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Ryutarou Ohbuchi.  Incremental Acquisition and Visualization of 3D Ultrasound 

Images  

(Under the direction of Henry Fuchs) 

 

Abstract 

This dissertation describes work on 3D visualization of ultrasound echography data.  The future 

goal of this research is the in-place volume visualization of medical 3D ultrasound images acquired and 

visualized real-time.  For example, using such a system, a doctor wearing a special glasses would see a 

volume-visualized image of the fetus in the mother‘s abdomen.  This dissertation discusses two feasibility 

study systems that have been developed in order to push the state of the art toward this goal.  The work on 

the first system, the static viewpoint 3D echography system, shows that it is possible with current graphics 

hardware to visualize, at an interactive rate, a stationary object from a series of 2D echography image slices 

hand-guided with 3 degrees-of-freedom.  This work includes development of an incremental volume 

reconstruction algorithm for irregularly spaced samples and development of an efficient volume 

visualization algorithm based on a spatial bounding technique.  The work on the second system, the 

dynamic viewpoint 3D echography system, shows the feasibility of a system that uses a video see-through 

head-mounted display to realize in-place visualization of ultrasound echography datasets.   
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Chapter 1.  Introduction 

1.1  Introduction and Thesis 

1.1.1  Introduction 

Ultrasound echography has become one of the most popular medical imaging modalities among 

gynecologists, cardiologists, gastroenterologists and others, because it is safe and provides real-time 2D 

sectional images at a moderate cost.  (See Appendix 1 for the brief explanations of the fundamentals of 

ultrasound echography.)  We have been working toward the goal of making this imaging modality 3D and 

as ubiquitous as a stethoscope1 .  Our goal is to develop a real-time 3D ultrasound acquisition and 

visualization system that is easy enough for a non-specialist (e.g., a registered nurse) to use in day-to-day 

practice.  The system would acquire 3D ultrasound images at a real-time rate (e.g., 30 3D-frames/s).  It 

would present 3D visualizations of targets so that the users do not have to mentally fuse 2D slices.  With 

certain display systems, 3D visualized images of objects such as a fetus would be displayed ―in place‖, for 

example, in a pregnant subject‘s abdomen.  Such ―in-place‖ display clearly relates the visualized 3D 

objects (e.g., a fetus) to the surrounding world (e.g., the mother‘s anatomy.)   

We believe that such on-line, real-time, and ―in-place‖ visualizations and displays of real-time 3D 

echograms will help health care professionals, both trained specialists and non-specialists.  This future 

system offers ease of use to a non-specialist while increasing speed and accuracy of the task a trained 

specialist performs.  Such a system has many potential applications.  In an emergency room, it may help 

                                                           

1  Ricardo Hahn, M.D., mentioned to Dr. Henry Fuchs, that ―ultrasonography may become a 

stethoscopic procedure‖ in the future and that he sees ―a parallel to the use of the stethoscope in cardiology 

at a turn of the century‖.  Once exclusive to cardiologists, stethoscopes are now used by every specialist, 

including many non-MD personnel such as nurses.  
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find fragments of foreign objects in a body.  In obstetrical and gynecological procedures, it may help 

umbilical cord sampling or fine-needle biopsy of a suspected breast tumor.  Real-time imaging can be a 

critical help in cardiac diagnosis.  The system may help localize brain tumors for neurosurgery, where 

deformation of the brain after opening the skull makes information from pre-operative imaging less 

reliable.   

This dissertation reports some of the first steps toward developing visualization and display systems 

for the future on-line, real-time, ―in-place‖ visualization 3D echography system outlined above. 

Various forms of 3D ultrasound echography have been developed in the past, and are reviewed in 

Section 2.1.  Among recent examples, several companies, including Tomographic Technologies, Inc. 

[Tomographic Technologies, 1991] and Acoustic Imaging, Inc. [Acoustic Imaging, 1993], have been 

working to bring commercial products to market.  They acquire 3D echography images by mechanically 

moving 2D echography slices over periods of seconds to minutes.  They then visualize the acquired 

datasets using volume visualization and other visualization methods.  Tomographic Technologies, for 

example, has produced impressive images of a mitral valve (a heart valve) in motion using their patented 

transducer that acquires from inside the esophagus with gating by respiratory and cardiac cycles [König, 

1993, Tomographic Technologies, 1991].  However, none of the systems achieves interactive, not to 

mention real-time, 3D acquisition nor visualization.  For example, Acoustic Imaging‘s system, which is 

among the fastest, takes about 3 to 7 seconds to acquire a volume dataset, and its off-line visualization takes 

more time. 

There are three necessary components in realizing such a future 3D real-time echography system; 

acquisition, visualization, and display, all working in real time.   

Non-real-time acquisitions of 3D echography datasets have been studied by many, and a real-time 

3D echography system has been developed by Dr. Olaf von Ramm‘s group at Duke University [Smith, 

1991, von Ramm, 1991].  Recently the group at Duke has successfully demonstrated a prototype system 

that acquires 643 samples at about 20 frames/s using a parallel reception scheme, Explososcan, to break 

limits due to the velocity of ultrasound [Castellucci, 1993].  It is expected that a full scale real-time 3D 

echography system with about 2003 sample points will be available in the near future. 

Visualization of 3D real-time echography datasets presents several difficult issues.  First and 

foremost, visualization of objects within 3D objects is difficult.  Effective visual models for such a 

visualization need to be developed.  Second, characteristics of ultrasound echography as an imaging 

modality make visualization of images from medical ultrasound echography scanners difficult.  For 

example, due to heavy attenuation and other effects, images of a tissue can vary widely due to the tissue‘s 

location and/or orientation.  This makes segmentation of tissue types by images very difficult.  Third, the 

high data rates of real-time volume datasets generated by real-time 3D acquisition systems challenge the 
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fastest of the visualization systems.  For example, the aggregate data bandwidth of a real-time 3D 

acquisition system reaches 500 M samples/s, if 30 3D-frames/s of size 2563 each is acquired.   

The display technique is also very important.  We believe that an enhanced display device that 

gives more 3D cues than a conventional, desktop, monocular CRT display would provide better 3D 

perception of visualized 3D objects.  Enhanced displays in this dissertation are defined as displays that add 

such visual cues as head motion parallax and binocular stereopsis to conventional stationary monocular 

video display.  One such display device is a head-mounted display. 

1.1.2  Thesis  

We at UNC-Chapel Hill are interested in the study of visualization and display techniques for 

real-time 3D echography data.  Unfortunately, we do not have a 3D real-time acquisition system available 

yet.  Until such a scanner becomes available, the study of visualization and display techniques at 

UNC-Chapel Hill has been conducted using a currently available real-time 2D ultrasound echography 

scanner as an acquisition system.  The research presented in this dissertation studies efficient volume 

visualization and display techniques for datasets acquired incrementally as series of hand-guided 2D 

echography slices, with the hope of providing useful insights into the visualization of real-time 3D 

echography datasets available in the near future.   

The thesis of this dissertation is 

Using the approach discussed in Section 1.2, it is possible with current graphics hardware to 

reconstruct and visualize incrementally at an interactive rate a stationary 3D object from an 

indefinitely long stream of 2D echography images whose positions and orientations are 

hand-guided and arbitrary. 

1.1.3  Issues 

Issues that must be resolved in order to develop a system that satisfies the condition stated in the 

thesis above include the following: 

• How can we acquire a target volume by a series of hand-guided 2D echography image slices, 

whose location and orientation are tracked with either 3 or 6 degrees-of-freedom? 

• How can we reconstruct a 3D scalar field from irregularly spaced samples which are acquired as a 
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series of 2D echography slices, so that it can be visualized using a non-binary-classified 

semi-transparent gel model?   

• How can we volume visualize a reconstructed 3D echo-intensity dataset using the semi-transparent 

gel model, accounting for the characteristics of the ultrasound echography datasets? 

• How can we display the visualized images effectively so that the user can perceive 3D structures 

in the reconstructed 3D echography datasets? 

• How can we perform the reconstruction and visualization incrementally, so that each acquired 2D 

image slice immediately affects the reconstructions and volume visualized images? 

• How can we perform reconstruction and visualization at an interactive rate on moderate scale 

hardware? 

This dissertation does not present a working system that answers all of the issues listed above.  

Rather, this dissertation demonstrates the thesis by developing two feasibility study systems.  All the issues 

listed above are addressed collectively by the two feasibility study systems, although neither one of them 

addresses them all.  

The feasibility study systems are called the “static viewpoint 3D echography system” and the 

“dynamic viewpoint 3D echography system”, based on the defining characteristics of the display systems 

employed in them.  A static viewpoint display does not require tracking of a user‘s viewpoint and viewing 

direction.  A good example is a conventional, desktop, stationary, monocular CRT display device.  A 

dynamic viewpoint display generates and present images to the user based on a user‘s viewpoint and 

viewing direction.  Thus, a dynamic viewpoint 3D echography system requires some means of tracking the 

user‘s head position and orientation as the viewer‘s head moves frequently to obtain head motion parallax.  

This type of display systems includes a head-mounted display (HMD), which will be explained in 

Chapter 4.  Another example is ―Fish Tank Virtual Reality‖, a term coined by [Arthur, 1993], with a 

stationary video monitor which presents images generated based on head location and orientation of a user 

in front of the monitor. 

The static viewpoint 3D echography system in this dissertation uses a conventional (monocular) 

video display which sits on a desktop.  The dynamic viewpoint 3D echography system in this dissertation 

uses a video see-through Head-Mounted Display (HMD) which presents computer generated images 

merged with images of the real-world with proper registration.  Images of the real-world are captured by a 

video camera mounted on the HMD helmet.  Both synthetic images and video-camera images depend on 

the position and orientation of the user‘s head.  (See-through HMDs will be explained in Section 2.5 and in 

Chapter 4.)  
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Both static and dynamic viewpoint 3D echography systems acquire images of a 3D target by a series 

of 2D ultrasound echography slices over time by sweeping the target volume with a 2D array of samples 

(i.e., a 2D image slice.)  Sampling of volumes by such 2D slices can be regular or irregular, depending on 

the movement of the 2D slice.  The studies reported in this dissertation have used a hand-guided 

―free-format‖ scan in which locations and orientations of 2D image slices are irregular with either 3 or 6 

degrees-of-freedom (DOF.)  Locations and orientations of the 2D image slices need to be tracked properly 

to visualize 3D objects from a series of such 2D image slices. 

Both the static viewpoint and the dynamic viewpoint 3D echography systems share the same 

reconstruction algorithm for irregular samples, which was originally developed for the static viewpoint 

system.  The implementations of the reconstruction algorithm are different for each of the two systems 

since one system has 3 DOF while the other has 6 DOF.  Volume visualization algorithms in both systems 

employ identical non-binary-classified semi-transparent gel models, but the algorithms are different to 

handle specific requirements and constraints.  For example, the algorithm for the static viewpoint 3D 

echography system takes advantage of incrementally changing datasets and infrequent changes in 

viewpoints and other parameters to accelerate visualization.  

Brief descriptions of the two systems follow.  Details on the static viewpoint 3D echography system 

will be presented in the Chapter 3, and details on the dynamic viewpoint 3D echography system will be 

presented in Chapter 4.  While the study on the static viewpoint 3D echography system has been done 

mostly by the author, the study on the dynamic viewpoint 3D echography system has been conducted by 

Michael Bajura, Henry Fuchs, David Chen, and Ryutarou Ohbuchi.  A large part of the work on the 

dynamic viewpoint 3D echography system was published in SIGGRAPH‘92 proceedings in a paper 

co-authored by Michael Bajura, Henry Fuchs, and Ryutarou Ohbuchi, which is reproduced in Section 4.1 

[Bajura, 1992]. 

1) Static viewpoint 3D echography system. This system establishes the basic methodology of 

incremental, interactive acquisition, reconstruction and volume visualization of 3D scalar fields 

sampled by sequences of irregularly located and oriented planar 2D arrays of samples (i.e., image 

slices.)  This system assumes manually guided 3 DOF movement of the imaging plane for data 

acquisitions, and a conventional stationary (monocular) video monitor as a display device.  The 

objective of this system is to incrementally and immediately visualize 3D objects acquired as a 

series of irregularly located and oriented 2D image slices from hand-guided scanner transducers.  

As soon as a slice arrives in the system, the visualized images should reflect it immediately without 

waiting for slices that are yet to arrive.  Development of efficient algorithms to achieve an 

interactive speed of reconstruction and visualization for such a system is an objective of this 

dissertation.  
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To visualize irregular samples, the visualization method of the static viewpoint system 

reconstructs a regularly sampled volume dataset as each 2D image slice arrives.  Immediately after 

the reconstruction, the regularly sampled volume dataset is visualized using a volume visualization 

algorithm.   

To achieve an interactive speed of visualization, several techniques to speed up volume 

visualization were developed.  One notable characteristic of the datasets is that they change very 

frequently (that is, at each arrival of a 2D image slice), unlike static datasets expected by 

conventional volume visualization algorithms.  As a result, conventional optimization techniques 

that rely on preprocessing would not work well.  Also, it is assumed that viewpoints change much 

less frequently than the datasets.  Infrequent viewpoint change is secondary to the choice of the 

display device, which is a conventional, stationary (monocular) video monitor.  Several 

optimization techniques exploit these characteristics, including spatial bounding of computation and 

caching of partially computed results in the 3D screen space.   

The algorithm was parallelized for further speedup.  The parallel algorithm for incremental 

reconstruction and visualization was implemented as a simulated parallel program on a 

single-processor workstation.  To show that the algorithm is capable of an interactive rate of 

reconstruction and visualization, performance evaluation results taken on a workstation using the 

simulated parallel implementation of the algorithm were extrapolated to a hypothetical parallel 

processor system.  From these simulation studies, it can be concluded that the reconstructions and 

volume visualizations of 3D objects from a series of 2D image slices are possible at an interactive 

rate with a current state-of-the-art parallel processor system. 

2) Dynamic viewpoint 3D echography system. The dynamic viewpoint  system explores the 

issues related to using an enhanced display system that can provide visual cues such as head-motion 

parallax and ―in-place‖ display of acquired 3D objects.  The work seeks to identify the potential 

benefits and issues associated with the enhanced display systems, specifically a video see-through 

HMD, as a display device for 3D echography datasets.   

The dynamic viewpoint 3D echography system employs a 2D echography transducer that is 

human-guided with 6 DOF, and a video see-through head-mounted display system.  The dynamic 

viewpoint 3D echography system has two variations with different kinds of visualization models.   

The first system presents the wearer of the see-through HMD with the images of 2D 

echography slices, which are arriving on-line from a 2D echography scanner, in the 3D world space 

merged with images of real-world objects.  In the merged images, computer renderings of 2D 

echography image slices are positioned and oriented properly to match the real-world objects 
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captured by a TV camera mounted on the HMD helmet.  Understanding of an acquired object (e.g., 

the fetus) and its relation to the surroundings (e.g., the subject‘s abdomen and the examination table) 

should be enhanced by the in-place visualization which simultaneously presents the acquired object 

with the real-world surroundings.  Using this version of the system, an experiment was conducted 

to visualize a fetus in the uterus of a pregnant subject with the help of a professional 

ultrasonographer.   

The second version of the system uses the same video see-through HMD setup, but displays 

volume visualized 3D echography images, at a (slow) interactive rate, merged with the video images 

of the real-world.  Due to various limitations, acquisition, reconstruction, and visualization are not 

on-line in this version of the system.  The reconstruction was performed off-line on a workstation, 

whose results were passed, through disk files, to the visualization system running on the 

Pixel-Planes 5 graphics multicomputer [Fuchs, 1989].  However, volume visualizations of 

reconstructed datasets occur at interactive rates (8-10 frames/s) for display on the video see-through 

HMD.  To the author‘s knowledge, this is the first system where volume visualization of a 

significant dataset has been displayed using a HMD. 

1.2  Contributions 

This section summarizes contributions of the research presented in this dissertation. 

(1) Feasibility study systems 

(a) Demonstration of the possibility of an on-line, interactive, incremental system that acquires a 3D 

volume target as a series of 2D echography image slices which were hand-guided with 3 DOF.  

The slices are reconstructed into a volume dataset which is volume-visualized. 

(b) Demonstration of a dynamic viewpoint 3D echography system with video see-through 

head-mounted display (HMD) that displays, with proper registration, video images of real-world 

objects merged with computer renderings of multiple 2D echography images arriving on-line from 

a hand-guided 2D ultrasound scanner with 6 DOF 

(c) Demonstration of a dynamic viewpoint 3D echography system that displays, at an interactive rate, 

volume visualized images of a 3D echography dataset that is reconstructed off-line from a series of 

hand-guided 2D echography slices with 6 DOF. 
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Each one of the items a), b), and c) is the first of its kind.  

(2) Volume reconstruction algorithm 

(a) Development of an algorithm for incremental reconstructions of 3D scalar fields from sequences 

of irregularly placed and oriented 2D image slices. 

(b) Introduction of ―aging‖ to the reconstruction in order to capture temporal changes of the target 3D 

scalar fields being acquired and reconstructed.   

(3) Visualization algorithm for the static viewpoint 3D echography system 

(a) Development of an efficient volume visualization algorithm for a static viewpoint display and 

partially dynamic datasets that change incrementally and frequently.  Efficiency was achieved by 

taking advantage of incremental changes in datasets and assuming a stable viewpoint.  

(b) Development of a new compositing algorithm, hierarchical ray-caching, which reduces the cost of 

compositing for visualizations of partially dynamic datasets with a fixed viewpoint.  

(c) The simulation study of the performance of the incremental volume-visualization algorithm which 

was executed on a hypothetical parallel processor in order to show the possibility of visualization 

at an interactive speed. 

(4) See-through head-mounted display 

(a) Development of a video see-through HMD that displays, with proper registration, computer 

generated images merged and registered with images of the real-world captured by a TV camera 

mounted on the HMD helmet.   

(b) Identification of problems that are involved in the video see-through HMD system, such as system 

lag and tracking accuracy.  



Chapter 2.  Previous Work 

A 3D ultrasound echography system would consist of three functional components; acquisition, 

visualization, and display.  The acquisition system acquires 3D ultrasound datasets, the visualization 

system transforms the datasets into 2D arrays of pixel values, and the display system presents the pixel 

values to the eyes of the users.  This chapter reviews previous work on all of these three components.  

Although the two systems described in this dissertation explore all three of these components, each system 

has its own emphases.  The static viewpoint 3D echography system described in Chapter 3 emphasizes the 

visualization component while the dynamic viewpoint 3D echography system described in Chapter 4 

emphasizes the display component.  These three components interact, so that characteristics of the datasets 

and the display devices have shaped the visualization methods in both systems. 

A real-time 3D ultrasound echography acquisition system is coming close to reality.  However, 

such a system exists only as a prototype and is not available for general use [Castellucci, 1993, Smith, 

1991, von Ramm, 1991].  Consequently, acquisitions of 3D volume datasets in the past have been 

performed as collections of 1D echography lines or 2D echography slices.  The two systems in this 

dissertation also use such acquisition methods by utilizing 2D echography scanners, in which target 

volumes are swept by hand-guided 2D transducers with either 3 or 6 DOF.  Section 2.1 reviews previous 

work on such volume data acquisition methods by 2D echography scanners. 

The two systems described in this dissertation visualize 3D structures from a series of 2D 

echography image slices located and oriented arbitrarily as a result of human guided scans with either 3 or 

6 DOF.  Performing such visualizations at interactive rates is one of the major goals of the research 

presented in this dissertation.  Section 2.2 starts with an overview of visualization methods in general for 

volume datasets, which may use such visual primitives as points, lines, surfaces, and volumes to model 3D 

structures.  Next, Section 2.2.2 defines the dynamism and irregularity of volume datasets, since these are 

two of the important characteristics of datasets for the two systems described in this dissertation, in which 

datasets change frequently as each 2D slice is acquired and the datasets have irregular sampling intervals.  

Section 2.2.3 then reviews reconstruction methods which convert irregularly sampled datasets into 

regularly sampled datasets.  Visualization of irregularly sampled datasets requires such reconstruction in 

order to produce images for 2D video monitors with regular pixel arrangements.  Since the two systems 



 Page 10 

described in this dissertation visualize volume datasets by using a non-binary-classified semi-transparent 

gel model, various algorithms for the model are reviewed in Section 2.2.4 by following each step of a 

typical visualization pipeline.  Section 2.3 then reviews visualization methods used in 3D ultrasound 

echography visualization, concluding that these approaches are inadequate for the goals of visualization of 

this dissertation.  One such inadequacy is the performance of volume visualization.  Section 2.4 reviews 

approaches to accelerate volume visualizations by algorithm, parallelism, and hardware.   

The display component which effectively delivers information to users is also an important part of a 

3D echography system.  It is hoped that visualizations of such complex datasets as 3D echography images 

can be helped by ―enhanced‖ 3D displays, which are reviewed in Section 2.5.  Enhanced displays in this 

dissertation are defined as displays that add such visual cues as head motion parallax and binocular 

stereopsis to the conventional stationary video monitors.  The dynamic viewpoint 3D echography system 

employs such an enhanced 3D display system.   

2.1  3D Echography Acquisition 

Although every 3D ultrasound echography acquisition ultimately consists of multiple 1D scans, 

there is a significant difference between real-time and non-real-time 3D acquisition systems.  In medical 

ultrasound imaging, acquisition speed is limited by the velocity of sound (about 1.5 km/s in typical 

biological tissues.)  Sampling a sufficient number of volume sample points (e.g., 1283) at a real-time rate 

(e.g., 30 3D-frames/s) over a practical range (10 to 20 cm) is not possible with the conventional method of 

sequential scanning utilizing a 1D interrogation beam.  Real-time acquisition of volume requires some 

form of parallel processing to break the limit imposed by the velocity of sound.  At Duke University, a 

prototype which employs such a parallel processing technique for a real-time 3D echography acquisition 

system has been developed.  This section starts with a brief description of this prototype system.  

Unfortunately, this prototype system is not yet available for general use, so this section mostly reviews 

systems developed previously that acquire volumes as collections of 2D echography image slices.   

2.1.1  Real-time Acquisition 

The real-time 3D echography scanner being developed by Dr. Olaf von Ramm‘s group at Duke 

University uses a 2D phased array transducer to sweep out pyramidal volumes in targets [Shattuck, 1984, 

Smith, 1991, von Ramm, 1991].  To overcome the limit on acquisition speed imposed by the velocity of 

sound, Dr. von Ramm‘s group uses a parallel processing technique called Explososcan.  Explososcan 

transmits a broad beam, and concurrently receives echoes from multiple directions using multiple banks of 
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delay lines implemented in VLSI chips.  The group at Duke has recently demonstrated a working 

prototype with a 2D transducer that acquired about 20 3D-frames/s, in which each pyramidal volume was 

scanned by 6464 1D interrogation beams.  Although the transducer has over 400 transducer elements, a 

small subset of the 400 transducer elements is used for acquisition in the prototype.  The prototype system 

uses 44=16 way receive parallel processing (―16-way Exploso‖) so that it received a total of 

6464 beams from transmissions of 1616 beams.   

Visualization methods for 3D echography datasets acquired by non-real-time systems are reviewed 

in Section 2.3.2.  However, this prototype system‘s visualization method is reviewed here since it is the 

only real-time medical 3D echography acquisition system in existence with its own special characteristics.   

The visualization methods used in the prototype system are relatively simple.  The system allows 

concurrent display of two of the following three: (1) a sectional image along a plane parallel to axial and 

lateral axes that can be steered in elevation angle by user control (in other words, a ―B-section‖ which can 

be steered in the elevation angle), (2) a sectional image along a plane parallel to the lateral and elevation 

axes (a ―C-section‖ at any range), (3) a perspective projection view produced by summing echo intensities 

along each 3D sector scan beam (―a transducer‘s eye view‖ projection.)  Such visualization seem fairly 

effective, especially if combined with the hand-guided real-time volume acquisition and interactive manual 

control over the visualization.  However, with the sectional display modes (1 and 2), the user is still 

responsible for mentally integrating 2D sections of objects into 3D objects.  The perspective projection 

mode is a simple volume visualization by using the additive projection model with a fixed viewpoint that 

lacks many of the important depth cues.  (See Section 2.2.4.1 and Section 2.3.2 for volume dataset 

visualization using semi-transparent gel models.)   

2.1.2  Non-real-time Acquisition 

Because a real-time 3D scanner has been unavailable, all prior work on 3D echography imaging 

used 2D echography scanners, in which samples from 2D echography slices are combined into 3D datasets 

by registering locations and orientations of the slices.  These methods of volume data acquisition employ 

two ways to sweep volumes by using a 2D echography slice; fixed-format scan and free-format scan.  In a 

fixed-format scan, a transducer is moved by a human operator or by a machine in a prescribed, typically 

regular, manner.  In a free-format scan, the transducer is guided by a human operator without strict control 

of their locations and orientations.  Both of these two scan formats may have various DOF.  All the 

examples of fixed-format scans reviewed below used 1 DOF, while free-format scans used 1, 3, or 6 DOF.  

Figure 2.1 illustrates various formats used to sweep volumes using 2D echography slices, and Figure 2.2 

lists examples of each method in the literature.   
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Each method of scanning produces datasets with a degree of irregularity depending on the scan 

format.  This dissertation defines a regular volume dataset as a dataset sampled at rectilinear grid points, 

which is typically stored as a 3D array.  Many medical imaging systems produce regular 3D datasets, 

although sampling intervals may differ from one coordinate axis to another.  An irregular volume dataset 

is a dataset which is not regular, that is, a dataset whose sample points are not on a rectilinear grid points.  

There is a varying degree of irregularity.  A curvilinear mesh, typically found in a finite element method 

mesh, is mildly irregular, while a collection of sample points at arbitrary locations with no given 

connections among each other is highly irregular.  Volume dataset irregularity and its implications for 

visualization methods will be discussed in Section 2.2.2.2. 

An ultrasound echography scan can also be categorized by methods of acoustic coupling between 

transducers and targets.  A contact scan couples a transducer directly with a target.  Most of the current 

2D echography scanners employ a contact scan with the transducer moved by the user.  A non-contact 
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Figure 2.1:  Scan formats for 3D echography acquisition by a set of 2D slices. 



 Page 13 

scan inserts a medium, such as water in a water tank or a latex balloon, between a transducer and target.  A 

non-contact scan may be necessary to acquire a volume dataset of a target with a curved surface using 

linear translation of the transducer. 

Technical issues concerning volume data acquisition using 2D echography scanners are; 

(1) determining locations and/or orientations of a scanhead, (2) storing a large number of echography 

images, and (3) relating the images to their locations and orientations.  For example, if images are stored 

on a video tape, it could be cumbersome to access individual images and match each image with its location 

and orientation.  All three of these issues become more difficult with a free-format scan and in an on-line 

acquisition. 

(1) Fixed-format scan 

(a) 1 DOF parallel scan.  [Itoh, 1979], [Nakamura, 1984], [Lalouche, 1989], [Matsumoto, 1981], 

and [Tomographic Technologies, 1991] used 1 DOF parallel scanning by linear translation to 

acquire volume datasets.  A mammography study [Itoh, 1979] employed a non-contact scan, in 

which a transducer was translated linearly in a water tank placed on top of a plastic bag, which in 

turn was placed on top of a breast.  [Lalouche, 1989] is also a mammography study, which reports 

an acquisition time of 15 minutes for 45 slices at 1 mm intervals.  [Nakamura, 1984] experimented 

with a transurethal volume scan, which was an early example of scans taken from inside the body.  

[Nakamura, 1984] employed a small rotating 1D transducer to acquire a radial 2D slice, which was 
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Figure 2.2:  Examples of volume data acquisition methods found in the literature that use 2D echography 

scanners. 
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then translated to acquire a cylindrical volume. 

The Echo-CT system from TomTec has produced some of the best in-vivo 3D echography 

scans to date of the heart [Tomographic Technologies, 1993].  In order to acquire parallel transverse 

slices of human hearts, it performed 1 DOF parallel scanning by using a phased array transducer 

translated linearly inside a tube inserted into the esophagus [Tomographic Technologies, 1993].  

The tube is flexible as it is inserted into the esophagus, but is made rigid before imaging so that the 

transducer can be translated linearly.  Image acquisition is gated by the respiratory and cardiac 

cycles to reduce registration problems.  Although this scanning method is relatively invasive, scans 

through the esophagus produce high quality images of the heart since the transducer is close to the 

heart and there are fewer obstacles to imaging such as ribs and lungs compared to scans through the 

chest.  An important feature of this system is a 2D transducer with elevation focusing by a phased 

array principle, which, according to Hartmut König of TomTec, can produce 2D sector scan slices of 

about 2 mm thickness.  Thin slicing appears to be crucial in acquiring high quality 3D echography 

datasets.  TomTec also has prototypes of transducer carriage mechanisms to realize 1 DOF parallel 

scanning and 1 DOF radial scanning through the abdomen or thorax.   

Fixed-format 1 DOF parallel scans with constant slice intervals in general have produced 

some of the best 3D echography datasets, which are easy to visualize due to regular sampling.  On 

the other hand, scans with linear translation are not possible for many scan targets without 

cumbersome non-contact scan setups, such as the one employed by [Nakamura, 1984].  Also, linear 

translation is not suitable for cardiac imaging through the chest which has a small acoustic window 

due to such acoustically opaque objects as the ribs and the lungs. 

(b) 1 DOF radial Scan.  This scan mode rotates the transducer about its central axis in order to 

acquire radially scanned cylindrical volumes.  An advantage of this mode is that the area of acoustic 

coupling necessary for a volume scan is quite small if a 2D sector scanner with a small aperture is 

used.  The small area of coupling makes this mode suitable for cardiac imaging through the chest, 

as found in all three examples of this scan mode [Ghosh, 1982, McCann, 1988, Pini, 1990].  On the 

other hand, this scan mode may not be very effective for an application that requires a wide field of 

view at close range, e.g., fetal ultrasound examination. 

[McCann, 1988] rotated a 2D sector scanner transducer by a stepper motor controlled by a 

computer.  Acquisitions were gated with cardiac and respiratory cycles to reduce image registration 

problems.  It takes a long time to acquire a series of 3D echography datasets over a full cardiac 

cycle by using gated acquisition, especially by using both cardiac and respiratory gating.  For 

example, [Pini, 1990] used cardiac gating to acquire a series of volume datasets (about 30 

3D frames) which corresponds to a full cardiac cycle.  The acquisition, which recorded images onto 
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a video tape, took 123 cardiac cycles, which amounts to about 75-123 s with typical heart rates.  

(c) 1 DOF sector scan.  [Collet-Billon, 1990], [Thune, 1991], [Ganapathy, 1992], and [Acoustic 

Imaging, 1993] are the examples of this mode.   

Researchers at Philips [Collet-Billon, 1990] used a ‗double wobbler‘ mechanical sector 

scanner transducer, where a 1D annular array transducer was wobbled, or rotated, by two stepper 

motors about 2 axes so that it acquired pyramidal volumes.  An annular array transducer allowed 

focusing in elevation and azimuthal directions, producing thinner slices.  The double wobbler 

scanner could acquire a set of 50 to 100 slices of 2D sector scan images in about 3 to 5 seconds.  

Signals of 1D scans by the annular array transducer were taken directly from inside the scanner 

equipment before entering the scan converter and passed to the visualization system that runs on a 

SUN-4 workstation.  This is a follow-up to earlier work [Hottier, 1989], which employed a hand 

guided 3 DOF free-format scan similar to the static viewpoint 3D echography system discussed in 

Section 3.2 of this dissertation.   

Acoustic Imaging [Acoustic Imaging, 1993] uses another example of a 3D wobbler scanner, 

which rotates about 1 axis, instead of 2 axes used by the Philip‘s researchers.  Acquisition timing of 

a volume by their prototype transducer was about 3 to 7 seconds depending on its field-of-view.  

The number of slices to cover a given field-of-view was determined based on elevation resolution of 

the scanner. 

In a similar but less elaborate scheme, [Thune, 1991] manually rotated a 2D scanner 

transducer in order to acquire a volume with about 45 degree field-of-view by a 1 DOF sector scan.  

[Ganapathy, 1992] also describes a volume image acquisition of a phantom in a water tank by a 

simple 1 DOF sector scan identical to Thune‘s. 

(2) Free-format scan 

(a) 1 DOF parallel scan.  [Raichelen, 1986] used a hand-guided, 1 DOF linear translation to acquire 

parallel slices at arbitrary intervals using mechanical tracking.  The merit of such 1 DOF 

free-format scanning is not clear since it lacks freedom of movement, a primary benefit of 

free-format scanning.   

(b) 3 DOF arbitrary scan.  Both [Stickels, 1984] and [Hottier, 1989] used 3 DOF mechanical arms 

to perform 3 DOF arbitrary scans.  [Hottier, 1989] used a mechanical tracking arm from previous 

generation 2D echography scanners, in which 1D transducers tracked with 2 DOF were used to 

acquire 2D echography images.  (For such previous generation scanners, see, for example, [Havlice, 

1979].)   
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An acquisition setup using a mechanical tracking arm described in [Hottier, 1989] is similar 

to that of the static viewpoint 3D echography system described in Chapter 3 of this dissertation.  

Current advantages of such mechanical tracking systems are their relatively high tracking 

acquisition rate and relatively high precision compared to many of the other tracking methods (e.g., 

magnetic tracking.)  For example, a contemporary commercial 6 DOF mechanical tracking arm, the 

FARO Metrecom model IND-02 [FARO, 1993], claims to have ±0.005 inches of accuracy 95.5 % of 

the time in a working volume of a 6 ft sphere.  A disadvantage is that mechanical tracking devices 

have limited working volume and dexterity.  

(c) 6 DOF arbitrary scan.  [Brinkley, 1978], [Moritz, 1983], [Nikravesh, 1984], [King, 1990], 

[Mills, 1990], [Ganapathy, 1992], and [Linney, 1992] all performed volume acquisition by 6 DOF 

arbitrary slices.  Tracking methods employed for the 6 DOF acquisitions are more varied than the 

3 DOF arbitrary scans in which only mechanical tracking methods are found.   

The most popular 6 DOF tracking method among 3D echography acquisition systems seems 

to be acoustic, as used by [Brinkley, 1978], [Moritz, 1983], [Linker, 1986], and [King, 1990].  For 

example, [Brinkley, 1978] employed a 6 DOF acoustic tracking system in which spark gaps as 

sound sources mounted on a transducer and carefully arranged fixed microphones are used.  

Similarly, [Moritz, 1983] used 3 spark-gap sound sources on a transducer and 3 microphones on a 

fixed L-shaped frame for time-of-flight measurements to track the transducer with 6 DOF.  [King, 

1990] also used a commercial 6 DOF acoustic tracking device.   

Magnetic trackers such as the Polhemus 3-space tracker [Polhemus, 1980] are the most 

popular 6 DOF tracking devices at this time for applications other then 3D echography.  In 3D 

ultrasound echography, [Ganapathy, 1992] and [Linney, 1992] used magnetic 6 DOF tracking 

systems.  The dynamic viewpoint 3D echography system discussed in this dissertation also uses a 

6 DOF magnetic tracker.  Magnetic trackers are much less constraining than mechanical tracking 

systems, but magnetic trackers tend to be prone to electro-magnetic (EM) interference which can 

produce significant errors.  For example, a Polhemus tracker uses AC magnetic field, which is 

highly sensitive to such sources of interference as ferrous or conductive materials and EM waves 

generated by other sources including AC power cabling, ultrasound transducers, and CRT monitors.  

Other problems with magnetic trackers are lag and relatively low temporal sampling rates.  Lag is a 

serious problem, since it generates tracking errors while tracking a moving object.  The relatively 

small tracking volume of these devices is also a problem.  More recent products from Polhemus 

(―Fastrack‖), Ascension (―Bird‖) and other companies seem to have higher accuracies, larger 

tracking volumes, higher tracking sampling rates and less lag [Ascension, 1991, Polhemus, 1991].  

Some of them also claim to be less prone to certain kinds of EM interference.  
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[Mills, 1990] used an optical ―outside-in‖ tracking method, where images of tiny lights fixed 

to a scanhead are recorded by two raster-scanned video cameras as a target was swept by the 

transducer.  Post-processing of video tape recorded images of the light sources produced 6 DOF 

tracking information.   

Mechanical tracking is much less popular for 6 DOF tracking.  [Nikravesh, 1984] is the sole 

example found in the literature that used mechanical tracking. 

The mechanical, optical, acoustic, and magnetic tracking technologies mentioned above each 

has its own trade-off in performance characteristics such as accuracy, working range, lag and 

throughput.  Reviews of current tracking technology can be found in [Meyer, 1992] and [Kalawsky, 

1993]. 

2.1.3  Discussion on 3D Echography Data Acquisition 

Currently, most of the research on 3D echography dataset acquisition acquires such datasets as sets 

of 2D echography slices at less than real time speed.  The two alternative approaches, fixed-format and 

free-format scanning, have their own advantages and disadvantages.   

A fixed-format scan allows much easier registration of image sample locations than a free-format 

scan, since the fixed-format scan controls locations of image slices in a prescribed and usually regular 

manner using either a human or a mechanical device.  All of the examples of fixed-format scans in the 

literature produce datasets that consist of slices with fixed translational or angular intervals.  Such regular 

datasets are easier to visualize than irregular datasets from free-format scans.   

Free-format scans produce irregularly sampled datasets whose visualization can be significantly 

more difficult and expensive than regularly sampled datasets obtained from fixed-format scans.  On the 

other hand, free-format scans are less constraining than fixed-format scans.  While all the examples of 

free-format scan in the literature were contact scans in which transducers may follow curved surfaces of 

targets, many examples of fixed-format scans with linear translation required non-contact scans to acquire 

target volumes.  Free-format scans are better suited for applications that require wide fields-of-view, such 

as obstetrical imaging, than fixed-format scans.  

One of the most important technical issues in free-format scans is tracking of 2D echography slices 

with 3 or 6 DOF so that 3D echography datasets can be reconstructed.  This involves more than just 

reading tracking data output from a tracking device attached to an echography transducer.  A rigid body 

transformation must relate tracking data from the tracking device to locations of each one of the 

echography image pixels.  This transformation consists of two components, but each component does not 

have to be known separately: 1)  a transformation from the tracking device (wherever its ―center of 
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tracking‖ may be) to the echography transducer, and 2)  transformation from the transducer to the location 

of each one of the echography image pixels.  Neither of these transformations is readily known.  For 

example, while we know that 2D echography image slices somehow ―emanate‖ from transducers, current 

echography scanners do not specify exact locations of image pixels relative to transducers.  Thus, the two 

transformations (or a combined transformation) need to be determined through calibration procedures.    

Pixel geometry calibrations are also needed in fixed-format scans, but the needs are much greater in 

free-format scans with larger (especially rotational) degrees-of-freedom.  Interestingly, the 3D echography 

literature discusses such pixel geometry calibration only in passing.  Perhaps in the past, precise 

registration was not very important for geometric reconstructions involving manual segmentation, since 

misregistered slices can be aligned manually after segmentation.  Calibration methods for the two systems 

in this dissertation are described in Section 3.2 and Section 4.1. 

Besides proper tracking of pixel locations, acquisition of high quality 3D echography datasets 

require thin 2D echography slices, that is, high elevation resolution.  Traditionally, compared to the two 

axes that lay within a slice, less attention has been paid to the resolution in the elevation axis, a direction 

perpendicular to a 2D echography slice.  Elevation resolutions are not crucial in conventional 2D 

acquisitions.  In fact, there may even be cases in which too thin a slice can be somewhat detrimental; for 

example, scans by a thin slice may miss a very small tumor.  In 3D echography acquisitions, on the other 

hand, ideal datasets would be those acquired by thin slices with dense slice spacing.  An example of the 

benefit of a thin slice can be seen in the work by TomTec, which used a slice of 2 mm thickness and 

acquired high quality 3D echography datasets [König, 1993, Tomographic Technologies, 1993]. 

2.2  Volume Visualization 

Since one of the goal of this dissertation is the development of a 3D visualization technique for 

volume datasets which were acquired as series of 2D echography slices, this section reviews visualization 

methods, especially methods that employ non-binary-classified semi-transparent gel models.   

This section starts with a review of visualization techniques with various visualization models.  

Then, a detailed discussion is presented of visualization methods that use a non-binary-classified 

semi-transparent gel model, with special attention to the issues related to the dynamism and irregularity of 

volume datasets. 
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2.2.1  Visualization of Volume Datasets 

The purpose of a visualization is to make features in a dataset (or several related datasets) visible to 

human beings.  Note that, in spite of the term ―visualization‖, carriers of information employed for 

visualizations need not be visual.  While this dissertation concentrates on visual means of display, a 

―display‖ may employ visual, auditory, haptic (i.e., tactile, kinesthetic, and propreoceptive), olfactory, and 

other senses (see, for example, [Brooks, 1988], [Holloway, 1993], and [Kalawsky, 1993].)   Furthermore, 

we are interested in visualizing samples of a 3D scalar field obtained from such sources as X-ray CT or 

ultrasound echography scanners.  In this dissertation, we are interested in visualizing structural features, 

such as boundaries of regions with identical scalar values (as opposed to scalar values themselves.) 

Conceptually, a visualization process transforms contents of datasets by three transformations as 

listed below into images that can be displayed on a display device (Figure 2.3.)  These are conceptual 

steps; implementations may reorder or combine these steps. 

(1) Classification. Maps the original dataset(s) into new feature dataset(s) which explicitly contain the 

information we want to see.   

(2) Modeling. Maps the parameters in the feature dataset(s) into objects of a visual model. 

(3) Rendering. Renders the objects in the model into images.  

The classification step extracts features of interest which in this dissertation are boundaries of 

regions with identical values.  Such boundaries have their ―strengths‖ (or ―probabilities of existence‖) and 

orientations associated with each location in the volume.  A classification can be either a binary or 

non-binary.  A binary classification produces all-or-nothing results on the probabilities of existence.  A 

non-binary classification, on the other hand, may produce any value between 0 and 1.  Binary and 

non-binary classification have their own advantages and disadvantages.  It is not yet clear which of these 

 

Original 

Dataset 1

Classification

Original 

Dataset N

Modelling
Feature 

Dataset

Visual 

Model
Rendering

Rendered 

Image

 

Figure 2.3:  Three conceptual steps of visualization that transform dataset‘s content.   
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two classification methods is better (e.g., [Udupa, 1991].)   

The modeling step maps the extracted set of features to a set of attributes of visual carriers of 

information in a visual model.  A visual model consists of 1) modeling space, where visual primitive 

objects that carry information are placed, and 2) visual primitive objects that carry information.  A 

modeling space may be 1D, 2D, or 3D.  A modeling space may make use of the temporal dimension, 

although its use is physically limited.  In fact, use of the third spatial dimension is limited as well, since 

human beings can not see all three dimensions with equal ease.  Visual primitive objects may be 0D 

(point), 1D (line), 2D (surface), or 3D (volume), and more than one visual primitive object type may 

coexist in a modeling space.  For example, a boundary surface may be modeled in a 3D modeling space by 

using a cloud of points or a polygonal mesh at the location of the surface.  A conventional 2D image 

display has a 2D modeling space with regularly arranged 0D visual objects (points.)   

0D, 1D, or 2D primitive objects are generated by binary classifications.  0D primitives were popular 

on vector display devices in the past, and are still useful now especially in combination with other (e.g., 

2D) primitives. Examples of 1D primitive objects are wire frame meshes and stacks of contours.  

Polygonal meshes can be generated from 3D scalar datasets by using binary classification and triangulation 

algorithms such as [Boissonnat, 1988, Fuchs, 1977, Keppel, 1975].  Such polygonal meshes can be 

converted to surface (2D) primitives easily (e.g., [Gordon, 1989].)  Direct conversion from a scalar dataset 

into 1D or 2D objects is also possible [Herman, 1992] and [Lorensen, 1987]. 

3D primitive objects are generated by non-binary classifications.  A modeling primitive object is 

called a voxel.  A voxel may have various attributes including opacity and radiance, and radiance may 

have color components.  Models with such 3D primitives are used by, for example, [Levoy, 1988, Sabella, 

1988, Upson, 1988, Westover, 1990].  The two systems described in this dissertation employ this kind of 

model also. 

The rendering step maps visual models into images that can be displayed on display devices.  This 

is the common definition of the term ―rendering‖ in the computer graphics literature and in this dissertation.  

Rendering refers to the process of generating images from visual models.  It should be noted that this 

definition of ―rendering‖ can be confusing to some, since so called ―volume rendering‖ algorithms in the 

literature often include conceptual steps of visualization other than rendering such as classification and 

modeling.  According to the definition above, those ―volume rendering‖ algorithms in the literature should 

more appropriately be called volume visualization algorithms. 

Comprehension of information in the models is affected by both the temporal resolution, i.e. image 

generation frame rates, and the spatial quality of each image.  Given limited computational resources, most 

systems, including the two systems described in this dissertation, make trade-offs between temporal and 

spatial quality of visualization. 
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2.2.2  Volume Dataset Types 

A volume dataset may consist of samples of different kinds of 3D field, e.g., scalar or vector.  In 

this section, however, it is assumed that a volume dataset is a set of samples of a 3D scalar function that is 

continuous and band-limited.  The object functions may be acquired from physical objects (as  a medical 

image), or generated by computation (as in a 3D computational fluid dynamics experiment.)  It is generally 

assumed that the objects are sampled at small enough sampling intervals so that reconstruction of the 

objects within desired error tolerances is possible.  Each sample of such volume datasets is called a voxel.  

Such volume datasets can be classified by two attributes, dynamism and regularity (or irregularity), which 

are defined and discussed next.    

2.2.2.1  Dynamism 

Volume datasets can be classified into three groups based on their dynamism, that is, how often and 

how extensively they change.  With increasing dynamism, they are: 

1) Static dataset.  A static dataset stays the same over the period of a visualization. 

2) Partially dynamic dataset.  A partially dynamic dataset changes frequently, but each change is 

localized to a part of the dataset.  

3) Dynamic dataset.  A dynamic dataset changes frequently and extensively. 

The more frequent and extensive the changes in a dataset are, the more expensive it is to visualize 

the dataset.  Dynamic datasets have less temporal coherence to be exploited than less dynamic datasets.  

(Temporal coherence and its use in accelerating visualization algorithms will be discussed in 

Section 2.2.4.2.)  To the author‘s knowledge, all volume visualization algorithms in the literature assume 

static datasets.  There have been dynamic datasets that change over time; for example, results of 

computational fluid dynamics computation.  Visualization algorithms in the past, however, have not been 

taking advantage of coherence that exists in these dynamic datasets.  Instead, in order to visualize dynamic 

datasets, they have repeatedly applied the algorithms developed for static datasets.  The visualization 

algorithm for the static viewpoint 3D echography system described in Chapter 3 is different from these 

previous approaches since it is designed to take advantage of the coherence in partially dynamic datasets.   

2.2.2.2  Irregular Datasets and Visualization 

A volume dataset can be regular or irregular, as defined in Section 2.2.2.2.  Most of the volume 

visualization algorithms in the literature are developed for regular datasets, although algorithms for 
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irregular datasets have appeared in the past few years.   

In terms of visualization methods, the main difference between regular and irregular datasets is the 

sophistication required of the reconstruction algorithm.  Every volume visualization algorithm includes 

some form of reconstruction in transforming datasets form the 3D object space into a regular 2D array of 

sample points in the 2D screen space (e.g., for a raster scan display.)  However, visualizations of irregular 

datasets require more sophisticated and costly reconstructions than the regular datasets.  For example, a 

reconstruction algorithm for a regular dataset stored in a 3D array can be simple and efficient, since the 

topology among sample points is implicitly known, the samples are at regular intervals, and access to the 

samples can be fast through index manipulations.  Other operations such as gradient estimation are also 

easier to perform on a regular dataset than an irregular dataset.  

A closer look at the ―reconstruction‖ process above is beneficial since in a volume visualization 

algorithm, the location and method of the reconstruction are important.  Conceptually, there are two kinds 

of reconstructions in a volume visualization algorithm: object reconstruction and viewing reconstruction.   

• Object reconstruction. This reconstruction estimates the original 3D scalar field from a given set 

of discrete samples.  Object reconstruction is view-independent. 

• Viewing reconstruction. This is necessary to generate regularly sampled images in the 2D screen 

space from the datasets in the 3D object space.  A cascade of transformations and projections 

need reconstruction in order to produce images without excessive aliasing.  At least a part of this 

kind of reconstruction is view-dependent. 

Object reconstructions are especially important if datasets are irregular.  Viewing reconstructions 

are required by every volume visualization algorithm that accommodates arbitrary viewpoints.   

Many volume visualization algorithms for regular datasets merge object reconstruction with viewing 

reconstruction, since they don‘t need separate, sophisticated object reconstruction steps [Levoy, 1988, 

Sabella, 1988, Upson, 1988, Westover, 1990].  A simple approximation algorithm such as trilinear 

interpolation will produce acceptable results for a combined object and viewing reconstruction of regular 

datasets. 

On the other hand, volume visualization algorithms for irregular datasets often require more 

elaborate reconstruction algorithms than for regular datasets.  There are two kinds of approaches in 

visualizing irregular datasets, depending on how object and viewing reconstructions are combined. 

• Pre-visualization reconstruction approach. An algorithm in this group performs object 

reconstruction as a clearly distinct step before the viewing reconstruction.  The object 
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reconstruction generates a regular dataset from a set of irregular samples, which are then 

visualized by a visualization algorithm for regular datasets. 

• Integral-reconstruction approach. Object and viewing reconstructions are integrated and are 

frequently implemented in multiple steps. 

Examples of the pre-visualization reconstruction approach are found in [Wilhelms, 1990] and in 

most of the visualization methods in the literature for 3D ultrasound echography datasets acquired as a set 

of 2D slices (reviewed in Section 2.1.3.)  Examples of the integral reconstruction approach for irregular 

datasets are found in, for example, [Garrity, 1990], [Max, 1990], and [Neeman, 1990].  A pre-visualization 

reconstruction approach is popular due to its ease of implementation; a discrete object reconstruction step is 

easier to implement than an integral one, and one of many algorithms for regular datasets may be recruited 

to visualize the object reconstruction results.  A visualization algorithm based on the 

integral-reconstruction approach tends to be complex, since irregularities of datasets are carried over to 

later stages of the visualization pipeline.    

In this dissertation, both the static viewpoint 3D echography system and dynamic viewpoint 3D 

echography system employ the pre-visualization reconstruction approach. 

2.2.3  Volume Reconstruction from Irregular Samples 

Both integral and pre-visualization reconstruction approaches employ various ―reconstruction‖ 

algorithms, whether the original samples are regular or irregular.  A reconstruction in a discrete domain 

consists of an approximating of the original function from the given input samples and resampling the 

approximated function at the new sample locations.  Note that such reconstruction is only half of the 

sampling-reconstruction pair; sampling produces discrete sets of sample values from continuous original 

functions, while reconstruction reconstructs those discrete samples into continuous reconstructed functions.  

Reconstructions in general assume incomplete knowledge of the sampling process and original functions.  

Reconstruction algorithms then try to optimize using criteria such as ―smoothness‖ or minimization of 

root-mean-square error.  Of course, there is a special case of complete recovery, as defined by the classical 

Whittaker-Kotel‟nikov-Shannon (WKS) sampling theorem, if the sampling intervals are regular and several 

other conditions hold.  (For the Whittaker-Kotel‟nikov-Shannon sampling theorem, see, for example, 

[Haddad, 1991].)   

Approximation methods for irregular or regular samples can be categorized by two criteria, locality 

and topology. 



 Page 24 

Locality.  An approximation method is global if a change in one of the data values affects the 

approximant everywhere.  If this is not the case, the approximation algorithm is local.  Local 

methods are usually less costly to compute than global methods since the domain of its computation 

is spatially limited.   

Global methods include the original Shepard‘s method [Shepard, 1968] and others such as 

[Hardy, 1971, Hardy, 1977], and [Dyn, 1986].  Also, several extensions of the WKS sampling 

theorem to irregular samples may be considered as global methods, since the basis function, Sinc(x) 

has a slow fall-off to zero [Beutler, 1966, Clark, 1985, Higgins, 1976, Peng, 1987].   

Local methods include two of the familiar methods for regular samples, bilinear and trilinear 

interpolations.  Local methods for irregular datasets include [Franke, 1982, Schumaker, 1976], 

[Lawson, 1977], [Akima, 1978], and [Farwig, 1986].  All the volume visualization algorithms used 

local approximation algorithms for the object or viewing reconstruction. 

For regularly sampled datasets, interpolations over regular meshes use piecewise linear, 

quadratic, or cubic polynomial functions.  Relatively inexpensive method, bilinear interpolation 

(e.g., [Garrity, 1990]) and trilinear interpolation (e.g., [Levoy, 1988]), have been very common in 

volume visualization algorithms.  Others, such as [Westover, 1990] and [Laur, 1991] used the 

Gaussian as their approximation basis function.  

Topology.  One group of methods explicitly establishes topological connections among a set of 

sample points.  Various function approximation methods, local or otherwise, can then be applied on 

the connected sample points, assuming that the topological locality preserves the locality in other 

metrics (e.g., the Euclidean distance.)  For example, a method in this group triangulates given 

irregular sample points by Delaunay-Thiessen triangulation [Preparata, 1985], then applies the 

bilinear interpolation over each triangle.  Or, for C1 continuity among triangular subdomains, a 

polynomial spline surface may be fitted using gradient estimations across triangles.  This group of 

methods includes [Lawson, 1977], [Akima, 1978], [Barnhill, 1984b], and [Renka, 1984].  [Max, 

1990] is a good example of this type of approximation method used in the integral-reconstruction 

approach to visualize irregularly sampled volume datasets.  [Clark, 1985] derives a 2D irregular 

sampling theorem as an extension to the Whittaker-Kotel‘nikov-Shannon sampling theorem and 

applies it to the reconstruction of signals from a Very Long Baseline Interferometer.  [Clark, 1985] 

triangulates the sample points first, in order to find the approximant that consists of the 

linear-combination of translated and scaled Sinc(x) function.  

The other group of methods does not establish topologies in datasets; they only use the 

distances among the sample points.  These methods simply compute distances from a point of 
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approximated function evaluation to the sample points, and blend basis functions by weighting them 

with functions of distances.  Shepard‘s, or the ―inverse distance weighted‖, method is a good 

representative of this group of methods [Shepard, 1968].  The algorithm used in this dissertation 

also falls in this group.  This class of methods includes [Shepard, 1968], [Hardy, 1971, Hardy, 

1977], [McLain, 1974], [Shagen, 1982, Shagen, 1986], and [Farwig, 1986].  [Hardy, 1971, Hardy, 

1977], which is a global method, uses quadrics as basis functions.  Hardy‘s method produces good 

approximations, but the cost increases very quickly with the number of sample points.  To blend 

2nd degree polynomial functions weighted by a decreasing function of distance, [McLain, 1974] 

applied the least-squares method.  [Shagen, 1982, Shagen, 1986] uses Gaussian functions with two 

different scales as the basis functions to follow both small and large scale changes.  Approximation 

errors were minimized using the least-squares method.  [Farwig, 1986] uses polynomial basis 

functions weighted by distance, and applies the least-squares method to optimize interpolants.  

Some methods consist of two or more different types of approximation algorithms in multiple 

stages.  Examples include [Foley, 1984] and [Barnhill, 1984a].  

The study of function approximation from regular samples has a vast amount of literature; an 

extensive bibliography with more than 500 entries has been compiled [Grosse, 1990].  Still, approximation 

of irregular samples has received relatively little attention.  Out of its more than 500 references, [Grosse, 

1990] includes only about two dozen references on reconstruction of irregular samples.  [Schumaker, 

1976], [Franke, 1982], and [Barnhill, 1984a] also review approximation algorithms for both regularly and 

irregularly sampled datasets.  Recently, [Nielson, 1993] presented a review of approximation methods for 

irregularly sampled datasets in the context of 3D data modeling.   

2.2.4  Volume Visualization Algorithms 

Of the volume visualization approaches mentioned in Section 2.2.1, the two systems in this 

dissertation use (transparent) volume visualization algorithms based on non-binary-classified 

semi-transparent gel models.  Visualization algorithms that employs similar visual models are reviewed 

here in Section 2.2.4.  

2.2.4.1  Volume Visualization Pipeline 

A volume visualization process transforms contents of datasets to produce visible images.  It also 

transforms the coordinate space of datasets (Figure 2.4.), much like many other graphics algorithms.  

Although the review in this section describes a visualization process with a specific correspondence among 

content and coordinate transformations for the explanation, this correspondence between the two is 
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arbitrary (although it is probably the most common.)  For example, classifications may be performed in the 

3D world, 3D screen, or even in the 2D screen space, although the following primarily describes algorithms 

that classify in the 3D world space.  In the following, it is assumed that samples of the 3D scalar field in 

the 3D object space are to be displayed on 2D display devices with regular 2D sample points, such as a 

raster-scanned video display.   

Preconditioning.  This step processes the dataset to make it amenable to the subsequent visualization 

process.  If a dataset is irregular and the pre-visualization reconstruction approach is chosen, this stage 

would reconstruct the irregular dataset into a regular one.  If a dataset is regular but small (in terms of the 

number of samples), it can be upsampled to produce a larger dataset.  By upsampling in the 

preconditioning step, a less sophisticated approximation algorithm can be used at the viewing 

reconstruction.  

Classification.  The second step performs classification, which extracts features to be visualized.  For 

example, if boundaries among regions of identical scalar values are to be visualized as surfaces, a common 

classification produces two parameters at each voxel; 1) surface strength, a scalar value which expresses 

the likelihood of surface existence, and 2) surface normal, a 3D vector which indicates the orientation 

(normal) of the surface.   

Estimations of surface normals from the volume data in the 3D world coordinate space were used 

by [Barillot, 1985] and [Höhne, 1986, Höhne, 1987] in the context of binary classified surface 

visualization.  Later, [Levoy, 1988] and others interpreted the magnitude of gradient vectors computed in 

the 3D world space as the surface strength, and mapped the surface strength onto opacities of voxels in a 

semi-transparent gel model.  Alternatively, [Chen, 1985] and [Gordon, 1985] computed 3D gradient 
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Figure 2.4:  Visualization transforms the coordinate spaces of datasets.  Transformations among 

coordinate spaces do not necessarily correspond to the transformations of data contents depicted in 

Figure 2.3. 



 Page 27 

vectors in the 3D screen space for binary classified surfaces, which is called by some Z-gradient shading.  

It is also possible to compute 3D gradient vectors of non-binary-classified voxels in the 3D screen 

coordinate system.  

Many other classification methods with varying degrees of sophistication and cost are possible.  An 

example of a more sophisticated method is [Lin, 1991], which uses stochastic techniques with a priori 

constraints (e.g., ―surfaces should be continuous‖) to compute surface strengths and surface orientations in 

2D ultrasound echographic images.  Lin‘s method assumes the presence of speckles, which is 

characteristic of ultrasound echography images.  Application of the algorithm to the interactive volume 

visualization problem in this dissertation would have required extension of the algorithm from 2D to 3D, 

and a significantly more powerful computer since the algorithm is computationally quite expensive. 

Modeling.  Once the features of the dataset to be visualized are found, they are processed in the modeling 

step to produce a visual model.  A visual model consists of visual primitive objects such as polygons 

whose attributes are carriers of information, and a modeling space in which the visual objects are placed 

(Section 2.2.1.)  The semi-transparent gel model uses a voxel as the primitive object, whose attributes are 
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the emission, absorption, and scattering properties of the voxel.  One of the important questions in 

modeling is how to map parameters of the feature dataset into the attributes of voxels.   

There are many kinds of semi-transparent gel models.  Each of them approximates gels in the real 

world with varying sophistication.  In the literature, the most popular subset among the semi-transparent 

gel models is the Asymmetric Single Scatter Gel (ASSG) model.  The ASSG model employs a simple but 

somewhat artificial illumination model.  With the ASSG model, the medium at every point of the model is 

illuminated with equal strength; light from a light source travels without attenuation.  The light from the 

light source is reflected only once by the gel media, and there is no inter-reflection.  The light that travels 

toward the eye from the point of reflection is attenuated by the media, unlike the light from the light source.  

(This model is called ―asymmetric‖ since the absorption by the media is not symmetric before and after the 

reflection.)  The reflection is computed based on a simple reflectance model such as Gouraud‘s‘ [Gouraud, 

1971] or Phong‘s [Bui-Tuong, 1975].  This model is a local illumination model, which makes the model 

less expensive to render.  The ASSG model is found in [Levoy, 1988, Max, 1990, Sabella, 1988], and 

others.  Details on a type of ASSG model used in this dissertation will be described in Section 3.4.1. 

The ASSG model of a gel is a subset of a class of models that simulate radiatively participating 

media (which we call gel.)  Figure 2.5 lists some of the models for radiatively participating media of 

varying sophistication, fidelity to real gels, and cost.  Note that this is not intended as an exhaustive list of 

every possible method; for example, maximum intensity projection is not included.  An identical table, 

whose entries are limited to those employed in the visualization of 3D echography datasets, will be found in 

Figure 2.7.  Fully radiatively participating media emit, absorb, and exchange energy within the media.  

There are various degrees of sophistication among models of radiatively participating media.   

One of the simplest models of this kind has no directional light source, and consists of light emitting 

media that are completely transparent.  Such a model is sometimes called an additive projection model, 

and produces images similar to a X-ray radiograph.  The ASSG model discussed above adds a directional 

lighting effect and an asymmetric absorption.  In the literature, among algorithms which visualize 3D 

scalar datasets with models of radiatively participating media (or semi-transparent gels), the majority have 

the ASSG models or simpler models.    

More sophisticated models are employed in [Levoy, 1990c] and [Van der Voort, 1989] which 

account for attenuation of rays from light source(s) by the media.  In other words, media in these models 

can cast shadows onto themselves.  [Max, 1986a, Max, 1986b] and [Ebert, 1990] also describe models of 

absorbing media with single scatter which can produce shadows.  Such shadows are expected to help 3D 

spatial perception [Wagner, 1992], but the cost of rendering models with shadows is much higher than the 

ASSG model.     

[Kajiya, 1984], [Rushmeier, 1987, Rushmeier, 1988] and [Krueger, 1990] describe models with 
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multiple scattering.  There is a significant difference in sophistication and cost among models with single 

scatter and multiple scatters.  Unlike single scatter models, multiple scatter models require simulations of 

global energy transport.  In computing the global energy transfer, [Krueger, 1990] used particle transport 

theory, which models the transfer of particles in inhomogeneous amorphous media.  [Rushmeier, 1987] 

and [Rushmeier, 1988] computed the global energy transport by two alternative methods, one a Monte 

Carlo integration and the other what she calls the zonal method.  The zonal method models radiatively 

participating media as a set of 3D point scatterers, where transport of energy among these point scatterers is 

calculated in a manner similar to the radiosity algorithms.  [Rushmeier, 1992] provides a concise 

introduction to the subject of modeling and rendering radiatively participating media.  

To model directional scattering of light by media, the vast majority of current volume visualization 

algorithms use simple reflectance models such as Gouraud‘s [Gouraud, 1971] and Phong‘s [Bui-Tuong, 

1975].  Gouraud‘s reflectance model incorporates ―ambient‖ or non-directional emission and diffuse 

reflection.  Phong‘s reflectance model, built upon Gouraud‘s, adds specular reflection.  When employed 

in a volume visualization, Phong‘s model gives better indication of the change in surfaces (e.g., change in 

curvatures) because of its specular reflection.  Recently, more accurate but usually more expensive models 

of (surface) reflectance which incorporate such phenomena as anisotropic reflectance have been developed 

(for example, [He, 1991, He, 1992], [Sillion, 1991], [Westin, 1992], and [Ward, 1992a].)  

In the literature, the ASSG model or simpler models represent the vast majority among algorithms 

which visualize 3D scalar datasets with models of radiatively participating media (i.e., semi-transparent 

gels.)  Models with single scatter, and especially those without shadowing (such as the ASSG and simpler 

models), are much less expensive to render than the models with multiple scatters.  Similarly, relatively 

simple reflectance models are employed in the ASSG model.  Given limited computational resources, 

current volume visualization algorithms need to trade potential image quality improvements for 

visualization speed.   

This dissertation employs the ASSG model with Phong‘s reflectance model, which are relatively 

simple and inexpensive models.  This choice is made because one of the objectives of this dissertation is 

visualization at an interactive speed.  In other words, spatial image quality (resolution, etc.) is traded in 

favor of temporal image quality (high frame rate, etc.)   

Rendering. The rendering step generates images from the model created in a modeling step.  The 

rendering step performs various illumination and reflectance calculations based on the visual model, 

viewing transformation and projection (with integration) to produce 2D screen images.  Both viewing 

transformation and projection (with integration) steps involve reconstructions, whose methods are 

influenced by the regularity of the dataset and objects that are subjected to transformation and projection.  

Rendering algorithms for the ASSG model are reviewed in the next section.  For the rendering algorithms 
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associated with the more sophisticated visual models, e.g., models with multiple scattering, see [Rushmeier, 

1992] and other references listed above. 

2.2.4.2  Rendering Methods for the ASSG Model 

Rendering algorithms for the ASSG model, which is the model used in this dissertation and also the 

most popular model among semi-transparent gel models, are reviewed in this section.  Rendering 

algorithms for the ASSG model are characterized by the viewing transformation and projection algorithms 

employed in them, which can be classified into either 1) backward mapping, or 2) forward mapping.  A 

backward mapping traverses the dataset in an orderly manner in the coordinate space of a transformed 

(destination) dataset.  A forward mapping algorithm, on the other hand, does so in a coordinate space of 

the dataset before transformation (source.)  Since the sampling intervals and locations are in general 

different between source and destination datasets, both of the methods require reconstructions 

(approximation and resampling) to reduce various artifacts.  There are several sub-types in each of the 

backward mapping and forward mapping classes of algorithms.  

(1) Backward Mapping Algorithms  

(a) Image Ray-casting.  An image ray-casting method casts rays into a collection of points with 

implicit topology and geometry, such as a regular 3D mesh stored in a 3D array.  [Levoy, 1988] is 

an example of this method.  The algorithm described in [Levoy, 1988] casts rays into a 3D array of 

points, and samples at regular intervals along the ray using trilinear interpolation.  If perspective 

projection is used, a simple image ray-casting algorithm will undersample the dataset.  To avoid 

aliasing artifacts by this undersampling, [Novins, 1990] adaptively ‗branched‘ each ray into multiple 

rays to keep the sampling density above a certain level, while [Sakas, 1992] used a 3D-MIP-map. 

(b) Polygonal Ray-casting.  In a polygonal ray-casting method, rays are cast into a set of polygons 

in the 3D world space.  The polygons may be generated from either regular or irregular sample 

points.  This method is quite similar to the ray-tracing algorithms for polygonal objects.  

[Wilhelms, 1991] uses polygonal ray-casting for regular datasets after converting them into sets of 

tetrahedrons.  [Garrity, 1990] uses polygonal ray-casting for irregular datasets after decomposing 

curvilinear meshes into tetrahedral cells.  In these two examples, interpolations of values at the 

ray-polygon intersections are done by bilinear interpolation on each triangle of the tetrahedrons, 

although other methods, such as a higher order approximation over multiple triangles are possible.   

(2) Forward Mapping Algorithms 

(a) Image Warping.  An image warping method applies successive 2D shearing and scaling 
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transformations to perform a (3D) viewing transformation [Drebin, 1988, Hanrahan, 1990].  

Interpolation is done in 2D at each shearing and scaling step.  Efficient implementation is possible 

with this method since computations and data access patterns are regular.  After the viewing 

transformation by image warping, the data in the 3D screen space can be projected onto the 2D 

screen space with integration by either the image projection or polygonal projection approaches 

described below.   

(b) Image Projection.  The image projection, or ―splatting‖ method traverses the individual sample 

points in the 3D world space in order, transforms them into the 3D screen space, and projects or 

―splats‖ them onto the 2D screen space with integration.  The splatting must be done in either 

increasing or decreasing order of the sample‘s distance from the screen for proper integration.  

Interpolation is done by 2D kernels in the 2D screen space.  [Westover, 1989, Westover, 1990] and 

[Laur, 1991] use 2D Gaussians.  [Laur, 1991] approximates the Gaussian splat kernel by polygons 

and uses polygon rendering hardware with an alpha-blending capability for the rendering.  [Laur, 

1991] also performs adaptive hierarchical splatting with a variable-size kernel.   

(c) Polygonal Projection.  The polygonal projection method transforms and projects polygons 

(mostly triangles.)  An algorithm of this kind first constructs a tetrahedral mesh from sample points.  

Each triangle of the mesh is then viewing-transformed and rendered onto the 2D screen space, where 

the integration takes place.  Interpolation is typically bilinear over each triangle.  [Wilhelms, 1990, 

Wilhelms, 1991], [Shirley, 1990], and [Max, 1990] are examples of this method.  This method is 

quite similar to rendering algorithms of semi-transparent polygons so that the method can take 

advantage of polygon rendering hardware with alpha-blending capability.  (Although some 

hardware may not have a large enough dynamic ranges for a high-quality rendering [Wilhelms, 

1991].)  Polygonal projection works well on irregular datasets.  For example, [Max, 1990] first 

triangulates randomly located sample points to apply a polygonal projection method. 

Figure 2.6 summarizes various rendering methods for the ASSG model.  All of the rendering 

methods listed for irregular datasets use integral reconstruction approach.  Pre-visualization reconstruction 

approaches can employ any kind of rendering methods to visualize irregular datasets.  No examples are 

found for the rendering of irregular datasets using polygonal ray-casting, or image projection.  It is 

conceivable to use these methods to render irregular datasets, but the resulting algorithm will be quite 

expensive. 
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2.3  3D Echography Visualization 

Section 2.2 reviewed the fundamentals for visualizations of 3D scalar datasets, with an emphasis on 

volume visualization methods which use non-binary-classified semi-transparent gel models.  This section 

reviews visualization methods used specifically for 3D echography datasets.   

As discussed in Section 2.2.1, carriers of information in a visualization need not be visual.  In fact, 

in many earlier studies of 3D echography, the desired information was numbers representing ventricular 

volumes estimated from 3D echography datasets.  This dissertation deals exclusively with visualization 

methods which have visual images as the carriers of information.    

2.3.1  By Geometrical Objects 

The objective of many of the earlier studies was a non-invasive estimation of ventricular volume 
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[Brinkley, 1978, Ghosh, 1982, Linker, 1986, Matsumoto, 1981, Moritz, 1983, Nikravesh, 1984, Raichelen, 

1986, Stickels, 1984].  They reconstruct geometric models of ventricles, not necessarily to visualize the 

shape of the ventricle, but to estimate the ventricular volume.  A typical procedure for this kind of 

geometric reconstruction starts with manual selection of a set of image slices from a video tape recording, 

and video digitizing of the selected slices.  Contours of ventricular walls are traced in each image either 

manually or partially automatically.  A completely automatic segmentation of ultrasound echography 

images is not practical at this time.  Typically, manually traced contours for each image slice are 

approximated by straight line segments, then contours of multiple image slices are combined and 

reconstructed into 3D polygonal meshes.  The image slice selection, digitization, and contour tracing were 

done largely manually, which took tens of minutes to many hours.   

Visualization models and rendering methods for these geometric reconstructions are relatively 

simple.  Since a manual (or partially automatic) tracing of contours is a binary classification, the results of 

such a tracing are modeled by 0D (point), 1D (line), or 2D (surface) primitives.  Using 0D (point) 

primitives, sets of points are placed at the location of surfaces.  Using 1D (line) primitives, surfaces are 

represented by stacks of contours or wire frames.  Generation of these models from the digitized contour, 

and rendering of these models are relatively inexpensive.   

2.3.2  By Transparent Gel Model 

Recent 3D echography studies have shifted toward visualization of 3D echography datasets.  They 

attempt to visualize volume datasets as a collection of voxels, without converting them into geometrically 

defined objects such as polygonal surfaces through binary classification.  Papers on 3D ultrasound 

echography tend to have short descriptions of visualization methods, and are as a result frequently unclear 

about what visualization methods were utilized.  For example, in the literature, methods that use either 

binary or non-binary classification may both be called ―volume rendering‖.   

Reconstruction Methods 

Regularities of datasets influences the method of object reconstruction.  The data acquisition 

method determines the regularities (Section 2.1.2.)  Datasets that are sampled at irregular locations are 

much more difficult to reconstruct properly than the datasets sampled at regular intervals, especially on 

rectilinear grid points.   

Causality of reconstruction is another key issue.  In a non-causal reconstruction algorithm, the 

reconstruction takes place after the acquisition of all the necessary samples has been completed, so that all 

the samples are available for the reconstruction, and the algorithm may traverse the temporal axis either 
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forward or backward.  A causal reconstruction algorithm processes the samples on-the-fly as they arrive, 

so that they can only use the samples from the past.  A causal reconstruction is more limited than a 

non-causal reconstruction in the choice of algorithm.  All the reconstruction methods in the literature are 

non-causal, while the reconstruction algorithm used in this dissertation (described in Chapter 3) is causal, 

since our goal is an immediate, incremental visualization.  A causal reconstruction is necessary for a 

system in which the acquisition, reconstruction and visualization steps are on-line and the visualization 

results should immediately reflect the last acquisition. 

(1) Fixed-format Scans 

Fixed-format scans are easier to reconstruct than free-format scans, since the sampling intervals are 

either constant (1 DOF parallel scan) or they change with a known increment in each spatial coordinate axis 

(1 DOF radial or sector scans.)  

1 DOF parallel scan. Datasets with this scan format (Figure 2.1.a) are the easiest to reconstruct 

(Figure 2.1.a.)  Some reconstruction is needed even for parallel slices, since sampling intervals are 

different between axial, lateral, and elevation directions.  For example, [Lalouche, 1989] 

reconstructs 45 parallel slice images of a breast in which a cubic spline interpolation is used in the 

elevation direction.  TomTec acquires 3D echography images of a beating heart with cardiac and 

respiratory gating as a set of parallel slices [König, 1993, Tomographic Technologies, 1993].  Due 

to the cyclic nature of the cardiac and respiratory movements, the acquisitions produced 4D datasets, 

i.e., 3D datasets with an additional dimension of time.  To reconstruct a series of (spatially) 3D 

image frames of a heart over one cardiac cycle, the reconstruction algorithm takes advantage of the 

4D datasets.  Details of the method are not published, but when a voxel value at a spatial location at 

a specific time is needed, the reconstruction algorithm looks at the voxel‘s neighbors in both time 

and space.  This reconstruction in 4D is possible since it is a non-causal, posterior reconstruction.  

Examples of the reconstructed and volume visualized images seen by the author, for example a 

movie sequence of an artificial heart valve in vivo, were quite impressive.  The impressive quality 

of reconstructions and visualizations seem to owe a lot to the thin slice (i.e., high elevation 

resolution) of their transducer with elevation focusing, as much as to the proprietary 4D 

reconstruction technique.  

1 DOF radial and sector scans.  Fixed format acquisitions by rotations of 2D image slices, such as 

1 DOF radial scans (Figure 2.1.b) employed by [McCann, 1988], [Pini, 1990] and others, and 1 DOF 

sector scans (Figure 2.1.c) employed by [Collet-Billon, 1990, Leavaillant, 1989], [Thune, 1991], 

[Ganapathy, 1992], [Acoustic Imaging, 1993], and others, are identical in terms of reconstruction.  

[McCann, 1988] used a ―repetitive low-pass filtering‖ of unspecified nature, while [Pini, 1990] used 

linear interpolation.  [Thune, 1991] and [Ganapathy, 1992] used bilinear interpolation in the 



 Page 35 

cylindrical coordinate system, that is, the r- reconstruction [Leavitt, 1983].  Details of 

reconstruction employed by [Acoustic Imaging, 1993] are not published, although the visualized 

images showed artifacts that resulted from the 1 DOF sector scanning method employed.   

(2) Free-format Scans 

Free-format scans produce datasets in which both sampling intervals and the derivatives of the 

sampling intervals are variable.  Reconstruction of such datasets are much more difficult than datasets 

from fixed format scans. 

3 DOF arbitrary scan.  3 DOF arbitrary scans are reconstructed by a ―low pass filtering‖ in 

[Hottier, 1989], whose details are not described.  The static viewpoint 3D echography system in this 

dissertation (Chapter 3) uses 3 DOF arbitrary scans, whose reconstruction algorithm is described in 

Chapter 3.  This reconstruction algorithm is not limited to 3 DOF; it is used also in the dynamic 

viewpoint 3D echography system with 6 DOF arbitrary scans described in Chapter 4. 

6 DOF arbitrary scan.  6 DOF arbitrary scans produce datasets which are in most respects 

identical to the 3 DOF arbitrary scans.  [Ganapathy, 1992] describes a reconstruction method where 

a dataset from 6 DOF scan was reconstructed into a 3D array of voxels by a localized 

distance-weighted interpolation, which appears to be Shepard‘s interpolation [Barnhill, 1984a, 

Franke, 1982, Gordon, 1978, Schumaker, 1976, Shepard, 1968].  This method is quite similar to the 

one used by the reconstruction algorithm in this dissertation, whose details will be discussed in 

Chapter 3.  The algorithm described in Chapter 3 is also used for the dynamic viewpoint 3D 

echography system described in Chapter 4 that uses an 6 DOF acquisition system identical to 

[Ganapathy, 1992].   

Reconstruction algorithms are not very well documented in the literature of 3D ultrasound 

echography.  This is true for the free-format scan with irregular intervals.  

Visualization Methods 

All work in the literature uses the pre-visualization reconstruction approach to visualize irregularly 

sampled datasets, producing regular volume datasets as an intermediate step.  The reconstructed regular 

datasets have been visualized several different ways.   

1) 1D-lines-in-2D-space model. Although the visualization method used in [King, 1990] is a 2D 

visualization method, it tries to show 3D spatial relationships of 2D image slices.  The system in [King, 

1990] tracks location and orientation of each 2D image slice with 6 DOF as it is acquired.  On each 2D 

echography image display on a 2D video display, the system draws lines indicating intersection of the 

displayed 2D image with several past 2D images slices.  The authors claim that these lines help users 
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understand 3D spatial relationships of the slices.   

(2) Multi-planar reformatting (MPR.) [Collet-Billon, 1990, Leavaillant, 1989], [Tomographic 

Technologies, 1991], [Acoustic Imaging, 1993] all include MPR as a visualization method as well as 

several other methods.  This method re-slices a volume dataset at one or more (usually planar) surfaces to 

expose data along the cutting surfaces.  This method can be implemented with an interactive performance 

on a current single processor workstation.  MPR can present echo intensity themselves to the users, unlike 

many other volume dataset visualization methods which visualize boundaries of regions with identical echo 

intensity values.  On the other hand, it is not a true 3D visualization, and some mental fusion of objects 

among various slices is necessary to comprehend 3D structures in datasets.  Although MPR is not used in 

this dissertation, it may well be a part of future visualization methods for ultrasound echography datasets, 

perhaps as a complementary visual model to volume visualization; for example, while MPR presents 

detailed echo intensity values in datasets, volume visualization presents structures in 3D.  

(3) Cuberrille-like models. [Nakamura, 1984] and [Ganapathy, 1992] uses models similar to Cuberrille 

[Herman, 1979].  In [Nakamura, 1984], rectangular voxels are binary classified into surfaces of the 

rectangular voxels, 2D slice-by-slice, using 2D ray-casting.  Intensity values behind the classified surface 

are preserved.  After the slice-by-slice classification, slices are simply stacked up to produce 3D volumes 

to be rendered as surfaces.  [Ganapathy, 1992] employed a model much closer to the Cuberrille.  These 

Cuberrille-like models are relatively inexpensive to compute.  However, without substantial developments 

in classification methods, these Cuberrille-like models do not seem to work well on ultrasound echography 

datasets with noise and speckle.   

(4) Non-binary-classified volume model. As discussed in Section 2.2.3.1, the non-binary-classified 

semi-transparent gel model has several subclasses.  Figure 2.7 classifies such models for 3D ultrasound 

echography dataset visualization.  (Figure 2.7 is similar to Figure 2.5 in Section 2.2.3.1; Figure 2.5 lists the 

general references, while Figure 2.7 lists examples from the literature on ultrasound echography 

visualization. ) 

(a) Maximum intensity projection (MIP). [Collet-Billon, 1990, Leavaillant, 1989] and [Thune, 

1991] used maximum intensity projection as one of several models of visualization.  Some of the 

visualization algorithms implemented by the author also have MIP modes.  MIP is a non-linear 

operation, where the pixel value is the maximum value encountered along the pixel‘s ray.  Low cost 

and thus high speed of computation is an advantage of the MIP.  It is well suited for visualizing a 

dataset that consists of objects with high contrast but is largely empty, such as a 3D X-ray 

angiogram taken with a contrast agent.  A disadvantage is oversimplification of objects in a 

complex dataset, where weak but clear responses behind strong responses are completely lost.  MIP 

has weak 3D visual cues compared to more sophisticated semi-transparent gel models, such as 
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ASSG.  As a result, for an adequate 3D perception, MIP seems to need additional cues such as 

motion parallax and stereopsis.   

(b) Additive projection. A mode in [Acoustic Imaging, 1993], [Thune, 1991], some of the author‘s 

code, and others uses a simple additive projection of volume samples onto the 2D screen coordinate 

from an arbitrary viewpoint.  This method applied to X-ray CT dataset is sometimes called 

―synthetic radiograph‖.  Additive projection is relatively inexpensive to implement and execute.  

However, the results of visualizations lack many 3D visual cues, e.g., directional lighting effects, 

that exists in more sophisticated models.  For a good 3D comprehension of visualized images, 

additive reprojection model seems to require additional 3D cues, e.g., motion parallax or stereopsis.  

A limited but interesting variation of additive projection is the ―transducer‘s eye view‖ 

display employed in the prototype real-time 3D echography scanner by Dr. Olaf von Ramm‘s group 

at Duke University [Castellucci, 1993].  In this display mode, echo intensity values along each 

ultrasound beam are summed.  Since the interrogation beams are diverging to acquire a pyramidal 

volume, the result of the summing is a perspective projection by additive compositing with a fixed 

―transducer‘s eye view‖.  Even through the viewpoint is fixed to the transducer, interactive 

manipulation of transducer by the use provides effects identical to the motion parallax with 

user-controlled viewpoint.   

(c) Asymmetric Single Scatter Gel (ASSG). [McCann, 1988], [Lalouche, 1989], [Pini, 1990], 

[Collet-Billon, 1990, Leavaillant, 1989], [Tomographic Technologies, 1991], [Thune, 1991], and 

[Ganapathy, 1992],  have tried volume visualization with the ASSG model (or its variations.)  

ASSG is much more expensive than MIP or additive compositing, but richer in visual cues.  All the 

previous 3D echography visualization studies using the ASSG model have done so off-line from 

reconstruction, at an image generation frame rate slower than an interactive rate.   

The ASSG model is used for the static viewpoint 3D echography system in its initial 

[Ohbuchi, 1990] and current implementations, and for the dynamic viewpoint 3D echography 

system described in this dissertation.  
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Figure 2.7:  Visualization methods, listed with increasing sophistication from top to bottom, used for 3D 

ultrasound echography datasets that employ visual models with volume primitives.  Each computational 

cost is for a change in a regularly sampled dataset to a rendered image.  (See Figure 2.5 for visualization 

models in general for volume visualization.) 

2.3.3  Discussion on 3D Ultrasound Echography Visualizations 

It appears that most of the previous work on 3D ultrasound echography has paid little attention to 

visualization, for their descriptions of the visualization methods are often short and vague.  To some 

extent, this tendency can be attributed to the fact that visualizations were not the primarily objective of 

many of these 3D ultrasound echography studies.  The methods used appear to be relatively simple 

compared to those found in the literature of volume visualization in general. 

 A group of methods, especially those found in older studies, used visual models with geometrically 
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defined primitive objects such as polygonal surfaces and lines produced by binary classifications.  These 

binary classifications typically involved time consuming manual segmentation of the objects of interest. 

Another group of methods, especially recent ones, used volume objects as visual primitives, in 

which case classification and modeling were largely automatic.  Visualization methods by volume objects 

varied in their levels of sophistication, which included additive projection and maximum intensity 

projection on the simpler end, and the ASSG model on the sophisticated end.  Volume visualization 

models more sophisticated than the ASSG model do not appear to have been used for 3D ultrasound 

echography datasets. 

The following summarizes the characteristics of reconstruction and visualization methods in the 

literature of 3D ultrasound echography that employ the ASSG model.  

For reconstruction,  

• Volume reconstruction methods tend to be either undocumented or ad hoc, especially for the 

free-format scans. 

• All the reconstruction algorithms are non-causal. 

• No volume reconstruction algorithm worked at an interactive, much less at real-time, speed. 

• No volume reconstruction step was on-line from acquisition step. 

For visualization,  

• All the visualized datasets are static datasets. 

• Volume visualization algorithms use the ASSG or simpler models such as additive projection.   

• No volume visualization algorithm (of reconstructed regular datasets) worked at an interactive, 

much less at real-time, speed. 

• No volume visualization step was on-line from volume reconstruction step. 

• Lags from dataset acquisitions to visualizations were very long.  

The static and dynamic viewpoint 3D echography systems described in this dissertation are 

developed in an effort to try to pull the state-of-the-art listed above toward our future goal of real-time, 

free-format scan (hand-guided), 3D echography scanners that visualize 3D structures.  Such future 

real-time 3D echography scanners need to reconstruct and visualize dynamic datasets, where a large part of 

the dataset changes at real-time rates (e.g., 30 3D-frames/s.)  The reconstruction must be causal, so that 

each new acquisition affect the visualized images immediately.  Obviously, to achieve real-time 
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acquisitions and visualizations, all of the acquisition, reconstruction, and visualization steps must be 

on-line, and perform at real-time rates.  For responsive hand-guided, interactive acquisitions and 

visualizations, a short lag from acquisition to generated images is necessary.   

The two systems described in Chapter 3 and 4 of this dissertation address many of the issues listed 

above that separate the state-of-the-art and our future goal, although they do not completely satisfy all the 

criteria of the future real-time, free-format, 3D echography scanner systems.  

2.4  Accelerating Volume Visualization 

One of the objectives in this dissertation is to explore means of interactive, and ultimately real-time 

volume visualization of 3D ultrasound echography datasets.  Compared to traditional polygon based 

datasets, volume datasets tend to be larger in size and costlier to visualize, given that various other factors 

such as illumination models are identical.  Thus, acceleration of volume visualization algorithms has been 

an active area of research, since slow visualizations can hinder visualization efforts.  As discussed in the 

Section 2.3.3 above, none of the previous 3D echography systems has achieved interactive, not to mention 

real-time speed of visualization.  Also, none of the volume visualization algorithms in ultrasound 

echography attempt to accelerate visualization of partially-dynamic or fully-dynamic datasets.   

Since the literature of 3D ultrasound echography does not provide approaches to sufficiently 

accelerate volume visualization algorithms, this section reviews the field of volume visualization for 

acceleration methods.  The following sections (Section 2.4.1 - 2.4.5) review acceleration methods for 

volume visualization with emphasis on those algorithms that support the ASSG model.  Before discussing 

acceleration methods themselves, Section 2.2.4.1 defines performance criteria for volume visualization, 

accounting for such factors as the dynamism of visualization parameters and datasets.  This is important 

since, while the visualization algorithms in this dissertation deal with image generation performance of 

dynamically and incrementally changing datasets, most of the volume visualization algorithms in the past 

were optimized for image generation frame rates for static datasets under viewing parameter changes.   

Then, Section 2.2.4.2 through Section 2.2.4.4 presents reviews of acceleration methods that exploit 

1) coherence, 2) parallelism, and 3) special hardware.  Of these three, coherence and parallelism are of 

most interest in this dissertation, since the static viewpoint 3D echography systems discussed in Section 4.1 

use these two approaches.  Section 2.2.4.4 reviews hardware based acceleration approaches, although such 

approaches will not be used explicitly in the two systems described in this dissertation, since hardware 

based approaches are expected to play an important role in realizing future real-time 3D echography 

visualization systems. 
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2.4.1  Input Changes, Lags, and Throughputs 

―Performance‖ of a volume visualization system has two components; lag and throughput.  In the 

past, throughput, e.g., polygons-per-second or frames-per-second, has almost always been the measure of 

performance for computer graphics systems.  Recently, as human interactions with the graphics systems 

have become more sophisticated, the other component of performance, lag, has become more important.  

Lags become critical when a graphics system is in a feedback loop with human beings and other real-world 

objects.  For example, in a HMD system, reduction of lags from viewpoint changes (i.e., movement of 

HMD wearer) to image generation has become very important.  In the two 3D ultrasound echography 

systems described in this dissertation, and in future real-time 3D echography systems, reduction of lags 

from ultrasound data acquisition to image generation is an important issue.  

The lag of a visualization system is a time delay from changes in an input to the visualization system 

to its effects in visualized images.  A throughput of a visualization system is a maximum rate of image 

generation that can keep up with changes in the input under open-loop conditions, i.e., there is no feed-back 

loop (through human beings) from the generated images to the input parameters.   

There are four kinds of lags that are important to the volume visualization systems discussed in this 

dissertation.  These are dataset lag, classification lag, modeling lag, and viewing lag, corresponding to 

changes in dataset, classification parameters, modeling parameters, and viewing parameters.  Similarly, 

there are four kinds of throughputs, dataset throughput, classification throughput, modeling throughput, 

and viewing throughput.  The lags and throughputs of a visualization system become strongly interrelated 

in a system that combines a human operator and the visualization system.  In such a system, a human 

operator is in the system‘s feedback loop controlling visualization parameters and volume dataset 

acquisitions based on visualization results.  Throughputs of such a human-machine system are determined 

by the combined lags of both human and machine. 

Viewing lag has been the primary target of optimization in the past.  Other criteria, especially 

dataset lag and dataset throughput, have been largely ignored, probably due to the fact that the majority of 

volume datasets available have been static.  Various trade-offs have been made to shorten viewing lags and 

increase viewing throughputs, for example by preprocessing the view-independent part of a visualization 

algorithm.  The recent popularity of the Head-Mounted Display (HMD) has added an incentive for not 

only a higher viewing throughput but also a shorter viewing lag.   

Compared to viewing lag, classification and modeling lags have received less attention, since these 

lags are not as time critical as viewing and dataset lags.  Classification and modeling lags are still 

important for visualization systems to perform effectively, since producing a useful volume visualization 

typically involves trial-and-error changes of classification and modeling parameters.  Some volume 
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visualization systems, notably VVEVOL [Yoo, 1992] and ViVo [Sakas, 1992] attempt to shorten 

classification and modeling lags. 

2.4.2  Coherence 

Coherence has been the major source of acceleration of conventional graphics algorithms for 

polygon-based datasets, as discussed in a classic survey paper on visibility algorithms for polygonal objects 

[Sutherland, 1974].  Volume datasets have various forms of coherence.  For example, data points with 

values of interest tend to cluster.  A large portion of speedup in sequential volume visualization algorithms 

comes from such coherence in the datasets.  This section reviews various types of coherence, and methods 

to exploit them to accelerate volume visualization algorithms.   

1) Spatial coherence 

Spatial coherence originates from the physical nature of real objects and imaging methods in 

acquired datasets.  Spatial coherence exists in computer generated datasets as well.  There are various 

manifestations of spatial coherence that can be exploited. 

(a) Object Coherence 

Object coherence is a spatial coherence in the 3D world space, and is the source of all other 

kinds of spatial coherence.  For example, objects in the 3D world space tend to cluster together, 

leaving empty or constant valued space elsewhere.   

In traditional ray-tracing algorithms for geometric objects, objects in a database, e.g., 

polyhedrons, spheres, etc., are well defined, and the space in between these objects is often assumed 

empty.  A bounding volume method bounds the objects (e.g., a polygonal model of a car) by a 

sub-volume of simple shape (e.g., a rectangle) or a hierarchy of such simple sub-volumes (e.g., 

[Bouville, 1985, Kay, 1986, Toth, 1985, Whitted, 1982].)  On the other hand, a spatial partitioning 

(or spatial subdivision) method subdivides the 3D world space into uniform or hierarchical 

sub-volumes (e.g., [Fujimoto, 1986].)   

Among volume visualization algorithms, spatial partitioning has been the method of choice, 

since ―objects‖ for these algorithm are not sufficiently defined for the effective application of 

bounding volume methods.  A hierarchical spatial partitioning method adaptively and 

hierarchically subdivides a volume dataset in the 3D world space into sub-volumes of different sizes 

depending on their contents.  Hierarchical spatial partitioning methods have been applied to image 

ray-casting algorithms (e.g., [Levoy, 1990a]) and image projection algorithms (e.g., [Laur, 1991].)   
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Hierarchical spatial partitioning is a very effective approach for exploiting object coherence.  

Unfortunately, hierarchical spatial partitioning of a volume dataset needs to be performed as a 

preprocessing step, and thus is applicable only to static datasets.  If the datasets are dynamic or 

partially dynamic, as in this dissertation, this approach can not be applied.   

Object coherence in the 3D screen space can also be exploited by adaptive ray-termination in 

an image ray-casting algorithm [Levoy, 1990a].  Advancement of each ray is terminated as soon as 

the opacity of the ray (cast from front-to-back) saturates.  Another method for a ray-casting based 

algorithm adaptively reduces sampling density (i.e., increase the sampling intervals) along each ray 

as the opacity of the ray nears saturation [Danskin, 1992].   

(b) Screen Coherence 

Screen coherence is the manifestation of the object coherence in the 2D screen space.  An 

image-adaptive ray-casting method exploits this coherence by adaptively modulating ray densities 

in the 2D screen space using the difference in the values of neighboring pixels as a criterion [Levoy, 

1990d].  [Miyazawa, 1991] and [Shu, 1991] employed similar image-adaptive ray casting, but with 

different sampling patterns that give better results with fewer rays . 

A few experimental military flight simulators in the past displayed a high-resolution image in 

the direction of the gaze, which is tracked by an eye-tracker, while keeping the resolution of the 

other areas low and therefore fast to generate images [Wetzel, 1990].  A similar technique was 

tested for volume visualization, concentrating rays toward directions of gaze which was tracked by 

an eye-tracker  [Levoy, 1990b]. 

(c) Low-Level Data Coherence 

Object coherence affects memory access locality at lower levels, such as virtual memory, 

cache memory, and CPU registers.  This is an implementation and realization level issue of both 

software and hardware.  Low-level data coherence can have a substantial impact on the 

performance; for example, for a computer system with a cache memory and/or virtual memory, the 

access time for multiple consecutive elements along an axis of a multidimensional array can vary 

significantly depending on the axis of index traversal of the 3D array. 

(2) Temporal coherence 

Temporal coherence, includes various temporal continuities of spatial coherence.  Temporal 

continuities of various spatial coherence are in turn determined by the coherence of inputs to a visualization 

systems, such as datasets, reconstruction parameters, classification parameters, modeling parameters, and 
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viewing parameters.  If any one or more of these inputs stay constant for some time, temporal coherence 

can be exploited.  

The most popular case of temporal coherence occurs when a sequence of images with varying 

viewpoints are generated while all the other inputs are fixed (i.e., the dataset, classification parameters and 

modeling parameters are unchanged.)  Most often, shortening viewing lag is of utmost concern so the 

algorithms are designed to shorten viewing lag by taking advantage of the coherence in the dataset and 

other inputs.  Preprocessing the view-independent part of computation is the typical way to optimize such 

algorithms.  As an alternative approach, in a ray-casting algorithm for geometrically defined objects, 

[Badt, 1988] exploits the frame coherence in the 2D screen space.  [Gudmundsson, 1991] applies a similar 

technique to a binary-classified surface based visualization algorithm for volume datasets. 

Almost all of the graphics algorithms are optimized for dynamic viewpoint and static everything 

else, since the priority in graphics algorithm development has been placed in shortening the viewing lag.  

Among the few exceptions, [Holmes, 1985] tries to reduce a part of modeling lag.  Recently, demands for 

shorter dataset lag have been increasing among graphics applications due to increasing demands for 

interactive manipulation of datasets in such applications as interactive 3D modeling.  Surface rendering of 

an interactively sculpted, partially dynamic volume dataset described in [Galyean, 1991] aims at a short 

dataset lag. 

The static viewpoint 3D echography system described in Chapter 3 exploits temporal coherence in 

its volume datasets (i.e., they are partially dynamic), which change only at the neighborhood of one 2D 

echography image slice at a time.  The system also assumes infrequent changes in classification, modeling, 

and viewing parameters, so that they can be exploited for short dataset lags. 

2.4.3  Parallelism 

Parallelism plays an important role in achieving the goals of this dissertation, and will play an even 

more important role in future real-time 3D echography systems.  Given a device technology, parallelism is 

ultimately the only way to speed up.  This section reviews parallel visualization algorithms designed for 

general purpose parallel processors with a small to medium number (a few to a few dozen) of processors 

and a medium to large grain of parallelism, e.g., a grain size that corresponds to roughly tens to hundreds of 

machine instructions.   

Algorithms for such a medium-grain, general purpose parallel processor were selected for the review 

in this section since a proposed full-scale implementation of the static viewpoint 3D echography system is 

expected to use a parallel processor of this kind.  (A parallel algorithm for the static viewpoint 3D 

echography system will be described in Section 3.4.3.)  For the same reason, parallel visualization 
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algorithms reviewed here are limited to those that employ the ASSG model, since it is the model to be used 

in both the static and dynamic viewpoint 3D echography systems described in this dissertation. 

(1) Shared Memory Multiprocessor Algorithms 

It is straightforward to implement a parallel volume rendering algorithm on a MIMD shared memory 

multiprocessor (SMMP.)  This author implemented a volume visualization algorithm that used an image 

ray-casting approach on a bus coupled, general purpose SMMP Sequent Balance-8000, consisting of 8 

processors, each with a NS32032 microprocessor and small local memory, and 32 MB of centralized shared 

memory.  Both static and dynamic (round-robin) scheduling methods were tried, with a pixel, a rectangular 

region on a screen, or a scanline as units of task distribution.  The utility of this program was limited due to 

its relatively small (by today‘s standard) 32 MB limit on the shared main memory and slow processors, but 

two observations are noted from this experiment.  First, conversion of a sequential volume visualization 

program running on a single processor workstation into a shared memory parallel program for the Sequent 

Balance-8000 was easy.  The program showed a good speedup; 8 processors gave a factor of 6-7 speedup 

over a single processor.  The second observation is that a SMMP with local cache memory is very well 

suited for volume visualization — because (a) the local cache hit rate is very high due to spatial coherence 

of the algorithm and dataset, and (b) the access contention of the global shared memory due to locking is 

minimal since references to the volume dataset in the shared memory are mostly read-only.  More recently 

[Nieh, 1992] used a SMMP for image ray-casting based volume visualization with favorable results.   

(2) Distributed Memory Multiprocessor Algorithms 

A MIMD distributed memory multiprocessor (DMMP) system does not have a single shared 

memory space, and processors share common data by exchanging messages.  Exploiting data parallelism 

on DMMPs involves careful division of datasets and controls (tasks), with load-balancing and minimization 

of communication overhead in mind.   

Complete duplication of a volume dataset is the simplest way to parallelize an image ray-casting 

volume visualization algorithm on a DMMP, an example of which is found in VOL [Yoo, 1992].  VOL 

runs on the graphics oriented heterogeneous multicomputer Pixel-Planes 5 [Fuchs, 1989], which has up to 

about 64 (typically around 20 to 30) general purpose processors, each with an Intel i860 and 8 MB of 

memory, as well as multiple arrays (128  128 each) of processor-per-pixel enhanced memory chips.  

Each general purpose processor is assigned a small part of the 2D screen as its share of the task.  Since the 

volume dataset is completely duplicated, each processor can work independently on its own sub-screen.  A 

similar complete-duplication scheme was used for a ray-tracing algorithm for geometric objects on the 

LINKS-1 [Nishimura, 1983].  Although they are simple to implement, algorithms based on complete 

duplication require a large amount of memory per processor.   



 Page 46 

To reduce classification lag, VOL uses a normal coding technique (See [Holmes, 1985] and 

[Glassner, 1990] page 257-264.)  Normal coding increases the viewing lag somewhat but decreases the 

classification and/or modeling lags.  Since interactive changes of classification and modeling parameters 

are very common in volume visualization tasks, this is a good trade-off.   

There are two methods that avoid complete duplication of volume datasets by subdividing them 

among processors; one is the screen space subdivision method and the other is the world space subdivision 

method.   

(1) Screen Space Subdivision Method 

A screen space subdivision method subdivides a screen into disjoint sub-screens.  This 

divides a volume dataset into a collection of nearly disjoint regularly shaped subsets, each a view 

frustum of a sub-screen.  To generate images, each processor somehow must to have all the voxels 

in its view frustum assigned to it, for which there are several possible methods.   

The author implemented an image ray-casting algorithm using a “cubic demand paging” 

scheme on a set of distributed workstations connected by Ethernet, using a DMMP model of 

computation.  In the algorithm a 2D screen is subdivided into rectangular sub-screens and each 

sub-screen is assigned to a processor.  In each processor, volume data inside a view frustum of the 

assigned sub-screen is approximated by a collection of small cubes that act like pages in a demand 

paged virtual memory system.  Each page or “subcube‖ is a small cubic collection of voxels (e.g., 

8  8  8) in the 3D world space.  These pages are demand-paged from their initial locations (e.g., 

other processors) as rays are cast from pixels of the sub-screen.  Ray-casting is done in two levels; 

1) at the subcube level using Cleary and Wyvill‘s algorithm [Cleary, 1988] which determines the 

subcubes required, and 2) at the voxel level inside each subcube for actual sampling.  This 

algorithm was implemented on multiple workstations using UNIX pipes as inter-processor 

communication media, and as a result actual performance was not very high.  Interprocess 

communication was clearly the bottleneck.  (As a historical note, at the time this algorithm was 

implemented, around early 1989, parallel processors such as Pixel-Planes 5 did not exist at UNC 

Chapel-Hill.) 

The addressing scheme of subcubes is worth mentioning; a linear increase in CPU address is 

mapped to a 3D space filling curve (Peano curve), so that 83=512 consecutive CPU address 

increments sweep an 83 cube in the 3D world space.  A collection of subcubes approximates a view 

frustum better than a collection of 2D planes, and thereby increases the algorithm‘s locality of 

memory reference.  This addressing is implemented in software, using a 3D (i.e., octree) extension 

of linear quadtree coding [Gargantini, 1982].  Peano addressing is not very efficient in software, 

but very simple to implement in hardware; it requires only interlacing of address lines. 
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A disadvantage of the screen space subdivision technique is that the subdivision of a volume 

dataset is view-dependent.  A change in viewpoint requires at least partial redistribution of the 

volume dataset.  Since each view frustum is approximated by small subcubes, the number of 

messages needed for demand-paged redistribution is high.  Such a large number of small messages 

can cause serious performance degradation in a machine with a slower communication message 

startup.  Both internal and external fragmentation of pages at boundaries of view frustums can cause 

memory efficiency problems.   

Later, VRN independently used the identical cubic demand paging technique for an image 

ray-casting method parallelized by screen space subdivision [Yoo, 1992].  Despite its independent 

development, VRN also used Peano addressing implemented in software.  Unlike the author‘s 

algorithm, VRN was implemented on parallel hardware, Pixel-Planes 5, and achieved 

near-interactive performance.  

Inter-processor demand paging schemes such as the one described above is a special case of a 

shared virtual memory model of parallel computation.  A shared virtual memory model creates a 

user-program view of shared memory on top of a distributed memory parallel processor (for 

example, see [Li, 1989] and [Stumm, 1990].)  The idea of shared virtual memory has also been 

applied to the ray-tracing algorithm for geometric objects [Badouel, 1990a, Badouel, 1990b]. 

While it is conceivable to parallelize a forward mapping algorithm by screen space 

subdivision, there appears no such algorithm in the literature.  It is not clear why this is so.   

(2) World space subdivision method 

A world space subdivision method subdivides the volume data in the 3D world space into 

disjoint subsets called sub-volumes with simple shape (e.g., rectangular slabs), and each sub-volume 

is assigned to a processor.  (More than one such sub-volume may be allocated to a processor.  In 

such a case, multi-tasking within a processor, by switching from one sub-volume to next, can 

increase the efficiency of the processor.)  Since projections of sub-volumes overlap in the 2D screen 

space, integration needs be performed globally with proper care to the on order of sub-volumes in 

the 3D screen space.  

[Westover, 1989] describes an image projection method parallelized by world space 

subdivision.  Each sub-volume assigned to a processor is classified, modeled, and viewing 

transformed.  The viewing transformed voxels are sent to a centralized ―splat server‖ for projection 

and integration.  This algorithm has been implemented on a group of heterogeneous workstations 

connected by Ethernet.  A disadvantage of Westover‘s algorithm is a large aggregate 

communication load.  For a dataset size of n
3
, concentrating the viewing transformed points to the 



 Page 48 

splat server requires an aggregate message volume of O(n
3
)  per 2D image generation.  The 

centralized splat server itself can also become a bottleneck.   

This bottleneck in integration can be reduced by the multistage integration method.  The 

amount of communication necessary for integration can be reduced from O(n
3
)  to O(pm

2
) , where 

p  is the number of processors and m
2

 is the number of pixels in the 2D screen.  The multistage 

integration method first integrates locally in each processor.  The resulting partially integrated 

images from the processors are then globally integrated, paying attention to their global order in the 

3D screen space.  [Neumann, 1992] describes an image projection algorithm parallelized by world 

space subdivision that uses multistage integration. 

Multistage integration can be used with other viewing transform and projection methods such 

as image ray-casting.  For example, VVEVOL [Yoo, 1992] implements an image ray-casting 

method parallelized by world space subdivision, and employs multistage integration.  [Montani, 

1992] also implemented a world space parallel, image ray-casting method on a nCUBE 2 system 

model 6410, a DMMP with hypercube interconnection.  A parallel graphics machine for geometric 

objects called PixelFlow, currently under development at UNC, implements world space parallel 

rendering and employs hardware for multistage integration [Molnar, 1989, Molnar, 1992].  Similar 

hardware multistage integration is used by a commercial graphics engine Subaru2 from Fujitsu, Ltd. 

[Sasaki, 1993].  The visualization algorithm for the static viewpoint 3D echography system 

described in Section 3.4 of this dissertation is another example of image ray-casting parallelized by 

world space subdivision and employing a multistage integration method.   

An image warping algorithm parallelized by world space subdivision is attractive due to its 

regularity of data access and control flow.  [Leung, 1992] describes an image warping algorithm 

parallelized by world space subdivision implemented on a proprietary shared memory MIMD 

parallel processor that consists of up to 16 Motorola M88100 processors and up to 1 GBytes of 

shared memory.  Regular control flow of the image warping algorithm seems especially well suited 

for SIMD multiprocessors.  [Schröder, 1991] describes an image warping algorithm parallelized on 

a Connection Machine CM-2 using the world space subdivision.  [Vézina, 1992] also describes an 

image warping based algorithm parallelized by world space subdivision and implemented on the 

MassPar MP-1 SIMD massively parallel architecture.   

                                                           

2 ―Subaru‖ is a Japanese name for the open star cluster called Pleiades in Europe after seven 

daughters of the Atlas in Greek mythology. 
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2.4.4  Hardware 

This section reviews hardware systems designed specifically for visualization of volume datasets 

since future real-time 3D echography systems will likely be using acceleration by special hardware in 

combination with other acceleration methods, although acceleration by hardware is not employed in the 

systems described in this dissertation.  Subjects of interest here are volume visualization specific hardware 

systems that use ASSG model, since it is the model of choice in the systems described in Chapter 3 and 

Chapter 4 of this dissertation.  There appears to be no hardware system that visualizes volume datasets 

utilizing a semi-transparent gel model with a level of sophistication comparable to ASSG model; all the 

hardware systems described below employ some form of binary classified surface model, probably due to 

the short history of semi-transparent gel models and relative complexity of semi-transparent gel models.  

Although the systems reviewed below do not use semi-transparent gel models, they need to deal with many 

of the common issues in the visualization of volume datasets, such as the handling of large volume datasets. 

Most of the machine architectures that rely on special purpose hardware support only simple visual 

models, such as cuberrille [Herman, 1979].  For example, all four of DP3 [Ohashi, 1985], Voxel Processor 

[Goldwasser, 1987, Goldwasser, 1988], an architecture described in [Hiltebrand, 1988], and CARVUPP 

[Yazdy, 1990] are based on the cuberrille model, and employ forward mapping algorithms parallelized by 

world space subdivision.  Insight [Meagher, 1985] is an octree based hardware system for interactive 

display, manipulation, and analysis of 3D medical information, which employs the cuberrille model.  

Kaufman's Cube [Kaufman, 1986a, Kaufman, 1986b, Kaufman, 1988a, Kaufman, 1988b] is able to render 

volume datasets in its 3D buffer by cuberrille model whether the datasets consist of 3D scan-converted 

geometric objects or acquired volume images.  PARCUM, which stands for Processing ARchitecture based 

on CUbic Memory, is a 3D solid modeling hardware that takes advantage of a clever centralized 3D volume 

data buffer structure to render the cuberrille model [Jackel, 1985, Jackel, 1988].  PARCUM uses the image 

ray-casting method parallelized by world space subdivision.   

Recently, a group headed by Goldwasser, who had worked on the Voxel Processor [Goldwasser, 

1987, Goldwasser, 1988], has released a volume dataset visualization hardware system named Voxel Q 

from Picker International, Inc. [Goldwasser, 1991, Picker, 1992].  Voxel Q uses a ray-casting based 

algorithm, as opposed to the forward mapping based algorithm of his earlier Voxel Processor.  Combined 

with such features as progressive refinement, which increases image quality over time if viewpoint and 

other parameters remain fixed, the Voxel Q system provides an interactive visualization and manipulation 

of volume datasets. 

The marching cubes algorithm [Lorensen, 1987] converts each voxel into a set of one or more 

polygons using binary classification and renders them using conventional polygon rendering hardware.  

The marching cubes algorithm seems to map easily into hardware implementation.  The Dividing cubes 
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algorithm [Cline, 1988], which uses point (0D) primitives in stead of surface primitive in modeling, also 

seem to maps easily to special hardware implementation. 

2.4.5  Coherence and Parallelism 

Various types of coherence have been exploited to accelerate graphics algorithms by culling out 

non-essential computation.  A scanline algorithm for polygon scan-conversion is a good example of such a 

technique.  With the advent of parallel architectures, this situation started to change.  For example, 

exploiting coherence in a single processor level may not be beneficial for accelerating a parallel algorithm 

as a whole.  This section presents two observations on acceleration by coherence and parallelism. 

First observation: it gets harder and harder to take advantage of coherence in parallel algorithms.  It 

is simple to take advantage of coherence on a sequential processor.  Since all the parallelism in a problem 

and its data must be mapped into one dimension, time, computational steps eliminated by exploiting 

coherence of the problem or data can only reduce the critical path of the computational steps.  This is not 

so in parallel algorithms on parallel processors.  In a parallel processor system, avoiding certain 

computations does not necessarily reduce the critical path of the problem‘s execution steps if the data 

parallelisms of the problem are mapped to the multiple processors.  The savings in computation can simply 

result in under-utilized processors without reductions in critical path lengths.  Here lies the need for load 

balancing on parallel processor systems.  To use the resources of a processor system to their full extent, a 

good load balancing scheme, whether static or dynamic, should be an integral part of the parallel algorithm 

and/or hardware.  Yet, all the computational resources spent in load balancing are ―overhead‖; they are not 

directly contributing to solving the problems.  Excessive load balancing may even slow the system down. 

Second observation: it may not be worthwhile to optimize parallel algorithms with careful load 

balancing, to exploit coherence to its fullest.  Despite its low processor utilization, Pixel-Planes [Fuchs, 

1981, Fuchs, 1985] achieved high-performance using a pixel-parallel polygon scan-conversion algorithm 

on a massively parallel, processor-per-pixel architecture.  From a ―global optimization‖ standpoint, it can 

be argued that certain load imbalance may be tolerated.  A problem may be solved faster by global 

algorithm optimizations even if local inefficiencies exist, especially when the problem becomes more 

complex.  In a RISC processor, chances are that programs written in high-level languages compiled by 

optimizing compilers run faster than hand-coded counterparts.  An automatic ―optimizing parallelizing 

compiler‖ that includes static and/or dynamic load balancing seems to be the tool needed, rather than 

manual coding of parallel algorithms tailored to individual machines. 
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2.4.6  Discussion on Acceleration Methods for Volume Visualization 

All the acceleration methods for volume visualization discussed in the literature are designed for 

static datasets, and their goals are shorter viewing lags, although there were a few systems that aim at short 

classification and modeling lags.  In comparison, the static viewpoint 3D echography system described in 

Chapter 3 of this dissertation tries to optimize its visualization algorithm for partially dynamic datasets, and 

aims for short dataset lags.   

The dynamism of the datasets determines the acceleration methods applicable to the datasets.  For 

example, in order to minimize viewing lags, many algorithms rely on pre-processing static datasets.  An 

example is hierarchical spatial partitioning.  Some other acceleration methods, such as image adaptive 

ray-casting, are useful in visualizing partially dynamic or dynamic datasets.  

Parallelism is a general approach to acceleration, and is applicable to almost any algorithm.  Both 

the static viewpoint 3D echography system and the dynamic viewpoint 3D echography system exploits 

parallelism to accelerate visualization.  Future real-time 3D echography systems will employ combinations 

of acceleration methods discussed in the previous sections.    

Sections 3.4.2 and 3.4.3 will discuss several acceleration methods used for the static viewpoint 3D 

echography system that exploits both coherence and parallelism.  The dynamic viewpoint 3D echography 

system employs parallelism and other acceleration methods, but their details will not be discussed in this 

dissertation since the focus of interest of this system is not the acceleration methods but display technique. 

2.5  “Enhanced” Display Systems 

Visualizations of 3D objects, especially such complex ones as ultrasound echography images, can 

benefit from 3D visual cues that are not available in conventional (monocular) stationary displays.  In this 

dissertation, an ―enhanced‖ display is a display which adds important cues such as head motion parallax 

and binocular stereopsis to the cues provided by conventional video displays.  Conventional video 

displays typically provide cues such as shading, perspective, and a certain degree of motion parallax 

through interactive manipulation of viewpoint or a movie-loop.   

Binocular stereopsis is a well-known visual cue that provides depth perception.  A popular stereo 

display system, StereoGraphics Crystal Eyes, combines single CRT display with a pair of LCD shutter 

glasses worn by each viewer to present binocular stereo images to its users.  In this system, the LCD 

shutters for left and right eyes and the images presented on the CRT generated for left and right eyes are 

synchronized so that each eye sees appropriate images.   



 Page 52 

It has been known that head-motion parallax, i.e., motion parallax produced by voluntary 

movements of the viewer‘s head, is a strong source of 3D visual cues.  For example, in experiments 

described in [Arthur, 1993], subjects prefer motion parallax alone over binocular stereopsis alone in 

performing a task that requires depth perception.  The reason the head motion parallax is such a strong 3D 

cue is probably because it recruits many sensory inputs.  Strictly visual cues of 3D shapes (e.g., by 

shading) are combined with senses of body and head positioning obtained from such sources as visual, 

kinesthetic, proprioceptic, and vestibular senses.  Since head-motion parallax is such a strong source of 3D 

cues, it is expected that a display system with head-motion parallax may improve perception of complex 3D 

objects such as those captured in ultrasound echography datasets.   

Currently there are two kinds of dynamic viewpoint displays that provide head-motion parallax and 

stereopsis.  One group is the true volume display, exemplified by vari-focal mirror (VFM) displays (see, 

for example, [Mills, 1984], and [Owczarczyk, 1990]) and dynamic holograms [Benton, 1993].  For 

example, VFMs provide binocular stereopsis, head-motion parallax, convergence and other 3D cues, and 

they accommodate multiple users.  The other group, referred to in this dissertation as dynamic viewpoint 

displays require head tracking and use 2D display devices for image presentation.  To produce 

head-motion parallax, a dynamic viewpoint display changes images presented on the 2D displays 

dynamically depending on locations and orientations of the viewer‘s head.  A dynamic viewpoint display 

can also incorporate binocular stereopsis.  Despite the rich 3D cues they can offer, visual primitives in true 

volume displays are limited to transparent and light emitting objects.  As a result, the strength of 

head-motion parallax on true volume displays is decreased since they can not offer occlusion by completely 

opaque objects.  

A head-mounted display (HMD), a popular example of the dynamic viewpoint display, can provide 

head-motion parallax and binocular stereopsis.  The HMD was conceived in the pioneering work by Ivan 

Sutherland [Sutherland, 1965, Sutherland, 1968].  HMDs display images to users based on the locations 

and orientations of the user‘s heads that are tracked.  This dissertation groups ―boom mounted displays‖ 

such as Fake Space Laboratories Binocular Omni-Orientation Monitor (BOOM) as a kind of HMD with 

somewhat limited tracking.  Another example of a dynamic viewpoint display is what [Arthur, 1993] calls 

a ―Fish Tank Virtual Reality Display‖ (FTVRD), in which a user wearing a tracking device looks into a 

(basically) stationary video display (e.g., a CRT) which displays images generated dynamically for the 

user‘s viewpoint relative to the display.  Advantages of HMDs over FTVRDs include; 1) HMDs allow 

sharing of the same environment by multiple users, 2) HMDs allow larger range of motion.  Current 

FTVRDs can only display stereo images for one viewer.  Since 2D displays such as CRTs are used in 

current FTVRDs, viewers can not walk completely around displayed objects.  On the other hand, for a 

similar cost, current Fish Tank Virtual Reality displays can have higher image quality (e.g., resolution and 

image dynamic range) than typical HMD systems [Deering, 1992]. 
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There are two kinds of dynamic viewpoint displays, closed-view and see-through.  HMDs and 

FTVRDs explained previously are closed-view systems, which can only display images of the virtual world 

from the user‘s viewpoints.  The see-through dynamic viewpoint displays present to users merged images 

of both the virtual and real worlds from the user‘s viewpoint with appropriate registration.  See-through 

dynamic viewpoint displays can be used to enhance objects in the real world with virtual objects, (or for 

that matter, virtual worlds with real objects) so they are sometimes called ―enhanced reality displays‖. 

A see-through HMD presents images of both real and virtual objects as seen from the user‘s 

viewpoint.  Ivan Sutherland [Sutherland, 1968] and others [Chung, 1989, Feiner, 1993, Fisher, 1986] have 

experimented with see-through HMDs.  In a closed-view HMD, the HMD is tracked only against a virtual 

world coordinate.  In a see-through HMD, the HMD must be tracked in a world coordinate system that is 

anchored to the real-world so that the real and virtual objects register, which is significantly more difficult 

than tracking for a closed-view HMD.   

A see-through FTVRD may be stationary, somewhat like a glass window, or portable, in which case 

it may resemble a hand-held magnifying glass or a hand-held miniature TV set.  It should be noted that no 

see-through FTVRD is found in the literature, although there are several instances of static viewpoint 

see-through displays without viewpoint dependent image generation, such as [Knowlton, 1977].  While a 

closed-view FTVRD only requires a viewer to be tracked relative to the FTVRD, a see-through FTVRD 

requires that the FTVRD itself be tracked in the real-world for proper registration of real and virtual objects 

in addition to the viewer who needs to be tracked relative to the FTVRD.  As with see-through HMDs, 

tracking for see-through FTVRDs is significantly more involved than that of closed-view FTVRDs in order 

to achieve proper registration of real and virtual objects.   

See-through dynamic viewpoint displays enable users to directly interact with the real world 

enhanced with virtual objects, a significant advantage over closed-view dynamic viewpoint displays in 

many applications.  For example, in the future, a doctor may palpate a suspected breast tumor while 

wearing a see-through HMD which presents the doctor with the images of the real objects such as the breast 

and the doctor‘s hands merged with the images of virtual objects such as the suspected tumor and 

surrounding anatomy visualized from the on-line real-time 3D echography data.  Advantages and 

disadvantages discussed above between closed-view versions of HMDs and FTVRDs still apply to 

see-through versions of HMDs and FTVRDs; current see-though HMDs allow sharing of an environment 

by multiple users and have a larger range of motion, while current see-through FTVRD can have a higher 

image quality. 

See-through dynamic viewpoint displays can be classified by the methods they use to combine 

images of the virtual and real worlds.  See-through HMDs are used as examples in the discussion on image 

combination methods in the following since all the work so far on see-through dynamic viewpoint displays 
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have been done on HMDs.  However, the following discussion also applies to other see-through dynamic 

viewpoint displays, such as see-through FTVRDs.  

Current see-through HMDs perform either selective compositing, additive compositing, or both.  A 

selective compositing selects (exclusively), on a pixel-by-pixel basis, either virtual or real objects to be 

displayed.  An additive compositing adds real and virtual images at each pixel.  A see-through HMD 

capable of selective compositing can display completely opaque virtual objects, which is not possible with 

a see-through HMD with strictly additive compositing.  Other compositing modes such as subtraction and 

multiplication are conceivable, but have not yet appeared in the literature.  

The implementation technology used for compositing determines the compositing modes possible 

(Figure 2.8.)  An optical see-through HMD combines virtual and real-world images by optical combiners 

such as half silvered mirrors and prisms.  An optical see-through HMD of this type performs strictly 

additive compositing (i.e., it is not capable of selective compositing.)  For example, [Sutherland, 1965, 

Sutherland, 1968], various current commercial and military systems (e.g., CAE Systems [Wetzel, 1990]) 

and several systems at UNC Chapel Hill (e.g., [Holloway, 1987] and [Chung, 1989]) used this type of 

optical combiner.  A video see-through HMD electronically combines images of real objects captured by 

video cameras with images of virtual objects.  Electronic compositing is flexible so that the combination of 

real and virtual images can be either selective or additive (or others, such as multiplicative) which is an 

advantage of video see-through HMDs over optical see-through HMDs.  On the other hand, an optical 

see-through HMD currently offers significantly higher resolution for images of real objects.  Certain users, 

e.g., a surgeon, may prefer optical see-through HMD due to its high resolution images of real objects.  The 

work reported in Chapter 4 of this dissertation uses a video see-through HMD.   

 

Closed-view or 

See-through 

Compositing 

modes 

See-through compositing 

mechanisms 

Examples 

Closed-view N/A N/A Many. 

 Selective and 

additive 

Video-camera and 

electronic combiner 

This dissertation [Bajura, 1992]. 

See-through Additive 

only 

Optical combiner, e.g., 

half-silvered mirrors or 

prisms.  

[Sutherland, 1968], CAE Systems [Wetzel, 

1990], UNC Chapel Hill [Holloway, 1987] 

[Chung, 1989], etc. 

 Selective and 

additive 

(Hypothetical) Pixel-wise 

LCD shutters and optical 

combiners. 

None. (Hypothetical implementation 

suggested here.) 

Figure 2.8:  See-through head-mounted displays (HMDs) classified by the image combination methods 

they employ. 
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An optical see-through HMD with selective compositing is conceivable, although such see-through 

HMDs have appeared in the literature.  Selective compositing in optical see-through HMDs can be 

realized, for example, by placing pixel-wise LCD shutters in front of optical combiners (e.g., half silvered 

mirrors) to block the light from outside that carries images of real objects.   

There have been a large number of applications of HMDs (see, for example, [Earnshaw, 1993] and 

[Kalawsky, 1993].)  However, to the author‘s knowledge, nobody has tried to display 3D rendering of 

datasets acquired on-line using a see-through HMD.  The work presented in Section 4.1 deals with such a 

system.  Also, to the author‘s knowledge, nobody has tried to display volume visualized images of static 

data using a see-through HMD.  The work presented in Section 4.2 deals with such a system. 



Chapter 3.  Static Viewpoint 3D Echography System 

3.1  Introduction 

As discussed in Chapter 1, our long term goal is a 3D ultrasound scanner that is useful to a wider 

range of personnel, including non-specialists.  Like a ―magic flashlight‖, the scanner we propose 

seemingly illuminates regions of interest inside human subjects.  As the review of previous work presented 

in Chapter 2 indicates, some pieces of technology involving acquisition, visualization and display, which 

are necessary to constitute such a system, do exist.  Other components, however, have been either missing 

or inadequate.  (For previous work, see Section 2.1 for acquisition, and Section 2.2 and Section 2.3 for 

visualization methods.)   

This chapter and the next describe our attempts to explore, through the development of two 

feasibility study systems, the extent to which we can move the state-of-the-art toward the goal with 

currently available technology.  One of the systems described in this chapter, which is called the ―static 

viewpoint 3D echography system‖, assumes a static viewpoint display device, specifically, a conventional 

stationary (monocular) video display.  The system described in Chapter 5 is called the ―dynamic viewpoint 

3D echography system‖ which assumes a dynamic viewpoint display, specifically, a see-through HMD.    

The static viewpoint 3D echography system described in this chapter explores the idea of 

incremental and immediate volume visualization of 3D echography images acquired as series of 

hand-guided, free-format 2D echography images slices.  The system acquires a volume as a series of 2D 

slices rotated and translated with 3 DOF under human guidance.  The system uses a 3 DOF mechanical 

tracking arm since mechanical tracking is one of the most effective devices in terms of accuracy, lag, and 

throughput.  The arm had originally been used as part of a commercial 2D echography scanner (circa 

1979) that produced 2D scans from 1D scans by using 3 DOF tracking.  Our static viewpoint 3D 

echography system extended the dimension of such systems by one, so that it would acquire a 3D 

echography dataset as a series of 2D slices by using 3 DOF tracking.   

There are a few important questions to ask in visualizing 3D echography datasets.  What features in 
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the dataset do we want to visualize?  What is the appropriate visual model for the features?  How shall we 

map the features into the attributes of the model?   

We try to visualize 3D echography datasets in a way familiar to users of conventional 2D 

echography scanners; we want to visualize, in 3D, boundaries of regions with identical acoustic impedance 

which are captured as echo intensity values in a series of 2D echography image slices.  These boundaries 

are exactly the features visualized by conventional 2D echography scanners as bright pixels on their screen.  

In the static viewpoint 3D echography system, we try to visualize these boundaries as 3D objects using a 

3D visualization model that imitates, to an extent, the 2D visual model of conventional 2D echography 

scanners (Section 3.4.1.1.)  

Models of semi-transparent gels used in visualizing volume datasets in previous work ranged from 

simple (e.g., additive projection) to sophisticated (e.g., fully radiatively participating media that support 

multiple scattering), as we reviewed in Section 2.2.3 and Section 2.3.2.  For the static viewpoint 3D 

echography system, we opted to use the ASSG model which is a simple but reasonably realistic visual 

model of a semi-transparent gel.  We believe that a visual model is more effective for visualization if it is 

based on objects in the physical world, and it is rendered by a sophisticated method into high-quality 

images.  The ASSG model used in the system has a ―middle‖ level of sophistication among all the models 

of semi-transparent gels.  However, the ASSG model has been the most sophisticated model among the 

models found in the literature on 3D echography visualizations.  The ASSG model has (asymmetric) 

absorption and directional lighting, while it does not support shadowing nor multiple scattering.  The 

ASSG model is a result of a trade-off between the quality of images and the computational power 

necessary. 

The visualization algorithm that implements the visualization model above must handle a few 

requirements that are different from the previous volume visualization algorithms.  The datasets are series 

of 2D echography slices which are hand-guided with 3 DOF, and whose two important characteristics are 

irregular sampling intervals and partial dynamism (Section 2.2.2.)  The static viewpoint 3D echography 

system adopts the pre-visualization reconstruction approach in visualizing irregularly sampled datasets.  

This approach reconstructs the irregularly spaced samples into a volume dataset with regularly spaced 

samples so that volume classification, modeling, and rendering algorithms designed for regularly sampled 

datasets can be employed.  This approach has been selected since the lengths of the acquired data streams, 

which can be very long, are not predetermined.  With the integral reconstruction approach, the cost of 

visualization increases as the number of data slices increases.  With the pre-visualization reconstruction 

approach, cost of visualization can be made largely independent of the number of input slices that 

contribute to the visualization.  

The partial dynamism of the datasets affects the approaches used to accelerate the algorithm in order 
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to achieve interactive visualization with a short lag from acquisition of a 2D echography slice to generation 

of visualized images affected by the slice.  Short lag is important in realizing a high visualization 

throughput in an interactive human-machine system in which the acquisition-visualization feedback-loop 

includes a human operator (Section 2.2.2.1.)  The partial dynamism of the datasets interferes with many of 

the existing acceleration methods that are designed for static datasets.  To accelerate the visualization of 

partially dynamic datasets, an acceleration method based on spatial bounding has been developed 

(Section 3.4.1.)  This method takes advantage of the incremental acquisition of the datasets and infrequent 

changes in viewpoint.  A new compositing algorithm called hierarchical ray-caching has also been 

developed to significantly reduce the cost of compositing (Section 3.4.2.)  

The static viewpoint 3D echography system uses a conventional, stationary (monocular) video 

display.  Such a static display device is a departure from the visual metaphor of our goal, the magic 

flashlight.  The conventional video display was chosen, however, because several components necessary 

for realization of a dynamic viewpoint display were not available at the time.  Among the missing 

components are enough computational power to visualize partially dynamic datasets with frequently 

changing viewpoints and small 2D image display devices for HMD that have sufficient resolution and 

dynamic range.  It should also be noted that a conventional static viewpoint video display currently has 

certain advantages over dynamic viewpoint displays.  A conventional video display is less expensive, more 

portable, does not require special eye or head gear, and is capable of sharing the same images easily among 

multiple users.  

Actual implementation of the static viewpoint 3D echography system is limited.  Two of the most 

important of the limitations are an acquisition step that is off-line from the visualization step, and 

performance which is slower than an interactive speed.  The off-line acquisition is the consequence of the 

limited and intermittent availability of the echography scanner equipment.  The limited visualization 

performance was due to the lack of computational power available to us at the time.  However, all the 

essential components necessary for interactive, incremental 3D echography visualization with 3 DOF have 

been implemented and evaluated in this implementation.  

To substantiate the claim for the feasibility of the static viewpoint 3D echography system running at 

an interactive speed, the work on the static viewpoint 3D echography system includes explorations of 

algorithm and computational hardware capabilities necessary to realize such an interactive system.  The 

exploration consists of the development of a parallel algorithm with several algorithmic performance 

enhancements (Section 3.4.3) and numerical simulations of the parallel algorithm on a hypothetical but 

realistic parallel processor system with several structural variations.   

The numerical simulations were driven by the execution profile obtained from the parallel program 

running on a single processor workstation.  The parameters of the simulations are reasonable; for example, 
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costs of inter-processor communication were those of currently existing parallel processor systems (Intel 

Paragon XP/S [Intel, 1991] and Touchstone DELTA [Fox, 1988]), and CPUs in the simulation are identical 

to those of the single processor workstation used to run the parallel algorithm that generated the execution 

profile (IBM RS 6000 model 550/E.)  This numerical simulation shows that the algorithm is capable of 

achieving interactive performance if executed on a parallel processor system that can be realized today.  

The development of the parallel algorithm and its performance evaluation on the hypothetical parallel 

processor is performed to answer a question of feasibility, not of optimality.  Finding the best solution has 

not been the objective of this exploration.  

In the remaining part of this chapter, Section 3.2 will discuss the acquisition subsystem, Section 3.3 

will discuss the reconstruction algorithm, and Section 3.4 will discuss the visualization algorithm for 

reconstructed datasets.  Section 3.5 will describe visualization experiments and performance evaluation 

experiments using the algorithms and hardware described in Sections 3.2, 3.3, and 3.4.  The chapter will 

conclude with discussion in Section 3.6. 
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3.2  3 DOF Acquisition 

3.2.1  Image Acquisition 

2D image slices were acquired by an ultrasound echography scanner, whose raster-scanned 

composite video (RS-170) output was digitized by a Matrox MVP/S video frame digitizer which was 

installed on the VME bus of a SUN 4/280 workstation.  Most of the experiments used Advanced 

Technology Lab. (ATL) Ultra Mark-4 scanner with a 3.5 MHz linear transducer3 .  The visualization 

subsystem was off-line from the acquisition subsystem, so that the echography images and their coordinates 

were stored into disk files for later visualization experiments.  This off-line configuration is due to the 

intermittent availability of the scanner.  With the datasets stored in disk files, however, visualization 

experiments could be repeated as many times as necessary. 

 

                                                           

3 Professor Vern Katz, M.D. at the Obstetrics and Gynecology department of the UNC Hospitals 

had kindly arranged the overnight loans of an ATL Ultra Mark-4 scanner which had been in clinical use.  
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QuickTime™ and a
Photo - JPEG decompressor

  are needed to see this picture 

 

Figure 3.1:  Photograph of the acquisition system setup.  Depicted are the mechanical arm, the ATL Ultra 

Mark-4 scanner equipment, and the scanhead mounted on the tracking arm by a mounting device.  A water 

tank holding a phantom, is also shown. 

Figure 3.1 is a photograph of the acquisition setup, and Figure 3.2 is a block diagram of the 

acquisition subsystem.  The photograph shows the 2D B-mode ultrasound echography equipment (ATL 

Ultra Mark-4) to the left, whose transducer is attached by a mounting device to the mechanical tracking 

arm.  A water tank holds one of the phantoms, a plastic doll.  A frame made of aluminum angles is placed 

on top of the water tank to prevent the transducer assembly from dropping to the bottom of the water tank.  

Potentially, an echography image from the scanner equipment can be tapped in various forms, for 

example, as a radio frequency (RF) signal before detection (where both phase and amplitude information is 

available), or as a digital video signal before the image samples are scan-converted into raster-scanned 

images.  In reality, current commercial echography scanners do not offer these possibilities unless 

hardware modifications have been made to add special interfaces.  We used the video digitizer to capture 

images.  
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Figure 3.2:  Block diagram of the image and coordinate acquisition subsystem.  A series of 2D 

echography slices was acquired by a conventional 2D echography scanner which was digitized and stored 

into disk files.  Coordinates of each 2D slice were acquired by the mechanical tracker and stored into disk 

files for later reconstruction and visualization. 

3.2.2  Mechanical Tracking 

In order to reconstruct a regularly sampled volume dataset, the location of the pixel in each of the 

2D image slices must be registered in the 3D world coordinate space.  Our static viewpoint 3D echography 

system accomplished this by tracking the location and orientation of each 2D echography image slice with 

3 DOF.  The 3 DOF mechanical tracking arm was used for its accuracy and high tracking sampling rate 

compared to the other tracking devices available at the time.  The mechanical tracking arm (Figure 3.1, 

Figure 3.3, and Figure 3.5) has three joints, the shoulder, elbow, and wrist, each with 1 rotational degree of 

freedom.  A linear transducer of the ATL Mark 4 scanner was attached to the ―hand‖ by the mounting 

device shown in Figure 3.4, which was fabricated of Plexiglass.  
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This tracking arm was ‗recycled‘ from a previous generation Rohe ROHNAR 5580 2D B-mode 

echography scanner [Rohnar, 1979]4.  In its original form, the ROHNAR 5580 used the 3 DOF tracking 

arm to compose 2D planar scan images from multiple hand-guided free-form 1D scans.  In the static 

viewpoint 3D echography system described in this section, the same 3 DOF tracking arm was used with a 

series of 2D scans to acquire 3D volumes.  A set of wires, pulleys, etc. in the arm convert the 2D 

translation of the wrist joint to the rotational angles of the two potentiometers, which, given a reference 

voltage source, produce a pair of voltages that represents coordinate values (x,y) of the wrist joint in a 2D 

cartesian coordinate system.  The arm also tracks the rotational angle  of the wrist joint using a 

(somewhat unusual) ―sin-cos‖ potentiometer 5 .  The sin-cos potentiometer outputs two voltages 

proportional to the sine and the cosine of the rotational angle given the reference voltage.  The system 

described in this dissertation computed the angles from these sine and cosine values.  

                                                           

4 ROHNAR 5580 scanner was donated to us by Wake Radiology Associates in Raleigh, North 

Carolina. 

5 Using a sin-cos potentiometer instead of a linear potentiometer made sense in the past.  The scan 

converter of the ROHNAR 5880 needed sine and cosine values, but fast computation of these values from 

angles was quite expensive at the time the scanner was designed. 
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Photo - JPEG decompressor
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Figure 3.3:  Photograph of the mechanical tracking arm, with the transducer attached by the mount. 

 

QuickTime™ and a
Photo - JPEG decompressor

  are needed to see this picture 

 

Figure 3.4:  Photograph of the echography transducer mount and the 3.5 MHz linear transducer of the 

ATL Ultra-Mark 4 scanner system for which the mount is designed. 



 Page 64 

The four voltages proportional to the x, y, sin() and cos() were buffered and scaled by amplifiers 

located near the arm.  The scaling was done to utilize the full dynamic range of the A/D converter.  The 

signal is buffered to reduce impedance so that interference from the environment can be minimized.  The 

signals were transmitted in differential mode through shielded twisted pair cables for about 8 m to the Data 

Translation DT-1401 multi-channel 12 bit A/D converter board housed in the SUN 4/280 workstation 

cabinet.  A set of library functions for the DT-1401 running on the workstation allowed the program to 

control the board.  The sampling speed of the coordinate acquisition, if run in a tight loop, was 800 to 

1000 Hz.  Such a speed was more than enough for the slow image acquisition speed of the static viewpoint 

3D echography system. 

Beside x, y, and , the tracking arm as a whole has two additional axes, g and h, of rotation that were 

not transduced (Figure 3.5.)  These two degrees of freedom were provided so that various sectional images 

of the subject can be taken while the subject was lying on the fixed examination bed.   

The following list defines the coordinate systems used in the static viewpoint 3D echography system 

(Figure 3.5.)  For simplicity, the following descriptions assume that the g and h axes are fixed as follows: 

The arm is rotated about the g and h axis so that the arm is positioned, as depicted in Figure 3.5, where the 

arm points upward and the g axis aligns with the long axis of the examination bed.   

3D world coordinate system W (xW ,yW ,zW ) :  The location of the scanhead is measured in the 

3D world coordinate system, which is right handed and fixed relative to the shoulder of the tracking 

arm.  (i.e., the world coordinate rotates with the shoulder about g and h axes.)  The axis xw  and yw  

forms the xw-yw translation plane of the wrist.  The xw axis is horizontal and points toward the 

shoulder, while yw  is vertical and points up.  The zw axis is perpendicular to the xw-yw plane and 

points outward from the diagram.  The coordinate origin of the world (xw,yw) coordinate can be set 

to anywhere on the arm's translation plane for each acquisition.  The angle is defined as 0 deg. at 

the xw-positive direction and +90 deg. at the yw-positive direction (―up‖.)  In the 3D world 

coordinate, distances are measured in cm while the angles are measured in degrees. 

The subscripts ―W‖ and ―B‖ are used to distinguish the 3D world coordinate system, whose 

unit is cm, and the 3D reconstruction buffer coordinate system (see below) whose unit is voxel.  

Since they are identical except for their units, these subscripts are dropped unless the distinction is 

important. 

3D reconstruction buffer coordinate system B (xB ,yB,z B) :  This is merely the 3D world 

coordinate with the unit voxel.  

The reconstruction step produces regularly spaced sample values into a reconstruction buffer 
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that is fixed to the 3D world coordinate system.  The three major axes of the reconstruction buffer 

coincide with the axes of the 3D world coordinate system.  The reconstruction buffer size in zw axis 

is the same as the 2D echography image width in u axis.  Scales of the pixel in u axis and scales of 

the voxels in all of the xw, yw and zw axes are usually defined to be equal.  Sizes in the other two 

dimensions (sizes along xw and yw axes) of the reconstruction buffer can be determined arbitrarily to 

enclose a volume of interest.  Input 2D image pixels that fall outside this reconstruction buffer 

rectangle are simply discarded.  The arm senses the (x ,y)  coordinates of the wrist joint in the 

world coordinate and the angle H  of the hand which rotates about the axis r, where r is 

perpendicular to the xw -yw plane (see Figure 3.5 and 3.6.)   

3D hand coordinate system H (r,s,t) :  This is the coordinate system attached to the wrist, and 

originates at the rotational axis of the wrist r (Figure 3.6.)  The 2D image coordinate system I (see 

below) is fixed to H, and the origin of I is measured relative to the origin of H.  The hand 

coordinate system‘s r and s axes are translationally equivalent to the u and v axes of the I coordinate 

system, respectively.  The r axis is translationally equivalent to the z axis of the world coordinate W 

as well, except for the opposite positive directions.  The hand coordinate system‘s unit is cm. 

3D scanner image coordinate system I (u,v,q) :  This is a coordinate system of 2D echography 

image slices acquired by the scanner.  It is 3D since each ―2D‖ echography image slice is sampled 

by a 3D PSF and thus has a thickness along the q axis.  As you look at the image on the scanner‘s 

CRT display, the u axis is horizontal and points to the right, the v axis is vertical and points down.  

The q axis is perpendicular to u and v and points away from you into the screen.  U axis parallels 

the z axis of the 3D world coordinate.  This coordinate system‘s unit is [Pixel]. 
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Figure 3.5:  This illustrates the relationship of an examination bed, arm, the 3D world coordinate system, 

and the 3D hand coordinate system.  The origin of the 3D world coordinate system can be set to anywhere 

on the x-y plane. 
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3.2.3  Calibration 

To reconstruct a regularly sampled 3D volume dataset from pixels on 2D images, the location of 

each pixel in each input image PI (u,v,q) (u,v,0)  (in the 3D input image coordinate system I) must be 

transformed to coordinate values PB(xB,yB,zB)
T

 of the 3D reconstruction buffer coordinate system B.  

(The ―T‖ on the shoulder denotes transpose, so that the PB above is a column vector.)  As mentioned 

above, the 3D world coordinate system W and the 3D reconstruction buffer coordinate system B are 

identical except for the units.  The coordinates PB(xB,yB,zB)
T

 of a 2D image pixel in the 3D 

reconstruction buffer coordinate system are computed from two sets of values, 

(1) Image pixel coordinates PI (u,v,q) (u,v,0)  in the digitized 2D echography image. 

(Coordinate values in the q axis are always 0 for every pixel, since center of every pixel is on the 

image plane.) 

(2) Position PH (xH,yH,zbd )
T

 ( zbd  is a constant) and rotation angle H  of the wrist of the 

tracking arm. 

As mentioned in the previous section, the v-p and x-y planes are parallel, and the pixel scale equals 

the voxel scale.  (However, u and z axes have the opposite positive directions.)  Their origins are offset by 

a constant zbd cm, which is the size of the reconstruction buffer along the z axis.     

The 3D world coordinates PW (xW,yW,zW )
T

 of the voxel corresponding to the 2D image pixel 

PI (u,v,q) (u,v,0)  is computed by; 
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 (3.1) 

where SHI  scales an image pixel in the I coordinate system to the unit pixel in the 3D world 

coordinate W with unit cm, and T HI  translates from the origin PI0
(u,v,q)(0,0,0) of the 2D image 

to the origin of the hand coordinate H.  RH
 is the rotation of wrist by H  around the r axis, the wrist 

joint.  Scaling PW (xW,yW,zW )
T

 by SBW , which converts units from cm to voxels, produces the 

location PB  (xB ,yB,zB)  of the pixel PI (u,v,0) .     
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We need to calibrate the following three sets of values to obtain (xH ,yH ) , H , and 
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transformations SHI , T HI , RH
, and SBW . 

(1) Tracking arm hand position and orientation: Correlate the arm‘s output voltages with the wrist 

joint‘s location (xH ,yH )  and orientation H . 

(2) Pixel origin in the hand coordinate:  Find translation SHI  from the wrist coordinate system 

origin (at the wrist joint), to the pixel origin in the 3D image coordinate system (i.e. find s offset 

and t offset in Figure 3.6.) 

(3) Pixel scales:  Find scales (in cm) of input image pixels in the 3D image coordinates axes u  and 

v . 

Calibration methods for each of the above three items are described in the next two sections. 

3.2.3.1  Calibration of the Tracking Arm 

The arm must be calibrated so that the four voltages from the arm can be related to the coordinate 

values (xH ,yH )  and H .  The mapping can be derived by taking voltage measurements of many known 

location and orientations, and fitting formulas.  For x and y translations, input voltages of v x  and vy  

convert to the location in cm by a pair of formulas: 
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Figure 3.6:  Relation of the image coordinate system and the world coordinate system.  Rotation angle 

H  is measured from the positive direction of the x axis, and is positive on counter-clockwise direction 

about the z axis. 
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xH 5.9379vx 13.5077[mm] ( x 0.54mm)

yH 7.2098vy2.5352[mm] (y 0.81mm)


   (3.3) 

For the rotation angle H , a pair of voltages from the sine-cosine potentiometer 

(sin()meas,cos()meas) is converted by the arc-tangent function into the measured angle me as , which 

is then converted to the desired angle H  by  

 H 1.0019meas8.690010
2

[deg.] (0.42deg.)  (3.4) 

The 1-Sigma errors of the translation and orientation are noted by each formula.  They are less than 

1 mm for the two translations, and 0.5 deg. for the rotation.  This is adequate for the tracking of ultrasound 

echography slices whose half-width-half-maximum resolution in elevation direction is a few millimeters or 

more.  

A calibration jig was used to simplify the zero-calibrations for the translations and rotation scales of 

the arm.  Figure 3.7 shows the jig, which was designed and fabricated by Jeff Butterworth.  It is a vertical 

Plexiglass board with pegs at several locations so that the wrist joint could rest without movement when 

gently pressed down.  Two pairs of pockets with known horizontal and vertical displacements are used to 

calibrate the translation scales.  A set of pockets allowed the wrist to rotate at 0 deg. and 90 deg. rotations, 

which calibrated the rotational scale and the xw positive direction.  The origin (0,0) of the world 

coordinate system could be set anywhere within the translation range of the arm.  The calibration 

procedure was guided by a program, which asked the operator to place or rotate the wrist joint.  The 

program would then generate a file with calibration parameters for the acquisition, reconstruction and 

visualization steps.   
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Figure 3.7:  Photograph of the tracking arm calibration jig made of transparent Plexiglas.  (The photo is 

taken on the brick floor.)  Several pockets made of pairs of pegs were used to calibrate translation and 

rotation of the mechanical tracking arm.  

3.2.3.2  Calibration of Image Pixel Location 

Beside the x-y location (xH ,yH )  and orientation H  measured by the tracking arm, the scaling 

SHI  and the translation T HI  must be known to compute all the transformations of the formula (3.1.)  

Finding T HI  and SHI  requires a calibration procedure which involves echographic imaging of a 

calibration phantom, since an ultrasound scanner equipment does not specify where image pixels are 

located relative to their transducers.  Figure 3.8 illustrates the calibration setup, which uses a calibration 

phantom with Nylon monofilaments strung in a known geometry.  Figure 3.9 shows the phantom in the 

water tank.  The monofilament is strung across two plates, each with 8 holes at the vertices of 5 cm and 

10 cm squares, so that they can serve as the point targets of known distance to calibrate the pixel scale 

pixel/mm.   

To calibrate, the phantom is placed in a water tank and its 2D echography image is captured by a 

transducer while the transducer was held at the upright position ( = 270 deg.)  As the image is captured, 

the location of one of the filaments (in cm) is measured by a caliper relative to the wrist joint axis r (dws in 

the Figure 3.8.)  This gives the translation T A I  (with only one non-zero component along the s axis.)  

Then, distances in pixels dupixel and dvpixel are counted in the digitized image of the phantom 
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(Figure 3.10) which gives the scale factors in the u and v axes needed for SAI , since ducm and dvcm is 

known by construction of the phantom.  The intervals dupixel and dvpixel are measured manually using 

image editing software that can provide pixel coordinates of a cursor.  In order to find dupixel and dvpixel, 

the human operator picked the apparent centroids in the echoes from the filaments, which appear as blobs 

in the digitized images (Figure 3.10.)  

It is important to remember that these translation T A I  and scaling SAI  depends on such factors as 

the scanner equipment, transducer, and the settings of the scanner equipment (e.g., an ―image display 

magnification‖ setting.)  A change in any one of the above would require a new calibration.  
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Figure 3.8:  The setup to calibrate pixel scales and pixel‘s locations relative to the wrist of the tracking 

arm.   
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Figure 3.9:  A phantom to calibrate pixel scales and translation from the pixels from the tracking arm‘s 

wrist.  The phantom in this picture had a diagonal string and four beads in addition to the four parallel 

strings illustrated in Figure 5.8.  
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3.2.4  Summary and Discussion on the 3 DOF Acquisition 

The 3 DOF acquisition system described above established a necessary component for the static 

viewpoint 3D echography system.  Concurrent acquisition of image slices and their tracking information 

made their synchronization trivial.  When the 3 DOF acquisition system was first published in mid-1990 

[Ohbuchi, 1990], such a concurrent acquisition system for a free-format scanning was not found in the 

literature.  However, more recent free-format scanning systems, such as [Ganapathy, 1992] and [Linney, 

1992], have used simultaneous acquisition of images and their tracking information.  (See Section 2.1 for 

the review on 3D echography acquisition.)   

In order to relate echography image pixel locations with the tracking information provided by a 

3 DOF tracking arm, a calibration procedure was developed (Section 3.2.3.2.)  The procedure employed a 

point-source phantom of known geometry to find the location of the image pixels relative to the transducer 

and thus the tracking device.  Such pixel location calibration is quite important, since accuracy of the 

calibration directly affects the accuracy of reconstruction.  Despite its importance, the pixel location 

calibration has not been discussed extensively in the literature.   

Two major shortcomings of this implementation of the acquisition system were 1) awkward and 

time consuming calibrations, and 2) a slow speed of image acquisition.  As discussed in Section 3.2.3, the 

calibration procedure must be performed for each change in transducer, scanner equipment parameter 

 

Figure 3.10:  A digitized image of the phantom captured by the ATL Mark-4 scanner with the 3.5 MHz 

linear scanhead.  The picture shows echoes from 5 strings, including the diagonal one at the center. 
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setting, etc.  Although the calibration procedure was acceptable for the feasibility study system to conduct 

the infrequent experiments, any system that is meant to be clinically useful will require a calibration 

procedure which is easier, quicker, and more accurate.   

Although the MVP/S digitizes the video input at a real-time rate, i.e., 30 frames/s, transferring 

information from its frame buffer to the host computer SUN 4 was the bottleneck.  The measured 

maximum image transfer bandwidth from the MVP/S video digitizer to the main memory of the SUN 4/280 

was 500-550 KByte/s (or about 5 frames/s) for 256  400  8 bit gray-level image frames.  Although 

5 frames/s is an interactive image transfer rate, it is not fast enough for a ―comfortable‖ scan of a volume 

without careful control of scanning motion of the hand-guided transducer.  With such slow acquisition 

speed, small jerky movements of a hand could easily result in undersampling among slices.  The 

acquisition speed into disk files was quite slow at 0.5 frames/s,  The scanning needed to be performed with 

painstaking care at such a slow acquisition speed.   

Fortunately, unlike the calibration problem above, acquisition speed can be increased by 

improvement of the image digitization hardware.  Recently, a video digitizer with a fast data access path 

has been designed and constructed by Mike Bajura, so that the latest generation of the dynamic viewpoint 

3D echography systems can use a faster image acquisition system.  This new video digitizer has been 

integrated into the latest generation of the dynamic viewpoint 3D echography system at UNC-Chapel Hill.  

Another of the deficiencies was the off-line acquisition, where the data were given to the 

visualization stage via disk files.  This deficiency was mainly due to the limited availability of the 

echography equipment at the time.  Since the static viewpoint 3D echography system has been developed, 

GE has made available to us an echography scanner free of charge.  Thus, the dynamic viewpoint 3D 

echography system described in Chapter 4 has an on-line acquisition.   
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3.3  Incremental 3 DOF Reconstruction 

This section will discuss the 3 DOF incremental reconstruction algorithm used in the static 

viewpoint 3D echography system.  The reconstruction method needs to reconstruct a volume dataset with 

regularly spaced samples from irregularly spaced samples taken from 3D scalar fields of ultrasound echo 

intensity.  Section 3.3.1 will describe a simple method for approximating multivariate functions from 

irregularly spaced samples.  Section 3.3.1 starts with the requirements of the approximation method for the 

static viewpoint 3D echography system as discussed in Section 3.3.1.1, followed in Section 3.3.1.2 by the 

definition of a method called Gaussian-weighted approximation used in the system.  Section 3.3.1.3 

presents methods to select two parameters of the approximation method.  Section 3.3.1.4 evaluates the 

method by using numerical simulations in one dimension. 

Section 3.3.2 discusses the incremental reconstruction algorithm used in the static viewpoint 3D 

echography system that employs the approximation method discussed in Section 3.3.1.  First 

Section 3.3.2.1 describes an incremental reconstruction algorithm with spatial reconstruction only, 

assuming that the multivariate function being sampled and reconstructed does not change.  Then 

Section 3.3.2.2 will discuss an extension to the algorithm described in Section 3.3.2.1 that adds a simple 

method to accommodate temporal changes in the function being sampled and reconstructed.   

Summary and discussion of these 3 DOF incremental reconstruction algorithms will be presented in 

Section 3.7 along with the summaries and discussions on the other parts of the static viewpoint 3D 

echography system.  

3.3.1  Approximating Irregularly Spaced Samples  

This section presents an approximation method for irregularly spaced samples from multivariate 

functions that will be used for spatial reconstruction in the incremental reconstruction of the static 

viewpoint 3D echography system.  

3.3.1.1  Requirements and Approach 

There are several requirements characteristic of the reconstruction used in the static viewpoint 3D 

echography system.  

The first requirement is the reconstruction of irregularly spaced samples. The reconstruction step 
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needs to produce regularly sampled volume datasets from irregularly spaced samples which are acquired as 

a series of 2D echography slices that are hand-guided with 3 DOF.  The next requirement is immediate and 

incremental reconstruction, which means that each 2D echography slice is reconstructed without waiting 

for the arrival of ―the rest‖ of the slices.  Another important requirement is cost; the computational cost of 

the reconstruction must be reasonable, so that the entire visualization process can be carried out at an 

interactive rate on a moderate scale hardware system available today.  

Smoothness of reconstruction results, both in terms of C0 and C1, is critical so that the volume can 

be visualized without artifacts.  The visualization uses the algorithm described in Section 3.4 which 

employs the ASSG model and Phong‘s reflectance model.  Since its reflectance modeling uses a 3D 

gradient, datasets that contains C1 or C0 discontinuities will produce annoying artifacts.   

Noise suppression is another requirement.  High frequency ―noise‖ of several kinds in the 

amplitude of acquired samples needs to be suppressed in order to minimize its interference with the 3D 

visualization.  However, the smoothness of the reconstruction results must not be excessive so that 

structural features of interest in the samples are retained in the visualizations.  The ―noise‖ includes 

thermal noise caused by the amplifiers in the echography equipment, interference from digital circuits in 

the equipment, acoustic noise, and coherent interference effects such as speckle and phase aberration.  It 

should be noted that image textures consisting of speckles and phase aberration carry information on target 

objects.  Theoretically, a texture pattern that is composed of speckles and phase aberration is reproducible 

if the imaging target objects and the imaging conditions are exactly the same.  However, in reality, they 

vary from image to image due to minor change in the objects (e.g., translation and deformation) and the 

imaging conditions (e.g., location and orientation of sound beams).  Thus, the reconstructions described in 

this dissertation treats these coherent interference effects as essentially noncorrelative noise.   

The reconstruction must be order-free, that is, the reconstruction results should be identical 

regardless of the order of the samples being added.  This property is necessary since the order of scanning 

by hand-guided acquisition is likely to be different from one acquisition to another.    

We have reviewed approximation algorithms for irregularly spaced samples in order to find 

algorithms that satisfy requirements listed above.  Most of the algorithms in the literature are found to be 

inappropriate due to their high computational costs.  For example, cost of global approximation algorithms 

increases as the number of samples increases.  This eliminates otherwise promising algorithms such as 

[Hardy, 1971].  Cost consideration eliminates algorithms that explicitly establish topology, e.g., by using 

Delaunay-Thiessen triangulation, as well as those that use repetitive optimization procedures, e.g., [Shagen, 

1982].  Some simpler approximation algorithms, such as linear interpolation, are not adequate since they 

do not produce smooth results.  In fact, linear interpolation was tried in an earlier implementation of the 

static viewpoint 3D echography system and found unsatisfactory.  
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Other algorithms are eliminated from the candidate list because the order of sample arrival affects 

their reconstruction results.  Simple localized distance-weighted approximation algorithms such as 

(localized) Shepard‟s interpolation method [Shepard, 1968] can be relatively low-cost, and the order of 

sample addition does not affect the final reconstruction result.  Shepard‘s algorithm itself, as we will see in 

Section 3.3.1.4, is inadequate since it does not suppress noise that is present in data samples.   

We need an approximation algorithm with the following properties: (1) the algorithm is local so that 

its computational cost can be bounded, (2) the algorithm produces approximations (not interpolations) so 

that the noise in samples can be suppressed, (3) the algorithm produces smooth approximation results, so 

that the visualization results are also smooth without noisy artifacts,  (4) the algorithm is insensitive to the 

order in which the samples arrive, so that the reconstruction results of identical objects are identical 

regardless of different paths of sweep upon acquisition.   

An effort to find a simplest approximation algorithm that satisfies these requirements led to the 

Gaussian-weighted approximation method, a distance-weighted approximation method whose 

computational structure is similar to Shepard‘s interpolation method.  Section 3.3.1.2 describes the 

Gaussian-weighted approximation method in detail.  Shepard‘s algorithm and the Gaussian-weighted 

approximation appear to be quite similar, but their properties are different due to the difference in their 

weighting functions.  The Gaussian-weighted approximation method and the localized version of [Shepard, 

1968] will be compared by numerical simulation in Section 3.3.1.4.   

3.3.1.2  The Gaussian-Weighted Approximation Method 

This section first defines a class of distance-weighted approximation methods.  A method in this 

class changes its behavior depending on the weighting function.  Selection of the weighting function 

suitable for the reconstruction of the static viewpoint 3D echography system is discussed next.  This study 

yields the Gaussian function as the best weighting function for both of the static and dynamic viewpoint 3D 

echography systems.    

a) Distance-Weighted Approximation 

We start the discussion with a 1D approximation in the 1D real space   R
1
, but the algorithm can be 

generalized to   R
n

, which will be discussed later.  Let F(P)  be a function of points Px  defined for 

all P  in the real space   R
1
.  The finite set {Pi}i1

N
 is a collection of sample points, and let Fi  be the 

value of F(P)  at point Pi .  Let (P,Pi) be some metric in the real space.  Here, we use the distance 

(P,Pi) xxi .  Then, a class of approximant is defined by the following formula:    
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 f (P) Wi(P,Pi)F(Pi)
i1

N










 Wi(P,Pi)

i1

N










 (3.5) 

Weighting function Wi(P,Pi )  decreases with distance ri (P,Pi )  between points P  and Pi .  

The choice of the weighting function determines the approximation characteristics, including its frequency 

response, smoothness, etc.   

Note that by rewriting the formula above, 

 f (P) i(P,Pi)F(Pi)
i1

N

  (3.6) 

where 

 i(P,Pi)Wi(P,Pi) Wk(P,Pk)
k1

N










 (3.7) 

It can be clearly seen that it approximates the function f (P )  by a linear combination of basis 

functions  i(P,Pi) .   

f (P )  can be generalized to an approximant in the real space   R
3

 for points P(x,y,z)  by 

introducing the root-mean-square distance ri (P,Pi )[(xxi)
2
(yyi)

2
(zzi )

2
]
1/2

, which 

makes the weighting function Wi(P,Pi )  symmetric in the real space   R
3

.  Alternatively, f (P )   in 

  R
3
 can be formed by taking a cartesian product of 1D approximants in each of the x, y, and z axes.  Both 

of these approaches can be used to produce approximants in the n-dimensional real space   R
n

.   

The approximation algorithm for the static viewpoint 3D echography algorithm uses the latter, 

cartesian product approach, which is advantageous in computational cost (Section 3.3.2).   

b) Selecting the weighting function 

The choice of the weighting function determines properties of the class of approximant described by 

the formula (3.5.)  Some weighting functions produce interpolants.  A classic example of this is Shepard's 

interpolation method that uses Wi
S
(P,Pi)1 ri

2
 [Shepard, 1968].  Considering the presence of noise and 

speckle, however, an interpolant is not appropriate for our purpose; an interpolant passes through all the 

noisy samples.  The reconstructions for the systems described in this dissertation need a weighting function 

in which a resulting approximant suppresses noise in samples. 

The criteria for selecting a weighting function for the desired approximation method are as follows. 

(1) The weighting function needs to be well localized and smooth in the spatial domain and in the 

spatial-frequency domain.   
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(2) Sidelobes of its spatial-frequency response should be small enough to suppress aliasing artifacts 

and higher frequency components of noise.   

(3) The weighting function must be spatially localized so that local changes of the original functions 

being approximated are well reflected in the approximations.   

(4) The weighting function needs to be effectively of compact and of finite support in the spatial 

domain so that the reconstruction and visualization computation can be confined in small enough 

bounds. 

(5) Transitions must be smooth in both the 0th and 1st order derivatives at the edges of support of the 

weighting function in the spatial domain.   

Some of these requirements conflict with one another.  For example, an increased spatial 

localization implies a decreased spatial-frequency localization.  The weighting function of Shepard's 

method is very localized in the spatial domain, but not localized at all in the spatial-frequency domain 

(Section 3.3.1.4.a.)  The decreased localization in the spatial-frequency domain yields the decreased 

suppression of high-frequency noise and aliases.  A weighting function with an ―optimal‖ compromise 

needs to be found.  Finding an ―optimal‖ weighting function is a problem similar to finding an optimal 

time-window function for spectrum analysis of changing signals using Fourier transform.  A good window 

function must be local enough in time to characterize a spectrum from a (temporarily) local observation of 

the signal, while it must not introduce much artifact in its spectrum due to windowing.  The weighting 

function needed for the approximation method of this dissertation shares requirements (1) through (4) with 

such window functions for spectral analysis.  Item (5) is more important in the approximation method in 

this dissertation.  This is because we need a spatially smooth approximant, both C0 and C1, so that the 

results of visualization are smooth despite the 1st order derivative used to estimate normal vectors for the 

reflectance model.   

Although many window functions have been studied extensively in the literature (e.g., [Harris, 

1978]), the majority are not appropriate for the reconstruction used in this dissertation.  The rectangular 

function has a large C0 discontinuity at edges of the support.  The triangular function (Bartlett window), 

which is used in an early implementation of the static viewpoint 3D echography system, has obvious C1 

discontinuities.  Images generated by this earlier system contained visible discontinuities, since the C1 

discontinuities of the weighting function create discontinuities in the normal vectors used in the reflectance 

model.  In addition to the discontinuities, both the rectangular and triangular functions have rather high 

sidelobes.  The Hamming function, a popular window function for spectral analysis, does not work well for 

the reconstruction since it has C0 and C1 discontinuities at the edges of the support.  The Hanning and 

Blackman functions were first thought to be probable candidates, since both are C0 and C1 continuous at the 
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edges of finite support and smooth.  However, our experiments showed that neither one of the functions 

blends well, since their C0 and C1 approaches zero rather quickly at the edges of their support.   

Some of the other window functions are designed to optimize certain characteristics.  For example, 

the Barcilon-Temes window tries to minimize the energy outside the pass-band of frequency, and the 

Kaiser-Bessel window seeks a function of finite support that maximizes the energy within the pass-band.  

We have chosen another ―optimal‖ function as our weighting function.  It is the familiar Gaussian 

function, which minimizes the product of bandwidth in time and frequency [Gabor, 1946, Leipnik, 1960].  

The Gaussian is optimal in the sense that no other function can do better for the criterion.  Since it has a 

narrow product of bandwidths, it can follow spatial changes well without allowing high frequency noise.  

In the frequency domain, it is a low-pass filter with a smooth, Gaussian shaped fall-off.  (A Fourier 

transform of a Gaussian is also a Gaussian.)  A method to tune the cut-off frequency of the Gaussian 

function for the reconstruction will be described in Section 3.3.1.3.  The Gaussian is smooth: it is infinitely 

differentiable in both domains.  Although the Gaussian has infinite support, both the Gaussian and its 

derivatives fall off quickly to zero.  Our study described in Section 3.3.1.3 and 3.4.1.4 shows that the 

truncated, finite support version of the Gaussian function can have a reasonably compact support and low 

enough sidelobes at the same time.  A compact, finite support is an important characteristic for the 

approximation method to be practically local.  The Gaussian is a separable function, which is a 

convenience in implementing a multidimensional kernel.   

c) Gaussian-Weighted Approximation Method 

An approximant f
G

(P)  with the truncated Gaussian weighting function Wi(P,Pi )  can be written 

as follows.  

 f
G

(P) Wi
G

(P,Pi)F(Pi)
i1

N










 Wi

G
(P,Pi)

i1

N










  (3.8) 

Here, the weighting function Wi
G

(P,Pi)  is a truncated Gaussian defined as follows. 

 Wi
G

(P,Pi)Gauss(r,)Rect(R) (3.9) 

where  

 Gauss(r,)
1

 2
exp

r 2

2
2




 


 (3.10) 

 Rect(x)
1, x R

0, x R





 (3.11) 
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for the scale parameter   and the truncation radius R .   

If the weighting function is not truncated, i.e., if R , approximant f
G

(P)  is a continuous 

function (a sum of Gaussians) that approximates F(P) .  The value of f
G

(P)  above is a weighted 

average of all the data values in {Pi}i1
N

, that is, f
G

(P)  is a global approximant.  The influence from the 

i‘th data point is weighted according to the distance ri (P,Pi)  of Pi  from P , by the Gaussian 

weighting function defined in (3.9) and (3.10.)  Notice in (3.1) that the order in which the sample points 

are added does not affect the approximant f
G

(P) .  This is an important property in making the algorithm 

incremental.  Properties of the approximant with an untruncated Gaussian weighting function will be found 

in Section 3.3.1.2.d. 

This approximant has two parameters, the scale parameter   and the truncation radius R .  The 

scale parameter   is the standard deviation of the Gaussian, which determines the spatial extent of the 

weighting function, and hence the spatial-frequency response of the weighting function.  A large   can 

lead to an approximation that is smoother but filters out small features and has less accurate values at the 

sample points.  A small scale parameter can lead to an approximation that is accurate at sample points but 

not smooth.  In fact, the approximant becomes an interpolant at 0 , although this interpolant is not 

very useful since it looks like a step with a ―flat spot‖ at each sample point.  An ―optimal‖ scale parameter 

for the approximation depends on the characteristics of a given set of input samples (i.e., combined 

characteristics of original function and sampling process) and the purpose of visualization.  Section 3.3.1.3 

presents a method to estimate an ―optimal‖ scale parameter for the static viewpoint 3D echography system.  

We localize the approximant by truncating the Gaussian weighting function at a certain finite radius 

R .  As we will see in Section 3.3.1.3 and 3.4.1.4, this produces a practically local approximant due to the 

rapid fall-off of the Gaussian function without losing many of the desirable properties of the approximant 

by the (untruncated) Gaussian weighting function.  The scale parameter    interacts with the truncation 

radius R .  In order to satisfy the requirements of the approximation, the larger the  , the larger the R  

need be.  Section 3.3.1.3.b discusses methods to choose the radius R  given a scale parameter  .  

Section 3.3.1.4 evaluates properties of the approximation method by numerical simulation. 

d) Properties of Untruncated-Gaussian-Weighted Approximation Method 

This section discusses properties of the approximant f
G

(P)  of (3.8) with R , that is, with 

the untruncated Gaussian weighting function.  It is much easier to discuss the approximant with R , 

and these properties apply with only small errors to the localized approximant with a finite R  if the R  is 

chosen properly.  

One of the fundamental properties of the approximation formula (3.8) is that it behaves as an 

averaging weighted by the Gaussian weighting function.  For example, if ri rj , then 
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f
G

(P)(Fi Fj ) 2 , that is, the exact average of two samples.  On the other hand, if rirj  and r j  

is large relative to  , then one of the samples Fi  dominates, i.e., f
G

(P)Fi   for some small 

 0 .  These two properties generalize to cases with more than two samples.  These properties of the 

formula produce low-pass filtering characteristic whose cut-off frequency is controlled by the scale 

parameter  . 

There are a few other interesting properties about this approximation method.  An obvious but 

useful one is as follows.  

Property 3.1.  If Fi0  for all i1,2,...,N , then f
G

(P)0  for   PR  

Proof.  Wi
G

(P,Pi)Ga u s s(r,)  is always positive. • 

A somewhat less obvious property is that f
G

(P)  is always bounded by the maximum and 

minimum of the sample values.   

Property 3.2.  Let Mmax i1,N Fi  and mmin i1,N Fi , then 

 m f
G

(p)M  for   PR  (3.12) 

Proof.  Let Cmax(M , m).  Then, since C  and M  are fixed over a given set of samples {Pi}i1
N

, 

(3.8) can be rewritten as, 

 
f G(p)C

MC


Fi C

MC






Wi

G

i1

N












Wi
G

i1

N












 (3.13) 

Since M Fi  holds for all i ,  

 
FiC

MC
1 for i1,2,...,N (3.14) 

This yields 

 
f G (P)C

M C
1 (3.15) 

That is,  

 f
G

(P)M  (3.16) 

By similar argument,  

 m f
G

(P)  (3.17) 
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• 

This property is often preferred for an approximation method.  Approximants that overshoot or 

undershoot original functions too much can be a problem.   

Another good property of f
G

(P)  is that it approximates constant functions exactly.  That is, 

f
G

(P)  has the precision of 0th order polynomial.   

Property 3.3.  If Fic  for all i1,2,...,N  and a constant cR, then f
G

(P)c  for all   PR . 

Proof.  From (3.8) and the assumption,   

 f
G

(P)

Wi
G

(P,Pi)c
i1

N



Wi
G(P,Pi )

i1

N


c

Wi
G

(P,Pi)
i1

N



Wi
G (P,Pi)

i1

N


c  (3.18) 

Thus, f
G

(P)  exactly approximates constant functions. • 

Unfortunately, the approximant f
G

(P)  does not approximate exactly polynomials of any higher 

order.   

3.3.1.3  Finding Scale and Truncation Parameters  

This section will first present a method to estimate the ―optimal‖ scale parameter for the 

reconstruction of echography datasets.  A method to estimate an appropriate truncation radius for a given 

scale parameter will be discussed next.  Evaluation of these two methods will be performed by numerical 

simulation in Section 3.3.1.4.b and Section 3.3.1.4.d by using 1D numerical simulation, and in 

Section 3.5.1.3 through visualization of a 3D echography dataset acquired as a series of 2D image slices. 

a) Finding a Scale Parameter. 

The Gaussian weighted approximation method behaves as a low-pass filter with a Gaussian shape 

frequency response, whose cut-off frequency is controlled by the scale parameter .  The method with a 

large  has a low cut-off frequency, which will produce smoother results.  Smaller features, however, will 

be lost with a large .  On the other hand, a small  will produce an approximant with noise and aliasing 

artifacts.  We would like to find an ―optimal compromise‖ value for the scale parameter that has the 

―appropriate‖ pass-band for the features of interest, while eliminating much of the high-frequency noise and 

aliasing. 
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The objective of the compromise here is to make the pass bandwidth as wide as possible without 

introducing too much high frequency noise and aliasing artifacts in the approximant.  An approach 

employed here is to roughly match the cut-off frequency of the sampling Point Transfer Function (PTF) 

with that of the Gaussian weighting function.  An exact match is not practical, since the PTF of an 

echography scanner is quite complex; it is 3D and asymmetrical (e.g., axial resolution is higher then the 

elevation resolution), spatially variant (e.g., distance from the transducer), and changes its size and shape 

with the media.  The approach here simply tries to match the Half-Width Half Maximum (HWHM) widths 

of the sampling PSF of the echography scanner to those of the 3D Gaussian weighting function, ignoring 

the spatial variance.  Assuming that the shape of the sampling PSF can be approximated well by a 

Gaussian, the sampling PTF should match that of the filtering PTF.   

A Gaussian function is a reasonable approximation for a PSF of an echography scanner.  For 

example, [Oosterveld, 1985] modeled axial PSFs by Gaussian functions, while others modeled the PTF of 

receiving signal with Gaussians [Dines, 1979, Round, 1987] (recall that the Fourier transform of a Gaussian 

function is a Gaussian function.)  Lateral and elevation PSFs take more complex shape than the axial PSF.  

Theoretically, in a range where the far-field approximation holds, a sound field pattern projected by a 

transducer element is the Fourier transform of the shape of the transducer element [Wells, 1977].  While 

the exact shape of the sound field varies depending on various factors, such as the distance from transducer 

and media inhomogeneities, a Gaussian function can be an adequate approximation of the magnitude 

envelope of the sound field.   

HWHM resolution h in each axis of an echography scanner/transducer can be measured by using a 

method similar to [Joynt, 1982].  Each HWHM h can then be converted to the standard deviation  of a 

Gaussian by the following formula. 

  
h

log(4)
0.849322h (3.19) 

This formula is obtained by solving the equation  

 Gauss(h,)1 2  (3.20) 

This approach in estimating an ―optimal‖ scale parameter will be evaluated in Section 3.3.1.4 by 

using a 1D numerical simulation and in Section 3.5.1.3 by using actual visualizations of a 3D echography 

dataset acquired as a series of 3 DOF 2D slices. 

b) Finding the truncation radius for a given scale.  

The Gaussian-weighted approximation method is localized by truncating a Gaussian weighting 

function at a certain radius R. For a good approximation, R should satisfy three error criteria when 
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compared with the untruncated Gaussian of the same scale parameter; (1) the amplitude error Ea of the 

truncated Gaussian at the edges of the support must be sufficiently small, (2) the gradient (i.e., first 

derivative of the Gaussian) amplitude error Eg at the edge of the support radius must be sufficiently small, 

and (3) the error in total energy Ee must be sufficiently small.  The second requirement comes from the 

reflectance model used in the visualization process, which uses a 1st order derivative.  A radius R that 

satisfies all the three error bounds for a given scale parameter  can be found by solving the following three 

inequalities simultaneously. 

 

Gauss(R,)Ea

1Erf
R

2






Ee

DGauss(R,)Eg









 (3.21) 

Error function Erf(x)  and first derivative of Gaussian DGauss(x,) above are defined by the 

following formulas. 

 Erf(x)
2


exp(t

2
)dt

0

x

  (3.22) 

 DGauss(x,)
x


3

2
exp

x2

2
2




 


  (3.23) 

Each one of the first two of the inequalities can be solved for R given a  in which R is a linear 

 

    

Figure 3.11:  Three error criteria plotted against a standard deviation  and the support radius R.  The 

left-hand graph shows contours for errors at 0.01, and the right-hand graph shows contours for error at 

0.001.   
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function of the .  The last inequality on Eg is somewhat more complex, so that it was solved numerically 

at many points and interpolated with a polynomial.  Fortunately, the contour of equal Eg is smooth so that 

it can be fitted very well with a smooth polynomial.  Figure 3.11 shows the iso-error plots with error 

bounds set at 0.01 and 0.001.  For example, to satisfy all the errors <0.01 for a given , a truncation radius 

R that corresponds to the  must fall above all the contours.   

The contour plots show that finding a solution that satisfies (3.25) is not very difficult.  We want 

the smallest truncation radius among the solutions that satisfies the error criteria, although the exact 

solution is not necessary.  In the reconstruction and visualization experiments of the static viewpoint 3D 

echography system described in Section 3.5, a simple linear formula below is used to bound error to 

Ea<0.001.   

 R (3.3 0.5) (3.24) 

The effect of truncation is apparent in the frequency domain.  Figure 3.12.a is the spatial domain 

shape of a non-truncated Gaussian function with the scale parameter =0.3.  Figure 3.12.b is the 

log-magnitude plot of the Fourier transform of the non-truncated Gaussian shown in Figure 3.12.a.  

Figure 3.12.c-3.12.f compare the log-magnitude plot of the Fourier transform of the truncated Gaussian 

functions with R=0.3, R=0.6, R=1.0, and R=1.5, respectively.  R=1.5 of Figure 3.12.f corresponds to the 

solution of the formula (3.24) above, which shows no sidelobe above -80 dB.   

Section 3.3.1.4 describes the evaluation of effects of truncations on the Gaussian-weighted 

approximation method by using a 1D numerical simulation.  
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a: Non-truncated Gaussian in 

spatial domain.  Linear 

scale. 

b: Non-truncated Gaussian 

plotted in the frequency 

domain.  Log-magnitude 

plot. 

c: R=0.3. Frequency domain 

plot of truncated Gaussian. 

Log-magnitude plot. 

   

   

d: R=0.6. Frequency domain 

plot of truncated Gaussian. 

Log-magnitude plot. 

e: R=1.0. Frequency domain 

plot of truncated Gaussian. 

Log-magnitude plot. 

f: R=1.5. Frequency domain 

plot of truncated Gaussian.  

Log-magnitude plot. 

   

Figure 3.12:  A comparison of frequency responses of truncated Gaussian functions with the scale 

parameter 0.3 .  Graph a. shows the untruncated Gaussian function with 0.3  in the spatial 

domain, while b. shows its frequency domain response in log-magnitude scale.  Log-magnitude plots 

c-f compare among truncated Gaussian functions with R=0.3, R=0.6, R=1.0, and R=1.5, respectively.   
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3.3.1.4  Behavior of the Approximation Method 

Section 3.3.1.4.a-3.4.1.4.e presents evaluations of Gaussian-weighted approximation by using 

numerical simulations, which are performed with the following purposes: 

(1) Compare the behavior of ―flat spots‖ in Gaussian-weighted approximation and Shepard's 

interpolation algorithm. 

(2) Evaluate the methods described in Section 3.3.1.3 that are used to select a scale parameter and an 

accompanying truncation radius for the Gaussian-weighted approximation method. 

(3) Evaluate the (high-frequency) noise-suppression characteristics of the Gaussian-weighted 

approximation method. 

While the following simulations are done in 1D, the results can be generalized to 3D since the 

algorithm generalizes naturally to real spaces with more than one dimensions.  Shepard‘s method is chosen 

for the comparison since its computational structure is similar to Gaussian-weighted approximation. 

Section 3.3.1.4 .a defines a finite energy version of Shepard's method that is used for the numerical 

simulations in Section 3.3.1.4.b and Section 3.3.1.4.d.  Section 3.3.1.4.b presents the behavior of flat spots 

in the Gaussian-weighted approximation method and in Shepard's method.  The result of the simulation 

shows that the flat spot problem is much less serious in Gaussian-weighted approximation than in Shepard's 

interpolation.  Section 3.3.1.4.c presents the behavior of the Gaussian-weighted approximation due to the 

truncation of the weighting function.  This simulation shows that the method discussed in Section 3.3.1.3.b 

to select the truncation radius is a reasonable one.  Simulation in Section 3.3.1.4.d shows the behavior of 

Gaussian-weighted approximation method with several different scale parameters in reconstructing samples 

with random amplitude noise. 

a) Shepard’s Method 

The Gaussian-weighted approximation method described in Section 3.3.1.2 is closely related to 

Shepard‘s algorithm which interpolates irregularly spaced discrete multivariate data [Barnhill, 1984a, 

Franke, 1982, Gordon, 1978, Schumaker, 1976, Shepard, 1968].  In the literature of 3D ultrasound 

echography, [Ganapathy, 1992] used Shepard's interpolation method in reconstructing samples from 6 DOF 

free-format scans. 

This section defines a version of Shepard's method that uses a finite-maximum, localized weighting 

function that will be used in the simulations of Section 3.3.1.4.b and Section 3.3.1.4.d.  Shepard‘s 
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interpolation method and Gaussian-weighted approximation use the same formula (3.1), although the 

weighting functions are different in these two methods.  The original Shepard‘s method uses 

Wi
S
(P,Pi)1 ri

2
, which is localized by several different approaches [Barnhill, 1977, Franke, 1982, 

Shepard, 1968].  Section 3.3.1.4.b and Section 3.3.1.4.d of this dissertation will use the weighting function 

localized by Franke and Little below ([Barnhill, 1977].) 

 Wi
F
(P,Pi)

(Rri)

Rri









2

Rect(R)  (3.25) 

For ease of computation, a singular point at ri 0  can be eliminated by the following modification, 

which makes the maximum finite.  

 Wi
F
(P,Pi)

(R(ri ))

R(ri)









2

Rect(R) (3.26) 

Now the weighting function has finite total energy.  Strictly speaking, Shepard‘s method with a 

finite maximum weighting function (3.26) produces approximants, although they can effectively be 

considered as interpolants.  Figure 3.13 shows the shape of the weighting function of (3.27) in both the 

spatial domain (Figure 3.13.a) and the frequency domain (Figure 3.13.b.)  The former is plotted in linear 

scale while the latter is plotted in log-magnitude scale.  As shown below, its total energy is normalized to 1 

by the constant k, with the parameters =10-6 and R=1.  

 Wi
F
(P,Pi)

(R(ri ))

R(ri)









2


1

k
Rect(R)  (3.27) 

 k 
2




4

R


4 log()

R
2 

4log()

R


4 log(R)

R
2 

4log(R)

R
 (3.28) 

Note that the frequency response of the weight (3.27) plotted in Figure 3.13.b is nearly unity.  (The 

scale of the vertical axis of Figure 3.13.b is different from those of Figure 3.12.)  This frequency response 

suggests that Shepard's method will not remove high frequency noise in samples. 
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Figure 3.13.a:  Finite-energy 

variation of the Franke-Little‘s 

weighting function.  At this scale, 

it is too narrow and is not 

distinguishable from the f(x) axis.  

 
Figure 3.13.b: Frequency 

response of a localized Shepard‘s 

weighting function, which is 

virtually flat.  (Note the 

magnified and linear magnitude 

scale, compared to the log scale of 

Figure 3.2) 

  

b) Flat Spot 

This numerical simulation evaluates the behavior of the ―flat spots‖ and its relation to the scale 

parameter in the Gaussian-weighted approximation method.  The behavior of the Gaussian-weighted 

approximation method is also compared with that of Shepard's algorithm.  The experiment is done by 

reconstructing a linear (non-constant) function F(x)  sampled in the domain [-10, 10] into a 1D 

reconstruction buffer with 100 regularly spaced sample points.  

 F(x)0.1x10 (3.29) 

Sampling locations xi  are computed by (3.30), in which the increment d  has been fluctuated by 

the random function rand()   to simulate hand-held scanning. 

 
x0 0

xi xi1d





 (3.30) 

 d  dmin(1 rand())  (3.31) 

Here, rand()  is a uniform random function with the range [0,1], so that the interval d   has a 

range [dmin , 2 dmin] .   

The samples were reconstructed using the Gaussian-weighted approximation method and Shepard‘s 

interpolation method.  The scale parameter =1.0 and the accompanying truncation radius R=3.5 of the 
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Gaussian-weighted approximation method are selected by the method described in Section 3.3.1.3.  The 

scale parameter is derived based on the minimum sampling interval of dmin=1.0.   

Figure 3.14.a shows the original linear function of formula (3.29) with the 13 sample points in the 

domain [-10, 10] marked by dots.  Figure 3.14.b shows the sampling intervals for the 13 samples that vary 

uniformly in the range [1, 2].  Figure 3.15.a-3.15.c shows the reconstruction results by the 

Gaussian-weighted approximation method, and Figure 3.15.d-3.15.f shows the reconstruction results by 

Shepard‘s interpolation method.  In the results by Shepard's method, flat spots are clearly noticeable 

regardless of change in the support radius.  (Support radius is the only parameter in Shepard's methods.)  

In the Gaussian-weighted approximation, however, no significant flat spot appears in the results 

reconstructed with scale parameters equal or larger than the optimal value  (Figure 3.15.b-3.15.c).  The 

reconstruction by smaller-than-optimal scale parameter shows the flat spots similar to that of Shepard‘s 

interpolation method.   

This numerical simulation shows that Shepard's method is not appropriate for the visualization 

algorithms used in the static viewpoint echography system.  Flat spots at every sample point in the 

reconstruction by Shepard's method will generate highly variable gradient vectors, which lead to 

visualizations with artifacts that resemble stairs and bumps.  The Gaussian-weighted approximation 

method, on the other hand, has much less of a problem with flat spots compared to Shepard's interpolation 

method, if the scale parameter is chosen appropriately.  Gaussian-weighted approximation appears to be 

better suited for the volume visualization algorithm used in the static viewpoint 3D echography system.   

  

 

 

 

 

  

Figure 3.14.a: Original function 

and the 13 sample points with 

irregular intervals. 

 Figure 3.14.b: 13 sampling 

intervals x are uniformly 

randomized in the range [1.0, 2.0]. 
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c) Truncation Radius and Reconstruction Error 

The numerical simulation in this section shows the effect truncation of the Gaussian weighting 

function has on the reconstruction results.  This simulation is performed to verify the method to choose 

truncation radius described in Section 3.3.1.3.  The simulation reconstructs irregularly spaced samples with 

an ―optimal‖ scale parameter and several truncation radii computed from three given error criteria.  This 

section deals only with the truncation radius selection method, assuming the scale parameter is properly 

selected.  The scale parameter selection method will be evaluated in Section 3.3.1.4.d. 

The original function (3.32) is a 1D version of one of several 2D scalar functions introduced by 

 

=0.5, R=1.9 

 

=1.0, R=3.8 

 

=2.0, R=7.6 

Figure 3.15.a:  Reconstructed by 

Gaussian-weighted 

approximation.  

 Figure 3.15.b:  Reconstructed by 

Gaussian-weighted 

approximation.  

 Figure 3.15.c:  Reconstructed by 

Gaussian-weighted 

approximation.  

     

R=1.9 

 

R=3.8 

 

R=7.6 

Figure 3.15.d:  Reconstructed by 

Shepard‘s method. 

 Figure 3.15.e:  Reconstructed by 

Shepard‘s method.  

 Figure 3.15.f:  Reconstructed by 

Shepard‘s method.  
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Franke and Little [Franke, 1979] (and used by others, e.g., [Dyn, 1986]) to compare and evaluate several 

interpolation methods for multivariate data from irregularly spaced samples.  

 

F0(x)0.5exp
(9x2)2

4








0.75exp

(9x1)2

49









0.5exp
(9x7)

2

4








0.2exp (9x4)2 

 (3.32) 

The scale parameter 0=0.07857 for the reconstruction is chosen by the method of Section 3.3.1.3, 

which tries to match the scale parameters of the weighting function with that of the highest meaningful 

signal frequency in the samples.  The subscript i in the i indicates a factor of 2i change in the scale 

parameter relative to the ―optimal‖ scale parameter 0.  For example, -1 is half of 0.   

F0(x)  is sampled at irregular intervals which are computed using the formulas (3.30) and (3.31) in 

Section 3.3.1.4.a.  The sampling intervals are chosen to fall in the range [, 0]=[0.03928, 0.07857] 

with uniform random distribution.  16 samples at randomized locations are reconstructed into 50 regularly 

spaced sample points in the domain [0,1].  To see the effect of truncation on the reconstruction, three 

truncation radii bounded by three energy leakage errors Ee, 0.1, 0.01, and 0.001 are used.  By using 

formula (3.24), these error bounds correspond to truncation radii of 1.64, 2.58, and 3.29.   

Figure 3.16.a shows the original function in the solid line, marked by dots indicating the sample 

locations.  Figure 3.16.b shows the sampling intervals of samples that range [, 0]=[0.03928, 0.07857].   

Figure 3.17.a-3.17.c show the reconstruction results by three different truncation radii.  In these 

 

 

 

 

  

Figure 3.16.a: Original function 

and the 17 sample points with 

irregular intervals. 

 Figure 3.16.b: 16 sampling 

intervals d are uniformly 

randomized in the range [0.03928, 

0.07857]. 
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plots, solid lines are the reconstruction results while broken lines are the original function.  

Figure 3.17.d-3.17.f show, in solid lines, the approximation of the gradient gi   of the reconstruction 

results computed by using the 1D finite difference.  

 gi 
fi1 fi1

xi1xi1

 (3.33) 

The broken lines in the Figure 3.17.d-3.17.f plot the analytically differentiated original function for 

comparison. 

As the figures show, the error bound Ee<0.001, which corresponds to the truncation radius 

R=3.29, produces a result that is smooth enough.  On the other hand, neither error bounds Ee<0.1 nor 

Ee<0.01 produce satisfactorily smooth reconstruction results.  

This numerical simulation supports the truncation radius selection method described in 

Section 3.3.1.3.   
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Ee<0.1, R=1.64 

 

Ee<0.01, R=2.58 

 

Ee<0.001, R=3.29 

Figure 3.17.a: Reconstruction by 

R=1.64 with the energy leakage 

error Ee<0.1. 

 Figure 3.17.b: Reconstruction by 

R=2.58 with the energy leakage 

error Ee<0.01.  

 Figure 3.17.c: Reconstruction by 

R=3.29 with the energy leakage 

error Ee<0.001.  

     

Ee<0.1, R=1.64 

 

Ee<0.01, R=2.58 

 

Ee<0.001, R=3.29 

Figure 3.17.d: Gradient of the 

reconstruction above. (R=1.64 

for the energy leakage error 

Ee<0.1) 

 Figure 3.17.e: Gradient of the 

reconstruction above. (R=2.58 

for the energy leakage error 

Ee<0.01) 

 Figure 3.17.f: Gradient of the 

reconstruction above. (R=3.29 

for the energy leakage error 

Ee<0.001.) 

 

d) Noisy Samples and Scale Parameter 

Numerical simulation described in this section evaluates the Gaussian-weighted approximation for 

its noise suppression characteristics.  Irregularly spaced samples with amplitude noise are reconstructed 

with several scale parameters and their results are compared.  This simulation also compares Shepard's 

interpolation method with the Gaussian-weighted approximation method in reconstructing noisy samples.  

The original function (3.32) is the same as Section 3.3.1.4.c.  Sampling locations are computed in 
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the same way as those in the simulation described in Section 3.3.1.4.c, although the domain of sampling is 

widened to [-3, 3].  This wider domain is chosen so that frequency component analysis using the discrete 

Fourier transform can be done easily without windowing.  To each sample is added a random amplitude 

noise with the range [-0.1, +0.1] computed by the following formula which uses a uniform random function 

rand() with the range [0, 1]. 

 
Fsample(x)F0(x)0.2(rand()0.5)

 (3.34) 

These irregularly spaced and noisy samples are reconstructed into a 1D reconstruction buffer in 

which 300 uniformly spaced samples cover the domain [-3, 3].  

Three scale parameters, -1=0.03928, 0=0.07857, and +1=0.15713, were used for the 

reconstruction by the Gaussian-weighted approximation.  0 is the ―optimal‖ scale parameter, while -1 is 

half and +1 is twice 0.  Truncation radii corresponding to these three scale parameters are computed by 

the formula (3.24), i.e., R=3.3+0.5.  For Shepard's method a truncation radius R=0.5171 is chosen.  This 

choice is made rather arbitrarily, since the truncation radius has only small effect on the reconstruction 

results by Shepard's interpolation method.  

Figure 3.18.a shows that original function (solid line) and 102 samples (dots), while Figure 3.18.b 

shows the sampling intervals.   

Figures 3.19.a-3.19.c show, in solid lines, the spatial domain plots of the reconstruction results of 

the noisy samples by using the Gaussian-weighted approximation method with three scale parameters 

-1=0.03928, 0=0.07857, and 1=0.15715.  The domain [0, 1] shown in these three plots, which contains 

16 samples out of the total of 102, is selected to be the same as the simulation of Section 3.3.1.4.c.  For 

comparison, dotted lines in Figure 3.19.a-3.19.c show the original function of formula (3.28.)  

 

 

 

 

Figure 3.18.a: Original function and the 102 sample 

points with the additive noise of amplitude range 

[-0.1,0.1]. 

 Figure 3.18.b: 101 intervals for the 102 samples, 

which has the uniform random distribution over 

range [0/2,0]=[0.03928, 0.07857]. 
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Figures 3.19.d-3.19.f show, in solid lines, the gradient approximation computed numerically, by using the 

finite difference formula (3.33) from the reconstructions shown in Figures 3.19.a-3.19.c.  For comparison, 

dotted lines in Figures 3.19.d-3.19.f plot the analytical derivative of the original function (3.32). 

Among the three reconstructions shown in Figure 3.19.a-3.19.c, the reconstruction by the ―optimal‖ 

scale parameter 0=0.07857 (Figure 3.19.a) appears to be the best.  It appears to be a good compromise 

between the reconstruction with -1=0.03928 (half the optimal) that follows original function well but also 

includes significant influence from noise and the reconstruction with 1=0.15715 (twice the optimal) that is 

too smooth and loses features.  A comparison of the approximations of gradient magnitude among the 

three reconstructions (Figure 3.19.d-3.19.f) confirms these observations.  The reconstruction with 

-1=0.03928 obviously has a noisy gradient magnitude (Figure 3.19.d).  Such a noisy gradient generates 

false features in visualized images, especially if a reflectance model that supports specular reflection is 

employed.  On the other hand, the reconstruction with 1=0.15715 produces gradient approximation that is 

too excessively smooth (Figure 3.19.f).  Again, the gradient approximation of the reconstruction by 

0=0.07857 appears to be the best among the three.  From these comparisons, the selection method for the 

scale parameter described in Section 3.3.1.3 seems appropriate.   

This conclusion is supported also by a comparison of the reconstruction results in the frequency 

domain.  Figures 3.20.a-3.20.c show the log-amplitude plots of the frequency responses of the Gaussian 

weighting function with three scale parameters (-1=0.03928, 0=0.07857, and 1=0.15715) that 

corresponds to the reconstructions shown in Figure 3.19.a-3.19.c.  Obviously, the (frequency domain) 

bandwidth of the weighting function becomes narrower as the scale parameter increases.   

Figures 3.20.d-3.20.f show, in solid lines, the log-amplitude plots of the three reconstructions of 

Figures 3.19.a-3.19.c computed by DFT.  Dotted lines show the log-amplitude plot of the frequency 

component of the original function (3.32) which is computed by DFT from uniformly spaced noise-less 

samples of the function.  It can be observed that the reconstruction with -1=0.03928 contains significant 

energy from the high frequency component of the added noise (Figure 3.20.d.)  On the other hand, the 

reconstruction with 1=0.15715 seems to suppress too much of the higher-frequency components of the 

original function as well as the noise.  The reconstruction by the optimal scale parameter 0=0.07857 

appears to strike a good balance between two conflicting needs (Figure 3.20.e.) 
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

-1=0.03928 

 



0=0.07857 

 



-1=0.15715 

Figure 3.19.a: The reconstruction 

by -1=0.03928.  The dotted line 

is the original function.  The 

reconstruction includes the effect 

of the noise. 

 Figure 3.19.b: The reconstruction 

by ―optimal‖ scale parameter 

-1=0.07857.  The dotted line is 

the original function.  

 Figure 3.19.c: The reconstruction 

by -1=0.15715.  The dotted line 

is the original function.  The 

reconstruction is too smooth. 

     



-1=0.03928 

 



0=0.07857 

 



-1=0.15715 

Figure 3.19.d: The  gradient of 

the reconstruction above.  The 

dotted line shows the analytical 

derivative of the original function.  

The gradient is noisy. 

 Figure 3.19.e: The gradient of the 

reconstruction above.  The dotted 

line shows the analytical 

derivative of the original function.  

 Figure 3.19.f: The gradient of the 

reconstruction above.  The dotted 

line shows the analytical 

derivative of the original 

function.  The gradient seems too 

smooth. 
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

-1=0.03928 

 



0=0.07857 

 



1=0.15715 

Figure 3.10.a:  Log-amplitude 

plot of the frequency response of 

the weighting function with 

-1=0.03928.  

 Figure 3.10.b: Log-amplitude 

plot of the frequency response of 

the weighting function with 

0=0.07857.   

 Figure 3.10.c: Log-amplitude 

plot of the frequency response of 

the weighting function with 

1=0.15715.   

     



-1=0.03928 

 



0=0.07857 

 



1=0.15715 

Figure 3.10.d: Log-amplitude 

plot of the reconstruction result in 

Figure 3.19.a.  The dotted line 

shows the log-amplitude plot of 

the frequency component of the 

original function. 

 Figure 3.10.e: Log-amplitude plot 

of the reconstruction result in 

Figure 3.19.b.  The dotted line 

shows the log-amplitude plot of 

the frequency component of the 

original function. 

 Figure 3.10.f: Log-amplitude 

plot of the reconstruction result in 

Figure 3.19.c.  The dotted line 

shows the log-amplitude plot of 

the frequency component of the 

original function. 

For comparison, Figures 3.21.a-3.21.d show the same set of plots for Shepard's interpolation 

method with the weighting function (3.27).  The reconstruction result in Figure 3.21.a includes a 

significant amount of high frequency noise, since this method interpolates through the samples with 

amplitude noise.  This bumpy reconstruction result also includes flat spots (Section 3.3.1.4.b.)  The 

gradient approximation shown in Figure 3.21.c is highly noisy.  Such a noisy gradient will be unsuitable 

for typical volume visualization algorithms including the one used in this dissertation.  This behavior of 
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Shepard's method is supported by the frequency response of the weighting function in the Figure 3.21.b, 

which is virtually flat at 0dB.  Due to this flat frequency response, the frequency component of the 

reconstruction plotted in Figure 3.21.d depicts a significant amount of residual high frequency noise.  

e) Summary of the Numerical Simulations 

 

 

 

 

  

Figure 3.21.a: Reconstruction by 

Shepard‘s method with R=0.228.  

The dotted line shows the original 

function.  

 Figure 3.21.b: Log-amplitude 

plot of the frequency response of 

the Franke and Little‘s weighting 

function with R=0.228.  It is 

virtually flat at 0dB. 

  

     

 

 

 

  

Figure 3.21.c: Gradient of the 

reconstruction above. (R=0.228.)  

The dotted line shows the 

analytical derivative of the 

original function.  The gradient is 

highly noisy. 

 Figure 3.21.d: Log-amplitude 

plot of the reconstruction result in 

Figure 3.21.a.  Random noise 

present in the sample is almost 

untouched.  
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The numerical simulations presented in Section 3.3.1.4.a-3.4.1.4.d provide supporting evidence for 

the following. 

(1) The ―flat spot‖ problem is tolerable with the Gaussian-weighted approximation method if its scale 

parameter is chosen appropriately.   

(2) On the other hand, Shepard‘s interpolation method produces severe flat spots, that generate visible 

artifacts in volume visualized images.  It can be concluded that Shepard‘s method is inappropriate 

for a typical volume visualization method.  

(3) The method to select the scale parameter described in Section 3.3.1.3.a seems appropriate.  The 

―optimal‖ scale parameter selected by the method balances between reconstructing finer details 

and suppressing high frequency noise. 

(4) The method to select the truncation radius based on a given scale parameter described in 

Section 3.3.1.3.b seems appropriate.  The reconstruction result and its derivatives are both smooth 

without visible discontinuities.  

Visualization results presented in Section 3.5.1.3 use the selection methods of Section 3.3.1.3 for 

scale parameters and accompanying truncation radii.  A set of visualizations shown in Section 3.5.1.3 will 

compare visualization results of a 3D echography dataset reconstructed with several different scale 

parameters.  This comparison will provide further support for the scale parameter selection method 

described in Section 3.3.1.3.a. 
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3.3.2  Incremental Reconstruction Algorithm  

3.3.2.1  Incremental Spatial Reconstruction Algorithm 

This section presents the implementation of the spatial reconstruction algorithm for the 3 DOF 

incremental reconstruction step of the static viewpoint 3D echography system, which employs the 

Gaussian-weighted approximation formula developed in Section 3.3.1.  A 3 DOF reconstruction algorithm 

with temporal reconstruction will be presented in Section 3.3.2.2.   

The reconstruction algorithm reconstructs a set of irregularly spaced samples into a regularly 

sampled dataset in the reconstruction buffer, which is a 3D array of voxels (see Figure 3.22.)  While the 

approximation formula (3.1) is written as a backward mapping algorithm, the implementation discussed in 

this section is forward mapping, in which input samples are distributed to neighboring voxels.   

Each voxel of the reconstruction buffer has three entries;  

(1) The intensity buffer ci(x,y,z)  accumulates the echo intensity values of the input samples weighted 

by the (truncated) Gaussian weighting function,   

(2) The weight buffer wi(x,y,z)  accumulates the weight of the weighting function, and   
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Figure 3.22:  Reconstruction buffer of the static viewpoint 3D echography system, which consists of the 

intensity buffer, the age buffer, and the weight buffer.  
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(3) The age buffer ai(x,y,z)  stores the ―age‖, which is a time-stamp of the last update of each voxel 

Pi(x,y,z) .   

The age buffer, which is used for temporal reconstruction, will be explained in Section 3.3.2.2.  

Note that, for the 3 DOF reconstruction, the weight and age buffers can be 2D since the weight and age 

values of all voxels along each u axis are equal.   

As the i‟th image slice is inserted into the 3D reconstruction buffer, each 2D input image pixel value 

oi(u,v,0)  is distributed to the voxels around the pixel weighted by the (spatially) 3D weighting function 

g(ru,rv,rq) .  The voxel accumulates the weighted echo-intensity value into ci(x,y,z) .  At the same 

time, the voxel accumulates the weight into the weight buffer wi(x,y,z)  for post-normalization.  After 

the samples on a slice are distributed to voxels in the reconstruction buffer, the echo intensity value 

ik (x,y,z)   at each voxel is obtained by the post-normalization.  Post-normalization is necessary since the 

normalization factor can not be predetermined due to human guided acquisition.   

The echo intensity is accumulated by the formula; 

 ci(x,y,z) ci1(x,y,z) oi(u,v,0)g(u u ,v v ,0 q )
u , v , q Dom ( f)

  (3.35) 

The weight is accumulated by the formula; 

 wi(x,y,z) wi1(x,y,z) g(u u ,v v ,0 q )
u , v , q Dom ( f)

  (3.36) 

The reconstructed echo intensity is obtained by normalizing the accumulated echo intensities by the 

accumulated weights by the formula; 

 

ik (x,y,z)
ck (x,y,z)

wk(x,y,z)
 (3.37) 

where (x,y,z)Ti( u , v , q ) 

In the formulas, (u,v,q)   are the coordinates of the voxel in the 3D image coordinate system, in 

which (u,v)  are the in-plane axes and q  is the off-plane (elevation) axis (Section 3.2.2.)  For every 

pixel, the coordinate value on the q axis is 0, since it is in the image ―slice‖.  (x ,y,z)  are the 3D 

reconstruction buffer coordinates of a voxel.  For the i‘th slice, (x ,y,z)  and (u,v,q)are related by the 3D 

coordinate transformation matrix T i , which is derived by using formulas (3.1) and (3.2) described in 

Section 3.2.2.  The notation u , v , q Dom(g)  denotes that distribution of each input image pixel value 

should include voxels within the support of the weighting function g(ru,rv,rq)  centered at the pixel.  
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Each weighting function is attached to each sample pixel at its center (u,v,0) , and translates and rotates 

along with it.  The subscript i in ci(x,y,z) , wi(x,y,z) , and ai(x,y,z)  denotes that these values have 

been modified by the i‘th slice.   

The weighting function g(ru,rv,rq)  is constructed as a product of three truncated Gaussians along 

each coordinate axis u, v, and q.  The three Gaussian functions have scale parameters u , v , and q , 

and truncation radii Ru , Rv , and Rq , respectively.  These scale parameters u , v , q  and 

corresponding truncation radii Ru , Rv , Rq . are selected according to the methods described in 

Section 3.3.1.3.  The weighting function is separated into functions of each axis,    

 g(ru,rv,rq) fu(ru,u,Ru) fv(rv ,v,Rv) f q(rq,q,Rq)  (3.35) 

where 

 gu(ru,u,Ru)

1

u 2
exp

ru
2

2u
2




 


, ruRu

0, ruRu









 (3.39) 

 gv(rv,v,Rv)

1

v 2
exp

rv
2

2v
2




 


, rv Rv
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





 (3.40) 

 gq(rq,q ,Rq)

1

q 2
exp

rq
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2q
2
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 (3.41) 

In the implementation of the 3 DOF reconstruction algorithm of the static viewpoint 3D echography 

system, the reconstruction is performed in 2 stages: (1) a 1D reconstruction in the u axis (regularly spaced 

samples), followed by (2) a 2D reconstruction in the v-q plane (irregularly spaced samples.)  

The rectangular bound of incremental computation, the slab, which encloses the voxels to be 

affected by the image slice, is computed based on the truncation radii Ru , Rv , and Rq  of the weighting 

function.  However, the slab is larger than the bound given by the truncation radii alone, in order to 

accommodate extra voxels that are necessary to compute approximation of the 3D gradient (hx,hy,hz) 

using the 3  3  3 finite difference operator. 

 

hx  ik (x1,y,z) ik(x1,y,z)

hy  ik (x,y1,z) ik(x,y1,z)

hz  ik(x,y,z1)ik (x,y,z1)









 (3.42) 
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3.3.2.2  Incremental Reconstruction with Temporal Update 

a) Temporal Change and Reconstruction 

The incremental reconstruction algorithm described in Section 3.3.2.1 of this dissertation assumes 

no temporal change in the scalar fields that are being sampled.  The algorithm simply averages sample 

values over multiple acquisitions without any temporal weighting.  As in the spatial compounding 

technique in 2D echography, averaging over time will improve the signal-to-noise ratio of the reconstructed 

images if object fields do not change over time.  (This is similar to spatial compounding in 2D 

echography.)  However, in reality, scalar fields may change over time.  If samples from a temporarily 

changing scalar field are averaged, features in the reconstructed dataset will gradually blur and disappear.  

It would be preferable, then, if reconstruction results could follow the temporal changes in the object 

functions.   

A temporarily changing 3D scalar field is a 4D scalar field.  In the static viewpoint 3D echography 

system, such a scalar field is assumed to be continuous and band-limited in temporal as well as spatial 

dimensions.  The acquisition subsystem of the static viewpoint 3D echography system, due to its 

hand-guided free-format scanning, produces 4D samples in which sampling intervals in both spatial and 

temporal dimensions are irregular.  Depending on locations in space, the temporal sampling intervals can 

be very irregular; certain points in space may be scanned by almost every frame, while the others may only 

be scanned once or twice.  Finally, there is amplitude noise in the samples that changes in time.  

No temporal reconstruction algorithm for such 4D samples suitable for our purpose is found in the 

literature of 3D echography visualization reviewed in Section 2.3.  All the volume data reconstruction 

methods found in the literature are posterior, and the algorithms are non-causal.  Among them, only one 

algorithm by [Tomographic Technologies, 1991] has addressed the issue of temporal change in object 3D 

scalar fields.  [Tomographic Technologies, 1991] uses a posterior and non-causal 4D reconstruction which 

takes advantage of the cyclic nature of cardiac images.  Details of the algorithm are not known, but it 

appears to include a heuristic algorithm which replaces outlying samples in a manner analogous to 4D 

median filtering.   

Until early 1980s, a form of temporal reconstruction was used in 2D echography scanners of the 

past, in which 2D images are formed on-the-fly by combining 1D scans with 3 DOF tracking [Ophir, 1979].  

The nine pixel-by-pixel update algorithms listed in [Ophir, 1979] include a manually triggered global 

erasure of a frame buffer after ―a sweep,‖ pixel-by-pixel replacement (―survey mode‖), maximum (―peak 

mode‖), accumulation (―integration mode‖), and running average (―average mode‖).  It appears that, 

among them, the peak mode was one of the favorites, along with the survey mode.  Unfortunately, these 

methods are not useful for the static viewpoint 3D echography system.  The peak mode does not work well 
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since its non-linear operation produces discontinuous reconstruction results.  It also decreases the 

signal-to-noise ratio of the image.  The integration method, whose reconstructed pixel (in this case, voxel) 

values keep increasing, is obviously inappropriate, since the sampling density directly affects the apparent 

echo intensity.  The survey mode produces discontinuous reconstruction results.  The average mode loses 

temporarily changing features through blurring.  

b) A Simple Temporal Update Algorithm 

The issue here is the reconstruction of 4D samples that may contain noise and may have irregular 

sampling intervals in every dimension which may vary widely.  An obvious approach is to extend 

Gaussian-weighted approximation method described in Section 3.3.1 to 4D.  However, this approach 

works well only if the reconstruction is posterior.  To compute the present values of the approximant, the 

algorithm requires samples from the future as well as from the past.  As a result, a physical realization of 

the approximation method introduces lag proportional to the number of samples needed from the future.  

The lag can be of significant length, since temporal sampling intervals by the acquisition system of the 

static viewpoint 3D echography system can be long.  Such a long lag is not acceptable for incremental and 

immediate visualization.  Computational and memory cost can also be excessive.  For example, keeping 

and operating on multiple 3D echo-intensity buffers can be quite expensive.  Costly algorithms need to be 

avoided to achieve interactive speed of visualization.  

An approach is to age the reconstructed voxels, and visualize the age by decreasing radiance of the 

voxels upon rendering.  This approach was found to be confusing; echo intensity variation due to 

acquisition could not be distinguished from the aging.   

We decided to implement a simple ―aging‖ of the reconstructed voxels, using a method analogous to 

a 1-tap Infinite Impulse Response (IIR) filter.  The temporal reconstruction algorithm described here differs 

in two points compared to a conventional IIR filter: the irregular temporal sampling intervals and the 

difference in dimensionalities of input and output data (Figure 3.23.)  With this method, the radiance of the 

voxels in the visualized images stay constant despite their age, as long as they are not affected by newer 

samples.  If and when the voxels are affected by the newer input samples, however, older voxels has less 

influence than the newer voxels.  

As discussed in Section 3.3.2.1, each voxel in the reconstruction buffer is associated with the 

time-stamp ai(x,y,z) , which records the last time the voxel is updated.  When contributions from new 

samples are to be distributed to the nearby voxels, a function of the age (i.e., the time since the last change 

of the voxel) weights the merging of new and old values so that the older the voxel, the less it contributes to 

the new voxel value.    
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The reconstruction formulas with temporal weighting (3.43)-(3.45) below are identical to the 

reconstruction formulas (3.35)-(3.34.) except for the ―decay factor‖ d(x,y,z,ti) .  The spatial weighting 

functions are the same as before (3.38)-(3.41.) 

Note in the diagram that the coefficients Ca and Cb change as functions of the sampling time 

intervals.  The coefficient of the 1-tap filter, the decay factor d(x,y,z,ti) , decreases from 1 to 0 as the 

time interval increases.  The time interval is computed as the difference of the time stamp of the current 

slice ti  and the time stamp ai(x,y,z)  of the previous update of the voxel at (x ,y,z) .   

 ci(x,y,z) d(x,y,z,ti)ci1(x,y,z) (1d(x,y,z,t i)) oi(u,v,0) f (u u ,v v ,0 q )
u , v , q Dom( f )

  (3.43) 

 wi(x,y,z) d(x,y,z,ti)wi1(x,y,z) (1d(x,y,z,ti)) f (u u ,v v ,0 q )
u , v , q Dom ( f )

  (3.44) 

 

ik (x,y,z)
ck (x,y,z)

wk(x,y,z)
 (3.45) 

where (x,y,z)Ti( u , v , q ) 

We used the following two temporal weighting functions. 

 d(x,y,z,ti)
1

t 2
exp

ri
2

2t
2




 


 (3.46) 

where 

 rt  tiai1(x,y,z)  (3.47) 
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Figure 3.23:  An analog of a simple 1-tap IIR filter is used for the temporal reconstruction.  ti  is the 

time interval (non-uniform) from current slice to the voxel.  Coefficients ca and cb vary depending on the 

time intervals. 
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Figure 3.24 shows the result of simple experiments, which reconstructed the temporal change (sin(x) 

function) sampled with irregular sampling intervals and amplitude noise (variation ±0.15.)  Figure 3.24.a 

shows the samples with random amplitude noise and Figure 3.24.b shows the reconstruction results with 

the weighting function d
1
(x,y,z,t) .  (The dotted lines in Figures 3.14.b is the original function sin(x).)   

A comparison of Figure 3.24.a and Figure 3.24.b shows that the noise can be reduced significantly 

by the simple temporal reconstruction.  Figure 3.24b also shows the phase lag, an inevitable result of this 

kind of reconstruction, as well as some residual noise.  Even though a higher quality reconstruction is 

theoretically possible, such reconstruction is not readily applicable to the static viewpoint 3D echography 

system since it would involve significantly more computation and/or larger lag.   

 

 

 

 

Figure 3.24.a: Signal sin(x) with random 

sampling intervals and random amplitude noise 

(±0.15). 

 Figure 3.24.b: Temporal reconstruction result 

with Gaussian weighting function.  The scale 

parameter of the temporal weighting function is 

the same as the median of the sampling intervals.   
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3.4  Incremental Visualization Algorithm 

The visualization algorithm for the static viewpoint 3D echography system employs the 

pre-visualization reconstruction approach in order to visualize irregularly sampled datasets. The 

pre-visualization reconstruction approach involves two steps; the reconstruction step which produces 

datasets with regularly spaced samples and the visualization step which classifies, models, and renders the 

reconstructed datasets.  Section 3.3 discussed the reconstruction step.  This section primarily discusses the 

visualization step, which consists of classification, modeling, and rendering steps.   

One of the goals of the visualization of the static viewpoint 3D echography system is interactive 

performance, both in terms of lag (from each incremental acquisition of 2D echography slice to image 

generation affected by the slice) and throughput (i.e., frame rate.)  The algorithm discussed in this section 

tries to achieve interactive performance by using several algorithmic improvements and parallelism. 

Most significantly, the visualization algorithm tries to reduce the amount of visualization 

computation per 2D image by means of spatial bounding.  The spatial bound for the visualization is 

identical to the slab in the reconstruction step, which is defined by the support of the weighting function.  

The amount of saving achieved by the spatial bounding depends on the size of the slab relative to the entire 

volume dataset.  Spatial bounding of the view dependent steps, that is, the ray-sampling and 

ray-compositing steps, is accomplished assuming that the changes in the dataset (i.e., acquisition of 2D 

slices and reconstruction) occur much more frequently than the changes in the parameters such as 

viewpoint or classification parameters.  It is also assumed that a conventional stationary (monocular) video 

display is employed for image presentation. 

Section 3.4.1 in this chapter discusses the basic incremental visualization algorithm that employs the 

spatial bounding approach.  Section 3.4.2 describes several algorithmic improvements to accelerate this 

basic algorithm.  Specifically, Section 3.4.2 discusses acceleration methods applied on a sequential 

algorithm while Section 3.4.3 discusses an acceleration method by means of parallelism.  Evaluations of 

the basic incremental visualization algorithm and the improvements will be presented in Sections 3.5.2 and 

3.5.3.  

3.4.1  Basic Algorithm 

This section begins with a description of simple classification and modeling methods for ultrasound 

echography datasets.  This section then describes the ―basic incremental algorithm‖ which tries to reduces 
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computational cost by utilizing the spatial bounding approach.  This algorithm is called ―basic‖ since it 

does not incorporate parallelism and other performance improvement approaches introduced in 

Sections 3.4.2 and 3.4.3.   

3.4.1.1  Visual Model for Echo-Intensity Datasets 

The classification and modeling steps of the visualization algorithm map an original dataset, i.e., a 

3D echo intensity dataset, to a pair of 3D scalar quantities, the absorption coefficients (t) and the radiance 

r(t) of the ASSG model.  The description that follows, two conceptually distinct steps, classification and 

modeling, are treated as one since they are implemented together.   

We want to visualize boundaries separating regions with identical acoustic impedances based on a 

volume datasets with regularly spaced samples.  In order to realize such a visualization, we map a low 

echo-intensity voxel to a low opacity voxel and a high echo-intensity voxel to a high opacity voxel 

(Figure 3.26).  This mapping produces visualizations reminiscent of 2D ultrasound B-mode echography, in 

which an echo intensity is mapped to a pixel brightness on a 2D video display.   

This mapping is different from the method typically used for X-ray CT datasets.  Such datasets 

capture optical densities so that visualizations of boundaries of the optical densities in the datasets require 

boundary detection, typically by computing the gradient magnitude from the datasets.  In contrast, 

ultrasound echography acquires boundaries of regions with identical acoustic impedance.  This means that 

the echo intensity image represents, without any processing, boundaries of regions with identical acoustic 

impedances.  An ―extra‖ boundary detection applied to an echo intensity dataset would produce ―doubly 

differentiated‖ visualizations of acoustic impedances, which we found confusing.  

Figure 3.26 shows the data-flow of the mapping from echo intensities to absorption coefficients and 

to radiance.  The Echo intensity to Opacity (EO) mapping operation, which is implemented as a user 

definable piecewise linear function, maps input scalar values to opacities.  The approximated gradient 

vector for each voxel is computed, not for the detection of boundaries but for computing Phong‘s 

reflectance model [Bui-Tuong, 1975].  The gradient approximation operator used in the algorithm of this 

dissertation is a very simple finite difference operator as defined in formula (3.42).  As seen in the 

diagram, the lighting model affects the radiance but not the absorption coefficients.  Shading effects from 

Phong‘s reflectance model can provide very helpful cues to perceive 3D surfaces.  On the other hand, such 

shading may interfere with perception of the echo intensity value themselves, since the reflectance model 

modulates the radiance of gels.  The mapping method lets users control the amount of influence on the 

radiance by the reflectance model by means of user-definable Reflectance to Radiance (RR) mapping.  For 

example, if the RR map is (non-zero) constant, the rendered images directly reflect the echo intensity 

without any directional lighting effect.   
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In addition to the ASSG model with the simple mapping just discussed, the visualization system 

implements other classification and modeling methods, including the additive projection model, the 

maximum intensity projection model, and the isodensity contour surface model [Levoy, 1988].   

It is important to note that the combination of the classification method, visual model and mapping 

method used in this dissertation is just one example among many possibilities.  The combination of 

methods in this dissertation is chosen for its reasonable cost and relatively high image quality.  Different, 

probably more sophisticated classification and modeling methods may well produce better visualization 

results with increased computational cost.  It is important to study classification and modeling methods for 

3D ultrasound echography datasets.  However, this dissertation will not discuss this topic any more since it 

is not fundamental to the study at hand.   
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Figure 3.26:  A simple mapping which produces an absorption coefficient (t) and radiance r(t) from a 3D 

scalar field of echo intensity f.   
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3.4.1.2  Basic Incremental Visualization Algorithm 

The incremental volume visualization algorithm for the static viewpoint 3D echography system is 

based on the backward mapping, image ray-casting algorithm by Marc Levoy [Levoy, 1988].  This 

visualization method is chosen since it produces relatively high quality images and its performance 

compares well to other methods with comparable image quality.  The algorithm is also amenable to several 

known optimization techniques, e.g., the image adaptive ray-casting.  Levoy‘s algorithm computes the 

classification and modeling steps in the 3D world space, producing a volume of model parameters, that is, 

absorption coefficient and radiance.  The algorithm then casts a ray from each pixel in the 2D screen space 

into the volume of model parameters in the 3D world space, sampling the model parameter values at 

regular intervals.  Sampled model parameter values are composited along the ray, either from front-to-back 

or from back-to-front.  

Various optimization techniques have been used to accelerate volume visualization algorithms 

(Section 2.4.)  For example, Levoy accelerated his algorithm by a combination of (1) preprocessing of the 

classification and modeling steps, (2) hierarchical spatial partitioning, (3) image adaptive ray-casting, and 

(4) adaptive ray-termination.  Parallel processing has been another popular approach to accelerate the 

execution of the algorithm.   

Unfortunately, some of these acceleration techniques are not applicable to our visualization.  Most 

importantly, a majority of the previous optimization approaches assumes static datasets.  An example of 

this kind of optimization is the adaptive spatial partitioning using an octree computed in a preprocessing 

step.  Furthermore, a majority of the previous optimization approaches has tried to optimize viewing lag, 

although a few tried to optimize classification or modeling lags.  An example of this kind of optimization 

is the preprocessing of the view-independent part of computation, such as the classification and modeling 

steps computed in the 3D world space.  On the other hand, the visualization of the static viewpoint 3D 

echography system visualizes partially dynamic datasets and tries to optimize dataset lag.  The system 

needs a set of acceleration techniques, some of which are new, that work with these requirements.   

The preprocessing approach has been applicable to static datasets since they have temporal 

coherence.  A partially dynamic dataset of the static viewpoint 3D echography system also has a kind of 

temporal coherence; only a subset of the voxels at known locations in the reconstruction buffer changes as a 

2D echography image slice is reconstructed.  Furthermore, the subset has the simple rectangular shape 

defined by the support of the weighting function used by the reconstruction algorithm (Section 3.3.2.2.)  

Since the shape of the subset is known and simple, spatial bounding technique can be applied to reduce the 

visualization cost.  With the spatial bounding technique, the computation is limited to the slab so that, if a 

certain condition is satisfied, classification, modeling, and ray-casting steps can be performed incrementally 

per slab.   
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The steps that can operate incrementally vary depending on the condition.  The best case requires 

that all the inputs except for input volume datasets are unchanged.  (In other words, all of the 

reconstruction, classification, modeling and viewing parameters stay unchanged.)  If this condition holds, 

the visualization is completely incremental so that all steps can be performed incrementally.  Partially 

incremental computation is also possible; for example, if only the viewing parameters change, the 

classification and modeling steps can be performed incrementally while the ray-casting step needs to be 

performed non-incrementally.  The reduction of computational cost depends on the degree of incremental 

computation and on many parameters such as the size of the reconstruction buffer, the scale parameter 

(which affects the thickness of the slab), and the viewpoint.  

The condition for completely incremental computation stated above, although it may sound quite 

restrictive, is a reasonable one if we assume the use of a static viewpoint display system and a reasonably 

high rate of 2D echography image acquisition and visualization (e.g., 20-30 frames/s).  Under such 

assumptions, the rate of viewpoint change would be much lower than the rate of dataset change.  Similarly, 

the rate of the classification or modeling parameter change would be much lower than that of the dataset 

change.  Consequently, the condition above will be satisfied most of the time.  The feasibility study 

system that has been realized on a workstation by this research does not satisfy these assumptions produce 

visualizations at interactive rate.  For example, the image generation throughput of the realization is about 

0.3 frames/s.  However, to show the feasibility of realizing a system which satisfies the assumptions above, 

this dissertation explores the algorithms and the hardware capabilities necessary to realize interactive 

visualization.  

Naturally, as the assumptions change, the conditions for the incremental computation may become 

unacceptable.  For example, if a dynamic viewpoint display (as in Chapter 5) is used in the system, 

viewing parameters will change as frequently as datasets.  The incremental visualization algorithm 

described in this section loses its advantages, especially the low ray-casting cost per image generation.  
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Figure 3.27:  Visualization process of the basic ray-casting volume visualization algorithm used in this 

dissertation.  It employs a variation of the Asymmetric Single Scatter Gel (ASSG) model, which is a simple 

model of a transparent gel.  
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Figure 3.27 shows the steps of the static viewpoint 3D echography system from acquisition to 

display.  One feature to note in the pipeline is the fact that the radiance and opacity samples are cached in 

the 3D screen space.  This caching enables the incremental ray-casting.  The following describes the 

visualization steps for an acquired 2D echography slice, assuming that all of the reconstruction, 

classification, modeling, and ray-casting steps take place incrementally. 

(1) Incremental reconstruction: An acquired 2D echography slice is reconstructed into a regularly 

sampled reconstruction buffer.  Since the reconstruction algorithm employs a local, distance 

weighted approximation method, only those voxels inside a slab that encloses the slice are affected 

by reconstruction.   

(2) Incremental classification and modeling: The voxels within the slab are classified and modeled 

to produce slabs of radiance r(xw,yw,zw)  and opacity (xw,yw,zw )  in the 3D world space. 

(3) Incremental ray-sampling: Rays are cast from pixels in the 2D screen space, and only those 

voxels inside the slab are sampled with tri-linear interpolation to produce a slab of radiance 

r(xs,ys,zs)  and opacity (xs,ys,zs)  in the 3D screen space.  They are then stored in the 

ray-cache (Figure 3.28.)  The ray-cache is a linear array attached to each pixel in the 3D screen 

space.  Ray-cache entries inside the slab receive new sample values, while all other entries are left 

untouched.   

(4) Compositing: Pixels with rays that intersect the slab (and thus the reconstruction buffer) 

composite the samples in their ray-caches and update their pixel values.  Pixels with rays that 

intersect the reconstruction buffer but not the slab keep their values (that is, no compositing 

required.)  

If changes in the parameters occur, they bring different levels of incremental computation.    

Figure 3.30 is the pseudo code of the incremental reconstruction and visualization loop, written in a 

sequential manner.  Figure 3.29 shows the data structure of each pixel, which includes a pixel value, a tag 

to indicate various combinations of sampling and compositing, a sampling interval [s0,s1], a compositing 

interval [c0,c1], and a ray-cache.  The compositing interval for each ray is computed once per viewpoint 

for every ray that intersects the reconstruction buffer.  The compositing interval determines the size of the 

ray-cache, which is allocated per viewpoint.  The sampling interval for each ray is computed once for 

every new image generation for the segment of rays which lie inside the slab.   
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Figure 3.28:  The classification, modeling, ray-sampling and (a part of) compositing step take place 

incrementally if the reconstruction, classification, modeling and viewing parameters stay unchanged.    
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Figure 3.29:  Data structure of a pixel of the incremental algorithm.  A pixel stores the pixel value Pix, 

the sampling interval [s0,s1], the compositing interval [c0,c1], the ray classification Tag, the intersection 

count n, and the ray-cache.  
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loop begin 
• Get an image slice from input. 

• Get viewing parameters. 

• Get classification and modeling parameters. 

• Reconstruct the image slice into the reconstruction buffer 

• If (viewing, classification, or modeling parameters have NOT changed) then { All incremental } 

begin 
• Set the classification/modeling bound to the slab around the input image slice. 

• Set the sampling bound to the slab around the input image slice. 

• Tag the rays that intersect the slab for compositing. 

end; 

  else  { Non-incremental steps among classification/modeling, sampling, and compositing } 

begin 
• If (classification or modeling parameters have NOT changed) then 

{ Classification/modeling is incremental } 

• Set the classification/modeling bound to the slab around the input image slice. 

  else   
{ Classification/modeling is non-incremental } 

• Set the classification/modeling bound to the reconstruction buffer. 

• Set the sampling bound to the entire reconstruction buffer. 

• Set the compositing bound to the reconstruction buffer. 

• Compute the compositing intervals for the rays that intersect the reconstruction buffer and store 

them into pixels. 

• Tag the rays that intersects the reconstruction buffer for compositing. 

end; 
• Classify and model inside the classification/modeling bound. 

• Compute the sampling intervals by intersecting the rays with the sampling bound.   

• Tag the rays that intersect the sampling bound for sampling. 

• For those rays tagged for sampling, ray-sample inside the ray-sampling intervals, and store the samples to 

the ray-cache 

• For those rays tagged for compositing, composit the samples in the ray-cache for their compositing 

intervals. 

end; 

 

Figure 3.30:  Sketch of the basic incremental visualization algorithm.  
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3.4.2  Accelerating the Visualization Algorithm 

This section discusses two acceleration techniques introduced in the incremental visualization 

algorithm that work in the context of sequential execution.  Acceleration by exploiting parallelism will be 

discussed in Section 3.4.3. 

3.4.2.1  Improved Ray-intersection Calculation 

The sampling and compositing intervals are computed by intersecting each ray with the bounding 

box of the slab and the reconstruction buffer, respectively.  Computation of these intervals on the rays is 

called ray-clipping in this dissertation.  Although ray-clipping is necessary in conventional volume 

visualization algorithms, its cost is insignificant compared to other costly computations.  In the incremental 

visualization algorithm, however, the cost of ray-clipping has become significant due to the relative 

reduction in the cost of ray-sampling and other computations.  

The first implementation of the incremental visualization algorithm used an analytical ray-polygon 

intersection algorithm similar to the Cyrus-Beck algorithm [Cyrus, 1978] for ray-clipping.  

Experimentation with this implementation showed that the cost of ray-clipping had grown to nearly half of 

the total rendering cost.  This situation is somewhat similar to a ray-tracing algorithm for geometric 

objects, in which ray-object intersection calculations are often the most expensive part of the entire 

computation. 

To reduce the cost of ray-clipping, the D-buffer algorithm has been developed  (Figure 3.31.)  The 

D-buffer algorithm scan-converts the polyhedral bound (e.g., a slab) onto the screen.  The compositing and 

sampling intervals for a pixel are computed only if two facets of the polyhedron are scan-converted onto the 

pixel, which guarantees that the ray has an interval that requires sampling or compositing.  Ray-clipping  

using the Cyrus-Beck algorithm, on the other hand, must compute all of the intersections of the ray with the 

polyhedron analytically in order to determine if the ray actually has a closed interval in the polyhedron.  In 

the implementation, the same code for the D-buffer algorithm is used to compute both sampling and 

compositing intervals.   

The cost of computing the intersection coordinates in the 3D screen space depends on the projection 

method.  If the projection is orthogonal, the z coordinate value of the scan converted polygon in the 3D 

screen is the Euclidean distance from the eye to the ray-polygon intersection.  Therefore, in this case, the 

D-buffer algorithm computes the intersection efficiently by using the incremental linear interpolation built 

into the polygon scan conversion algorithm.  Computing intersection distances is less efficient if 

perspective projection is used, since the distances must be computed by back-projecting the pixel 
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coordinates in the 3D screen space into the 3D world space.  

In general, the D-buffer algorithm is efficient if applied to compute intersections of a non-trivial 

number of rays with a convex polyhedron.  The D-buffer algorithm is similar to the Z-buffer algorithm 

(see, for example, [Foley, 1990]).  While the Z-buffer algorithm stores only one Z value, the D-buffer 

algorithm stores two Z values for the entrance and exit of a ray with the slab.  Note that the 

implementation of the D-buffer algorithm requires a polygon scan conversion algorithm which is precise; 

for example, neither overlap nor a crease between polygons should exist.   

3.4.2.2  Improved Ray-Caching 

In the basic incremental visualization algorithm, the classification, modeling, and ray-sampling steps 

exploit object coherence in the 3D world space.  Exploiting coherence has reduced the number of voxels 

that need classification, modeling, and ray-sampling.  The compositing step, on the other hand, exploits the 

object coherence in the 2D screen space only; the coherence available in the 3D screen space has not been 

exploited.  The coherence in the 3D screen space exists since the sampling interval, which has new 

ray-sample values, is much shorter than the compositing interval, which has no change.  This section 

discusses improved ray-caching methods that reduce the compositing cost per ray by exploiting coherence 

in the 3D screen space.  These methods are original to this dissertation. 
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Figure 3.31:  The D-buffer algorithm determines if a pixel emanates a ray that intersects the bound, i.e., a 

slab or reconstruction buffer, by scan converting the bound onto the screen.  If two polygons are scan 

converted to a pixel, the pixel is guaranteed to have an interval to be sampled or composited.   
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(a)  Basic Hierarchical Ray-Cache 

In order to exploit the coherence in the 3D screen space, we wish to composite only those samples 

that have been changed.  What this amounts to in compositing is to undo the contributions from old 

ray-samples that are superseded by a new set of samples and to redo the compositing with the new set of 

samples.  If the compositing operation is additive, it can be undone easily as long as the old samples are 

available; simply subtract the old sample values and add the new sample values.  Unfortunately, such a 

simple approach does not work for the ASSG model; compositing operations for each ray must be ordered 

(e.g., front-to-back or back-to-front) and the operations are not commutative.  The Hierarchical 

Ray-Cache (HRC) approach allows such partial undoing and redoing of the compositing operation of 

ray-samples.  HRC enables fast compositing of a ray if its sampling interval is significantly shorter than its 

compositing interval.  From here on, the original ray-cache that uses a 1D array per pixel is referred to as 

the Linear Ray-Cache (LRC). 

Figure 3.32 illustrates HRC with branching-factor 2.  The HRC consists of a tree whose nodes store 

a pair of values, a radiance and an absorption coefficient.  For each non-leaf node, the pair of values is a 

result of compositing (with proper ordering) the values from all its child nodes.  If this property is 
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Figure 3.32:  An example of Hierarchical Ray-Cache (HRC) with branching-factor 2.  If the update of the 

samples is localized, the cost of compositing by the HRC is significantly lower than that of the LRC. 
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maintained, the root stores the completely composited radiance and absorption coefficient value pair.  The 

leaf nodes, on the other hand, store the value pair sampled directly from the 3D array of radiance and 

absorption coefficients.  Updates of the values in the tree start at the leaves when new sample values 

replace the old sample values at the leaf nodes.  (In Figure 3.32 leaf nodes with new sample values are 

numbered 11 through 14.)  For each non-leaf node, a new pair of radiance and absorption coefficients is 

composited from the values in its child nodes if any of its child nodes have been updated.   

Compositing by the HRC is faster than the LRC if the sampling interval is significantly smaller than 

the compositing interval, that is, if a slab is much thinner than a reconstruction buffer.  The following 

compares the cost of compositing between the LRC and HRC algorithms by using an example in which 

HRC has branching-factor 2.  Both LRC and HRC are assumed to have a compositing interval of 

2n samples.   

(1) Best case for the HRC: The HRC performs the best if there is only one new sample in the leaf 

nodes, that is, the slab is 1 ray-sample thick.  In this case, HRC requires 2n reads, n+1 writes, and 

n compositing operations to compute the pixel value.  LRC, on the other hand, takes 2n reads, 1 

write, and 2n-1 compositing operations (that is, every leaf node, old and new, needs compositing).  

In other words, a change of one out of N=2n samples requires O(N) compositing operations for the 

LRC, and O(log2N) compositing operations for the HRC.  

(2) Worst case for the HRC: The HRC performs worst if all the samples on the leaf nodes have been 

updated (e.g., a slab is as thick as an entire reconstruction buffer, or a viewpoint change.)  In this 

case, the binary HRC requires 2n+1 reads, 2n+1 writes, and 2n compositing operations.  On the 

other hand, the LRC requires 2n reads, 2n writes, and 2n-1 compositing operations.  In this case, 

the HRC requires about twice as many read and write operations and about as many compositing 

operations as the LRC.  

(b)  Modified Hierarchical Ray-Cache 

Computational cost of a HRC depends on its branching-factor and implementation.  A tree with a 

low branching-factor (e.g., 2) is not efficient since the tree becomes tall.  On the other hand, a tree with a 

large branching-factor is also inefficient, since redundant compositing operations increase.  An optimal 

branching-factor for a visualization depends on such factors as the implementation of the algorithm, the 

hardware platform, the size of the reconstruction buffer, the size of the slab (which is determined by the 

scale parameter), and the viewpoint.  An earlier implementation of the HRC method employed a linked-list 

structure to realize the tree.  This realization was flexible but slow due to its large overhead in maintaining 

and traversing the tree.  This experience led to two modified implementations of the HRC method, the 

2-level HRC and 1-level HRC.  Examples of four methods of sampling and compositing, which include 
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(a) no caching, (b) LRC, (c) 2-level HRC, and (d) 1-level HRC, are compared in Figure 3.33.   

(1) 2-level HRC: The 2-level HRC is a simplified HRC with a fixed height of 2, and a definable 

branching-factor (Figure 3.33.c).  In a 2-level HRC with N leaf nodes, in addition to a secondary 

cache, an N-entry 1D array of raw samples identical to the LRC, there is a primary cache (another 

1D array) with N/a entries located closer to the root.  The denominator a is the branching-factor of 

the tree, so that a larger a requires less memory for the primary cache.  An entry in the primary 

cache stores the compositing result from its a child nodes (i.e., leaf nodes).  Traversal of the tree is 

performed efficiently by manipulating indices instead of following links.  A disadvantage of the 

2-level HRC is that it requires additional memory space compared to a LRC with identical 
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Figure 3.33: Three ray-caching methods, Linear Ray-Cache (LRC), 2-level Hierarchical Ray Cache 

(HRC), 1-level HRC, and ray-casting without ray-caching are illustrated.  In the diagrams, a is the 

branching-factor of the tree, and N is the total number of samples per ray.   
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compositing interval.  For example, assuming a compositing interval of 256 samples (i.e., 256 leaf 

nodes) and branching-factor 16, the 2-level HRC requires 16 additional nodes.  

(2) 1-level HRC: The 1-level HRC algorithm is the result of an attempt to reduce the memory 

consumption of ray-caching by eliminating the leaf nodes from the 2-level HRC algorithm.  The 

1-level HRC algorithm has only the primary cache; raw samples at the leaf nodes are not cached.  

For example, computing a new value at the primary (and only) cache requires taking a samples and 

compositing them.  A 1-level HRC requires more sampling operations than the 2-level HRC or 

LRC.  The 1-level HRC algorithm is expected to be faster than the LRC but slower than the 2-level 

HRC.  The 1-level HRC requires less memory than either the LRC or 2-level HRC.   

Figure 3.33.a illustrates sampling and compositing without caching, i.e., the non-incremental 

ray-casting in which all the necessary samples in the compositing interval are sampled and composited.  

Figure 3.33.b illustrates the LRC in which the samples in the compositing interval are cached in the 1D 

array.  Figure 3.33.c illustrates the 2-level HRC and Figure 3.33.d illustrates the 1-level HRC, both with 

branching-factor 4.  Computational and memory costs of both HRC algorithms are affected by their 

branching-factors.  The 1-level HRC is more sensitive to branching-factor than the 2-level HRC, since the 

cost of 1st level cache miss is higher in the 1-level HRC (i.e., performing the interpolated ray-sampling and 

compositing) than the 2-level ray-cache (i.e., reading the secondary cache and compositing).  Figure 3.34 

tabulates a comparison of the costs of compositing among the LRC, 1-level HRC, 2-level HRC, and 

non-incremental algorithm without a ray-cache.   

Figure 3.35 tries to give a set of exemplary numbers on the compositing methods under somewhat 

realistic conditions, in which the compositing interval is 128 and the sampling interval is 11.  Evaluations 

of the ray-cache algorithms by actually visualizing a dataset will be presented in Section 3.5.2.3. 

 

 Computational cost Memory cost 

No caching High None None 

LRC Middle Mid O(N) 

1-level HRC Middle-Low Low-Mid O(N/a) 

2-level HRC Low High O(N+N/a) 

Figure 3.34:  A generalized comparison of compositing costs.  N is the number of samples per ray, and a 

is the branching-factor of the tree for the ray.   
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branching-factors, 4 and 16.  (These branching-factors are selected based on experiments presented in 

Section 3.5.2.3.) 
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3.4.3  Parallel Reconstruction and Visualization Algorithm 

One of the goals of the static viewpoint 3D echography system is to achieve interactive speed.  The 

basic incremental visualization algorithm presented in the Section 3.4.1 and the subsequent improvements 

described in Section 3.4.2 have resulted in a significant speedup.  However, the resulting algorithm is yet 

to achieve interactive speed on a contemporary single processor workstation.  This section presents an 

exploration of algorithm and computational hardware capabilities necessary to realize interactive speed of 

visualization by using parallelism.  The exploration includes development of a parallel reconstruction and 

visualization algorithm and evaluation of the algorithm on several variations of a hypothetical but realistic 

parallel processor architecture using numerical simulation.  The parallel algorithm is implemented as a 

single-threaded code on a single processor workstation that simulates the data parallel portions of the 

algorithm by loops.  It generates execution profiles of the parallel algorithm to be used in the numerical 

model of the hypothetical parallel processor architecture.  The numerical model then estimates the 

performance of the algorithm on a parallel processor system based on the profile and a few other 

parameters.  

The following part of this section describes the parallel algorithm whose evaluation will be 

described in Section 3.5.3.  

3.4.3.1  World Space Parallel Algorithm 

The parallel algorithm described in this section includes all the visualization steps for the static 

viewpoint 3D echography system; it includes the incremental reconstruction algorithm (Section 3.3.2.2) and 

the incremental visualization algorithm (Sections 3.4.1 and 3.4.2.)  In terms of acceleration techniques, the 

visualization algorithm described in this section includes image-adaptive ray-casting similar to [Levoy, 

1990d] in addition to the improved ray-clipping and ray-caching algorithms described in Section 3.4.2.   
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Figure 3.36:  This figure shows an example of the volume data subdivision in the 3D world space among 

4 independent pipes.  Other subdivision methods are also possible (Figure 3.38).  The input image size is 

m  n, and p  is the number of parallel pipes. 
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Figure 3.37:  Diagram of the proposed parallel incremental volume visualization algorithm adapted to the 

volume data subdivision illustrated in Figure 3.36.  The reconstruction, classification, modeling, 

ray-sampling, and a part of the compositing (―local compositing‖ steps can be performed in parallel among 

the pipes.  The input image size is m  n, and p  is the number of parallel pipes.   



 Page 128 

The parallel algorithm exploits parallelism primarily in the 3D world space.  For most of the 

computational steps, the volume dataset is subdivided into regular subvolumes in the 3D world space.  

Each of the subvolumes and their associated computations are assigned to a pipeline of processors.  

Computations associated with a subvolume include the reconstruction, classification, modeling, 

ray-sampling, and a part of the compositing step.  These steps in one pipeline can proceed independently 

of the steps in the other pipelines.  Serialization occurs when output images from multiple pipelines are to 

be combined, with proper ordering, into a fully composited image.   

Figure 3.36 illustrates one way among many to subdivide the volume datasets in the 3D world space 

for the parallel algorithm.  Figure 3.37 shows the steps involved in the parallel volume visualization 

algorithm based on the volume dataset subdivision method of Figure 3.36.   

An acquired 2D image slice is first reconstructed in 1D along the u axis, then it is divided into strips 

to be distributed to multiple pipes for the remaining 2D of the reconstruction in the v-q plane.  After the 

reconstruction, each pipe has a subvolume shaped as a rectangular slab, which is a subset of the complete 

data volume.  These subvolumes overlap with each other by 3 voxels.  This overhead is necessary to 

compute gradient magnitude in the classification and modeling steps using the finite difference operator of 

formula (3.39), and to compute tri-linear interpolation in the ray-sampling step.   

In each subvolume, the reconstructed 3D array of echo intensity values is classified and modeled, 

and then ray-cast to produce ray-samples for each ray.  These ray-samples are stored in a ray-cache (either 

LRC, 2-level HRC, or 1-level HRC) and composited.  The compositing takes place in 2 steps, local and 

global.  In each parallel pipe, a set of samples in its ray-cache (which is in the 3D screen space) are locally 

composited into an image in the ―2.5D‖ screen space.  More than one of these 2.5D screen space images 

are then globally composited to generate a fully rendered 2D image in the 2D screen space.   

3.4.3.2  Implementation Models of the Parallel Algorithm 

The parallel algorithm described in the previous section may be implemented in many different 

ways which vary in the volume data subdivision method, structure of the parallel pipelines, process to 

processor mapping, etc.  The following lists three variations of the implementation of the parallel 

algorithm, which are illustrated in Figures 3.38.a-3.38.c.    

1) Software Global Compositing (SGC) Model:  The volume dataset in the 3D world space is 

subdivided into rectangular slabs, and the global compositing performed by software using a 

binary tree of processors.  Every pipeline stage uses an identical processor.  (Figure 3.38.a) 

2) Hardware Global Compositing (HGC) Model:  The volume dataset in the 3D world space is 

subdivided into rectangular slabs, and the global compositing is performed by special hardware.  
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Every pipeline stage uses an identical processor.  This replaces one of the costliest steps in the 

SGC model, the global compositing, with hardware that incurs an almost negligible latency.  

(Figure 3.38.b) 

3) Optimized Hardware Global Compositing (OHGC) Model :  This model subdivides the 

volume dataset in the 3D world space by two sets of parallel planes into columns; that is, each of 

the rectangular slabs in (1) and (2) is further subdivided.  This subdivision increases the available 

parallelism.  This model performs global compositing by special hardware (identical to the HGC 

model), and optimizes the processing power at each pipe stage by allocating more than one 

processor for the stage.  (Figure 3.38.c) 

These three variations employ two kinds of volume subdivision methods and two kinds of parallel 

processor hardware architectures, which are explained next. 

(a) Task subdivision and process allocation 

The SGC and HGC models subdivide the rectangular volume into slabs by a set of parallel planes 

which are perpendicular to the z axis.  The OHGC model may further subdivide the slabs into columns by 

a set of parallel planes perpendicular to the y axis.  In the following, the subdivision method along one axis 

employed by SGC and HGC is called 1D subdivision, and the subdivision method employed by OHGC 

along 2 axes is called 2D subdivision.  The 2D subdivision enables the algorithm to exploit more 

parallelism without an undue increase in the overhead due to boundary sharing.   

In the SGC and HGC models, each slab is assigned to a pipeline which consists of one, two, or more 

pipe stages with equal processing power.  These models are likely to have pipeline ―bottlenecks‖ since the 

processor power per pipe stage is constant across stages while computational demand per stage varies from 

stage to stage.   

The OHGC model tries to reduce the bottleneck.  The mismatch in the computational power 

demand and supply at a processor can be rectified by either decreasing the demand - more subdivision - or 

by increasing the supply - a faster processor, or both.  Here, we held the processor power constant and 

varied the demand, i.e., the number of subdivisions.  Thus, in the OHGC model, the number of 

subdivisions (thus the size of the subvolumes) in the visualization pipe stages may be different.  For 

example, the reconstruction stage may employ mn1 2D subdivision while the ray-sampling and 

compositing stages may employ mn2 2D subdivision.  Meanwhile, the classification and modeling steps 

may employ m 1D subdivision.  (OHGC model is called ―optimized‖ HGC since its subdivides the volume 

and allocates the resource adaptively depending on the computational requirements of the pipe stages.)   
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(b) Hardware models 

Three implementations of the parallel algorithm assume two kinds of parallel processor hardware 

architectures.  The first kind of architecture is a general purpose, message passing, distributed memory 

MIMD parallel processor.  This architecture assumes no physically shared memory, and the processors 

communicate with each other by messages through a high-bandwidth, low-latency communication network.  

Examples of such architecture are Touchstone DELTA [Littlefield, 1992] and its relative Intel 

Paragon XP/S [Intel, 1991].  Such an architecture is used in the SGC model, in which the global 

compositing takes place in software running on a processor identical to those in the other processor nodes 

(Figure 3.38.a.)  Note that the SGC model does not require the flexibility of the communication 

architecture of this class of machines.  If a machine is to be designed for the SGC model, the 

communication architecture can be greatly simplified.   

The second machine architecture assumed for the HGC and OHGC is similar to the first one, except 

for the addition of a hardware compositing network similar to those in Pixel-Flow [Molnar, 1989] or 

Fujitsu Co.‘s Subaru [Sasaki, 1993] (Figures 3.38.b and 3.38.c).  A hardware compositing network of this 

kind is able to perform global compositing for each pixel at a pixel data transfer rate (e.g., about 1 million 

pixels per frame) with very small latency (e.g., in hundreds of microseconds) with the expense of special 

hardware.  Short compositing latency is a significant advantage of hardware compositing, especially if the 

number of pipes is large, in shortening the total lag from data acquisition to visualization.  

Note that hardware compositing for volume dataset visualization is not a new idea; for example, an 

object-space parallel algorithm with hardware global compositing is found in [Goldwasser, 1987, 

Goldwasser, 1988], although it only supports the Cuberrille-like surface model of volume visualization.  

Also, newer compositing hardware design found in Pixel-Flow and Subaru have much higher bandwidths 

and much smaller latencies since these two operate at pixel clock rates.  

Performance evaluation of the parallel incremental volume reconstruction and visualization 

algorithm using these three implementation models will be presented in Sections 3.5.2 and 3.5.3.  
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Figure 3.38.a:  Software global compositing (SGC) model with 1D subdivision.  The volume data is 

subdivided into rectangular slabs in the 3D world space.  Every stage of a pipe consists of an identical 

processor.   
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Figure 3.38.b: Hardware global compositing (HGC) model with 1D subdivision.  The volume data is 

subdivided, in the 3D world space, into rectangular slabs by a set of parallel planes perpendicular to z axis.  

Every stage of a pipe consists of an identical processor, except for the global compositing which is 

performed by a special hardware at a pixel clock rate (e.g., 30 Million pixels/s). 
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Figure 3.38.c: Optimized hardware global compositing (HGC) model with 2D subdivision.  Unlike the 

other two models, this model may subdivide the volume into rectangular columns (Figure 3.43.b).  Each 

pipe stage in a pipe may have a different number of processors to optimize for the stage‘s processing 

demand.   
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3.5  Experiments and Result 

This section presents two kinds of experiments and their results.  The first kind, presented in 

Section 3.5.1, demonstrates the visualization capability of the visualization algorithm of the static 

viewpoint 3D echography system.  The second kind, presented in Sections 3.5.2-3.5.3, deals with the 

performance of the algorithm.   

3.5.1  Reconstruction and Visualization 

3.5.1.1  Experimental Conditions 

This section describes conditions common to all the experiments described in Sections 3.5.1 and 

3.5.2.  The experiments consisted of (1) acquisitions of 3D echography datasets using the acquisition 

system described in Section 3.2, and (2) visualizations of the datasets using the incremental reconstruction 

and visualization algorithm described in Section 3.3 and Section 3.4.   

(a) Acquisition 

The datasets are acquired of a doll phantom (Figure 3.40.a) and the forearm of a healthy male.  

These objects are scanned in a water tank using the acquisition system described in Section 3.2, which 

employed an Advanced Technology Lab. Mark-4 echography scanner with a 3.5MHz linear transducer.  

Both objects were acquired by translating the hand-guided transducer so that the images were roughly 

parallel.  The acquisition program is written so that a translation of sample points of more than a certain 

preset threshold triggers the image and coordinate acquisitions.  For the scanner/transducer combination, 

we have used the preset threshold of 2 mm, so that each dataset has a series of roughly parallel slices with 

intervals of about 2 mm.  Acquired images and coordinates for an acquisition are stored in a pair of disk 

files, which are later read by the reconstruction and visualization subsystem for visualization experiments.  

(b) Reconstruction and visualization 

For the doll dataset, two different reconstruction buffer sizes (either 340128128 or 

249128128) were used.  A reconstruction buffer size 340128128 is used for the arm dataset.  

Reconstruction buffers with such elongated shapes were required to fit the entire doll phantom or arm into 
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the reconstruction buffers.  For most of the visualizations, scale and truncation parameters for the 

reconstructions were chosen based on the method presented in Section 3.3.1.3.  On one experiment 

described in Section 3.5.1.3, however, the scale parameter has been varied deliberately so that its effect on 

the visualized images can be evaluated.   

The reconstruction and visualization algorithms are coded in C, and executed on a AIX™ (an IBM 

version of UNIX™) operating system running on an IBM RS6000 model 550/E workstation with 

512 MBytes of memory.   

3.5.1.2  Incremental Visualization 

This section presents an example of the incremental visualization from a dataset acquired of the doll 

phantom and stored in disk files.   

The acquired dataset has 90 image slices acquired over the distance of about 20 cm, which covers 

the doll from head to toe with some blank space on both sides.  Figure 3.39.a shows the original doll 

phantom and Figures 3.39.b-3.39.d show examples of the ultrasound echography sections of the head, 

torso, and leg of the doll.  It can be hard to mentally reconstruct the 3D shape of the doll phantom from 

these slices if they are presented one by one.   

In Figures 3.39.b-3.39.d, the regular interval bars on both sides of the echography images are 

distance markers displayed on the echography scanner‘s screen; each bar represents 1 cm, so the pictures 

show the section with actual size of roughly 1010 cm.  The eyes and nose of the doll have feature sizes 

around 3 mm to 5 mm.  These sizes are larger than the axial resolution of the echography scanner, but 

about the same as the elevation resolution of the scanner (about 4 mm at the range 10 cm.).  Notice that, in 

Figure 3.39.b, the bottom of the head is missing from the echographic image due to attenuation.  Also 

notice in Figure 3.39.c that the side walls of doll that are tangential to the sound wave propagation have 

weak or non-existent echoes.  Nylon monofilament strings that suspended the doll are also visible in 

Figure 3.39.b as spindle shaped echoes.  The echography images also include various kinds of noise, such 

as echoes from the bubbles in the water and possibly multiple-paths echoes from the water-glass interfaces, 

the water-air interface, and the water-doll interfaces.   
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Figure 3.39.a:  Photograph of the doll phantom, 

whose height is 17.5cm.  This phantom is placed 

in a water tank and scanned by ATL Mark-4 

echography scanner with 3.5 MHz linear scanhead.   

 Figure 3.39.b:  This shows a section of the head 

portion, along with the echo from the nylon 

monofilament to the left. 

   

 

 

 

Figure 3.39.c:  Torso section of the doll phantom, 

facing up.   

 Figure 3.39.d:  Leg section of the doll phantom.  

Notice the arc shaped scanning artifact, and shiny 

reflections from bubbles. 
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after 16th slice 

 

 

after 32nd slice 

Figure 3.40.a: Snapshots of incremental 

visualization.  This image is generated after 

reconstructing and visualizing 16th slice. 

 Figure 3.40.b: Image after 32nd slice.  Diagonal 

―bar‖ on the right side of the head is echo from the 

nylon monofilament used to suspend the doll.  

The nose and eyes of the doll are barely noticeable. 

   

 

after 48th slice 

 

 

after 64th slice 

Figure 3.40.c:  Image after 48th slice.  Back of 

the torso section is not visualized well since it has 

weak echoes.   

 Figure 3.40.d:  Image after 64th slice. 
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after 80th slice 

 

 

after 88th slice 

Figure 3.40.e:  Image  after 80th slice.  The 

―cloud‖ in front is the multiple-paths echoes (Note 

that the cloud does not exists where the doll is due 

to shadowing by the doll.) 

 Figure 3.40.f:  Image  after 88th slice (out of 90 

slices.)  The ―cloud‖ of multiple-paths echoes 

from the walls, water surface, etc., are more 

prominent in this picture. 

 

Figure 3.40.a-3.40.f show a series of images of the doll phantom generated from the dataset of the 

doll phantom using the incremental visualization algorithm running on an IBM RS6000 model 550/E.  

Image generation time on this workstation was about 3 seconds per 2D echography slice, although the time 

varies with parameters.  (Detailed performance evaluations of the visualization algorithm will be presented 

in Sections 3.5.2 and 3.5.3.)  The reconstruction buffer size is 249  128  128, and the rendered image 

size is 256  256.  Using the methods described in Section 3.3.1.3, the scale parameter 0=2.229 voxel 

and the truncation radius R=8.057 voxel were selected for the reconstruction.  Some of the other 

parameters of the visualizations, such as the echo-intensity to opacity mapping and the location and 

strength of light source are chosen through a few trial-and-error sessions.  

When a user is presented with a set of 2D echography slices of the doll phantom one by one, the 3D 

shape of the doll is not readily apparent (Figures 3.39.b-3.39.d).  The 3D shape of the doll is much easier 

to recognize in the volume visualized images (Figures 3.40.a-3.40.f).   
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3.5.1.3  Scale Parameter and Visualization 

The approximation method (Section 3.3) used in the reconstruction changes its behavior due to its 

scale parameter.  The effect of scale parameter on approximations is evaluated in Section 3.3.1.4 by using 

numerical simulation in 1D.  This section evaluates the effect of scale parameter on volume visualized 

images by actually reconstructing and visualizing a 3D echography dataset acquired as a series of 2D 

echography images slices.  The dataset used for this evaluation experiment is the same as the one used in 

Section 3.5.1.2.  All 5 images in the Figures 3.39.a-3.39.e are generated from the same viewpoint after the 

88th echography slice is reconstructed.  The scale parameters, however, are different among the images.  

The ―optimal‖ scale parameter is 0=2.23, while =1.11 is half and 1=4.46 is twice the optimal 0.  

Among the images, Figure 3.39.c at the center used the optimal scale parameter 0=2.23.   

The image in Figure 3.39.a, which used the smallest scale parameter =1.11, has many noisy 

features.  According to the scale parameter estimation method of Section 3.3.1.3, this scale is large enough 

for the lateral and axial resolution but too small for the elevation resolution of the echography equipment.  

On the other hand, the image in Figure 3.39.e, which used 1=4.46 (twice the optimal scale parameter), 

appears too smooth.  Images generated using scale parameters near the optimal scale parameter, i.e., 

Figures 3.39.b with 1.5-1=1.67, Figure 3.39.c with  0=2.23, and Figure 3.39.d with 1.50=3.34, look 

better than the other two (Figure 3.39.a with =1.11 and Figure 3.39.e with 1=4.46.)  It is arguable as 

to which one of the three scale parameters near 0 produced the best visualization.   

Appropriateness of scale parameter selection depends on the purpose of visualization and the user‘s 

preference as much as the nature of the object function and the sampling process.  However, the scale 

parameter selection method described in Section 3.3.1.3 appears to be successful in finding a starting point 

for the experimentation by the users.   
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3.41.a (Above) Scale 

parameter =1.11. 

 

 

3.41.c (Right) ―Optimal‖ 

scale parameter 0=2.23. 

 

 

3.41.d (Below) Scale 

Parameter 1.50=3.34. 
 

3.41.b (Above) Scale 

parameter 1.5-1=1.67. 

 

 

 

 

3.41.e (Below) Scale 

parameter  1=4.46. 

 

 

 

Figure 3.41.a-3.41.e: The doll phantom visualized with different scale parameters from a series of 90 

near-parallel slices.  The visualization using the ―optimal‖ scale parameter 0=2.23 appears to be the best.  

The visualization by =1.11 is too noisy, while the visualization by 1=4.46 is excessively smooth. 
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3.5.1.4  Visualization Examples 

This section presents several visualization examples.  The first set of images in 

Figures 3.42.a-3.42.d show the doll phantom from several different viewpoints, visualized from the same 

dataset as in Section 3.5.1.2 and Section 3.5.1.3.  Visualization from different viewpoints appears to make 

understanding of the 3D spatial relationship of objects much easier.  

Figures 3.43.a-3.43.b shows two echography images of sagittal slices of the right forearm of a 

healthy adult male scanned in a water tank.  The images of the arm appear to consist of numerous speckles 

and other grainy ―noise‖ patterns.  The upper surface of the ulna is identifiable in Figure 3.43.b, and some 

of the epimysium (the connective tissue that surrounds muscle) are recognizable as a collection of grainy 

patterns.  However, in general, these images are difficult to interpret for a layperson.   

Figure 3.43.c and Figure 3.43.d show the volume visualized images of the forearm.  Both images 

include discontinuities at the upper part of the arm (near the wrist) which are the result of movement of the 

arm while being scanned.  The overall shape of the arm is unmistakable in the volume visualized images.  

Anatomical structures, however, are difficult to understand in the volume visualized images of 

Figures 3.43.c-3.43.d as much as in the 2D echography slices in Figures 3.43.a-3.43.b.   

These poor volume visualizations resulted, in large part, from the ―poor quality‖ of the ultrasound 

echography images.  The poor echography image quality can be attributed, in part, to the method of 

scanning through water, which increased attenuation.  (Contact scanning was not practical using the linear 

transducer due to the high curvature of the forearm.)  Inadequate adjustment of the echography scanner 

could also have contributed.  The arm, filled with dense muscle tissues, is also a difficult target.  If the 

target has better defined impedance boundaries of interest, echoes from the boundaries would be much 

clearer.  For example, the fetus in the uterus (a soft tissue surrounded by water) or the heart (a bag of 

muscle filled with water) may return better defined echoes.  Obviously, the poor visualization result is also 

due to the inadequate classification and modeling techniques; they could not extract and model the 

interfaces of interest from the echography images.  Developing effective classification and modeling 

techniques for images with quality similar to Figures 3.43.a and 3.43.b will be a significant challenge.  
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Figure 3.42.a: This is a ―typical‖ oblique view.    Figure 3.42.b: This view has the same viewing 

direction as view 1, but has a smaller viewing 

distance. 

   

 

 

 

Figure 3.42.c: This is a near extreme view, 

looking down from the head to toe.  Notice the 

perspective projection effect. 

 Figure 3.42.d: This is an extreme case, a side 

view. (The head is to the left , face up.) 

 



 Page 142 

 

 

 

 

Figure 3.43.a: A slice of healthy male right 

forearm scanned in a water tank (distal to 

Figure 3.43.b.)   

 Figure 3.43.b: Another slice of the healthy right 

forearm of male scanned in a water tank (medial to 

the Figure 3.43.a .)   

   

 

 

 

Figure 3.43.c: Anterior view of the forearm, 

reconstructed and visualized from 12 slices.  A 

discontinuity due to movement of the subject is 

visible at the top (near the wrist).   

 Figure 3.43.d: Anterior view of the forearm, 

reconstructed and visualized from 24 slices.  A 

discontinuity due to movement of the subject is 

visible at the top (near the wrist).  
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3.5.2  Performance of the Sequential Algorithm 

This section evaluates the performance characteristics of the incremental volume visualization 

algorithm for the static viewpoint 3D echography system, focusing on the acceleration methods without 

using parallelism.  Results of evaluation on the parallel algorithm will be presented in Section 3.5.3. 

3.5.2.1  Performance Evaluation Method 

Performance of the sequential implementation of the incremental visualization algorithm were 

measured directly by executing a realization of the algorithm with a real dataset.  The code is written in C 

language, which is compiled and executed on an IBM RS6000 model 550/E workstation (SPECint92 at 

48.1, SPECfp92 at 83.3) with 512 MByte main memory running the AIX™ operating system.  

Measurements included total execution time, execution cost breakdown, and memory consumption.  The 

execution timing measurements used two methods; one inserts clock()  UNIX system calls into the code 

compiled with the optimization option, and the other profiles the code compiled with the profiling option 

by gprof  facility in the AIX™.  gprof  is similar to, but more sophisticated than, the profiler prof  

common on UNIX.  For example, gprof  is capable of profiling time spent in a C function and all its 

callees.   

A pseudo-parallel code is used for the evaluation of both the sequential algorithm and the parallel 

algorithm.  The pseudo-parallel code simulates parallelism by duplicating datasets and looping.  Despite 

its simplicity, the pseudo-parallel code simulates many aspects of the parallel algorithm well since the 

algorithm has a simple process structure and little process synchronization.  To evaluate the parallel 

algorithm, the pseudo-parallel code generates execution profiles, which are then given to a numerical model 

that primarily deals with the communication costs of a hypothetical parallel processor system.  To evaluate 

the sequential algorithm, a parameter for the code that indicates the number of processors is simply set to 1, 

and execution timings or profiles are taken.  Consequently, timings measured for sequential executions 

include a small amount of overhead if the code is a truly sequential implementation.  

3.5.2.2  Incremental Computation by Spatial Bounding 

The primary method of acceleration for the visualization algorithm of the static viewpoint 3D 

echography system is spatial bounding at various steps.  This section assesses the effect of spatial 

bounding on the total visualization cost, by visualizing the doll dataset used in Section 3.5.1.2 from the 

viewpoint of Figure 3.44.a.  The size of the reconstruction buffer is 249  128  128, and the size of the 

rendered images is 256  256.  The compositing step used the fastest combination of methods: the 2-level 

hierarchical ray-cache with the branching-factor 16 and the image-adaptive ray-casting.  This combination 
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is chosen based on experiments presented in Section 3.5.2.4.  

Since incremental mode execution assumed that none of the parameters (except the dataset) has 

changed over the course of reconstructing and visualizing 90 image slices, the code performed all the 

reconstruction, classification, modeling, ray-sampling and compositing steps incrementally.  The 

non-incremental mode execution, on the other hand, assumed a classification parameter change (in addition 

to the dataset change) for each echography image slice, so the code performed the classification, modeling, 

ray-sampling and compositing on the entire reconstruction buffer (instead of a slab) for each echography 

image slice input.  The reconstruction step has been performed incrementally in both modes, since the 

reconstruction parameters are fixed in both cases. 

Figure 3.45 compares the execution time of the non-incremental and incremental mode executions, 

in which the values are normalized by that of the non-incremental mode.   As the figure shows, the 

incremental mode spent only 11% of the time compared to the non-incremental mode.  In other words, in 

this example, the incremental execution mode is about 9 times faster than the non-incremental execution 

mode.   

In absolute time, the incremental execution mode averaged 2.5s/slice, while the non-incremental 

mode execution averaged 22s/slice.  An image generation time of 2.5s may not seem fast if compared to a 

conventional volume visualization algorithm running on an identical workstation.  However, the 

incremental algorithm visualizes partially dynamic datasets, while the other volume visualization only 

 

 

 

 

Figure 3.44.a: View 1  Visualized from the doll 

dataset with 90 slices at average speed 2.5s/slice. 

 Figure 3.44.b: View 2 Visualized from the doll 

dataset with 90 slices at average speed 2.6s/slice. 
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visualizes static datasets.  Therefore, a fair comparison must include the cost of ―preprocessing‖, which 

includes, for example, classification, modeling, and hierarchical spatial partitioning computation, into the 

total execution costs of the conventional algorithm. 

Figure 3.46 shows the relation between the scale parameter and the execution time.  We expect a 

positive correlation between these two, since the scale parameter determines the thickness of the slab, that 

is, the volume of the spatial bound.  This is, in fact, the case.  The execution time increases proportionally 

to the scale parameter.  This correlation means that the cost of visualization per echography slice decreases 

as the resolution of the scanner increases (and hence the scale parameter decreases).  This is a desirable 

property since it tends to encourages higher resolution acquisition and visualization.  

3.5.2.3  Hierarchical Ray-caching 

Hierarchical ray-caching is a technique unique to the visualization algorithm of the static viewpoint 

3D echography system.  To evaluate the performance and memory requirements of the ray-caching 

methods, the same dataset of the doll used in Section 3.5.1.2 has been visualized by using three ray-caching 

methods, (1) Linear Ray-Cache (LRC), (2) 1-level Hierarchical Ray-Cache (HRC), and (3) 2-level HRC.  
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Figure 3.45: Visualization costs of the 

incremental and non-incremental mode. 

 
Figure 3.46: Cost of incremental visualization 

increase linearly with the scale parameter. 
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In cases of the 1-level HRC and 2-level HRC, the branching-factors of the trees have been varied from 1 to 

128 to evaluate the effect of branching-factor on the execution speed and memory requirements.  This 

experiment used a reconstruction buffer size of 340  128  128 and the rendered images size 256  256.  

The image-adaptive ray-casting is enabled, and the viewpoint is fixed as in Figure 3.44.a.    

Figure 3.47 shows the relationship of the branching-factor and the execution time per slice for the 

three ray-caching algorithms.  These execution timings include all the computation necessary for the 

visualization, i.e., reconstruction, classification, modeling, ray-sampling, and compositing.  As shown by 

the figure, the 2-level HRC with branching-factor 16 is the fastest, with the visualization time averaging 

2.2s/slice.  The 1-level HRC is significantly faster than the Linear Ray-Cache (LRC) at the best performing 

branching-factor (branching-factor 4), but it is still not as fast as the best of the 2-level HRC.  Note in the 

figure that the execution speeds of the 1-level and 2-level ray-cache algorithms have quite different 

sensitivities to the branching-factors.  The 2-level HRC is not sensitive to the change in the 

branching-factor, since the cost of the primary cache miss is small due to its secondary level cache at the 

leaf level.  The 1-level HRC is much more sensitive to the branching-factor since a cache miss  incurs a 

high cost of interpolated ray-sampling and compositing (The 1-level HRC has only the primary level 

cache.)   

Figure 3.48 shows the memory cost of ray-caching.  The figure plots the total memory requirements 

by the visualization algorithm including the code, the reconstruction buffer, the ray-cache, and various 

other constants and variables.  Note that the vertical axis starts at 40 MByte.  Note also that of the total 

memory requirements, 43.8 MByte is consumed by the reconstruction buffer, which is indicated in 

Figure 3.48 by the shaded area.  This memory area used by the reconstruction buffer is constant regardless 

of the ray-caching methods and branching-factors.  The unshaded areas are used by the others, most 

significant of which is the ray-cache.   

Memory requirements by the ray-caches vary depending on the ray-caching methods and, in cases of 

the HRCs, depending on their branching-factors.  As the figure shows,  the 1-level ray-cache has the 

lowest memory requirement across all branching-factors except branching-factor 1, which is an extreme 

case.  At its best performing branching-factor of 4, the 1-level HRC is faster than the LRC yet consumes 

nearly 50% less memory for the ray-cache than the LRC.  The 2-level HRC, which is the fastest of the 

three HRC methods, has the worst memory consumption.  However, if we look at the best performing 

branching-factors of 16 and 32, the additional memory required by the 2-level HRC over LRC is not very 

large.  

In summary, the 2-level HRC with branching-factor 16 or 32 is significantly faster than the others if 

its high memory requirement can be afforded.  The 1-level HRC with branching-factor 4 is slower than the 

2-level HRC but faster than the LRC. Remarkably, the 1-level HRC with branching-factor 4 requires less 
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memory than either the LRC or the 2-level HRC.  The LRC does not seem to have any advantage 

compared to the HRCs. 
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Figure 3.47: Branching-factor of the ray-cache and total execution time (average per slice.)  

Image-adaptive ray-casting is enabled.  HRCs have significant performance advantage over the LRC. 
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Figure 3.48: Branching-factor of the ray-caches and total memory consumption.  Shaded area at the 

bottom indicates the memory used by the reconstruction buffer.  (Notice that the vertical scale start at 

40 MByte.) 

3.5.2.4  Image-Adaptive Ray-Casting and Hierarchical Ray-Caching 

In order to reduce the cost of ray-casting, the incremental volume visualization algorithm 

incorporates, in addition to the hierarchical ray-caching, an image-adaptive ray-casting method which is 

identical to [Levoy, 1990d].  This section evaluates the combined effects of ray-caching and 

image-adaptive ray-casting by comparing six combinations of the ray-casting modes.  These six modes are 

combinations of three ray-caching methods (either the LRC, the 1-level HRC, or the 2-level HRC) and two 

ray-casting modes (either the image-adaptive mode or the non-image adaptive mode.)  

We wanted to analyze the behaviors of the six execution modes by profiling the code using the 

gprof  profiling facility available on AIX™.  Before using the profiling facility, we tried to make sure 

that the behavior of the code was not adversely affected by compilation with the profiling option (-gp ) 

necessary for the gprof , compared to the optimization option (-o ) used for the other timing 

measurements.   

Figure 3.49 compares the performances of the code compiled with the -o  option and the -gp  option 

for the six combinations of ray-casting methods. This experiment used the reconstruction buffer size of 

340128128 and the rendered images size 256256.  The viewpoint is fixed to that of Figure 3.44.a, and 

the image adaptive ray-casting started with cells of size 88, which are adaptively refined to cells of size 

11.  As a whole, performance changes across the six different ray-casting methods are remarkably 

similar between the two compilation options.  The performance ranking of the 6 modes is identical 

between the two compilation options, and the code compiled with the optimizing option consistently 

executes in about 36% to 41% of the time of the code compiled with the profiling option.  Thus, we can 

assume with reasonable confidence that profiling does not adversely affect the behavior of the code 

compiled with the optimization option.   

Figures 3.50.a and 3.50.b show, for the two viewpoints of Figure 3.44.a and Figure 3.44.b, the cost 

breakdown of the 6 combinations of ray-casting modes profiled using the code compiled with the -gp  

option.  As the figures show, significant reductions of computational costs are achieved using 

combinations of the hierarchical ray-caching with image-adaptive ray-casting.   

Among the six combinations of modes, combination of the 2-level HRC with image adaptive 

ray-casting is the fastest, and has reduced the total execution time by 47% and 41% for views 1 and 2, 

respectively.  The 1-level HRC combined with image adaptive ray-casting is the next most efficient, with a 
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reduction in total execution time by 42% and 34% for view 1 and 2, respectively.  These are significant 

reductions in cost considering that these are total execution times including time for reconstruction, 

classification, and other kinds of computations.  If the combined execution timings of the ray-casting and 

local-compositing steps are compared, the best combination (image-adaptive ray-casting with 2-level HRC) 

has reduced the time needed for these two steps to 1/3 of the worst combination (non-image adaptive 

ray-casting with LRC).  Both the image-adaptive ray-casting and the hierarchical ray-caching methods 

appear to be effective in both of the two viewpoints.  Their contributions in cost reduction varied, as 

expected, due to the difference in the way they work (e.g., whether coherence in 3D screen space or 2D 

screen space is exploited.) 

The benefit of the hierarchical ray-caching alone can be observed by comparing the three 

ray-caching methods with the non-image-adaptive ray-casting mode.  For example, by switching from the 

LRC to the 2-level HRC in view 1, the combined cost of the ray-sampling and compositing steps is reduced 

from 67% of the total cost to 36% of the total cost.  The reduction is less, but still significant, between the 

LRC and the 1-level HRC.  The cost breakdown also depicts the different behaviors of the two hierarchical 

ray-caching methods.  The 2-level HRC reduces the compositing cost relative to the LRC without 

changing the ray-sampling cost.  On the other hand, the 1-level HRC reduces the compositing cost (by an 

amount comparable to the 2-level HRC) but somewhat increases the cost of ray-sampling.  As a result, the 
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2-level HRC has the larger overall cost reductions.  

The benefit of image-adaptive ray-casting alone can be observed in the figures as well.  The figures 

show that, for the LRC, the image-adaptive ray-casting mode alone reduced the total computation cost by 

42% to 43% in these examples.  The reductions by image-adaptive ray-casting are smaller for the HRCs 

(e.g., 25% reduction for the 2-level HRC) since the HRCs have already reduced some of the costs.   

In summary, both the hierarchical ray-caching and image-adaptive ray-casting methods are effective 

in reducing the computational costs of the incremental volume visualization algorithm.  In fact, the best 

combination of methods (image-adaptive ray-casting and 2-level HRC) reduced the cost of ray-sampling 

and compositing to less than 1/3 the worst combination (the non-image adaptive ray-casting and LRC).   
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Figure 3.50.a (top) and Figure 3.50.b (bottom):  A comparison of the visualization cost breakdown 

among two viewpoints of Figure 3.44.a and Figure 3.44.c.  (Execution timing in these charts are obtained 

from the code compiled with the profiling option.  A code compiled with the optimization option would 

perform more than twice as fast i.e., about 40% of the time shown above.) 

3.5.3  Performance of the Parallel Algorithm 

This section discusses the evaluation of acceleration methods by exploiting parallelism, which is 

described in Section 3.4.3.  

3.5.3.1  Evaluation Method 

The performance characteristics of the parallel algorithm are estimated by using a numerical model 

driven by execution profiles generated by a pseudo-parallel code executed on a single processor 

workstation.  The pseudo-parallel code estimates the execution costs of the parallel algorithm within a 

processor of a hypothetical parallel processor system.  Then, the numerical model, controlled by the 

execution profiles, estimates the total cost by adding the communication costs of the parallel algorithm on 

the hypothetical parallel processor system.  

Strictly speaking, the pseudo-parallel code is a sequential code.  However, the pseudo-parallel code 

simulates data-parallel execution of the parallel algorithm by using loops and explicitly duplicated data 

structures so that the profiles it generates include many of the factors necessary to make a reasonable 

estimate of a parallel algorithm performance.  So, for example, a message communication between two 

processors includes explicit copying of the message from one data structure to another in order to account 

for the overhead involved.  Despite its simplicity, the pseudo-parallel code can represent the computational 

cost of the parallel algorithm well since the algorithm has a simple process structure and little process 

synchronization.  An important factor missing from the pseudo parallel execution is the communication 

cost which includes the inter-processor synchronization cost.  This factor is accounted for by the numerical 

model, controlled by the execution profiles.  

An execution timing of a code segment of the parallel algorithm generated by the pseudo-parallel 

code is realistic, since it is a time measured on a real processor of a contemporary workstation, IBM 

RS6000 model 550/E (SPECint92 at 48.1 and SPECfp92 at 83.3.)  The parameters for the message 

communication cost is also reasonable since they are based on the figures measured [Littlefield, 1992] on a 

Touchstone DELTA machine with a margin of safety added.  Consequently, we can be reasonably certain 

that the results of performance estimation are realistic.   
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Model of the hypothetical parallel processor system 

The hypothetical parallel processor system, which is called HPPS in this section for convenience, 

assumed a communication architecture similar to the Touchstone DELTA  [Littlefield, 1992] and its 

commercial relative Intel Paragon™ XP/S [Intel, 1991].  Each one of them is a message passing, 

distributed memory parallel processor system in which computation nodes are connected by a 2D mesh 

interconnection network with wormhole routing.  It should be noted that the communication network of a 

DELTA or Paragon is more flexible than the parallel visualization algorithm requires.  If a parallel 

processor system is to be designed for the parallel algorithm, the network can be greatly simplified for 

lower cost and possibly better performance.  The processors of the HPPS, however, are different from the 

DELTA and Paragon; To make the performance estimation easy, the processors of the HPPS are assumed 

to be identical to the processor in an IBM RS 6000 model 550E workstation which is used to run the 

pseudo-parallel code.   

Assumptions concerning the communication capabilities of the HPPS are identical to the Intel 

Paragon XP/S as summarized below.  

• The interconnection is a 2D mesh with bidirectional links, and it incorporates wormhole routing 

(hardware routing with low latency). 

• The interconnection has a maximum 200 MBytes/s node-to-node bidirectional transfer rate over 

each of the four links between nodes.  Each node‘s memory-to-link data transfer rate is also 

200 MBytes/s. 

• Two nodes anywhere in the system achieve a process-to-process transfer latency of 25 s. 

• Send and receive queues that connect node‘s memory and the links are independent and 

asynchronous.  The communication processor handles communication through the send and 

receive queues. 

On this kind of machine, the effective communication bandwidth can be characterized by message 

startup time  and bandwidth for the infinite length message  [Fox, 1988].  The time tc  to transfer a 

message of length n bytes can be calculated by the formula using these  and  

 tc n[s] (3.45) 

The HPPS has a ―claimed‖ performance of  = 25 s and  = 0.005 s/Byte (200 MBytes/s/link).  

To be on the conservative side, the HPPS‘s startup time and bandwidths are assumed to be  = 25 s and 

 = 0.01 s/Byte (or, 100 MBytes/s/link, i.e., half of the claimed maximum bandwidth).  Using these 

parameters and formula (3.45), communication latencies of the significant communications among these 

stages can be estimated as below.  In the following, p stands for the number of z-subdivision, and q stands 
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for the number of y-subdivision.  Also, the echography image size of 128128 with 8bit/pixel, the 

reconstruction buffer size of 128128340 with 32 bit/voxel, and the output image size of 256256 with 

8bit/pixel are assumed.  The identifier of latency types L1 through L6 below correspond to those in 

Figures 3.38.a through 3.38.c. 

a) Input Image Distribution Latency L1: Transfers a digitized echography image slice into the 

reconstruction and visualization system.  

 tL1250.01128
2
188.8s  

b) Image Strips Distribution Latency L2: Distributes subsets (―strips‖) of the input image slice to the 

multiple pipelines after z-subdivision.   

 tL2 250.01128(128/ p3) 

c) Volume Data Transfer Latency L3: Transfers a sub-volume from a pipeline stage to the next, e.g., 

from 2D reconstruction stage to the classification stage.  

 tL3 250.01128(128/ p3)3404  

d) Software Global Compositing Latency L4: Composits globally by a tree of processors for the SGC 

model. 

 tL4 250.012562562 log2(p)  

e) Hardware Global Compositing Latency L5: Composits globally by hardware in the HGC and 

OHGC models, which assume compositing hardware similar to Subaru [Sasaki, 1993].  It is a p 

stage cascade for the HGC model with p subdivisions in z.  (For an OHGC model, it is a pq 

stage cascade.) 

 tL5 50 p 

 tL5 50 pq  

The numerical model subdivides the entire visualization computation into functional segments 

identical to the steps of the visualization algorithm depicted in Figure 3.37.  Then, the functional segments 

are assigned, manually and statically, to pipeline stages based on their execution times so that the loads 

among pipeline stages are reasonably balanced.  Throughputs are determined by the slowest of the pipe 

stages, while latencies are determined by the sum of the execution times of the segments in a critical path, 

which include both computation and communication.   
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3.5.3.2  Software and Hardware Compositing 

This section compares the performance of the Software Global Compositing (SGC) and Hardware 

Global Compositing (HGC) models (Section 3.4.2), especially the effect of hardware global compositing on 

latency.  Simulation results presented in this section used the same doll dataset with 90 slices as the 

experiments of Section 3.5.2.2.  The simulation used three viewpoints of Figures 3.42.a, 3.42.c, and 3.42.d, 

and averaged the results.  The performance variation due to the viewpoints are indicated in the figures by 

error bars.  The z-subdivision is limited to 16, since further subdivision does not make sense for the dataset 

size of 340128128; z axis size 128 subdivided by 16 yields slabs that are 8 voxels thick, which is as thin 

as a slab can get without an overwhelming increase in overhead. 

Figures 3.51.a and Figure 3.51.b compare throughput and latency of the SGC and HGC models with 

number of subdivisions 1 to 16, and a number of pipeline stages 2.  So, for example, the HGC model with 

16 subdivisions has used 33 processors, including a processor for the 1D reconstruction in u axis 

(Figure 3.37 and 3.38.b.) 

Both the SGC and HGC models have almost identical throughput, since the throughput is 

determined by the slowest stage of the pipe.  The throughput reaches about 10 frames/s with 16 

subdivisions (i.e., a 33 processor system).  In terms of the latency, the HGC model has a definite 

advantage; the latency of the HGC model with 16 z-subdivisions is about half of the SGC model with an 

identical number of subdivisions.  Latency of the SGC is larger since it requires multiple stages of global 

compositing in which each stage takes place in a processor by software.  
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Figure 3.51.a: Frame rates are identical among the algorithm using software global compositing and 

hardware global compositing (for the same number of pipe stages.)  The error bar indicates the range of 
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Figure 3.51.b:  Hardware global compositing has nearly half the latencies of the software global 

compositing.  The error bar indicates the range of variation due to viewpoints.  
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3.5.3.3  World Space Subdivision Methods 

This section compares the performance of the SGC, HGC, and Optimized HGC (OHGC) models, 

especially the performance of the OHGC with its 2D subdivision of the volume dataset.  Simulation results 

presented in this section used the doll dataset with 90 slices, which is the same as the experiments of 

Section 3.5.2.2.   

Since OHGC allows variable number of processors at each pipe stage, the number of simulation 

parameters has been increased.   

1) HGC: The number of pipeline stages s  is either 1 or 2.  Number of subdivisions in z axis is 

varied from 1 to 16.  Number of pipeline stages more than 2 is not included in the figure since the 

performance improvement per increase of pipeline stage diminishes as the load in the pipeline stage 

becomes very uneven.  (Figures 3.38.a and 3.38.b)   

2) OHGC: OHGC subdivides the volume dataset in z axis by p and in y axis by q.  Number of 

subdivisions in z axis is varied as in the cases of SGC and HGC.  In addition, OHGC allows the 

number of subdivisions in y axis to be determined for each stage, so that the processing demand and 

supply are balanced.  The numbers of processors are named as follows.  (Figure 3.38.c) 

a) NPr2 : Number of 2D reconstruction processors 

b) NPcm: Number of classification / modeling processors. 

c) NPsm: Number of ray-sampling processors. 

d) NPlc: Number of local-compositing processors.  

Figures 3.52.a and 3.52.b compares throughputs and latencies of the HGC, and OHGC models.  The 

OHGC assumed, NPr2=2, NPcm=2, NPsm=NPlc=4.  OHGC has achieved the throughput of over 

20 frames/s owning to the increased parallelism by 2D subdivision and due to the increased number of 

processors.  Such a performance requires a significant resources, however; for example, an OHGC model 

with the 8 z-subdivision, which performs at roughly 20 frames/s, requires 65 processors and a hardware 

compositing network. 

The OHGC was thought to be at a disadvantage in regard to latency due to the increased number of 

pipeline stages.  However, since the latency per stage has been reduced due to additional y-subdivisions, 

latencies of the OHGC are almost comparable to those of the HGC.   
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Figure 3.52.a: Frame rates are compared among 1D and 2D subdivisions of the volume data in the 3D 
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range of variation due to viewpoints.  

0

0.5

1

1.5

2

2.5

3

3.5

Latency

[s]

0 4 8 12 16

Number o f sub divisio n in  z axis

Subdivision me thods v.s. latency

1D subd iv ision ,

1stage/pipe

1D subd iv ision ,

2stage/pipe

2D subd iv ision ,

(4 subd iv ision

in y  axis)

• Hardware global composit ing.
• Dataset  is doll , 90 sl ices.
• Reconstruction buffer size: 340x128x128
• Graph plots the range of execution time

for 4 viewpoints.

 



 Page 160 

Figure 3.52.b: Latencies are compared among 1D and 2D subdivisions of the volume data in the 3D world 

space.  The OHGC model assumed NPr2=2, NPcm=2, NPsm=NPlc=4.  The error bar indicates the range 

of variation due to viewpoints.  

Performance of the OHGC model depicted in Figure 3.52 is just an example.  If more resources are 

added, OHGC can perform better.  We found out by the simulation that, among others, the 2D 

reconstruction, ray-sampling and local-compositing stages are the most computationally demanding, so that 

the overall performance can be improved by increasing the y-subdivision in (hence increasing the number 

of processors for) these stages.  Figures 3.53.a, 3.53.b, 3.53.a, and 3.53.b show change in throughput of the 

algorithm depending on the number of subdivisions at execution stages in the OHGC model.  For 

simplicity, viewpoint is fixed to that of Figure 3.42.a for these simulations.  Y-axis subdivision is limited 

to 16 due to the same reason as the limit on z-axis subdivision explained in Section 3.5.3.2, i.e., an unduly 

increase in subdivision overheads.   

Figure 3.53.a and 3.53.b plots z-subdivisions versus throughput with the number of ray-sampling 

processors NPsm and the number of local compositing processors NPlc as parameters.  The number of 2D 

reconstruction processors is fixed to 4 and 8, respectively, in Figures 3.54.a and 3.54.b.   

Figure 3.53.a plots the case in which the number of 2D reconstruction processor NPr2=4, and the 

number of classification/modeling processors NPcm=2.  NPsm and NPlc are varied together from 1 to 16.  

Performance in Figure 3.53.a is apparently limited by the number of reconstruction processors NPr2=4; 

increasing NPsm and NPlc to more than 4 does not improve throughput.  Figure 3.53.b plots the case in 

which NPr2=8, NPcm=2.  NPsm and NPlc are varied together from 1 to 16.  Maximum frame rate is 

much higher in this case with NPr2=8 than in the case of Figure 3.53.a with NPr2=4.  However, the 

performance is still limited by lack of computational power at the reconstruction stage, as the performance 

of cases with NPsm=NPlc=8 is equal to NPsm=NPlc=16.   

Figure 3.54.a and 3.54.b fixed the NPsm and NPlc to 4 and 8, respectively, while varying the NPr2 

from 1 to 16.  In Figure 3.54.a, performance is apparently limited by the numbers of ray-sampling and 

compositing processors, NPsm and NPlc, which are both 4.  On the other hand, in Figure 3.54.b the frame 

of over 45 frame/s is achieved since both NPsm and NPlc are increased to 8.   

In summary, if given enough resources, the algorithm running on the OHGC model can achieve 

maximum performance of more than 40 frames/s under the given conditions.  Obviously, balancing the 

load and available processing power is important to gain the maximum benefit from resources employed.   
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Figure 3.53.a: Number of z-subdivisions versus frame rates for the OHGC model with NPr2=4 and 

NPcm=2.  NPsm and NPlc are varied from 1 to 16 together.  Performance is limited by the lack of 

computational power at the 2D reconstruction stage. 
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Figure 3.53.a:  Number of z-subdivisions versus frame rates for the OHGC model with NPr2=8 and 

NPcm=2.  NPsm and NPlc are varied from 1 to 16 together.  Throughput increases over that of the 

Figure 3.53.a, but it is still limited by the number of reconstruction processors NPr2. 
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Figure 3.54.a: Number of z-subdivisions versus frame rates for the OHGC model with NPcm=2 and NPsm 

=NPlc=4.  The number of 2D reconstruction processor NPr2 is varied from 1 to 16.  Throughput is 

severely limited by the lack of computational power at ray-sampling and local-compositing stages. 
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Figure 3.54.b: Number of z-subdivisions versus frame rates for the OHGC model with NPcm=2 and NPsm 

=NPlc=8.  The number of 2D reconstruction processor NPr2 is varied from 1 to 16.  With more 

ray-sampling and local-compositing processors, throughput can exceed 40 frames/s. 

3.6  Contributions of the Static Viewpoint 3D Echography System 

This chapter has presented a feasibility study of a 3D ultrasound echography visualization system 

that employs a static viewpoint display, more specifically a stationery (monocular) video monitor.  We will 

first review contributions of the system as listed in Section 1.2.  We will then present a discussion on each 

component of the system.   

(1) Feasibility study systems 

(a) Demonstration of the possibility of an on-line, interactive, incremental system that acquires 

a 3D volume target as a series of 2D echography image slices which were hand-guided with 

3 DOF.  The slices are reconstructed into a volume dataset which is volume-visualized. 

(2) Volume reconstruction algorithm 

(a) Development of an algorithm for incremental reconstructions of 3D scalar fields from 

sequences of irregularly placed and oriented 2D image slices. 

(b) Introduction of ―aging‖ to the reconstruction in order to capture temporal changes of the 

target 3D scalar fields being acquired and reconstructed.   

(3) Visualization algorithm for the static viewpoint 3D echography system 

(a) Development of an efficient volume visualization algorithm for a static viewpoint display 

and partially dynamic datasets that change incrementally and frequently.  Efficiency was 

achieved by taking advantage of incremental changes in datasets and assuming a stable 

viewpoint.  

(b) Development of a new compositing algorithm, hierarchical ray-caching, which reduces the 

cost of compositing for visualizations of partially dynamic datasets with a fixed viewpoint.  

(c) The simulation study of the performance of the incremental volume-visualization algorithm 
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which was executed on a hypothetical parallel processor in order to show the possibility of 

visualization at an interactive speed. 

The static viewpoint 3D echography system was conceived as an on-line, interactive, incremental 

system that acquires a 3D volume target as a series of 2D echography image slices hand-guided with 

3 DOF, reconstructs the slices into a volume dataset, and visualizes the dataset by using a 

non-binary-classified, semi-transparent gel model.  Instead of realizing such a system directly, the work 

described in this chapter has demonstrated the feasibility of such a system by developing the necessary 

components independently of each other and by demonstrating the possibility of an interactive rate of 

acquisition and visualization through simulation studies of a multiprocessor system.  The feasibility study 

system described in this section implemented the acquisition and visualization components separately, so 

that the 2D echography image slices were passed off-line through disk files.  The visualization component, 

as implemented on a workstation, did not achieve an interactive performance; it took a few seconds to 

visualize an image.  These limitations were mostly due to the lack of computational power, and to some 

extent to the lack of appropriate hardware components such as a video digitizer with a sufficient data 

transfer speed.   

The following presents a summary of results, a comparison with previous work, and the remaining 

issues involving each component of the static viewpoint 3D echography system.  

Acquisition Stage.  The 3 DOF acquisition system acquires 2D echography image slices and their tracking 

information (i.e., location and orientation) simultaneously, so that synchronization of image slices and 

tracking information is trivial (see Section 4.1.)  In a typical earlier system, image slices and their locations 

were recorded on two separate recording media (e.g., a video tape and a disk, respectively), and the 

synchronization of the images with their location frequently required tedious manual interventions.  When 

this 3 DOF acquisition system was published in mid-1990 [Ohbuchi, 1990], its simultaneous acquisition 

method with automatic synchronization was a significant advantage of this acquisition system compared to 

previous systems found in the literature.  The acquisition rate was about 5 frames/s  into the main memory 

of the workstation and 0.5 frames/s into the disk files over the network, for a 256  400  8 bit gray-level 

image.  These speeds are not fast enough for ―comfortable‖ scanning of volumes without careful control of 

the motion of the hand-held echography transducer.  Improvement of the acquisition speed will obviously 

be necessary.  Another deficiency was the fact that the acquisition was off-line.  The off-line acquisition 

was mainly the result of the limited availability of the echography equipment at the time, which had to be 

borrowed over night from the Obstetrics and Gynecology Department of the UNC Hospitals. The dynamic 

viewpoint 3D echography system described in Chapter 4 has on-line acquisition, thanks to the General 

Electric Co. which has loaned us an echography scanner equipment free of charge. 

A calibration procedure using a point-source phantom of known geometry was developed so that the 



 Page 166 

location of pixels in 2D echography image slices could be computed from tracking information obtained 

from the tracking arm.  Such calibration procedures are necessary in all free-format scanning methods and 

in many fixed-format scanning methods which assemble volume samples from sets of 2D image slices 

(Section 2.1.)  However, to the author‘s knowledge, none of the published literature discusses the pixel 

location calibration issue in more than a few sentences.   

Visualization Stage.  In order to visualize partially dynamic datasets with irregular sampling intervals, the 

static viewpoint 3D echography system has employed a pre-visualization reconstruction approach (See 

Section 2.2.2.1 and Section 2.2.2.2 for dynamism and irregularity of datasets.)  The following is a 

summary and discussion on the remaining issues of the (pre-visualization) reconstruction step and the 

visualization step of the static viewpoint 3D echography system. 

(a) Reconstruction.  To produce regularly sampled volume image datasets, the reconstruction 

algorithm for the static viewpoint 3D echography system performs automatic reconstruction of 

sequences of irregularly placed and oriented 2D echography slices.  Many of the reconstruction 

algorithms found in the literature of 3D echography are geometric.  These algorithms produce such 

geometric objects as stacks of contours or polygonal meshes through manual segmentation 

(Section 2.3.1.)  Among the previous reconstruction algorithms that have produced volume image 

datasets, only a few accepted samples with irregularly spaced samples produced by free-format 

scans.  To the author‘s knowledge, the algorithm described in [Ganapathy, 1992] is the only one 

that explicitly addresses the issues related to the irregularly spaced samples.  Others either do not 

describe reconstruction for fixed-format scans at all, or even if they do, they do not discuss details.   

The approximation algorithm employed in this chapter uses the (truncated) Gaussian 

weighting function, produces approximants (instead of interpolants) whose domain of influence is 

local, and performs as a low-pass filter (Section 3.3.2.1.)  Low pass filtering, which can be tuned to 

the characteristics of acquisition, reduces high frequency noise and speckle that might exist in the 

dataset and produces smooth approximants that are suitable for volume visualization using the 

ASSG model.  The approximants are not affected by the order in which the samples are added.  

Such sample-order-insensitivity is necessary for generating identical approximants from multiple 

series of 2D image slices whose sample orders are different.  The same approximation algorithm 

has also been used for a 6 DOF incremental reconstruction for the dynamic viewpoint 3D 

echography system described in Chapter 4.  

[Ganapathy, 1992] describes a reconstruction method in which datasets from 6 DOF scans 

were reconstructed into regular 3D arrays of voxels by a localized distance-weighted interpolation.  

The reconstruction algorithm described in [Ganapathy, 1992] appears to employ Shepard‘s 
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interpolation algorithm [Shepard, 1968].  The Shepard‘s interpolation algorithm is similar to the 

approximation algorithm described in this chapter, except for the weighting function, which was the 

inverse of the distance-squared function.  A detailed comparison of algorithms with these two 

weighting functions is found in Section 3.3.2.3.   

Please recall that the scanning mode of our goal, the ―magic flashlight‖, does not have 

explicit punctuation that marks the start and the end of ―a scan‖ and that the visualization needs to 

be immediate from acquisition.  Thus, the reconstruction algorithm used in the static viewpoint 3D 

echography system described in Section 3.3.2 is incremental and immediate, and as a result causal.  

The algorithm reconstructs incrementally as a 2D image slice arrives, before all the ―remaining‖ 

sample slices become available.  In contrast, every reconstruction algorithm found in the literature 

of 3D echography is non-causal.  Consequently, they do not start reconstructing until all the 

necessary samples are acquired and available (Section 2.3.2.)   

To accommodate possible changes in the volumes of interest, the 3 DOF incremental 

reconstruction algorithm has incorporated a temporal sample replacement method that approximates 

―aging‖ of reconstructed voxels.  In this method, when reconstruction for a 2D image slice takes 

place, values in older voxels are almost completely replaced by contributions from the new 2D 

image slice, while values of relatively newer voxels are averaged with the contributions from the 

slice (Section 3.4.3.)  Previous 2D free-format echography scanners used various update policies 

when 2D images were composed from multiple 1D echography acquisitions ([Ophir, 1979].)  

However, the methods used for these 2D free-format scanners were rather ad-hoc and/or non-linear, 

which produced reconstruction results that were not well suited to volume visualization using the 

ASSG model.  None of the other volume image reconstruction algorithms found in the literature of 

3D echography used such temporal replacement.  Temporal updates of datasets need not be 

considered in previous volume reconstruction algorithms for 3D echography, since all these 

reconstruction algorithms were posterior and non-causal.   

(b) Visualization.  An efficient volume visualization algorithm has been developed for partially 

dynamic volume datasets in which a part of the volume dataset changes frequently.  The algorithm 

employs the ASSG model of visualization, in which the echo intensity values of input voxels were 

mapped, without differentiation, to opacities of voxels in the ASSG model.  This simple mapping 

was selected specifically for ultrasound echography datasets, in which the intensity values of the 

voxels represent boundaries of regions with identical acoustic impedance.  The algorithm employs 

an image ray-casting method to render the model.  

One of the objectives of the visualization algorithm was high performance, both in terms of 

short dataset lag (i.e., the lag between the changes in the datasets and corresponding changes in the 
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visualized images) and high throughput (i.e., image frame rate) for partially dynamic datasets 

(Section 2.2.2.1.)  To the author‘s knowledge, no other algorithm found in the literature of volume 

visualization has been optimized for short dataset lag.  Previous algorithms were optimized, instead, 

for either short viewing lag or short classification/modeling lag.  (There is an example, however, of 

a surface rendering algorithm optimized for a short dataset lag in visualizing partially dynamic 

volume datasets [Galyean, 1991].)  Also, to the author‘s knowledge, no other volume visualization 

algorithm that employs a non-binary-classified semi-transparent gel model has been designed for 

partially dynamic datasets.  The previous approach in visualizing partially or completely dynamic 

datasets has been to repeatedly apply a conventional volume visualization algorithm developed for 

static datasets, without taking advantage of the potential temporal coherence in the datasets.   

The static viewpoint 3D echography system employs two approaches to accelerate the 

volume visualization algorithm for partially dynamic datasets; exploiting coherence at a sequential 

algorithm level, and exploiting parallelism.  

Coherence is a great source of acceleration, as we saw in Section 2.4.2.  However, many of 

the powerful acceleration techniques that assume static datasets, such as spatial partitioning, could 

not be applied to partially dynamic datasets.  Consequently, a new acceleration method has been 

developed in order to exploit coherence at a sequential algorithm level.  The acceleration method 

uses spatial bounding in its classification, modeling, and ray-casting stages.  The bound for the 

visualization algorithm is a slab-like partial volume under the support of a reconstruction weighting 

function that surrounds a 2D echography image.  The spatial bounding works most efficiently if the 

viewpoint and other parameters do not change, and if incremental changes in datasets are bounded to 

a small volume compared to the entire dataset.  As long as the parameters do not change, the 

classification, modeling, and ray-sampling steps (and to a certain degree the compositing step) take 

place incrementally.   

A new mechanism called linear ray-cache has been introduced in order to make possible the 

incremental ray-casting, which caches results of ray-sampling in the 3D screen coordinate so that 

redundant sampling can be avoided (Section 3.4.1.)  Sampling is significantly more expensive than 

compositing, so that avoiding sampling reduces computational costs.  The effectiveness of 

ray-caching is further improved by hierarchical ray-caching, a new mechanism that reduces the cost 

of compositing to less than half the original linear ray-cache.  Overall, exploiting coherence at a 

sequential algorithm level, using such methods as spatial bounding, hierarchical ray-caching, and 

image-adaptive ray-casting has reduced the cost of computation by more than an order of magnitude, 

compared to a conventional volume visualization algorithm that works on an entire volume dataset.   

Acceleration at sequential algorithm level, despite its 10 fold speed up, is not enough to 
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achieve interactive visualization.  In order to demonstrate the feasibility of interactive performance, 

this dissertation includes an exploration of the parallel algorithm and parallel hardware capabilities 

necessary to achieve such an interactive performance.  A parallel algorithm that incorporates 

improved ray-caching, image-adaptive ray-casting has been developed (Section 3.4.2.)  to evaluate 

the algorithm.  It was coded in a pseudo-parallel manner which simulates data parallelism by loops 

and generates execution profiles indicating intra-processor computational cost.  These execution 

profiles have controlled the numerical simulation, which added inter-processor communication costs 

to the computational costs so that the performance of the parallel algorithm running on a 

hypothetical parallel processor system can be estimated.   

The numerical simulation shows that if run on the appropriate computational hardware, the 

static viewpoint 3D echography system could perform at an interactive speed.  For example, if the 

hardware compositing model is used, a frame rate of over 20 frames/s can be achieved with 33 

processors, in which each processor is comparable to the CPU of a IBM RS6000 model 550/E 

workstation.  The figure assumes an input image size 128  128, the reconstruction buffer size 

128  128  340, and output image size 256  256.   

It should be noted that this study of parallel algorithm and necessary hardware capabilities 

attempts to prove feasibility, and does not attempt to find the best hardware design and algorithm.  

However, the assumptions for the simulation are realistic enough so that a system with interactive 

performance can be realized with the currently available hardware.  For example, the CPUs can be a 

PowerPC chip, whose performance on an implementation, IBM POWERstation 25W workstation 

(SPECint92 at 62.6 and SPECfp92 at 72.2) is comparable to that of the IBM RS6000 model 550/E 

(SPECint92 at 48.1 and SPECfp92 at 83.3) we have used to run the pseudo parallel algorithm.  Of 

course, there are other choices for the processor.  For example, a contemporary floating point digital 

signal processor chip, instead of a full-fledged RISC CPU with such unnecessary features as virtual 

memory management and protected execution mode, could be a better choice.   

The images visualized by the static viewpoint 3D echography system has effectively shown 

3D structures of objects acquired as series of 2D echography slices.  The ASSG model, which is 

combined with Phong‘s reflectance model and a directional light source, represents the shape of 

objects better than the simpler visualization models such as additive projection.  Overall, volume 

visualized images produced by the static viewpoint 3D echography system seem to have an 

advantage in presenting the 3D structures of objects of interest, compared to simple collections of 

individual 2D echography slices or volume visualization by simpler models.  

There are two obvious disadvantages to the visualization model used in the static viewpoint 

3D echography system.  One of the disadvantages is the model‘s inability to present echo intensity 
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levels as they are, and the other is the model‘s inability to present ―textures‖ in the echography 

images.  In images visualized by the system, echo intensities only indirectly affect the screen pixel 

value, and most of the textures are filtered out.  Textures and gray level echo intensity values have 

traditionally been important for medical echography imaging.  Textures, for example, are often used 

to distinguish diseased tissues from healthy tissues.  Therefore, combining the ASSG model with 

another model which adds the capability of displaying raw echography images would improve the 

usefulness of the visualization.  With this combined model, the volume visualization by the ASSG 

model provides 3D structures of objects, while the 2D echography image slices placed with the 

volume visualized objects (e.g., by texture mapping) adds the ability to see raw echo intensity.  An 

alternative and more ambitious approach is to automatically extract the desired information (e.g., 

tissue characterization) through a sophisticated classification method, although such classification 

methods seem quite difficult to develop.  

A possible extension of the visualization algorithm is to add the capability for an integrated 

rendering of polygonal objects and volume objects.  Polygonal objects can be used, for example, to 

display 2D echo-intensity values by using texture mapping or to display a caliper for measurements 

of dimensions (e.g., to verify fetal development.)  The incremental visualization algorithm can be 

extended to quickly render polygonal objects properly integrated with a volume dataset, although 

this extension is not included in the current implementation [Ohbuchi, 1991].  A polygonal object, 

which is scan converted by the Z-buffer algorithm into the hierarchical ray-cache, can be quickly 

composited with the rest of the ray-samples in the ray-cache from the volume dataset.  Adding the 

Z-buffer algorithm to the incremental visualization algorithm is relatively simple since the D-buffer 

ray-clipping algorithm essentially implements most of the functionality of the Z-buffer algorithm.  

Simply compositing polygonal and volume objects by utilizing the hierarchical ray-cache, instead of 

the previous method which requires both sampling and compositing [Levoy, 1990c], allows the 

users faster interactions with the polygons, such as adding and moving. 



Chapter 4.  Dynamic Viewpoint 3D Echography System 

Our long term goal is to create 3D echography scanner systems that are easy to use for a wide range 

of personnel, including non-specialists.  Such a system would also make tasks performed by trained 

specialists less error prone.  The user-interface metaphor plays a very important role in such a system; we 

have chosen ―magic flashlight‖ as the user-interface metaphor for our future 3D echography scanner, in 

which the internal structure of the subjects are seemingly ―illuminated‖ as the users guide the 3D 

echography transducer over volumes of interests.   

Our approach in this dissertation is to explore issues involved in realizing our future goal through 

the development of two feasibility study systems, the ―static viewpoint 3D echography system‖ described 

in Chapter 3 and the ―dynamic viewpoint 3D echography system‖ described in this chapter.  Although 

neither of these two systems completely realize our future goal, they include necessary technological 

components that may constitute our future systems.  Through the development of these two systems, we 

try to identify issues pertinent to the realization of our future goal and to solve some of the issues identified.  

The static viewpoint 3D echography system described in Chapter 3 explored the idea of incremental and 

immediate volume visualizations of 3D echography data using a static viewpoint display, in which datasets 

were acquired as series of hand-guided 2D echography slices with 3 DOF.  This chapter describes the 

dynamic viewpoint 3D echography system with a see-though HMD, which incrementally and immediately 

visualizes 3D echography datasets acquired as series of hand-guided 2D echography slices with 6 DOF.  

The dynamic viewpoint 3D echography system emphasizes the exploration of issues related to the 

―magic flashlight‖ user-interface metaphor.  The dynamic viewpoint system employs a video see-through 

HMD to realize in-place6 visualization of 3D echography data, in which a user sees (video) images of 

real-world objects in her/his environment superimposed and registered with objects captured by a 3D 

ultrasound echography scanner.  We have developed two variations of the dynamic viewpoint 3D 

echography system.  The first, an in-place 2D-slices visualization system described in Section 4.1, 

emphasizes the exploration of issues associated with the in-place visualization method by using a video 

see-through HMD.  This system performs in-place visualizations of live, on-line, 2D echography data.  

                                                           

6 In-place display is sometimes called real-space display by analogy to the word ―real-time‖.  
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The second, an in-place volume visualization system described in Section 4.2, emphasizes the exploration 

of issues associated with in-place volume visualizations of ultrasound echography datasets by using the 

video see-through HMD.  

The in-place 2D-slices visualization system displays on-line 2D echography image slices which are 

arriving at about a few slices per second and rendered as 2D images in the 3D world space.  Target 

volumes are acquired by a hand-guided 2D echography transducer with 6 DOF tracking.  Using the video 

see-through HMD, these 2D slices (e.g., slices of the fetus in the uterus) in the 3D world space are 

displayed in-place, merged and registered with the real-world images of the subjects and their surroundings 

(e.g., the abdomen of the subject and the examination table.)  Using this system, an experiment was 

conducted to visualize a fetus in the uterus of a pregnant human subject with the help of a professional 

ultrasonographer.  To the author‘s knowledge, such on-line acquisition and in-place visualization of 

ultrasound echography data using a see-through HMD is the first of its kind.  Section 4.2, which describes 

the in-place 2D-slices visualization version of the dynamic viewpoint 3D echography system, is a 

reproduction of a paper presented at the SIGGRAPH‘92 meeting in Chicago held on August 1992 [Bajura, 

1992]7.  The paper is reformatted to conform to the graduate school requirements of style for dissertations, 

and the section numbers are changed to conform to this dissertation.  Otherwise, the text and figures are 

the same as the originals published in ACM Computer Graphics.  The work in Section 4.1 has been 

performed by Michael Bajura, Henry Fuchs, and the author.  

The in-place volume visualization system uses a volume visualization method which employs a 

non-binary-classified semi-transparent gel model.  The system uses the same 6 DOF acquisition system 

and the see-through HMD system as the in-place 2D-slices visualization system.  Users wearing the 

see-through HMD see volume visualized images of objects (e.g., the femur and femoral artery/vein pair) 

inside subjects (e.g., the thigh) merged with images of real-world objects (e.g., the outer surface of the 

thigh.)  Unfortunately, due to various limitations at the time (as of October 1992), this system did not have 

acquisition, visualization and display stages working on-line.  The acquisition was off-line, so that the 

image slices and their tracking information were stored into disk files for later reconstructions and 

visualizations.  Prior to each visualization, a workstation performed an off-line reconstruction of a set of 

slices stored in the disk files.  However, users wearing the see-through HMD were able to walk around and 

see volume visualized 3D echography datasets in place with a slow but interactive image generation frame 

rate of 8-10 frames/s.  To the author‘s knowledge, such an in-place volume visualization using see-through 

HMDs is the first of its kind.  The work presented in Section 4.2 (which followed the work on Section 4.1) 

was carried out by Michael Bajura, Henry Fuchs, David Chen, and the author. 

                                                           

7 This is reproduced from ACM Computer Graphics, Volume 26, Number 2, pp.203-210, 1992 (also in 

SIGGRAPH‘92 proceedings).  Author‘s names are listed in the alphabetical order here and in the paper. 
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4.1  Merging Virtual Objects with the Real World:  

Seeing Ultrasound Imagery within the Patient8 

Authors: Michael Bajura, Henry Fuchs, and Ryutarou Ohbuchi 

Abstract 

We describe initial results which show ―live‖ ultrasound echography data visualized within a 

pregnant human subject.  The visualization is achieved by using a small video camera mounted in front of 

a conventional head-mounted display worn by an observer.  The camera‘s video images are composited 

with computer-generated ones that contain one or more 2D ultrasound images properly transformed to the 

observer‘s current viewing position.  As the observer walks around the subject, the ultrasound images 

appear stationary in 3-space within the subject.  This kind of enhancement of the observer‘s vision may 

have many other applications, e.g., image guided surgical procedures and on location 3D interactive 

architecture preview.  

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism] Virtual Reality, I.3.1 [Hardware 

architecture]: Three-dimensional displays, I.3.6 [Methodology and Techniques]: Interaction techniques, 

J.3 [Life and Medical Sciences]: Medical information systems. 

Additional Keywords and Phrases: Virtual reality, see-through head-mounted display, ultrasound 

echography, 3D medical imaging 

4.1.1  Introduction 

We have been working toward an ‗ultimate‘ 3D ultrasound system which acquires and displays 3D 

volume data in real time.  Real-time display can be crucial for applications such as cardiac diagnosis which 

need to detect certain kinetic features.  Our ‗ultimate‘ system design requires advances in both 3D volume 

data acquisition and 3D volume data display.  Our collaborators, Dr. Olaf von Ramm‘s group at Duke 

University, are working toward real-time 3D volume data acquisition [Smith 1991; von Ramm 1991].  At 

UNC-Chapel Hill, we have been conducting research on real-time 3D volume data visualization. 

                                                           

8  Reproduced from ACM Computer Graphics, Volume 26, Number 2, pp.203-210, 1992 (also in 

SIGGRAPH‘92 proceedings).  The paper is reformatted and sections are renumbered.  Author‘s names are 

listed in the alphabetical order in the paper.  
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Our research efforts at UNC have been focused in three areas:  1) algorithms for acquiring and 

rendering real-time ultrasound data, 2) creating a working virtual environment which acquires and displays 

3D ultrasound data in real time, and 3) recovering structural information for volume rendering specifically 

from ultrasound data, which has unique image processing requirements.  This third area is presented in 

[Lin 1991] and is not covered here. 

Section 4.1.2 of this paper reviews previous work in 3D ultrasound and Section 4.1.3 discusses our 

research on processing, rendering, and displaying echographic data without a head-mounted display.  Since 

the only real-time volume data scanners available today are 2D ultrasound scanners, we try to approximate 

our ‗ultimate‘ system by incrementally visualizing a 3D volume dataset reconstructed from a never-ending  

sequence of 2D data slices [Ohbuchi 1990; 1991].  This is difficult because the volume consisting of 

multiple 2D slices needs to be visualized incrementally as the 2D slices are acquired.  This incremental 

method has been successfully used in off line experiments with a 3-degree-of-freedom (DOF) mechanical 

arm tracker and is extendible to 6 degrees of freedom, e.g., a 3D translation and a 3D rotation, at greater 

computational cost. 

Sections 4.1.4 and 4.1.5 present our research on video see-through head-mounted display (HMD) 

techniques involving the merging of computer generated images with real-world images.  Our video 

see-through HMD system displays ultrasound echography image data in the context of real (3D) objects.  

This is part of our continuing see-through HMD research, which includes both optical see-through HMD 

and video see-through HMD.  Even though we concentrate here on medical ultrasound imaging, 

applications of this display technology are not limited to it (see Section 4.1.6.2.) 

4.1.2  Previous Research in 3D Ultrasound 

The advantages of ultrasound echography are that it is relatively safe compared with other imaging 

modalities and that images are generated in real time [Wells 1977].  This makes it the preferred imaging 

technique for fetal examination, cardiac study, and guided surgical procedures such as fine-needle 

aspiration biopsy of breast tumors [Fornage 1990].  Ultrasound echography offers the best real-time 

performance in 3D data acquisition, although slower imaging modalities such as MRI are improving. 

The drawbacks of ultrasound imaging include a low signal to noise ratio and poor spatial resolution.  

Ultrasound images exhibit ―speckle‖ which appears as grainy areas in images.  Speckle arises from 

coherent sound interference effects from tissue substructure.  Information such as blood flow can be 

derived from speckle but in general speckle is hard to utilize [Thijssen 1990].  Other problems with 

ultrasound imaging include attenuation that increases with frequency, phase aberration due to tissue 

inhomogeneity, and reflection and refraction artifacts [Harris 1990] . 
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4.1.2.1  3D Ultrasound Image Acquisition 

Just as ultrasound echography has evolved from 1D data acquisition to 2D data acquisition, work is 

in progress to advance to 3D data acquisition.  Dr. Olaf von Ramm‘s group at Duke University is 

developing a 3D scanner which will acquire 3D data in real time [Shattuck 1984; Smith 1991; von Ramm 

1991].  The 3D scanner uses a 2D phased array transducer to sweep out an imaging volume.  A parallel 

processing technique called Explososcan is used on return echoes to boost the data acquisition rate. 

Since such a real-time 3D medical ultrasound scanning system is not yet available, prior studies on 

3D ultrasound imaging known to the authors have tried to reconstruct 3D data from imaging primitives of a 

lesser dimension (usually 2D images.)  To reconstruct a 3D image from images of a lesser dimension, the 

location and orientation of the imaging primitives must be known. Coordinate values are explicitly tracked 

either acoustically [Brinkley 1978; King 1990; Moritz 1983], mechanically [Geiser 1982a; Geiser 1982b; 

Hottier 1989; McCann 1988; Ohbuchi 1990; Raichelen 1986; Stickels 1984], or optically [Mills 1990].  In 

other systems, a human or a machine makes scans at predetermined locations and/or orientations [Collet 

Billon 1990; Ghosh 1982; Itoh 1979; Lalouche 1989; Matsumoto 1981; Nakamura 1984; Tomographic 

Technologies 1991].   

A particularly interesting system under development at Philips Paris Research Laboratory is one of 

the closest yet to a real-time 3D ultrasound scanner [Collet-Billon 1990].  It is a follow on to earlier work 

which featured a manually guided scanner with mechanical tracking [Hottier 1990].  This near real-time 

3D scanner is a mechanical sector scanner, in which a conventional 2D sector scanhead with an annular 

array transducer is rotated by a stepper motor to get a third scan dimension.  In a period of 3 to 5 seconds, 

50 to 100 slices of 2D sector scan images are acquired.  Currently the annular array transducer in this 

system provides better spatial resolution, but less temporal resolution, than the real-time 3D phased array 

system by von Ramm et al., mentioned above.  A commercial product, the Echo-CT system by 

Tomographic Technologies, GMBH, uses the linear translation of a transducer inside a tube inserted into 

the esophagus to acquire parallel slices of the heart.  Image acquisition is gated by respiration and an EKG 

to reduce registration problems [Tomographic Technologies 1991].  

4.1.2.2  3D Ultrasound Image Display 

One should note that 3D image data can be presented not only in visual form, but also as a set of 

calculated values, e.g., a ventricular volume.  The visual form can be classified further by the rendering 

primitives used, which can be either geometric (e.g., polygons) or image-based  (e.g., voxels.)  Many 

early studies focused on non-invasive estimation of the volume of the heart chamber [Brinkley 1978; Ghosh 

1982; Raichelen 1986; Stickels 1984].  Typically, 2D echography (2DE) images were stored on video tape 

and manually processed off-line.  Since visual presentation was of secondary interest, wire frames or a 
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stack of contours were often used to render geometrical reconstructions. 

An interesting extension to 2D display is a system that tracks the location and orientation of 2D 

image slices with 6 DOF [King 1990].  On each 2D displayed image, the system overlays lines indicating 

the intersection of the current image with other 2D images already acquired.  The authors claim that these 

lines help the viewer understand the relationship of the 2D image slices in 3D space.  Other studies 

reconstructed 3D gray level images preserving gray scale, which can be crucial to tissue characterization 

[Collet-Billon 1990; Hottier 1989; Lalouche 1989; McCann 1988; Nakamura 1984; Pini 1990; 

Tomographic Technologies 1991].  [Lalouche 1989] is a mammogram study using a special 2DE scanner 

that can acquire and store 45 consecutive parallel slices at 1 mm intervals.  A volume is reconstructed by 

cubic-spline interpolation and then volume rendered.  [McCann 1988] performed gated acquisition of a 

heart‘s image over a cardiac cycle by storing 2DE images on video tape and then reconstructing and 

volume rendering them.  ‗Repetitive low-pass filtering‘ was used during reconstruction to fill the spaces 

between radial slices, which suppressed aliasing artifacts.  [Tomographic Technologies 1991] provides 

flexible re-slicing by up to 6 planes as well other imaging modes.  [Collet-Billon 1990] uses two 

visualization techniques: re-slicing by an arbitrary plane and volume rendering.  The former allows faster 

but only 2D viewing on a current workstation.  The latter allows 3D viewing but often involves 

cumbersome manual segmentation.  The reconstruction algorithm uses straightforward low pass filtering. 

4.1.3  Incremental Volume Visualization  

We have been experimenting with volume rendering as one alternative for visualizing dynamic 

ultrasound volume data.  Standard volume rendering techniques which rely heavily on preprocessing do 

not apply well to dynamic data which must be visualized in real time [Levoy 1988; Sabella 1988; Upson 

1988].  We review here an incremental, interactive, 3D ultrasound visualization technique which visualizes 

a 3D volume as it is incrementally updated by a sequence of registered 2D ultrasound images [Ohbuchi 

1990; 1991]. 

Our target function is sampled at irregular points and may change over time.  Instead of directly 

visualizing samples from this target, we reconstruct a regular 3D volume from this time series of spatially 

irregular sample points.  This places a limit on storage and computation requirements which would grow 

without bound if we retained all the past sample points.  The reconstructed volume is then rendered with 

an incremental volume-rendering technique. 

The reconstruction is a 4D convolution process.  A 3D Gaussian kernel is used for spatial 

reconstruction followed by a temporal reconstruction based on simple auto regressive moving average 

(ARMA) filtering [Haddad 1991].  Time stamps are assigned to each 3D voxel, which are updated during 
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reconstruction.  The time stamp difference between a reconstructed voxel and an incoming sample is used 

to compute coefficients for the ARMA filter.  The 3D Gaussian filter is loosely matched to the point 

spread function of the ultrasound transducer and is a good choice because it minimizes the product of 

spatial bandwidth and spatial frequency bandwidth [Hildreth 1983; Leipnik 1960]. 

An image-order, ray-casting algorithm based on [Levoy 1988] renders the final images 

incrementally.  Rendering is incremental and fast only if the viewpoint is fixed and if the updated volume 

is relatively small.  Shading and ray sampling are done only for voxels proximate to incoming data.  The 

ray samples are stored in a 3D array in screen space called a ―ray cache‖ for later use.  The ray cache is 

hierarchical so that a small partial update of the ray cache can be composited quickly (O(log(n))) [Ohbuchi 

1991].  The hierarchical ray cache also allows fast rendering of polygons properly composited with volume 

data, which can enhance the volume visualization [Levoy 1990; Miyazawa 1991].  This incremental 

volume rendering algorithm is not restricted to ultrasound and is applicable to other problems which update 

volume data incrementally, e.g., interactive volume modeling by sculpting [Galyean 1991]. 

To test this visualization technique, we acquired a series of 2D images with a manually guided 

conventional 2DE scanhead attached to a mechanical tracking arm with 3 DOF (two translations and one 

rotation.)  As we scanned various targets in a water tank, their images and their corresponding geometry 

were stored off-line.  We then ran the incremental volume visualization algorithm on a DEC station 5000 

with 256 MB of memory using this data.  With a reconstruction buffer size of 150  150  300 and an 

image size of 256  256, it took 15–20 seconds to reconstruct and render a typical image after insertion of a 

2D data slice.  This time varied with reconstruction, shading, and viewing parameters. 

Figure 4.1 shows 2 out of 90 2D images of a plastic toy doll phantom which is visualized in 

Figure 4.2.  The 2D images were produced by an ATL Mark-4 Scanner with a 3.5 MHz linear scanhead.  

The 2D images overlap but are roughly parallel at approximately 2 mm intervals. 
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Figure 4.1:  Two of 90 2D ultrasound echography images of a plastic toy doll phantom which was scanned 

in a water tank. The scans shown are at the torso (left) and at the head (right.)  The clouds at the bottom of 

the scans are artifacts due to reflections from the bottom of the water tank.  
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Figure 4.2:  Reconstructed and rendered image of the toy doll phantom using incremental volume 

visualization.  

4.1.4  Virtual Environment Ultrasound Imaging 

Various medical ultrasound imaging applications require a registration of ultrasound images with 

anatomical references, e.g., in performing a fine needle aspiration biopsy of a suspected breast tumor 

[Fornage 1990].  A virtual environment which displays images acquired by ultrasound equipment in place 

within a patient‘s anatomy could facilitate such an application.  We have developed an experimental 

system that displays multiple 2D medical ultrasound images overlaid on real-world images.  In January 

1992, after months of development with test objects in water tanks, we performed our first experiment with 

a human subject. 

Our virtual environment ultrasound imaging system works as follows (note that this is a different 

system than our older one described in the previous section): as each echography image is acquired by an 

ultrasound scanner, its position and orientation in 3D world space are tracked with 6 degrees-of-freedom 

(DOF.)  Simultaneously the position and orientation of a HMD are also tracked with 6 DOF.  Using this 

geometry, an image-generation system generates 3D renderings of the 2D ultrasound images.  These 

images are video mixed with real-world images from a miniature TV camera mounted on the HMD.  The 
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resulting composite image shows the 2D ultrasound data registered in its true 3D location. 

Figure 4.3 is a block diagram of our system‘s hardware.  There are three major components: 1) an 

image-acquisition and tracking system, which consists of an ultrasound scanner and a Polhemus tracking 

system, 2) an image-generation system, which is our Pixel-Planes 5 graphics multicomputer, and 3) a HMD 

which includes a portable TV camera, a video mixer, and a VPL EyePhone.  Each component is described 

in more detail in Sections 4.1.4.1—4.1.4.3. 
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Figure 4.3:  Hardware block diagram for the virtual environment ultrasound system.   

4.1.4.1  Image Acquisition and Tracking 

Two dimensional ultrasound images are generated by an IREX System III echography scanner with 

a 16 mm aperture 2.5 MHz phased array transducer.  These images are digitized by a SUN 4 with a Matrox 

MVP/S real-time video digitizer and transferred to our Pixel-Planes 5 graphics multicomputer [Fuchs 

1989].  The SUN 4 operates as a 2DE image server for requests from the Pixel-Planes 5 system.  Images 

are distributed among the Graphics Processors (GPs) on a round-robin scan-line by scan-line basis.  Due to 

the bandwidth limitations of the SUN 4 VME bus, transfer of the 512  480  8 bits/pixel images is limited 

to 2 Hz.  

A Polhemus system with one source and two receivers is used for tracking [Polhemus 1980].  One 
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receiver tracks the HMD.  The other tracks the ultrasound transducer.  The Polhemus system is mounted 

in non ferrous materials away from magnetic interference sources such as the ultrasound transducer, HMD, 

and other lab equipment.  A calibration procedure is used to relate both the ultrasound transducer to its 

Polhemus receiver and the HMD TV camera to its Polhemus receiver mounted on the HMD.  This 

calibration procedure is described in Section 4.1.4.4.   

4.1.4.2  Image Generation 

Images are generated by the Pixel-Planes 5 system based on geometry information from the tracking 

system.  Pixel-Planes 5 runs a custom PHIGS implementation which incorporates a facility to update 

display structures asynchronously from the display process.  This separates the interactive virtual 

environment update rate from the 2D ultrasound image data acquisition rate.  Images in the virtual 

environment are registered to the real world within the update-rate limit of the tracking and display system 

and not within the acquisition-rate limit of the image-acquisition system. 

Pixels from the 2D ultrasound images are rendered as small, unshaded sphere primitives in the 

virtual environment.  The 2D ultrasound images appear as space-filling slices registered in their correct 3D 

position.  The ultrasound images are distributed among the GPs where they are clipped to remove 

unnecessary margins and transformed into sphere primitives, which are then sent to the Renderer boards for 

direct rasterization.  Pixel-Planes 5 renders spheres very rapidly, even faster than it renders triangles, over 

2 million per second [Fuchs 1985; 1989].  Final images are assembled in double buffered NTSC frame 

buffers for display on the HMD.  To reduce the number of sphere primitives displayed, the ultrasound 

images are filtered and subsampled at every 4 th pixel.  Due to the low resolution of the HMD and inherent 

bandwidth limitation of the ultrasound scanner, this subsampling does not result in a substantial loss of 

image quality.  An option to threshold lower intensity pixels in 2D ultrasound images prior to 3D rendering 

can suppress lower intensity pixels from being displayed. 

4.1.4.3  Video See-Through HMD 

A video see-through HMD system combines real-world images captured by head-mounted TV 

cameras with synthetic images generated to correspond with the real-world images.  The important issues 

are tracking the real-world cameras accurately and generating the correct synthetic images to model the 

views of the cameras.  Correct stereo modeling adds concerns about matching a pair of cameras to each 

other as well as tracking and modeling them.  [Robinett 1991] discusses stereo HMD in detail and includes 

an analysis of the VPL EyePhone. 

A Panasonic GP-KS102 camera provides monocular see-through capability for the left eye in our 

current system.  Images from this camera are mixed with synthetic images from the Pixel-Planes 5 system 
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using the luminance (brightness) keying feature on a Grass Valley Group Model 100 video mixer.  With 

luminance keying, the pixels in the output image are selected from either the real-world image or the 

synthetic image, depending on the luminance of pixels in the synthetic image.  The combined image for 

the left eye and a synthetic image only for the right eye are displayed on a VPL EyePhone. 

4.1.4.4  Calibration 

Two transformations, a ―transducer transformation‖ and a ―camera transformation,‖ are needed to 

calibrate our test system.  The transducer transformation relates the position and orientation of the 

Polhemus tracker attached to the ultrasound transducer to the position and scale of 2D ultrasound image 

pixels in 3D space.  The camera transformation relates the position and orientation of the head-mounted 

Polhemus tracker to the HMD TV camera position, orientation, and field of view.   

Both transformations are calculated by first locating a calibration jig in both the lab (real) and 

tracker (virtual) 3D coordinate systems.  This is accomplished by performing rigid body rotations with the 

transducer tracker about axes which are to be fixed in both the real and virtual coordinate systems.  Two 

samples from the tracker, each consisting of both a position and an orientation, are sufficient to fix each 

calibration axis.  The transducer transformation is computed by taking an ultrasound image of a target of 

known geometry placed at a known position on the calibration jig.  By finding the pixel coordinates of 

point targets in the ultrasound image, the world coordinates of pixels in the ultrasound image can be found.  

From this relationship and the location of the Polhemus tracker attached to the ultrasound transducer at the 

time the target was imaged, the transducer transformation is derived.  Similarly, the camera transformation 

is found by placing the HMD TV camera at known positions and orientations relative to the calibration jig.  

The field of view of the TV camera is known from camera specifications.  Manual adjustments are used to 

improve the camera transformation. 

4.1.5  Experimental Results 

In January 1992 we conducted an experiment with a live human subject using the method described 

above.  We scanned the abdomen of a volunteer who was 38 weeks pregnant.  An ultrasound technician 

from the Department of Obstetrics & Gynecology of the UNC Hospitals performed the ultrasound 

scanning. 

Figure 4.4 is a scene from the experiment.  A person looks on with modified VPL EyePhone with 

the miniature video camera mounted on top and in front.  Figure 4.5 shows the left eye view from the 

HMD, a composition of synthetic and real images.  Figure 4.6 is another view from the left eye of the 

HMD wearer which shows several 2D ultrasound images in place within the subject‘s abdomen.   



 Page 183 

 

Figure 4.4:  An ultrasound technician scans a subject while another person looks on with the video 

see-through head-mounted display (HMD.)  Note the miniature video camera attached to the front of the 

VPL EyePhone HMD. 

 

Figure 4.5:  A video image presented to the left eye of the HMD showing a view of the subject‘s abdomen 

with a 2D ultrasound image superimposed and registered.  Note the ultrasound transducer registered with 

the image acquired by it.  This 2D image is from the antero-inferior view. 
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Figure 4.6:  Another video image presented to the HMD showing several 2D image slices in 3D space 

within the patient‘s abdomen.  The image slices are from the anterior view. 

4.1.6  Conclusions and Future Directions 

The results presented so far are the initial steps in the first application of what we hope will be a 

flourishing area of computer graphics and visualization. 

4.1.6.1 Remaining Technical Problems 

1) Conflicting visual cues:  Our experiment (Figures 4.5 and 4.6) showed that simply overlaying synthetic 

images on real ones is not sufficient.  To the user, the ultrasound images did not appear to be inside the 

subject, so much as pasted on top of her.  To overcome this problem, we now provide additional cues to 

the user by making a virtual hole in the subject (Figure 4.7) by digitizing points on the abdominal surface 

and constructing a shaded polygonal pit.  The pit provides occlusion cues by obscuring the abdominal 

surface along the inside walls of the pit.  Shading the pit provides an additional cue.  Unfortunately, this 

does not completely solve the problem; the pit hides everything  in the real image that is in the same 

location (in 2D) as the pit, including real objects that are closer in 3D than the pit.   (Note in Figure 4.7,  

the edge of the transducer is hidden behind the pit representation even though it should appear in front of 

it.) 



 Page 185 

To solve this problem, the systems needs to know depth information for both the real and synthetic 

objects visible from the HMD user‘s viewpoint.  This would make it possible to present correct occlusion 

cues by combining the live and synthetic images with a Z-buffer like algorithm.  An ideal implementation 

of this would require real-time range finding from the viewpoint of the HMD user - a significant technical 

challenge.  Graphics architectures that provide real-time depth-based image composition are already under 

development [Molnar 1992]. 

Another remaining problem is the visualization of internal 3D structure in data captured by the 

ultrasound scanner.  Neither our incremental volume rendering algorithm (Section 4.1.3) nor multiple 

explicit image slices in 3-space (Figure 4.6) solve this problem well.  A combination of multiple 

visualization methods will probably be necessary in the future.  We suspect that this problem is difficult 

because the human visual system is not accustomed to seeing structure within opaque objects, and so our 

development cannot be guided by the ―gold standard‖ of reality that has been used so effectively in guiding 

other 3D rendering investigations.  

2) System lag:  Lag in image generation and tracking is noticeable in all head-mounted displays; but it is 

 

 

Figure 4.7:  An image showing a synthetic hole rendered around ultrasound images in an attempt to avoid 

conflicting visual cues.  Note the depth cues provided by occlusion of the image slices by the pit walls and 

shading of the pit.  Also note the incorrect obscuration of the ultrasound transducer by the pit wall.  

(RT 3200 Advantage II ultrasound scanner courtesy of General Electric Medical Systems.)  
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dramatically accentuated with see-through HMD.  The ―live video‖ of the observer‘s surroundings moves 

appropriately during any head movement but the synthetic image overlay lags behind.  This is currently 

one of our system‘s major problems which prevents it from giving the user a convincing experience of 

seeing synthetic objects or images hanging in 3-space.  A possible solution may be to delay the live video 

images so that their delay matches that of the synthetic images.  This will align the real and synthetic 

images, but won‘t eliminate the lag itself.  We are also considering predictive tracking as a way to reduce 

the effect of the lag [Liang 1991].  Developers of some multi-million dollar flight simulators have studied 

predictive tracking for many years, but unfortunately for us, they have not, to our knowledge, published 

details of their methods and their methods' effectiveness.  For the immediate future, we are planning to 

move to our locally-developed ―ceiling tracker‖ [Ward 1992] and use predictive tracking. 

3) Tracking system range and stability:  Even though we are using the most popular and probably most 

effective commercially available tracking system from Polhemus, we are constantly plagued by limitations 

in tracking volume and tracking stability [Liang 1991].  The observer often steps inadvertently out of 

tracker range, and even while keeping very still the observer must cope with objects in the synthetic image 

―swimming‖ in place.  We are eagerly awaiting the next generation of tracking systems from Polhemus 

and other manufacturers that are said to overcome most of these problems.  Even more capable tracking 

systems will be needed in order to satisfy the many applications in which the observer must move about in 

the real world instead of a laboratory, operating room or other controlled environment.  Many schemes 

have been casually proposed over the years, but we know of no device that has been built and 

demonstrated.  Even the room-size tracker we built and demonstrated for a week at SIGGRAPH‘91 still 

needs special ceiling panels with infrared LEDs [Ward 1992]. 

4) Head-mounted display system resolution:  For many of the applications envisioned, the image quality 

of current head-mounted video displays is totally inadequate.  In a see-through application, a user is even 

more sensitive to the limitations of his head-mounted display than in a conventional non-see-through 

application because he is painfully aware of the visual details he‘s missing. 

5) More powerful display engines:  Even with all the above problems solved, the synthetic images we 

would like to see, for example, real-time volume visualization of real-time volume data, would still take too 

long to be created.  Much more powerful image generation systems are needed if we are to be able to 

visualize usefully detailed 3D imagery. 

4.1.6.2 Other Applications 

1) Vision in surgery:  In neurosurgery, ultrasound is already used to image nearby arteries that should be 

avoided by an impending surgical incision. 

2) Burning buildings:  With close-range, millimeter wavelength radar, rescuers may be able to ―see 
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through‖ the smoke in the interior of burning buildings. 

3) Building geometry:  Geometry or other structural data could be added to a ―live‖ scene.  In the above 

―burning building‖ scenario, parts of a building plan could be superimposed onto the visual scene, such as 

the location of stairways, hallways, or the best exits out of the building.   

4) Service information:  Information could be displayed to a service technician working on complicated 

machinery such as a jet engine.  Even simpler head-mounted displays, ones without head tracking, already 

provide information to users on site and avoid using a large cumbersome video screens.  Adding head 

tracking would allow 3D superimposition to show, for instance, the location of special parts within an 

engine, or the easiest path for removal or insertion of a subassembly. 

5) Architecture on site:  Portable systems could allow builders and architects to preview buildings on site 

before construction or visualize additions to existing architecture.  

With the work presented here and the identification of problems and possibilities for further 

research, we hope to encourage applications not only  of ―virtual environments‖ (imaginary worlds), but 

also applications that involve an ―enhancement of vision‖ in our real world.  
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4.2  In-Place Volume Visualization 

4.2.1  Introduction 

Section 4.1 described a version of the dynamic viewpoint 3D echography system with the 

see-through HMD that employs the in-place 2D-slices visualization model.  In this model, 2D echography 

slices arriving on-line were rendered as 2D slices in the 3D world space.  The rendered 2D slices were 

registered with the locations of the transducer, so that the wearers of the video see-through HMD would see 

the echography slices emanating from the 2D echography transducer.   

This section presents work on a version of the dynamic viewpoint 3D echography system with 

in-place volume visualization.  Our aim was to explore the potential benefits associated with a system that 

combines volume visualizations of 3D echography datasets with a see-through HMD.  In this version of 

the dynamic viewpoint 3D echography system, a user wearing a see-through HMD would see volume 

visualized images of 3D echography datasets in place.  To the author‘s knowledge, this work represents the 

first instance where volume visualized images are displayed in a see-through HMD environment.    

The dynamic viewpoint 3D echography system with in-place volume visualization emphasized, 

among other research interests, an exploration of the volume visualization of 3D echography datasets by 

using a video see-through HMD.  Given limitations of the hardware and software at the time (October of 

1992), the system needed to make trades-off in other aspects of the system; most importantly, the 

acquisition and reconstruction stages were off-line from the visualization stage in this version of the 

system. 

The work described in this section was first published as part of a talk given at the SIGGRAPH‘92 

conference held in Chicago in August 1992, whose paper ([Bajura, 1992]) was reproduced in Section 4.1.  

However, the paper itself does not include the work presented in this section since it was carried out after 

the submission of the paper in early 1992.  The material presented in this section includes results described 

in the proceedings of the Visualization in Biomedical Computing (VBC) 1992 conference held in October 

1992 [Ohbuchi, 1992] (but not in the SIGGRAPH‘92 paper.)  For example, VBC‘92 paper briefly 

described the volume reconstruction methods from series of 2D image slices with 6 DOF and the volume 

visualization using the VVEVOL [Yoo, 1992].  The VBC‘92 paper, however, did not include the use of 

video see-through HMD.  The work presented in this section was carried out by Michael Bajura, Henry 

Fuchs, David Chen, and Ryutarou Ohbuchi. 
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4.2.2  Method 

4.2.2.1  Acquisition 

Unlike the static viewpoint 3D echography system described in Chapter 3, but like the dynamic 

viewpoint 3D echography system with video see-through HMD system described in Section 4.1, volume 

data acquisition for the in-place volume visualization system was performed with 6 DOF.  Images and 

their coordinates with 6 DOF were acquired using the same setup as described in Section 4.1.4, in which a 

sector scanning transducer of the General Electric Medical Systems Model 3600 echography scanner was 

mounted on a rigid Plexiglas mount along with the receiver of a Polhemus 6 DOF magnetic tracking device 

[Polhemus, 1980].  A geometric calibration procedure briefly described in Section 4.1.4 was used to 

calibrate the location of each echography image pixel relative to the Polhemus receiver attached to the 

echography transducer.  As discussed in Section 3.2.3 and Section 4.1.4.4, such a calibration is necessary 

to locate each pixel in the 3D world space.    

The image acquisition frame rate of this acquisition system was low, at about 0.5 frames/s 

(2 second/frame), including the time to store the image into disk files over the network.  At this acquisition 

rate, the scanner transducer needed to be moved very slowly and carefully to avoid undersampling and 

misregistration among image slices. (The misregistration here is due to tracking lag.)  Despite this effort, 

almost all the datasets acquired contained undersampled portions.   

Another difficulty in acquisition was deformation of target objects due to the contact scan.  If the 

transducer is pressed onto a target volume, a thigh for example, the target volume and its internal structures 

deform.  Changes in deformation due to transducer movement introduce registration errors of the objects 

among multiple slices.  Such misregistration of objects among image slices lead to erroneous 

reconstruction results.  Deformation due to the contact scan was minimized by having the operator of the 

echography transducer exert just enough pressure for the transducer to maintain proper acoustic coupling.  

4.2.2.2  Volume Reconstruction 

Each series of image slices is stored to disk files.  The series of images slices is then reconstructed 

into a regularly sampled volume dataset by a 6 DOF reconstruction program developed by David Chen, 

which runs off-line on a workstation.  The 6 DOF reconstruction algorithm here employs the Gaussian 

weighted approximation algorithm as described in Section 3.3.  There are, however, two differences 

between the reconstruction algorithms used here and the reconstruction algorithm for the static viewpoint 

3D echography system described in Section 3.3.  The first difference is that the reconstruction algorithm 

here is designed for data slices with 6 DOF, instead of 3 DOF.  In order to support the image slices with 
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6 DOF, the reconstruction algorithm for the in-place volume visualization system has a 3D weight buffer 

(instead of a 2D weight buffer for the algorithm described in Section 3.3.)  In other words, each voxel is 

associated with a weight value.  Second difference is the lack of temporal reconstruction in the 6 DOF 

reconstruction algorithm for the in-place volume visualization system described here.  Assuming that there 

is no change in the target while the series of slices is acquired, the reconstruction can be performed off-line 

after the necessary series of slices has been acquired and stored into a file.  This assumption did away with 

the temporal reconstruction and hence the age buffer in the 6 DOF reconstruction algorithm for the in-place 

volume visualization system. 

4.2.2.3  Volume Visualization 

A volume visualization system VVEVOL [Yoo, 1992] which runs on the Pixel-Planes 5 [Fuchs, 

1989] graphics multicomputer was used to visualize volume datasets that were reconstructed off-line from 

series of 6 DOF image slices.  The Pixel-Planes 5 is a heterogeneous multicomputer, where a high 

bandwidth ring bus connects general purpose MIMD parallel processors (up to 40 or so Intel i860 

processors with 8 MB of memory for each processor) and special purpose, pixel manipulation oriented 

SIMD parallel processors (multiple sets of 128  128 arrays of 1 bit CPUs.)  The VVEVOL running on the 

Pixel-Planes 5 uses an object-space parallel, image ray-casting method to implement a volume visualization 

with ASSG, additive projection, and other visual models.  When the ASSG model is employed, it is 

capable of generating low quality images with a limited number of rays at up to about 10 frames/s for 

interactive viewing by a HMD.  The VVEVOL employs what is called an adaptive refinement, in which 

the VVEVOL adaptively trades-off its image quality and image generation speed given the limited amount 

of computational power.  With the adaptive refinement, while a viewpoint keeps changing, VVEVOL 

generates images at a faster rate but with lower quality by casting fewer rays.  This happens when a wearer 

of the HMD is moving around, for example.  When the viewpoint stops changing for a preset amount of 

time, VVEVOL refines the image quality by casting more rays.   

In a see-through HMD environment, seeing details of volume visualized objects can be difficult 

given diverse and complex real-world backgrounds captured by the TV camera attached to the HMD 

helmet.  Thus, we tried to implement a ―pit‖, identical to the one shown in Figure 4.7 of Section 4.1.6.1, in 

order to provide a simple background for the volume visualized 3D echography datasets.  The pit, if 

properly implemented, could serve two additional purposes.  First, with its straight edges, the pit could 

provide visual references for the locations and orientations of the volume visualization images.  Second, 

with properly shaded surfaces, the pit could provide additional 3D cues that are hard to obtain from 

complex volume visualized objects.  Unfortunately, due to the limitation of the VVEVOL at the time, the 

implementation of the pit here lacks the shading and crisp edge definitions of the pit shown in Figure 4.7 in 

Section 4.1.6.1.  
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4.2.3  Results 

A series of 2D echography slices of the right thigh of a healthy male volunteer (the author) were 

acquired with 6 DOF, reconstructed off-line, and visualized interactively with the see-through HMD.  

Figure 4.8 shows one slice out of a series of 46 slices acquired.  Figure 4.8 is a (near) sagittal section 

which shows the upper surface of the right femur, and the femoral artery and vein paired together.  The 

upper surface of the right femur is seen near the apex of the fan to the left of the image.  The femoral artery 

and vein are seen as a single bright tubular structure to the right and down from the femur.  This image 

also shows shadowing under the upper surface of the femur, since the interface of the soft tissues and the 

bone is highly reflective (i.e., a large mismatch in acoustic impedances.) 

The series of image slices stored in a set of files was reconstructed into a 128
3
 volume dataset by 

the 6 DOF reconstruction algorithm running on a HP9000/700 workstation with 64 MB of memory.  This 

reconstruction took about 120 seconds (including system time.)  A low CPU utilization (38%) with a large 

number of page-faults was observed during reconstruction.  This was due to the scattered memory 

reference pattern of the program, and the physical memory allocation limit imposed by the operating 

system at the time.  The execution would be faster if the implementation of the reconstruction algorithm 

could be modified to improve the memory access locality, and if more physical memory could be allocated 

to the process.  

The reconstructed volume dataset was stored in a file, and then given to the VVEVOL for volume 

visualization.  As display devices, both the 1) conventional stationary (monocular) video display, and 

2) the see-through HMD system as described in Section 4.1, are used.  Time from the start of acquisition to 

the start of visualization using the see-through HMD took nearly 10 minutes, due to the long acquisition 

time, reconstruction time, and several human interventions.  Once the visualization was started, image 

generation for the see-through HMD or the stationary video display took place at an interactive rate of 

about 8-10 frames/s. 



 Page 196 

 

Figure 4.8:  An ultrasound echography image of the right thigh of a healthy male.  Upper surface of the 

femur and femoral artery/vein pair are visible.  Notice the shadowing by the (upper surface of) femur.    

Figure 4.9.a and Figure 4.9.b show the reconstructed and volume visualized images from the two 

different viewpoints which were presented to the see-through HMD displays.  The images of the volume 

visualized echography dataset are merged with the images of real objects captured by the video camera 

mounted on the HMD helmet.  Each volume visualized image is the ―refined‖ image generated by the 

VVEVOL after a period of about half a second without viewpoint change.  Please keep in mind that the 

images as seen by the eyes of the HMD wearer had much lower quality than these pictures, since the LCD 

displays used in the HMD had lower resolutions and lower dynamic ranges than a common CRT display.  

(These pictures were taken from the video tape recording of the in-place visualized images.  The video 

tape recorded the video signal output after the intensity keying by using the video mixer depicted in the 

system block diagram of Figure 4.3.) 
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Figure 4.9.a:  An image presented to the see-through HMD display wearer.  It combines images of the 

thigh and its surroundings captured by the TV camera with the volume visualized images of a 3D 

echography dataset reconstructed off-line from 46 slices.  This image is after the VVEVOL refined the 

image. 

 

Figure 4.9.b:  Another image presented to the wearer of the see-through HMD display.  A structure that 

resembles a zigzagging pipe at the bottom (arrow) is the femoral artery and vein pair.  Note the lack of 

shading of the walls of the box.  This image is after the VVEVOL refined the image.   
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4.2.4  Summary and Discussion on In-Place Volume Visualization 

Section 4.1 has presented the interactive volume visualization of 3D echography datasets in the 

see-through HMD environment.  By using the VVEVOL volume visualization system running on the 

Pixel-Planes 5, the dynamic viewpoint display system with in-place volume visualization was able to 

visualize off-line reconstructed, static datasets at an image generation frame rate of 8-10 frames/s.   

As mentioned before, both the conventional stationary (monocular) video display with a joystick and 

the see-through HMD were tried as the display systems for in-place volume visualization.  The stationary 

video display, which used the joystick for viewpoint manipulation, provided good 3D cues.  Yet, for this 

application, the see-through HMD seems to have two advantages over the conventional stationary video 

display.  In fact, the see-through HMD seems to have an advantage over even a closed-view HMD.  These 

advantages are as follows: 

(1) The HMD appears to be an effective display device for 3D echography datasets. The volume 

visualization system with (see-through) HMD seems to provide easier and better understanding of 

3D objects in the 3D echography datasets (e.g., the femur and femoral artery/vein pair.)  This 

advantage is mainly due to head-motion parallax and thus exists in both the closed-view and 

see-through HMDs. 

(2) In-place volume visualization using the see-through HMD is an effective display technique 

for medical 3D echography imaging. The in-place volume visualization system with see-through 

HMD seems to provide a better understanding of the relationship between 3D objects in the 

echography datasets (e.g., the femur and femoral artery/vein pair) and objects in the real-world 

captured by the video-camera (e.g., the thigh.)  This advantage is mainly due to in-place 

visualization using see-through capability.  

Item 1) was true even when low-quality images were generated by the VVEVOL, which turned off 

the adaptive refinement due to changing viewpoint.  Refined images from static viewpoints, despite their 

apparent high quality, did not seem to be more helpful than the unrefined but dynamically changing images.  

Item 2) above presents a definite advantage of in-place visualization with the see-through HMD over 

closed-view HMDs and conventional static viewpoint displays.  For example, for an untrained person, 

determining correct anatomical relationships of 2D medical image slices with the scanned subject can be 

quite difficult  With in-place visualization using see-through HMDs, the relationships between the objects 

in the datasets and the real-world objects are clear without requiring burdensome mental manipulations.  

The ease of comprehension of the in-place visualization will be helpful even for a trained person, e.g., a 

surgeon, in reducing errors and improving efficiency.  
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The VVEVOL generates images with a short lag and a high throughput for each change in 

classification and modeling parameters as well as viewpoint.  Generation of useful images by using 

volume visualization commonly requires many trial-and-error adjustments of classification and modeling 

parameters.  Consequently, highly interactive responses of the VVEVOL to the changes in classification 

and modeling parameters proved to be very useful, in fact almost essential, in producing useful volume 

visualization quickly.   

Despite these encouraging observations, various problems of the current see-through HMD system 

may hinder its overall effectiveness compared to other display devices such as conventional stationary 

video displays.  These problems and possible solutions will be discussed next.  

4.2.5  Remaining Technical Problems Concerning In-Place Volume Visualization 

The version of the dynamic viewpoint 3D echography system with in-place volume visualization 

described in Section 4.2 has many apparent problems which have yet to be solved.  Some of these 

problems are listed below, along with some possible solutions.  Italicized sub-items are the causes of these 

apparent problems.  Several of the causes are shared by more than one apparent problem.  A few of the 

causes are common between the two versions of the systems, i.e., the in-place volume visualization system 

discussed here and the in-place 2D-slices visualization system discussed in Section 4.1.  The sub-items 

flagged with ―*‖ indicate that these causes were also listed and discussed in Section 4.1.6.1. for the in-place 

2D-slices visualization system. 

(1) Low quality of volume dataset. 

The image quality of the visualized echography dataset is not good enough to show detailed 

structures, such as the face of an 18 weeks-old fetus.  The single most significant cause of this problem is 

the registration error among acquired slices, which can be seen in Figure 4.9.a and Figure 4.9.b.  In these 

images, the reconstructed and visualized images of the femoral artery/vein pair appear to be zigzagging.  

This zigzagging is caused by registration errors among 2D echography slices.  Such registration error can 

be caused by item 1a-1e below.  Another cause of the overall low quality of the volume dataset is the 

inadequate quality of each echography slice (the cause item 1f below.)   

Following are the causes and possible solutions for low quality of volume datasets.   

1a. Inadequate calibration.  The calibration was inadequate to locate the exact positions of the ultrasound 

echography image pixels in the 3D world space.  Inaccurate ultrasound image pixel locations contributed 

to registration errors in the reconstructed volume datasets.  

Reconstructing a regularly sampled volume dataset from a set of 2D image slices, which is 
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acquired using 6 DOF hand-guided free-format scanning, requires locations of echography image 

pixels in the 3D world space.  In order to relate the information received from the tracking device 

with the pixel locations, an echography-pixel-location calibration procedure is necessary.  The 

calibration procedure briefly described in Section 4.1.4.4 was not only tedious to perform but 

inadequate in terms of accuracy.  An easier, faster, and more accurate calibration method is 

obviously necessary. 

1b. Tracking system range and instability.  ―Static‖ tracking errors, which appear even when the tracked 

objects are not moving, can be caused by various factors.  These factors include the absolute accuracy of 

the tracking device, a decrease in accuracy near the range limit of the tracking device, instability of the 

tracking device, and interference from the environment.  

1c. System lag.  Lags in the tracking system generated ―dynamic‖ tracking errors when the tracked object, 

the ultrasound transducer, was moving.   

Tracking errors due to causes b and c above can be reduced by a better tracking device, i.e., 

the one that is more accurate, has a wider range, is less prone to interferences, has a higher 

throughput, and has a shorter lag.  Newer tracking devices, such as new magnetic trackers 

[Ascension, 1991, Polhemus, 1991] and an electro-optical tracker [Ward, 1992b] could help in this 

respect.  (Characteristics of these tracking devices, such as lag, are discussed in [Mine, 1993].)  A 

large working volume is an important and attractive feature of the electro-optical tracker described 

in [Ward, 1992b], which is being integrated into the recent version of the ultrasound echography 

visualization system at the UNC Chapel Hill.  Motion predictive tracking, as experimented with at 

the UNC Chapel Hill and elsewhere (e.g., [Liang, 1991]), is an interesting approach that can be used 

to reduce the effect of system lag.  More discussion on system lag will be found in item 2.c. 

1d. Target deformations and movements due to contact scan.  Certain pressure must be applied to the 

transducer in order to maintain its acoustic coupling with the target volume.  This pressure deformed and 

moved the target volume, which displaced target objects from one image slice to another. Such deformation 

and movement caused object registration errors. 

Deformation of the target volume due to the hand-held contact scan can be reduced, to some 

extent, by careful low-pressure scanning.  Further reduction of deformations due to contact scans 

can be achieved by one or more of the following: (1) by fixing target volumes in a manner similar to 

current X-ray mammography equipments,  (2) by using non-contact scanning through a water-filled 

balloon or a water tank, and/or (3) using a volume scanning method with a fixed 

single-point-of-contact (such as the 1 DOF radial scan discussed in Section 2.1.2.) 

1e. Low image acquisition rate.  A low image acquisition rate (about 0.5 frames/s) caused two problems.  

One is the increased chance of undersampling from a slice to the next.  Another is the misregistration 
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among slices caused by significant movement and deformation of a volume of interest due to the long 

acquisition time required by the system.  (For example, if an acquisition speed of 0.5 frames/s is assumed, 

the acquisition of 60 slices needs more than 2 minutes.  It is difficult for a subject to stay still for such a 

long period of time.)   

A faster image acquisition would reduce the chance of undersampling.  Shorter acquisition 

periods due to a faster image acquisition can also reduce the misregistration secondary to the motion 

of the target.  Since the experiment described in Section 4.2.3 was conducted, a real-time video 

digitizer board that connects directly to the Pixel-Planes 5 through a high-speed link has been 

designed and constructed by Michael Bajura so as to increase the speed of echography image 

acquisition.  The board is currently being integrated into the software and hardware systems. 

1f. Low ultrasound echography image resolution.  Resolution of each echography slice was not 

satisfactory, especially in the elevation resolution (i.e., the slices were too thick.) 

To improve the resolution of volume image datasets, an echography scanner with higher 

resolution, especially higher elevation resolution (i.e., thinner image slices), is necessary.  The 

scanner-transducer combination used for the experiment described in this section has 

half-width-half-maximum (HWHM) elevation resolution on the order of a centimeter at its far range.  

The transducer used by Tomographic Technologies [Tomographic Technologies, 1991] is designed 

for 3D data acquisitions and incorporates elevation focusing by the phased array principle.  The 

transducer is claimed to have an elevation resolution of around 2 mm.  Such a high elevation 

resolution, combined with dense sampling due to faster image acquisition, will greatly improve the 

quality of 3D echography datasets.    

(2) Misregistration between real and virtual images. 

This is a problem common to both versions of the dynamic viewpoint 3D echography system 

described in this dissertation.  Registration errors among synthetic and real objects are visible in both 

Figure 4.9.a and Figure 4.9.b which are generated by the in-place volume visualization system described in 

this section.  For example, in each one of these two images, the volume visualized image of the femoral 

artery/vein pair has an inaccurate location and orientation in the thigh.   

The following is the list of causes and possible solutions for such registration errors between the real 

and synthetic images.   

2a. Inadequate calibration.  The calibrations were inadequate for locating the exact positions of the video 

camera sensor pixels and the ultrasound echography image pixels in the 3D world space.  

Proper operation of the video see-through HMD requires tracking the locations of both video 
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camera sensor pixels and echography image pixels.  In both kinds of tracking, tracking information 

generated by a tracking device (i.e., location and orientation of the tracking device) is not sufficient 

to obtain the locations of the respective types of pixels.  The echography-pixel-location calibration 

discussed in item 1a is necessary, as well as a camera-pixel-location calibration to relate the 

tracking information received from the tracking device, which is mounted on the HMD helmet, to 

the pixels of the camera sensor.  In each kind of tracking, the calibration procedure employed was 

tedious and lacked accuracy.  In the case of the camera-pixel-location calibration, involvement of 

camera optics made the calibration significantly more complex.   

2b. Optical characteristics.  The characteristics of the optics of the video camera and the HMD, such as 

their fields-of-view and geometric distortions, were not corrected adequately.   

The lenses of the video camera and HMD have optical characteristics, such as fields-of-view 

and geometric distortions.  Unless these characteristics are properly accounted for, through what we 

call optical calibrations, correct registrations of virtual and real images can not be achieved.  Such 

optical calibration is essential to the camera pixel location calibration, since the camera pixel 

calibration involves image acquisition by the camera through the lens.  Optical calibration is 

necessary for both versions of the dynamic viewpoint 3D echography system; however, optical 

calibration was not mentioned in Section 4.1, since we are uncertain of its importance at the time. 

Two of the most important characteristics of the optics, the fields-of-view and geometric 

distortions of the video camera and the HMD, can be measured.  Geometric distortions in the optics 

of a closed-view HMD are discussed in [Robinett, 1991], who also suggests incorporating an 

―equalizing pre-distortion‖ to (virtual) image generation as a solution.  Such equalizing 

pre-distortion for the HMD optics has since been implemented in the image generation software for 

polygon based datasets on the Pixel-Planes 5 system at the UNC Chapel Hill.  Pre-distortion can be 

applied to the video see-through HMDs if an additional geometric distortion by the video camera 

optics is taken into account.  Recently, Andrei State and others have been working on the optical 

calibration and pre-distortion for the video see-through HMD, to be used in a successor of the 

dynamic viewpoint 3D echography system. 

2c. System lag.  The system lag, which included both tracking lag and lag from image acquisition to image 

generation, caused ―dynamic‖ registration errors.  Such dynamic registration error occurred if either the 

echography transducer, the HMD, or both were moving.  

The ―system lag‖ includes (time) lag introduced by the tracking system, the image acquisition 

system, and the image generation system.  Two aspects of lag, “absolute lag” and “phase lag”, can 

cause different kinds of problems in a see-through HMD system.  The former is the latency from 

one event to another.  In the case of the in-place volume visualization with the video see-through 
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HMD, the most critical absolute lag is the viewing lag of virtual images, which is the lag from the 

movement of a HMD wearer‘s head to the presentation of the first image affected by the head 

movement.  The latter, phase lag, is the difference in absolute lags between two processes.  In the 

same system, the most important phase lag is between the absolute lag for real images and the 

absolute lag for virtual images.  (The absolute lag of real images, an equivalent of a few NTSC 

video frames, is much shorter than that of virtual images.)  Such a phase lag caused the ―dynamic‖ 

registration error among real and virtual objects in the merged images.  

It is obviously not possible to reduce the absolute lag of the system to zero, but we hope that 

the software and hardware designed for shorter (absolute) lag could reduce it to an acceptable level.  

An untested idea for minimizing the phase lag between virtual and real images is to insert an 

artificial lag into images captured by the video camera.  As discussed in relation to items 1b and 1c, 

effects of absolute lags in tracking and image generation can be reduced by predictive tracking.  

Another untested idea, which can minimize effects of small absolute lag in real images captured by a 

video camera, is to transform (e.g., translating and scaling) real images in the 2D image space using 

the predictive tracking information. 

The author speculates that human beings would tolerate a ―small‖ absolute lag as long as the 

phase lag between virtual and real images is ―negligible‖; after all, the human nervous system is 

performing with milliseconds of lags built-in everywhere.  However, ―tolerable‖ values for both 

phase and absolute lags may be quite small.  Several studies on the effects of absolute lag on pilot 

performance have been conducted for military flight simulators, which are cited in a survey [Pausch, 

1992].  For example, pilots performed better with the flight simulator with 117 ms lag than 217 ms 

lag, although the objective decrease of performance was smaller than the subjective decrease of 

performance claimed by the pilots [Westra, 1985].  Another study cited in [Pausch, 1992] states that 

an absolute lag of 66 ms, which amounts to two NTSC video frames, makes ―just noticeable 

difference‖ in performance.  The survey also cites a few studies on the problems associated with 

phase lag among visual cues, which [Pausch, 1992] calls the ―cue asynchrony problem‖.  However, 

results of these studies are inconclusive.  The effects of absolute lag and phase lag in various 

cognitive cues on human beings awaits more extensive study. 

2d. Tracking system range and instability. The issues associated with the tracking system range and 

stability are discussed in item 1.b above and will not be repeated here.   

2e. Low image acquisition frame rate.  Due to the slow image acquisition speed, objects within the target 

volume and the target volume itself moved and deformed over time.  Both motion and deformation 

generated misregistration between virtual objects and real objects.   

2f. More powerful display system.  The system needed nearly 10 minutes for acquisition, reconstruction 
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and visualization of a volume dataset, primarily because the hardware and software systems at the time 

were not powerful enough.  Such a long time of visualization allowed objects to move, causing 

misregistration between the virtual and real objects.  

Misregistration due to movements of objects during the long lag from acquisition to 

visualization can be reduced by faster acquisition, reconstruction, and visualization systems.   

(3) Slow and off-line acquisition, reconstruction, and visualization.  

The acquisition, reconstruction, and visualization stages of the system described in this section 

passed datasets off-line via disk files.  Also, neither the acquisition nor the reconstruction performed at 

interactive speed.  The image generation speed of the visualization stage, although barely interactive at 

8-10 frames/s, was not fast enough, and the quality of the volume visualized images were not satisfactory.  

A low image generation throughput and a long lag interfere with the illusion of in-place visualization, 

because the low throughput and the long lag can cause problems such as the dynamic registration error.   

A faster, higher image quality, on-line system was not possible at the time for several reasons 

including the following. 

3a. More powerful display system.  The hardware and software systems at the time were not powerful 

enough.   

3b. Low image acquisition frame rate.  See 1e. 

In order to realize a truly interactive system, all the acquisition, reconstruction, and 

visualization stages need to be integrated and perform on-line.  The entire system must also be 

much faster, both in terms of shorter lag and higher throughput.  

The dynamic viewpoint 3D echography system with in-place volume visualization has since 

been improved so that a recent system operates on-line throughout, although it is still not fast 

enough to be truly interactive.  The recent dynamic viewpoint 3D echography system developed by 

Andrei State, David Chen and others, which was tested on a pregnant human subject in January of 

1993, had all the acquisition, reconstruction, and visualization stages connected on-line.  This 

system reconstructed volume datasets from series of 6 DOF slices acquired by hand-guided scanning 

at the rate of a few 2D image slices per second.  The volume datasets were then passed, on-line, to 

the visualization stage which generated images at a rate of about 10 frames/s.  Still, this recent 

system was limited in such aspects as the maximum size of the volume reconstruction buffer, the 

volume reconstruction frame rate, and the image generation frame rate.  Further software and 

hardware improvements are necessary to reach the goal of a truly interactive dynamic viewpoint 3D 

echography system.  
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(4) Inadequate model for in-place data visualization. 

Developing and implementing proper models for in-place data visualization is one of the most 

difficult of the problems.  We learned that the first visual model of the in-place 2D-slices visualization 

described in Section 4.1 was not sufficient for proper 3D perception.  In the earlier visual model of 

in-place 2D visualization, echography image slices visualized as 2D slices in the 3D world space were 

simply superimposed on video images of subjects.  With this visual model, human observers perceived the 

echography slices in the 3D world space to be simply pasted on top of the subject, instead of being inside 

the target objects, which is what we wanted.  Beside, details of echography images were difficult to 

perceive due to the complex backgrounds that consisted of real objects.   

To solve these problems, a ―pit‖ visual model shown in Figure 4.7 was introduced in the in-place 

2D-slices visualization system (Section 4.1.6.1.)  The pit provided an illusion of the rectangular opening 

on the volume of interest.  As a result, image slices rendered in the 3D world space looked as if they were 

placed inside the target volume, not just pasted on top of it.  Although the illusion given by the pit was 

imperfect due to various reasons, the pit metaphor proved to be useful.  Two of the most important issues 

were the improper obscuration among virtual and real objects and misregistration among virtual and real 

objects.  

The in-place volume visualization version of the system described in this section tried to implement 

a pit similar to the one in Figure 4.7.  However, the various system limitations present at the time of the 

development of the in-place volume visualization system resulted in the inadequate implementation as 

shown in Figure 4.9.a and Figure 4.9.b.  This implementation, despite its inadequacy, does provide the 

homogeneous background necessary for users to perceive details of volume visualized images without 

visual clutter by real objects.  Problems found in the pit of Figure 4.9.a and Figure 4.9.b include the wrong 

size (i.e., too large), the lack of shading, and the fuzzy edges of the polygons that constitute the pit, which 

were additional to the problems which existed in the pit of Figure 4.7.  These additional problems lead to 

weaker 3D perception than that of the pit implemented in the in-place 2D-slices visualization (i.e., 

Figure 4.7.)   

Following are the causes and possible solutions for the inadequacies of the in-place data 

visualization. 

4a. Software limitation of visualization system.  The inadequate implementation of the pit was due to the 

limitation of VVEVOL at the time. 

The rendering quality of pits should improve as soon as there is better implementation of the 

polygon rendering facility in the VOL2, the successor of VVEVOL.  

4b. Imperfect model of in-place visualization.  The model of the pit was inadequate, especially in terms 
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of proper obscuration among virtual and real objects. 

Probably one of the most difficult problems associated with the pit, and in fact in-place 

visualization in general, is the proper obscuration among real and virtual objects.  For example, in 

Figure 4.7, the image of the (real) transducer was obscured by the wall of the (virtual) pit which is 

supposed to be located behind the transducer.  Such incorrect obscuration interferes with proper 

perception of 3D relationships among real and virtual objects.  Composing virtual and real objects 

with correct obscuration will be quite challenging, since correct obscuration among virtual and real 

objects from a viewpoint would require a 3D depth-map of every real and virtual object seen from 

that viewpoint.  Toward this goal, various methods to acquire a depth map, either automatically 

(e.g., by using an optical sensing method [Okutomi, 1993]) or manually (e.g., by using interactive 

measurements of objects with a 3D digitizer) have been studied by researchers at UNC-Chapel Hill 

and elsewhere.  

It is also very important to develop different kinds of visual models beyond the pit so that 

more natural in-place visualizations can be realized.  

4.2.6  Observation on the Difficulties of the Problems 

As listed above, we have found many problems associated with the dynamic viewpoint 3D 

echography system with in-place volume visualization.  It is relatively easy to find solutions for some of 

the problems.  However, solutions for the other problems are difficult to find, since these problems are 

more fundamental.  The following is a summary the problems in order of increasing difficulty.  

The slow image acquisition speed (1e) is among the easiest to improve.  The image acquisition 

speed can be increased relatively easily by using the proper hardware and software.  Faster acquisitions 

will reduce undersampling and misregistration due to target movements and deformation over long 

acquisition periods (1e and 2e.)  The quality of ultrasound images (1f) can be improved by a scanner with 

elevation focusing.  Some of the issues caused primarily by the limitations of the software implementation, 

such as the inadequately implemented pit (4a), are also relatively easy to resolve. 

Although theoretically tractable, image-pixel-location calibration and camera-pixel-location 

calibration (1a and 2a) turned out to be rather involved engineering problems.  Many factors, such as the 

geometric distortions of the video camera and HMD lenses, make the calibration less accurate and 

cumbersome.  Optical characteristics of the video camera lens and the HMD (2b) are currently being 

mapped and corrective measures are being incorporated.  Accuracy, absolute lag and stability of the 

tracking (1b) should improve as newer tracking devices are incorporated into the system. 

We also need a better see-through HMD device, as discussed in Section 4.1.6.1.  Features desired in 
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closed-view and see-through HMDs include higher resolution, wider field-of-view, binocular stereo 

(preferably with inter-ocular distances that can match each user), increased brightness dynamic range, less 

weight, smaller size, larger working volume, and wider color gamut.  An interesting additional concern in 

a video see-though HMD is the shift in the imaging positions of the video cameras and the eyes of users; 

the video see-through HMD used here (which is monocular) had the cameras positioned at about 10 cm 

above the eyes of the user.  Human beings are adaptive, as exemplified by the common use of eyeglasses 

which shifts the apparent focal planes and introduces geometric distortion.  It may be interesting to study 

the effects of such displacements of apparent eye locations on human performance in various kinds of tasks. 

The system lag (1c) is a hard problem to solve.  More powerful hardware and software systems 

designed for shorter absolute lag can be developed, but the absolute lag will never be zero.  Predictive 

tracking seems promising in reducing the effect of the absolute lag.  The idea of synchronizing virtual and 

real images by introducing delay to the video signal seems intriguing.  More studies are needed to 

determine the effects of absolute lag and phase lag on human perception.  Studies are also needed to 

evaluate the effectiveness of various methods, such as predictive tracking, which try to deal with these lags. 

Probably the most difficult problem is providing all the proper 3D visual cues for in-place 

visualization (4b.)  One of the challenges is generating correct obscuration among all the virtual and real 

objects.  In order to generate an in-place visualization image from a viewpoint with proper obscuration, a 

depth map of all the objects in the view frustum, virtual and real, is necessary.  Obtaining such a map for 

real objects will be quite challenging.  Toward this goal, various methods to capture depth maps of real 

objects are currently being studied by researchers at UNC-Chapel Hill and elsewhere.   

It is also clear that visual models for in-place visualization that are better than our pit need to be 

developed.   

4.3  Discussion on Dynamic Viewpoint System 

This chapter has presented studies of display techniques for ultrasound echography visualizations 

that employ a see-through HMD device.  The major contributions of the research presented in this chapter 

are as follows. 

(1) Feasibility study systems 

(a) Demonstration of a dynamic viewpoint 3D echography system with video see-through 

HMD that displays, with proper registration, video images of real-world objects merged 

with computer renderings of multiple 2D echography images arriving on-line from a 
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hand-guided 2D ultrasound scanner with 6 DOF 

(b) Demonstration of a dynamic viewpoint 3D echography system that displays, at a slow but 

interactive rate, volume visualized images of 3D echography datasets that are reconstructed 

off-line from series of 2D echography slices with 6 DOF. 

(2) See-through head-mounted display 

(a) Development of a video see-through HMD that displays, with proper registration, computer 

generated images merged and registered with images of the real-world captured by a TV 

camera mounted on the HMD helmet.   

(b) Identification of problems that are involved in the video see-through HMD system, such as 

system lag and tracking accuracy.  

As noted before, to the author‘s knowledge, each one of these two feasibility study systems is the 

first of its kind.  The research has also identified many issues involved in such systems, so that we and 

others can direct efforts toward solving these issues.  

Experiences with the two versions of the system are still quite limited, but they seem to suggest that 

the in-place volume visualization with dynamic viewpoint display using see-through HMDs can be useful 

in visualizing and displaying such complex volume datasets as 3D echography datasets.  Our positive 

experiences with the see-through HMD applied to 3D echography imaging include improved 3D 

perceptions of visualized echography images and better understanding of spatial relations between the 

echography images and objects in the real world.  More detailed discussions of these points are found in 

Section 4.2.4. 

In the future, see-through HMDs combined with 3D real-time acquisition and visualization systems 

may help such medical applications as umbilical cord sampling, fine-needle biopsy of a suspected breast 

tumor, and resection of a brain tumor.  It must be noted that both versions of the system described in this 

chapter are far from being useful for such procedures in clinical environments.  The system still has many 

problems, some of which seem solvable in short term while others seem quite formidable 

(Sections 4.2.5-4.2.6.)  These problems are the subjects of on-going research in our group at UNC Chapel 

Hill and elsewhere.  



Chapter 5.  Conclusion and Future Work 

5.1  Summary and Contributions 

The research presented in this dissertation is part of an effort to make ultrasound echography as 

ubiquitous as the stethoscope.  Our goal is to develop a real-time 3D ultrasound acquisition and 

visualization system that is easy enough for a non-specialist (e.g., a registered nurse) to use in daily 

practice.  Such a system would acquire and visualize a 3D ultrasound echography dataset at a real-time 

rate.  To enhance comprehension of the complex objects being imaged, the system might present 3D 

visualization of the dataset ―in place‖; for example, the fetus might be displayed within a pregnant subject‘s 

abdomen.   

In order to identify areas needing improvement in order to realize our goal, we have surveyed the 

current state-of-the-art of 3D ultrasound echography acquisition, visualization, and display methods in 

Chapter 2.  We then set out to push the state-of-the-art toward the goal in some of these areas through the 

development of two feasibility study systems, the static viewpoint 3D echography system described in 

Chapter 3 and the dynamic viewpoint 3D echography system described in Chapter 4.   

Static viewpoint 3D echography System 

The work on the static viewpoint 3D echography system concentrates on the techniques necessary to 

visualize 3D echography datasets acquired as series of 2D echography slices hand-guided with 3 DOF.  

The visualization needs to be immediate and incremental as each slice is acquired, and the system should 

perform at an interactive speed with short lag from data acquisition to visualization.   

The system includes a reconstruction algorithm for irregularly spaced samples since its datasets 

have irregular sampling intervals.  A reconstruction algorithm that produces datasets with regularly spaced 

samples from the irregularly spaced samples, with reasonable computational costs, is developed.  The 

algorithm is immediate and causal, so future samples are not used to reconstruct the current and past slices.  

This algorithm, described in Section 3.3, is employed in both the static viewpoint and the dynamic 
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viewpoint 3D echography systems.  

In order to visualize the reconstructed echo intensity dataset, a visualization algorithm based on the 

asymmetric single scatter gel (ASSG) model (Section 2.2.4.1) has been developed.  It employs a simple 

classification and modeling technique which maps echo intensity to opacity of the gel (Section 3.4.1.)  

Rendering of the model is performed by using an image ray-casting method similar to [Levoy, 1988].  The 

visualization algorithm, which is described in Section 3.4, has produced good quality images that present 

the 3D shape of the objects being imaged, which reduces the burden of users to mentally fuse a set of 

multiple 2D echography slices into a 3D image.  Examples of visualizations using this visualization 

algorithm are presented in Section 3.5.1. 

Visualization of reconstructed datasets at an interactive speed is an important objective of the static 

viewpoint 3D echography system, so methods are needed to accelerate the visualization algorithm.  An 

important feature in the acceleration approach is that it deals with partially dynamic datasets.  All the 

acceleration methods for volume visualization algorithms in the past assumed static datasets for their 

acceleration.  Another important feature of the visualization algorithm is that its performance is optimized 

for a short dataset lag (i.e., lag from change in dataset to image generation), assuming that the viewpoint is 

stable.  In comparison, all the volume visualization algorithms in the past have been optimized to visualize 

static datasets with either short viewing lag or short classification/modeling lag.  Assuming static datasets, 

these previous algorithms have employed optimization by preprocessing, e.g., hierarchical spatial 

partitioning using an octree.  Optimizations based on preprocessing are not applicable to the partially 

dynamic dataset.  Thus, a new set of optimization techniques was developed.   

The visualization algorithm of the static viewpoint 3D echography system employed spatial 

bounding to optimize performance by taking advantage of partially dynamic datasets (Section 3.4.2.)  It 

spatially bounds the classification, modeling, and ray-sampling steps of the volume visualization method.  

If the bound is significantly smaller than the entire dataset, spatial bounding saves a significant amount of 

time.  In addition, a new compositing technique called hierarchical ray-caching has been developed so 

that the compositing step can also be computed incrementally in the 3D screen space.  The hierarchical 

ray-caching technique is able to reduce the total cost of visualization (which includes cost of the 

reconstruction step), by about 20% to 30% under certain conditions.  The visualization algorithm 

incorporates other optimizations, such as image-adaptive ray-casting.  The performance characteristics of 

the hierarchical ray-caching and other optimizations are presented in Section 3.5.2. 

In addition to optimization based on a sequential algorithm mentioned above, the system 

incorporates parallelism in the 3D world space in order to achieve interactive throughput and short dataset 

lag (Section 3.4.3.)  Performance of the parallel algorithm on a hypothetical parallel processor system has 

been simulated.  According to the simulation, the algorithm is able to achieve a frame rate of 20 frames/s 
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on the hypothetical but realistic parallel processor system (Section 3.5.3.)  

Dynamic Viewpoint 3D Echography System 

The work on the dynamic viewpoint 3D echography system has concentrated on establishing an 

in-place visualization system, in which the users sees images acquired by an echography scanner in-place, 

e.g., inside the patient‘s body, along with the patient and its surroundings.  Such an in-place visualization 

is expected to offer significant help to medical 3D imaging, by providing spatial and anatomical references 

to reduce the mental burden on the users.   

We have developed a key component for such an in-place visualization, a video see-through 

head-mounted display (HMD), which combines images captured by the video camera mounted on the HMD 

helmet with images synthesized by the computer.  Using the video see-through HMD, we have realized 

two visualization models, the in-place 2D-slices visualization model (described in Section 4.1) and the 

in-place volume visualization model (described in Section 4.2).  The in-place 2D-slices visualization model 

displays, interactively, 2D echography slices arriving on-line from the echography scanner in-place within 

the patient.  The in-place volume visualization model displays, interactively, volume reconstructed and 

visualized echography images in-place within the patient, although it is not on-line.  Each of these two 

systems is the first of its kind.   

Visualization by these systems appears to be quite promising.  For example, in-place volume 

visualization using a see-through HMD presents the spatial relationship of the objects in the echography 

dataset (e.g., the femoral artery/vein pair) with objects in the real-world, (e.g., the thigh of the subject) quite 

clearly, without requiring mental fusion of multiple echography slices and images of the thigh.  Such 

visualization will prove helpful in the future especially for such interventional procedures as needle biopsy 

of a breast tumor or umbilical cord sampling.  

Despite their promise, both versions of the dynamic viewpoint system still have formidable 

problems to be resolved to be useful in clinical applications.  We have identified the issues associated with 

such in-place visualization, and have proposed and/or implemented some of the solutions.   

Contributions of this dissertation 

Development of the static viewpoint and the dynamic viewpoint 3D echography systems have 

produced the following contributions:  

(1) Feasibility study systems 

(a) Demonstration of the possibility of an on-line, interactive, incremental system that acquires a 3D 

volume target as a series of 2D echography image slices which were hand-guided with 3 DOF.  
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The slices are reconstructed into a volume dataset which is volume-visualized (Chapter 3.) 

(b) Demonstration of a dynamic viewpoint 3D echography system with video see-through 

head-mounted display (HMD) that displays, with proper registration, video images of real-world 

objects merged with computer renderings of multiple 2D echography images arriving on-line from 

a hand-guided 2D ultrasound scanner with 6 DOF (Section 4.1.) 

(c) Demonstration of a dynamic viewpoint 3D echography system that displays, at an interactive rate, 

volume visualized images of 3D echography datasets that are reconstructed off-line from series of 

hand-guided 2D echography slices with 6 DOF (Section 4.2.) 

Each one of the items a), b), and c) is the first of its kind.  

(2) Volume reconstruction algorithm 

(a) Development of an algorithm for incremental reconstructions of 3D scalar fields from sequences 

of irregularly placed and oriented 2D image slices (Section 3.3.) 

(b) Introduction of ―aging‖ to the reconstruction in order to capture temporal changes of the target 3D 

scalar fields being acquired and reconstructed (Section 3.3.2) 

(3) Visualization algorithm for the static viewpoint 3D echography system 

(a) Development of an efficient volume visualization algorithm for a static viewpoint display and 

partially dynamic datasets that change incrementally and frequently.  Efficiency was achieved by 

taking advantage of incremental changes in datasets and assuming a stable viewpoint 

(Section 3.4.1.) 

(b) Development of a new compositing algorithm, hierarchical ray-caching, which reduces the cost of 

compositing for visualizations of partially dynamic dataset with a fixed viewpoint 

(Section 3.4.2.2.) 

(c) The simulation study of the performance of the incremental volume-visualization algorithm which 

was executed on a hypothetical parallel processor in order to show the possibility of visualization 

at an interactive speed (Section 3.4.3 and Section 3.5.3.) 

(4) See-through head-mounted display 

(a) Development of a video see-through HMD that displays, with proper registration, computer 



 Page 213 

generated images merged and registered with images of the real-world captured by a TV camera 

mounted on the HMD helmet (Section 4.1.) 

(b) Identification of problems that are involved in the video see-through HMD system, such as system 

lag and tracking accuracy (Section 4.1 and Section 4.2.) 
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5.2  Current and Future Work 

The 3D echography system at UNC-Chapel Hill has continuously been improved as shown in 

Figure 5.1.  As of December 1993, the dynamic viewpoint 3D echography system is able to reconstruct 

and visualize on-line volume datasets at a slow but interactive speed.  Optical calibration has been added, 

so that the optical distortion due to the optics of the HMD and video camera have been reduced.  

Calibration of the echography image pixel tracking has also been improved, reducing significantly the 

misregistration between real and virtual images.  The HMD employed in this system is also a great 

improvement over the previous generation HMDs, incorporating such features as electro-optical tracking 

and a field-sequential color display device with greater resolution and dynamic range.  This system has 

been developed by Andrei State, David Chen, Andrew Brandt and others (many more people have been 

working on the HMD, the tracking system, the image generation system, and other components.) 

What improvements are still necessary for achieving our goal?  Some of the issues and possible 

solutions pertinent to the dynamic viewpoint 3D echography system have been discussed extensively in 

Sections 4.2.5 and 4.2.6.  The following briefly lists some of the issues and possible improvements. 

(1) Acquisition: We need a real-time 3D echography acquisition system.  Such a system is expected soon; 

a small scale prototype of a true real-time system has been running at Dr. Olaf von Ramm‘s laboratory at 

Duke University.  

(2) Visualization: There are two aspects of the visualization: quality and speed.  Visualization quality 

could be relatively easily improved by a visualization model that combines more than one modeling 

method, e.g., transparent gel model and multi-planar-reformatting.  Much more challenging is the 

development of more sophisticated and robust classification and modeling methods for ultrasound 

echography data that consider the properties of the echography datasets, such as attenuation, low 

signal-to-noise ratio, and coherent interference effects (e.g., speckles.)  

Combination of datasets from more than one real-time medical image sources, e.g., ultrasound 

echography and magnetic resonance imaging (MRI), which are both free of ionizing radiation, may prove 

useful.  Like echography, real-time 3D MRI acquisition is about to become practical.  MRI and ultrasound 

echography can complement each other since they acquire different physical quantities.  A study to 

visualize such multi-modal datasets has been conducted, for example, by Alan Liu, Dr. Steve Pizer and 

others at UNC Chapel Hill.   

Speed of visualization, in terms of both throughput and lag, must be greatly improved.  Despite all 
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its power, the Pixel-Planes 5 used in the current system is not powerful enough for the visualization 

demands of the on-line, interactive 3D echography systems.  We are eagerly waiting for the arrival of a 

more powerful machine, such as Pixel-Flow [Molnar, 1989].  However, we are not sure if even Pixel-Flow 

is fast enough for real-time 3D echography visualization.   

(3) Display: For clinically useful in-place visualizations, better see-through HMDs are required with even 

higher resolution, lighter weight, wider field-of-view, and binocular stereopsis.  Tracking methods need 

improvement in their range and accuracy as well as speed, both in terms of throughput and lag.  Better 

pixel-location calibration and optical distortion calibration procedures are also required to make in-place 

visualization more accurate.  

Providing all the proper 3D visual cues for the in-place visualization is a more fundamental issue.  

How can we combine visualization of echography data with video camera images so that the image of the 

fetus really sits inside the abdomen?  Developing and implementing proper visual metaphors for the 

in-place visualization will prove to be quite challenging.   
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[0] Static viewpoint 3D echography system described in Chapter 3. 

[1] Dynamic viewpoint 3D echography system with in-place 2D-slice visualization described in Section 4.1 

[Bajura, 1992].   

[2] Dynamic viewpoint 3D echography system with in-place volume visualization described in Section 4.2.  

Video tape presented at SIGGRAPH ‘92 and [Ohbuchi, 1992]. 

[3] STHMD1: Any of a few older see-through head mounted displays that use VPL EyePhone or VR Flight 

Helmet. 

[4] Mechanical tracking: The arm described in Section 3.1 of this dissertation. 

[5] Magnetic tracking: Polhemus Isotrack, Polhemus Fastrack, Ascension Bird, etc.  

[6] Electro-optical tracking: UNC-Chapel Hill electro-optical ―ceiling‖ tracker [Ward, 1992b]. 

[7] STHMD2: Current see-through head-mounted display with higher resolution, better dynamic range than 

the ST-HMD1. 

Figure 5.1:  Past and present ultrasound echography visualization system at UNC-Chapel Hill.   



Appendix 

A.1  Introduction to ultrasound echography imaging 

Ultrasound echography is one of the most popular medical imaging modalities.  As a medical 

imaging modality, ultrasound echography is safe compared to other medical imaging modalities, and it 

offers real-time sectional images.  It is also much less expensive and more portable than many other 

medical sectional imaging modalities.  These factors make ultrasound echography the preferred imaging 

mode for fetal examination, cardiac study, and guidance of surgical procedures such as a fine-needle 

aspiration biopsy of a breast carcinoma [Fornage, 1990].  Currently, ultrasound echography offers the best 

prospect for real-time 3D data acquisition, although other imaging modalities such as MRI are improving 

their 3D acquisition speed.   

Drawbacks of ultrasound echography imaging include low signal-to-noise ratio and poor spatial 

resolution compared to other imaging modalities.  Medical intern folklore says ―ultrasound is when you 

unplug the TV antenna.‖ [Harris, 1990].  Some of the reasons for low image quality are: low receiving 

signal-to-noise ratio, speckle ―noise‖, attenuation, and shadowing.  These factors will be discussed in this 

section.  Image quality can be reduced by other factors, such as phase aberration due to tissue 

inhomogeneity, but this dissertation will not discuss these factors any further (See, for example, [Harris, 

1990].) 

Medical ultrasound echography works, in principle, like radar or sonar.  It transmits acoustic pulses 

into target media, receives echo signals, and displays the strengths of the echo signals.  The distance to the 

point where the acoustic pulse is reflected can be estimated from the time of flight of the pulse.  Current 

systems assume the velocity of sound to be constant within the media along the path of propagation for 

distance estimation.  By sweeping a 1D beam (or multiple beams) in space and displaying the result 

appropriately, 2D or 3D echographic images of the media can be captured.  There are many ways to sweep 

the space with the ultrasound beam, and many ways to display the measured result.  2D  brightness mode 

(B-mode) is the most popular image display mode among current medical ultrasound echography scanners.  
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A 2D B-mode scan displays 2D sectional images of reflectivity of the target volume, where reflectivity is 

mapped to the brightness of pixels. 

2D B-mode scanners can be further classified by the geometrical arrangement of beams that sweep a 

plane, and how the sweep is accomplished.  Figure A.1 shows three typical mechanisms to sweep a beam, 

whose sweep patterns (formats) fall into two types.  A beam can sweep a 2D plane in many ways; for 

example, mechanical rotation or ―wobble‖ of a transducer (mechanical sector scan), electronic scan of a 

linear or curvilinear 1D array of transducers (electronic linear scan), or electronic steering using phased 

excitation and reception by a linear 1_D array of transducers (phased array sector scan) [von Ramm, 

1983].  For most of the scan formats a scan conversion process is necessary to display 2D B-mode image 

on a raster scanned video display device.  To avoid various artifacts, scan conversion in echography 

scanners incorporates certain approximations and resampling. 

An important imaging mode is Doppler color flow imaging.  In this mode, using the Doppler shift 

in frequency of the echo, directions and magnitudes of the motion vectors of targets are estimated and 

displayed.  Velocity vectors are usually encoded in color on display screens (hence the name Doppler 

color flow imaging), combined with gray scale images of conventional 2D B-mode scans to provide 

anatomical references.  An interesting application of Doppler flow imaging is a 3D visualization of blood 

flow [Bamber, 1992].  Segmentation is quite difficult in ordinary ultrasound echography image, but with 

Doppler flow imaging, blood flows are relatively well segmented by the motion.  Doppler flow imaging 

will not be discussed further. 

There are several important fundamental characteristics of ultrasound echography imaging.  The 
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Figure A.1:  Examples of medical ultrasound echography scan formats. 
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first is the fact that echo signals reflect change in object properties, not object properties themselves.  An 

acoustic wave is reflected or refracted at an interface of media with different characteristic impedances, 

much the same way as an electro-magnetic wave is reflected or refracted at interface between media with 

different indices of refraction.  Snell‘s law of geometrical optics applies to the reflection and refraction of 

acoustic waves.  For an acoustic wave, a characteristic impedance Z  of a medium is defined by the 

density   and sound velocity c  of the medium as; 

 Zc  (A.1) 

The velocity c  of the pressure wave of sound is defined as; 

 c
1


 (A.2) 

where   is the compressibility of the medium (dimension [kg
1
ms

2
] .)  The characteristic 

impedance Z  can then be written as  

 Z



 (A.3) 

That is, as the compressibility and/or density change the acoustic impedance changes.  As a first 

order approximation, ultrasound echography images the interfaces of changes in compressibility, density, 

or both.  Note that this is different from X-ray CT, where the density of the media are imaged, not the 

interfaces of the densities of the media.   

Another important characteristic of ultrasound imaging is the large and variable amount of 

attenuation that occurs in media and their boundaries.  Splitting a wave into reflected and transmitted 

waves at a boundary results in attenuation.  Acoustic waves will also be absorbed by the media, mostly by 

relaxation, which turns the wave‘s energy into heat.  These two sources of attenuation result in the large 

amount of total attenuation from transmitted waves to received waves in typical medical ultrasound 

settings, which can reach 120 dB or so.  The effect of attenuation is visible in 2D ultrasound echography 

images; for example, there is a ―shadow‖ behind a highly reflective interface (i.e., a large impedance 

discontinuity) such as a muscle-bone interface.  In many cases, the shadowing can be too severe to see 

anything useful behind the object causing the shadow.  Another outcome of attenuation is that the echo 

signal strengths from a tissue measured from different transducer locations and orientations vary widely.  

As a result, simple segmentation schemes based solely on signal strength, such as those used for X-ray CT 

images, will not work well on ultrasound echography images.  The absorption coefficients of biological 

tissues have a positive correlation with frequency.  This imposes a ―resolution limit‖ on ultrasound 

echography: resolution of a scanner cannot be increased above a certain limit if the imaging range is kept 

constant.  If frequency is increased to gain resolution (by shorter wavelength) the range of imaging is 
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reduced.  This is why higher frequency (e.g., around 10 MHz and higher) is used only for certain limited 

short range imaging.   

Another factor determining resolution is this: the wavelength of the radiation used for imaging is on 

the same order as the feature sizes of the imaging target.  Medical ultrasound imaging uses a frequency of 

2 MHz to 10 MHz.  For an acoustic wave in soft tissue with typical frequency of f 3MHz and velocity 

of c1.510
3
ms

1
, wavelength   is  

  c / f 1.510
3
/310

6
0.5mm  

Wavelength of 0.5 mm is close to the sizes of features of interest found in biological tissues, e.g., 

small vessels, muscle fascicles (bundles of fibers), and various cell congregations.  Thus, when an acoustic 

pulse interacts with these targets, the wave nature of the sound plays a significant role.  This relationship of 

feature size and wavelength in medical ultrasound echography is more akin to X-ray crystallography 

(where wavelength and feature are of similar scale) rather than medical X-ray radiography (where 

wavelength is much smaller than feature scale.)  A manifestation of this wave nature is speckle.  Although 

it is often called ―speckle noise‖, those numerous small ―blobs‖ characteristic of ultrasound images are not 

exactly noise.  They are the results of coherent interference created by the waves reflected and refracted by 

features in the media.  Thus, speckles convey information about the tissues being imaged, although it is 

difficult and expensive to extract useful information out of them.  In general, structures seen in a 2D 

ultrasound echography image can be either 1) reflections from a collection of numerous smaller structures 

whose scale is near the wavelength forming a collective image, or 2) a part of a large (compared to the 

wavelength) structure, or 3) a combination of both.  It is this first kind of signal that contributes to the 

speckle and ―texture‖ of the medical ultrasound echography images. 

For macroscopic objects, such as bones or walls of major blood vessels, the laws of geometric 

optics, such as Snell‘s law, hold.  For example, if a wave from a transducer hits a specular interface that 

parallels the wave‘s direction of travel, the majority of the wave‘s energy will not be reflected back toward 

the transducer.  Reflection and refraction cause ―ghosts‖, in which spurious images are formed by waves 

taking multiple independent paths.  There is another source of geometric distortion in ultrasound images.  

The velocity of sound is assumed constant in ultrasound echography image formation, but it actually varies 

depending on the media in which it is traveling.  As a result, when a heterogeneous media is imaged, 

geometric error may be introduced.   

This review will not discuss detailed mechanisms of ultrasound echography imaging.  These can be 

found in, for example, [Wells, 1977], [Havlice, 1979], [von Ramm, 1983], [Schueler, 1984], and [Harris, 

1990].  Clinical aspects of medical ultrasound echography imaging can be found in, for example, 

[Maginness, 1979]. [Fleischer, 1989] explains medical ultrasound echography from the clinician‘s 

viewpoint.  Theoretical modeling of medical ultrasound echography imaging has attracted the attention of 
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many researchers, in the hope of improving the image quality by understanding the echography imaging 

process [Ardouin, 1985, Bamber, 1980, Fatemi, 1980, Johnson, 1982, Laugier, 1985, Leeman, 1982, 

Round, 1987, Thijssen, 1990].  These and other studies on theoretical modeling may help visualization of 

ultrasound echography datasets in the future.  
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