided into subtrees which collectively

implement the generic features needed for interactive visualization. We intend to

grow this hierarchy over the next few years to provide an increasingly larger suite

of reusable code.

The <structure> subtree implements the typical data structures learned by

all beginning programmers. The hierarchical implementation underscores the re­

lationships among these abstract types. A <collection> organizes a number of

objects, either as an unordered <bag> or as an ordered <sequence>. A <bag> which

contains no duplicates is a <set>, and a <set> which associates a secondary value

with each unique item is a <dictionary>. The ordered collections are implemented

by the linked <list> and by the indexed <vector> subclasses. Variants of <list>

include <stack> and <queue>. This subtree also contains support for mathematical

data, including <matrix> and its subclass, the 4 x 4 <xform> used in computer

graphics.

The <system> subtree provides object-oriented wrappers around many of the

UNIX system resources. For example, we support <file> and <directory> objects,

and instances of <time> and the light-weight process <thread>. This wrapping

43

of the operating system resources greatly simplifies their use. We have also "ob·

jectified" the run-time environment of Superglue itself. The Scheme debugger is

implemented using objects; each error condition is represented by an instance of

one of the subclasses of <error>. Superglue may be optionally configured such that

characters, numbers, text strings, and vectors all may be treated as instances of

their respective classes.

The classes in the <viewer> subtree provide an object-oriented packaging of

an asynchronous process which updates images on the workstation screen. Models

are represented by instances of the class <visual>. A visual is contained within one

or more instances of <visual-group>, which are themselves contained within one

or more instances of the class <visual-sequence>. Each sequence can display an

animation of models within one or more windows.

2.3 FLORA

Flora is a flow visualization package developed within Superglue. It supports

the interactive manipulation of the originating rakes for streamlines and stream

surfaces, and responds to this input by the repeated calculation and display of

streamline and stream surface models.

2.3.1 Architecture

Flora is implemented with two processes sharing a single address space (fig­

ure 2.1). The main process executes the Scheme interpreter and is responsible for

the user interface and the construction of models. These models are placed in a

display list, a collection of models which are to be depicted in one or more windows.

The main process is usually blocked on a select system call, which returns only

when input is available from one or more sources. When an input item is found, the

44

stdin II stdout

grfx process
sockets

main process

I models

data files

X-events
display

Figure 2.1: The architecture of Flora.

main process reads that input, processes it, and possibly modifies the display list.

A graphics process then updates the screen images in response those changes.

When a new model must be constructed, this work is performed by the main

process with a majority of the work taking place within primitives written in either

C or FORTRAN. Models are placed in the display list when they are first allocated.

As the model is constructed, new points, line segments, and polygons are placed

into the display list by the main process, and then rendered into each scene by the

graphics process. A lock is used to prevent significant modification of the display

list while it is being traversed by the graphics process. When a rake is moved, the

lock must be set by the main thread before the existing model may be reset to zero

length. The affected scenes are then fully repainted by the graphics process.

2.3.2 Data Management

The data files produced by CFD simulations may consume tens or even hun­

dreds of megabytes. If we were to load these numbers into memory in the usual

45

fashion (using the UNIX library functions malloc and read), we would rapidly ex­

haust the available system swap space on a typically configured workstation. This

fatal situation can be avoided by memory-mapping the contents of these large files

directly into the program's virtual address space. In some sense, these large disk

files become a read-only part of the system swap space.

Pointers to these data fields are encapsulated within instances of the <field>

class. All fields defined over the same domain are held in an instance of the class

<bundle> [Butler and Pendley 1989]. A multiple block grid is represented by a

group of bundles. This structured collection of fields is the central component of

a database of fields which have been read from the grid and solution files. These

initial bundles are then augmented by new ancillary fields which are computed from

the original data values. Alternatively, smaller bundles may be extracted from the

bundles of the original flow data [Globus 1992]. For example, lower-dimensional

sub-bundles define the geometry of the models which will be displayed to the user.

This arrangement gives us the best of both worlds: a Scheme instance with

its supported methods, combined with an efficient binary data representation to be

processed by foreign functions. This combines the high-level bookkeeping needed for

an intuitive user interface with the speed required for the computationally intensive

creation of new fields and models.

A vehicle surface is described by several two-dimensional slices, taken from

blocks in the original grid. These subsets of the grid are then displayed to represent

the vehicle surfaces. Each of these gridplanes is specified by a block number and

a range of indices in each grid dimension. One index is held constant, typically

the lowest-available index in the third dimension of the grid. Care must be taken

here, since some researchers label their dimensions (i ,j ,k) and others use (j ,k,l).

Another source of confusion is the indexing from 1 used in FORTRAN flow solvers

46

as opposed to the indexing from 0 used in the internals of most visualization soft­

ware. Finally, one must remember that arrays are stored in column-major order in

FORTRAN but the indexing is transposed to row-major order inC and C++.

A gridplane is a true subset of the original samples, but the new bundle need

not have integer values for the computational-space coordinates of its points. For ex­

ample, a streamline is a one-dimensional bundle embedded in the three-dimensional

bundle-group of the flow domain. These points have been placed at a sequence of

real-valued positions in the computational spaces defined by the three-dimensional

grid blocks. In both cases (typified by gridplanes and streamlines), the sub-domain

consists of a set of points with coordinates in the computational space defined by

each block of the enclosing domain bundle. This extraction can be carried to mul­

tiple generations, as in the case of contour lines computed on a scalar iso-surface.

Each new bundle is a subset extracted from an earlier bundle of possibly greater

dimensionality.

2.3.3 The User Interface

Within NASA, most numerical flow visualization is done using PLOT 3D [Burr­

ing and Steger 1985]. PLOT3D reads two data files: an X-file which lists the physical­

space coordinates of each node point and a Q-file which records density, momentum,

and energy sample values at each node. PLOT3D can then construct and display

several types of models from any one of dozens of derived flow field quantities.

Flora can read data and solution files in the PLOT 3D format. Flora also accepts

a subset of the PLOT3D command language, including the commands for reading

data files, extracting gridplanes, placing the rakes for streamlines, and viewing the

resulting models. Once the scientist has finished specifying the input data and the

visualization parameters, Flora creates a window in which the constructed models

are displayed.

47

Flora adds two new features which are not provided in PLOT3D. Flora can

compute and display stream surfaces, and its rakes may be repositioned interactively.

While a rake is moved, new streamlines or stream surfaces are repeatedly computed

and redisplayed. Rapid response to interactive repositioning of the rakes allows the

user to thoroughly explore the data and to ascertain the structure of the flow.

2.3.4 Repositioning a Rake

In Flora, a stream surface rake may be a circle, a cross, or a line segment.

The segment is usually straight in physical space, but if the two endpoints lie within

the same block, then a geodesic in computational coordinates may instead be se­

lected. Each shape serves as the origin for a stream surface, which may be extended

downstream in the flow field or (with negative integration timesteps) in the up­

stream direction. A rake may also be used to spawn a family of streamlines, with

individual seed points placed at regular intervals along the rake.

The user may reposition either endpoint of a curve or line rake, or may trans­

late the entire rake. While a rake is in motion, the stream surface or the family of

streamlines is repeatedly computed and displayed.

Flora displays the models in an arbitrary number of windows (figure 2.2). Each

window has its own viewing direction and magnification. Users may move a rake

in one scene at high magnification while viewing the resulting model from another

angle in a second window. This approach allows the precise placement of several

rakes in a few minutes, a vast improvement over what has been previously possible

with indirect control and less rapid system response.

2.4 INTERACTIVITY

Experience with early versions of the software confirmed the critical impor­

tance of inter activity in allowing effective visualization of the flow data. Three

48

Figure 2.2: The user interface of Flora.

components of the application required attention to ensure that rapid response to

user input was maintained. These were: intuitive techniques for the positioning of

the rake, algorithms for the rapid construction of accurate models, and a method

for the efficient depiction of partially computed results.

2.4.1 Placing the Rake

The user needs to be provided with a natural and intuitive method for adjust­

ing the location of the rakes within the flow domain. This should allow the user

to concentrate on the data, with the operation of the software introducing minimal

distraction.

Since few workstations are equipped with three-dimensional input devices,

some mapping must be established between the two-dimensional input from the

mouse and the three dimensions of the flow field domain. Flora uses a method

devised by Nielson and Olsen [1986], in which each two-dimensional shift of the

49

y

mouse pointer

Figure 2.3: Moving a seed point in three dimensions.

mouse is mapped to a one-dimensional movement along one of the three orthogonal

physical-space axes (figure 2.3). This method seems to work fairly well, although

additional research on three-dimensional interaction techniques is certainly needed.

2.4.2 Constructing the Model

The stream surface must be constructed as rapidly as possibly in response to

each new placement of the rake. This topic is the primary concern of this disserta­

tion.

2.4.3 Displaying the Model

The application must quickly display a sequence of interim computed models.

When the user moves the rake, any surface computed from the earlier rake position

must be destroyed and remaining objects must be redisplayed. As the currently

selected model is computed or when the user changes the viewing parameters, the

new scene must be continuously redrawn. Once the new model has been completely

constructed, then the scientist will often wish to rotate the scene to obtain a better

50

understanding of the shape of the constructed items. This interactive rendering of

highly detailed models typically requires relatively powerful graphics display hard­

ware.

Some early versions of the Silicon Graphics graphics library allowed the draw­

ing of wireframe surfaces into the "overlay" planes of the display, while still per­

forming depth-buffer tests of these new graphical items against an existing static

background image. This allowed the repeated drawing of new wireframe stream

surface models into very complex scenes. This was never a vendor-approved behav­

ior, and it is no longer available. Now a judicious reduction of the image quality is

mandatory for maintaining an adequate response rate for surfaces repeatedly con­

structed and drawn into cluttered scenes.

Successive refinement of a coarse model requires the successive repainting of

the entire scene. As the scene becomes more cluttered, the response rate begins to

decline. The surface construction method developed for Flora generates the model

in a single pass. Construction begins at the rake, and incrementally creates the

model at a fully acceptable level of detail. This new model is drawn incrementally

into an otherwise static background scene.

2.5 SUMMARY

Superglue encourages the reuse of source code and it supports the rapid im­

plementation of new functions. The two main features of this system are a Scheme

interpreter and a class hierarchy. Interpreted development allows new code to be

written and tested from within a running target application. The class hierarchy

encourages code reuse and provides an organizing structure for the incorporation of

new code.

Flora is an interactive application which is intended (eventually!) to be up­

wardly compatible with the widely used PLOT 3D package. It currently supports the

51

interactive positioning of rakes, accompanied by the repeated calculation and dis­

play of streamline and stream surface models-. The Scheme command layer responds

to typed commands and mouse events by calculating new visualization models. A

secondary process maintains images of these models in multiple scenes.

52

CHAPTER III

MIXED-SPACE INTEGRATION

A streamline is a tangent curve embedded in a velocity field. These curves are

usually computed using a numerical integration method through a field which has

been interpolated over a set of samples. The speed and accuracy of numerical

integration methods are heavily dependent on the careful use of the two coordinate

spaces defined over each grid block. A novel annotation of the grid can support the

adaptive use of both spaces for maximal performance with acceptable accuracy.

3.1 COORDINATES AND INTERPOLATION

An interpolating function is a mapping from the real-valued coordinates in the

grid-local computational space to the underlying physical coordinate system. The

same function is often used to interpolate the field sample values in the interior of

each cell.

3.1.1 Coordinate Spaces

In a PLOT 3D grid file, the position of each node point is recorded in a Cartesian

physical space with coordinates (x,y,z). Each block in a composite curvilinear grid

defines a new coordinate space over its portion of the flow domain. The coordinates

(~, 'fJ, () of a point in this computational space may be divided into their integer and

fractional parts:

Figure 3.1: A grid with a line of singularity.

"'I J + f3

(k 1

which specify the index (i,j, k) of the cell containing the point and the fractional

displacements (a,/3,/) E [0 ... 1] within that cell. Each node point has integer values

for its computational-space coordinates; these integer triples form the address of

each node point in the arrays which store the data values for that block. Most

node points are shared by eight cells, points on a cell edge are usually shared by

four cells, and most faces are held in common by two cells. The computational­

space coordinates for nodes, edges, and faces therefore may have multiple valid

decompositions into index and offset pairs.

The vertices of each cell are spatially ordered, such that no cell faces are

interpenetrating and no cell contains negative volume. On the other hand, grids

will often contain singularities at which an entire cell edge maps onto a single point

in physical space or at which a cell face collapses into a physical-space line segment.

54

Such a situation often occurs when a grid must be wrapped about the nose of an

aircraft. Figure 3.1 shows a number of cells and faces extracted from a single-block

grid which has been fitted around the Shuttle orbiter [Rizk and Ben-Schmuell985].

An entire face of the grid, a two dimensional array of hundreds of cell faces, has

collapsed into a line of singularity which extends forward along the central axis of

the vehicle. At such locations the spatial interpolating function is not one-to-one

(or injective), and so this mapping cannot be inverted at these points. This does

not pose any difficulty for finite-differencing flow solvers, since an inversion of the

interpolating function is not required by these codes. Visualization codes, however,

often do invert this spatial mapping and must be able to robustly handle singularities

in the grid.

3.1.2 Trilinear Interpolation

Most flow visualization software uses a cell-local trilinear interpolating func­

tion. This produces a piecewise-linear reconstruction of the ideal flow field. This

interpolating function has the nice property that the extreme values must lie on the

node points; higher-order interpolating schemes are more expensive to compute and

also may introduce local extrema in the cell interiors.

Under any cell-local mapping, an interpolated field value depends only upon

the samples recorded at the eight vertices of the cell which encloses the query point.

In the commonly used trilinear interpolation formula, the relative contribution from

each vertex sample is a product of the fractional displacements of the query point

along each computational-space dimension;

55

cl = (1- a)

!3' = (1 - !3)

,, = (1 _,)

fijk(a,/3,/) = [a'/3'1']/ooo +[a /3'1']/Ioo+

[a' /3i']fow + [a /3i'lfno+

[a' /3'1]/oot + [a !3'ilfwt +

[a' /31]/on + [a /3 l]fm

3.1.3 Interpolation Error

Strictly speaking, the flow solver produces no information about the flow field

quantities in the interior of each cell. One may typically assume that the flow field

measures vary smoothly across each cell, since the grids are constructed with very

small cells placed in regions where the flow is expected to exhibit high gradients in

its various measures.

If some cell lies in a freestream region, far from the vehicle, then a trilinear

interpolating function perfectly reconstructs the constant field quantities throughout

that cell. Similarly, flow which exhibits a uniform rigid-body rotation can also be

accurately recovered using a trilinear interpolating function. Real flows, however,

often contain non-linear variation in the various independent and derived fields.

These variations cannot be recovered by the trilinear interpolating function; error

is thereby introduced in the samples interpolated within each cell.

An analytical model of fluid flow defines an exponential velocity profile in the

boundary layer near the surface of the vehicle in a viscous fluid. The fluid velocity

has zero magnitude at the vehicle surface, with the speed increasing exponentially

with distance above the surface. A discrete sampling of this non-linear variation,

followed by an interpolation of these samples, introduces error into the visualization.

In this particular case, however, it is common practice for the size of the grid cells to

56

-----7----i-----+----,.r--a.

I\ ~deal value

i~terpo~ated value
' .

Figure 3.2: Interpolation error in a quadratically-varying flow.

vary exponentially in the boundary layer region. This adaptation of the grid to the

expected variation of the flow is used to improve the accuracy and the efficiency of

the flow simulation code. It also reduces the interpolation error in the post-process

visualization.

A related model of fluid motion is the Poiseuille flow within a circular pipe. In

this case, the flow velocity varies as the inverse of the square of the radial distance

from the center. An interpolation of this idealized flow along a single dimension

is diagrammed in figure 3.2. In this situation, the velocity magnitude is fixed at

zero at the wall, and it increases quadratically to a value v somewhere within the

flow. Imagine a linear interpolating function using an interpolant of a across the

cell in the vertical direction. This function incurs an error of (E = v(a- a 2)), with

a maximum error of v J 4 at the center of the cell. Doubling the size of a cell will

square the velocity magnitude at the upper node point and will also square the error

bound. The expected interpolation error in this case is thus related to the square

of the cell size.

57

Higher order interpolation functions could be used for visualization, but this

IS rarely necessary. Small cells are created during grid construction to properly

represent large gradients in flow field. The direct correlation between cell size and

the interpolation error ensures that values interpolated within each cell are bounded

within acceptable limits.

3.2 POINT FINDING

Consider a point specified by its computational-space coordinates in a given

block. The physical-space coordinates for this point can be determined by inter­

polating the physical-space locations of the vertices of the enclosing cell. Convert­

ing in the opposite direction (from a known physical-space position to a possibly

non-unique computational-space equivalent) is more difficult. This is called the

point-location or point-finding problem [Preparata and Shamos 1985].

The distance between each node point and a specified position m physical

space x defines a scalar "distance" field 'Dx at each node point. The point-location

problem is then'equivalent to identifying a computational-space position which yields

a distance of zero when used in the interpolation of this field: 'Dx([) = 0.

Since the grid is bent in physical space, the field may have local non-zero

minima. The true zero-point is usually found using two phases: a searching method

that finds a candidate point in the neighborhood of the proper minimum and a

, subsequent polishing or stencil-walk method that refines this approximate value into

the final real-valued computational-space coordinates [Buning 1989]. Recall that

the flow domain is usually subdivided into partially overlapping regions. The coarse

search must consider points from each each grid block, and the refinement method

must be able to cross inter-block boundaries in its search for the query location.

58

3.2.1 Coarse Search

The coarse searching method could simply be a "brute-force" examination of

every node in the grid to find the one which yields the smallest distance measure. But

since every line of node points in a typical grid curves only slightly over a distance

of a few cells, it is usually sufficient to test every n-th point in each dimension. The

candidate which is selected by this more sparse search will never be farther than

roughly n../3/2 cells away from the actual closest node point. On typical grids, a

value of n equal to ten is sufficient and means that only one node point in every

thousand need be tested. The test itself may be approximate; a simple sum-of­

magnitudes (£1) norm may select a node point which is not truly the closest, but

which will be an adequate starting position for the stencil-walk.

A pre-computed access structure may be built to provide a more rapid means

of coarse searching. The grid-construction software "DCF" uses a coarse rectilinear

background grid for this purpose [Meakin 1991]. Octrees and k-D trees are data

structures which organize multi-dimensional data [Samet 1984, Bentley 1975]. In

each of these, the space of the data is recursively divided into sub-volumes and

each interior node of the tree may be annotated with the minimum and maximum

data values contained within that subtree. Globus et al. [1991] used an octree to

implement a coarse point search. Williams [1992] used a somewhat more complicated

structure to implement coarse searching in unstructured grids.

An approximate initial point may be improved using a hill-climbing algorithm

[Mastin 1988]. This method tentatively advances a test point one cell width in either

direction along one of the three computational-space dimensions. This new location

is selected as the new starting position if it yields a smaller error measure than

does the current location. The iteration continues until none of the six immediate

neighbors of the current node offers reduced distance measure. The final node is

then likely to be quite close to the specified query point.

59

Flora uses a subsampled or decimated block of node points, in which the po­

sition and offset of one node point of every thousand is copied into a contiguous

array. This very small array is then searched for the node nearest to the specified

query point. The offset of this point is then used to locate the same node in the

original array of grid data. A hill-climbing iteration is then performed to improve

this estimate and to identify the node which lies closest to the query point. Only

the seed point of each streamline must be found by a coarse search. Each subse­

quent point along the curve lies close to its predecessor; therefore, only the local

stencil-walk routine is required to identify the computational-space coordinates of

the integration query points.

3.2.2 Stencil-Walking

The second phase of the point-finding task attempts to identify the real-valued

computational-space coordinates which interpolate onto the given physical-space

coordinates of the query point. The computational-space result may be described

by the current block number, the index (i,j, k) of the enclosing cell, and the offsets

(a,/3,1) within that cell. The point-finding problem may then be posed as a multi­

dimensional root-finding problem on a function D which measures the difference

between the specified physical-space location (X*) and the interpolated result at a

some offset (a, (3, 1) in a given cell:

D(a, (3, 1) = Iiik(a, (3, 1)- X*= 0

The Newton-Raphson method is commonly used to solve such problems. This

method begins at an approximate computational-space point an = [a, (3, l]n, and

repeatedly shifts to a new point an+l which, one hopes, lies more closely to the

unknown correct location a*. This method repeatedly evaluates the recurrence re­

lation:

60

which contains the partial derivatives of the interpolation function along each of the

grid dimensions. After a few iterations, the distance between successive points (ai)

should be quite small. If the distance is increasing, then the method has failed. The

iteration must be restarted from a new initial point, or else a different point-finding

method may be tried.

Once the iteration has converged, the offsets are examined. If any offset lies

outside the range [0 ... 1], then the identified location is outside the current cell and

outside the domain of the cell-local distance function 'Dijk· The cell index is shifted

by plus or minus one along one or more grid dimensions and the iteration is restarted

using a new set of coefficients calculated from the physical-space coordinates of the

vertices of the new cell. If the iteration converges to a computational-space position

which is beyond the boundaries of the current block, then search must be resumed

in the neighboring block. The method is successful only when it converges with each

offset in the range of [0 ... 1]. These fractional offsets may then be used to interpolate

the flow field sample values at this location. This composite point-finding method,

which executes a Newton-Raphson method in one or more cells, is often called

stencil-walking [Burring 1988].

The Newton-Raphson method can be described geometrically, as depicted in

figure 3.3. In this view of the problem, an approximate computational-space point

an is mapped onto its physicalcspace coordinates Xn. The error vector (6.xn) is

the difference between the image point Xn and the sought-after position X". This

error vector is then mapped back into computational coordinates to produce a

computational-space error vector (6.an)· This new vector is subtracted from the

current computational-space position to produce a new point an+l, which should

61

Figure 3.3: Point-finding with the Newton-Raphson method.

map more closely to the correct physical-space location. The earlier equation can

be augmented as such:

- an- (.6.xn).T'

an- (xn- x*),:r'

Since the computational space is curved with respect to the underlying phys­

ical space, the subtraction of an instantaneous error vector (.6.a) is only a partial

correction of the interim computational-space location. Subsequent improvements

must be made in an increasingly smaller neighborhood about the unknown a*.

62

3.2.3 Implementing the Newton-Raphson Method

The Newton-Raphson method requires the evaluation of iY at the point a.

This can be computed by straightforward expansion of the nine partial derivatives

fJV(x;)jfJaj of the trilinear interpolating function, computed across each physical

space component (x;) and in each grid dimension (ai)· This produces the Jacobian

matrix:

ax ax ax

:T = a~ = ax =
a a a{3 a-,
I!JL I!JL I!JL

a~ ac; a a a{3 a-,
az az az
a a a{3 a-,

which describes the local relationship of the basis vectors of the physical and the

computational coordinate systems

An approximation of the Jacobian matrix can be computed using finite-differences

of the physical-space coordinates of the vertices of the current cell.

DOTIMES(i,3) {

}

d_a = (p100 [i] - pOOO [i]);

d.b = (p010 [i] - pOOO [i]);

d..g = (p001 [i] - pOOO [i]);

d.ab = (p110[i] - p010[i] - p100[i] + pOOO[i]);

d.ag = (p101 [i] - p001 [i] - p100 [i] + pOOO [i]);

d.bg = (p011[i] - p001[i] - p010[i] + pOOO[i]);

d.abg = (p111[i] - p011[i] - p101[i] + p001[i] -

p110[i] + p010[i] + p100[i] - pOOO[i]);

jac [i] [0] = d.a + d.ab*b + d_ag*g + d.abg* (b*g) ;

jac [i] [1] = d_b + d.ab*a + d_bg*g + d.abg* (a*g) ;

jac[i] [2] = d..g + d.ag*a + d.bg*b + d_abg*(a*b);

This factoring of the partial derivatives is due to Buning, who used it in the imple­

mentation of PLOT3D. The variables pOOO through p111 contain the physical-space

coordinates of the eight corners of the enclosing cell. The variables (a, b, g) hold

the fractional parts of the computational-space coordinates of the query point. The

subscript i is iterated over the three dimensions of computational space. Note that

63

the first seven equations yield constant values throughout each cell and that only

the last three lines of the loop body need be computed anew for subsequent query

points in the same cell.

The resulting matrix (j ac) is then inverted. If this matrix cannot be inverted,

this indicates that the current position lies on or very near a collapsed cell edge or

face. When this occurs, the point an can be shifted a short distance in an attempt

to move away from the grid singularity. The Jacobian matrix at this new location

is computed, and the iteration is resumed. The method will sometimes converge

without encountering further difficulty. Stubborn cases can be solved by resorting

to another method, such as a fractional variant of the hill-climbing method described

earlier.

3.3 PHYSICAL-SPACE INTEGRATION

PLOT3D computes streamlines using a second-order Runge-Kutta integration

method through a physical-space vector field. The field values within each cell are de­

fined by the trilinear interpolating function, which requires the computational-space

coordinates of each query point. Since each new query point is originally specified in

physical-space coordinates, this position must be converted into its computational­

space representation prior to the interpolation of the vector field values.

3.3.1 Implementing the Integration Method

The point-finding method is used to determine the computational-space coor­

dinates for each query point. This procedure, let us call it find_point, contains

internal state which allows it to begin the root-finding iteration from the most re­

cently identified, and presumably nearby, computational-space location. A second

procedure, interpolate, returns the interpolated value of some field at a specified

computational-space location.

64

These two procedures, find_point and interpolate, may be combined to

implement a physical-space numerical integration routine. Each iteration advances

the particle through physical space, using find_ point to identify the computional­

space coordinates of each new query point and interpolate to find the local velocity

vector at these locations.

phys = seed~yz;
comp = find.point(GRID, phys);
time = o·

'
LOOP {

output(phys, comp, time);

}

pvec = interpolate(PVEC, comp);
phys = phys + (h * pvec);
comp = find_point(GRID, phys);
time = time + h;

As the integration proceeds, the physical-space coordinates, the computational-

space coordinates, and the accumulated stepsize of each new point are written to

the result buffers. The iteration is stopped when the advecting particle falls outside

the flow domain, when the user moves the seed point, or when the output buffer

has been filled. This code works transparently over multiple-block grids, since the

transition from one block to the next is handled within the procedure find_ point.

This example uses the simple forward Euler algorithm, which accumulates

error at a rate proportional to the stepsize parameter h. This simple routine is

generally inadequate for computing streamlines in most flow fields [Murman and

Powell 1988]. The accuracy of the computed result can be improved by replacing

the body of the loop with these lines:

65

... ···

Figure 3.4: Heun's method.

output(phys, comp, time);
va = interpolate(PVEC, comp);
pmid = phys + (h * va);
cmid = find_point(GRID, pmid);
vb = interpolate(PVEC, cmid);
phys = phys + (h * ((va+vb)/2);
comp = find_point(GRID, phys);
time = time + h;

········

This is Heun's method, one of the second-order Runge-Kutta schemes (figure 3.4).

In this method, a simple Euler step is used to sample the field at a test location mid.

The two velocity values (va and vb) are averaged, and this combined value is used

to advance the particle to its new location. This algorithm has an error rate equal to

the square of the stepsize parameter (h). This usually produces acceptable results

when the particle is advanced some fraction of the cell width for each iteration.

This second-order algorithm requires two calls of find_point per iteration, but

this additional work is partially offset by the reduced error rate which allows the

66

use of larger stepsizes. Both PLOT 3D and Flora use a version of this routine, with

additional modifications to adjust the stepsize parameter during the iteration.

3.3.2 Adjusting the Stepsize

A large improvement in the speed of numerical integration may be obtained

through the use of adaptive stepsizing, which extends the length of the integration

stepsize wherever the flow field samples are fairly uniform. The stepsize is shortened

where the flow makes a large change in its speed or direction. This adjustment of the

stepsize is typically based on a comparison of the results of two different integration

methods started from the same initial point. The more accurate method produces

the new point which is copied to the output buffer. The simpler method is used as

a test of the error-sensitivity in this region of the flow. When the results of the two

methods are very close, the stepsize is increased slightly. When the results differ by

more than some small amount, then the stepsize is reduced to improve the accuracy

of the next few integration steps. (Other methods of adjusting the stepsize are based

on the explicit evaluation of the local curvature of the vector field, as in [Dickinson

and Bartels 1988] or [Darmofal and Haimes 1992].)

In regions of rapid velocity change, the stepsize must be so small that the

resulting points are separated by tiny fractions of a cell width. But in a large

percentage of the volume of a typical flow field, the stepsizes can be much larger.

Note, however, that the the flow field is defined by sample values at each node

point. This sets a limit on the maximum acceptable stepsize. In order to detect

and to adequately resolve small flow features, the stepsize must be constrained such

that each iteration advances the particle at most one cell width. This avoids errors

that would be caused by taking a single large step completely through small flow

structures that may be represented by sample values at only one or two neighboring

node points. This limit on the stepsize also guarantees an adequate sampling rate

67

for any subsequent texturing of the model, which might be used to represent a

coincident scalar field.

The program STREAM 3D [Eliasson et al. 1989] computes the vector magnitudes

at the eight cell corners. It uses the average of these as the nominal fluid velocity

in the cell interior. The stepsize is then adjusted to ensure about three steps per

cell. This adjustment generally ensures that any curvature of the field within a cell

will be adequately represented, at the cost of being overly conservative in regions of

simple flow behavior. On the other hand, the size of each grid cell is a fairly good

indication of the complexity of the flow in that region, since the grids are created

with great care to ensure exactly this property. The averaging of the local samples is

adequate for a majority of the flow domain, but is inaccurate within any cell which

has greatly differing velocity values at its eight vertices.

PLOT3D adjusts the stepsize to ensure that adjacent points on the streamline

are separated by roughly one-fifth of the width of the current cell in any grid direc­

tion. This is implemented by converting the interpolated velocity sample into its

computational-space equivalent, finding the component with the maximum absolute

value, and scaling the stepsize by the inverse of this length. This conversion into

computational space requires the inverse of the local Jacobian matrix. Since this

adjustment is based on the local Jacobian matrix, the stepsize may be not quite

correct in highly stretched regions of the grid. A stepsize which is correctly sized

for one cell might be much too large for the neighboring cell into which the particle

next moves.

Flora uses an alternative method to maintain a specified computational-space

distance between computed points on the curve. Each integration step is performed

using the previously determined stepsize. The computational-space position of each

new point is then subtracted from that of the preceding point on the growing curve.

The magnitude of each component of this incremental displacement is then evaluated

68

to adjust the stepsize for the next integration step. This retroactive adjustment

produces acceptable results in most cases. If the new point is overly distant from

its predecessor, then it is discarded and the integration step is repeated with a

smaller stepsize. This occasional recalculation of a step can be less costly than

the calculation of computational-space velocities for the sole purpose of adjusting

the stepsize. This method also ensures that the stepsize will always be correctly

adjusted, even in cases of rapid local change of cell size or flow speed.

3.4 COMPUTATIONAL-SPACE INTEGRATION

Numerical integration in physical space is slowed by the need to find the

computational-space coordinates of each query point. As we have seen, finding

these coordinates involves the creation and the inversion of a sequence of Jacobian

matrices within the iterative body of a Newton-Raphson method. A promising alter­

native is to convert vector samples into their computational-space representations.

The particle is then advected through the cubical cells of computational space, and

no point-finding of the query point locations is needed. This approach can be quite

rapid, but the conversion of the vector samples must use finite-differences to ap­

proximate the local Jacobian matrix. This error can yield inaccurate streamlines

through some regions of the grid.

3.4.1 Implementing the Integration Method

The Newton-Raphson method uses the inverse of the Jacobian matrix to con­

vert a physical-space error vector into its approximate computational-space equiv­

alent. The inverse of the Jacobian matrix can also be used to convert vector field

samples into computational coordinates.

Consider a particle with an arbitrary position specified in computational-space

coordinates. These coordinates may be split into the (i,j, k) cell index and the

69

(a,/3,/) offsets, which are then used to interpolate the physical-space velocity field

and also to approximate the local Jacobian matrix. A multiplication of the vector

through the inverse of this matrix yields the computational-space representation of

the interpolated vector sample. This new value may be used to advance the particle

through the current block:

comp = find.point(seed_xyz);
time = 0;

LOOP {

}

phys = interpolate(GRID, comp);
output(phys, comp, time);
pvec = interpolate(PVEC, comp);
va = pvec * J_inverse(comp);
cmid = comp + (h * va);
pvec = interpolate(PVEC, cmid);
vb = pvec * J_inverse(cmid);
comp = comp + (h * ((va+vb)/2));
time = time + h;

In this approach, the computationally expensive function find_ point is called only

to identify the computational-space coordinates of the initial seed point. The loop

now contains three calls of the function interpolate, twice to query the physical­

space vector field and once to identify the physical-space coordinates of the newly

computed point for eventual output to the display device. Each iteration also con-

tains the creation and inversion of a Jacobian matrix at each query point location,

in order to convert the interpolated vector sample into computational-space coordi-

nates.

This new method fails, of course, where the Jacobian matrix cannot be in­

verted. The mapping into computational-space coordinates is non-unique at grid

singularities; there is no computational-space equivalent to the interpolated physical-

space vector. Even where the matrix can be inverted, there is concern over the accu-

racy of the vector transformation. Tamura and Fujii [1990] warn that, in the common

case of highly stretched grids, a constant physical-space vector field can yield a wide

70

variation in the magnitudes and directions of the resulting computational-space vec­

tor samples. This problem reaches its extreme case near singularities, at which a

zero-length cell edge might suggest an infinite magnitude for the computational­

space vector quantity! This wide range of vector magnitudes is likely to cause

accuracy problems in the simpler numerical integration algorithms. Before consid­

ering these issues further, two variations of the computational-space method should

be examined.

3.4.2 Isoparametric Mapping

The method sketched above converts each interpolated vector sample into

computational space by constructing the inverse of the Jacobian matrix at each

query point. An alternative approach converts the user-supplied samples at the

node points. These converted samples are then interpolated at the query locations.

The calculation of the streamlines is again conducted entirely in the computational

space. This approach differs in a significant way from the computational-space

method of the previous section. The previous method requires the approximation

of the Jacobian matrix at arbitrary points in the flow domain. We have seen that

these matrices are computed using finite differences within the current cell, thereby

constructing the partial derivatives of the interpolating function.

The alternative method of isoparametric mapping requires Jacobian matrices

only at the node points [Hughes 1987]. These matrices are calculated using finite­

differences taken across neighboring node points along each grid dimension. Once

the Jacobian matrix at a node point has been approximated in this way, the matrix

is inverted and the vector sample is multiplied through the new matrix to derive the

computational-space representation of the vector sample at the node. Once again,

the matrix cannot be inverted at grid singularities, so some alternative calculation

method must be applied at these nodes.

71

The program STREAM 3D (Eliasson et al. 1989] converts the flow field vectors on

the corners of each newly encountered cell as the streamline is extended through the

flow domain. Since the interpolating function is cell-local and linear, they suggest

that a cell-local construction of the Jacobian matrix is attractive. These computed

matrices would then be in exact accordance with the cell-local interpolating func­

tion. Indeed, the Jacobian matrix consists simply of the partial derivatives of the

interpolating function itself, computed at the eight corners of the cell.

This calculation of the Jacobian matrix is implemented with two-point finite­

differences taken across each cell edge.. Using the same conventions as used in

earlier code fragments, the Jacobian matrix for the lowest-indexed vertex (pOOO) is

computed from the differences in each physical-space component along the three cell

edges which join at that node point.

DOTIMES(i,3) {

}

jac[i] [0] = (p100[i] - pOOO[i]);

j ac [i] [1] = (p010 [i] - pOOO [i]) ;

j ac [i][2] = (pOO i[i] - pOOO [i]) ;

The other seven matrices are computed in a similar manner. Each matrix is inverted,

and the user-supplied sample vectors are multiplied through the inverted matrices

to yield the computational-space vector samples for the eight vertices of the current

cell.

Unfortunately, the cell-local differencing shown above creates up to eight dis­

tinct velocity samples at each node point. The. storage cost of this is prohibitive,

and so an averaged value might well be used instead. A centered-difference can be

used to compute these averaged computational-space velocity samples each node,

thus reducing storage costs to a single new vector sample per node point. In three­

point centered-differencing, a partial derivative at a node point is approximated as

the average of the differences taken across the two neighboring cell edges. This is

equivalent to the one-half the total difference taken across two successive cell edges:

72

ax;ae = (x(i+l,j,k)- x(i-l,j,kJ)/2

8xf8TJ = (x(i,j+l,k)- x(i,j-l,kJ)/2

8xf8(= (x(i,j,k+l)- x(iJ,k-lJ)/2

These centered-differences can, of course, be applied only at the nodes in the in­

terior of each grid block. Non-centered finite-differences must be used at nodes

which lie on the domain boundaries. One drawback of this method is that the resul­

tant computational-space vectors are formed using spatial metrics which have been

averaged across multiple cells.

On the other hand, it has the appealing property that each vector field sample

is mapped to one and only one computational space representation; therefore, these

samples may be pre-computed and stored for later use in interactive visualization

[Volpe 1989]. Once this full pre-process conversion is complete, th~ streamlines

can be computed using only interpolation of the computational-space vector field

samples and a mapping of the resulting points into physical space. No conversion

of the vector field values is needed during the integration of the streamlines, and no

matrices need be constructed or inverted during this calculation.

3.4.3 Performance

The physical-space method requires the point-finding Newton-Raphson method

to be applied at each query point. This typically incurs a computational effort of

about two matrix inversions per query point, and hence four inversions per step of

the second-order Runge-Kutta method. This yields about sixteen matrix inversions

in each cell encountered by the particle, assuming that it passes through each cell

in about four integration steps.

73

Figure 3.5: Smooth grid with physical-space streamlines.

Local conversion of the field samples requires one inversion of the Jacobian

matrix at each query point. This happens twice per iteration of the second-order

Runge-Kutta method, and typically eight times per cell.

On-the-fly conversion of the node samples requires eight matrices to be inverted

at each newly encountered cell. These computational-space samples may be saved

and interpolated for all subsequent query points within that cell.

Pre-process conversion of the field data allows the calculation of streamlines

using only the interpolation of the vector field at each query point. No conversion

of vector samples is required during the calculation of streamlines.

A simple grid was constructed for testing the relative speed ofthese calculation

methods. This is essentially a two-dimensional grid, as it varies only along the i and

j dimensions. Each k-plane is an identical copy of those above and below, with a

constant value of z and the w velocity component held at zero. This yields a stack

of identical two-dimensional flow fields varying only in x and y, in this case a rigid

circular flow. (The program used to generate this test grid and flow data may be

74

METHOD phys local two-pt central
CELLS LOADED 1453 1433 1435 1439
NR INVOCATIONS 10000 0 0 0
INVERSE(J) 18453 10000 11480 0
CPU SECONDS 7.3 4.5 4.5 2.3

Table 3.1: Relative performance of four differencing methods.

found in Appendix A.) One layer of this grid is shown in figure 3.5, which has been

overlaid with a family of streamlines. The rake is a horizontonalli,ne segment which

has been discretized to form six seed points. The flow defines six circular streamline

curves, with the particles advected counter-clockwise about a fixed center.

Streamlines were calculated from this same rake using the physical space

method and all three variants of the computational space method. All the tests

used a second-order Runge-Kutta algorithm with the retroactive stepsizing scheme

used to produce points separated by about one-fifth of the smallest dimension of

the current grid cell. I counted the number of interpolations and matrix inversions

calculated by each method. I also measured the elapsed CPU time, measured on a

single processor of a Silicon Graphics VGX-320 workstation. A total of five thou­

sand integration steps were performed in each trial, and the trials were repeated

several times.

The results are listed in table 3.1. Each method evaluated the vector field

at 10000 query locations. Due to differences in accuracy, the curves intersected

slightly different numbers of cells. The physical-space method required 18453 iter­

ations of the Newton method for the point finding. The three computational-space

methods do not use the Newton-Raphson point finding method, but instead convert

the field samples by inverting the Jacobian matrices. This requires 10000 inver- .

sions for the local computational-space method, eight per cell (or 11480) for the

two-point differencing across the cell edges, and none at all if the conversion was

already performed by a pre-processing step. The elapsed CPU time confirms that

75

the computational-space methods are indeed more rapid, particularly so the method

using pre-converted velocity samples.

3.4.4 Accuracy

Shirayama [1991] tested the effect of grid smoothness on the accuracy of the

computational-space integration methods. He constructed a two-dimensional grid of

square cells, and then perturbed each node point position by some random amount

in the two physical-space dimensions. The maximal displacement of any node point

was less than one-half the cell size, so. that no cell edges were allowed to cross.

An analytically defined physical-space vector field was then sampled on these per­

turbed node points, the samples converted using a central-differencing pre-process,

and streamlines were then calculated through the computational-space field. The

resulting curves maintained good qualitative agreement with the ideal curves defined

by the original analytic vector field.

There is unfortunately some doubt that a random perturbation of the node

points can provide a suitable test of the error-sensitivity of the computational-space

methods. Grids used in practice are generally quite smooth over much of the flow do­

main, but can exhibit large first-order discontinuities along gridlines at a sequence of

neighboring node points. These correlated flaws can inject error into the calculation

of computational-space vector samples and can produce inaccurate streamlines. For

example, Sadarjoen et al. [1994] demonstrated troubling error rates using a number

of computational-space methods on a collection of test grids and flow fields.

To further investigate this effect, I took the simple test grid from the per-

. formance test and introduced a large first-order discontinuity across one gridline

(figure 3.6). The same rotational flow field was then sampled at these new node

points. These new samples were used in the calculation of streamlines, once again

using the physical space and the three computational space methods.

76

Figure 3.6: A grid with a strong discontinuity.

The streamlines computed in physical space adequately reconstruct the cir­

cular pattern of the flow in both the smooth and the creased grids (figure 3. 7).

This is not surprising, since this vector field is strictly linear and is perfectly recon­

structed in each case by the trilinear interpolating function. The only significant

error introduced is that due to the truncation of the numerical integration formula,

as evidenced by a slight outward spiraling of the innermost streamline. A smaller

stepsize improves this result, as would a higher-order integration method.

The streamlines computed with local Jacobian matrices are similar to those

calculated using two-point differencing across the edges of the current cell (figures 3.8

and 3.9). Both methods construct Jacobian matrices as the set of partial derivatives

of the cell-local interpolating function. Both families of streamlines exhibit some

increased spiraling, which is exacerbated by the crease.

Figure 3.10 shows the streamlines computed through pre-converted samples

which have been derived by two-point central-differencing. Here we see that accu­

racy is quite poor when the particles are advected for several revolutions. In both

77

Figure 3. 7: Streamlines computed in physical space, in a smooth grid (left) and
a creased grid (right).

the smooth and the creased tests, many of the streamlines exhibit significant inward

spiraling. Only the outermost curve maintains approximate closure to form a circu-

lar path. The presence of the grid crease has introduced a strong local perturbation

of the resulting curves; each curve exhibits a "bump" at each crossing of the grid

crease. But this diversion contributes only minor additional reduction of the global

accuracy, as the full streamlines in the creased grid are qualitatively similar to those

computed using this same method in the smooth grid.

In a magnified view of some curves computed with locally constructed Jacobian

matrices (figure 3.11), we see that the streamlines exhibit very strong discontinuities

near the crease. The cause is demonstrated in figure 3.12, which depicts a uniform

horizontal flow sampled at the vertices of two cells. In physical-space integration, the

two query points each yield the same uniform flow sample, and the averaged vector

value carries the particle to the position P*. But when the particle is advected in

computational space, the vector samples are now different because the conversion of

each vector is based on Jacobian matrices computed in different cells. The particle

is advected to a new location in computational space, then mapped into physical

coordinates. This mapped location P' is not coincident with P*, due to the error

introduced by the combination of incompatible spatial transformations.

78

Figure 3.8: Streamlines computed with local Jacobians, in a smooth grid {left)
and a creased grid (right).

Figure 3.9: Streamlines computed with edge-differencing, in a smooth grid (left)
and a creased grid (right).

Figure 3.10: Streamlines computed with central-differences, zn a smooth grid
(left) and a creased grid {right).

79

I
I
I ---

--~----

Figure 3.11: Detail of streamlines computed with local Jacobians.

P V P* / V*
·--~*0 ... ~

p'

computational

V=[.7, .0]
V*=[.7 ,-.4]

physical

V=V*=[l,O]

Figure 3.12: Heun's method with cell-local differencing.

80

3.4.5 Constrained Integration

Computational-space calculation suffers from inaccuracy near grid flaws and

it fails entirely at singularities. This approach is, however, much faster than the

physical-space method. The computational-space algorithms offer one additional

advantage which can further motivate an attempt to salvage this approach: the

computational-space methods are more easily adapted to compute streamlines near

the vehicle surface.

An iblank value of 2 is used to mark any node which lies on a impermeable

boundary. These node points carry valid field samples, but if all four corners of a cell

face are so marked, then no fluid may pass through that face. PLOT 3D handles this

situation using a special constraint called wall bouncing. By explicitly restricting

the curves away from these body surfaces, the software avoids one particularly an­

noying artifact of numerical error: streamlines that leave the flow domain by passing

through the skin of the vehicle.

Wall bouncing is implemented by constraining the position of the advecting

particle slightly away from any nearby wall. (This is usually in the positive (or k

direction.) This constraint can also be enforced by clamping the appropriate com­

ponent of the velocity to positive values for integration with a positive timestep,

and negative values when advecting particles upstream. When the integration is

performed in physical coordinates, the particle position and the interpolated vec­

tors must be converted into computational-space coordinates. These values are then

adjusted if necessary, and the new values converted back into physical coordinates.

Integration by the computational-space method avoids this conversion and its in­

verse.

It is often useful to depict the tangential movement of the fluid just off the

surface of the vehicle. These are called oil flow plots, since they are similar to

the empirical visualization method in which a scale model is coated with a layer

81

of oil or paint prior to its session in a wind tunnel. The numerical equivalent is

constructed by restricting the calculation of streamlines to the gridplane which lies

one cell-height above the no-slip boundary surface. The implementation of this

restriction is comparable to that of the wall-bouncing constraint described above.

In wall bouncing, the particle is forced away from the boundaries. In the oil flow

visualization, the particle must remain on or just above these surfaces. This is done

by clamping the off-body component of the particle's computational-space position

to a fixed value. The velocity component along this same grid dimension is forced

to zero.

Once again, this restriction of particle motion is implemented most easily under

the computational-space integration methods. As in wall bouncing, the tracing of

oil flow lines through a physical-space vector field requires the repeated conversion

of the particle location and velocity vectors into computational space, followed by

the possible modification of these values and a return to physical-space coordinates.

3.4.6 Block Transitions

Computational-space integration is fast, albeit error-prone, and it easily adapts

to the special constraints of wall bouncing and oil flow. Unfortunately, the integra­

tion methods cannot easily carry a particle across the inter-block boundaries of a

composite grid.

In physical-space integration, the transition across block boundaries is han­

dled within the find_point procedure. But when a particle is advected through

computational space, the valid domain is limited to the current block. Reaching

a block boundary suspends the integration until the new location of the moving

particle has been determined in the computational coordinate space defined by the

new block. It may be that the last known position of the particle lies within a region

in which two neighboring blocks overlap. In this case, the physical-space position

82

of the particle is found by interpolation, and this same location is then identified in

the computational space of the new block.

If the grids merely abut, then the computational-space integration method will

fail when it attempts to extend the curve beyond the boundaries of the current block.

This situation can be handled by reverting to the physical-space integration method

until the boundary has been crossed. Once the boundary has been crossed, the

computational-space method may be resumed. This adaptive use of both coordinate

spaces is more fully considered in the next section.

3.5 MIXED-SPACE INTEGRATION

We have seen that the fastest computational-space integration method can

compute a streamline in about one-third of the time required by the same integration

method cast in physical coordinates. But the faster methods are sensitive to error

near grid flaws and are unable to cross block boundaries. A novel hybrid approach,

presented here, uses precomputed measures of local grid-quality to adaptively select

the most suitable integration method for each newly encountered cell. This preserves

accuracy, yet still provides most of the speed of the computational-space approach.

3.5.1 Node Tagging

The iblank field in a composite grid allocates a full thirty-two bit word to every

node point. Blanked node points, which do not carry valid field samples, are marked

with an iblank value of 0. Usable node points in the interior of a· block are marked

with the value 1. Node points in regions of block overlap are marked with negative

values, and the value 2 marks nodes on the impermeable boundaries formed by the

vehicle surface and the flow field symmetry planes.

In the Shuttle dataset shown earlier, nine grid blocks contain a total of 941,159

node points. Of these, 92% have an iblank value of one, about 5% percent of the

83

tag bits

tag_cell_valid
tag_cell_smooth

.__ tag_ cell_ donor

Figure 3.13: A tag word.

node points have been assigned a zero iblank value, and the remaining nodes carry

negative iblank numbers. No points have been marked as walls in this dataset. The

iblank annotation of this grid is rather wasteful, consuming four megabytes for a

moderately sized grid of about one million nodes and encoding fewer than four bits

of information in a 32-bit word. A more efficient encoding can simplify the querying

of the field data.

In Flora, each node point is assigned a tag word, which is subdivided into

several single bit flags and a small integer field (figure 3.13). Information for each

node is stored in its tag, and comparable information for each cell is stored in the

tag of its lowest-indexed corner. (The nodes on the highest-indexed face in each

dimension of each grid block have no associated cell and the cell bits within these

tag words are ignored.)

The tag word contains a Boolean flag called TAG...NDDE_vALID, which is set to

TRUE for nodes at which the original iblank number was non-zero. This indicates

whether a node point carries valid sample data. A comparable flag is assigned to

each cell and set to the logical product (and) of the node flags for its eight vertices.

A test of this single TAG_CELL_VALID flag is therefore sufficient for determining the

validity of interpolated values within a given cell.

84

Other bits can be assigned to encode additional information about the grid.

We have seen that a vector field sample may be accurately converted into computa­

tional space only at those node points through which the grid lines pass smoothly.

Such nodes can carry the value TRUE in the flag TAG...NODE...SMDDTH. As before, the

corresponding cell flag is assigned the product of the bits for its eight vertices. Only a

cell with a TRUE value for its TAG_CELL...SMDDTH flag will have reliable computational­

space vectors at all eight vertices. A .cell marked FALSE is adjacent to some grid

flaw, and does not have reliable field data from which to interpolate computational­

space vector samples in its interior. When an advecting particle encounters such a

cell, the integration method can revert to the slower but more robust physical-space

method to carry the curve through this problematic region. The software thereby

exploits the faster computational-space method in most of the volume of the data,

while limiting the introduction of error in non-smooth regions of the grid.

3.5.2 Calculation of the Tag Values

We wish to mark each node point with a value which indicates the local

smoothness of the grid. A simple estimation of grid smoothness is obtained by

comparing the two cell edges which share a given node along a given gridline. If

these two vectors are of comparable magnitude and direction, the the grid may be

assumed to be smooth along that grid dimension. A test of the other two edge pairs

at the current node is required to then determine if the grid is indeed smooth in all

three grid dimensions. If the three pairs of edges are found to join cleanly, then the

grid is deemed acceptable at this node and the TAG...NDDE...SMDOTH bit is set to TRUE.

A cell is valid when all eight corner nodes are valid. A cell is deemed smooth

when all eight nodes are smooth. When advecting a particle in computational

coordinates, sample values will only be interpolated within cells which are valid and

smooth.

85

Arbitrarily complicated tests of grid quality could be conducted during the grid

pre-processing with the result encoded in the node and cell tags. The user might wish

to enforce the use of the physical-space method through regions of particular interest.

The tags in these regions could be manually specified, overriding the computed

values. Such flexibility would be more costly to implement and execute under a

mechanism which selects the appropriate integration method using programmatic

quality measures at each newly encountered cell.

3.5.3 Implementing the Integration Method

To implement mixed-space integration, the software must record the particle

location at the start of each new iteration. It can then attempt a single step of

one of the computational-space methods described earlier. If this attempt fails, due

to FALSE cell tags or because the particle has encountered a block boundary, then

the particle is restored to its previous location and the more robust physical-space

method is tried:

LOOP {

}

prev_comp = comp;
ok = step...in_comp..space ();
if (! ok) {

}

reset_posi tion(prev _comp) ;
ok = step_in_phys..space () ;
if (!ok) QUIT();

The routines step_in_comp_space and step_in_phys_space are simply those inte­

gration methods shown earlier. A minor modification to the code shown here can

improve the performance slightly. It is likely that when the computational-space

method fails, it will continue to fail on the next few integration steps. It will suc­

ceed only after the physical-space method has carried the particle past the grid

flaw or into the new block. It is a good idea, therefore, to revert entirely to the

86

physical-space method for the next five or six steps before once again trying the

computational-space method.

3.5.4 Evaluation

Physical-space integration is a robust method which uses the vector samples

read from the grid and solution files. Computational-space integration offers a rapid

means to compute streamlines through smooth grids. Mixed-space integration allows

the adaptive use of the two methods to ensure fidelity to the data while enabling

maximal performance.

To verify this assertion, I have taken the creased grid from the earlier test

case and assigned a tag word to each node. Nodes on the crease were marked

non-smooth, as were the cells adjacent to these nodes. The same test of circular

streamline calculation was then retried, now comparing the mixed-space method to

the three strictly computational-space approaches.

As shown in the the figure below, the curves computed by local-conversion

(figure 3.14) and by edge-differencing (figure 3.15) are significantly improved by the

mixed-space methods. The improved curves on the right-hand sides of these figures

are now comparable to the results of the physical space method. The pre-processed

central-differencing method is improved somewhat by the mixed-space approach,

but even this method still gives rather poor results. Both sets of curves shown in

figure 3.16 are unacceptable.

The performance improvement gained from the hybrid method is summarized

in table 3.2. The physical space method computes 5000 integration steps in about

7.5 seconds. This time was measured using one processor of a Silicon Graphics

320-VGX, as noted earlier. The computational-space methods compute the same

number of output points in 4.5, 4.7, and 2.3 seconds. But, as we have seen, the

purely computational-space methods have problems with accuracy. The local and

87

Figure 3.14: Streamlines computed with local Jacobians in a creased grid, by com­
putational (left) and mixed space (right) methods.

Figure 3.15: Streamlines computed with edge-differencing in a creased grid, by
computational (left) and mixed space (right) methods.

Figure 3.16: Streamlines computed with central-differencing in a creased grid, by
computational (left) and mixed space (right) methods.

88

phys comp CPU
steps. steps seconds

PHYSICAL 5000 0 7.5
COMP LOCAL 0 5000 4.5
COMP TWO-PT 0 5000 4.7
COMP CENTRAL 0 5000 2.3
MIXED LOCAL 1374 3626 6.1
MIXED TWO-PT 1387 3613 6.2
MIXED CENTRAL 1555 3445 4.9

Table 3.2: Performance of mixed-spaced streamline computation.

two-point hybrid methods can compute quite good curves in just over 6 seconds,

about 83% of the time required by the physical space method.

This is, admittedly, a rather unsatisfying result and hardly merits the ad­

ditional implementation difficulty. On the other hand, almost one-fourth of the

integration steps in these mixed-space tests were performed in physical space. Some

CFD grids contain a lower percentage of non-smooth cells, and would thus allow

a correspondingly higher percentage of the particle advection to be computed in

computational space. The single-block Shuttle dataset shown earlier [Rizk and Ben­

Schmuel 1985] contains 226,800 points. About nine percent of these nodes are lo­

cated on grid creases of greater than twenty degrees, and would therefore be deemed

unsuitable for the computational-space method. The remaining subvolume of the

grid can still support this more rapid method.

Even in very smooth grids, the hybrid method has some additional drawbacks.

The first problem is that vector samples from both coordinate spaces must be avail­

able at some of the node points. The computational-space vector samples are needed

at the eight vertices of each smooth cell. Cells with even one non-smooth corner

require physical-space vector samples at all eight of its vertex nodes. The nodes

which are shared by cells of differing quality must have vector field samples defined

for both coordinate spaces. Hence, no single array with intermingled physical-space

89

and computational-space velocity samples can be used. Two separate arrays are

needed, although large regions of each will usually be swapped out to disk.

The calculation of the cell tags can be rather time-consuming, depending upon

the size of the grid and how carefully one wishes to measure grid smoothness. Unless

these tags are computed once in a pre-process phase and saved in a disk file for future

use, the additional time required to compute the grid quality metrics is likely to be

bothersome to the user.

An additional concern is the rather arbitrary threshold value which must be

chosen to determine which regions of the grid are "smooth enough" to support accu­

rate calculation of computational-space values. Perhaps a more acceptable solution

would be to compute and store a multi-valued grid quality metric at each node, and

then to adjust the limit of acceptability upwards or downwards depending on the

current goal of the user. Rapid exploration of the flow field could be enhanced by

using the computational-space method almost exclusively, with the caveat that any

interesting streamlines should be verified by recomputing these curves entirely in

physical space.

This has not been implemented in Flora, since the available computing hard­

ware is fast enough to provide adequate response on most datasets without resorting

to this adaptive approach. Larger datasets could be processed on smaller worksta­

tions if this method were exploited.

3.6 SUMMARY

The integration of streamlines through physical-space coordinates requires the

use of a point-finding method at each new query point. A conversion of the physical­

space vector field samples into the computational coordinate space allows the cal­

culation of streamlines to be conducted much more rapidly. Unfortunately, these

90

computational-space methods are unreliable near grid flaws and are untenable across

block boundaries.

A set of precomputed node tags can allow the adaptive use of the two coor­

dinate spaces. The faster computational-space algorithms are used wherever pos­

sible and the more robust physical-space method is applied where grid flaws or

block boundaries make such caution advisable. In a heavily creased test grid, the

mixed-space method computed streamlines nearly identical to those of the strictly

physical-space method, and it did so using 83% of the CPU time. In more typical

grids, better performance should be safely attainable.

91

CHAPTER IV

EXPLOITING SPATIAL COHERENCE

Mixed-space tracing is one approach toward improving the efficiency of streamline

calculation. Improvement can also be obtained by exploiting spatial coherence; that

is, the geometric proximity of the successive query points generated by a numerical

integration method.6

4.1 CELL CACHING

Most flow visualization software uses a cell-local trilinear interpolating function

to define the field values within each hexahedral cell. Under such a mapping, an

interpolated field value depends only upon the samples recorded at the vertices of

the cell which contains the query point. Rather than indexing directly into a large

arrays of grid position and solution data, Flora copies the node position and vector

field samples for the eight corners of the current cell into two small buffers of (8 x 3)

words each. This copying isolates the interpolation software from the format of the

data files, it reduces the time required to interpolate field values at successive query

points in the same cell, and it supports on-the-fly calculation of derived flow field

quantities.

4.1.1 Implementing the Caching

Access to the user-supplied flow field samples is mediated in Flora by an in-

stance of a particle data structure, which specifies its current location in physical

6 Most of the material in this chapter has been published in the paper "Improving the Perfor­
mance of Particle Tracing in Curvilinear Grids" [Hultquist 1994].

coordinates and also in the computational coordinate space defined by the current

grid block. The particle structure contains pointers to the large arrays of grid and

solution sample data. It also caches a copy of the position and vector field samples

for the eight corner nodes of the cell which currently contains the particle.

As a particle is advected through the flow domain, the computational-space

coordinates of each new query point are split into their integer and fractional parts.

The integers form the index of the node at the lowest-indexed corner of the contain­

ing cell. If this cell index is unchanged from that of the previous query point, then

the interpolation may proceed with the previously cached samples. This avoids the

repeated fetching of these values from scattered locations throughout the large grid

and solution data arrays.

When the particle moves into a new cell, then the node position data and field

samples for the new cell must be loaded into the particle structure. The three index

values (i,j ,k) are multiplied by the indexing offsets for each block dimension, and

the products are summed to form the total address offset for the lowest-indexed

node. The additional offsets for the other seven corners of the cell depend only

upon the dimensions of the current block. The position and vector field samples

are loaded into contiguous memory words in the particle structure, starting from

the lowest-indexed vertex and continuing in column-major (FORTRAN) order to the

sample data for the diagonally opposite cell vertex:

93

di = 1;

dj = idim;

dk = idim * jdim;

offset= ((i*di) + (j*dj) + (k*dk));

·for each component in (x,y,z) {
src = field_data + offset;

dst = particle_cache;

dst[O] = src [0] ;

dst [1] = src[di] ;

dst [2] = src[dj] ;

dst[3] = src[di + dj] ;

dst [4] = src[dk] ;

dst[S] = src[di+dk];

dst[6] = src[dj + dk] ;

dst[7] = src[di + dj + dk] ;

}

By this collective loading of the samples for all eight corners of the current cell, we

can avoid much of the indexing arithmetic which would be required for accessing

individual elements from from the grid and solution arrays. This caching of the

vertex positions and field samples also isolates the interpolation code from the format

of the field data, which sometimes interleaves the components of vector samples

and sometimes stores the components for each physical-space dimension in disjoint

arrays.

This local software caching of the sample values supports the efficient deferred

or lazy evaluation of field data, such as for computing velocity from the density and

momentum samples. Lazy evaluation of flow field data has also been implemented by

Kerlick [1990] and by Globus [1992]. If only a few streamlines are to be calculated,

this deferred calculation is much more efficient than code which first computes the

value of the new field at every riode point in the entire grid before computing any

streamlines.

If we then save (or tabulate) these computed values for use in subsequent

queries in this same cell, then calculation of new values is needed only when the

94

particle encounters a new cell. This reuse of computed values can significantly

improve the efficiency of advecting particles through some derived fields.

4.1.2 Working Set Size

In any caching scheme, the notion of the working set may be applied (Den­

ning 1967]. In a virtual memory computer system, the working set is the collection

of memory segments or pages which have been accessed by a process over some

specified interval of time. The number of different segments or pages in the working

set is called the working set size. This is a measure of the locality of the process; that

is, how many different areas of memory have been accessed by the process over that

time interval. A process with a smaller working set will tend to run more quickly,

since a higher percentage of its text and data can reside in the faster hardware of

the CPU cache.

We may consider the locality of an advecting particle. Clearly, the particle

resides at any given moment in a single cell; however, the query points generated

by an integration algorithm may fall within neighboring cells. Thus, the speed of

particle advection might be further improved by caching the data for more than one

cell in each particle structure. A cache miss occurs when a newly queried cell is

not already loaded in the cell-cache. The data for one of the previously encountered

cells must then be overwritten by the data for the new cell. Typically, the cell which

is removed from the cache is that which was "least recently used" and presumably

(but not always!) the least likely to be used again.

To investigate the effect of cell-cache size on the frequency of cell-cache misses,

I computed several streamlines through the smooth test grid. The integration

method was second-order Runge-Kutta in physical space, using stepsizes scaled to

produce points separated by at most one-fifth of a cell-width. In this test, the mo­

mentum was divided by density to find the fluid velocity at the vertices of each

95

CACHE query load load cpu
SIZE points pos vel seconds

0 10008 36328 10014 13.9
1 10008 1385 1387 7.3
2 10008 1342 1344 7.3
3 10008 1342 1344 7.4
4 10008 1342 1344 7.3

Table 4.1: Effect of cache size.

new cell. The test was repeated several times, with a cache size ranging from zero

to four cells. As for all of the results reported in this thesis, the CPU times were

measured on a Silicon Graphics 320-VGX, using one 33 megahertz processor for the

streamline calculation.

The caching results are shown in table 4.1. Note the great difference in speed

between having zero and one cell in the cache, a savings of 48% of the CPU time. For

this second-order Runge-Kutta scheme, the locality is quite high and little improve­

ment is gained by having space for more than one cell in the cache. Other methods

have somewhat worse locality, as for a higher-order scheme which might generate

several query locations within each integration step or a truly adaptive scheme which

effectively executes two integration methods in parallel. A cache of two cells or more

would allow each method to advance independently, without unfortunate interaction

in the particle data cache.

Additional savings could be obtained by recognizing that adjacent cells share

four vertices. The already cached values for these shared nodes can be copied directly

into four of the slots in the newly vacated cell-cache entry; these samples need not

be recomputed from the original flow data. This has not yet been implemented in

Flora, but would be worthwhile for vector fields which are more time-consuming to

compute.

96

Summary: The flow field values at each query point are typically defined by

an interpolation of the values stored at the vertices of the enclosing cell. By caching

these samples, we can reduce the cost of accessing this data for subsequent query

points in this same cell. The software cell-cache can also support the efficient lazy

calculation of derived field values. By reusing these computed values, we can avoid

their recalculation for subsequent queries in this same cell.

4.2 INTERPOLATION

If the position and vector field samples for the current cell are loaded into

small contiguous buffers, then a rapid and general implementation of the trilinear

interpolating function becomes possible.

4.2.1 Trilinear Interpolation

In the cell-local trilinear interpolating function, the relative weight applied to

each vertex sample is the product of three numbers; each one either a computational­

space offset or that same offset subtracted from one:

a'= (1- a)

(3' = (1 - (3)

;' = (1 -;)

I;jk(a,/3,;) = [a'(3';']fooo+ [a(3';']froo+

[d f3;']foro + [a f3;']fno+

[a',B';]foor +[a ,B';]fror+

[a' ,B;]fon + [a ,B;]fm

The interpolation weight which is applied to each vertex sample is the computational­

space volume bounded by the opposite vertex and the position of the query point.

For example, if the offsets (a, ,8, ;) are all equal to one third, their product of 1/27

97

is applied as the coefficient for the sample value (!111) at the uppermost-indexed

vertex of the current cell.

4.2.2 Operation Counts

The interpolating function as written above requires 10 additions and 24 mul­

tiplications for each component of the field being sampled. The interpolating of a

vector in three dimensions would therefore require 3 x (10+ 24) or 102 floating-point

operations. Factoring of common sub-expressions and the pulling of some invariant

expressions out of the loop body can bring these totals down to 3 additions and 12

multiplications in a pre-iterative setup phase, with 7 additions and 8 multiplications

required for each component of the sampled field. This rearrangement brings the

total down to 60 operations in the case of three-dimensional vectors interpolated

from the eight vertices of a three-dimensional hexahedral cell.

A different factoring uses a sequence of seven linear interpolations or lerps [Hill

1994]. Each lerp produces the weighted average of two values, using an interpolation

coefficient (A) ranging between zero and one.

LERP(.\,p, q} = ((1- .\)P + .\q} = (p + .\(q- PJ)

A trilinear interpolation may then be computed by using the third computational­

space offset 1 to combine the eight original vertex samples into four interpolated

values. These intermediate results are combined pairwise using j3 as the interpolation

weight, and the final value is computed using a as the weight in a single final step.

This method is implementated by seven evaluations of the LERP function, producing

a sequence of intermediate values which culminate in the final interpolated result:

98

/I
a;

..... ·······················

Figure 4.1: Trilinear interpolation by seven linear interpolations.

foo-y = LERP(I ,/ooo,JoOl)

fto-y = LERP(I,/roo,/ror)

fra-y = LERP(I,JoroJon)

/u.., = LERP(I ,/uo,/m)

/o(3.., = LERP(,B, fooo, faro)

fw.., = LERP(,B, /101, fan)

Ja(j-y = LERP(a,/0(3..,,!1(3-r)

This method is depicted graphically in the figure 4.1. The first four steps produce

the values interpolated along four edges of the cell. The next two steps compute

values on opposite faces. The final evaluation yields the interpolated value at the

specified query point in the interior of the cell.

This "seven-lerp" implementation requires 14 additions and 7 multiplications

for each component of the sampled field, with no provision for pulling common

operations outside the loop. The operation counts for each method are summarized

99

OPERATIONS (n = 3)
METHOD add mul total
SIMPLE VOLUME 10n 24n 102
FACTORED VOLUME 3+ 7n 12 +8n 60
SEVEN-LERP 14n 7n 63

Table 4.2: Implementations of trilinear interpolation.

in table 4.2. The seven-lerp method and the factored version of the volume method

have roughly a comparable performance of about 60 operations for vector samples

in three dimensions. Each runs in about two-thirds of the time required by the

straightforward and non-optimized implementation of the volume method.

4.2.3 A General Implementation

The caching of the vertex samples allows a very general implementation of the

seven-lerp method for evaluating the interpolating function. This simple code can

interpolate field samples with any number of components within cells having any

number of dimensions. For field samples in a three-dimensional cell, the calculation

of the interpolated value at a query point consists of three iterations of a loop which

repeatedly combines the upper and lower halves of an small and shrinking array of

cached samples:

num = cache_size;
src = cache_data;

dst = tmp_buffer;

for each offset (... ,,(3,o.)
del = next fractional offset
num = num/2;

lo = src;
hi = src + num;
DOTIMES(i,num) {

dst [i] = LERP (del, lo [i] , hi[i]) ;

}
src = tmp..buffer;

}

100

The first pass combines the four cached samples on half of the cell with their counter­

parts on the opposite cell face. These interpolations use the offset 1 as the coefficient

to produce four new values which are written into a temporary buffer. These in­

termediate values are then combined pairwise using j3 as the interpolation weight,

again merging the two halves of the array by pairwise interpolation. These results

can be written back into the same temporary buffer, since the previous values are

no longer needed. These two new values are finally combined into a single result

using a as the interpolation coefficient.

These two nested loops, one over each cell dimension and the other over the

sample components, should be unrolled for the common and important case of three­

dimensional vector samples interpolated within a three-dimensional cell.

Summary: The query point lies within some cell. The position and vector field

data at the corners of this cell are copied into a small contiguous buffer. This buffer

allows a efficient and general implementation of the interpolating function.

4.3 COMPUTATIONAL-SPACE EXTRAPOLATION

When a particle is advected by physical-space integration, the computational­

space coordinates for each new query point must be found. Finding these coordinates

typically involves a Newton-Raphson method which iteratively computes a sequence

of computational-space positions which lie increasingly close to the specified query

location. The iteration is often started from the computational-space position iden­

tified by the previous invocation of the point-finding method. A closer starting point

can be found by extrapolating, in computational coordinates, some short distance

beyond the end of the growing streamline. This improved initial estimate can re­

duce the number of iterations required for the convergence of the Newton-Raphson

method, thus increasing the speed of the physical-space integration of streamlines.

101

4.3.1 Implementation

In Huen's integration method, two query points are generated by each integra­

tion step. Each is placed some distance beyond the end of the partially computed

streamline, the first using the local velocity value and the second using an averaged

quantity. The point-finding method for each of these query points is typically be­

gun from the computational-space coordinates of the immediately preceding query

location.

Let p be the computational-space position of the most recently computed

point on the streamline. Let if be the coordinates of its immediate predecessor on

this partially computed curve. Then (p- if) is a first-order approximation of the

local value of the computational-space vector field. The point (p + (p- if)) is a good

approximation of the computational locations of the query points to be used in the

next integration step. We might therefore expect that the point-finding method

should converge more quickly if the initial point of the iteration (ii0) be placed at

this extrapolated computational-space location.

If the two most recent points (p and if) on the streamline lie in different grid

blocks, then this extrapolation approach cannot be used. The numerical difference

between the computational-space coordinates of points in two separate blocks has

no useful meaning. Similarly, the extrapolation of the curve can yield an estimate

beyond the bounds of the current block. Once again, the extrapolation fails in this

case. Such failures should occur in only a small percentage of the integration steps;

most blocks are several .tens of cells in each dimension and each integration step

typically advances the particle by only fraction of the current cell size.

102

EXTRAPOLATION?
none 1st 2nd

QUERY POINTS 10008 10008 10008
CELLS LOADED 1342 1352 1343
NR INVOCATIONS 11393 10133 10154
NR ITERATIONS 18161 14096 14125
lTERS PER lNVOC 1.59 1.39 1.39
CPU SECONDS 7.2 6.4 6.5

Table 4.3: Effect of computational-space extrapolation.

4.3.2 Performance Measurement

Several streamlines were calculated with a physical-space second-order Runge­

Kutta method, both with and without the computational extrapolation enhance­

ment. In each case, I counted the number of query points generated by the inte­

grator, the number of cells loaded into a particle cell-cache, the number of times

the Newton-Raphson method was executed, the total number of iterations of this

method, and the elapsed CPU time. These measures are listed in table 4.3.

Extrapolation prior to the invocation of the point-finding method reduces the

CPU time by about 11%. This improvement can be attributed to a reduction in the

total number of iterations of the Newton-Raphson method, each of which includes

the construction and the inversion of a Jacobian matrix. By extrapolating to find

a better initial point, we reduce the average cost of each invocation of the Newton

method by thirteen percent, from 1.59 down to 1.39 iterations per invocation.

Some improvement is also obtained by reducing the number of times the

Newton-Raphson method converges to an offset which lies outside the current cell.

When this does happen, the cell index must be adjusted and the method must

be restarted in the neighboring cell. By extrapolating in computational-space, the

proper cell is used more frequently in the initial attempt and the number of recal-

culations is reduced. This is shown in the reduction in the number of invocations

103

of the Newton-Raphson method, from 11393 to 10133, the latter being only 125

invocations above the lower bound of once per query point.

Note, however, that the computational-space extrapolation method also re­

sulted in the spurious loading of ten additional cells. These cells were loaded be­

cause the extrapolation pushed the initial point into the next cell, even though the

new query point had not yet crossed through this face. This extraneous loading is

reduced to a single cell by second-order extrapolation, but no net improvement in

speed is obtained from this higher-order method.

Summary: By extrapolating the partially constructed streamline, we can more

accurately estimate the computational-space location of each new query point. This

reduces the number of invocations of the Newton-Raphson method and it reduces the

number of iterations executed within that method.

4.4 FURTHER USE OF CELL TAGS

As mentioned earlier, the iblank field in a composite grid allocates a full thirty­

two bit word to every node point. Voided grid points, which do not carry valid field

samples, are marked with an iblank value of 0. Usable node points in the interior

of a block are marked with the value 1. Node points in regions of block overlap

are marked with negative values, and the value 2 marks nodes on impermeable

boundaries.

In Flora, each node point is assigned a tag word, which is subdivided into

several single-bit flags and a small integer field. Information for each node is stored

in its tag, and comparable information for each cell is stored in the node tag of its

lowest-indexed corner. These tags may be used to record information about the grid

in a form which is more convenient to use than are the iblank numbers.

104

4.4.1 Valid Cells

As noted before, each tag word contains a single-bit flag called TAG...NODE_VALID.

This is set to TRUE for nodes at which the original iblank number was non-zero.

The state of this bit indicates whether a node point carries valid sample data. A

comparable flag is assigned to each cell and set to the logical-product (and) of the

node flags for its eight corner nodes. A fetch of a single tag word and a test of the

TAG_CELL_VALID bit-flag within that tag is therefore sufficient for determining the

validity of interpolated values within each newly encountered cell.

4.4.2 Wall Cells

An iblank value of 2 marks any node which lies on an impermeable boundary.

Vehicle walls are marked in this manner, as are symmetry planes within the flow

domain. These node points do carry valid field samples, but if all four corners

of a cell face are so marked, then no fluid may pass through that face. PLOT3D

handles this situation using a special constraint called wall bouncing. By explicitly

restricting the curves away from these surfaces, the software avoids one particularly

annoying artifact of numerical error: streamlines that leave the flow domain by

passing through the skin of the vehicle.

Wall-bouncing is not yet implemented in Flora, but the cell tags would allow

the convenient marking of these impermeable cell faces. The integration software

could then test certain bit-flags in the cell tag and displace the advancing particle

as appropriate in any marked cell.

4.4.3 Overlap Cells

A composite CFD grid contains several partially overlapping or abutting blocks

of node points. The node points in the overlap regions carry a negative iblank

105

number. The absolute value of this tag is the number, counting from one, of a

locally overlapping block.

The node flag TAG..NODE.DONOR is true at those nodes in the overlap region

between blocks; these are nodes which carry a negative iblank value. A cell flag

TAG_CELL...DONOR is set to the logical sum (or) of the donor-flag for the corner nodes

of each cell. When a query point falls outside the current block or into an invalid

cell, then the donor flag of the previous cell is tested. A TRUE value indicates that

one or more vertices of the cell lie in an overlap region. The neighboring block can

then be searched for the position of the new query point.

Summary: By allocating a tag word to each node, and subdividing these words

into subfields, we can encode more information about the grid than is provided by

the iblank number. This allows a more convenient and slightly more efficient imple­

mentation of certain field querying operations.

4.5 DONOR POINTS

Within regions of block overlap, the position of each node can be expressed in

the computational coordinate space defined by the other block. During the solving of

the flow field, every such node point receives the interpolated field quantities sampled

at the corresponding computational-space donor point. This exchange of data allows

for the eventual calculation of consensus values for the flow field quantities in these

regwns.

Visualization software must be able to continue the calculation of streamlines

through the boundaries which separate adjacent blocks. A negative iblank number

indicates which other block overlaps or abuts the current block in some region of

interest, but a coarse search of the new block is required before the point-finding

method may be applied. Augmenting the grid with donor-point locations eliminates

the need for the coarse search and improves the speed of streamline block transition.

106

4.5.1 Storing the Donor-Receiver Equivalences

In a typical grid, only about five percent of the nodes are located in overlap

regions. Because so few node points are receivers, the donor-receiver information

can be recorded in a separate small array of records which accompanies the node

position data of each block. When a grid is loaded into Flora, the software counts

the nodes which carry a negative iblank number. Storage is then allocated to hold

the records for that many donor-receiver pairs. This secondary array is indexed by

a small integer which is stored in the tag word of each node. Nodes which are not

within an overlap region carry a zero index; a non-zero index identifies the donor

record for that receiver node. The number of bits presently allocated in Flora to

store the index in the tag word is currently twenty. This allows the indexing of over

one million receiver points per block while still leaving twelve bits for the storage of

node and cell bit-flags.

4.5.2 Computing the Donor Points

The computational-space donor point coordinates are sometimes recorded in

a secondary data file (usually called "fort. 2") which is produced by some grid

generation codes. The "Virtual Wind Tunnel" uses these files to speed the transition

of particles across block boundaries [Bryson 1992].

In those cases for which these files are not available, the donor-receiver equiv­

alences can be recomputed directly from the node position data and the iblank

numbers. In the simplest approach to this problem, the first donor-point for each

block is found by a coarse search, followed by the usual stencil-walk point-finding

method. The donor points for the receiver nodes along a single line of grid points

are then computed by repeated invocations of the point-finding method, each time

commencing from the computational-space coordinates of the previously identified

donor point.

107

RECEIVERS

MISSING DONORS

NR INVOCATIONS

NR ITERATIONS

lTERS PER lNVOC

CPU SECONDS

EXTRAPOLATION?

none 1st 2nd
30862 30862 30862

27 29 27
71986 55446 55862

127522 99405 99151
1.77 1. 79 1. 77
70.4 64.7 67.9

Table 4.4: Effect of extrapolation in finding donor points.

We can improve the speed of this calculation by using computational-space

extrapolation. The first two receiver node points on a gridline are processed as

before. Donor points for subsequent nodes on this same receiving gridline can then

be identified by first advancing by the computational-space distance between two

previously identified donor points. The Newton-Raphson method is started from this

improved initial position, thus limiting the number of invocations of and iterations

within the method. As in streamline calculation, this enhancement can be used

only if the two previous computational-space points reside in the same donor block,

and only if the extrapolated position also lies within that block. Furthermore,

this extrapolation is meaningful only when the two previous receiver nodes and the

current receiver node are successors along the same gridline.

Donor points were calculated for the nine-block Shuttle grid [Buning et al. 1988,

Martin et al. 1990] shown in Chapter 1. The methods described here was used, both

with and without computational-space extrapolation along each gridline of succes­

sive receiver points. The values listed in table 4.4 are the number of receivers, the

number of receivers for which donors could not be readily found, execution counts

within the Newton-Raphson method, and the total expended CPU time.

The use of computational-space space extrapolation reduced the total compu­

tation time by only 8%, from 70.4 CPU seconds down to 64.7 seconds. Second-order

extrapolation reduced the total number of iterations, but caused a net increase in

108

Figure 4.2: 0-type and C-type grid blocks.

the elapsed time. Overall, these results are disappointing. This can be attributed

to the relatively short sequences of contiguous receiver nodes, and the additional

overhead of block-searching required at the start of each new sequence.

Summary: Donor-point" coordinates can be used as a means to rapidly con­

tinue the calculation of streamlines into neighboring blocks. Computational-space

extrapolation can be used to slightly improve the speed at which these donor-point

coordinates can be computed from the node position and iblank data.

4.6 SELF-ABUTTING BLOCKS

Single blocks are often wrapped around a cylindrical body such that node

points on opposite block faces are coincident. Blocks are also folded around low­

speed wings, bringing one block face to abut against itself. These two varieties of

self-abutting block, the 0-type and C-type topologies [Thompson 1982], exhibit a

branch cut in the flow domain which is comparable to the inter-block boundaries

discussed earlier.

109

Negative iblank numbers are not often specified along the seams of these self­

abutting blocks, since this juncture is handled using other mechanisms in most

flow solver software. Unfortunately, the visualization software has traditionally had

access only to the iblank field, and not the auxiliary files which describe the pres­

ence and the form of self-abutting blocks. Many visualization packages (including

PLOT 3D [Burring 1985], FAST [Bancroft 1990], and the test code used by Sadarjoen et

al. [1994]) thereby fail to continue streamlines across these unmarked branch cuts.

Some flow researchers edit the iblank field to explicitly indicate the connec­

tivity of self-abutting blocks; this is done after the simulation and prior to the

visualization of the computed fields. It would be preferable if the visualization

software itself were to handle these special cases without the need for manual post­

simulation editing of the iblank data. A novel heuristic test can be used to cross

these boundaries efficiently.

4.6.1 Implicit Connection

Whenever a streamline exits a block, Flora checks the tag word of the most

recent valid cell to determine whether there are donor points assigned to any of its

corner nodes. If no donor points are found, then either the particle has exited the

computational domain or it has crossed the unmarked boundary of a self-abutting

block. If we assume that the node points are coincident across this boundary, then

there are three possible points near which the streamline may have re-entered this

same block. One of these is found in blocks of the 0-type and the two other cases

occur in C-type blocks. If any one of these three re-entry positions prove to be the

starting position for a successful stencil-walk, then the calculation can be resumed

at this new location.

A streamline crossing the seam of an 0-type block will exit one block face

and re-enter the same block through the opposite face. For a specific example, let

110

us assume that the streamline exits the block through the lower block face in the

first grid dimension, near the node with index (imin,j, k). In this case, the point of

re-entry will be near the node (imax,j, k) in that same block.

A C-type block may be folded along one of two grid dimensions to bring

one block face into a self-abutting state. A streamline which exits the lower block

face near the node (imin, j, k) will re-enter the block at either (imin, imax - j, k) or

(imin,j, kmax- k).

Summary: The branch cuts in C-type and 0-type blocks are rarely marked by

negative iblank numbers. Visualization packages often fail to continue streamlines

which cross these unmarked boundaries. One simple method of streamline resump­

tion requires only the testing of three node points whenever an advecting particle

exits a block from a cell which carries no donor records. This resumption technique

requires no user intervention. It incurs no startup cost for pre-processing the grid.

It requires no storage of additional donor records. Most importantly, it properly con­

tinues streamlines through self-abutting blocks which match node-to-node across the

branch cut.

4.7 SUMMARY

The successive query points of a numerical integration method occur close

together and in a predictable pattern. This behavior can be exploited by caching

the sample values for the vertices of one or more cells, lazy calculation of derived

fields, and re-use of the computed values. Extrapolating along partially computed

streamlines can reduce the calculation required in the point-finding routine.

Precomputing the donor point coordinates avoids the loss of coherence which

would otherwise occur at the block boundaries. Extrapolation along sequences of

donor points improves the efficiency of donor point calculation. Checking for particle

111

re-entry in self-abutting blocks allows the resumption of streamlines across these

previously troublesome boundaries.

All of these methods increase the speed of streamline calculation, and thereby

improve the interactive response to the repositioning of rakes within the flow domain.

In a test case in a single block, a family of streamlines curves was computed in less

than half the time consumed by an unimproved method.

112

CHAPTERV

CONSTRUCTION OF STREAM SURFACE MODELS

Stream surfaces can be more effective than streamlines for depicting the structure

of complicated flow fields. Earlier algorithms for the construction of stream surface

models are not very efficient, nor do they produce models which adequately represent

the highly convoluted surfaces which are produced in many flows. This chapter

presents a new algorithm which efficiently constructs accurate models of stream

surfaces. 7

5.1 OVERVIEW

Just as a streamline is the locus of a single point advected over time, a stream

surface is the two-dimensional locus of an advected curve. The initial curve is a one-

dimensional continuous analog of the seed point used in the placement of a single

streamline. Alternatively, a stream surface is the locus of all the streamlines with a

seed point on the initial curve.

An ideal stream surface may be approximated by a polygonal model. Fig­

ures 5.1 and 5.2 suggest that a few carefully placed rakes can create surfaces which

more clearly convey the shape of a complicated flow field. In each of these images the

flow travels from the right to the upper left of the images, spiraling with increasing

diameter to form a conical helix. Just above the trailing edge of the vehicle body,

the innermost coils of the flow turn inward and forward to travel back toward the

7 An early version of this material may be found in the paper "Constructing Stream Surfaces in
Steady 3D Vector Fields" [Hultquist 1992].

Figure 5.1: Streamlines in the flow over a delta wing.

Figure 5.2: Stream surfaces in the flow over a delta wing.

114

nose of the vehicle. This pocket of spiraling air forms a recirculation bubble which

greatly reduces the lift on the wing.

The surface provides visual cues which help one to interpret two-dimensional

images of this three-dimensional shape. Surfaces can be overlaid with texture to rep­

resent additional measures of the flow, may be rendered with variable transparency

to mimic the appearance of empirical smoke injections, and can be effectively de­

picted in monochrome. Surfaces can be formed from circular rakes to create stream

tubes.

The construction of a polygonal stream surface model typically begins with a

discretization of the rake to form a sequence of particles positioned at small intervals

along this initial line segment. These particles are the initial seed points from which

a family of streamlines is computed through the flow domain. The points along

these curves form the underlying skeleton upon which a set of polygons is then

defined. Surface normals are computed over the mesh and the result is displayed by

the rendering hardware of a graphics workstation. Surface construction algorithms

differ in how they adapt polygon size to the local deformations of the surface and

also in the manner in which they allocate the processing effort used to advance each

particle.

5.1.1 Parameterization

A stream surface is a two-dimensional parametric surface embedded in the

three-dimensional domain of a flow velocity field. An ideal stream surface is the

locus of an infinite number of streamlines, each uniquely identified by the fractional

offset s E [0 ... 1] of its seed point along a continuous originating rake. The surface

supports a second family of curves, which are the positions of the advected rake

at an infinite sequence of downstream displacements. These cross-flow curves are

called timelines, and these may be labeled by a parameter t E [O ... oo].

115

Figure 5.3: Parametric space over a stream surface.

These two families of curves define a two dimensional coordinate space (s, t)

over the surface, as illustrated in figure 5.3. The surface is b~unded on the upstream

edge by the rake itself, which defines the initial timeline (t0). The surface is bordered

by the streamlines (so) and (s1). These are joined by an infinite sequence of timelines

(tk)·

The simplest construction method creates a quadrilateral mesh of points at

regular intervals in the (s, t) coordinate space. Each streamline (s;) may be com­

puted by numerical integration using a fixed stepsize to produce a sequence of points

(s;, t 0) through (s;, tn)· An adaptive stepsizing method could be used, if followed by

a resampling of the curve at some fixed interval. Volpe [1989] and Belk et al. [1994]

implemented such a scheme, computing a family of streamlines and joining each

adjacent pair of curves with a sequence of quadrilaterals to form a set of contiguous

ribbons. This approach is adequate for well-behaved flows, but the surfaces embed­

ded within many flow fields twist and fold greatly. This deformation complicates

the construction of accurate models.

The distortions to which stream surfaces are subjected may be categorized

into those caused by shear in the flow field, by divergence in the local plane of

the surface, by local curvature, and by convergence. Shearing tends to stretch the

timelines locally; divergence in the local tangent plane of the surface causes adjacent

116

streamlines to separate. Surfaces often fold lengthwise, introducing high curvature

along timelines. Finally, in many engineered flow fields, streamlines within the

flow are pushed together, causing a shrinkage of the distance between neighboring

particles.

5.1.2 Earlier Work

Krueger [1991,1992] implemented a proof-of-concept system for the visualiza­

tion of flow fields. One of the visualization models supported in this package was

a simple stream surface, constructed with a polygonal tiling of adjacent pairs of

streamlines. Ribbons which exceeded a specified width were truncated, with the

downstream portion of that ribbon substituted by two narrower ribbons.

Helman [1989,1990] implemented a system which identified the topologically

significant curves on the solid boundaries of a vehicle. The software then constructed

the topological separatrices, that is, the stream surfaces which emanate from these

lines and extend into the surrounding flow. Helman used a ribbon tiling approach

to construct these surfaces, and refined this representation by splitting the widest

ribbons down their entire length.

These adaptive ribbon-splitting methods result in scattered access patterns

to the memory pages and cache lines of the sampled flow data, since individual

complete streamlines are computed through the flow domain. Both methods also

compute an overabundance of points in regions of convergent flow. When used in

an interactive context, both methods also require the repeated display of the entire

scene, as refined stream surface models are successively substituted for their coarser

predecessors.

Eder [1991 J developed a distributed system for computing stream surfaces.

After the user specified the rake for a new surface, the system computed between

fifty and two hundred streamlines using a vectorized code running on a remote

117

Siemens-Nixdorf VP-200 mini-supercomputer. These curves were copied into the

memory of a workstation, then a two-pass filtering removed those points which did

not significantly contribute to the accuracy of the surface model.

This filtering reduces the cost of displaying the completed model, but excess

calculation is performed to produce points which are later removed from the model.

This is acceptable in Eder's approach, since the latency of the network connection

would unduly penalize the adaptive placement of advecting particles. In a strictly

local implementation, excess calculations may be more easily avoided. Furthermore,

when these streamlines diverge, the approach taken by Eder can leave sparsely

sampled regions in the finished polygonal sheet. The regions would need to be

"filled in" by the calculation of additional streamlines, and by the insertion of those

points into the previously computed model.

To support the interactive placement of stream surfaces, we should like to

have methods for rapidly advecting particles through the flow domain. The two

previous chapters have described such improvements. We now require a method

to manage the advection of a set of particles to generate an adaptively sampled

representation of a surface. Furthermore, it would be helpful if the interim results

could be efficiently presented to the user, to allow early judgment of the quality of

the rake placement.

5.2 THE ADVANCING FRONT METHOD

I have devised an improved algorithm which advects a row (orfront) of particles

in a tightly-clustered group. This advancing front algorithm interleaves the advec­

tion of the particles with the creation of polygons across the trailing downstream

edge of a growing surface. During the advance of the front, the relative positions

of the particles are examined to determine if they adequately represent this cross­

flow curve which spans the surface. Additional particles may be added to the front,

118

front

rake

Figure 5.4: Appending quadrilaterals to a growing surface.

or particles may be removed, to maintain an adequate sampling density over the

growing model. This approach more efficiently accesses the sampled field data and

provides better control over the sampling density across the width of the growing

model. Each new triangle can be painted into an otherwise static background image,

thereby reducing the performance required from the display hardware.

5.2.1 Implementation

In the simplest variant of the advancing front methods, all of the particles in

the front are repeatedly advanced some short distance through the flow domain.

Each particle may be advanced by some fixed distance in physical or computational

space, or by some fixed integration stepsize, or even by an amount chosen for each

particle by some adaptive-stepsizing integration method. However this distance

is selected, every particle is advanced by some amount during each iteration of

the algorithm. After every particle has been advanced, a row of quadrilaterals is

appended to the downstream edge of the partially constructed model. Figure 5.4

shows a surface computed over some number of iterations, with the new positions

of the advecting particles just beyond the end of the polygonal sheet.

119

If the sampling density is deemed too high along any portion of the front,

then some of the particles may be deleted from this advancing cross-flow curve.

When a portion of the front requires more samples (as is more often the case), then

additional particles must be inserted into this sequence. Of course, the removal

or the insertion of particles requires some local patching of the otherwise regular

polygonal tiling of the model.

This lockstep advancement allows good control over the cross-flow sampling

density of the model. Interim depiction of the surface during its construction is

simple, since the newly created polygons can be immediately rendered into the

depth and color buffers of an otherwise static background image. Even the pattern

of data access is improved, since the particles advance in company and (barring

recirculation of the flow field) any region of the flow domain will be visited at most

once during the construction of each new surface. Finally, particles are advected

only when the resultant points will be used in the model; excess calculation and

oversampling are avoided.

Unfortunately, advancement by a fixed integration stepsize will favor those

particles in more rapid regions of the flow field, causing these particles to advance

more rapidly and unduly lengthening the front. Similarly, an adaptive stepsizing

method will advance farther those particles which travel through regions of relatively

constant velocity. Siclari [1989] and Volpe [1989] resampled the streamline curves

to generate a sequence of points separated by a constant physical-space distance.

This properly handles variations in the velocity magnitude, but raises problems in

helical flow. The particles on the "outside lane" of each turn will fall further behind

those which must travel a shorter distance.

The result in any of these cases is an advancing front of increasingly greater

length, as some of the particles outdistance their companions. More particles are

then needed to represent this curve, even though the surface might otherwise be

120

rake

Figure 5.5: Shearing of a front in lockstep advance.

rather simple and the front relatively straight. This situation, illustrated in fig­

ure 5.5, produces an overabundance of points in a model, and increasingly skewed

and stretched quadrilaterals.

5.3 HANDLING SHEAR

When the particles are advanced in a lockstep fashion, shearing of the front

can greatly increase the number of particles needed to adequately represent the

front. An orthogonal advance scheme avoids this problem by advancing the laggard

points more rapidly. This tends to keep the front locally orthogonal to the flow

velocity, thus reducing the length of the front and reducing the number of particles

which must be advected through the flow domain. The resulting surface model

is composed of well-shaped polygonal facets with sizes adjusted to the local two­

dimensional curvature of the surface.

121

Figure 5. 6: Regular and non-regular tiling of a ribbon.

5.3.1 Ribbon Tiling

The gap between any two streamlines can be bridged by a sequence of triangles

to form a ribbon. Each new triangle shares an edge with its predecessor and obtains

its third point from one of the two bordering streamlines. Two curves with (n + 1)

points in each contain 2n edges, each of which serves as the base for a new triangle.

This ribbon can be formed in (2n choose n) or ((2n)!/(n!n!)) different ways. Any

one of several algorithms may be used to select a suitable tiling from among these

numerous possibilities.

The simplest tiling method alternates sides, thereby consuming points from

the two streamline curves at an equal rate. Krueger [1991] used this method in his

"VideoDesk" application. This tiling method is satisfactory when the flow field is

well behaved; however, in many flows this simple approach can produce long skinny

triangles and a poor representation of the true surface. Irregular tiling of adjacent

streamlines can be used to avoid the problems encountered with the regular tiling

methods. The construction and the display of such ribbons is slightly more difficult,

but the shape of each triangle is closer to equilateral (figure 5.6). Nicely shaped

triangles are particularly important when the surface is drawn. in wireframe or with

122

outlined polygons. They also improve the lighting and texturing of the surface, since

color and texture values are usually interpolated linearly across each surface facet.

The surface which is globally optimal in some scalar measure can be obtained

by the method of Fuchs, Kedem and Uselton [1977]. This algorithm uses a dynamic

programming approach to find a tiling for two closed loops of points, such that

some scalar quality measure is minimized. Since the initial points of two adjacent

streamlines ((s,, t 0) and (s;+l, t0)) must be connected to one another, a simpler

version of the general algorithm may be used. Helman [1989,1990] used this variation

to construct ribbons of minimal total surface area.

5.3.2 Incremental Tiling

The globally minimal algorithm requires that each streamline be computed

to its full length before any triangles can be created. In contrast, an incremental

tiling method creates new triangles beginning at the upstream end of the ribbon. It

creates triangles in succession, down the length of a growing ribbon, using only local

information. The particles can be advected just one step ahead of the end of the

growing ribbon, and the triangles can be drawn into the static background image as

that ribbon is extended through the flow domain. The user may then evaluate this

interim model, and perhaps abort the ongoing calculation by shifting the rake to a

new location.

Figure 5. 7 illustrates the implementation used in Flora, in which a ribbon

structure is used to connect the points generated from a pair of neighboring particles.

These two curves of points are joined with a sequence of triangles, each appended

to the end of the growing ribbon. The surface itself is composed of a family of

contiguous growing ribbons, which are extended together through the flow field.

Flora represents each advecting particle with a particle structure, which

maintains the information required to advance a particle through a vector field.

123

particle
particle

Figure 5. 7: A ribbon structure connecting two particles.

Flora maintains a physical-space parameter facet..size, which is the user-preferred

length of the triangle edges. Each particle is advanced with a stepsize chosen within

the particle integration code. The resulting sequence of successive particle locations

is then filtered, such that the points used in the surface construction are separated

by at least this desired distance. Points from this filtered sequence are represented

by a linked list of instances of a point structure. The position of each point is

recorded in both physical space and computational space. These coordinates are

copied into output arrays that define the computed model. Each point structure

also stores the integer index at which that point's data was written to the. output

buffers. A triangle is represented by the integer indices for the data of its three

vertices. Each vertex is written only once, but most indices appear in the index

triple for several triangles.

At each step in the ribbon-growing iteration, the two most recently joined

points (L0 , Ro) and their successors (L 1 , R1) form a quadrilateral which must be

split along one of its two diagonals. This is illustrated in figure 5.8. The shorter of

124

Figure 5.8: Appending a triangle to a ribbon.

the two diagonals (ILo- R 1 1 or IL1 - Rol) forms an edge of the new triangle, the new

end of the ribbon, and the base of the next quadrilateral. In this case, the length

ILo - R1 l is the shorter and the new triangle is constructed using a new point from

the righthand curve. The data for this triangle is written to the output buffers, and

the point Ro is released. This is implemented by decrementing the reference count

for this item. When that count goes to zero, the point structure is returned to a

free-storage list.

The ribbon-growing is implemented in code similar to this:

LO,Ll, RO,Rl .- nextquad
lft_diag = length(RO,Ll);
rgt_diag = length(LO,Rl);
lft_advance = (lft_diag < rgt_diag);
if (lft_advance) {

write_triangle(LO,RO,Ll);
free_point(LO);

} else {
write_triangle(LO,RO,Rl)
free_point (RO);

}

125

The four vertices of the current quadrilateral are obtained; perhaps after advecting

one or both particles an additional step through the flow. The two diagonals are

measured, and the shorter is selected. One triangle is written to the output buffers,

and one point structure is possibly released. Note that the "length" of each diagonal

may be computed as a sum-of-squares; no square root is required since only a relative

comparison of the two lengths is performed.

This local minimal width algorithm can produce poor results when the distance

between the streamlines is significantly greater than the distance between successive

points on either of these curves. In practice, when the curves are "reasonably" close

together, this incremental method produces quite acceptable results.

This simple tiling algorithm allows the construction of a single ribbon, pro­

ceeding immediately behind the advance of a pair of neighboring particles. This

technique can be combined with a scheduling method which determines which of

several ribbons should be advanced next. This adaptive advance is used to com­

bat the effect of fluid shear, thereby shortening the overall length of the front and

reducing the number of particles which are needed to generate the model.

5.3.3 Implementing the Orthogonal Advance

Each step of the surface advance begins with the creation of a single triangle

at the end of the leftmost ribbon. If the new point for this triangle is selected on the

righthand streamline, then the second ribbon will lag behind the first. To erase this

deficit, triangles are appended to the second ribbon until the two ribbons are once

again the same length along the shared streamline curve. If necessary, the third

ribbon is brought abreast with the second, and so on.

By extending the ribbon-growing code from above, we now have the orthogonal

surface-growing function shown below. In this routine, each ribbon is advanced at

least until it has reached the same point as its predecessor ribbon along the shared

126

curve. The caught..np flag is then set, and no further advancement along the shared

curve will be allowed during this iteration. Additional triangles may be added to the

ribbon as long as the new triangles consume points on the righthand streamline and

as long as the leading edge of each new triangle is shorter than that of it predecessor.

caught_up = FALSE;
prev ...diag = 0;
while (1) {

}

-- select the diagonal
10,11, RO ,R1 <-- next quad
lft_diag = length(L1,RO);
rgt_diag = length(LO,R1);
lft_advance = (lft_diag < rgt_diag);

if (caught..np AND
(lft_advance OR (rgt_diag > prev_diag)))

break;

-- output the triangle and free the point
if (lft_advance) {

write_triangle(LO,RO,L1);
free_point (LO);
prev_diag = lft_diag;
-- we have pulled aside predecessor

caught_up = TRUE;
} else {

write_triangle(LO,RO,R1)
free_point (RO) ;
prev_diag = rgt_diag;

}

-- let neighbor catch up with us
advance~ibbon(rightcneighbor(self));

An example is shown in figure 5.9. The first and second triangles are con­

structed at the base of ribbon A. This introduces a debt for ribbon B, which lags

behind A along the common streamline. The third triangle is added to ribbon B,

but now this incurs a debt for ribbon C. C must be advanced to bring it alongside

B, then triangle number 6 is appended to C to shorten its trailing edge. Ribbon

127

sweep direction

Figure 5.9: Extending the 'surface using orthogonal advance.

B is then advanced some more and this finally removes its deficit with respect to

the first ribbon. At this stage, triangles has been appended to each ribbon, the sur­

face consists of seven triangles, and it once again has a smooth downstream edge.

The surface construction continues with the creation of two more triangles, which

introduce the need for once again extending the second ribbon. The advance of the

front begins with one or more triangles appended to the first ribbon, and with any

mismatch along shared streamlines subsequently eliminated by the extension of the

neighboring ribbons.

(The labels left and right in this example are simply conventions, since the rake

is arbitrarily oriented in three-dimensional space. Indeed, the actual implementation

performs the sweeps in alternating directions across the front. This boustrophedonic8

implementation slightly improves the locality of data access, better handles regions

of high curvature, and is fun to watch.)

8 boustrophedon: (Written) alternately from right to left and from left to right, like the course
of the plow in successive furrows; ... , Oxford English Dictionary

128

5.3.4 Recovering the Timelines

When advanced with the orthogonal method, the triangles which are drawn

into the image are not drawn in a strictly increasing time order. Instead, particles

are advanced to maintain a short front length. This can produce a misleading

impression of the flow behavior.

A more faithful representation of the growth of the surface could be imple­

mented by deferring the display of triangles. The particles would be advanced as

before, with triangle creation still directly associated with an orthogonal advance of

the front. However, new triangles would not be immediately displayed, but would

instead be placed in a list which is kept sorted by the time parameter of the newest

vertex of each triangle. Triangles would be displayed only after triangles had been

created across the entire front. Triangles from the tail end of the sorted list would

then be drawn in the proper temporal order. This decoupling of creation and dis­

play would consist of two tasks: one which advances particles according to spatial

constraints, and the other which renders the resulting triangles in temporal order.

This would yield a more visually intuitive development of the image.

Another approach to preserving the temporal information is to apply a striped

texture to the polygonal surface. These timeline stripes depict the relative speed of

the flow across the surface, even after the surface construction has been completed.

Where the flow increases in speed, these stripes become wider and further apart.

Figure 5.10 shows striped texturing overlaid on a set of outlined triangles. Note that

the stripes are not aligned with the triangle edges. (Also note that the textures are

linearly interpolated across each facet, thus a slight local distortion of the timelines

may be incurred.)

The deferred display of new triangles provides a more physically accurate rep­

resentation of the growth of a surface. The timeline texturing conveys temporal

129

Figure 5.10: Timeline textures on a stream surface model.

information in static images. The Flora application does support texturing of time­

lines, but the deferred display has not been implemented. Bear in mind that, in each

case, what is represented is the relative velocity of a steady flow or the pseudo-time

frozen in a single instantaneous snapshot of an unsteady flow field.

5.4 HANDLING DIVERGENCE

Many flow fields exhibit regions of strong divergence, in which a pair of rieigh­

. boring streamlines are separated by an increasingly greater distance.9 gap would

grow increasingly wider, and this would produce a coarse and possibly misleading

depiction of the flow structure. We may improve the stream surface model by intro­

ducing additional particles in these regions, thereby splitting some of the ribbons

lengthwise. To implement this refinement, we must determine when new particles

9 A pair of streamlines may separate even in a flow which is strictly divergence-free in three
dimensions CY'. a= o).

130

hierarchical

Figure 5.11: Full-length and hierarchical ribbon splitting.

are needed, where each new particle should be placed, and how the polygonal tiling

of the surface must be modified to accommodate this new sequence of points.

5.4.1 Hierarchical Splitting

Helman [1989,1990] computed coarse stream surface models using a polygonal

tiling of a family of streamlines. He then refined these models by splitting each

overly wide ribbon along its entire length with a new streamline. Each wide ribbon

was then replaced with two narrower ribbons which shared the new streamline as a

common edge. Under this method, the distribution of points over the surface tends

to be biased in favor of the upstream portion of the surface, which will be narrower

in many flow fields. In the extreme case, the seed points of adjacent streamlines

can be separated by very tiny distances, and yet the resulting curves can separate

quite widely in the far downstream regions of the surface model. Full-length ribbon­

splitting can therefore produce too many points in the upstream end of a stream

surface model, and yet create too few points in the downstream end.

131

This imbalance can be avoided by the hierarchical splitting of ribbons, in which

ribbons are truncated when their width exceeds some tolerance [Krueger 1991]. Only

the unacceptably wide downstream portion of a ribbon is then replaced by a pair

of narrower ribbons which more accurately represent that portion of the stream

surface. Figure 5.11 demonstrates how this partial splitting of ribbons more evenly

distributes sample points over a widening surface. The advancing front method

enables one to easily implement hierarchical splitting of ribbons.

5.4.2 Splitting a Ribbon

Some evaluation must be made to determine when a new particle should be

inserted into the front. (Here we shall consider only the effect of divergence in the

local plane of the surface; adjusting the sampling density in response to changes in

surface curvature will be considered later.) For now, it is sufficient to consider the

distance between neighboring particles, and to insert a new particle between any

pair of particles which drift overly far apart.

In Flora, a ribbon is split by the insertion of a new particle structure and a

new ribbon structure into the linked-list which represents the front. The particle

advection code produces new particle locations which have been filtered to generate

a sequence of point structures separated by the user-specified facet _size distance.

Each new triangle is constructed from three of the points taken from the current

quadrilateral (L1 , L0 , Ro, R 1). Flora introduces a new particle when the width of

the current quadrilateral !Lo - Rol grows to more than twice the facet-size.

One new triangle, shown in figure 5.12, must be added to the surface to make

the transition from one ribbon to its two narrower replacements. The split introduces

a new triangle (L0 , M, Ro) to the surface, followed by two additional triangles which

fill what remains of the original quadrilateral. The two new ribbons share point M,

which also acts as the seed of the new streamline.

132

Figure 5.12: Splitting a ribbon with a new particle.

5.4.3 Placing the New Particle

When a new particle must be added, its position M is initially identified only

by its location in the parametric coordinate space of the surface. This new particle

must have an (s, t) location roughly between that of the points L1 and R1 . Three­

dimensional physical and computational-space positions must then be determined

which correspond to this parametrically specified location.

The simplest method interpolates in physical coordinates midway between L1

and R1 • This was the method used by Krueger [1991] in his hierarchical splitting;

the starting position of the new streamline was found by linear interpolation in phys­

ical space midway across the trailing edge of the truncated ribbon. This introduces

significant error into the surface, since the new particle is positioned by linear in­

terpolation at a place in the surface which has just been deemed to be inadequately

sampled.

The physical and computational coordinates of a particle at (sj, tk) may in­

stead be found by computing a streamline curve from a point (Sj, 0) on the initial

133

rake. In a typical surface, the ribbon which is to be split is quite narrow along a large

percentage of its length. Integration of a new curve which bisects the entire ribbon

requires significant calculation, most of which is spent bisecting a very narrow gap.

In the extreme case, the initial points of the two bordering streamlines differ in

their computational coordinates by an amount only slightly greater than the limits

of machine floating-point precision. A ribbon with an initial width of almost zero

cannot be reasonably split any further, since the limitations of the floating point

representation prevent the accurate calculation of new seed locations in this narrow

space.

I have implemented a compromise method which produces new particle posi­

tions with good accuracy and low cost. This approach periodically saves the particle

locations across the entire front. When a ribbon must be split, a new particle lo­

cation· is interpolated from this saved data, midway across the ribbon and some

distance upstream. The new particle is then advected forward to its place on the

front. The three-dimensional position of this new particle is more accurate than

a locally interpolated point would be, since it was obtained by interpolation in a

well-sampled region of the surface. This improved accuracy is bought at relatively

low computational cost, just the few integration steps needed to advect the new

particle to its position on the current location of the front.

5.4.4 Ripping the Surface

The introduction of new particles into the front serves well to adapt the sam­

pling density of an expanding surface. But when a portion of the front is stretched

very rapidly, it is sometimes preferable to sever the front and to continue the inde­

pendent advancement of two separate portions.

Consider the flow illustrated in figure 5.13. Two neighboring streamlines, once

very close together, reach a place in the flow at which they begin to travel in almost

134

Figure 5.13: Ripping a heavily divergent surface.

opposite directions. The ribbon between these two streamlines is truncated and the

two curves become the bordering edges of two separate fronts. These independent

groups of particles are then advanced independently by interleaved processing of all

of the active fronts.

The comparison of the direction of the neighboring particles may be imple­

mented most easily with a dot product of the velocity vectors. If the particle direc­

tions differ by greater than ninety degrees, then this dot product will be negative.

Ribbons are truncated when this occurs.

In a commonly encountered situation, neighboring streamlines pass above and

below a wing, as shown in figure 5.14. If the facet-size is larger than the thickness of

the wing, then the dot-product test may not detect the imposition of this obstacle in

the path of the growing ribbon. Performing the same test with computational-space

velocities, however, does properly handle this common case. The particles in this

figure travel through an 0-grid which has been wrapped around the wing. As the

135

Figure 5.14: Ripping a surface on the leading-edge of a wing.

front nears the leading edge of the wing, the particles above and below the wing

begin traveling in almost opposite directions in the computational coordinate space

defined by the surrounding grid block. The surface is therefore torn just slightly in

front of the wing.

In many grids, the cell height along the k or (dimension is quite small relative

to the other two computational space directions. The dot-product of computational­

space vectors may be negative even for closely aligned vectors, if those vectors are

aligned with a k-gridplane. A somewhat more reliable, albeit non-general, test of

vector angles ignores the third computational component, and considers only the

projection of the computational-space vectors into the two dimensions of ~ and T).

This refined test properly handles most ripping in 0-grids, and does not inadver­

tently tear the surface in the compressed cells of the boundary layer.

136

5.5 HANDLING CURVATURE

Adaptive stepsizing is often used in numerical integration to adjust the sam­

pling of curves in response to changes in the curvature of the flow. In the parametric

notation of our stream surfaces, the smaller stepsizes are used to adequately resolve

regions which have relatively large values of 82xj8t2 at a point x along some stream­

line curve. For stream surface construction, we would also like a method for adapting

the sampling in response to changes in fPx / 8s2
; that is, changes in the curvature of

the surface along the cross-flow dimension.

5.5.1 Measuring Surface Curvature

Local curvature of the surface in both dimensions may be easily estimated by

measuring the angle between adjacent unit-length surface normals. This is conve­

nient, since these normals must be computed anyway for the rendering of shaded

polygons. If the angle between the normals on adjacent facets is greater than some

threshold value, we may assume that the curvature is excessive and may increase the

number of particles in order to more faithfully represent that region of the surface.

Conversely, if the angle is quite small, then the surface is relatively fiat and the

number of particles might well be reduced.

The angle between two unit-length vectors is equal to the arc-cosine of their

dot-product. We can avoid the calculation of this transcendental function by taking

the cosine of both sides of the comparison, thereby comparing the dot-product with

the cosine of the original threshold value. Assume that we wish to refine any pair

of ribbons which join at an angle of greater than twenty degrees. These ribbons

should each split when the dot-product of their most recent surface normals falls

below cos(20) :::::J 0.94.

137

5.5.2 Modifying the Effective Facet-Size

If a ribbon is split due to an local increase in surface curvature, then the sub­

sequent quadrilaterals along that ribbon will be narrower than we might prefer and

the constructed triangles will be long and skinny. To maintain the proper aspect

ratio of the triangles, any change in the local ribbon width should be accompanied

by a similar change in the separation distance of subsequent points along the neigh­

boring streamlines. This may be done by maintaining a local facet-size which is

smaller than the global facet-size which was specified for the entire surface. When

the local facet-size is reduced, new points generated from each particle will be posi­

tioned more closely. This distance will match the new width of the ribbon, and this

will produce triangles with a more acceptable aspect ratio.

One may also choose to limit the reduction of the facet size, so that very

sharp creases in the surface do not cause the introduction of a great quantity of tiny

triangles. Instead, a very sharp crease in the surface will first trigger a reduction of

the facet size, some splitting of the ribbons, and an eventual ripping of the surface

when further reduction of the facet size is.disallowed.

5.6 HANDLING CONVERGENCE

The orthogonal advance method helps to minimize the number of particles

needed to construct a model in a flow with heavy shearing. Insertion of new particles

is used to improve model accuracy in the face of surface divergence and curvature.

With these methods, we may efficiently construct well-sampled models in many

complicated flow fields.

The speed of construction and display may be improved by reducing the num­

ber of particles wherever the surface converges and flattens. Note that insufficient

merging of ribbons will produce needless additional polygons in the final result, and

will consume excess computation time in advecting this surfeit of particles.

138

Figure 5.15: Removing a particle and merging two ribbons.

The test for when to remove a particle must consider the abutting quadrilat­

erals of two neighboring ribbons; merging of ribbons can therefore be applied only

when the two ribbons have advanced the same distance along the shared streamline.

If these two ribbons are roughly coplanar and if the height of the two quadrilaterals

is greater than their combined width, then these two ribbons may be merged into

a single wider replacement. The shared streamline is stopped here, and the shared

particle structure is returned to a list of free storage.

Merging of ribbons requires the creation of three new triangles which make the

transition between the leading edges of the two ribbons and the single leading edge

of the new wider replacement. This transition is shown in figure 5.15, which also

demonstrates that the merging of ribbons advances the new ribbon by one step along

both its neighboring curves, and thus may require the subsequent advancement of a

neighboring ribbon to maintain the restrictions of the orthogonal advance method.

139

5.7 DISCUSSION

The adaptive orthogonal advancing front method makes feasible the interactive

exploration of flow field data. It offers increased performance, produces improved

sampling densities over the constructed surface, and allows the incremental display

of interim results.

sampling quality : The advancing front method begins at the rake and works

downstream across the width of the surface. The number of particles on this

front is continually adjusted to maintain a sampling density appropriate to

the local differential measures of the surface.

performance : Overall performance is improved, since particles are used sparingly

in the construction of the surface. We avoid computing integration steps which

do not contribute to the quality of the constructed model.

interaction : The earlier ribbon-splitting methods repeatedly replace a single pre­

viously computed ribbon with two narrower ribbons. If the user interface is

designed to continually update an image of the refining surface, then that

image must be entirely redrawn. The advancing front method requires a full

redisplay of the image only when the rake is repositioned. While a surface is

being computed, newly created triangles are simply drawn into the depth and

color buffers of an evolving image. Every new triangle is a contribution to the

final model.

5.8 SUMMARY

Stream surface models can be constructed by a polygonal tiling of adjacent

pairs of streamlines. Since flow fields tend to diverge, this method produces far

too many points in the upstream portion of most stream surfaces and not enough

further downstream. ·Hierarchical splitting of the ribbons can distribute the samples

140

more evenly, but this approach does not allow for the reduction of the sampling rate

in regions of convergence. Advection of timelines avoids many of these problems,

but it falls prey to shearing of the flow.

Maintenance of an orthogonal front of particles is an efficient method of gen­

erating a set of sample points over a two-dimensional stream surface model. The

advancing front of particles forms a discretization of a cross-flow line on the ideal

surface. Orthogonal advancement of these particles tends to mininiize the length

of this discretized curve. Particles may be added to or removed from the front to

maintain an acceptable sampling density in the presence of local curvature, diver­

gence, or convergence. A front which encounters massive divergence of the flow may

be split, thus ripping the surface around obstacles. The triangles in the constructed

model are approximately equilateral and of a size adapted to the local curvature of

the surface. This yields representations of the flow structure which are more visually

intuitive than other, more commonly used, models.

141

CHAPTER VI

CONCLUSIONS

Stream surface models can be used to depict fluid flows more effectively than is

possible when using streamlines. I have developed algorithms which rapidly con·

struct adaptively sampled models of stream surfaces. I have built an application

which allows the interactive placement of the originating rakes for such models.

The usefulness of these algorithms and this implementation has been confirmed by

the use of my software by scientists at the NASA Ames Research Center and at the

Wright-Patterson Air Force Base.

6.1 EARLY USES OF FLORA

An early version of Flora was described in my paper "Interactive Numerical

Flow Visualization Using Stream Surfaces" [Hultquist 1990]. This primitive software

was used to produce images for the paper "Vortical Flows over Delta Wings and

Numerical Prediction of Vortex Breakdown" by Ekaterinaris and Schiff [1990].

This simple application was difficult to use and cumbersome to extend, and

so I spent two years revising the construction algorithms and devising an advanced

implementation platform. I then published a refined algorithm for stream surface

construction [Hultquist 1992], and (with Eric Raible) a description of the SuperGlue

programming environment [Hultquist and Raible 1992].

After two additional years (in 1994), I finished a completely new version of

Flora, which was installed for use by CFD scientists at the NASA Ames Research

Center in California and at the Wright-Patterson Air Force Base in Ohio. The

user documentation for this new version of Flora is included in Appendix B of this

dissertation.

6.1.1 Video Production

The first useful work performed with the "new Flora" was in the production of

a videotape. This work was intended primarily for presentation to non-specialists,

to give an overview of the kinds of research being done at NASA. This "1994 CFD

Technical Highlights" videotape [Hirsch and Gong 1994] includes several minutes of

animation which uses stream surfaces to depict three different flow fields. The first

piece demonstrated the vortex formed over the edge of a deployed flap on a wing.

The second segment depicted the flow inside a small heart-assist pumpwhich has

been designed for surgical implantation. The final segment showed the flow of air

surrounding and trailing in the wake of a magnetically levitated "bullet train."

Before this video could be made, I had to extend Flora to support video

production. Since Flora was implemented under SuperGlue, this modification was

much simpler than it might otherwise have been. The position of the models for each

frame of animation was computed in the Scheme command layer, and a new class

was defined to allow convenient program-level control of video-recording hardware.

To be sure, the features added to this revised copy of Flora were only the minimal

set required to control very simple camera motions. A small amount of extra work

was then needed to adjust model colors and scene lighting for a more acceptable

appearance when recorded on NTSC-encoded videotape.

Once these modifications had been made, the animations were created. I was

helped in this by Ms. Vi Hirsch, a video production specialist at the Numerical

Aerodynamics Simulation Facility at NASA-Ames. She and I created each video

segment in consultation with the scientists who had computed the datasets. Each

scientist described to us the particular aspects of the flow field which they felt were

143

of interest. Visualization models were created and then modified under the direct

supervision of the participating scientists. Once an acceptable set of models had

been constructed, we would define the motions of the camera and record the scenes

on an Abekas disk-video system, with final transfer of the images onto videotape.

The first dataset was of a flap extended from the wing of a generic commercial­

transport airplane [Mathias et al. 1995) . One of the participating scientists, Dr. Stu­

art Rogers, wanted us to illustrate how a vortex formed in the flow around the edge

of the flap. Three small rakes were placed near the top of the flap. While the scene

was recorded, the stream surface models were animated to depict the relative speed

of the flow. Since the advancing front method does not march the particles through

the flow at the same speed, the motion of the fluid was depicted using a texture.

This texture was a single rectangular patch of color, interleaved with transparent

stripes. The stripes were laid across the models to form gaps parallel to the time­

lines. As the animation was recorded, this texture was translated along the model

in the downstream direction. This yielded an illusion of motion, with opaque bands

of surface advancing with proper relative speed through the vortical flow. In a later

interview [Rogers 1995), Rogers stated that "part of the analysis definitely benefited

from the [Flora) software."

The second segment to be recorded was a depiction of the flow inside a helical

pump (figure 6.1). This "Left Ventricular Assist Device" (LVAD) is a small cylinder

about one inch in diameter and about three inches long. It is designed to be surgi­

cally implanted just upstream of the heart. Rapidly spinning helical channels drive

blood into the heart, thereby improving the blood circulation of an ailing patient.

The computational grid defined only one helical channel. For the visualization, this

data was replicated three times about the central axis of the pump. All three in­

stantiations were then rotated slowly while stream surfaces were extruded from the

inlet and into the pump body.

144

YEI.OCITY
L!

•••

•••

Fig11rc G.J: Flo~c io-5-idc a heart-implant p-ump.

Figure G.:J: Flou·· behind a magnetically /u1itated train.

ll'i

Each stream surface was displayed with the same advection of transparent

timeline stripes. The principle scientist, Dr. Cetin Kiris, asked if we might also

indicate fluid speed by depicting each model in a range of colors corresponding to

the variations of the local velocity magnitude. This involved yet more modification

of Flora, but this was completed in about two hours of additional programming. The

animation segment was re-recorded onto the video system and reviewed by Doctor

Kiris, who then approved the work. Still images from this animation have been

sent to his colleagues at the Baylor College of Medicine. These pictures are useful

to physicians who might be less comfortable with the more abstract plots used by

CFD scientists. These images also aid the interpretation of photographs taken of

empirical tests of the pump prototypes.

The final piece of animation depicted the motion of air caused by the passage

of a train. This vehicle was designed to be magnetically levitated and propelled

along a sunken semi-circular trough. The nose is smoothly tapered, but the tail is

blunt. Dr. Goetz Klopfer, the principle scientist, particularly wanted to show the

highly convoluted flow in the wake of the speeding vehicle. The originating rakes

were placed just off the surface of the train, in an arc surrounding the nose. The

stream surfaces were extruded over the length of the vehicle and then spilled over

the trailing edge of the roof. There the stream surface models intertwine in a tangle

of air in the wake region behind the train.

For the train dataset, yet more modifications to Flora were required. The

advecting particles were found to repeatedly impact the sk.in of the train as they

progressed down the length of tlie vehicle. A very primitive implementation of wall­

bouncing was introduced to allow the stream surface models to flow just slightly

above the skin of the train. Very careful color selection was then required to clearly

depict the tangled knot of fluid in the wake region (figure 6.2). This task was further

146

complicated by the significant loss of detail introduced by the NTSC-encoding of

video images.

Several lessons were learned from the experience of creating these animations.

The first surprise was that extremely precise control of rake placement was wanted.

Flora does allow the user to reposition each rake using the mouse; what was lacking

was some kind of vernier mode which would allow precise and tiny movements of

each rake. Also desired was an undo mechanism, which w0uld allow one to return

a rake to its previous location after trial repositioning of the rake proved to be

unsatisfactory.

Another lesson was that a full depiction of a very complicated flow field can

easily generate hundreds of thousands of tiny polygons. This great quantity of

graphical data may require several seconds to display. This prevents the dynamic

exploration of the flow data, and thereby impedes the work of the scientist. It was

necessary to modify Flora so that it would automatically reduce the image quality

to sustain an acceptable frame rate even at the expense of some coarsening of the

depicted polygonal models. A related concern is that much better coordination was

needed between the separate computational processes which perform input-event

handling, model calculation, and image redisplay.

Despite these limitations of the user interface and despite the very limited

support for video production, Vi Hirsch and I were able to create three pieces of

computer animation which clearly depicted the important features of three very

different flow fields .

. 6.1.2 Topological Analysis

A copy of Flora was sent to a CFD research group at the Wright-Patterson

Air Force Base. The scientists there specialize in the topological analysis of the

147

structures created in various flow fields. For this kind of work, they needed a visual­

ization tool which would clearly depict complicated interacting structures. Despite

the great distance and minimal interaction between these scientists and myself, Flora

has proven itself to be a useful tool for their needs.

Figure 6.3 was created by Dr. Miguel Visbal using Flora. It shows the flow

impinging on a vertical post, with the fluid is moving from the right background

to the left foreground. Three stream surfaces have been placed in the flow. The

uppermost surface travels downwards to envelop a large region at the base of the

flow domain. The middle surface develops a vortical structure which is compressed

along the vertical dimension

Another of these scientists, Dr. Datta Gaitonde, had earlier used some prim­

itive methods to construct stream surface models. He would first use a computer

program to compute a family of streamlines from a textually-specified list of starting

seed locations. The point values from these curves were saved in a file, which was

processed by a second program to create a two-dimensional array of points. The final

point of the shorter streamlines was replicated so that each streamline curve would

contain the same number of points. Finally, this rectangular mesh was loaded into

FAST [Bancroft 1990] and rendered as though it were a gridplane. Gaitonde told

me that he had spent an entire week creating images using this collection of tools.

Using Flora, he can now create similar models in one or two hours [Gaitonde 1995].

Although their opinion of Flora was generally enthusiastic, the Air Force sci­

entists did request some changes to the package. One early suggestion was for the

creation of circular rakes to form streamtubes. A second modification was to allow

the models to be scaled by differing amounts in each of the three physical-space

dimensions; this enables one to exaggerate the height of flow structures and hence

to more easily investigate the boundary layer flow near the skin of the vehicle. Both

of these modifications were simple to implement, and a revised version of Flora has

148

Fig-n·tc 6.:]: L-aminnr junct-u·rc flo-w arou-nd a -l'Crfical post.

l!()

helped these scientists to create more useful depictions of certain flows. A requested

enhancement which I have not yet implemented is a facility for "slicing open" a

coiled stream surface to reveal its presently hidden interior.

6.1.3 Vortex Roll-Up

I have used Flora to depict the shear layer or roll-up of the vortices formed

across the beveled leading edges of a delta wing. This is illustrated in figure 6.4,

which shows two stream surfaces textured with both streamline and timeline stripes.

This data was computed by Dr. Neal Chaderjian of NASA-Ames. He told me that

these textured models were not sufficient for illustrating the important aspects of

this data. Instead, he requested some means of seeing the interior of these structures.

To satisfy this requirement, I incorporated a simple contouring method into Flora

and then generated a family of contour lines at constant intervals of the physical­

space x-coordinate (figure 6.5). In this image, the surface shape is conveyed by the

family of spiral slicing curves. Notehow these curves clearly depict the formation

of the shear-layer vortices.

These spirals are a commonly used technique for the visualization of such

flows; however, these curves are usually only approximated. They are typically

computed by projecting the three-dimensional vectors of the flow field onto a planar

slice. A streamline is then computed in the two-dimensional vector field define over

this restricted domain. Since the direction of the original flow data is not strictly

perpendicular to the slicing planes, the projection introduces error which alters the

shape of the computed spirals. (See [Buning 1985,1989] for furthe~ discussion of this

problem.) The physical-space contouring shown here is a direct implementation of

the conceptual visualization model. A comparable slicing of simple stream surfaces

is described in Belk and Maple [1993].

150

Fignr(G. ·f: Strwm attt{acca ubot•c a ddt a tcing.

Figttn G .. j: Coo/lJur c.r/ raclctf from $//'(II m aut{lt(t ·"'·

L!) L

The implementation of this final image was based on two visualization tech­

niques: the first to compute stream surfaces from the three-dimensional flow data,

the second to compute a set of contour curves from these surfaces. I have more

fully considered this functional composition of visualization techniques in the report

"Numerical Flow Visualization in a Functional Style" [Hultquist 1989].

6.1.4 Summary

Flora has been used for the exploration and the presentation of many different

flow fields. It has been repeatedly customized to accommodate the special requests

of several different researchers. Some new features are still desired, but these are

mostly confined to minor changes to the user interface and to support additional

visualization methods.

Indeed, it has become clear that a very important requirement of any visual­

ization package is that it provide a large suite of complementary techniques. To be

truly useful, Flora must be further extended so that scientists may use iso-surfaces,

cutting planes, contours, streamlines, and stream surfaces all through an intuitive

and expressive user interface. The ease of extensibility of the package is also impor­

tant, so that customized visualizations may be created with minimal delay.

6 .2 CONTRIBUTIONS OF THIS WORK

Software based on the algorithms described here has assisted scientists in the

exploration of highly convoluted flow fields. The usefulness of this code can be

attributed to the interactive response made possible by the rapid advection of parti­

cles and the robust and efficient use of these particles to create well-sampled stream

surface models. Several specific contributions are enumerated below.

152

6.2.1 Mixed-Space Integration

Computational-space integration has been recommended by some authors [Elias­

son et al. 1989, Belk and Maple 1993, Shirayama 1991] ; yet rejected by others

[Buning 1989, Sadarjoen et al. 1994] . The speed obtained from pre-processed con­

version of the vector field offers very rapid calculation of streamline curves. The

error introduced by finite-difference calculation of spatial metrics raises doubt over

the trustworthiness of these results. The selective use of both methods has been

shown to provide rapid calculation of streamlines, while reducing the introduction

of error in regions of computational sensitivity.

6.2.2 Test Cases

I have published (in Appendix A) the source code which generates two test cases.

These new grid and solution files may be used as benchmark tests for future work

by others.

6.2.3 Retroactive Stepsize Adjustment

Numerical integration through cell-based data is often constrained to generate

a specified number of points within each cell. This has been implemented in Plot3d

by estimating the computational-space velocity magnitude of each newly interpo­

lated physical-space vector, and then scaling the integration timestep accordingly.

I have proposed a new method which measures the actual computational-space dis­

tance between successively computed points on a streamline. The stepsize is then

adjusted to maintain the desired separation distance. This retroactive adjustment

is slightly more efficient, and is also more robust in regions of rapid change of cell

SIZe.

153

6.2.4 Node Tags

The standard iblank annotation on multiple-block grids provides only limited

information. An augmentation of this data by the more descriptive node tags in­

creases the speed of many visualization tasks. A single-bit flag marks each valid

cell. A second flag marks cells in smooth regions of the grid. A third flag marks

cells in regions of block overlap. An integer stored within each tag word indexes

into an array of donor-point records for each block.

6.2~5 Exploiting Spatial Coherence

The numerical integration of streamlines generates a sequence of closely po­

sitioned query points. The spatial coherence of these samples can be exploited by

caching the sample values for the eight corners of one or more recently encoun­

tered cells. This cache of node position and field sample data improves the speed

of constructing Jacobian matrices and interpolating flow field data. Extrapolation

in computational space can reduce the calculation time spent in the point-finding

method.

Pre-calculation of the donor points can greatly reduce the performance penalty

imposed by block transitions. Computational-space extrapolation can slightly re­

duce the time required to compute the~e donor-receiver equivalences.

6.2.6 Tracing through Self-Abutting Blocks

Many grids contain C-type and 0-type blocks. The branch cut boundaries

of self-abutting blocks are rarely marked by negative iblank values. These internal

block faces are then incorrectly treated as domain boundaries by many flow visu­

alization applications; streamlines which encounter these faces stop in the middle

of the flow domain. I have introduced a simple heuristic test which constructs and

then tests three "pseudo-donor" locations corresponding to the three likely re-entry

154

points found in the two common block topologies. This method efficiently resumes

the advection of particles across the boundaries of many self-abutting blocks.

6.2.7 Stream Surface Construction

The generalization of the streamline model into a full two-dimensional sheet

is a natural and effective means of depicting flow fields. I have devised an efficient

and robust method for constructing polygonal models of these surfaces. A set of

particles is advected together through the flow domain, with this front kept locally

orthogonal to the flow velocity. Particles are added to or removed from this set to

maintain an acceptable sampling density. This method offers increased performance,

produces improved sampling densities over the constructed model, and allows the

simple incremental display of the interim results.

6.2.8 Publications

I have published several papers which describe various aspects of this work:

• "Numerical Visualization in a Functional Style,"

technical report RNR-89-008, NASA Ames Research Center, June 1989.

• "Interactive Numerical Flow Visualization Using Stream Surfaces,"

Computing Systems in Engineering, 1(24), pp. 349-353, 1990.

• "SuperGlue: A Programming Environment for Scientific Visualization,"

(with Eric Raible), Proceedings of Visualization '92, pp. 243-250,

October 1992.

• "Constructing Stream Surfaces in Steady 3d Vector Fields,"

Proceedings of Visualization '92, pp. 171-178, October 1992.

155

• "Improving the Performance of Particle Tracing in Curvilinear Grids,"

AIAA Paper 94-0324, January 1994.

6.2.9 Better Flow Visualization

The algorithms presented in this thesis are of interest only in as much as

they contribute to the productivity of scientists. A survey paper on numerical flow

visualization [Weston 1987a] has this to say:

Particle traces can be challenging to display and time-consuming to set
up because of the need to keep the number of lines small in order to avoid
confusion, while still capturing the essence of the features of interest in
the flowfield.

The software implemented during this research has alleviated some of this difficulty.

Use of this code by scientists has demonstrated that the interactive placement of

stream surface rakes can be useful for exploring complicated flow fields. Operation

counts and empirical tests have verified that these new algorithms offer increased

performance over earlier algorithms and implementations. Further work is needed to

improve the user interface and to expand the suite of visualization models supported

by the Flora application.

6.3 OPEN QUESTIONS

The field of numerical flow visualization is very young, and it faces great

challenges in the coming years as computational grids become larger and the flows

being simulated become more intricate. The present work has not considered certain

issues which will become more important for newer flow field datasets.

156

6.3.1 Query Optimization

Each computed model contains a set of fields defined over some domain. When

this data is queried for a field which it does not yet contain, the software can either

compute the values of this new field or it may extract those values from the field

of the same name in the enclosing higher-dimensional domain. In the example of a

streamline model, the fluid density at the points on the curve may be obtained by

interpolating the corresponding field samples in the original flow field data.

Some fields cannot be extracted from fields in the enclosing dataset. The

surface-normal field over a gridplane has no equivalent in the higher-dimensional

domain; the arc-length· of a streamline cannot be extracted from any scalar field in

the grid and solution samples of the enclosing flow data.

Now consider the pressure field defined over a streamline. This field may be

obtained by computing pressure over the entire flow domain, and then sampling this

new field at each point on the curve. A more efficient approach would be to extract

the momentum and density samples at points along the curve, and to compute

the pressure only at these points on the streamline. Such query optimization for

scientific data management is a rich area for future research.

6.3.2 Time-Varying Surfaces

In the coming years, the simulation of time-varying flow will become increas­

ingly more common. These datasets typically consist of a sequence of between one

hundred and one thousand snapshots of the flow data. A new grid is required for

each timestep if the geometry also changes over time, such as for the oscillations of

a flexible wing.

In unsteady flow fields, we must determine not only where a rake has been

placed, but also when. As the front of the streak surface is marched through the flow,

the previously constructed portions of the surface continue to be carried downstream.

157

The advection of many particles through an unsteady flow field is quite compu­

tationally demanding. The construction of unsteady streaklines and streak surfaces

will require much more research, but see [Lane 1994] for notable early progress in

this area.

6.3.3 Distributed Implementation

An unsteady flow simulation can produce a massive quantity of data, per­

haps several gigabytes of vector field samples. This outstrips the resources of even

the largest of workstations. A distributed implementation might be required, in

which the data is stored and processed on a supercomputer. The workstation would

receive the geometric data of each model across a high-speed network link. The Dis­

tributed Virtual Wind Tunnel [Bryson and Gerald-Yamasaki et al. 1992] and PV3

[Haimes 1994] are early examples of work in this important and promising area.

6.4 SUMMARY

This work has examined a number of different methods for the calculation of

streamlines and stream surfaces through multiple-block curvilinear grids. Mixed­

space integration and the exploitation of spatial coherence was empirically shown

to increase the speed of particle advection. An adaptive orthogonal advancing front

method constructs surfaces by the interleaved advection of a set of particles. This

method distributes the computed points more evenly over a stream surface model

and thereby uses fewer polygons to describe the surface at a given level of resolution.

The most important contribution of this work has been an improvement in the

ability of scientists to create useful images of their data. By enabling the interactive

exploration of vector fields, this approach facilitates the identification of important

flow features. By producing visually intuitive models, it simplifies the presentation

of those features to others.

158

APPENDIX A

CODE FOR THE TEST GRID AND SOLUTION

#include <sys/types.h>
#include <sys/stat .h>
#include <fcntl.h>
#include <math.h>
#include <assert .h>

#define DOTIMES(I,N) for(I=O; I<N; I++)
#define MAX(A,B) ((A)>(B)?(A): (B))
#define ABS(A) ((A)>O ?(A):-(A))

int main (int argc,
char *argv [])

{
#define NUM 21
#define NK 3

typedef float ARRAY[NUM*NUM*NK];

int dims [3] ;
float info [4] ;
ARRAY xyz[3], qqq[5];
int xfile, qfile, crease;
int i,j ,k,n;
float x,y,z, xx,yy,zz, del;

assert(argc == 4);
xfile = open(argv[l], Q_WRONLYIO_CREAT, 0644);
qfile = open(argv[2], Q_WRONLYIO_CREAT, 0644);
crease= atoi(argv[3]);
assert(xfile && qfile);

dims[O] = NUM;
dims [1] = NUM;
dims [2] = NK;

info[O] = 0.0;
info[1] = 0.0;
info [2] = 0.0;
info[3] = 0.0;

del = (NUM-1)/2.0;
n = 0;

DOTIMES(k,NK) {

}

DOTIMES(j,NUM) {

}

DOTIMES(i,NUM) {

}

x = (i-del)/del;
y = (j-del)/del;
z = (1/del) * (k-1);

if (crease) {
y = y + 0.5*ABS(x);

}
XX = X + sin(4*y)/10;
yy = y - sin(4*x)/10;
zz = z;

xyz[O] [n] = xx;
xyz[1] [n] = yy;
xyz [2] [n] = zz;

qqq[O] [n] = 1.0;
qqq[1] [n] = yy -0.1;
qqq[2] [n] = -xx;
qqq[3] [n] = 0.0;
qqq[4] [n] = 10.0;

n++;

160

}

write(xfile, dims,
write(xfile, xyz,
close(xfile);

sizeof (dims));
sizeof(xyz));

write(qfile, dims, sizeof(dims));
write(qfile, info, sizeof(info));
write(qfile, qqq, sizeof(qqq));
close(qfile);

161

FLORA 1.10

NAME

APPENDIX B

THE FLORA USERS' GUIDE

flora - interactive flow visualization

SYNOPSIS

flora [-nomail] [command-file ...]

DESCRIPTION

Flora is an interactive application for visualizing steady flow fields defined over

multiple-block curvilinear CFD datasets. It reads data defined in the Plot3d format,

and it accepts a subset of the Plot3d commands. Flora presently can construct and

display gridplanes, grid blocks, streamlines, and stream surfaces. Each new graphical

"model" and plot window is assigned a name and (optionally) an alias. These names

and aliases may be used as new commands by which previously created objects are

modified. The mouse is used to change the view and to move rakes within the flow

domain.

Commands can be typed while the mouse-cursor lies within the boundary of

a plot window. This is useful for typing commands into a graphics window which

covers the entire screen. This text will be displayed in the window title bar. These

commands will be processed with default values used for any values not supplied in

this single line of input.

When Flora starts runmng, it first tries to locate the file ".florarc" in the

current directory, and then in the user's home directory. This file may contain com­

mands to initialize Flora to suit user preference. Flora then processes the command

line arguments. These are treated as the names of command files, which will be

loaded in the order in which they have been specified.

Flora normally sends email to its author upon the completion of each inter­

active session. This information is being gathered to assist in the completion of a

dissertation. If you do not wish this mail to be sent, you may execute Flora with

the command-line argument "-NOMAIL". This option will prevent the gathering and

sending of these statistics.

A typical interactive session begins with the READ command, followed by the

names of the grid file and the solution file. The locations of the boundary surfaces

are specified using the WALLS command, and rakes are embedded in the flow field

using the RAKES command. The PLOT command then places an image of these walls

and rakes on the screen. The mouse is used to control the view and to relocate the

rakes. When the rakes are properly positioned, such that the resulting streamlines

and stream surfaces adequately depict the structure of the flow, then printable

images are saved, a checkpoint file created for restoring the program state in future

sessions, and the program is exited. A typical session is depicted in the demo script,

which is executed with the DEMO command.

COMMAND SYNTAX

As mentioned above, the Flora command interface is similar to that of Plot3d.

This includes recognition of (almost) any non-ambiguous prefix of each command,

qualifier, and argument. (For safety, Flora will not accept an abbreviated form of the

commands DEMO, EXIT, or QUIT.) Upper- and lower-case distinctions are ignored

for most input text, excepting only filenames. Hyphens and underline characters

may be used interchangeably or omitted entirely, again excepting within filenames.

163

An interrupt character (typically control-C) will stop any long-running calculation

within Flora and return control to the top level of the command input loop.

Flora will prompt for each required input. At all times, a question mark may

be entered to obtain a description of the next value expected by the command parser.

In many cases, a default value will be indicated within square-brackets. A carriage­

return is sufficient to select this default value. Logical (or Boolean) arguments will

typically default to the opposite of the current value.

Some commands accept "qualifiers", which follow the command name and are

marked with a slash character. For example, the READ command accepts the qual­

ifier "/MGRID" to indicate that the grid contains multiple blocks. Some qualifiers

must be accompanied with a value. Each such value is attached to its qualifier with

an equals-sign, as in the pair "/X=mygrid. bin", which supplies the grid filename for

the READ command. Flora will prompt for any needed qualifier values which have

not been so specified.

Any input text surrounded by single quotes is treated as a shell environment

variable, and the quoted text is replaced by the value of that variable. Flora will

also accept the tilde character in filenames as a shorthand for the user's home

directory. Any item may be surrounded by double-quotes; this is useful to protect

filenames which contain slashes, which otherwise would be processed as a sequence

of qualifiers.

Additional features adopted from Plot3D include the use of an exclamation

point to preface comments, the at-sign to invoke a command file, and a dollar

sign to escape to a UNIX command shell. A hyphen at the end of a line allows

the continuation of that text onto multiple lines of input. A percent-sign is used by

Flora to mark any command which has been typed into one of the graphics windows;

a command line marked in this manner will be processed with no prompting, and a

164

default value will be used for any parameter not specified by the user in this single

line of text.

Flora has been implemented in the programming languages C and Scheme.

Scheme is a dialect of LISP. Input text which begins with a left parenthesis is as­

sumed to be an expression in the Scheme language. These expressions are evaluated

by an interpreter embedded within Flora. Scheme expressions may be placed in

a command or initialization file to customize the behavior of Flora. This kind of

thing is not generally recommended, but it does appeal to some folks, which is why

I mention it.

BASIC COMMANDS

The currently supported commands are listed here with a brief description of

their purpose. Additional information is available from the online help facility; type

HELP followed by the command name.

CHECKPOINT - writes a file of commands which will restore the program to its

current state. This file may be edited and loaded into Flora at any time; for

example, to create the same set of walls in a number of related datasets. Any

filename may be supplied to the CHECKPOINT command; the default value

is "flora. com". If a file of the specified name already exists, then a unique

filename will be generated by inserting a integer version number just prior to

the filename extension.

DEMO - loads a demonstration command file. This file loads a small grid and a

solution file, creates some grid walls, and places a plot window on the screen.

A rake is added to this image with a family of streamlines rooted at intervals

along this line segment. Some object-modifying commands are then shown.

The demonstration file is heavily commented and makes for very informative

reading.

165

EXIT and QUIT - stops the program and returns control to the originating shell.

The /SAVE qualifier will cause Flora to write checkpoint commands into the

file "flora. com". If this file already exists, the checkpoint data will be written

into the file "flora-N.com", where Nhas been replaced by a small integer.

GRIPE - sends email to the author of Flora. Use this command to send in bug

reports, suggestions, and lavish praise. You are also invited to call the author

(Jeff Hultquist) at: xxx.xxx-xxxx (office) or xxx.xxx-xxxx (pager).

HELP - prints information about the commands. Just typing "HELP" with no ar­

guments will print some general information and a list of the available com­

mands. Type "HELP" followed by a command name for more information

about a particular command. Type "HELP *" to see all of the available on-line

documentation.

MAP -prints a list of the fields and grid-blocks which have been read. This command

is exactly equivalent to "SHOW READ".

MINMAX - specifies the extent of the "area of interest" in each physical-space di­

mension. The low and high limits in each dimension will be requested, unless

one or more pairs are suppressed with the qualifiers /NOX, jNOY, and /NOZ.

If the qualifiers /X, jY, or /Z are provided, then pairs will be requested only

for the specified dimensions.

Subsequent plots will be centered about the midpoint of this rectangular vol­

ume. The near and far clipping limits of the graphics hardware will be set

either side of this center-point, separated by a distance equal to the diagonal

of the volume. The initial magnification of the image will be such that this

region fits just within the boundaries of the window. If not specified by the

user, the minmax region will be set to the bounding extent of the previously

constructed models.

166

PLOT - creates an image of the previously specified walls, rakes, and resulting

streamlines and stream surfaces. The f OVERLAY qualifier allows the place­

ment of new walls and rakes into previously created windows. The argument

for this command may be the integer index, the name, or the alias of an ex­

isting plot. The special symbol "P*" refers to all existing plots, and can be

used to place new walls and rakes into every window.

The /BACKGROUND qualifier enables one to specify the background color.

Flora will recognize several color names, or the letters "RGB" followed by red,

green, and blue values between zero and one. The f ALIAS qualifier can be

used to assign a meaningful alternative name to a plot. Multiple plots may be

active on the screen at any time.

RAKES - specifies the originating seed location for a single stream surface or a family

of streamlines. A rake is a short continuous curve which may be either a line

segment in physical coordinates, a curve which follows the computational space

of a single block, a circle, or a cross. The shape of the rake may be selected

with the /SHAPE qualifier. If a shape is so specified, then Flora will request

either the coordinates of the two endpoints or the position of the center point

and a radius.

These point locations may be specified in either computational or physical

space. The /XYZ and /IJK qualifiers are used to select which coordinate space

will be used. If neither qualifier is supplied, then each new point location

may be specified in either coordinate space. Each new set of coordinates is

preceeded by a keyword, either PHYS or COMP.

When no shape is specified with a qualifier, then the rake is assumed to be

a computational-space curve. The position of this curve will be obtained in

the traditional Plot3D style, with the program requesting the beginning and

167

ending values along each physical or computational dimension. Note that only

the minimal and maximal values of the index range are used; these form the

coordinates of the endpoints of a single curve.

By default, particles are advected in the downstream (positive pseudo-time)

direction. This can be changed with the qualifier /+-TIME or /-TIME, to

construct the model in both directions or only upstream. The qualifier/ +TIME

may be used, but has no real effect since it merely specifies the default value.

Note that, while hyphens are optional within most commands and qualifiers,

the hyphens in these qualifiers are clearly not optional.

The size of the result buffers, and therefore the overall length or size of the

streamlines or surface, is controlled with the qualifier /MAX-POINTS. The

stepsize used in the numerical integration is normally adjusted to maintain a

separation of about one-fifth of a cell-width between successively computed

points. This distance may be changed with the jcoMP-STEP qualifier. The

sequence of points is then filtered, such that the remaining points are separated

by a specified minimum distance in physical space. This value defaults to zero

length, and may be changed by the /FACET-SIZE qualifier. Each new seed

point will be separated from its immediate neighbors by this same physical

space distance. The number of streamlines may be changed from this default

value using the /NUM-SEEDS qualifier.

The/ ATTRIBUTES and /NOATTRIBUTES qualifiers are used to control whether

Flora requests information about how to display the created models. The

/ADD qualifier allows the creation of more than one rake in the next plot. Note

that the object-modifying commands provided by Flora allow the rendering

attributes to be changed at any time, and also enable one to insert and remove

previously constructed models from each plot. The RAKES commands accepts

the /ALIAS qualifier to assign an alternate name to the created model.

168

READ - loads the grid and solution data files. The /XYZ and /Q qualifiers may be

used to specify the filenames, but if neither qualifier is used then both names

will be requested. Other qualifiers may be used to indicate the use of multiple

blocks {/MGRID) and iblanking (/BLANK). Only the 3D, whole, binary format

is currently supported.

SHOW -prints information about the state of the program. This commands requires

one or more arguments, each of which is a command name. It will then print

information relevant to those commands; such as what data has been read, or

what walls, rakes, and plots have been created.

VPOINT - specifies the direction from which the models will initially be displayed.

This data can be input as an azimuth and elevation. Alternatively, the viewing

direction may be specified by a position in physical space. The angles will then

be computed from this location, relative to the physical-space origin. This

command accepts the qualifiers /XYZ and /ANGLES, with the Cartesian input

style being the default. The default viewing direction creates a "three-quarter

view" with a slight elevation.

WALLS -specifies subregions of the grid for display. In a multiple-block grid, Flora

will always ask for the number of the grid-block from which the wall is to be

extracted. This is different from Plot3D, in which the /GRID qualifier must

be specified to create a wall in any block but the first. Flora will request the

low and high index values for each grid dimension. The special symbols "ALL"

and "LAST" may be used here to represent all the grid indices or only the

uppermost value. Although a step increment is also requested for each index

range, the current version of Flora always displays walls with an stepping

increment of one.

169

Plot3d and Flora each manage a list of "active" models which will be displayed

in the next plot. By default, both programs will allow only one wall to be constructed

from each block. The qualifier I ADD may be used to override this behavior, to create

multiple walls within a single block.

The pair of qualifiers I ATTRIBUTES and INOATTRIBUTES specify whether the

rendering attributes should be requested. If neither of these qualifiers is used, then

I ATTRIBUTES is the default and Flora will ask how this item should be displayed.

The choices for the "rendering style" are POINTS, LINES, SHADED-SURFACE, and

HIDDEN-LINES. This is followed by a request for the color of the item, and perhaps

the width of any lines or the size of the points. The color value may be any one of

several color names or an explicit listing of the separate red, green, and blue color

components. Type a question mark at the prompt to get a listing of the allowed

names. Additional rendering attributes may be requested for compatibility with

Plot3D, but these other parameters are not used in the present version of Flora.

The WALLS command also accepts an I ALIAS qualifier, which may be used to

give a more meaningful name to each item, such as "WING", "TAIL", or "FLAP".

This alias can be used in place of the program-assigned name when referring to this

item.

USING THE MOUSE

The mouse is used within each plot window to control the viewing parameters

and to reposition the rakes within the three-dimensional volume of the flow domain.

If the mouse is clicked on (or very near) a point on a model then a small marker

is placed at this location. Any previoJisly placed marker on this same model will

be removed. The new point then serves as the new center of rotation and zooming

for this plot. Furthermore, the name or alias of the selected item will appear in

the title-bar of the current plot window. Clicking an existing marker will make it

disappear, but has no other effect. Clicking on a rake will also set the center of

170

rotation, but no marker will be created. Later versions of Flora may use markers

for other purposes, such as for accessing popup menus. There is no need to remove

the markers prior to saving an image to a disk file; all of the rakes and markers will

be hidden while the image is copied to the image file.

As in Plot3d, the RAKES command is used to place the initial seed points from

which streamlines are calculated. In Flora, the initial rake is represented as a line

segment, a geodesic curve in computational space, or a circle or cross shape. Each

rake serves as the root for a family of streamlines or for a single stream surface. This

rake can be moved interactively through the flow domain using the mouse. Either

endpoint of a segment or curve rake can be repositioned. Selecting a rake endpoint

with the middle mouse button will cause only this one point to move, leaving the

other endpoint fixed and stretching the new rake between the fixed point and the

one changing position. The middle mouse button, when used to select the center

of a circle or cross, is used to control the radius of the rake shape. Selecting the

midpoint or endpoint of a rake with the left mouse button will cause the entire rake

to be translated. In other words, the left button will reposition the entire rake; the

middle mouse button will change the size of the rake.

Obviously, some mapping is needed between the two degrees of freedom of the

mouse and the three degrees of freedom for the position of a selected point. Each

small change of the mouse position is compared against the projected directions of

the three orthogonal physical-space axes. The selected three-dimensional point is

shifted along whichever axis lies most closely aligned with the incremental change

in the mouse direction. Experiment with this for a little while, it becomes easier to

use after a little practice.

While a rake is moved, new streamlines or a new surface will be repeatedly

computed and displayed. One can move a rake in one scene at high magnification,

while watching the resulting model from another angle in a second window. If the

171

mouse button is released before the advection is complete, then the remainder of

the lines or surface will be computed by a low-priority background task.

The rake endpoints will resist being moved outside the flow domain. This is a

feature. It allows one to push one end of a rake up against a non-slip wall without

penetrating this boundary.

CHANGING THE VIEW

Each model is displayed in one or more windows, and each window may have

its own distinct viewing direction and magnification. The view may be changed

by pressing a mouse button while the cursor does not lie near a rake, and then

dragging the mouse pointer across the screen. The view-controlling function of each

mouse button mimicks that of Plot3d. As in Plot3d, the rate of any viewing change

is proportional to the amount by which the mouse has been moved. The rate of

response for the viewing control may be adjusted by tapping the up-arrow and down­

arrow keys. Holding down the control-key while dragging the mouse will decrease

the rate of change, thus allowing precision adjustment of the viewing direction.

The left mouse button invokes rotation of the scene. Side-to-side motions of

the mouse will invoke a rotation about the vertical axis in the physical-space of the

data. Up and down movements of the mouse cursor will cause rotation about a

horizontal axis in screen-space. More clearly perhaps, the two directions of mouse

movement control the azimuth and the elevation of the viewing direction. Both

rotational axes pass through the "center of rotation." This is originally the center

of the MINMAX box, but may also be the geometric center of the computed models,

and more frequently is the most recently selected point on a model.

When the middle button is pressed, the apparent size of the depicted models

may be changed. Upward movement of the mouse cursor will reduce the size of

the displayed models; pulling the mouse downward will increase that size. More

precisely, when the scene is displayed under a orthographic projection, dragging

172

the middle button will alter the magnification factor in the viewing transformation.

When the image is displayed with perspective foreshortening, the motions of the

mouse will alter the image by moving the models closer to or farther from the

viewing position. This type of motion is called "trucking," and this parameter may

also be changed with the TRUCK command. When the ALT key is held during the

middle-button press, then the motions of the mouse will alter the angle-of-view.

This is called "zooming," and it is equivalent to the use of the ZOOM command.

With a press of the righthand button, the image may be translated horizontally

and vertically. Remember that the speed at which the models move across the screen

is proportional to the distance between the current location of the mouse cursor and

the point at which the mouse-button was originally pressed.

OBJECT-MODIFYING COMMANDS

Each new wall is given a name and (optionally) an alias. The name for each

wall is the letter "W" followed by an integer. Similarly, names are also assigned to

rakes ("R") and plots ("P"). Each name serves as a new command by which one can

modify the state of the associated item. This is done by following the name or alias

with a command sub-option and perhaps some argument values. For example, the

command "W2 COLOR RED" changes the color of the second wall. Note the noun­

verb structure of these commands: first the name of the object, then the action to

be applied to that object.

There are three special "group names": "W*", "R *", and "P*". These refer

to all of the items of each type: walls, rakes, and plots. Many of the commands

can be applied to all of the items in that group. For example, "P* BACKGROUND

WHITE" sets the background color of all the plots to white, as does "P* BA WH".

All of the available commands for any item are listed in response to the object's

name followed by a question mark or the word "HELP". This produces a listing

similar to this one:

173

help -- print a list of available commands
show -- print a description of this item
edit -- modify this item interactively
alias -- assign an alias to this item

All items support the command SHOW. This prints out information about that

item, such as its position and current rendering attributes. EDIT allows one to enter

a sequence of commands to a single item; one command per input line, terminated

with a blank line. For example:

wl edit
style lines
color red
linewidth 2

Finally, all items will react to the ALIAS command, which allows one to assign

meaningful alternate names to each item. Plots, walls, and rakes each support

additional commands. These are described in the sections below.

CHANGING A PLOT

Each plot supports the commands HELP, SHOW, EDIT, and ALIAS; as well

the additional commands listed below. Remember that each of these commands is

invoked by typing the name or alias of an existing plot, followed by a non-ambiguous

prefix of the command to be applied to that item.

174

close
open
iconify
xywh
duplicate
find-view
mark-view
goto-view
snap-view
zoom

magnify
truck
pan
angles
sphere
include
exclude
mirror
scale
rotate
outline-shift
background
save-image
monochrome?

close this window
re-open this window
iconify this window
set the window position
create a new window like this one
show my models, wherever they are
remember this view
use the remembered view
align the view to the nearest axis
set the camera angle-of-view
change the apparent size of the items
change the distance to the items
shift the image across the screen
set the view azimuth and elevation
set a spherical ' 'region of .interest' '
insert a wall, rake, or plot
remove an item from this plot
mirror the displayed models
adjust size in each dimension
rotate/replicate models around an axis
adjust the relative depth of lines
specify a new background color
write the current image to a file

-- display only in black and white?

A plot may be closed with the "go-away" button in the upper-left corner of the

window, or with the CLOSE command. Windows are never actually destroyed, and

so a previously closed plot can be returned to the screen with the command OPEN.

Windows may also be iconified, using either the small button in the upper-right

corner of the window frame or by using the ICONIFY command. An open window

may also be positioned on the screen by using the XYWH command to specify the

position and size. The position is the pixel location of the lower-left corner of the

image, relative to the lower-left corner of the screen. The DUPLICATE command

will create a new plot similar to the existing plot which was the recipient of this

command.

The mouse is used to control the viewing direction and magnification, but

four commands are provided for other view-control tasks. FIND-VIEW will calculate a

175

bounding rectangular volume about the walls and rakes, and will place these models

nicely centered in the current plot. Any view may be saved with MARK-VIEW, and

the most recently saved view can be recalled with the GOTO-VIEW command. Thus,

one can mark the view in one plot, and "goto" that same view in any number of the

other plots on the screen. The group-command "P* GOTO" will apply this saved

view to every plot. The command SNAP-VIEW shifts the viewing angles of azimuth

and elevation each to the nearest multiple of ninety degrees.

Plots will normally display their contents in an orthographic projection, but

each plot can be changed to display its models in a perspective view. The command

ZOOM takes an angle, between 0 and 160 degrees, for the field of view of the camera

lens. An angle of zero describes the orthographic projection, small angles create a

"telephoto" appearance, and large angles create a "fisheye" effect. (Plot3d uses a

field-of-view of twenty degrees.) When the view is orthographic, then the MAGNIFY

command can be used to change the apparent size of the displayed items. Under a

perspective projection, the apparent size of the models can be reduced by changing

to a wider angle or by moving the objects further away. The TRUCK commands is

used to alter the distance between the camera and the models. As in Plot3d, the

vertical dragging of the middle mo'use button may be used change the apparent size

of the displayed objects.

The view may also be modified by adjusting the horizontal and vertical dis­

placement of the image with the PAN command, or by dragging the mouse with the

right button held down. The azimuth and elevation of the view using the ANGLES

command, or by a drag of the left mouse button.

The near and far clipping planes are automatically positioned around a spher­

ical "region of interest" which is constructed around the MINMAX box. This sphere

may be changed using the SPHERE command to indicate a new point and radius

which encloses those models which one wishes to view. Note that the center of the

176

region of interest is not generally the center of rotation. The latter location is always

determined to be the point on a model which has been most recently selected with

the mouse.

Each wall or rake may appear in one or more plots. A model may be placed

into a plot with the command INCLUDE, which takes a model name or alias as its

argument. An item may be removed from a plot with the command EXCLUDE. If a

plot name is given as an argument to either of these commands, this is considered to

represent the entire group of models within that plot. Group-commands work here

as well, but consider the difference between "P* EXCL Wl" and "Pl EXCL W*".

The former removes the first wall from all plots, while the latter deprives the first

plot of all of its walls.

Each plot typically displays each of its models only once. Three commands

are available to change this behavior. The MIRROR command accepts the keywords

X, Y, Z, or NONE. If any of the axes are selected, then all the models within

the plot window will be reflected about the zero-plane in that dimension. The

SCALE command accepts three numbers which specify the independent magnification

to be applied to each physical space dimension. This is useful for expanding the

image along one dimension relative to the other two, perhaps for investigating small

features in the boundary layer. Finally, the ROTATE command accepts an axis, an

angle, and a small integer. It then creates that many copies of the models, each

rotated about the specified axis by a multiple of the specified number of degrees.

The polygons and line segments of each model are drawn into a integer-valued

hardware Z-buffer. The OUTLINE-SHIFT command can be used to displace the line

segments slightly forward in the computed depth, thereby improving the appearance

of outlined polygons. The value of OUTLINE-SHIFT defaults to three thousand;

experimenting with other values may improve the quality of some scenes. The

BACKGROUND command can change the color used for the background (no surprise

177

here!); it accepts a few pre-defined color names or the letters "RGB" followed by

three component values between zero and one.

The image displayed in a window can be saved to an "RGB" or "BW" SGI-

format image file using the SAVE-IMAGE command. This takes a filename as its

argument, which defaults to "flora" with the appropriate extension, either "RGB"

or "BW". Multiple images can be saved to the same filename; a version number will

be inserted between the base part of the file name and its extension to prevent any

loss of previously saved images.

Use the MONOCHROME? command to VJew models in a style suitable for

dumping to a laser-printer. All lighting will be disabled and the visuals will be

drawn with black lines and textures on a white background. Image files taken from

a monochrome window can be printed with this command:

·$ /usr/sbin/tops fname -b 1 -p 300 I lpr

This converts the image data to PostScript format with one bit per pixel and three

hundred pixels to the inch. When printed to a 300-dpi printer (such as a Laser­

Writer), the hardcopy output from a full-screen image will be about four inches

wide.

CHANGING A MODEL

The WALLS and the RAKES commands both create graphical objects or "mod­

els" for display. Models recognize the commands HELP, SHOW, EDIT, and ALIAS.

Additional commands supported by all models are these:

style
color
line-width
flip-colors?
smooth-shading?
include
exclude
recompute

change the rendering style
change the item color
change the line width
-- exchange the front/back colors

-- average the surface normals?
-- place this model into a plot

remove this model from a plot
-- rebuild this model

178

These first of commands allows one to change the style in which a model

is drawn. As mentioned above, the options for rendering style are POINTS, LINES,

SHADED-SURFACE, and HIDDEN-LINES. Streamlines (of course) will only be drawn as

points or lines. Flora draws hidden-line objects with normal coloration and shading,

but adds a black outline around each polygon.

Other commands allow one to change the color of the model and the width of

its lines. The color may be any one of a set of recognized names or three RGB values.

The FLIP-COLORS command changes the Flora's notion of "front" and "back" for

polygonal objects, thus exchanging the colors on these two sides. In the current

implementation, the front color may be specified by the user, but the back color

is always light gray. The surface normals used in the lighting calculation may be

calculated for each polygonal facet of the model, or they may be computed as average

values at each vertex point. The SMOOTH-SHADING command allows one to switch

between these faceted and smooth representations for each polygonal model.

The INCLUDE and EXCLUDE commands allows one to place a model into a

specified plot, or to remove a model from a plot. The RECOMPUTE command simply

regenerates the model from previously specified parameters, for whatever reason this

might be needed.

CHANGING A WALL

Each wall recognizes the generic model commands described in the previous

section. A wall can be moved with these additional commands:

move change grid number and all indices
grid change the grid number
I-move change the limits along I
J-move change the limits along J
K-move change the limits along K

These commands allow one to specify the grid number, or one of more sets of new

indices. The index specification may include the keywords "ALL" or "LAST". An

179

increment may also be specified, but this version of Flora always draws walls with

an increment of one.

CHANGING A RAKE

Rake items support these additional commands:

move
shape
radius
surface?
upstream?
downstream?
facet-size
comp-step
improve
degrade
num-seeds
max-points
duplicate
snap-rake
texture?
adjust-texture

change rake location
change the rake shape
size of circle or cross

-- create a surface (instead of lines)?
-- advect particles upstream?

-- advect particles dovnstream?
max length.of segments and edges
integration step-length
increase facets by 3/2
decrease facets by 2/3
change number of streamlines
change limit of saved points
create a new rake, near this one
align rake to nearest gridline or axis

apply striped texturing?
specify spacing of stripes

The location of a rake is usually changed using the mouse, but it may also be reposi­

tioned using the MOVE command to specify a new center point or two new endpoints.

The SHAPE command allows one to select between the SEGMENT, CURVE, CROSS,

or CIRCLE rake forms. The cross and circle shapes also require the specification of

a radius. This is most easily controlled with the middle button of the mouse, but

may also be specified with the RADIUS command.

The SURFACE? command determines whether the model computed from this

rake will be a single stream surface or a family of streamlines. The commands

UPSTREAM? and DOWNSTREAM? control advection along the negative and positive

directions of pseudo-time. The length of the lines and the area of the surfaces can be

changed with the MAX-POINTS command, which alters the number of points which

have been allocated for the result buffers of the particle advection. The integration

180

COMP-STEP is normally set to one-fifth of a cell, but may be reduced to improve the

accuracy of the computed curves and surfaces.

Flora maintains an upper-bound on the physical-space distance along any edge

of any triangle in the surface or any segment along a streamline. The default length

is about one 1/100th of the diagonal of the bounding volume of the created models.

A new value may be specified explicitly using the FACET-SIZE qualifier or the like­

named command. This size may also be adjusted with the commands IMPROVE and

DEGRADE, which multiply or divide the current facet size by two-thirds.

The FACET-SIZE command also controls the separation distance between the

initial seed points of a family of streamlines. This can be overruled by specifying a

integer argument for the NUM-SEEDS command, in place of its default value of the

keyword AUTO. The DUPLICATE command creates a new rake, similar to but offset

slightly from the original rake. SNAP-RAKE aligns the rake to one of the Cartesian

axes or nearby gridlines.

A stream-surface or a set of streamlines may be overlaid with a striped texture.

The TEXTURE? command enables this rendering option. The texture contains two

series of orthogonal stripes which depict the streamlines and the timelines. The

spacing of each set of stripes may be altered with the command ADJUST-TEXTURE.

The spacing of the streamline stripes is based on the distance in physical space,

while the timeline separation is specified in the total pseudo-time accumulated by

the numerical integration method. Note that the same texture spacing is applied to

every rake; changing the spacing for any rake will apply this change to all existing

rakes and any rakes created later during that session. This global change of the

texture spacing is done to avoid the inadvertant and misleading construction of

rakes showing differently spaced timelines.

181

IMPLEMENTATION DETAILS

Flora assumes the common trilinear cell-local interpolating function within

each hexahedral grid cell. Particle advection is performed with a second-order

Runge-Kutta method in physical coordinates. This integration method uses a "reac­

tive" stepsize adjustment which limits the stepsize such that successively computed

points along the curve are typically separated by about one-fifth of a cell-width

along any grid dimension.

Streamlines and stream-surfaces are computed in the velocity field, which is

computed on an as-needed basis during the advection of the particles. This is done

by dividing the momentum components (Q2,Q3,Q4) at each corner of the currently

enclosing cell by the density value (Ql). The resulting velocity values are then

interpolated at subsequent query locations within this same cell.

No "wall bouncing" is presently performed. That means that interpolation,

truncation, and numerical errors may result in streamlines which strike a non-slip

boundary and incorrectly terminate at this location.

Flora reads the iblank data from the grid file, and then computes the loca­

tions of (most of) the donor-points. These values are used to speed the transition

of advecting particles across inter-block boundaries. Flora also manages to cor­

rectly traverse non-marked internal branch-cut boundaries of 0-type and C-type

grid blocks.

182

FILES

.florarc
flora[-N]. com
flora [-N] . bll

flora[-N].rgb

SEE ALSO

fast (1)
plot3d (1)
rip (1)
ufat (1)
visual3 (1)

BUGS

initial Flora commands
default checkpoint file
default grayscale raster image filename
default color raster image filename

Some important differences between Flora and Plot3D are these:

• Most Plot3d commands are not yet supported by Flora.

• Flora only runs on SGI workstations.

• READ only accepts the 3D, whole, binary format.

• WALLS only supports an index increment of one.

• RAKES creates a curve; not a set of points.

• The distinction between qualifiers and commands is ugly.

This package is intended to eventually be fully and upwardly compatible with Plot3d.

Please contact the author if you need any particular command implemented soon;

perhaps I will be able to rearrange the development schedule to accommodate your

. needs.

183

AUTHORS

David Betz wrote the underlying Scheme interpreter. This was extended into

the "SuperGlue" package by Eric Raible and Jeff Hultquist. This package was used

by Jeff Hultquist as a platform for the creation of Flora. Flora was heavily patterned

after Plot3d, which was written by Pieter Buning.

Please send comments and bug reports via the GRIPE command. Suggestions

and requests for help will be welcomed by the author, who may be contacted at:

Jeff Hultquist
(xxx) xxx-xxxx -- office
(xxx) xxx-xxxx -- pager
hultquist~xxx.xxx.xxx

184

BIBLIOGRAPHY

Gordon V. Bancroft et al. FAST: A multi-processed environment for visualization
of computational fluid dynamics. In Proceedings of Visualization '90, pages
14-27, San Francisco, CA, October 1990.

R. Gary Belie. Flow visualization in the space shuttle's main engine. Mechanical
Engineering, pages 27-33, September 1985.

R. Gary Belie. Some advances in digital flow visualization. In AIAA Aerospace
Sciences Meeting, Reno, NV, January 1987. AIAA Paper 87-1179.

Davy M. Belk and Raymond C. Maple. Visualization of vortical flows with Yet
Another Post Processor. In AIAA Aerospace Sciences Meeting, Reno, NV,
January 1993. AIAA Paper 93-0222.

John A. Benek, Pieter G. Buning, and Joseph L. Steger. A 3D Chimera grid
embedding technique. In AIAA 7th Computational Fluid Dynamics
Conference, Cincinnati, OH, July 1985. AIAA Paper 85-1523-CP.

John Bentley. Multi-dimensional binary search trees used for associative
searching. Communications of the ACM, 18(9), September 1975.

Larry Bergman, Henry Fuchs, Eric Grant, and Susan Spach. Image rendering by
adaptive refinement. In Computer Graphics (Proceedings of SigGraph),
volume 20, pages 29-37, August 1986.

Robert S. Bernard. Grid-induced computational flow separation. In S. Sengupta
et al., editors, Numerical Grid Generation in Computational Fluid
Mechanics, pages 955-964, Swansea, Wales, 1988. Pineridge Press.

Jacques Bertin. The Semiology of Graphics. University of Wisconson Press, 1983.
Translated by W.Berg.

David M. Betz. XSCHEME: an object-oriented Scheme, 1988.
(http:/ /www.cs.indiana.edu/scheme-repository/imp.html).

Jules Bloomenthal. Calculation of reference frames along a space curve. In
Andrew Glassner, editor, Graphics Gems. Academic Press, Cambridge,
MA, 1990.

185

Grady Booch. Object Oriented Design with Applications. Benjamin/Cummings,
1991. Chapter 2.

Steve Bryson and Michael Gerald-Yamasaki. The distributed virtual windtunnel.
In Proceedings of Supercomputing '92, pages 275-284, Minneapolis, MN,
November 1992.

Pieter G. Buning. Numerical algorithms in CFD post-processing. von Karmann
Institute for Fluid Dynamics, Lecture Series 1989-10, Computer Graphics
and Flow Visualization in CFD, September 1989 ..

Pieter G. Buning. Sources of error in the graphical analysis of CFD results.
Journal of Scientific Computing, 3(2):149-164, 1988.

Pieter G. Buning, I.T. Chiu, S. Obayashi, Yehia M. Rizk, and Joseph L. Steger.
Numerical simulation of the integrated space shuttle vehicle in ascent. In
AIAA Atmospheric Flight Mechanics Meeting, Minneapolis, MN, August
1988. AIAA Paper 88-4359.

Pieter G. Buning and Joseph L. Steger. Graphics and flow visualization in CFD.
In AIAA 7th CFD Conference, pages 162-170, Cincinnati, OH, July 1985.
AIAA Paper 85-1507-CP.

David M. Butler and M.H. Pendley. A visualization model based on the
mathematics of fiber bundles. Computers in Physics, 3:45-51, Sep/Oct
1989.

Dave Darmofal and Robert Haimes. Visualization of 3D vector fields: Variations
on a stream. In AIAA Aerospace Sciences Meeting, Reno, NV, January
1992. AIAA Paper 92-0074.

Willem C. de Leeuw and Jarke van Wijk. A probe for local flow visualization. In
Proceedings of Visualization '93, pages 39-45, San Jose, CA, October 1993.

Peter J. Denning. The working set model for program behavior. Communications
of the ACM, 26(1):43-48, January 1983. (Reprinted here from a 1967
conference proceedings.).

Robert R. Dickinson. A unified approach to the design of visualization software
for the analysis of field problems. In Three-dimensional Visualization and
Display Technologies, volume 1083, pages 173-180. SPIE, 1989.

Robert R. Dickinson and Richard H. Bartels. Fast algorithms for tracking
contours, streamlines, and tensor field lines. In Third International
Conference on Computing in Civil Engineering, Vancouver BC, August
1988.

186

Erich Eder. Visualisierung von Teilchenstroemungun mit Hilfe eines
Vektorrechners. Master's thesis, Fachberiech Informatik, Fachhochschule
Muenchen, Munich, February 1991. (Visualization of Flow Fields Using
Vector Computers (diplomarbeit)).

John A. Ekaterinaris and Lewis B. Schiff. Vertical flows over delta wings and
numerical prediction of vortex breakdown. In AIAA Aerospace Sciences
Conference, Reno, NV, January 1990. AIAA Paper 90-0102.

Peter Eliassen, Jesper Oppelstrup, and Arthur Rizzi. STREAM3D: Computer
graphics program for streamline visualization. Advances in Engineering
Software, 11(4):162-168, 1989.

Richard Elison and. Donna Cox. Visualization of injection molding. Simulation,
51(5):184-188, November 1988.

Henry Fuchs, Zvi M. Kedem, and Samuel P. Uselton. Optimal surface
reconstructions from planar contours. Communications of the ACM,
20(10):693-702, October 1977.

Datta Gaitonde. Personal communication, January 12, 1995.

AI Globus. A software model for visualization of time dependent 3D computer
fluid dynamics results. Technical Report RNR-92-031, Numerical
Aerodynamic Simulation Systems Division, NASA Ames, Moffett Field,
CA 94035, November 1992.

AI Globus, Tom Lasinski, and Creon Levit. A tool for visualizing the topology of
three-dimensional vector fields. In Proceedings of Visualization '91, pages
33-40, San Diego, CA, October 1991.

Adele Goldberg and David Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, Reading, MA, 1983.

Robert B. Haber. Visualization in engineering mechanics: Techniques, systems
and issues. In Visualization Techniques in the Physical Sciences, Atlanta,
GA, August 1988.

Robert Haimes. PV3: A distributed system for large-scale unsteady CFD
visualization. In AIAA Aerospace Sciences Meeting, Reno, NV, January
1994. AIAA Paper 92-0321.

Andrew J. Hanson and Pheng A. Heng. Visualizing the fourth dimension using
geometry and light. In Proceedings of Visualization '91, pages 321-328,
San Diego, CA, October 1991.

187

James L. Helman and Lambertus Hesselink. Representation and display of vector
field topology in fluid flow data sets. IEEE Computer, pages 27-36,
August 1989.

James L. Helman and Lambertus Hesselink. Surface representations of two- and
three-dimensional fluid flow topology. In Proceedings of Visualization '90,
pages 6-13, San Diego, CA, October 1991.

Steve Hill. Tri-linear interpolation. In Paul Heckbert, editor, Graphics Gems IV.
Academic Press, Cambridge, MA, 1994.

Andrea J.S. Hin. Visualization of Turbulent Flow. PhD thesis, Department of
Informatics, Technische Universiteit Delft, Netherlands, September 1994.

Andrea J.S. Hin and Frits H. Post. Visualization of turbulent flow with particles.
In Proceedings of Visualization '93, pages 46-52, San Jose, CA, October
1993.

Vi Hirsch and Chris Gong. CFD technical highlights videotape, 1994. Numerical
Aerodynamic Simulation Systems Division, NASA Ames Research Center,
Moffett Field, CA 94035.

Thomas J. Hughes. The Finite Element Method: Linear Static and Dynamic
Finite Element Analysis. Prentice-Hall, 1987. Chapter 3.

Jeff P.M. Hultquist. Numerical flow visualization in a functional style. Technical
Report RNR-89-008, Numerical Aerodynamic Simulation Systems
Division, NASA Ames, Moffett Field, CA 94035, June 1989.

Jeff P.M. Hultquist. Interactive numerical flow visualization using stream
surfaces. Computing Systems in Engineering, 1(2-4):349-353, 1990.

Jeff P.M. Hultquist. Constructing stream surfaces in steady 3d vector fields. In
Proceedings of Visualization '92, pages 171-178, Boston, MA, October
1992.

Jeff P.M. Hultquist. Improving the performance of particle tracing in curvilinear
grids. In AIAA Aerospace Sciences Meeting, Reno, NV, January 1994.
AIAA Paper 94-0324.

Jeff P.M. Hultquist and Eric Raible. Superglue: A programming environment for
scientific visualization. In Proceedings of Visualization '92, pages 243-250,
Boston, MA, October 1992.

David Kenwright. Dual Stream Function Methods for Generating 3-Dimensional
Stream Lines. PhD thesis, Department of Mechanical Engineering,
University of Auckland, New Zealand, August 1993.

188

David Kenwright and Gordon Mallinson. A streamline tracking algorithm using
dual stream functions. In Proceedings of Visualization '92, pages 62-68,
Boston, MA, October 1992.

G. David Kerlick. Moving iconic objects in scientific visualization. In Proceedings
of Visualization '91, pages 124-129, San Francisco, CA, October 1990.

Myron W. Krueger. Personal communication, February 26, 1992.

Myron W. Krueger. Artificial Reality. Addison-Wesley, Reading, MA, second
edition, 1991. pages 175-176.

David Lane. UFAT- a particle tracer for time-dependent flow fields. In
Proceedings of Visualization '94, pages 257-264, Washington D.C., October
1994.

Kwan-Liu Ma and Philip J. Smith. Cloud tracing in convection-diffusion systems.
In Proceedings of Visualization '93, pages 253-260, San Jose, CA, October
1993.

Fred W. Martin, Jr. and Jeffrey P. Slotnick. Flow computations for the space
shuttle in ascent mode using thin-layer navier-stokes equations. In P.A.
Henne, editor, Applied Computational Aerodynamics (Progress in
Astronautics and Aeronautics), volume 125, pages 863-886. AIAA,
Washington, D.C., 1990.

C. Wayne Mastin. Error induced by coordinate systems. In J.F. Thompson,
editor, Numerical Grid Generation, pages 31-40. Elsevier, 1982.

C. Wayne Mastin. Fast interpolation schemes for moving grids. In S. Sengupta
et al., editors, Numerical Grid Generation in Computational Fluid
Mechanics, pages 63-73, Swansea, Wales, 1988. Pineridge Press.

Donovan L. Mathias, Karlin R. Roth, James C. Ross, Stuart E. Rogers, and
Russell M. Cummings. Navier-stokes analysis of the flow about a flap edge.
In AIAA Aerospace Sciences Meeting, Reno, NV, January 1995. AIAA
Paper 95-0185.

Nelson Max, Barry Becker, and Roger Crawfis. Flow volumes for interactive
vector field visualization. In Proceedings of Visualization '93, pages 19-24,
San Jose, CA, October 1993.

Robert L. Meakin. A new method for establishing intergrid communication
among systems of overset grids. In AIAA 10th Computational Fluid
Dynamics Conference, Honolulu, HI, June 1991. AIAA Paper 91-1586-CP.

Earl M. Murman and Kenneth G. Powell. Trajectory integration in vortical flows.
AIAA Journal, 27(7):982-984, August 1988.

189

Gregory M. Nielson and Dan R. Olsen Jr. Direct manipulation techniques for 3d
objects using 2d locator devices. In Proceedings of the 1986 Workshop on
Interactive 3D Graphics, pages 175-182, Chapel Hill, NC, October 1986.
ACM, New York.

Daniel G. Pearce, Scott Stanley, Fred Martin, Ray Gomez, Gerald Le Beau, Pieter
Buning, William Chan, Ing-Tsau Chiu, Armin Wulf, and Vedat Akdag.
Development of a large-scale chimera grid system for the space shuttle
launch vehicle. In AIAA Aerospace Sciences Meeting, Reno, NV, January
1993. AIAA Paper 93-0533.

Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An
Introduction. Springer-Verlag, 1985.

Jonathon Rees and William Clinger. Revised (4th) report on the algorithmic
language Scheme, 1990.
(http: I lwww.cs.indiana.edul scheme-repository I doc.standards.html).

Yehia M. Rizk and Shmuel Ben-Shmuel. Computational of the viscous flow
around the shuttle orbiter at low supersonic speeds. In AIAA Aerospace
Sciences Meeting, Reno, NV, January 1985. AIAA Paper 85-0168.

J.M. Robertson. Hydrodynamics Theory and Applications. Prentice-Hall, 1965.
page 73.

Stuart Rogers. Personal communication, February 13, 1995.

Ari Sadarjoen, Theo van Walsum, Andrea J.S. Hin, and Frits H. Post. Particle
tracing algorithms for 3D curvilinear grids. In Eurographics Workshop on
Visualization in Scientific Computing, Rostok, Germany, May 1994.

Hanan Samet. The quadtree and related hierarchical data structures. ACM
Computing Surveys, 16(2):365-369, June 1984.

W.J. Schroeder, C.R. Volpe, and W.E. Lorenson. The stream polygon: A
technique for 3d vector field visualization. In Proceedings of Visualization
'91, pages 126-131, San Diego, CA, October 1991.

S. Shirayama. Visualization of vector fields in flow analysis I. In 29th Aerospace
Sciences Meeting, Reno, NV, January 1991. AIAA Paper 91-0801.

Peter Shirley and Henry Neeman. Volume visualization at the center for
supercomputing research and development. Technical report, University of
Illinois at Urbana-Champaign, Urbana, IL, January 1989. CSRD Report
Number 849.

M. Siclari, 1991. Personal communication regarding the picture on the cover of
Science, 245(28), July 1989.

190

J. Stolk and Jarke J. van Wijk. Surface-particles for 3d flow visualization. In
Proceedings of the Second Eurographics Workshop on Visualization in
Scientific Computing, pages 22-24, Delft, The Netherlands, April1991.

Yoshiaki Tamura and Kozo Fujii. Visualization for computational fluid dynamics
and the comparison with experiments. In 8th Applied Aerodynamics
Conference, Portland, OR, August 1990. AIAA Paper 90-3031-CP.

Joseph F. Thompson. General curvilinear coordinate systems. In J.F. Thompson,
editor, Numerical Grid Generation, pages 1-30. Elsevier, 1982.

David Ungar and Randall B. Smith. Self: The power of simplicity. LISP and
Symbolic Computation, 4(3):187-205, July 1991.

Milton van Dyke. An Album of Fluid Motion. The Parabolic Press, Stanford, CA,
1982.

Jarke J. van Wijk. Rendering surface particles. In Proceedings of Visualization
'92, pages 54-61, Boston, MA, October 1992.

Jarke J. van Wijk. Implicit stream surfaces. In Proceedings of Visualization '93,
pages 245-252, San Jose, CA, October 1993.

Jarke J. van Wijk, Andrea J.S. Hin, Willem C. de Leeuw, and Frits Post. Three
ways to show 3D fluid flow. IEEE Computer Graphics and Applications,
14(5):33-39, September 1994.

G. Volpe. Streamlines and streamribbons in aerodynamics. In 27th Aerospace
Sciences Meeting, Reno, NV, January 1989. AIAA Paper 89-0140.

Robert P. Weston. Applications of color graphics to complex aerodynamics
analysis. In AIAA 25th Aerospace Sciences Meeting, Reno, NV, January
1987. AIAA Paper 87-0273.

Robert P. Weston. Color graphics techniques for shaded surface displays of
aerodynamic flowfield parameters. In AIAA 8th CFD Conference,
Honolulu, HI, June 1987. AIAA Paper 87-1182-CP.

Peter L. Williams. Visibility ordering meshed polyhedra. Transactions on
Graphics, 11(2):103-126, April 1992.

Paul R. Wilson. Uniprocessor garbage collection techniques. In Proceedings of the
1992 International Workshop on Memory Management (Springer Lecture
Notes #637), 1992. (ftp:/ /cs.utexas.edujpub/garbagefgcsurvey.ps).

Chia-Shun Yih. Stream functions in three-dimensional flows. In Selected Papers,
pages 893-898. World Scientific, Teaneck, N J, 1991. (First published in La
Houlle Blanche, 1957).

191

Susan X. Ying, Lewis B. Schiff, and Joseph L. Steger. A numerical study of
three-dimensional separated flow past a hemisphere cylinder. In AIAA
19th Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu,
HI, June 1987. AIAA Paper 87-1207.

192

