
2.  MEDICAL IMAGE QUALITY

The goal in the production of medical images is to acquire and display pictures of the human anatomy in
a manner such that the diagnostic information contained in that representation may be optimally transferred to the
trained reader.  The concept of image quality pertains to how well that goal is accomplished.  However, such a
broad definition resists a quantitative determination.  This chapter examines this elusive notion of image quality
and presents some approaches to its measurement.  The chapter concludes with a description of measures based on
models of human vision, the approach ultimately pursued in this research.

Medical images can be essential tools in determining a medical diagnosis and treatment.  In the medical
image acquisition and display system, there are many parameters specific to the various imaging modalities that
have an impact on the observer’s ability to make that diagnosis accurately.  In the development and evaluation of
imaging systems, one always wishes to adjust the relevant system parameters to optimize observer performance.†

Likewise, as image acquisition, processing, and display devices and methods are developed, an assessment
regarding the efficacy of the potential innovations is often desired.  Both of these kinds of determinations are
based upon an assessment of the “quality” of the images that those systems produce.

2.1  Image Quality
It is readily accepted that image quality possesses a functional definition:  the determination of quality

should be conducted by measuring the performance of an observer for a diagnostic task.  The outcome from the
interpretation of a medical image is a clinical diagnosis, and the accuracy of that inference about the status of the
human anatomy is imperative for successful patient treatment.  Therefore, the ultimate measure of the quality of
an image is the accuracy with which a trained observer determines a diagnosis.  Determining that diagnosis may
consist of one or more very specific visual tasks.  So measuring image quality must be performed with respect to a
particular visual task of interest, and achieving superior image quality is then a matter of optimizing accuracy for
that task.

The figure of merit in expressing the quality of an image is frequently a signal-to-noise ratio.  This
measure provides an indication of the strength of the signal or effect enabled by the image manipulation of
interest.  For the task of detecting an object in an image, the signal-to-noise ratio provides a measure of the
discriminability of the object from its background and might be expected to change as, for instance, different
contrast enhancement methods were applied to the image.  Similarly, for the task of estimating the volume of an
object, a signal-to-noise ratio can provide a measure of the magnitude of the effect adjusted by the variability in
the observed estimates.  The signal-to-noise ratio as an image quality outcome is an informative indication of the
extent and consistency with which the diagnostic truth is determined.

Unfortunately, all too often medical images are evaluated by preference studies in which an albeit trained
observer chooses a superior image based upon his/her aesthetic opinion.  Because such judgments inevitably fail
to determine the goodness of an image with respect to a particular task, basic subjective preference studies are
often not predictive of performance in the clinical setting.1,2  In rating their preference for different image
manipulations, observers may be influenced by aspects of the images that are not related to their ability to actually
utilize the images in the diagnosis, particularly for images that are somehow different from those encountered in
standard clinical practice.  Similarly, an objective evaluation by humans of physical quantities of the imaging
system, such as spatial resolution or contrast, that might be performed with test images (“phantoms”) containing
geometric objects,3,4 are often insufficient for predicting diagnostic performance.  Different phantom assessment

† Sometimes the way that parameters of the imaging system are adjusted is dictated in part by considerations of
patient safety.  There are, for instance, trade-offs between the radiographic contrast achieved and the radiation dose delivered
to the patient.  These issues however are not factors for image quality per se but considerations that contribute to the overall
development of the system.

1H.L. Kundel,  "Perception and Representation of Medical Images," SPIE:  Image Processing 1898 (1993):  2-12.
2C.R. Furman,  D. Gur, B. Good, H. Rockette, L.A. Cooperstein, J.H. Feist, “Storage Phosphor Radiographs vs

Conventional Films:  Interpreters’ Perceptions of Diagnostic Quality,”  AJR 150 (1988):  1011-1014.
3G.W. Eklund, G. Cardenosa, W. Parsons, “Assessing Adequacy of Mammographic Image Quality,” Radiology 190

(1994):  297-307.
4L.E. Reinstein, L. Alquist, H.I. Amois, B. Lagueux, “Quantitative Evaluation of a Portal Film Contrast

Enhancement Technique,” Medical Physics 14, no. 3 (1987):  309-313.



5

tasks have been shown to exhibit poor correlation with each other and high inter-observer variability.5  More
importantly, the visual tasks performed in diagnosis may be qualitatively different from those required in rating
images of phantoms.  The methods utilizing human observers for evaluating medical image quality that will be
discussed in the later sections of this chapter are much more rigorous and insistent upon the measurement of
performance for an important clinical task.

Because human observer experiments measuring performance for a specific task require so much time,
computed methods have been pursued as attractive substitutes for evaluating quality.  Figures of merit formulated
from physical characteristics of the image, including but not limited to the modulation transfer function,6,7 a
signal-to-noise ratio of image intensities,8 the information spectrum,9 as well as indices derived from these,10 are
easily computed from the image and attempt to capture the basic physical constituents of low-level human vision.
Some of them may even incorporate known characteristics of the contrast or resolution response of the visual
system.11  However, the measurements, or combinations of them, characterizing these methods often lack an
intuitive, and moreover statistical, relationship to human visual interpretation for all but the simplest tasks.12,13

It is important for computed measures to incorporate some understanding of the tasks required by the
evaluation.  Nuclear medicine scans, for example, possess notoriously poor signal-to-noise ratio and resolution,
yet they are unparalleled in providing a visual representation for certain interpretive tasks related to physiological
function.  Noise and resolution calculations would fail to capture the usefulness of the nuclear medicine modality
for such purposes.  The computed methods described in later sections attempt to incorporate an emphasis on
determination with respect to a defined task.

2.2  Tasks
The tasks that might be performed with a medical image are subsumed by two categories: classification

and estimation.  Classification is the task of assigning an observation to two or more non-overlapping categories.
In particular, detection, or the assignment to two classes, is often performed in medical image viewing.
Radiologists continually determine the presence or absence of anomalies such as tumors or mammographic
calcifications, or classify abnormalities with dichotomous labels such as normal or abnormal, and benign or
malignant.  Sometimes these tasks are labeled as discrimination tasks:  an observer might determine whether the
shape or size of an object or anatomical feature deviates sufficiently from its normal manifestation to warrant an
alternative diagnosis.

Alternatively, interpretation may involve quantitative determinations whose outcomes span a continuous
scale.  These estimation tasks include judgments about absolute or relative intensities of, within, or between
anatomical structures in the image.  Also, observers may estimate the shape or interrelationship of objects;  they
may be required to characterize the curvature, width, or area of objects, or estimate the distance between two
structures.  Determinations of the amount of radioactive tracer in the organs of a nuclear medicine image, or the
amount of blood ejected by the heart revealed by frames from an angiographic sequence, are typical estimates.

Methods for evaluating quality with respect to classification and estimation are described in the following
sections, with emphasis on the approaches for estimation.  Classification tasks, because of their abundance in
image viewing and their relative ease of methodological analysis, have been almost exclusively examined in
image quality measurements.  However, it is frequently the case that estimation tasks are integral in the utilization
of many imaging modalities.  It is in fact the case that the imaging modalities investigated in this research may

5C.B. Caldwell, E.K. Fishell, R.A. Jong, W.J. Weiser, M.J. Yaffe, “Evaluation of Mammographic Image Quality:
Pilot Study Comparing Five Methods,” AJR 159 (1992):  295-301.

6C.R. Carlson, R.W. Cohen, “A Simple Psycho-physical Model for Predicting the Visibility of Displayed
Information,”  Proceedings of the Society of Information Display 21 (1980):  229-246.

7P.G.J. Barten, “Evaluation of Subjective Image Quality With the Square-root Integral Method,”  Journal of the
Optical Society of America A 7, no.10 (1990):   2024-2031.

8R.M. Nishikawa, M.J. Yaffe, “Signal-to-noise Properties of Mammographic Film-screen Systems,” Medical
Physics 12 (1985):  32-9.

9J.C. Dainty, R. Shaw, Image Science (London:  Academic Press, 1974).
10L. Desponds, C. Depeursinge, M. Grecescu, C. Hessler, A. Samiri, J.F. Valley, “Image Quality Index (IQI) for

Screen-film Mammography,” Physics in Medicine and Biology 36, no. 1 (1991):  19-33.
11J.A. Saghri, P.S. Cheatham, A. Habibi, “Image Quality Measure Based on a Human Visual System Model,”

Optical Engineering 28, no. 7 (1989):  813-818.
12L.D. Loo, K. Doi, C.E. Metz, “A Comparison of Physical Image Quality Indices and Observer Performance in the

Radiographic Detection of Nylon Beads,” Physics in Medicine and Biology 29, no. 7 (1984):  837-856.
13E. Buhr, C. Herrmann, D. Hoeschen, “Correlation Between Physical Image Quality Parameters and Visually

Perceptible Image Quality in X-ray Diagnosis,”  Journal of Photographic Science 41, no. 3 (1993):  90-92.
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arguably be optimized with respect to the estimation tasks that were chosen for study.  As Chapters 4 and 5 will
demonstrate, the estimation tasks of vessel constriction characterization or interobject distance measurement that
are explored in this research are fundamental to the consultations for which the angiography and portal imaging
systems are designed.

2.3  Image Quality for Classification
A rigorous and universally-applied framework for conducting human observer experiments for the

determination of image quality is the psychophysical methodology of ROC (receiver operating characteristic)
analysis.14  By measuring sensitivity and specificity as the decision criterion adopted by the observer varies, the
methodology generates the ROC curve and accompanying signal-to-noise ratio.  The curve fully characterizes
observer response behavior for the binary decision of clinical detection tasks, and as such summary statistics of
the curve may be used as measures in evaluating different image manipulations for their effect on that kind of
task.

Alternatively, an n-alternative forced choice paradigm for the detection of simulated lesions or other
abnormalities embedded in real anatomical backgrounds has been proposed.15  Using this methodology, a
psychometric function is obtained that plots percent correct versus structure contrast.  Detection performance is
described by the threshold and slope parameters derived from a probit description of the function.  This approach
has been used extensively in the evaluation of several contrast enhancement algorithms of potential efficacy in
mammography.

Computed approaches to evaluating quality for classification tasks are based upon statistical
discrimination decisions.  The ideal observer,16,17 a mathematical construct that utilizes complete statistical
knowledge of a task, makes a decision about a binary variable by comparing a computed likelihood ratio with an
established threshold.  This approach results in performance that is optimal, because of the knowledge of the
properties of the signal and background.  For that reason, the results produced by the ideal observer are often
poorly correlated with human performance in complex imaging tasks where such assumptions are inappropriate.
The Hotelling observer18 and channelized Hotelling observer19 are attempts to incorporate some of the limitations
of the human observer so that they might correlate more closely with human performance.  The Hotelling model
produces a test statistic that is a linear approximation to the nonlinear ideal observer test statistic when
assumptions of object and background variability are relaxed.  Results from a Hotelling model application have
been demonstrated to correlate well for detection in nuclear medicine images.20

2.4  Image Quality for Estimation
The statistical methods of analysis of variance (ANOVA) and multiple regression commonly underlie the

experimental designs and their accompanying analyses for image quality studies of estimation tasks. These
methods estimate the means and variances of the responses for an estimation task for two or more experimental
conditions in order to make statistical judgments about the effect of those conditions on the performance of the
task.  The methods might be used to determine whether observers performed a task significantly better with
imaging system A as opposed to system B.  Alternatively, one might wish to make statistical conclusions about
the effect on observer performance of adjusting system or processing parameter C along several levels.

Both techniques, ANOVA and regression, may be approached from the generalized statistical framework
of the General Linear Model (GLM).21  A particular experimental observation is said to arise from the sum of
both intentionally-manipulated and random effects.  The GLM expresses the observation as a linear combination
of the controlled factors plus a term that reflects all other randomly-varying, error terms.  An alternative to this

14C.E.  Metz, “Basic Principles of ROC Analysis,” Seminars in Nuclear Medicine 8, no. 4 (1978):  283-298.
15D.T. Puff, E.D. Pisano, K.E. Muller, R.E. Johnston, B.M. Hemminger, C.A. Burbeck, R. McLelland, S.M. Pizer,

“A Method for Determination of Optimal Image Enhancement for the Detection of Mammographic Abnormalities,” Journal of
Digital Imaging 7, no. 4 (1994):  161-171.

16D.B. Green, J.A. Swets, Signal Detection Theory and Psychophysics (New York: Wiley & Sons, 1966).
17A.E. Burgess, R.F. Wagner, R.J. Jennings, H.B. Barlow, “Efficiency of Human Visual Discrimination,” Science

214 (1982):  93-94.
18H.H. Barrett, J. Yao, J.P. Rolland, K.J. Myers, “Model Observers for Assessment of Image Quality,” Proceedings

of National Academy of Science 90 (1993):  9758-9765.
19J. Yao, H.H. Barrett, “Predicting Human Performance by a Channelized Hotelling Observer Model,” SPIE:

Mathematical Methods in Medical Imaging 1768 (1992):  161-168.
20R.D. Fiete, H.H. Barrett, W.E. Smith, K.J. Myers, “The Hotelling Trace Criterion and its Correlation with Human

Observer Performance,” Journal of Optical Society of America A 4 (1987):  945-953.
21S.E. Maxwell, H.D. Delaney, Designing Experiments and Analyzing Data (Belmont, CA:  Wadsworth, 1990).
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“full model” description, called the “restricted model,” can be developed as well that deletes some of the
parameters from the full model.  The restricted model embodies the null hypothesis, and statistical decisions are
made by studying the increase in the error in representing the data due to adopting the simpler model.  For
instance, in deciding whether  imaging systems A and B differ significantly, the null hypothesis might be that only
a single parameter is required in the model to reflect that the data for the two systems are the same.  The test then
is whether that restricted model is as adequate a representation of the data as is the full model with its separate
means for the scores for the two systems.  Any increase in error caused by adopting the restricted model may be
related in terms of a “p” value, a probability estimate that the difference arose by chance.  The null hypothesis
may be rejected when the p-value is less than a predetermined significance level.

ANOVA and multiple regression then are special cases of the GLM that attempt to develop linear models
that accurately describe the data.  ANOVA may be applied to experimental designs with a categorical variable,
such as those for which there exist several discrete settings, or levels, of system parameter C, together with a
continuous response, such as a distance or area measurement.  Multiple regression must be applied when one or
more of the independent variables in the study exist on a continuous scale.

The GLM analysis rests upon several important assumptions, and the failure to meet those criteria
compromise its validity.  Specifically, the assumptions are that  1) the scores on the dependent variable are
normally distributed, 2) the population variances for the scores from all groups are identical, and 3) the scores are
statistically independent.  For several reasons, in experiments conducted with human subjects, the design is often
“within-subjects,” and two or more observations are collected from each subject.  For example, an observer might
view and generate responses for images from both systems A and B.  First, in such “repeated measures” designs,
trained subjects, who are difficult to recruit, may contribute many scores and in effect reduce the number of
observers needed as participants.  Secondly, error variance is reduced in such cases, because the variability
resulting from individual differences is reduced.  However, because subjects serve in different conditions, repeated
measures causes the errors in the different conditions to be correlated.  This occurrence violates one of the basic
assumptions required for ANOVA, and thus requires the specialized techniques of univariate or multivariate
analysis.22

Finally, within-subjects designs carry other considerations.  The order of presentation of the conditions in
a study is crucial: training effects, due to practice with images or other stimuli over the course of the experiment,
and conversely fatigue effects, are inevitable in any human observer study.  Similarly, “carryover” effects can
occur, causing performance on later trials to be influenced by initial presentations.  Thus the order of presentation
must be carefully counterbalanced or randomized both within and between subjects.23  The number of observers
required to conclusively (with a desired level of probability) reach a statistical decision may be suggested by
“power” calculations.24

Very few computed methods for image quality assessment with respect to an estimation task have been
proposed.  The ideal observer model is rarely applicable to complex, multiparameter estimation tasks since the
estimate inevitably may not be expressed as a linear combination of the parameters and the pixel values.
Consequently, estimation methods for determining a single quantity within a region of interest (ROI), which prove
to be linear, have been developed.  Alternatively, non-linear maximum likelihood estimators have been explored.

Barrett25,† outlines three linear ROI estimators: the integration of a quantity within an ROI, the optimal
linear unbiased, or Gauss-Markov, estimator, and the Wiener estimator.  In each case the methods seek an
estimate,θ , that is a (possibly weighted) integral over a region of interest with template w , within the original
object f  to be imaged:

θ = w tf 2.1

The simple ROI estimation method integrates the acquired image values (f̂ ) in the region:

θROI = w t f̂ 2.2

22D.F. Morrison, Multivariate Statistical Methods, 2nd ed. (New York:  McGraw-Hill, 1976).
23K.E. Muller, C.N. Barton, V.A. Benignus, “Recommendations for Appropriate Statistical Practice in Toxicology,”

Neurotoxicology 5 (1984):  113-126.
24K.E. Muller, V.A. Benignus, “Increasing Scientific Power With Statistical Power,” Neurotoxicology and

Teratology 14 (1992):  211-219.
25H.H. Barrett, “Objective assessment of image quality:  effects of quantum noise and object variability,” Journal of

Optical Society of America A 7, no. 7 (1990):  1266-1278.
† The discussion and equations that follow are directly from the reference.
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This estimator, although simple, is biased.  However, that bias and mean-square error (a measure of variance that
takes into account the bias) can be calculated.  A figure of merit, the signal-to-noise ratio (SNR), for this estimator
is shown in Equation 2.3.

SNRROI[ ]2 = tr FW[ ]
tr BW[ ] + tr KmW[ ] 2.3

In Equation 2.3, F  is a measure of initial object strength given by ff t

f
, an average over f .  W is defined as

ww t .  B is an average bias matrix, bbt

f
, where b = f̂ − f

n|f
 is the bias, or the conditional average of the

error in the estimate of object f  , f̂ , over all realizations of the noise, n, for a given object.  Km  is a covariance

matrix (OKnO
t ) obtained from the noise covariance matrix, Kn = Kn|f f

, and the operator O  that produces

the estimate ̂f = OHf + On, where H  is the imaging system operator.
The Gauss-Markov estimator is a linear unbiased estimator that produces minimum variance for its

estimate for a particular appearance of the object f .  Equation 2.4 shows an expression for the Gauss-Markov
estimate.

θGM = w t Km
−1 2A[ ]+

Km
−1 2f̂ 2.4

The figure of merit in this case is

SNRGM[ ]2 = tr FW[ ]
tr AtKm

−1A( )+
W[ ] 2.5

In the expressions above, A = OH , the “+” indicates the Moore-Penrose matrix pseudoinverse, and all other
arguments were defined previously.

Finally, the Wiener estimator minimizes the mean-square error and is optimal when the object and noise
statistics are known to be Gaussian-distributed.  The Wiener estimate for that case is shown in Equation 2.6.

θ̂WE = w t A tKm
−1A + Kf

−1( )−1
A tKm

−1 f̂ − f̂( ) + w tf 2.6

The corresponding figure of merit is

SNRWE[ ]2 = tr FW[ ]
tr A tKm

−1A + Kf
−1( )−1

W[ ] 2.7

The application of the Wiener estimator has been explored26 in evaluating a simulated nuclear medicine
coded-aperture imaging system.  Estimates of simulated radioactive pharmaceutical uptake within lesions in the
region of the liver were computed as noise and lesion size and brightness were varied.  As an indication of the
efficacy of that estimator, its figures-of-merit for a range of potential aperture configurations were compared with
those computed from a second evaluator, the Hotelling metric, based upon the very different task of tumor
discrimination.  The high correlation between the proposed estimator and the Hotelling criterion, an approach
already demonstrated in one instance to predict human performance, was a promising result.

Several researchers have proposed non-linear estimators that produce measurements based on a
maximum-likelihood criterion.27  This approach chooses as an estimate, among all the possibilities, that which
maximizes the probability of obtaining the observed outcome.  It consists of maximizing a likelihood function, a

26W.E. Smith, H.H. Barrett, “Linear Estimation Theory Applied to the Evaluation of A Priori Information and
System Optimization in Coded-Aperture Imaging,” Journal of Optical Society of America A 5, no. 3 (1988):  315-330.

27J.E. Freund, R.E. Walpole, Mathematical Statistics, 3rd ed. (Englewood Cliffs, NJ:  Prentice-Hall, 1980).
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joint probability distribution of the contributing variables at the observed sample point, developed with respect to
the estimated parameter.  Maximum-likelihood estimates have a number of attractive properties; in particular, they
are known to be unbiased.

M ˙̇uller, et.al.,28 have explored a maximum-likelihood model for multiparameter estimation in nuclear
medicine imaging.  The authors examine the imaging of a disc of variable size, location, and gamma activity on a
circular background.  The maximum likelihood estimate for the disc parameters is that which possesses the
maximum statistical probability for representing the true parameters.  The authors develop an expression for the
likelihood of the agreement between the model and observed image data that includes terms for the modulation
transfer function (MTF) and noise-power spectrum (NPS) of the imaging system under investigation.  That
parameter vector, across the many candidates generated in a Monte Carlo simulation, that maximizes the
likelihood expression is chosen as the multiparameter estimate.  The accuracy and precision of the method has
been studied in the presence of simulated white and tomographic noise:  activity estimates for the maximum-
likelihood model were significantly improved over ROI estimates, but the precision was worse.  The maximum
likelihood estimator serves as a potential alternative to linear estimators when the task complexity is such that the
relationship is non-linear.

These computed methods for estimation require that the imaging system properties, such as the
resolution, be known or approximated.  A model for, or covariance matrix representing, the noise must inevitably
be determined.  Yet the human visual system cannot know these physical properties of the system in any
mathematical sense; it simply operates upon the greyscale distribution of the visual scene.  In fact, there is little
theoretical reasoning to suggest that any of these estimators in any way reflect the operation of the visual system.
While it is possible that the predictions of these models might correlate with human results in some situations,
without a more immediate representation of visual properties and limitations it seems unlikely that they could
consistently prevail in complex and diverse imaging scenarios.  This dissertation suggests an approach whereby
the properties of the visual system are explicitly embodied in the model.  The claim is that only with such a
modeling process can an image quality measure be applied in a global manner with predictive results.

2.5  Methods Incorporating Visual Mechanisms
Each of the approaches described in the previous sections has marked disadvantages and limitations for

determining image quality.  When one is conducting human observer experiments, in order to obtain a complete
and statistically powerful characterization of observer response behavior, many trials are required of trained,
expensive participants.  Recruiting and collecting data from them can be a major undertaking.   Furthermore, the
results of such studies have limited applicability, as they are not generalizable to systems or pathologies not
included in the particular experiment.  The computed methods that have been developed in an attempt to supplant
observer studies have limitations as well. Typically, the models rely on assumptions about, or knowledge of, the
signal and noise in the images in order to compute a result.  Many of the complex tasks in medical image
interpretation do not satisfy those assumptions.

Perhaps the most theoretically promising approach to computing image quality is to measure task
performance for a model of human vision.  The model might incorporate known and hypothesized
neurophysiological and cognitive operations to compute some of the tasks of visual perception of the image.
Under such a framework, computations for medical image perception tasks of all varieties might be performed
using the visual mechanisms posited by the chosen visual model.  The accuracy of the outcome computed from
the performance may be utilized as the measure of the quality of each of the images.

This approach possesses the obvious attribute of avoiding lengthy human observer experiments.  Also, an
accurate and thorough visual model that possesses hypothesized mechanisms for a wide range of visual tasks
performed in medical image interpretation would enable global application of this image quality approach to many
medical imaging tasks and systems.  Most importantly, as it theoretically performs the tasks with the abilities and
limitations of the human observer, this approach might be expected to predict most accurately the assessment of
image quality determined by the human.

On the other hand, any image quality measure that relies on the current level of understanding of the
human visual system will admittedly be limited in its predictability and applicability.  There simply do not exist
complete and proven models of visual perception that would be certain to succeed here.  Yet recent efforts in
visual psychophysics and computer vision have produced testable and usable principles.  A goal of the research in
this dissertation is to demonstrate, by the utilization of a promising visual model and the production of informative
results, the potential for an approach that incorporates these visual fundamentals.

28S.P. M˙̇uller, M.F. Kijewski, S.C. Moore, B.L. Holman, “Maximum-Likelihood Estimation:  A Mathematical
Model for Quantitation in Nuclear Medicine,” Journal of Nuclear Medicine 31 (1990):  1693-1701.
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That a model of human vision might be applied in assessing image quality has been proposed and
investigated in previous dissertation research at this university.  Zimmerman29 first computed a measure of image
quality in comparing simulated lung mass detection for two image processing methods.  Cromartie30 has applied a
version of the core model similar to that described in Chapter 3 in calculating image quality estimates for the
parameters of a contrast enhancement algorithm, sharpened AHE (SHAHE).  The task in that research involved
the estimation of the distance from a radiation treatment field edge to a simulated blob.  While Cromartie has
demonstrated the power of this approach for computing image quality within a massive parameter space, it
remains to demonstrate its usefulness by proving that the predictions of such a model-based image quality
approach correlate with human assessment.

This research has as its purpose precisely such an investigation.  Capitalizing on the previously-
demonstrated potential of this kind of an approach, this work seeks psychophysical verification.  The promising
claims of a vision model-based image quality method may only be realized by demonstrating that its predictions
correlate with the assessments of human observers.  The remainder of this dissertation is devoted to exposition of
the components of the comparison of the model with human observers for two medical image estimation tasks.
The following chapter describes the visual model that was studied.

The process of image quality evaluation is crucial to accurate interpretation of medical images.  This
discussion has attempted to emphasize that such measurements must be performed rigorously and with confidence
in their predictability.  Additionally, it was suggested that it would be convenient to employ the computer to
produce those image quality estimates.  The methods proposed in this work attempt to combine these theoretical
and practical attributes.

29J.B. Zimmerman, “The Effectiveness of Adaptive Contrast Enhancement,” Ph.D.  dissertation,  (University of
North Carolina-Chapel Hill, 1985).

30R. Cromartie, “Structure-Sensitive Contrast Enhancement:  Development and Evaluation,” Ph.D.  dissertation,
(University of North Carolina-Chapel Hill, 1995).


