
UNC is an Equal Opportunity/Affirmative Action Institution.

Obscuration Culling on
Parallel Graphics Architectures

Chris Georges

TR95-017
May 1995

Department of Computer Science
CB #3175, Sitterson Hall
UNC-Chapel Hill
Chapel Hill, NC 27599-3175

U
N

I V

E R
S I T AT

C

A
R

O
L

S
E

P
TE

N
T

S
I

GI

L
L

U
M

•

••
LUX

LIBERTAS

 1

A b s t r a c t :

Obscuration culling makes use of hierarchy information to accelerate
rendering of geometric models. Given some sort of object hierarchy
composed of bounding volumes it is possible to avoid transforming and
rendering the contents of a volume if the volume itself lies outside the
view frustum or is completely invisible when rendered against the
current z-buffer. Using this idea in conjunction with the exploitation
of temporal coherence to assure that the z-buffer is "almost complete"
can yield large speedups for scenes with high depth complexity.

This paper is intended both as an introduction to obscuration culling
and as a discussion of issues related to its implementation on parallel
machines in general and Pixel-Planes 5 in particular. No familiarity
with Pixel-Planes is assumed, but the reader should have some
understanding of z-buffering and the standard graphics pipeline. A
review of this paper should enable the reader to identify situations in
which obscuration culling will be effective, understand the basic
sequential algorithm, and understand some of the problems and
modifications required in transferring it to a parallel environment.

1. Introduction

 Visibility determination is the central bottleneck of most graphics systems.
Complex geometric databases challenge standard z-buffer visibility techniques
[1], which require the rasterization of all elements. There will always be
models too large for these brute force methods to display at interactive rates,
even when implemented on the fastest graphics architectures. However, in
many situations it is possible to greatly accelerate rendering using coherent
aspects of the visibility computation itself. This is the goal of advanced
visibil ity algorithms.

 There are at least three types of coherence that can be exploited: object-
space, image-space, and temporal. Object-space coherence refers to the
tendency of objects near visible objects to be visible as well. If the database is
organized such that nearby elements are easily identifiable, often one
visibility calculation can suffice for many different elements. Image-space
coherence is coherence in the pixel domain; often it is possible to determine
visibility at many nearby pixels with a single computation. Temporal
coherence usually appears in interactive viewing situations. The view
position typically does not change much from frame to frame, so visibility
information from the previous frame will often be useful in the next.

 Other types of information can prove valuable to visibility algorithms. If
part of the database is known to be static (not moving), then the spatial
relationships among these elements can be analyzed and mutual visibility
information stored in a preprocessing step. For example, often it is known a-
priori that certain objects are invisible from certain locations (e.g. because
they are in another room of a house). Models such as buildings can be
naturally partitioned into disjoint regions (the "rooms," in this case) from
which only limited subsets of the entire model are visible. For each region, a
potentially visible set (PVS) of other regions can be precomputed. At run time,
only elements of regions in the PVS of the current location need to be
considered for display.

 2

 There are some situations where current visibility algorithms are
ineffective [12]. Intuitively, optimizations based on visibility information are
useful only in models having a high average depth complexity, which means
from common viewpoints most lines of sight will intersect many elements of
the database. For example, in a terrain database used by a flight simulator, the
depth complexity along any line of sight from a typical viewpoint far above
the surface will not be very large. Most of the database is visible, so no
visibility algorithm will be able to reject a significant fraction of the
geometry without evaluating each primitive like the standard z-buffer does.
For this case, interactive display requires alternative techniques such as
rendering lower-resolution versions of objects that are far away (a method
known as “multi-resolution modeling” or "level-of-detail" [12], [13]).

 Even if a model does have a high degree of depth complexity, algorithms
based on PVS methods may not be able to exploit it. For example, an outdoor
environment like a forest will have a great deal of occlusion in any given
direction (due to the trunks and leaves of the trees), but partitioning it
effectively is difficult because most cells will be able to see most other cells, so
the resulting potentially visible sets will be too large to offer any advantage.
Even indoor models like office floors and warehouses will have large open
spaces though which most regions that might be considered for cell status can
be seen.

 Visibility algorithms based on obscuration culling offer a viable alternative
to PVS techniques for these situations. The basic technique uses a spatial
hierarchy in conjunction with an augmented z-buffer to avoid passing
invisible geometry to the rasterization engine. This paper will first cover
some relevant prior work on visibility, and then move on to describe the
original obscuration culling algorithm, hierarchical visibility [6], and some
issues that arise when parallelizing it. Next I describe a parallel
implementation on UNC's Pixel-Planes 5 and report on some preliminary
results. The last section will focus on possible future applications of
obscuration cull ing.

2. Prior Work on Visibility

 There have been many previous attempts to accelerate visibility
determination. Most of them involve building a spatial hierarchy (a tree of
objects with bounding volumes, organized such that every child object is
contained within its parent's bounding volume), and then traversing it in
some fashion to process visibility queries. None of them exploit all the forms
of coherence in the visibility computation.

 Much research has been devoted to the topic of accelerating ray-tracing
renderers [14]. These algorithms typically use spatial hierarchies to speed ray
intersection queries. Some of them even make use of temporal coherence by
using precomputed object paths to construct space-time bounding volumes.
Nevertheless ray-tracing by nature operates on a per pixel basis and thus
cannot take advantage of image-space coherence.

 Standard z-buffer techniques already use image-space coherence in the
rasterization process. A primitive's depth values are interpolated from pixel to
pixel across the screen as it is drawn. Most of the PVS methods were designed
to be used in conjunction with a z-buffer rendering engine, so they have some
claim to utilizing image-space coherence.

 3

 The first of the PVS algorithms was developed by Jones [2], who subdivides a
model by hand and stores the openings that connect adjacent cells as portals .
The database is rendered by starting at the cell containing the viewer and
passing it and associated primitives to the graphics pipeline. Then adjacent
cells are traversed in depth-first fashion. To decide whether to traverse a
portal, it must first be clipped to the intersection of all portals along the path
from the current cell. If the result is empty, the portal is not followed. This
can be thought of as "lazy" evaluation of the potentially visible set, because it
is not computed until needed at render time.

 By contrast Airey [3] precomputes the PVS's, estimating them using random
sampling methods. Teller [4] achieves more efficient and exact visibility
determination using computational geometry techniques. He solves the
portal-to-portal visibility problem exactly by determining the existence of
sightlines through multiple portals from anywhere in a region. He
dynamically culls these statically-determined PVS's to a portal view-frustum,
as Jones did.

 All of these methods run into trouble when the environment does not
partition naturally (like an architectural model). Furthermore, Airey's and
Teller's systems are optimized to handle primitives that are axis-aligned (i.e.
parallel to a coordinate plane), and datasets with a lot of non-axial primitives
make both algorithms much less efficient (due to more complex subdivisions
and thus more complicated cell-to-cell visibility calculations). There are
models that fall into both of these categories but are still densely occluded (like
the aforementioned forest), and thus appropriate for visibility techniques.
This is the niche that is filled by obscuration culling.

3. Description of Algorithm

 The fundamental idea behind obscuration culling is simple: if the bounding
volume of an object is completely invisible, then the object itself must be
invisible and need not be rendered. Since the bounding volume is comprised of
a small constant number of primitives, rendering it is inexpensive compared
to the cost of rendering the entire object.

3.1 Choosing and Constructing a Spatial Hierarchy

 Obscuration culling requires an object-space hierarchy, so the first step is to
construct one. The basic process is recursive: take the current cell, 1) decide if
it needs to be subdivided, and if so 2) create two or more new cells within the
current one, 3) redistribute the current cell's primitives among the new cells
and 4) repeat the process for each new child cell. There are many options at
each step, each resulting in a different type of hierarchy. The subdivision
criteria is most commonly based on number of primitives in the cell since the
goal is usually a hierarchy with a fairly uniform number of primitives in the
leaf cells. Subdivision itself can be done any number of ways. If the
hierarchy is being constructed by hand usually the child cells are logical
subdivisions of the current one (rooms in a house, furniture in a room). A
more automatic method is to split the cell along an arbitrary plane that divides
the primitives in the cell roughly in half--the resulting structure is known as
a BSP tree [5]. The arbitrary splitting plane allows BSP trees to be inherently
balanced, but for purposes of determining and testing against boundaries it is
often more efficient to constrain cells to be axially aligned. In an "octree,"
every cell is uniformly subdivided into eight child "cubes" defined by the
three axis-aligned planes that bisect the parent.

 4

 Primitives are redistributed by giving all those that fall entirely within one
child to that child. Primitives that straddle child boundaries can be handled
several ways: they can be associated with the parent cell, they can be split and
the parts passed to the children, or they can be passed to one child and the
child's boundaries expanded to contain it. Every method has some
disadvantages. Associating them with a parent cell associates them with the
parent cell's visibility which is inefficient for tiny primitives that happen to
straddle boundaries. Splitting can greatly increase the total primitive count,
and passing to one child may expand the child's bounding volume so much as
to be no longer tight enough to be effective.

 The original obscuration culling algorithm, "Hierarchical Z-Buffer
Visibility," [6] uses an octree subdivision because of its simplicity and
efficiency, along with a hybrid redistribution strategy. Primitives that
intersect a cube's dividing planes are associated with the cube itself unless the
primitive is deemed "small" compared to the cube, in which case it is passed to
all children it overlaps and marked after rendering so it is only drawn once.

3.2 Image-Space Hierarchy
 Hierarchical visibility uses the hierarchical concept in the image domain as
well the spatial one. In standard z-buffering, a depth, or "z-value," is kept for
each pixel. This algorithm keeps additional z-buffers at increasingly lower
resolutions (all the way down to a single pixel) in a structure called a "z-
pyramid." Each level is 4 times smaller than the lower one, and each z-value
represents the furthest (maximum) of the 4 pixel z's it covers in the level
below it. Figure 1 illustrates this with a simple 3-level example. Each quadrant
of level 0 has its maximum value represented in the corresponding level 1
entry, and the uppermost level is the maximum z for the entire z-buffer.

4 9 8 8

3154

6

2 2

2 2

2 4

4

9 8

46

9

Fig. 1: 3 levels of a simple Z Pyramid

Level 0 (regular Z-buffer)

Level 1

Level 2

 5

Fig 2: Testing a bounding box face against the Z Pyramid.
 (a) represents the z-depths of the face
 (b) and (c) show the corresponding samples
 examined in the Z Pyramid of Fig. 1

9 8

46

4 9 8 8

3154

6

2 2

2 2

2 4

4

(a) Face Z-depths (c) Level 0 samples examined

(b) Level 1 sample examined

67

 When an object is being tested for visibility, the faces of its associated octree
cube are rasterized using the z-pyramid by first determining the screen-space
bounding box of each face, and then finding the single finest resolution pixel
in the pyramid that still completely covers the bounding box area. The z-value
of this sample is compared to the closest z-value of the face (which will be one
of the vertices). If the closest face z is further than the sample z (the furthest
z of the all visible pixels in the region), then the face must be obscured. The
face may still be obscured even if this test fails to reject because the face may
not necessarily overlap the particular maximum-depth pixel at full resolution.
This can be determined by descending to higher resolutions in the z-pyramid
and seeing if all samples the face intersects are closer; eventually either the
face will be rejected or it will descend to the highest resolution and determine
once and for all that the face is visible.

 Figure 2 illustrates this process. An octree cube face covers the 2 pixels
marked in (a) with the depths indicated. The closest vertex of the face is at
depth 6. The search starts at the single highest resolution pixel that covers the
entire bounding box of the face. This turns out to be the upper right pixel of
level 1. The value there (9) is farther than the closest vertex (6), so the search
continues one level deeper in the pyramid. At level 0, the 2 pixels covered by
the face are both closer than the closest vertex, so this face is known to be
invisible and the test can proceed to the next face of the current cube. If all
faces are invisible, the cube’s contents can be disregarded.

 If the rejection test fails, the octree cube is assumed to be visible and all
associated geometry must be rendered. In the course of doing this the z-
pyramid must be updated at every resolution; the primitive is rasterized
normally at full resolution and then the affected parts of lower resolution
levels are updated as necessary.

3.3 Exploiting Temporal Coherence

 The goal of obscuration culling is to maximize the chance of a successful
rejection. If the object is invisible in the final frame, then the algorithm

 6

should reject it if at all possible. Rendering order affects this; the first object
drawn will not be obscured regardless of its final visibility because the z-
buffer is empty, and if you happen to render objects in back to front order
nothing will be obscured at the time it is drawn. Ideally you would like to do
the opposite: draw objects roughly front to back so invisible objects will have
the greatest possible chance of having their bounding boxes obscured.

 Temporal coherence in the visibility relation offers a solution. When
generating a sequence of frames in an interactive application, the view
parameters do not change much from frame to frame and so most objects that
were visible last frame will be visible this frame. If you keep a list of all
objects whose bounding boxes were visible last frame and draw them first,
then the z-buffer will be "almost complete" in that the only remaining
obscuration tests that will fail are previously-invisible objects that have just
come into view. This is what "hierarchical visibility" does; the objects on the
"visible" list are rendered normally, then the rest are rendered if they pass
the obscuration test. Every time the test fails to reject, the object is added to the
visible list. At the end of each frame all objects on the visible list are checked
against the final z-buffer and deleted if found invisible.

4. Parallelization Issues

 The original hierarchical visibility algorithm is quite effective for
extremely large models, but there are difficulties in parallelizing it for an
architecture with multiple distributed (i.e. no shared memory) graphics
p ipe l ines .

4.1 Hierarchy Distribution

 The first question to be resolved is how to distribute the spatial hierarchy
over the various processors. If the hierarchy is flat (just a group of disjoint
bounding volumes with no children) then there are two basic approaches
(described in [7]). If a structure is defined as "a bounding volume and its
associated geometry," then distribute by structure allocates entire structures to
single processors, while distribute by primitive puts part of every structure on
all processors by passing out the primitives of each in round-robin fashion.
The first strategy has poor load-balancing characteristics; if one processor
contains only structures that are invisible in that frame then it is essentially
sitting idle for much of the frame-generation time. The second method solves
this problem since every processor works on part of every object, but every
processor also incurs the overhead associated with rendering each structure,
which in this case includes the cost of the bounding volume obscuration test.

 If this cost is significant then it will be wasteful and expensive to have all
processors perform the test for all structures. Furthermore since the test
results are independent of one another, some may be done too early and
incorrectly fail to reject, resulting in more wasted rendering effort. So the
best approach is probably a hybrid of both strategies: individual structures
should be kept together on a single processor, but the environment should be
subdivided finely enough so that nearby areas can be distributed equally
among the processors to balance the load for arbitrary views, but not so finely
that the cumulative per structure overhead starts to dominate any possible
benefit. Once the structures have been distributed, each processor can
recombine its own allotment into a tree hierarchy for greater culling
e f f i c iency .

 7

4.2 Temporal Coherence Lists

 Another type of load imbalance occurs because the structures are no longer
being processed in order. In the sequential algorithm, all structures whose
bounding volumes were visible last frame are rendered first to build up the
"almost-complete" z-buffer. On a parallel machine, each processor has its own
separate list of structures visible (and invisible) last frame. Assuming a MIMD
architecture where each processor operates independently, the "visible" and
"invisible" stages of rendering will not be synchronized among the processors
because the length of the visible lists and the time needed to render them will
vary. Consider the case where one processor holds only structures that were
visible last frame, while another has only structures that were invisible.
Ideally the visible list should be drawn first to increase the chance of an
obscuration culling reject. Instead the two types of structures are rendered
simultaneously. Redistributing the structures to rebalance the lists every
frame is too expensive (unless the processors share memory), and forcing
processors to wait until all visible lists are drawn wastes computational power,
so other methods of increasing obscuration culling efficiency are needed.

 One useful technique is to render the visible list in order of each object's
screen-space area. The goal is to fill the z-buffer as fast as possible, so the
objects that cover the largest screen area should be drawn first. This area can
be approximated quickly using the projected area of the bounding volume (or
even more quickly using the screen-space bounding box of the projected
vertices of the bounding volume). This computation is done for all structures
every frame and the visible list sorted from largest to smallest area.

 It would seem as if the structures that were invisible last frame should also
be drawn in the order of bounding volume area, but a better heuristic is
available. The efficiency of obscuration culling is the sum over all objects of
the probability that an object invisible in the final frame is rejected by the
cull multiplied by the work saved by culling the object. Under the assumption
of temporal coherence, most objects invisible last frame will still be invisible
this frame, so rendering them will not contribute to final z-buffer and will not
increase the chance of another object being obscured. To increase efficiency
we should instead concentrate on increasing the amount of work saved by the
rejections that are successful. Structures that cost the most should have their
obscuration test postponed as long as possible to allow other processors to fill
up the z-buffer, maximizing the chance of a rejection.

 If the time to render any primitive is assumed to be roughly constant, (valid
on the Pixel-Planes machines but less so on an architecture like the SGI
Reality-Engine [8] where rendering time is proportional to screen-size of the
primitives) then the work required to render a structure can be measured
strictly in terms of number of primitives. The structures on the invisible list
can then be sorted from smallest to largest number of primitives, and rendered
in that order.

 Deletion from the visible list presents a final problem with parallelizing the
original sequential algorithm. At the end of each frame, “hierarchical
visibility” assumes you can test every structure on the visible list against the
final z-buffer, and delete those whose bounding volume does not appear. If
the obscuration test is expensive (if it requires some network communication),
you would rather not do these extra tests every frame. Instead, the full recheck
can be done after a fixed number of frames, which should be fairly small to
ensure the visible list does not grow too large. The recheck could be done

 8

earlier if a large number of structures were suddenly added, indicating a
possibly drastic change in overall visibility. If the architecture allows you to
quickly determine the maximum depth in the z-buffer, a rapid shift in this
value can be another early indicator of significant visibility change (the
viewer may have moved in front of a wall).

5. Obscuration Culling on Pixel Planes 5

 I have implemented obscuration culling on Pixel-Planes 5, a high-
performance graphics multicomputer developed at UNC [9]. The Pixel-Planes 5
system consists of a host workstation, several dozen Graphics Processors (GPs),
10-20 SIMD processor arrays called Renderers, and a frame buffer, all of which
are mounted on a high bandwidth ring network. Each GP is an Intel i860, a
general purpose floating point processor with its own memory. In traditional
rendering mode, each GP transforms its segment of the display list and hands
the result off to the Renderers. The Renderers rasterize primitives using an
128x128 array of 1-bit processors, each assigned to a different screen pixel. To
rasterize, all processors outside the primitive boundary turn themselves off,
then all processors at which the primitive is farther than the last stored pixel
turn themselves off (z-buffering), and finally the remaining processors write
the appropriate information for the primitive into their pixel memory. Each
Renderer handles a different 128x128 region of the screen. When rasterization
is complete, the screen-subimages are collected in the frame buffer and
displayed.

 Pixel-Planes 5 is an attractive machine to perform obscuration culling on
because its hardware allows a z-query test to be implemented efficiently. To
know if the primitives composing the bounding volume are visible, you need a
way to tell if any of the pixels of a rasterized primitive appeared in the z-
buffer. The heavily pipelined architecture of some popular machines like the
SGI Reality Engine prevent this from being done quickly, but the Pixel-Planes
Renderers, like most parallel SIMD machines, have a global OR of all processor
enables that allows you to immediately tell if any of the processors are turned
on by polling a status flag (called the "All Enables Off", or AEO bit) (see [10]).
The z-query is done by simply checking the value of this bit after rasterizing a
p r im i t i ve .

 The z-pyramid concept of hierarchical visibility is not useful on Pixel-
Planes. The z-pyramid saves time if you are doing the comparisons
sequentially, checking the nearest z of a primitive against progressively
increasing z-buffer resolutions. On Pixel-Planes, you can do this comparison
at every pixel simultaneously, effectively going to the highest resolution at no
extra cost.

5.1 Overview

 My preliminary implementation takes a "distribute by structure" approach
and assumes a strictly flat object hierarchy. The structures are passed out
round-robin to the GPs and a 3D axial bounding box is computed for each. The
structures are all initialized as "invisible last frame," and rendering proceeds.

 First, for every structure on its visible list, each GP computes the area of the
axial 2D bounding box of the projected 3D bounding box vertices and sorts the
list in order of decreasing area. If the projected bounding box intersects the
view frustum (i.e. it's in front of the viewer and would appear somewhere on
screen), the structure's primitives are transformed and sent to the Renderers

 9

as normal.

 Next, the structures on the invisible list are traversed in order of increasing
number of primitives (the sorting is done as a pre-process). Each structure
inside the viewing frustum is tested for obscuration. The triangles composing
the bounding box are transformed and sent to the Renderers to be rasterized
(without overwriting any of the actual pixels), and each Renderer sends back
a status word indicating the resulting AEO value. If the bounding box is
invisible in all screen regions it covers, then its contents are completely
obscured and can be skipped. Otherwise the structure is transformed,
rasterized, and moved to the visible list for the next frame.

 Every 30 frames, all structures on the visible list are checked against the
final frame z-buffer and those that do not appear are moved to the invisible
list. Note that view-frustum culled structures do not automatically move to the
invisible list. In an interactive application, visible structures usually leave
the view frustum due to rotational motion, not positional changes that would
affect obscuration. This way if the viewer turns and then looks back at a
structure it will be correctly predicted as visible.

 One implementation detail that deserves special mention is the renderer
allocation method. Usually there are fewer Renderers than screen regions, so
there must be a way of deciding which renderers work on which regions. The
standard Pixel-Planes 5 rendering control system uses dynamic renderer
allocation: every frame, the regions that received the most primitives last
frame are assigned renderers first, and when a renderer finishes it is assigned
the next available region. This method is dynamic in the sense that the
renderer-to-region assignment is not known before the frame begins. This
causes problems for obscuration culling because the GPs need to be able to
query all the screen regions a bounding box covers to see if its visible, but
only the regions currently assigned to renderers would be accessible under
the dynamic method. Since all screen regions need to be available
simultaneously, the only solution is to have the renderers work on several
regions at once. The assignment is done at startup so the GPs know which
renderer is handling which region; this is called static renderer allocation.
Static allocation has less overhead than dynamic, but drastically reduces the
amount of memory available to store pixel shading parameters (since each
renderer must now store multiple regions) and may perform poorly if all the
primitives are concentrated in the regions of one renderer. It also forces you
to abandon systems built on the standard rendering control software base (like
the PPHIGS and vlib graphics libraries commonly used by Pixel-Planes
appl ica t ions) .

5.2 Preliminary Results

 The obscuration culling system was tested first with a simple model that had a
plain box and a series of complex objects consisting of several thousand
polygons. To achieve the most dramatic effect it was run on a 1-GP system.
With all objects in sight the scene was rendered at about 2-3 frames/second,
but when the viewer moved so that the box obscured his view of the other
objects, most of the geometry was culled and the frame rate immediately
jumped to near the monitor refresh rate (the maximum useful rate). A more
realistic test involved a 300,000 triangle model of a submarine control deck
that contained many large, occluding polygons and one very dense object: a
heavily tesselated torpedo (some 100K triangles) hidden behind some walls.
When the torpedo was in the view frustum but invisible, obscuration culling

 10

would generally improve the frame rate by 20-30%. More extensive testing is
required to assess the impact of the various optimizations on overall
p e r f o r m a n c e .

5.3 Possible Optimizations

 There are several hardware quirks specific to Pixel-Planes 5 that could be
exploited to improve efficiency. One is the capability of a renderer to quickly
determine a global maximum z depth over all pixel-processors. If a GP finds
that the closest vertex of the bounding box is farther than the maximum z in
all regions it covers, it can reject the structure without sending it to the
renderers. This is somewhat akin to a z-pyramid with 2 levels, a single pixel
and full resolution. It is not absolutely clear at what point in the frame should
the GPs ask the renderers for their maximum z values, but a good time to do
this might be after the visible list has been rendered, when the z-buffer
should be "almost-complete" anyway.

 Another useful optimization would be to overlap obscuration culling tests for
different structures. The test currently requires a GP to wait for AEO status
replies from all regions the bounding box covers. To avoid the potentially
significant latency involved, the GP could move on to test or transform other
structures and come back later to process the replies.

 One feature that distinguishes Pixel-Planes 5 from other graphics platforms
is the renderers' quadratic expression evaluator (see [9]), which allows them to
directly render quadratic surfaces like spheres in parallel. In fact spheres are
slightly faster than the seemingly simpler polygons because they are
described by a single quadratic expression instead of 3 or more linear ones.
Spheres could be used as another type of bounding volume that would fit some
geometries tighter than the standard axial box.

6. Conclusion and Future Applications

 Obscuration culling is an effective method for accelerating visibility
calculations in many situations. I have implemented a prototype system on
Pixel-Planes 5 and preliminary results are encouraging. In general
obscuration culling can be expected to work well for models that are heavily
occluded and subdivided in a way that captures the dense concentrations of
primitives. The speedups will always be limited by the depth complexity of any
particular view--if you can see everything, there is not much any visibility
method could do.

 A few applications of obscuration culling are worth investigating. One is the
use of obscuration tests in a recursive portal culling scheme like that of Jones.
Portals are similar to bounding boxes in that they bound the area over which a
cell could appear, and if the portal is invisible from the current viewpoint
then everything in the cell must also be invisible. Incorporating obscuration
testing in a portal scheme would benefit situations where the interior of a cell
is somewhat occluded so that portals are often invisible from typical
v iewpoin ts .

 Another potential application is interactive radiosity. Radiosity is a global
illumination algorithm that uses finite element methods to determine a view-
independent lighting solution for a polyhedral environment (see [11] for more
details). To do this, every polygonal patch is assigned an initial energy
representing its inherent luminosity (the ones with non-zero values are

 11

emi t ters). On each algorithmic iteration, it shoo t s its remaining energy at all
the other patches it can see. The amount received by each patch depends on
the inter-patch form factor, a geometric quantity representing the fraction of
the total energy leaving the shooter that arrives at this particular receiver.
Occlusion affects this energy transfer, so visibility methods come into play--
one common way to compute the form factors involves rasterizing the scene
from the point of view of every patch. Whenever the geometry of the model
changes the energy transfer relationships change and the form factors must
be completely recomputed. If the geometry change is incremental as might be
expected in an interactive environment, then the patch visibility
interrelationships will exhibit a good deal of temporal coherence from frame
to frame, and obscuration culling is a natural choice to exploit it.

R e f e r e n c e s

[1] Foley, et. al. "Computer Graphics: Principles and Practice,"
Addison-Wesley, 1990.

[2] C.B. Jones. "A New Approach to the 'Hidden Line' Problem,"
 The Computer Journal, vol 14 no 3 (August 1971)

[3] J. Airey. "Increasing Update Rates in the Building Walkthrough
 System with Automatic Model-Space Subdivision and Potentially
 Visible Set Calculations," Ph.D. Thesis, CS Dept, UNC-CH, 1990.

[4] S. Teller. "Visibility Computations in Densely Occluded Polyhedral
 Environments," Ph.D. Thesis, CS Dept, UC Berkeley, 1992.

[5] H. Fuchs, Z. Kedem, B. Naylor. "On Visible Surface Generation by
 A Priori Tree Structures," Proceedings of ACM Siggraph 1980

[6] M. Kass and N. Greene. "Hierarchical Z-Buffer Visibility,"
 Proceedings of ACM Siggraph 1993

[7] D. Ellsworth, H. Good, B. Tebbs. "Distributing Display Lists
 on a Multicomputer," Proceedings of ACM Siggraph 1990
 Symposium on Interactive Graphics

[8] K. Akeley. "RealityEngine Graphics," Proceedings of ACM Siggraph
1993

[9] H. Fuchs, et. al. "Pixel-Planes 5: A Heterogeneous Multiprocessor
 Graphics System Using Processor-Enhanced Memories," Proceedings of
 ACM Siggraph 1989

[10] J. Eyles, "Pixel-Planes 5 System Documentation," Ch. III.4
 (Renderer Description), UNC CS Dept

[11] M. Cohen and J. Wallace. "Radiosity and Realistic Image Synthesis,"
 Academic Press, 1993.

[12] T. Funkhouser and C. Sequin. "Adaptive Display Algorithm for
 Interactive Frame Rates During Visualization of Complex Environments,"
 Proceedings of ACM Siggraph 1993

 12

[13] P. Heckbert and M. Garland. "Multiresolution Modeling for Fast
 Rendering,” Proceeding of Graphics Interface ‘94 (May 1994)

[14] M. Kaplan. The use of spatial coherence in ray tracing. In T e c h n i q u e s
 for Computer Graphics, etc., D. Rogers and R.A. Earnshaw, Springer-
 Verlag, New York, 1987

