
7.  ANALYSIS

The remainder of this dissertation endeavors to assemble and interpret the graphical and statistical
information used in the test of the hypothesis put forth by this work.  If a visual model is ultimately to be used to
compute medical image quality measurements, what is necessary from the model results is that they parallel those
of the human.  The presumption when measuring observer performance to provide an indication of image quality
is that the performance will vary over the range of potential parameter settings of image acquisition or processing.
That observer performance makes a statement about the quality of the images;  where accuracy is optimal
indicates the highest quality image.  A model for the observer can be more or less accurate than the human.  As
long as the model maintains a constant relationship across the potential parameter values, then the model provides
an equally good indicator of quality (see Figure 7.1).  The most important analyses then in this chapter test the
hypothesis that the differences between the estimation errors for the model and the human are constant.
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Figure 7.1.  Parallel performance of model and human.  Human accuracy (left) as a
function of some parameter of the imaging system or processing method can be used to target
an optimal setting of that parameter.  A model that is known to have a parallel relationship to
human performance (middle) can just as well be used to locate those parameters that are best
for human use.  In that case, the difference between the model and human is constant (right).

The data were all analyzed using one of several forms of a repeated measures linear models approach
(see Section 2.4).1  The analyses make a linear least squares (or alternatively a maximum likelihood)
approximation to the data as a function of the independent variables in the design.  The analysis models allow
specification of those variables for which repeated measures were obtained.  Indeed, in both of the experiments in
this research, all independent variables (for example, angiographic blur or SHAHE contrast) were indicated as
repeated, or within-subjects, as an observer contributed scores at each of the conditions within each variable.  As
mentioned in Section 2.4, when the levels of the independent variables are described categorically, standard
ANOVA techniques may be utilized.  When the independent variables exist on a continuous scale, the analysis
must resort to regression techniques.

A multivariate approach to repeated measures ANOVA was used to analyze the portal imaging study
data.  The linear model in this case is

Y i = X β + ε i 7.1

Y is the dependent variable matrix; Y i  is a row vector of responses from the j conditions for ith observer.  X is a
matrix that contains the levels of the factors that are studied in the experiment, and the β’s are the “effect
parameters” that are calculated to estimate the population’s relationship of each condition in X to the dependent
variable.  The analysis assumes

1) homogeneity of variance, i.e., that each subject has the same covariance matrix,
2) the common covariance matrix is a multivariate normal distribution about the mean, and
3) the vector of responses is independent for each subject.

The probability that is reported in these analyses is the Geisser-Greenhouse (henceforth “G-G”) corrected p-value,
an adjusted significance test that corrects for deviations from the variance assumptions.  Furthermore, when each
of the analyses was done, the normality assumption was verified with univariate statistics at each experimental
condition.

A regression approach was employed for most of the analyses for the angiography experiment.  The
original data analysis plan was a simple ANOVA using the orthogonal, categorical independent variables that

1The SAS System, SAS Institute, Inc., Cary, NC.
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were used in the generation of the experiment images.  When the design was changed to describe experimental
conditions with the more principled perceptual measures of blur, the effective blur scale (EBS), and noise, the
figure-to-noise ratio (FNR), the following analysis was required to accommodate those continuous, non-
orthogonal independent variables describing the data.

In general, a linear regression equation describes a linear least-squares approximation of the dependent
data as a function of one or more continuous independent variables.  The variability in the data may be
apportioned based on the regression into two components:  variability predicted by the regression on the
independent variable and residual variability not predicted by the regression.  Those components of the regression
allow the linear model hypothesis tests:  the null hypothesis that a particular variable has no effect is rejected if the
variability of the data decreases sufficiently when that extra term is added to the model.  There are, as with
categorical ANOVA, assumptions about the relationship that the regression describes.  For the particular analyses
of the angiography data, the necessary assumptions were that the samples at any particular value of the
independent variable were assumed to have a mean lying along the regression line and have errors that were
normally distributed.  The independence assumption is corrected for by the repeated measures techniques used in
the analysis.

The angiography study possessed repeated continuous factors, or covariates, EBS and FNR.  Within each
subject, the covariates are different in each of the repeated measures conditions.  The appropriate analysis in this
case is a repeated covariates regression model that employs a univariate approach.  The analysis relies upon
different parameter estimation and hypothesis testing techniques since the repeated covariates make it not possible
to develop a closed form expression for the linear model.  The algorithms in the SAS procedure “MIXED” were
used to calculate restricted maximum likelihood (REML) estimates of the β‘s in the model.  This analysis again
assumes the equivalence of each observer’s covariance matrix.  However, with so many repeated conditions and
so few observers, it was impossible to correct for the absence of this condition.  Some attempts were made in the
analysis of the angiography data to assure that these compound symmetry requirements were satisfied.
Nonetheless, these regression analyses must be regarded as liberal, or quick to reject the null hypothesis.
Therefore, where the repeated covariates regression techniques were used, the significance decisions were made at
the 0.01 level.  

The procedure for interpreting the results of this kind of a regression analysis is similar to that for a
standard ANOVA:  trends are discussed in terms of the main effects and interactions (see definitions below).
Because of the non-orthogonality of the angiography design, however, the way that the regression must be
performed is by successively adding terms into the linear model and determining whether each one in turn
contributed significantly to a better representation of the data.  The stenosis depth parameter resulted in the
dominant trend in the data.  Furthermore, the blur and noise conditions were of interest at any particular stenosis
depth.  Therefore the analysis adds the stenosis depth term into the model first.  Subsequent significance tests
involving the blur and noise parameters ask only whether these additional terms contribute anything further
toward the linear model description of the data.  The EBS and FNR factors may be confounded with stenosis
depth:  the stenosis depth parameter explicitly indicates the width of vessels, and the other two parameters are
defined by formulas that explicitly incorporate width information as well.  To the extent that there is variation in
performance with respect to stenosis depth, the EBS and FNR parameter may reflect or more likely cause some of
that variation as well.  However, a significant effect of EBS, for instance, will only be determined when variation
in the EBS value causes variation in the scores above and beyond that caused by the variation in depth.  It is also
because of these potential relationships between the parameters that the data were often analyzed separately at
each depth condition.

It is important to define for each analysis the outcome measure, or “score,” that was the value for the
dependent variable at each condition.  Section 3.2 discussed how the perception of shape is thought to be roughly
zoom invariant:  the absolute error with which a figure can be perceived is monotonically related to the figure’s
width.  The estimation tasks in these experiments involved judgments about widths of objects that vary across
trials.  For the angiography experiment, observers and the model made estimates about simulated vessels with
different stenosis depths.  In the portal imaging study, the true treatment field clearance varied considerably on
each trial.  Thus the outcomes are expressed as relative errors, which divide absolute error by the magnitude of
the quantity in question.  Relative errors in this way make commensurate outcomes from experimental conditions
that have different truths.

The original designs for both the angiography and portal experiments specified an outcome that was an
absolute error.  While the decision to analyze relative errors was made post-hoc, it is firmly justified on theoretical
grounds and was never proposed as a means of intentionally improving the correspondence between the model
and human data.

In the angiography experiment, where the truth was known, the outcome measure for human performance
alone was human error relative to truth, or the difference between the percent stenosis estimate from the human
and the true percent stenosis, all normalized by the width-proportional quantity 100 minus true percent stenosis.
Similarly, the outcome reflecting the model’s performance is the model’s relative error, or its percent stenosis
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minus the truth normalized in the same way.  For the analysis that compared the performance of the model and the
human, the outcome measure is a normalized difference between model and human percent stenosis.

In the portal imaging study, the primary outcome examined was the difference between the model and
human distance in pixel units normalized by the true distance.  The value for the truth was a rough estimate
provided by the author.  Further conclusions about the portal imaging experiment are suggested in Section 7.5 by
assessing separately model and human accuracy with respect to this estimate of truth.

The analyses in this chapter thus all test whether an outcome measure that is a relative error does or does
not vary significantly as a function of the variables in the study.  The descriptions of the data in this chapter will
often use the term accuracy, which is generally regarded to mean a positive quantity whose larger values indicate
better performance.  However, the actual data are reported as signed relative errors, where zero error is perfect
accuracy.  The magnitude, or absolute value, of the errors was never examined; the value, or “direction,” of the
difference was important in attempting to understand or draw conclusions about the cause of any discrepancies
between the human or the model and truth, or more importantly between the model and the human.

In the analyses for both the angiography and portal imaging studies, the scores at each condition for the
model and the observers were means of the relative errors across all of the backgrounds that served in that
condition.  In the analyses that compared model and human performance, mean model performance was
subtracted from each observer’s mean at each condition.

  The analysis methods provide estimates of the significance of main effects and interactions for
the independent variables in the design.  A test for a main effect of a particular independent variable, A, combines
scores across all other variables at each of the levels of A.  What is produced is an indication of the probability
that the variation in the single variable A caused significant differences in the combined scores at the different
levels of A.  A significant effect for the contrast variable in the portal imaging study would indicate that when
combining scores across the other variables in the study the different contrast levels caused an overall variation in
the outcome.  Interactions study the relationships between variables (Figure 7.2).  An interaction between two
variables is said to exist when the linear relationship between the dependent variable and one of the independent
variables is in turn dependent on the other independent variable.  For example, an interaction would exist between
the noise and blur variables in the angiography study if there were different response patterns as a function of the
blur parameter at the different noise levels.  The chosen significance level is used in deciding whether the
probability, or “p” value, warrants rejecting the hypothesis of no difference, or no main effect, or no interaction.
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Figure 7.2.  Interaction of variables.  Variables A and B are said to interact:  the
relationship between the responses to independent variable B is dependent on the level of the
other independent variable A.  On the other hand, the pattern of responses at variable D does not
change with variation in variable C.

Statistical indications of main effects and interactions for either human or model estimates or differences
between them are presented in a “source table”  (see for example Table 7.2).  For an analysis performed on any
particular one of these dependent variables, the table lists the independent variables along with an F statistic and
rejection probability estimate for each.  In the left column, the single (for a main effect) or multiple (for
interactions) independent variables are listed in the “SOURCE” column.  The “F” statistic is a summary measure
that provides an indication of the increase in the error entailed by representing the data by the full as opposed to
the restricted linear model.  F is large when the null hypothesis ought to be rejected.  The right column (“Pr > F”)
provides an estimate of the probability that the variation in the data due to the independent variable(s) in question
occurred by chance alone.  When “p” is less than the predetermined significance level, the null hypothesis is
rejected.  So for example, the first row in Table 7.2 provides an F value (26.45) and probability (< 0.0001) of
rejecting the hypothesis that the outcome, in that case human relative error, did not vary significantly as a function
of the “depth” parameter alone.

When the analysis studies an outcome that is a relative error between the model and human results, the
hypothesis that is tested is that the difference is constant.  For a model to successfully predict human behavior
with respect to the independent variables studied, there must be no main effects for any of the variables:  errors
should not significantly differ from each other at the levels of the variables.  Likewise, it would be necessary for
the pattern of scores with respect to a single variable to remain virtually constant at the different levels of another
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variable.  Of course, in the absence of this perfect correspondence, it is informative to know at which of the
variables the model did or did not predict sufficiently.

7.1  Human Performance for Stenosis Estimation
It was of interest to test whether human performance alone varied with respect to the parameters studied

in the angiography experiment.  While the ultimate test is whether the model results parallel those of the human,
however variable the human performance was, it would be a more conclusive statement of the model to know that
it did or did not predict human performance that was not simply constant.  Furthermore, as it is this human data
which is the standard against which the model was to be compared, it is important to first establish that the human
behavior was for the most part understandable and believable before using it in a test of the model.  The analysis
in this section tested whether the outcome measure, human percent stenosis minus true percent stenosis divided by
the quantity 100 minus true percent stenosis, varied with respect to the variables in question.

Performance will frequently be referred to as either 1) overestimation, in which case the mean estimate
indicated more of a vessel constriction than the object of comparison (truth or human performance) or 2)
underestimation, wherein the estimate indicated less constriction than the expected value (Figure 7.3).
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Figure 7.3.  Stenosis over- and under- estimation.  Positive errors reflect that the
estimate indicates more vessel constriction than the expected value.  Negative errors indicate
underestimation relative to the standard.

The standard deviations reported are those about the mean for multiple observers.  They are plotted as
error bars in the graphs, and the bars are placed at plus and minus one standard deviation from the mean.  Where
the number of points in the plots is relatively small, tables of means and standard deviations are provided below
the plots.

7.1.1  Analysis of Experiment Data
Human errors were studied as a function of the three factors in the experimental design:  stenosis depth,

EBS, and FNR.  The levels and units of those variables are as described in Sections 4.3 and 6.1.  As a reminder,
the most noise occurs for low FNR’s, while the most effective blur occurs for high EBS’s.  Data points at each
condition are mean errors and standard deviations for 13 observers (Table 7.1).

DEPTH 25% DEPTH 50% DEPTH 75%
FNR EBS mean FNR EBS mean FNR EBS mean

14.673 0.0031 0.018 (0.07) 7.966 0.0069 -0.059 (0.08) 2.258 0.1111 -0.037 (0.18)
12.636 0.0193 -0.012 (0.07) 6.504 0.0434 -0.055 (0.08) 1.806 0.1736 -0.088 (0.25)
13.047 0.0494 0.006 (0.06) 6.091 0.1111 -0.101 (0.14) 1.354 0.4444 -0.247 (0.33)
11.802 0.0031 -0.013 (0.08) 6.600 0.0069 -0.081 (0.12) 2.350 0.1111 -0.096 (0.18)
12.304 0.0193 0.010 (0.07) 6.984 0.0434 -0.144 (0.10) 1.948 0.1736 -0.257 (0.22)
13.024 0.0494 -0.002 (0.06) 5.605 0.1111 -0.132 (0.13) 0.780 0.4444 -0.295 (0.45)
10.326 0.0031 0.025 (0.07) 5.700 0.0069 -0.086 (0.08) 1.714 0.1111 -0.078 (0.21)
10.256 0.0193 -0.026 (0.06) 4.894 0.0434 -0.199 (0.11) 1.552 0.1736 -0.355 (0.31)
10.446 0.0494 0.010 (0.09) 5.057 0.1111 -0.061 (0.15) 0.958 0.4444 -0.149 (0.41)

Table 7.1.  Human stenosis estimation relative errors (and standard deviations) for all
27 depth, FNR, and EBS conditions.  Means and standard deviations are for the 13 observers
who participated at each condition.

The source table for the statistical analysis (Table 7.2) shows the probabilities for the main effects and
interactions of the experimental factors.  The statistics indicate that extent to which the independent variables
listed caused significant variation in human relative error for stenosis estimation.

The three-way interaction of the angiography parameters was not statistically significant (F=0.57,
p=0.5651), nor were any of the two-way interactions involving the stenosis depth factor.  This suggests that the
trends involving the other factors are similar at each stenosis depth and that it is therefore meaningful to examine
independently the significant main effect due to stenosis depth (F=34.40, p<0.0000).  Figure 7.4 demonstrates that
observers underestimated, or indicated that the vessel was less constricted than it actually was, for the more
constricted vessels.  Accuracy was nearly perfect at the 25 percent depth condition.
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SOURCE F Pr > F
depth 34.40 < 0.0001
EBS 9.47 0.0023

EBS•depth 0.22 0.8052
FNR 1.06 0.3048

FNR•depth 2.19 0.1132
EBS•FNR 4.87 0.0280

EBS•FNR•depth 0.57 0.5651

Table 7.2.  Source table for the analysis of human stenosis estimation errors.  The
“SOURCE” column lists the main effects and interactions of the independent variables.
Corresponding F statistics and probabilities indicate the statistical significance of the variation
caused by the variables.
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Figure 7.4.  Human stenosis estimation errors as a function of stenosis depth.  At the
left, the data at all 27 conditions is shown with a linear fit, while the right plots only the means
with respect to stenosis depth.
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Figure 7.5.  Human stenosis estimation errors as a function of effective blur scale.

The main effect due to the EBS parameter was also significant (F=9.47, p=0.0023).  Although the EBS
parameter to a large extent exhibits the trends that were captured by the stenosis depth main effect, the addition of
the EBS term into the linear model reduced significantly further the error in the statistical model’s representation
of the data.  All of the data are plotted as a function of the EBS factor  in Figure 7.5.  Generally the effect on
human performance of an increase in the blur, as measured by the EBS parameter, is to cause larger
underestimation errors.

There was no significant variation in human relative errors for the main effect of noise (F=1.06,
p=0.3048).  Although accuracy appears to vary with respect to FNR (Figure 7.6), the analysis indicates that the
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residual error term in the linear model was not significantly reduced by the addition of an FNR factor.  In Figure
7.6, the data are labeled according to their stenosis depths.  The hypothesized differential effect of noise on
stenoses of different depths may in part cause the variation in human accuracy as a function of depth (Figure 7.4).
At the same time, since the FNR may reflect stenosis depth, the trends in accuracy as a function of FNR may have
some relation to whatever the form of the depth trends.
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Figure 7.6.  Human stenosis estimation errors as a function of figure-to-noise ratio.

  The non-significant three-way interaction suggests that the blur-by-noise relationships have a similar
form at each stenosis depth levels.  However, there is no way to “combine” the data across the depth factor for
presentation purposes:  every condition is described by a unique FNR.  The data are analyzed and plotted below
separately at each of the stenosis depths (Figure 7.7 through 7.9).  In each case the analysis source table with the
EBS and FNR main effects and their interaction are provided beneath the plots.  The plots also contain linear least
squares fits through the data points belonging to a single EBS level.  The conclusion represented by the non-
significant three-way interaction is supported by the fact that the EBS-by-FNR interactions are the same (not
significant) at every depth.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

[human est(%sten) - truth(%sten)] / (100-truth(%sten))
@ DEPTH 25%

R
E

LA
T

IV
E

 E
R

R
O

R

0.4

FIGURE-TO-NOISE RATIO
1 0 1 1 1 2 1 3

EBS 0.0031

EBS 0.0193

EBS 0.0494

1 4 1 5

SOURCE F Pr > F
EBS 0.04 0.8426
FNR 0.53 0.4691

EBS*FNR 0.19 0.6660

Figure 7.7.  Human stenosis estimation errors as a function of EBS and FNR at
stenosis depth 25%.

At the 25 percent stenosis depth condition, there were no significant main effects or an interaction:
human accuracy is relatively constant and indeed good over the range of blur and noise conditions.  There was,
however, a marginally significant main effect of the FNR factor at the 50 percent stenosis depth condition
(F=5.28, p=0.0134).  In general underestimation errors decrease with increasing FNR (Figure 7.8, right).  The data
at that stenosis depth were not differentiated with respect to the EBS factor (F=0.43, p=0.5117).  Finally, at the
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most constricted stenosis condition, stenosis depth 75 percent, it is the blurring that causes the variation in
estimation accuracy (F=7.04, p=0.0091).
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Figure 7.8.  Human stenosis estimation errors as a function of EBS and FNR at
stenosis depth 50%.  Linear fits for the three EBS conditions are shown in the plot at the left.
The same data are shown on the right with a linear fit through all nine conditions.
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Figure 7.9.  Human stenosis estimation errors as a function of EBS and FNR at
stenosis depth 75%.  Linear fits for the three EBS conditions are shown as a function of FNR in
the plot at the left.  The same data are shown on the right as a function of EBS with a linear fit
through all nine conditions.

Human performance in the angiography experiment may be summarized as follows.  The effects of blur
and noise were as expected:  inspection of the data shows relative errors in general increased with more blur and
noise (Figures 7.5 and 7.6).  Also, accuracy worsened with increased percent stenosis (Figure 7.4).  Humans
tended to underestimate vessel depths at the 50 and 75 percent stenosis depth conditions.  It was only for mildly
constricted vessels that overall accuracy was excellent and relatively unaffected by the noise and blur conditions.
These trends in human performance with respect to stenosis depth are discussed further in Section 7.1.3, where
accuracy was measured in the absence of blur and noise.

The statistical significance of many of the effects furthermore suggests general success in achieving
human variation along the parameter levels chosen for the study.  That the statistical effects that say something
about the suitability of the parameter level choices were not entirely significant may be further evidence for the
superiority of a description of the imaging parameters via the perceptual measures EBS and FNR.  A set of
experimental conditions that were described by equal increments in those measures might have produced more
consistent variation in human estimation accuracy.  The discussion (Section 7.6.4) reflects further upon the
appropriateness of these measures.
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7.1.2  Practice Analysis
The human data were analyzed to test for the possibility of practice or fatigue effects.  The observers

were fairly naive to the particular task in this study and, in spite of the practice at the beginning, might have
improved over the course of the experiment.  This analysis examined whether each observer’s error at the
chronologically first trial in each condition was significantly different from the same measure at the last trial.
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Figure 7.10.  Human stenosis estimation errors at the first (1) and last (6) trial across all
angiographic conditions.

There was a practice (or fatigue) effect on human performance.  There was no significant four-way
interaction (F=0.62, p=0.5381); whatever the three-way trends among stenosis depth, EBS, and FNR were, they
were similar at the first and last trials.  There were also no other statistically significant higher order interactions
involving the trail variable.  However, there was a significant main effect of the trial variable alone (F=6.94,
p=0.0086).  Figure 7.10 demonstrates that the overall accuracy at the last trial in every condition was worse than at
the first.  Apparently the practice provided prior to the experiment, together with the random ordering of images
per observer, was not entirely successful in preventing undesirable drifts in overall accuracy during the study.  The
effects may simply be fatigue.  More likely the result is a drift in overall observer bias due to practice and
exposure that amounted to further underestimation.

As it stands, the practice analysis that was performed here is particularly suspect due to the “fidget
factor:”  observers often perform poorly towards the end of the experiment as they anticipate the termination of
their duties.  However, the design of the angiography experiment made it difficult to conclusively test for the
presence of practice or fatigue effects by any other means other than that just described.  Had this problem been
anticipated, the trials in the experiment could have been counterbalanced by “block” such that a trial from each of
the 27 experimental conditions was conducted before moving on to another such block.  This design would have
allowed an independent variable, “block,” as part of the analysis, and significant trends in that variable would be
indicative of practice effects over the course of the experiment.

7.1.3  Plain Vessels
Some indication of baseline performance for stenosis estimation was desired as additional information in

understanding and comparing human and model performance.  Human performance for “plain” vessels placed on
a black background with no noise or blur was examined in a separate experiment with six graduate student
observers.  Straight vessels like the measuring tool prototypes, as well as the 27 multiply curved vessels used in
the experiment images, were generated with each of the three stenosis depths (25, 50, and 75 percent).  Ten
observations were collected from each of the observers for each of the three straight vessel depths, while one
observation was collected for each of the (27*3) curved vessels.  All other aspects of the experimental protocol,
including the width variation of the prototype vessel from trial to trial, remained identical to the main study.  An
ANOVA with depth as the single fixed factor was used to analyze the results.

Human accuracy for estimation of the straight vessels was unaffected by the different depths (F=0.82, G-
G p=0.4147).  However, performance did change as a function of depth for curved vessels (F=12.45, G-G
p=0.0036).  For these plain vessels with wandering paths, observers overestimated the stenosis depth with a
relative error of approximately 7% at the mildest constriction (Figure 7.11).  This is in contrast to human
performance with the same vessels embedded in backgrounds, noise, and blur, where the previously discussed
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main effect suggested most accurate performance at the smallest stenosis depth and increasing underestimation in
the degraded conditions.  Thus performance appears to be simply shifted:  the imposition of the experimental
noise and blur conditions caused about a 0.10 shift in relative error toward stenosis underestimation.
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Figure 7.11.  Human stenosis estimation errors for plain vessels.  At the left, errors are
plotted for straight and curved plain vessels.  At the right, human performance for the plain
curved vessels is superimposed on the experiment (“embedded”) vessel data from Figure 7.4.

Human accuracy as a function of stenosis depth for the plain straight vessels exhibits something like the
zoom invariance predictions.  That is, across the stenosis depth conditions relative errors are roughly constant.  It
is unclear why errors were not constant for plain curved vessels.  For the vessels that were embedded in the
degraded backgrounds, some amount of shift results, and more importantly, accuracy is worse and uncertainty is
highest at the smallest width conditions.  This result may be due to the detrimental effect on accuracy and
certainty that noise and blur would be expected to have at the smaller width conditions.

7.2  Model Performance for Stenosis Estimation
The model’s performance for stenosis estimation is examined in this section.  Similar to the previous

discussion, the outcome of interest is the model’s relative error, or the model’s stenosis estimate minus the true
stenosis percent divided by 100 minus the true stenosis percent.  Plots of model error are shown as a function of
the same experimental variables.  The value plotted at each condition is the mean percent stenosis estimation error
over the six backgrounds that served in the condition.

No statistical conclusions are offered in this section.  First, there is only a single mean (across the six
backgrounds) from the model at each condition.  A statistical analysis uses the mean and variance from multiple
observers at each condition to make a conclusion about whether the means vary across the conditions.  Second,
any statistical analysis tests the hypothesis that the difference between two or more observations occurred due to
chance alone.  However, for this same set of experimental images, the model would produce the same results
again.

Similarly, until the theoretical investigations reported in Section 7.3.3, no standard deviations are
reported for the model.  An “intra-” or “inter-observer” variability could not be reported for the model for the
experimental data, since there is only one model and it produces the same estimate every time it operates upon the
same image.  Nonetheless, the visible trends in model errors are informative.

7.2.1  Analysis of Experiment Data
The entire data set for model stenosis estimation errors is in Table 7.3.  Figure 7.12 shows the model

results for the main effect of stenosis depth.  This parameter clearly has a big influence on model errors:  the
model overestimates the depth of mildly constricted vessels but underestimates more severely constricted vessels.
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DEPTH 25% DEPTH 50% DEPTH 75%
FNR EBS mean FNR EBS mean FNR EBS mean

14.673 0.0031 0.055 7.966 0.0069 -0.051 2.258 0.1111 -0.114
12.636 0.0193 0.064 6.504 0.0434 0.075 1.806 0.1736 -0.520
13.047 0.0494 0.068 6.091 0.1111 -0.123 1.354 0.4444 -0.460
11.802 0.0031 0.036 6.600 0.0069 0.062 2.350 0.1111 -0.275
12.304 0.0193 0.017 6.984 0.0434 -0.076 1.948 0.1736 -0.327
13.024 0.0494 0.030 5.605 0.1111 -0.089 0.780 0.4444 -0.250
10.326 0.0031 0.142 5.700 0.0069 0.044 1.714 0.1111 -0.197
10.256 0.0193 0.017 4.894 0.0434 -0.092 1.552 0.1736 -0.541
10.446 0.0494 0.170 5.057 0.1111 0.019 0.958 0.4444 -0.502

Table 7.3.  Model stenosis estimation relative errors for all 27 depth, FNR, and EBS
conditions.  Means are with respect to the six angiographic backgrounds that served in each
condition.
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Figure 7.12.  Model stenosis estimation errors as a function of stenosis depth.  At the
left, the data from all conditions are plotted with a linear fit.  On the right, the means at each
depth are indicated.
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Figure 7.13.  Model stenosis estimation errors as a function of effective blur scale.

The main effect for blur also shows a great variation in model accuracy as a function of the EBS factor
(Figure 7.13).

The last main effect is that for noise, where overall the model is least accurate at the lowest FNR
conditions (Figure 7.14).  Again the trends across EBS and FNR capture the variation in accuracy demonstrated as
a function of the depth parameter.
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Figure 7.14.  Model stenosis estimation errors as a function of figure-to-noise ratio.

The following graphs (Figures 7.15 through 7.17) plot the results as a function of the noise and blur
parameters for the stenosis depths separately.
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Figure 7.15.  Model stenosis estimation errors as a function of EBS and FNR at
stenosis depth 25%.
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Figure 7.16.  Model stenosis estimation errors as a function of EBS and FNR at
stenosis depth 50%.  At the right, a linear fit through all points is shown.

The variations in the experimental design parameters, stenosis depth and the noise and blur descriptors,
did as intended result in variation in model performance.  For instance, the model greatly overestimates the
severity of the vessel constrictions in the degraded conditions for the vessels with mild (25 percent) stenoses but
performs quite accurately at some of the milder blur and noise conditions (Figure 7.15).  And Figure 7.18 (right)
shows the trend of overall improvement that results from a decrease in the EBS.  However, sometimes the
variation in the model’s behavior is not always understandable or ordered with respect to the parameters.  There
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are for example two instances at the two larger stenosis depths (50 and 75 percent) where accuracy for a fixed
EBS diminishes with an increase in the FNR.
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Figure 7.17.  Model stenosis estimation errors as a function of EBS and FNR at
stenosis depth 75%.  At the  right, a linear fit through all nine points is shown as a function of
EBS.

7.2.2  Plain Vessels
Model accuracy for the same straight and curved plain vessels as those discussed in Section 7.1.3 above

is relatively constant and quite good (Figure 7.18, left).  This constant performance is very different from the
model’s accuracy for these stenosis depths in the presence of backgrounds, blur, and noise.  In those experimental
conditions, model performance ranged from overestimation errors of 0.067 at the 25 percent stenosis to
underestimation errors of 0.354 at 75 percent depth condition (Figure 7.18, right).
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Figure 7.18.  Model stenosis estimation errors for plain vessels.  Model errors are
plotted for straight and curved plain vessels (left).  At the right, the plain curved vessel
performance is replotted together with the stenosis depth main effect results from Figure 7.14.

7.3  Human vs. Model Performance for Stenosis Estimation
This section contains a number of comparisons of model and human performance for the stenosis

estimation task.  The question is whether the model behavior presented in the previous section parallels the human
results described in Section 7.1.  To the extent that the results are not perfectly comparable in all cases, it will be
of interest to ascertain the conditions and parameters under which the model was and was not sufficiently
predictive.  The outcome measure for comparing human and model stenosis estimation accuracy is the difference
between model and human relative percent stenosis errors at each of the 27 experimental conditions.  All plots and
analyses in this section utilize this measure.
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7.3.1  Analysis of Experiment Data
The full results are shown in Table 7.4.  The source table for the statistical analysis is Table 7.5.  The

highest order interaction was not statistically significant (F=1.82, p=0.1640).  The lower order interactions can
thus be considered.  There was no interaction of the depth parameter with FNR (F=0.66, p=0.5165), nor was there
an interaction of depth with EBS (F=1.36, p=0.2580).  Thus, it is reasonable to examine the main effect of stenosis
depth alone (Figure 7.19).

DEPTH 25% DEPTH 50% DEPTH 75%
FNR EBS mean (sd) FNR EBS mean (sd) FNR EBS mean (sd)

14.673 0.0031 0.037 (0.07) 7.966 0.0069 0.008 (0.08) 2.258 0.1111 -0.077 (0.18)
12.636 0.0193 0.077 (0.07) 6.504 0.0434 0.130 (0.08) 1.806 0.1736 -0.431 (0.25)
13.047 0.0494 0.062 (0.06) 6.091 0.1111 -0.023 (0.14) 1.354 0.4444 -0.213 (0.33)
11.802 0.0031 0.049 (0.08) 6.600 0.0069 0.143 (0.12) 2.350 0.1111 -0.179 (0.18)
12.304 0.0193 0.007 (0.07) 6.984 0.0434 0.068 (0.10) 1.948 0.1736 -0.069 (0.22)
13.024 0.0494 0.031 (0.06) 5.605 0.1111 0.043 (0.13) 0.780 0.4444 -0.045 (0.45)
10.326 0.0031 0.117 (0.07) 5.700 0.0069 0.131 (0.08) 1.714 0.1111 -0.118 (0.21)
10.256 0.0193 0.043 (0.06) 4.894 0.0434 0.107 (0.11) 1.552 0.1736 -0.186 (0.31)
10.446 0.0494 0.160 (0.09) 5.057 0.1111 0.080 (0.18) 0.958 0.4444 -0.352 (0.41)

Table 7.4.  Model-human relative error differences for stenosis estimation.  Means and
standard deviations for the 13 difference scores at the 27 depth, FNR, and EBS conditions are
shown.

SOURCE F Pr > F
depth 76.08 < 0.0001
EBS 0.55 0.4597

EBS•depth 1.36 0.2580
FNR 5.89 0.0157

FNR•depth 0.66 0.5165
EBS•FNR 8.87 0.0031

EBS•FNR•depth 1.82 0.1640

Table 7.5.  Source table for the analysis of model-human stenosis estimation
differences.

Both the human and the model results were shown previously (Figures 7.4 and 7.12) to exhibit the same
trend as a function of stenosis depth:  overestimation occurred for the mild stenoses while underestimation
resulted for severe constrictions.  However, because the model does this to a greater extent, the difference in
performance is not constant.
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Figure 7.19.  Model-human stenosis estimation differences as a function of stenosis
depth.

Table 7.5 indicates a significant interaction of the EBS and FNR parameters (F=8.87, p=0.0031).  The
non-significant three-way interaction suggests that the form of this EBS-by-FNR interaction is roughly the same at
each stenosis depth condition.  Thus to illustrate the two-way interaction, model-human relative error differences
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were averaged across the three depth conditions.  This also required an averaging of the independent parameters,
EBS and FNR, describing the three conditions that were averaged in each case.  The linear fits in Figure 7.20
suggest that the interaction is caused by the conditions at the highest level of blur, or EBS 0.2018, where the linear
trend indicates, contrary to the other two blur conditions, increasingly less underestimation by the model relative
to humans as a function of FNR.
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Figure 7.20.  Model-human stenosis estimation differences as a function of FNR.
Linear fits through the three EBS conditions are shown.  The nine data points, and the FNR and
EBS levels describing them, are means across the three stenosis depth conditions.

Although there did exist the EBS-by-FNR interaction described previously, it is useful to look at the data
as functions of EBS and FNR alone.  The trend as a function of increasing EBS (Figure 7.21) is for model
underestimation relative to humans.  Figure 7.22 demonstrates relatively constant, small differences between the
model and humans at the intermediate and high FNR conditions.  At the lowest FNR conditions, the differences
are largest and most variable.
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Figure 7.21.  Model-human stenosis estimation differences as a function of effective
blur scale.

Figures 7.23 through 7.26 plot the blur and noise data at each stenosis depth.  The non-significant three-
way interaction suggests that the significant blur-by-noise interaction (F=8.87, p=0.0031) takes on essentially the
same form at each depth.  Source tables are provided with the plots in each case.  Again, linear least-squares fits
are shown.
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Figure 7.22.  Model-human stenosis estimation differences as a function of figure-to-
noise ratio.

The large overestimation errors for the model in the more degraded blur and noise conditions at the 25
percent stenosis depth contrasted strongly with the accurate human performance there.  In the less degraded
conditions at the 25% depth, the differences in the relative errors were more constant and for the most part roughly
less than 0.10.  These trends result in a significant interaction (F=10.76, p=0.0014).
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Figure 7.23.  Model-human stenosis estimation differences as a function of FNR and
EBS at stenosis depth 25%.  Linear fits for the three EBS conditions are shown as a function of
FNR.

The non-significant interaction at the 50 percent depth condition (Figure 7.24, F=0.06, p=0.8126) permits
examination of the main effects (Figure 7.25).  For both the EBS and FNR parameters, the plots show aptly that
the differences were not constant.  The variation in the differences occurs because the model’s accuracy is
generally constant as a function of FNR at the 50 percent depth condition (Figure 7.16, right) whereas human
accuracy is more variable (7.8, right).  In the EBS plot (Figure 7.25, right), the difference between model and
human errors was actually nearest zero in the highest blur conditions.
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Figure 7.24.  Model-human stenosis estimation differences as a function of FNR and
EBS at stenosis depth 50%.
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Figure 7.25.  Model-human stenosis estimation differences as a function of FNR (left)
and EBS (right) at stenosis depth 50%.
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Figure 7.26.  Model-human stenosis estimation differences as a function of EBS and
FNR at stenosis depth 75%.
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Finally, at the 75 percent stenosis condition (Figure 7.26), there is a significant interaction (F=7.37,
p=0.0077).  The main effects for human and model accuracy alone (Figures 7.9 and 7.17) both show decreasing
accuracy with an increase in the EBS parameter.  Indeed, the statistics indicate no significant main effects for the
relative errors for both the EBS and FNR parameters.  Variation in the errors appears to result from simultaneous
changes in both blur and noise.

7.3.2  Plain Vessels
Relative errors for the comparison of model and human estimates for the plain vessels are shown in

Figure 7.27.  The differences for the straight vessels are constant and nearly zero.  The statistical analysis
indicated no significant variation in the scores across the three depths (F=1.13, G-G p=0.3393).  In that case, both
the model and humans performed the task with consistent and good accuracy to begin with (Figures 7.11 and
7.18).

For the curved vessels, the larger difference between the model and the human data at the 25 percent
stenosis condition is not consistent with the differences at the other two depths, and the overall effect of stenosis
depth was statistically significant (F=12.50, G-G p=0.0035).  From Section 7.13 it is known that humans
overestimated at the 25 percent condition, while their accuracy at the other two depths was nearly perfect.  The
model’s flat performance for all three depths thus generates the disparity at the 25 percent stenosis depth
condition.

It could be hypothesized that the discrepancies between the model and human results as a function of
stenosis depth were due in part to the failure of the model used in these studies to incorporate the lack of perfect
zoom invariance that humans have been shown to exhibit.  The model results do seem to exhibit the zoom
invariance characteristics.  In the absence of blur and noise, the model’s relative errors are roughly constant, while
the human errors are not.
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Figure 7.27.  Model-human stenosis estimation differences for plain vessels.

When viewing the experiment data, where blur and noise were present, one must consider in the
interpretation that blur and noise may work against the zoom invariance principles.  Because we believe that
perceptual effects of blur and noise are dependent on object size, the degradations used in the experiment might be
expected to have, on the whole, an increasingly detrimental effect on accuracy as stenotic width is decreased.
This is opposite from the constant trend in relative error predicted by zoom invariance.  This is indeed what
appears to have occurred with the human data.  Figure 7.4 demonstrates the increase in errors that occur for more
constricted vessels.  Yet peak accuracy for the model for the experiment images occurs roughly at the 50 percent
stenosis depth condition.

Thus, while to some extent the disparity between the model and the human in the experiment data may be
due to the different properties with respect to zoom, it is clear that the experimental conditions themselves
contributed significantly to the model and human differences.  The way that the model performance changes
relative to plain vessels when it was subjected to blur and noise is very different from the simple shift in the
human results when moving from plain to embedded vessels (Figures 7.11 and 7.18).  This observation is one
more indication that model does not handle or respond to blur and noise in the same way that humans do.
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To examine the impact of the baseline differences between model and human accuracy, the model
stenosis estimates for the experiment images were adjusted by the amount by which they were different from the
human estimates for the plain vessels.  That is, the “curved” plot from Figure 7.27 was subtracted from the plot in
Figure 7.19.  The result (Figure 7.28) is that the stenosis estimation differences as a function of stenosis depth are
nearly linear and vary quite substantially.
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Figure 7.28.  Model-human stenosis estimation differences as a function of stenosis
depth.  Model-human differences at each depth were adjusted by the model-human differences
at the plain wiggle vessels.  The plot on the left shows a linear fit through all 27 conditions, while
the right shows the mean and standard deviation of the differences at each depth.

While this adjustment seems to clarify the differences between the model and the human as a function of
stenosis depth, it does not improve the correspondence between the two.  This was true when viewing the results
as a function of the EBS and FNR parameters, and nothing further of this adjustment is shown.

7.3.3  Comparison of Standard Deviations
Another model-based estimate that might be used as a metric for image quality is the variance in the

accuracy of a task.  Not only is the mean accuracy with which a clinical estimate is determined important, but the
certainty and consistency of the estimate may be indicative of goodness.

There were, in addition to the independent variables studied, three sources of variability in the human
estimates in the angiography study.  First, there were six backgrounds randomly assigned to each of the
experimental conditions.  There is thus a standard deviation at each condition for each observer that is computed
about the mean for the observations over the six backgrounds in the conditions.  Second, the scores at each
condition for the overall analysis were means across thirteen observers, and there is an inter-observer standard
deviation about each of those means.  Finally, human observers possess an internal, or intra-observer, variability
owing to the inherent uncertainty exhibited by all measurements made by our senses.

The only variability that can be estimated for the model from the experiment data is that due to
the background variation.  A first analysis was conducted to test whether the difference between the human and
model standard deviations in relative error due to background vary across the conditions.  Table 7.6 is the source
table for the repeated covariates regression analysis.  There was a significant three-way interaction (F=8.72,
p=0.0002), as well as other highly significant interactions.  Clearly the model’s standard deviations in stenosis
estimation with respect to the backgrounds in each condition did not parallel those from the humans.

SOURCE F Pr > F
depth 39.00 < 0.0000
EBS 34.31 < 0.0000

EBS•depth 0.53 0.5904
FNR 0.37 0.5423

FNR•depth 14.15 < 0.0000
EBS•FNR 53.59 < 0.0000

EBS•FNR•depth 8.72 0.0002

Table 7.6.  Source table for the analysis of model-human stenosis estimation standard
deviation differences due to background variation.
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  What is really needed, though, is an approximation, assigned to the model, that can be its intra- and inter-
observer variability.  This estimate for the “natural” or inherent variability for the model was determined by
measuring its performance for many iterations, or realizations, of the noise at each condition.  Specifically, for
each of the backgrounds at each of the 27 conditions, stenosis estimates were computed according to the core-
based protocol (Section 4.4) for 75 iterations of the noise level assigned to that condition.  The standard deviation
about the mean relative error for the 6*75 stenosis estimates was designated as the model’s deviation at each
condition.  Several results of this Monte Carlo simulation are described next.
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Figure 7.29.  Experimental and Monte Carlo model stenosis estimation errors as a
function of stenosis depth.
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Figure 7.30.  Stenosis estimation differences between Monte Carlo and experimental
model results.

Before proceeding to an analysis of the standard deviations, the mean stenosis estimation errors from the
Monte Carlo simulation were compared with the model errors for the images used in the experiment.  Figure 7.29
compares the Monte Carlo and experiment main effects for stenosis estimation errors as a function of stenosis
depth, and clearly the agreement is excellent.  Differences and linear fits to those differences are plotted in Figure
7.30 as a function of FNR and EBS.  Although there are differences between the estimates, the overall agreement
is good.

The comparisons of the Monte Carlo means with the model’s results for the experiment images alone
provide some assurance that the performance of the model for the single realization of the noise in each image in
the experiment was reasonably representative of its overall behavior for the noise conditions.  However, there
were enough differences between the stenosis estimation errors for the Monte Carlo and experiment data at the
individual conditions to warrant a test of the Monte Carlo estimation errors against the human errors.  The mean
errors from the simulation, because they reflect so many more observations, may represent more appropriately the
model’s performance for the conditions in the experiment.  These mean errors were tested against the human mean
errors with a repeated covariates regression analysis in the same way that the original model results were.
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The source table (Table 7.7) suggests substantial variation in the difference scores.  The significant three-
way interaction (F=7.66, p=0.0006) leads to the generation of Table 7.8, which shows the blur and noise trends at
each stenosis extent.  There are at the 50 and 75 percent conditions several significant main effects and
interactions.  Thus the Monte Carlo stenosis estimation errors were not any more successful at predicting the
human errors than were the model errors from the original experiment.

SOURCE F Pr > F
depth 74.76 < 0.0000
EBS 3.60 0.0588

EBS•depth 1.68 0.1877
FNR 3.89 0.0494

FNR•depth 4.71 0.0096
EBS•FNR 19.98 < 0.0000

EBS•FNR•depth 7.66 0.0006

Table 7.7.  Source table for the analysis of Monte Carlo model and human stenosis
estimation differences.

DEPTH 25% DEPTH 50% DEPTH 75%
SOURCE F Pr > F F Pr > F F Pr > F

EBS 4.42 0.0377 4.87 0.0294 3.63 0.0594
FNR 6.09 0.0151 19.98 < 0.0001 5.55 0.0202

EBS*FNR 26.71 < 0.0001 5.02 0.0271 20.97 < 0.0001

Table 7.8.  Source table for the analysis of Monte Carlo model and human stenosis
estimation differences at the three stenosis depth conditions.

Next, the model standard deviations from the Monte Carlo simulation were compared with the standard
deviations about the mean relative error for the thirteen observers.  No statistical analyses were attempted on these
data:  the non-orthogonality of the experimental design and the lack of  intra-observer variability estimates would
make any analysis in this situation difficult.  Nonetheless the plots are useful in understanding the trends.

Figure 7.31 shows the main effect for the standard deviation differences for stenosis depth.  At the left,
the parallelism of the standard deviations combined across the blur and noise conditions is good.  However, the
plot at the right in Figure 7.31 suggests that the differences are most variable in the highly-constricted vessel
conditions.
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Figure 7.31.  Human and model standard deviations as a function of stenosis depth.  At
the left, Monte Carlo estimates for the model and human standard deviations combined across
other experimental conditions are plotted versus depth.  A linear fit through the standard
deviation differences is shown at the right.

The linear fits through the deviation differences plotted against FNR (Figure 7.32) and EBS (Figure 7.33)
demonstrate some constancy as well.  However, there are substantial differences between the model and human
standard deviations in the highest blur and noise conditions.
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Figure 7.32.  Model-human standard deviation differences as a function of figure-to-
noise ratio.
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Figure 7.33.  Model-human standard deviation differences as a function of effective blur
scale.

Figures 7.34 through 7.36 plot the differences at each stenosis depth.  At the 25 percent depth condition,
for the two lowest blur conditions the differences are relatively small and constant.  The correspondence between
the standard deviations grows worse as the depth increases.  At the 75 percent depth condition, there is a large
amount of variation in the differences caused by both parameters.
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Figure 7.34  Model-human standard deviation differences as a function of EBS and
FNR at stenosis depth 25%.

The Monte Carlo estimates for the model standard deviation predict least well trends in human standard
deviations primarily at the highest blur and noise conditions (see for example the linear fits through EBS 0.0494 in
Figure 7.33 or EBS 0.4444 in Figure 7.36).  The model estimates alone (not shown) are substantially variable.
EBS in particular has a great impact on model variability.
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Sometimes, however, the model estimates become more variable as a function of increasing FNR (Figure
7.37).  It is unclear why the certainty with which the core estimates were determined would improve in higher
noise conditions.  This phenomenon occurred in several places in the Monte Carlo results.  It is this kind of
behavior for the core-derived stenosis estimates that will have to be understood and modified before a Monte
Carlo standard deviation could be used to predict human variability for this task.  Section 7.6.3 discusses
alternative and future measures of core model estimation and variability.
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Figure 7.35.  Model-human standard deviation differences as a function of EBS and
FNR at stenosis depth 50%.
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Figure 7.36.  Model-human standard deviation differences as a function of EBS and
FNR at stenosis depth 75%.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

SD[model est(%sten) - truth(%sten)]  / (100-truth(%sten))
@ DEPTH 25%

R
E

LA
T

IV
E

 E
R

R
O

R

0.4

FIGURE-TO-NOISE RATIO
1 0 1 1 1 2 1 3 1 4 1 5
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figure-to-noise ratio at stenosis depth 25%.
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It was suggested in Chapter 2 that image quality can often be expressed using the mean and standard
deviation in accuracy to form some kind of a “signal-to-noise ratio” describing performance.  That is, both the
mean accuracy and the standard deviation, or “certainty,” are needed to fully characterize overall performance:  a
mean error with small variance is preferable to the same error with larger variance.  Eventually, it would be
desirable to achieve reliable model means and sensible, principled estimates of model variability that could be
used in combination to characterize the quality of an image.  As the best images are those for which observer
mean error and standard deviation both approach zero, the figure-of-merit might not be a ratio but the square root
of the sum of the squares of the two.  The use of that form of a measure, however, is not feasible until mean
performance of the model can be shown to parallel that of the human and until the model’s variability can be
understood and characterized more fully.

7.3.4  Standardized Differences
The differences between the model and human stenosis estimation relative errors were rarely greater than

0.10 at any given condition.  An alternative way to look at the model performance is to ask whether it falls within
the range of normal human variability.  The model might be said to perform like a normal or average human if its
mean, µmodel , falls with ζ  standard deviations of the human mean, µhuman .  Thus the measure is the difference
between the means normalized by the standard deviation in the human mean:

µmodel − µhuman

σhuman

< ζ 7.2

If these standardized differences were always within some acceptable tolerance, such as 1, at all the
experimental conditions, then the model might be thought of as no better or no worse than the average human
from the experiment population.  This is essentially the question that the statistical analyses ask, but it is
informative to look at the data plotted in this way.  Furthermore, the estimates for the human variability really
should be estimates of confidence intervals that make a statement about the bounds of the normal population
variance as opposed to the standard deviations for the observers in the experiment alone.

The plots below show these standardized differences as a function of stenosis depth (Figure 7.38), figure-
to-noise ratio (Figure 7.39), and effective blur scale (Figure 7.40).
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Figure 7.38.  Standardized differences as a function of stenosis depth.



79

-2

-1.5

-1

-0.5

0

0.5

1

1.5

standardized difference
[(model(%sten) - human(%sten))/human SD(%sten)]
2

FIGURE-TO-NOISE RATIO
0 5 10 15

Figure 7.39.  Standardized differences as a function of figure-to-noise ratio.
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Figure 7.40.  Standardized differences as a function of effective blur scale.

The standardized differences do in general increase as a function of decreasing FNR and increasing EBS
much the way that the original results did.  However, in many cases the standardized differences are less than 1,
and they are never greater than 2.  So in this sense, the model is reasonably predictive.

7.4  Model vs. Human Performance for Distance Estimation
Human and model estimates for the treatment field distance task are analyzed here.  The clinical motive

underlying this kind of an investigation is a desire to determine that image processing parameter combination
which allows the most accurate estimation of the true physical status.  In the application in this research, the
different levels of SHAHE processing presumably cause systematic changes in field distance accuracy with
respect to the true distance between the field and the vertebral anatomy.

The difference scores that are examined here are differences between model and human relative errors.
Because this task involved the judgment of a range of treatment field clearance distances, it is important that the
score assigned to the model and human be a relative error.  The paramount question then is whether the relative
errors made by the model parallel the human relative errors change in the same way as a function of the nine
parameter conditions.  The standard categorical ANOVA methods described in the introduction to this chapter
were employed throughout the next two sections.

These relative error estimates of course require a value for the true distance between the two important
edges involved in the task.  Since no real truth is available for these images, a designation of truth was performed.
The designations were made via a combination of computed methods and the author’s judgment.  The
determinations were made on the preprocessed backgrounds.  First, ridges of the magnitude of the derivative of
the image intensities with respect to the horizontal, or x, direction, initiated by a starting position supplied by the
author, were computed to determine the treatment field and vertebral body edges.  Truth was taken to be the
horizontal distance between the two ridges at a vertical position in the middle of the image.  For eight of the 27
backgrounds, the edge positions determined in this manner did not correspond to the positions that should have
been chosen according to the directions for the task and were subsequently adjusted slightly by the author to make
them consistent with that specification.  The mean truth determined by this method for each of the nine
experiment conditions is shown below in Table 7.9.
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contrast 2 contrast 7 contrast 12
gain 1 123.39 (32.7) 112.06 (33.1) 119.72 (30.3)
gain 3 129.61 (31.1) 122.22 (33.4) 114.72 (35.6)
gain 5 123.11 (29.8) 112.33 (28.2) 118.89 (34.2)

Table 7.9.  Means (and standard deviations) of the “true” treatment field clearance
distances in the nine portal imaging experiment conditions.

Clearly this method of determining truth is biased.  Computed estimates of edge positions may produce
truths that are more similar to the model’s estimates.  However, this author agreed with the positions determined
by the derivative measurements or adjusted the results in the cases where the estimates were incorrect.  Yet the
author is biased as well.  Thus, the values are not so much “truth” as rough estimates of how far apart in the
original image the edges were.  These values for truth made it possible to calculate relative errors as the outcome
for these analyses.  It also allowed inspection of trends with respect to some value, even if it was not bona fide
truth, so that human and model accuracy could be examined alone.

Data in this section are reported as differences between the human and model mean relative errors for the
18 backgrounds at each condition.  The units and levels of the SHAHE parameters are as discussed in Sections 5.1
and 6.3.

The source table for the ANOVA is shown in Table 7.10.  The difference scores for the nine
experimental conditions are shown in Figure 7.41.  The scores are almost all negative, meaning that the model
distance errors were in general smaller than those of the human.  The sharp trend toward model underestimation
relative to the human at the gain 1 and contrast 2 condition causes the significant interaction between the contrast
and gain variables:  the ordering of the scores with respect to gain is different at each contrast (F=6.87, G-G
p=0.0021).

SOURCE F G-G Pr > F
gain 8.81 0.0050

contrast 6.78 0.0123
gain•contrast 6.87 0.0021

Table 7.10.  Source table for the analysis of model-human distance estimation
differences.
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Figure 7.41.  Model-human distance estimation differences as a function of SHAHE
gain and contrast.

The correspondence between the model and human results is roughly constant and near zero at the gain 3
condition.  It is also fairly constant at the gain 5 condition.  Interestingly, the greatest variation in the difference
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scores occurs at the gain 1 condition, and the greatest disparity across all nine conditions occurs at the gain 1 and
contrast 2 condition.  It is these conditions that may be considered “mildly” enhanced or most similar to the
original images.

The significant interaction of the contrast and gain parameters for the model-human relative error
differences does not permit examination of the main effects of those parameters.  Figure 7.41 demonstrates that
the interaction is not simply ordinal, and thus averaging scores across the gain or contrast conditions would be
meaningless and perhaps misleading.

There are fundamental differences in the comparability of the model and human results when the SHAHE
contrast and gain parameters were adjusted.  The significant two-way interaction suggests that the relative errors
from the model were not able to predict those from the human for the range of SHAHE parameters studied here.

7.5  Human and Model Performance for Distance Estimation
What the previous analysis can not determine is the accuracy of the human or model alone.  In this

section, the analysis compares model and human estimates against the “true” edge-to-edge distance for each
patient case.  There were several reasons for these additional analyses.  First, estimation trends, such as a
systematic increase or decrease in perceived distance as caused by adjusting one of the parameters, could provide
some feedback to the current users of SHAHE about what parameter settings might be optimal.  Second, it would
be particularly encouraging to know if there are conditions where the model paralleled human accuracy when
human accuracy was not simply constant but changed a great deal as a function of the parameters.  Third, where
there were discrepancies between the model and human results, it would be of interest to know whether it was the
model or the human that best estimated the truth.  Finally, there was no way to know whether the humans used the
appropriate edges in each image in making their judgments.  Some conclusions can be drawn in this regard by
examining the inter-observer variability in the human accuracy data.

7.5.1  Human Accuracy
The main effects and interactions for the human distance accuracy estimates are shown in Table 7.11.
Figure 7.42 depicts the relative errors in human estimation with respect to the determination of truth.

Humans exclusively overestimated the true distance, and relative errors were as great as 0.192 in one of the
conditions.  The errors seem to increase in general with an increase in the contrast parameter.  However, the data
at each contrast level are not ordered with respect to the gain parameter:  it is the gain 3 condition at which
performance is best.  The statistical analysis concluded that there was a significant interaction between the two
independent variables (F=6.36, G-G p=0.0030).
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Figure 7.42.  Human distance estimation errors as a function of SHAHE gain and
contrast.

While there was an interaction of the two independent variables, the relationship is sufficiently ordinal
that it is worth looking at the main effects alone.  The plots (Figure 7.43) confirm the overall trends for the two
parameters.  Apparently some intermediate amount of edge sharpening was beneficial to the humans in
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SOURCE F G-G Pr > F
gain 20.34 0.0001

contrast 10.96 0.0022
gain•contrast 6.36 0.0030

Table 7.11.  Source table for the analysis of human distance estimation errors.

determining the true distance.  Conversely, a systematic increase in contrast alone only resulted in poorer
accuracy.
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Figure 7.43.  Human distance estimation errors for the main effects of gain (left) and
contrast (right).

A separate statistical analysis was performed on the human accuracy data to test for the presence of a
“practice” effect.  The analysis tested whether there were significant differences between overall relative error at
the first and last (eighteenth) trial in every condition.  While the mean accuracy worsened slightly, the analysis
indicated that this was not significant.  There was no significant main effect (F=0.51, p=0.4901), nor were there
other interactions involving the trial variable.

7.5.1  Model Accuracy
As with the angiography data, no statistical analyses were attempted for the model data alone.  However,

the trends in model errors are quite understandable.
Figure 7.44 shows the model accuracy data for all nine experimental conditions.  Like the results from

the human observers, model estimates are all greater than the true distance.  At the contrast 2 setting, model
accuracy is good and similar for all three gain values.  As the contrast is increased, it seems the gain parameter
must be increased as well in order to achieve the same accuracy.

The good accuracy at the condition which could be considered least enhanced (contrast 2, gain 1)
represents a sharp improvement over the model’s accuracy at the other two contrast levels for the gain 1
parameter.  It is the model’s particularly accurate performance that causes poor correspondence with the human
results at this condition.

The main effects for gain and contrast (Figure 7.45) demonstrate clearly the trends in model accuracy.
Accuracy increases nearly linearly with increasing gain.  Conversely, accuracy decreases as the SHAHE contrast
parameter is increased.

These plots suggest that the higher gain settings are helping to counteract the distance-increasing artifact
that appears when increasing the contrast parameter.  Unfortunately, the human results can not be accounted for
by this explanation.  While the model behavior seems to make sense in terms of this trade-off of the effects of the
parameters, somehow human behavior did not also exhibit this effect.  At a given contrast level, it was always the
gain 3 setting at which humans performed most accurately.  Ultimately it is the human performance that must be
predicted by the model.



83

-0.1

-0.05

0

0.05

0.1

0.15

0.2

2
R

E
LA

T
IV

E
 E

R
R

O
R

7

SHAHE CONTRAST

[model est(pixels) - distance(pixels)] / distance(pixels)

1 2

GAIN 1

GAIN 3

GAIN 5

contrast 2 contrast 7 contrast 12
gain 1 0.034 0.176 0.144
gain 3 0.046 0.091 0.134
gain 5 0.055 0.093 0.072

Figure 7.44.  Model distance estimation errors as a function of SHAHE gain and
contrast.

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 3 5

R
E

LA
T

IV
E

 E
R

R
O

R

SHAHE GAIN

[model est(pixels) - distance(pixels)] / distance(pixels)

-0 .1

-0.05

0

0.05

0.1

0.15

0.2

2

R
E

LA
T

IV
E

 E
R

R
O

R

7

SHAHE CONTRAST

[model est(pixels) - distance(pixels)] / distance(pixels)

1 2

gain 1 gain 3 gain 5 contrast 2 contrast 7 contrast 12
0.118 0.091 0.073 0.049 0.120 0.117

Figure 7.45.  Model distance estimation errors for the main effects of gain (left) and
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7.6  Discussion
There is now much that has been shown about the correspondence between these implementations of the

core model and the human results.  In most cases the agreement was not sufficient to allow the model to be used
presently to predict medical image quality.  Yet there is nothing about the theory or results that suggests that this
approach does not have potential for that purpose.  The task remaining is to speculate about the source of the
differences and point out what was learned so that future investigations and visual model development may
capitalize on these endeavors.

7.6.1  Experimental Design Modifications
There are several issues common to the designs of both experiments that deserve reflection in light of the

analyses in this chapter.  First, of course it is always advantageous to collect data from many human observers; the
results of the human observer experiments in this research could only have been solidified with more data.  That
there were significant effects for both human accuracy and model-human differences, however, suggests that there
were enough observers.  Statistical power calculations that make a determination of the number of observers
needed to demonstrate an effect would have been necessary only in the event of non-significant results.  Second,
the experimental designs should have been counterbalanced by “block” so that a trial from every experimental
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condition was presented before moving on to another such block.  The random ordering used in these studies is
not as effective in designing against inevitable practice and carryover effects.  Third, it also would have been
useful to obtain a measure of intra-observer variability.  The two experiments never repeated any of the images in
the experiment.  That kind of a measure would have said much about the certainty and consistency with which
these relatively untrained observers performed the tasks.  Fourth, the experimental designs both utilized different
backgrounds at each condition.  This allowed the whole experiment to contain a broad sample of potential cases.
However, the means and variances in each condition were different from each other in part because of the
different backgrounds as well as because of the effects of the variables of interest.  It might have been better to use
the same backgrounds in every condition and suffer a lack of generalizability at the benefit of decreased variance.
All these considerations are not to say that the reader ought to have serious doubts about the validity of the human
results.  The designs and experiments were developed with care, and the resulting trends in human accuracy are
mostly understandable.  Nevertheless, these issues related to believability in the gold standard human data ought
to be mentioned here and heeded in future investigations.  The compromises in this experimental design, clinical
applicability and a reasonable experiment duration at the expense of psychophysical control and statistical power,
are typical of the demands of an engineering application.

Both experiments utilized measuring tools for indicating the task estimates.  The tools made the tasks in
some respects difficult and may have contributed additional variance to the human results.  The problems incurred
with the measuring tool were more acute in the portal image distance estimation task.  To perform that task,
observers had to judge the distance between two edges that did not belong to the same object and that were well
apart from each other.  To maintain and translate that visual representation to the measuring tool several degrees
of visual angle to the right was perceptually difficult and no doubt fraught with error.

Chapter 6 provided the rationale for why the tools were necessary and implemented in the way that they
were.  There is little recourse from these particular decisions.  The visual system has at its disposal a vast array of
mechanisms and strategies for carrying out a particular task.  The visual model that was tested here is a model
only for shape representation, and the medical image tasks for which the core model hypothesizes mechanisms are
those that involve the judgment of shape.  The measuring tools in both experiments were intended to make it such
that the visual operations performed by the human observers were comparable to those that the core model was
developed to mimic.  Otherwise the core implementation would have been tested against perceptual strategies that
it does not purport to model.

At each of the conditions in both experiments, there are fewer observations for the model than from the
combination of the human data.  The human data points were means for thirteen observers while the model is in
effect a single observer.  Those increased observations probably helped produce more stable human results.
However, the Monte Carlo simulations, which determined a mean model performance over many noise
realizations for the images in the experiments, were not any more successful at predicting human performance.
Alternatively, the model could have been used to easily compute estimates for many more and different images
than those that were used in the human observer experiments.  This would have provided a better assessment of
the model’s behavior for these blur and noise conditions for a larger range of potential image backgrounds.
However, it was only fair to compare model performance for images for which there was human data.  In the end,
the hypothesis for the use of this approach is that the model alone performs on any given image in a way that
parallels overall human performance.

Part of what makes the angiography experiment and its analyses difficult to interpret is that the three
parameters, stenosis depth, EBS, and FNR, are potentially tangled.  The principles of the human visual system
specify that the accuracy with which an observer can judge the depth of a stenosis will be roughly proportional to
the depth of the stenosis.  Trends in stenosis estimation might be expected on that basis alone.  At the same time,
the effect of quantities like blur and noise on perceivability and interpretability are dependent on the size of the
objects in question.  The analysis and interpretation are simpler, have more power, and are easier to interpret,
when the parameters in the design define an orthogonal relationship.  The conclusion to Chapter 6 discussed how
images for this experiment could have been produced so as to allow an orthogonal design with FNR and EBS as
the parameters.  Stenosis depth was a parameter in this experiment because it was important to test the
predictability of the model for the range of potential vessel constrictions that might be encountered in typical
clinical practice.  Since the EBS and FNR parameters reflect the vessel width information, it might be preferable
in a subsequent experiment to not study stenosis depth but instead vary it in a random fashion the way that
background and vessel path were.  That reduces the interpretation of the results to examining only the physical
property variables of interest.

 The requirement that the differences between the model and human be constant across the experiment
conditions may perhaps be too stringent.  If the relationship between the model and human errors were known to
be monotonic, that is, that the differences between the two were monotonically divergent or convergent, or if the
relationship satisfied other properties that guaranteed the same optimum as a function of the parameters, then the
model might still be used to effectively predict best human performance.  The analysis in that case consists of
testing whether human performance as a function of the independent variables of interest is predicted by model



85

performance that is allowed to possess a possibly different slope.  These alternative, exploratory analyses
unfortunately must be left for future investigations.

It is inevitable in any experimental investigation, particularly one that utilizes a novel design and tests a
novel hypothesis, that factors in the experimental design and analysis together with issues from the interpretation
of the results will stimulate subsequent studies.  It is rare that in a single attempt a flawless design is developed
that possesses a corresponding analysis that is elegantly appropriate.  Two different experiments were conducted
in this research in order to explore the feasibility and predictability of this model-based medical image quality
approach in more than just a single imaging modality.  It is hypothesized that eventually this kind of an approach
could be used for many tasks with any imaging system.  Yet the present analysis suggests many modifications for
further experimentation.  The angiography experiment, owing to recent theoretical considerations that affected the
way that the parameters in that experiment were quantified, possessed an experimental design that required in turn
a complex statistical analysis.  And in both experiments, the feedback about both the design as well as the model
under investigation can be used in a subsequent study.  What might have been a more reasonable goal for this
dissertation is to conduct a short series of successively refined experiments that hone the experimental techniques
and at the same time work toward a conclusive demonstration of the model’s usefulness.

7.6.2  Angiography Experiment Overview
That the absolute errors in relative accuracy between model and human accuracy for stenosis estimation

were rarely more than 0.10, an absolute error of 10 percent in the percent stenosis measure, is indeed encouraging.
The model performed accurately and in many cases within the bounds of normal human variability.  Furthermore,
the model was often influenced predictably in an overall manner by the variation in effective blur and figure-to-
noise properties.  Most importantly, the variation in the accuracy of both model and human estimates that occurred
as a function of the extent of effective blur or figure-to-noise ratio was in an overall sense very similar.  However,
what was not achieved was perfect parallelism across specific parameter combinations.  The model results simply
did not track the human data closely enough in the individual conditions to guarantee that the model would be
generally useful as a method for localizing maximal human accuracy.

To begin with, there were fundamental differences between the model and human results for the basic
task of stenosis estimation for plain vessels.  Humans overestimated the extent of plain curved vessels at the 25
percent depth condition while the model exhibited rather constant accuracy.  The way that model and human
stenosis estimation were in turn influenced by the imposition of the experimental conditions was different:  the
human data were simply shifted in the direction of underestimation while the model moved toward overestimation
at mild constrictions and underestimation at severe constrictions.  It was true that the trends in accuracy with
stenosis depth were the same for both:  the model and human data both revealed increasing underestimation for
increasing stenosis constriction.  However, the changes in the estimates from plain to embedded vessels for the
model as opposed to the humans is an important indication that the model did not respond to noise and blur in the
same way that humans did.

At any given stenosis depth condition, the model’s behavior as a function of noise and blur was often
difficult to summarize.  Sometimes, model stenosis estimation was relatively unaffected, particularly by noise
(Figure 7.16, right, for instance).  When this was the case, it was not entirely surprising:  the core representation
can be relatively tolerant of smaller scale noise and blur.  In other instances however, the model’s estimates are
quite variable (Figure 7.17).  Unfortunately, sometimes these trends in model accuracy are not predictable.  For a
fixed EBS, accuracy as a function of increasing FNR might decrease, for instance.  Finally, Figures 7.22 through
7.24 show the largest variations in the difference scores at each stenosis depth occur at the largest EBS and
smallest FNR condition.  A generalization of the results then is that the model’s stenosis estimates for blur and
noise were least able to predict human accuracy in the most degraded conditions.

It was important for the purposes of these experiments to use a range of physical conditions that was
broad enough that human and model performance would vary as a function of those conditions.  As a result, the
highest EBS and lowest FNR conditions in the angiography experiment represented very noisy and blurred
images.  In fact, the images were probably degraded more so than what might be encountered in clinical practice.
That the model estimates were least predictive in these conditions is not as discouraging when the extremity of
these noise and blur degradations is taken into account.

7.6.3  Monte Carlo Methods for Further Characterization
The Monte Carlo simulations that were presented in Section 7.3.3 were simply an attempt at developing

some form of a variability estimate that could be ascribed to the model that might be comparable to an inter- and
intra- observer standard deviation.  Standard deviations, over many instantiations of noise, in the percent stenosis
estimates (as computed by the protocol described in Section 4.4 for determining a stenotic and normal width from
the core) were used as the basis for the comparison with the human deviations.  Alternatively, related variability
estimates could just as easily have been computed from, for example, the standard deviation in the estimate of the
normal or stenotic width of the vessel alone or even in the positional shift in the calculated core center.  Moreover,
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there are theoretical means of determining the certainty in core scale and position that relate the amplitude and
periodicity in the medialness of a noise distribution to the amplitude and curvature of the medialness peak at a
figure center.  More work must be done to develop and understand these certainty and stability aspects of the
core’s behavior.  When that is done, these estimates in core variability may be reasonable predictors of the
certainty with which humans can perform this and other estimation tasks.

The Monte Carlo simulations that were done for this study represent only a first step in the process of
understanding the characteristics of the core model’s operation under realistic image conditions.  Neither the
means nor the standard deviations produced by the simulation were statistically successful in predicting human
performance.  However, Monte Carlo methods should now be used to chart with finer sampling and broader range
the model’s estimation behavior for blur and noise.  Also, in addition to the blur and noise manipulations, it will
be important to study and characterize core model estimation for realistic variability over shape change, such as
normal vessel width, stenosis properties such as asymmetry and axial length, and vessel boundary texture.
Variability in those characteristics maybe even more representative of clinical variation than variability over noise
instantiations.  It is this kind of a simulation approach that can now be used to chart the model’s performance over
a broad range of potential conditions to characterize and adjust the operation of the model.

7.6.4  Perceptual Measures of Blur and Noise
This dissertation utilized two relatively novel measures for describing the extent of blur and noise in the

angiographic images.  The effective blur scale (EBS) and figure-to-noise ratio (FNR) were intended to quantify
the degradations in perceptual units.  They are reasonable guesses about how to measure those quantities that were
based on the zoom invariance of the visual system that has been established to be a good approximation.  It is of
course possible that either or both the EBS or FNR measures used here are not appropriate or entirely valid.  For
example, both measures incorporated only stenotic width.  The actual stenosis estimation task involved the
judgment of two widths, the stenotic width and a normal width.  That normal width probably ought to enter into
the formulas for both measures.  On the other hand, observers could have made the normal judgment at any
position(s) along the vessel that were more or less noisy, so it is unclear how the extent of noise at the normal
width should be characterized.  Also, there is psychophysical  evidence (Section 3.2) as well as data from these
experiments (Figure 7.11) that suggest that the human visual system is not perfectly zoom invariant.  It may be the
case that the experimental results that do describe the form of the zoom invariance relationship should be used
instead of just a figural width estimate alone in the EBS and FNR formulas.  Lastly, the effective stenosis width is
something slightly greater than the zero-scale width values that were specified here.  The perceptual blur imposed
by the visual system will cause some amount of widening of the vessels.  That effect is likely very small and
difficult to quantify.  Nonetheless, it is worth considering whether the experimental results from this research
might have something to say about an “effective depth” that could in turn be used in the measures of EBS, FNR,
and even relative error.   All these considerations only adds emphasis to the fact that the perceptual measures of
blur and noise used here may not tell the entire story.

There is however good evidence that the EBS and FNR parameters were perhaps a better means of
characterizing the effects of blur and noise than were the original parameters.  Human accuracy data is plotted
below as a function of the three Gaussian spatial widths (σ) that were used to blur the experiment images (Figure
7.46).  Similarly, the same data is plotted as a function of the original noise parameter  (Figure 7.47).  The three
values for the original noise parameter are the maximum intensities to which the experiment images were scaled
prior to addition of Poisson noise (see Section 4.3.4 and 6.1).

In both the noise and blur cases, accuracy at any single setting appears to worsen as the depth parameter
increases.  Accuracy at the 25 percent depth condition in particular appears to be well segregated from the
accuracy at the other two depths.  Furthermore, the range of accuracies at any blur or noise level is fairly broad.  If
“noise 200,” for instance, were a good characterization of some amount of noise, one would expect similar
accuracy at all the conditions that were described by that level.  Instead, the accuracies segregate by width.
Finally, the linear fits through the data from the 27 conditions that are shown as a function of original blur and
noise parameters in Figure 7.48 show that in an overall sense those parameters just barely capture the intended
effect of variation in errors.  Noise and blur relationships like those in Figures 7.5 and 7.6 seem more appropriate.
Relative errors changed more and in a roughly linear fashion when the EBS or FNR parameters were varied.

The desired blur or noise characterization has the property that it has a linear relationship to performance:
equal increments in estimation accuracy are the result of equal increments (or decrements) in the perceptual
descriptor.  The perfect definitions for the parameters in the angiography experiment would cause measured
accuracy to form a hyperplane as a function of the three parameters.  It would be difficult to depict this four-
dimensional data set, and it is unlikely that the EBS and FNR parameters or the experimental data form such a
perfect relationship anyway.  However, it does appear from the previous argument that EBS and FNR were a
reasonable step toward developing an appropriate measure.
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Figure 7.46.  Human stenosis estimation errors as a function of the three Gaussian blur
scales that were used to simulate the blur of the acquisition system in the experiment images.
The three stenosis depths are also labeled according to the legend.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

[human est(%sten) - truth(%sten)] / (100-(%sten))

R
E

LA
T

IV
E

 E
R

R
O

R

0.4

NOISE (intensity maximum)
200 350

DEPTH 25%

DEPTH 50%

DEPTH 75%

500

Figure 7.47.  Human stenosis estimation errors as a function of the three intensity
maxima used in scaling the experiment images prior to the addition of Poisson noise.  The three
stenosis depths are also labeled.
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Figure 7.48.  Human stenosis estimation errors as a function of the original blur (left)
and noise (right) levels that were used to generate the experiment images.  Linear fits are shown
through all 27 experiment errors.

These questions beg a simple psychophysical study that could measure figure width estimation accuracy
in the presence of blur and noise.  It is likely that the correct descriptors could be derived post-hoc from the data.



88

Furthermore, if the core model truly is representative of the manner in which humans represent figures, then the
way that the perceptual effects of blur and noise ought to be quantified is by describing their effects on
medialness.  As mentioned in the previous section, there may be ways to characterize the amplitude and curvature
of a figure’s medialness distribution such that it is those measures that best represent the impact of the blur and
noise relevant to a particular figure.

7.6.5  Portal Imaging Experiment Overview
The model performance for the portal imaging distance estimation task was both quite good and sensible.

The model performed with a maximum relative error over all nine conditions of 0.176.  Furthermore, the trends in
the model results seem to make sense in the perspective of the proposed purpose of SHAHE.  That is, it appeared
that an increase in the gain parameter to the unsharp masking preprocess was necessary to counteract the decrease
in accuracy that came about for the higher settings of the contrast parameter.  This is entirely consistent with the
motivation for SHAHE that was put forth in Section 5.1.

While the accuracy of the model was on the order of, and in fact slightly better than, that of the humans,
the changes in human accuracy as a function of the SHAHE parameters were not sufficiently paralleled by the
variations in the model performance.  There were significant main effects and an interaction for the differences
scores as a function of both parameters.  The human results indicate that the intermediate gain setting produced
the best accuracy regardless of the contrast level.  It is possible that the gain parameter has an influence on human
perception of features or properties that are not captured under the core representation.

The portal imaging experiment did not possess so many of the design and analysis difficulties as did the
angiography experiment.  However there were more problems with the human performance of the task.  The
observers by their own admission had trouble performing the distance estimation task with the measuring tool.
And while there was no intra-observer variability estimate, the inter-observer standard deviations that are plotted
for that data indicate that the observers were at least performing the task differently.  One useful addition might
have been some sort of rough markers, brackets at the top of the image for instance, to indicate the general
position of the edges to be used.  Furthermore, a simple experiment, akin to the plain vessel angiography
experiment, could be carried to measure the baseline variability that arose from using the measuring tool.  Stimuli
like lines and bars, that would eliminate any uncertainty as to how to locate the edges involved in the estimate,
could be judged with the measuring tool.  In this way, the variability that potentially resulted from the use of the
wrong anatomical edges could be estimated to be the variability beyond that attributed to the performance of the
task with the measuring tool.

The comparison of the model and human distance estimates with the rough designation of truth allowed
several important conclusions.  First, best human performance occurred for the lowest contrast setting and
intermediate level of gain.  This suggests that the optimal application of SHAHE is as a “mild” enhancement.
Accuracy for unenhanced images was not measured in this experiment, but experiments by others have shown that
some amount of SHAHE processing is beneficial.  But apparently the increase in edge artifacts and noise that
accompanies the increase in the contrast parameter did negatively affect human accuracy at least for the task,
images, and parameter values used in this experiment.  This observation is helpful but not surprising feedback for
SHAHE users.  The next paragraph discusses further the use of unenhanced images in this study.  Second, as
evidenced by the error bars in Figures 7.42 and 7.43, interobserver variability for this difficult distance estimation
task was quite high.  It appears that each of the observers was performing the task differently.  That is not to say
that each observer was not internally consistent or was not influenced in a predictable and consistent way by the
experimental conditions.  It is difficult to know whether some observers were using the wrong edges in their
decisions.  Everything short of having a preceptor standing over the observer who would verify every decision,
which in itself might have been susceptible to bias, was done to ensure that observers utilized the intended edges
for the task.  Finally, the truth determinations allow the conclusion that the model results are in general only
slightly more accurate than those of the human.  Thus it cannot be said that somehow large disparities in overall
accuracy are the source of particular discrepancies.

It might have been useful, for the purposes of the evaluation of the SHAHE processing technique, to
include unprocessed images in the experiment.  It would have been interesting to know whether human (and
model) accuracy for the task was significantly better at any of the SHAHE settings than for the unprocessed
images.  However, the unprocessed images were difficult for untrained readers to interpret:  the edges involved in
the task were often nearly impossible to locate because of the poor contrast.  The human observers used in this
experiment might have unreliably localized the edges in these more difficult images.  Interestingly, the computed
means of determining the true distance in the unprocessed images, which utilized essentially the same analysis
methods as does the core model, rarely had difficulty in landing upon the correct edges.

7.6.6  Computational Modifications
There are multiple opportunities for modifying the core model implementations for potentially enhanced

predictability with respect to the human task estimates.  There were decisions that were made in this research for
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several stages of the model computations:  a medialness operator and ridge tracking mechanism were chosen, and
protocols were developed for producing an estimate from the core.

A number of medialness kernels might have been chosen for this research.  The Laplacian of a Gaussian
medialness kernel was chosen for the angiography study because of its demonstrated robustness in the presence of
the blur and noise degradations that were present in that experiment.  The Laplacian kernel has a large region of
integration at its center that, for a simple uniform figure like a blood vessel, has a way of averaging out the noise
and tracking powerfully that figure middle.  However there are several reasons why this Laplacian operator might
not be as likely to be a mechanism utilized by the human visual system.  First, in order to represent figures that
may have distracters intervening between the figure boundaries or shading variations across the figure, the visual
system probably links boundary information to figure middles.  That is, the range of interaction at the figure
boundary, while increasing with figural width, is still a fraction of that width.  It is unlikely that a perceptual
operator, like the Laplacian, with such a significant component at its center could be the mechanism for
representing those kinds of figures.  Second, it is physiologically implausible that the many synaptic connections
that would be needed to carry out the measurements that the Laplacian represents would exist in the visual system.
Instead, the visual system is likely to utilize a rather limited number of boundariness cells whose linkage is
established and strengthened by excitatory feedback.  It is the medialness kernels that mimic the linkage of a few
important, prominent boundary locations at a proportional distance from the kernel center that are most plausible.
So there is opportunity for research into justifying particular medialness kernels and in turn using them for the
angiography task in this research.

According to these arguments, the medialness kernel used in the portal imaging experiment seems very
sensible.  That kernel represents a linkage of only two special boundariness locations that are along the horizontal.
The idea is that the knowledge of the task would induce excitatory feedback to the boundariness receptors at the
needed, known positions.  The problem in devising that kernel is to know how to choose the proportionality
constant that specifies the relationship between figure half-width and boundariness scale.  For these experiments,
that value (8) was chosen so that the core calculations were computationally robust.  For the typical treatment field
clearance distances in question, that proportionality constant resulted in boundariness scales that did not key on
minute structures but was able with good precision to locate the edges of interest.  It appears from the data as
though the model was able to locate the edges too well.  Model performance in all of the SHAHE parameter
conditions was more accurate than that for humans.  For that distance computation to produce more predictable
estimates, it will be necessary to set that proportionality constant as dictated by whatever psychophysical evidence
can be brought to bear.

The particular ridge extraction technique used in this work was at the time of the research the most stable
and efficient method available.  It was most likely to produce from the underlying medialness data set a
continuous core that met the criteria for extracting the task estimates.  Under the most degraded noise and blur
conditions in the angiography experiment, however, core finding and tracking was more likely to fail.  Preparation
for the experiments included a scheme for producing a set of images for which the core calculations were entirely
successful.  Many background/vessel combinations were thrown away before a complete set of images was
generated.  The core calculations that were tested against the human results were thus from a non-random subset
of all the images that might have been used.  The correspondence between the model and the human was poorest
in the highest blur and noise conditions.  Yet this may not be a legitimate conclusion regarding the model when
the results were computed in conditions where the model normally had trouble computing an estimate.

Ridge following ceases (or can not be initiated) when the magnitude of the noise and blur causes the
medialness to take on a distribution where the conditions for the ridge definition are not met.  Blurring of objects
makes the resulting medialness less sharp, or “flattened,” by an amount proportional to the scale of the blurring.
In that case, the eigenvalues that are the basis for the ridge decisions may become zero.  The ridge criteria are
evaluated with respect to directions of maximally negative second derivatives;  where the derivative is locally
zero, the ridges do not exist or ridge tracking must terminate.  Noise introduces into the medialness quasi-periodic
perturbations whose magnitudes are related to the severity of the noise.  Cores may result that can pass nearby in
scale space to the core of interest.  While generically it is known that cores do not branch, with a finite numerical
representation the eigensystem solving may encounter the conditions for a branch when these “confusing” ridges
are nearby.

There are numerous computational advances that have been proposed for improving core stability in the
presence of blur and noise.  Several of these improvements aim to make core construction operate more like the
visual system, which is based on neural excitations and inhibitions.  In particular, Morse, in his dissertation,2 has
proposed a set of feedback mechanisms that allow the cooperation of medialness and ridge formation.  First, a
credit attribution scheme allows iterative refinement of medialness by strengthening the connections between
boundary receptors and hypothesized medialness cells for those medialness cells which were highly activated after

2B.S. Morse, "Computation of Object Cores from Grey-Level Images,” Ph.D.  dissertation,  (University of North
Carolina-Chapel Hill, 1994).
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a previous iteration.  This process alone serves to refine or sharpen the medialness to in turn improve the success
of subsequent ridge tracking.  Second, the presence of ridges that are found can feedback to medialness formation.
Inhibition along the ridge in the cross-ridge directions can in effect sharpen the medialness in the region of the
ridge.  Excitation of the medialness in scale space positions tangent to the ridge at its terminus can allow ridges
separated by smaller gaps of weaker, flatter medialness to be connected up.

Eberly has recently proposed improvements to the “flow” process whereby ridges are found and tracked.3

Ridges are zeros of the combined function (P2 + M σ
2 )

2 .    P
2 =

r

v • D f  is the derivative in the direction of

maximal second derivative, and M σ  is the derivative in the scale dimension.  A path from the initial guess to a
point on the ridge can be determined by gradient descent or conjugate gradient methods.  Convergence is not
guaranteed for these methods, and they require eigensystem solutions that are susceptible to numerical error.
Eberly is developing a bisection method that bounds the root that is the ridge and should consistently locate a
ridge from the initial guess.  Often the core computation failures in the presence of blur and noise were the result
of failures to even initiate core traversal with the initial guess.

There is little evidence for how information might be extracted and combined within or along subsections
of a single core to perform specialized judgments like stenosis or gap object estimation.  The protocols for the
extraction of the pertinent information from the core were grounded primarily in common sense.  There are many
adjustments to these protocols that could be made.  The angiography estimation consisted of several arbitrary
decisions about, for example, sliding window width and where to position the sliding window.  The distance
estimation used a simple mean in an arbitrarily sized window along the core.  These aspects of the adaptation of
the core model are perhaps the weakest components of the model computations of these tasks.

7.6.7  Final Remarks
This initial investigation has shown the two implementations of the core model that were studied in this

research to not be tightly correlated with the human estimates.  Particularly for the angiography conditions, it will
be important in the future to establish a testable behavior for the model.  It will no longer be useful to simply
generate results for the model and test whether they are predictive of human data.  Research into the core model
and whatever implementation of it are used to perform these tasks must advance to the point where the model can
be shown to exhibit predictable, understandable trends in accuracy or variability as a function of these physical
properties.  It is only then that a test of the model makes sense.  Furthermore, for stenosis estimation, model
performance of the task must first and foremost be made to parallel the human results for plain vessels before the
model has any hope of being useful in sorting out the effects of noise and blur on that task.  So until the model
demonstrates a sensible behavior, research must be invested in tuning it to have one.  It plainly was the case in the
portal imaging study that an explainable behavior was exhibited by the model.  Unfortunately, those results were
perhaps more believable (or at least understandable) than the human results.  But in that case the research can take
a different direction; efforts can henceforth be invested in understanding the human behavior and the nature of the
discrepancies between the two.

The implementations of the core model that were adopted or invented for the purpose of carrying out the
specific tasks in this research must be distinguished from the core model itself.  The core model posits a set of
mechanisms for the representation of a single figure.  That construction is performed in a manner that is thought to
be consistent with the operation of the human visual system, and some of the manifestations of these principles
have been verified in psychophysical experiments.  However, this discussion has mentioned how the choice of a
medialness operator was probably not optimal for predicting human performance.  The ridge computations are
implementation decisions that are not specified by the core model itself, yet they must be robust and accurate if
the medialness maximum that is the core is to be determined consistently in the presence of potential variations in
physical characteristics of the image.  Again, the extraction of information from the core for the performance is
independent of the core model predictions.  The result is that the insufficient predictability of many of these
experimental results says little about the efficacy of the core model theory.  There are a multitude of modifications
that could be made based on this promising visual model that could be used in future studies of this image quality
approach.

3D. Eberly, personal communication.


