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ABSTRACT

Believing that figural zoom invariance and the cross-figural boundary linking implied by medial loci a
important aspects of object shape, we present the mathematics of and algorithms for the extraction
medial loci directly from image intensities. The medial loci called cores are defined as generalized
maxima in scale space of a form of medial information that is invariant to translation, rotation, and in
particular, zoom. These loci are very insensitive to image disturbances, in strong contrast to previot
available medial loci, as demonstrated in a companion paper. Core-related geometric properties anc
image object representations are laid out which, together with the aforementioned insensitivities, allc

the core to be used effectively for a variety of image analysis objectives.



SYMBOLS

o, p, 8 Greek letter, standing for a scalar variable. Italic. Roman (italic) letters, upper case or
lower case, may also be used for variables.

B

X
T

Roman or Greek letter with arrow over it, standing for a vector variable. Italic.

¢, &, E} I’iJ'-‘, Rik Variable subscripted, superscripted, or both. The variable may be upper

lower case and Greek or Roman (italic), but the subscripts and
superscripts will be one or more digits or lower case Roman (italic

Pe or By Variable with subscript with comma in it, with the comma possibly not preceded by any

symbol, indicating a differentiated tensor

Obiur variable subscripted with a word

U AC(Gi,GJ-), Ug §(9 el j) Upper-case letter with upper-case subscript, subscripted subscript

61 Vector (or matrix) with superscript t, indicating transpose

[ Script upper case letter, indicating operator

T Bold upper case letter, indicating set

f(x) letter followed by parenthesized expression, indicating function

6(9) letter with arrow over it followed by parenthesized variable(s), standing for vector

function

M(x, y,a), K( ?(;a) letter followed by list of parenthesized variables (scalar or vector) separated by

commas, with possibly one comma replaced by a semicolon

In(f), cos'l(e) Specific functions named by multiple letters and possibly a superscript, here the
natural logarithm and the inverse cosine

p(®), de(V) Probability function of the set upper-case theta, determinant of the matrix

upper-case V

0, 0 - Mathematical symbols for "for all", "is an element of", and "approaches"

., g ~, x Mathematical symbols for dot product (filled dot), composition (open dot), and is a
neighbor of, all centered vertically on the line, and for times operation
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SYMBOL S continued

go", oOf Mathematical symbols for the set of reals, normally superscripted by "n", a digit, or "+".
The mathematical symbol is sometimes written aR amith its vertical bar

doubled.
2
[+ Mathematical symbol for integral with range of integration indicated by symbols below
o o
integral symbol and as well optionally above it
n
>, Y Mathematical symbol for sumation (upper case Greek sigma) with range of summation
i=1 ilc
indicated by symbols below summation symbol (of form "variable = expression
or variable is an element of expression) as well optionally above it (singl
variable or digit)
[ Nabla (upside-down upper-case delta), indicating gradient
D, DX Upper case D, possibly superscripted by a digit or variable, indicating differentiation
[32fij Expression beginning with a D with a circumflex over it, possibly superscripted and
followed by the operand of the differentiation, indicating scale space
differentiation
|X| Function or variable surrounded by vertical bars, indicating magnitude

X _ . . .
— Fraction, where vertical setting is desired

oxif oyt

0 Yt o Radical symbol, covering an expression, indicating square root
\ o g
<(§,> Angle brackets surrounding a vector or scalar random variable, indicating expected va
dszs[él] Function d (subscripted by ss and superscripted by 2) with an argument in square
brackets, here indicating the squared scale space length of the operand
vakrs oS, i~ j Word (abbreviation of variance)with complex suscript



1 INTRODUCTION

Characterization of object shape is useful in describing objects in images or modeling objects as pat
segmentation or other image analysis objectives. Two types of relationships between boundary poin
have been suggested as capturing aspects of object shape: the local boundary relations of slope an
curvature and cross-figural relations captured by a medial locus (see Figs. 1.1 and 1.2). In this pape
focus on a means of defining and extracting medial loci directly from image intensities in a way
insensitive to intensity noise, blurring, or boundary details. Beginning from the long-standing
characterization of the shape of an image object as everything that is invariant to rotation, translatior
and zoom and to luminance properties of the object interior, we develop in this paper a zoom invaria
medial locus that exhibits the desired extractability from image intensities in a way insensitive to ima
disturbances. The insensitivity is verified experimentally and discussed at length in a companion pag
entitledZoom-invariant vision of figural shape: effects on cores of image disturbdB&ésThis

introduction makes this approach more precise.

Like many before us, we see an object as being a directed graph of primitive regions thafigiegesll
[3, 43], such as the whole object and individual protrusions and indentations (see Fig. 1.1 for an
example), and we see shape as having three aspects:
1) Figural shape: the shape of the individual figures, derived from cross-figural linking, or
equivalently, the medial locus;
2) Interfigural shape: the size, position, and orientation of a figure relative to its parent figure in tr
graph; and
3) Boundary shape: the local shape and texture of the boundary locus, relative to the information
predicted by the figural description.
This paper derives mathematically a medial representation of figural shaperg¢hEhe loci in scale
space that form these cores have mathematical properties much different from other medial loci but
retain the powerful abilities to extract the many aspects of shape provided by an analysis in which
medial and boundary extraction are coupled [43]. As a result of the sensitivity to shape at the scale ¢
figure and insensitivity to image disturbances, certain image analysis techniques based on cores are

effective.



teardrop

/

indentation protrusion

Fig. 1.1. Some of the figures making up this object are the teardrop and its two children in the graph
representation shown: the protrusion on the teardrop's right and the indentation on its left. The boun
texture of being smooth in some regions and undulating in others is included in the boundary shape.

Fig. 1.2. Boundary point linking via a skeletal middle

The rest of this section clarifies the definitions and assumptions determining the core and the algorit
for its extraction from images. First we must clarify the definition of invariance that we are using. We

define the invariance of a measuremédntapplied everywhere on a manifdil to a familyT of
transformationd to meanthat [T OT)(OX CM)[M(X)T = TM(X). 1)



Second we clarify the definition of a medial locus with the required invariances. Following [1, 2], we

understand the representation of figural shape to be the locus of middle and widthrpeinlisking

two pointsﬁ, i=1,2 at opposite sides of a figure such that efiald'jehaves like an object boundary with

normals, G, i.e.,ﬁ = m+ rﬁ, i=1,2, where thel} are unit vectors. What is new is that we restrict the

measurements allowed in determining the medial locus to functions of locadind radiusr that are
direct functions of image intensities and are larger the more the positibehaves like a medial point
with respect to a radial width. In addition, we insist that the measurements are translation (shift)
invariant. Also, for now we will restrict the primitive image measurements to those that are linear in t

intensity values (though we will relax this requirement later). Thus they must involve convolution wit
some set of kernekﬂ(f() or equivalently computation of the measurementatising a set of

I%

weighting functionsw(xO - §<) . In addition, we will require the operations to be rotation invariant. This

requirement implies that(i) must be rotationally symmetric.

What is the implication of the further requirement, central to figural shapen#aal |ocus extraction
must beinvariant not only to rotation and trandation but also to zoom? Any weighting function
L
w(Xo
width, a,,, of w: o2 = [|x*W(X)/ [w(X. We will characterize image operations not only by their
an an

I

x) can be characterized as having an aperture sizeaty defined as the root mean squared

location of applicatiorx, but also their scale,,. It should be intuitively obvious that zoom invariance
requires that as one zooms into the scene the aperture must be proportionately zoomed, i.e., its sca
must be magnified. Proving this fact, however, involves quite some subtlety, which we will not

reproduce here. The detailed analysis can be found in [23].

This requirement of scale proportionality with zoom leads to considering the kernels in famitigs vs.

That is, the kernel should be a function not only of offsat but also of scale,,. Moreover, zoom

invariance requires that the medial widthmust increase proportionately with zoom, so functions of

width r can equivalently be thought of as functionsxf.



As discussed in section 2, the theoretical studies of scale space imply that linear combinations of
appropriately scale-normalized derivatives of Gaussians centered at a point satisfy the translation,
rotation, and zoom requirements that we have set if the gcafehe Gaussians increases
proportionately with the zoom. Thus we will produce medial measurements that are translation, rotal
and zoom invariant if they are produced from kerr€{, o) that are linear combinations of scale-
normalized derivatives of Gaussians with saalevith the linear combinations satisfying a rotational
symmetry such that the radius of rotation is proportionaf td hus,ox o Or. Section 2 will derive

some particular linear combinations of Gaussian derivatives that do the job.

Given a set of measuremen(x, o) [or equivalentlyM(x,r)] produced using kernel&(x, o), we
need to choose the medial locus by virtue of M being locally high theemalogy to extracting
boundaries as a generalized maximum, or ridge, of a graded measurement of a position behaving
likeaboundary (cf., for example, Canny's approach [1987] to boundary extractaur)approach is
to extract our medial locus by a generalized maximum of the graded measurement M of a
(position, width) combination behaving as medial. We will call the graded measurememedialness
and will write it as a functioM from scene position and scal® : 0" x O — 0. The space

0" xO" capturing all positions and scales is caiedle space The generalized maximum will take
the form of a directional maximum in a subset of the directions of the space in which the medial

measurement is made [13; 22].

Section 2 covers means of producing a scale space of medialness that satisfies the specified invari:
In section 3 we derive scale space operators that generalize previous definitions of ridges of image
functions [24] in a way so as to retain the invariances, and by using these operators on the scale sp:
medial information to extract cores. The geometry of this scale space and the mathematical properti
cores are then derived. After a brief summary in section 4 of the companion paper on the insensitivit
cores to image disturbances, section 5 derives core-related geometric properties and image object
representations that have been shown useful for object-related image analysis operations such as

registration, recognition, segmentation, and shape measurement.



2 MEDIAL THEORY
2.1 Requirement of Scale
We need to make more mathematically precise the concegptaletindscale space as they apply to
figural shape. We make the assumptions given by [31], namely that not only do the three invarianci
discussed in section 1 hold but also that linearity properties hold and also that
a) the scale space has the properties that intensity maxima must decrease with scale (maximum
suppression) and that
b) for all Acg > 0 the image information at scate+ Ao can be derived from that at by an
operation of the same form as that deriving the information at scélem that at the inner scale
(semigroup property).
Lindeberg shows that a consequence is that increasing scale corresponds to running the diffusion
equation with 't = 0?12, ie., building our medialness functions out of Gaussians of scaled their

derivatives.

We have seen that zoom invariance leads to a medialness operator in which the radius is proportion
the scale of the Gaussians on which it its built. Let0 be the constant of proportionality between the
aperture sizer and the figure's radial width, i.e., o = pr. To avoid the need to specify an arbitrary
origin for the magnification, the scale-to-width relationship is more appropriately quantified in terms
how changes in radial widthgr, are related to changes in scate, The relationship is concisely

do = pdr. (2)

Denote the input intensities kyx). For simplicity we assume that the input is defined foxalld".

A vision system produces multiscale daf,o) for (x,0) 00" x[0,,04],whered, called the inner
scale, is the minimum scale consistent with the image production process,aadled the outer scale,
is the largest scale consistent with the image size. The furctaam be described generally by the

operator equation
L(%,0) = OI(X), (x0) 00" x[0q.04).
L(%,00) = 1(X),

3)



where the operatarl is determined by additional requirements imposed on the vision system, such as

that it measures medialness.

As stated above, the requirements of semigroup, maximum suppression, linearity, and invariance wi

respect to translations, rotations, and zoom imply that scale space is generated by linear diffusion. V
written in terms ofo rather than the more commd)r(t =02/ 2) and when the relation between scale

and space given by the factor is reflected, the diffusion equation becomes
o 1 r
— == (0o0L),(x,0) 00" x|{gy,04],
S = 50" (001),(.0) 00" x[0.0)

L(X,00) = 1(X).

(4)

In terms of the physical model for the heat equatmis the density function and is the conductance

function.

The diffusion procesgeneratesthe multiscale data. The figural vision system also must interpret this
data in a geometric way in order to construct the representations that later stages of processing will
Geometric interpretation requires imposing a metric on scale space. To obtain the desired invarianc
note that a measuregatial differenceis meaningful only relative to the scale at which it is measured.
Similarly, when making multiscale measurements, a measuede differencels meaningful only in the
context of the scales at which it is measured. These properties, which follow from zoom invariance,

suggest specifying differential forms as the measurement tools. As a Euclidean space the 1-forms L

for 0" x[0,09] are dx, 1< i< n, anddo. However, to retain the desired invariances, the

. . dx . do
dimensionless 1-forms to be used for scale space measuremenﬁ,arsl <n,and—. The
o o

geometry of scale space is determined by the metric involving these forms:
4@ = dx= dx

o2 0202

(5)

In order to compare spatial differencés and scale differencesdo, we need to use the proportionality
constant, p , between width and scale. The inclusiorpah the metric makes the "units" afx and

do/p the same and allows us to combine space and scale so that geometric information can be

10



properly interpreted. We will see in section 3 and the associated appendix that scale space with me

(5) has a non-Euclidean geometry.

The metric and the diffusion process are intimately Iinkea\/l(lﬁ,a) represents the real-valued

measurement of interest in scale space, then chandésaire measured as

M, 0 aMdx, oMdo
dM = —d +—d0’
b 27 a0 o0 po

The natural derivatives to take in scale space are therefdé dx;, 1<i<n, andpodM/do. These

quantities are dimensionless. Now the diffusion can be vieww%g— L =(o0) (o0)L, where the
o

left-hand side is a single application of the scale space derivative with respect to scale and the right-
side is a repeated application of the scale space spatial gradient. We will show in section 3 how

measurements of figures, such as figure width, are based on the scale space differentiation.

2.2 Boundariness and M edialness

Our own vision system appears to recognize a figure in an image by locating and pairing opposing
boundaries of the figure [3, 4, 29]. The boundaries are usually noticeable because of sharp contrasi
luminance at those locations, but the contrast may be in some other property, as well. Sharp contre
related to locally large directional derivatives in luminance. However, the pairing of opposing
boundaries is a multilocal task which requires the full power of multiscale analysis and scale space.
well accepted starting point for human or computer vision is that the vision system makes a measure
boundarinesst each positionx, scaleo, and orientationi. Denote this function a(x,o,u).

Specific choices foB might depend on the system and the task; a simple one measuring luminance
change is B(x,0,U) = ue 00l X0)  (6)

for bright (dark) figures on a dark (bright) background, &%,o, ) = |Ue of] L(%g0)| (7)

for figures where the foreground/background intensity ratios vary through 1 as the figure boundary i<
traversed. More complicated and more effective boundariness measurements involve the strengthe
of a simply measured boundariness according to its agreement in direction or curvature to continue

of the boundary [51].

11



The multilocal task of pairing opposing boundary points (cafledlutes) requires matching points
whose boundariness in a putative boundary normal direction meet at a common distance at a putati
central location of the figure (Fig. 1.2). Consistent with extracting boundaries via a graded measure
boundariness, we propose that the vision system makes a measiediaihesst each positioX and
scaleo by accumulating boundariness values at locations whose common distanceifraiistance

r =o/ p in a way producing a function invariant to translation, rotation, and zoom.

There are many functiond/(x, o), that satisfy the invariance requirements for medialness and for son
class of image objects provide a local measure that increases with behaving like a medial point and
width. Each function is suitable for a particular class of images or image objects. In addition to
commuting with the operations of rotation and translation of an image, the medialness functions mus
zoom invariant. It can be shown that these invariances hold if

a) M(X,0) is based on normalized Gaussian derivatives of interts‘ftlgb,kL, where

L(X,0) = G(Xx0)DOI(X) andG(X o) is a Gaussian with zero mean and variamégand
b) the set of locations at which derivatives contributiX,o) are offset fromx by vectors that

scale witho, and are positioned in a rotationally invariant fashion relative.to

We classify each medialness function in two ways. First, the function is egthieal or offset A

central function is one for whictM(X,o) is measured using only low order, spatial derivative
information of L(X,0) at the putative spatial cent&rat scaleg. An offset function is one for which
M(X,0) is measured by querying neighbors at some finite spatial distance from thexpatiscaleo .
Central medialness functions have the property that they attempt to localize object boundaries by
averaging spatial information about over some region whose average radius is proportional to

Such functions are desirable when the objects of interest contain uncorrelated, small scale noise. T
functions are not as effective when the object interior contains correlated, large scale noise (in this
category we include image objects interior to the object of interest). On the other hand, offset
medialness functions attempt to localize object boundaries by accumulating information of a relative

small scaleg, at neighbors which are at a distance proportional foom the test pointx.
12



Fig. 2.1 Binary sawtooth object

Second, medialness functions are classifidthaar or adaptive In each cas®/(X,0) is computed by
some weighting of information from the original imaf) in a neighborhood ofx whose size is
proportional to the scaleg. In the linear case the neighborhood weights are necessarily radially
symmetric to satisfy the rotational invariance and are data-independent. Thus, a linear medialness
function can be computed as a linear convolution of some k&feb) with 1(xX). In the adaptive

case the neighborhood weights are data-dependent, with properties such as the orientation or exten
the weights depending on the image data in the neighborhood. The next subsections illustrate the ic
with specific medialness functions for two spatial dimensions. Fig. 2.1 is a binary sawtooth object

whose medialness is computed using the specific functions.

2.2.1. Central Linear Medialness
An example of a central linear medialness function is the linear convolution

M(x,y,0)= K(x y,0)0I(x y), where the kernel is the normalized Laplacian of a Gaus&éx y,0):
2 R ~ o

2 5 e 2 ,whereR:\/(g)2 +(g)2. Fig. 2.2 shows a rendered
o

K(x Y,0)==0%(Gx + Gpy) = -

graph of the kernel and medialness of a binary object at small, medium, and large scale. This media
is extensively used in [16, 17] for extracting anatomic objects with nonparallel sides, approximately
uniform interiors, edges of fixed contrast polarity, and possibly low signal to noise ratio in portal

radiographs, CT scans, MR images, and other medical images.

* Throughout this paper a subscript on a function indicates a derivative with respect to the subscripte
variable or in the subscripted direction. Double subscripts indicate second derivatives, etc.

13
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Fig. 2.2. Upper left: linear, central medialness kernel. Upper right: medialness of sawtooth object &

r=4 pixels, in a 128 x 128 image. Lower left: medialness of sawtooth object at r=8. Lower right:
medialness of sawtooth object at r=16.

2.2.2 Offset Linear Medialness
An example of an offset linear medialness function is the linear convolution

M(x,y,0) = K(x y,0)1(x Yy), where the kernel acts as an integrator of directional Gaussian derivativ
around a circle with center (x,y) and whose radius r is proportional to scale. Define the oriented

. 0s .
boundariness measuremed(t, y,0,0) = —ou(@)e Ll L( X Y0 ), Whereﬁ(e) = E;in(g)ﬁ The medialness

2
is defined by M(x,y,0)= [ B((x )+ rf(@),o,@)cﬂ, wherer = o/ p for some constanp. Therefore,
0

the kernel is defined byK(x, y,0) = azﬁ—iﬁ(e)- OQ(x Y+ 6).0)| .
0

Fig. 2.3 shows a rendered graph of the kernel and medialness of a binary object at small, medium, &
large scale. This medialness has been analyzed in detail in [35, 36,37,38]. Because the kernel is nei

zero in the central region but is sensitive to boundary pairs at all angles with the same contrast polai

14



both edges, this kernel has been found effective for analyzing general medical image objects that he
variety of shapes, significant internal intensity structure, and a fixed polarity of contrast around the

object. The cortex of the brain in CT head images is an example.

Fig. 2.3. Upper left: linear, offset medialness kernel. Upper right: medialness of sawtooth object at |
Lower left: medialness of sawtooth object at r=8. Lower right: medialness of sawtooth object at r=1¢

2.2.3 Central Adaptive Medialness

We now relax the linearity requirement. This allows the choice of medialness operators that respond
only to involute pairs and are selective to the image properties at the involutes, while retaining the
required invariances. For example, the orientation of the operator can be adjusted to respond most
sensitively to the orientation of parallel boundaries, or to respond most sensitively to the the inter-
boundary angulation (i.e., the what Blum called the object angle) at the involutes. Or its elongation (
be adjusted to respond to the elongation of the gap between the figure of interest and the a neighbo
figure. Or the operator can be set to respond optimally to the polarity of intensity change at the

boundaries.

An example of a local adaptive medialness functioMgx, y,0) = -0 Lis = ~g2p D?Lp=-0?,

15



where D°L is the 2x2 matrix of second-order spatial derivatives of L and vvbétefg: /\6, andA is

the largest magnitude eigenvalue®?L . At a single location the neighborhood weights, thought of as

kernel, areK(x, y;0) = -0? G (% yo), but the kernel is oriented in the direction of vegior Fig. 2.4

shows a rendered graph of the kernel and medialness of a binary object at small, medium, and large

scale.

Fig. 2.4. Upper left: adaptive, central medialness kernel; the maximum response over all orientation
this kernel is chosen. Upper right: medialness of sawtooth object at r=4. Lower left: medialness of
sawtooth object at r=8. Lower right: medialness of sawtooth object at r=16.

This medialness is analyzed in [16, 20]. It is particularly effective for objects with parallel sides and
uniform interior intensity, such as a blood vessel (see Fig. 3.1.2). It is less sensitive to intensity

variations along the object axis than the linear, central medialness shown in Fig. 2.2.

2.2.4 Offset Adaptive Medialness

An example of an offset adapative medialness function is

M(x,y,0)=-0u(@)* DG(x Y+ ru),0)+ouf)* U Q( x y- 1@)0),

16



where the anglé is selected to maximize the right-hand side over all possible angles. At a single

location the neighborhood weights, thought of as a kernel, are

K(x y,0)=-0G (x+ r,y0)+0G(x= r yo), butthe kernel is oriented in the direction of the vector
u(8). Fig. 2.5 shows a rendered graph of the kernel and the medialness of a binary object at small,
medium, and large scale. This kernel is the sum of two boundariness operators, each with a scale

proportional to the medial radius.

Fig. 2.5. Upper left: adaptive, offset medialness kernel; the maximum response over all orientations
this kernel is chosen. Upper right: medialness of sawtooth object at r=4. Lower left: medialness of
sawtooth object at r=8. Lower right: medialness of sawtooth object at r=16.

This medialness is especially effective for objects with parallel edges but with internal structures of s
significant compared to the object of interest. It is less sensitive to intensity variations along the obje
axis than the linear, offset medialness shown in Fig. 2.3. It was studied in [44] to help measure stenc

in arteries which are imaged under various noisy or blurry conditions.

Another example of offset adaptive medialness made by summing two boundariness results adapts
only the medial orientation but also the object angle. Such a medialness operator, discussed in [43]

17



particularly closely matches the Blum definition of the medial axis given earlier in the paper. It is not
discussed further here because the results with this operator have not been fully demonstrated. A ve
on this operator, due to McAuliffe [1996], optimizes the elongation of the medialness weighting

function at each involute to avoid too much effect from neighboring objects.

Another example of an offset adaptive medialness function is obtained by integrating the absolute v:

of boundariness around the circle of radiu85, 38]:

M(X,y,0) = zﬁ B((x y)+ ru@),c0)|®.
0

In the linear case the kernel is designed to detect bright objects on a dark background. This nonline
function is useful if an object's intensity near the boundary is in some locations brighter than the

background and in some places darker than the background.

3 CORES
In this section we define the core as a generalized maximum, i.e., ridge, of medialness,. We argue tl
for the core based on such an invariant medialness to itself be invariant, the generalized maximum

operator must itself satisfy these invariances. We then give the mathematics for producing such ridg

Medialness collects bilocal information about linkable boundariness into a local measure of the degr
which a point in scale space behaves like a figural middle at a width that is a fixed multiple of the sc
We desire a medial locus, which we catlaae, made from centrally located positions and a scale and
based on medialness. Such a locus is a track at which medialness is locally large compared to near!
locations and scales. At such a point the medialness should decrease as you move towards the inv
and as scale increases or decreases. That is, it is a generalized local maxiM(Jimjf, generalized

so that the relative maximum need only be taken in a subset of the directions forming the space (hel
scale space). In other directions at such a point, e.g., in a direction tangent to the medial locus, the
medialness need not be locally maximal. Local maxima of a function with respect to a restricted nur
of directions have been calledges[24, 9]. The mentioned works involve the study of ridge definitions

in Euclidean space. However, to attain the desired invariances of cores, the definition of ridge used |

18



must be invariant to rotation, translation, and zoom. Also, we need extensions of the definitions to sc
space with its imposed metric (eq. 5). That is, the derivatives involved in finding the generalized
maxima must be those that reflect the desired invariances. This will first require a description of the

geometry of scale space that is very mathematical and thus is given in the appendix.

We believe it is necessary to lay out this mathematics in detail because the results are generally
applicable to problems of locus definition in scale space and because the success of using medialne
ridges to obtain medial loci in scale space depends on doing the mathematics correctly. Crowley et i
[1984] inspired our effort with their idea of using ridges in scale space for this purpose, but they
achieved limited success because the definitions of medialness and ridge they used failed to have tt

necessary invariances and also their ridge definition had other mathematical weaknesses.

3.1 Ridges of Medialness
To produce a-dimensional core manifold from a medialness function in a scale space of dimension
n+1, we must choose the subsetiofr 1- d directions in which medialness is locally maximal (has a
zero first directional derivative and a negative second directional derivative). The choice of these
directions, which determines our definition of ridge, must be invariant to rotation, translation, and zoc
Two options that we have proposed is that the two directions are
1) the two orthogonal directions of greatest convexity of medialness, leadingntaxiraum
convexity ridge[24, 9];
2) the direction of pure scale change and the direction of greatest convexity of the projection of
medialness at the optimal scale onto position, leading to the so-gptlethl scale ridge [15,

1993; Pizer, 1994a].

3.1.1 The Maximum Convexity Ridge in Scale Space
The maximum convexity ridge definition is based on finding local maxima of functlr(é% where the

domain is restricted to the span of the maximum convexity subset of eigenvectors of the second-

derivative (Hessian) matrix. This definition applies also fan the scale spacé = f,a, where we use
19



covariant derivatives rather than partial derivatives. The formal tensor products in the definition are
manipulated so that scale space derivatives occur. This is essential for the numerical implementatic

core construction. The mathematical details are given in section A.6 of the appendix.

For 2D images the scale space is three-dimensional, and the core is a curve (1-manifold [8]) in scale
space. Thus there are two maximum convexity directions in which the medialness must be a maximi
For 3D images the scale space is four-dimensional, and the core is most commonly a 2-manifold in :
space. For objects with a nearly circular cross-section, a core which is a 1-manifold forming a skelet
of the tube also makes sense [22]. For the core that is a 2-manifold there are two maximum convexi
directions in which the medialness must be a maximum, and for the core that is a 1-manifold there a

three such directions.

3.1.2 Optimal scale ridge

Instead of choosing the vectorsandv; in which f must be maximum as the directions of greatest
convexity of f, in the case wheré is medialness we may choogeas(0,0,...,0,], the unit vector in
the o direction. At each spatial locatioh call thoseo for which f;(x,0) =0 and f,,(X,0) <0
optimal scalesit X. Generally these optimal scales are a continuous funci(oij. For any of these
optimal scale manifolds, we wish to chooéeas the spatial direction of greatest convexity of the
projection of f at optimal scale. That i§x,0) is on an optimal scale ridge dfif f,(X,0)=0,

f,0(X0)<0, ] (x,0) =0, and f\;ﬁ;(i,a) <0, where V} is the maximum convexity eigenvector of

the scale space HessianMfrestricted to the image space wihfixed at its optimum scale value (in
the terms of the appendikh; =0 andvbh; v} <0, wherevh = (V\) ,0), h(x) = f(xo(X), andwj is the

eigenvector with the most negative eigenvalué)%lﬁ). The optimal scale ridge can be shown to be

equivalent to the maximum convexity ridge Wilhand viz the solutions of the generalized eigenvector

L L . . 0 . . .
equationAo(X,0) = ABo( % o) with A= the scale-space Hessian aB& % OE with the identity

matrix of size equal to the number of spatial dimensions.
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Our experience is that the maximum convexity ridge and the optimal scale ridge produce qualitativel

similar results.

3.2 Core Extraction from 2D I mages

Let f’ijuj =ay, fj vl = Bv, and f;; wl = y, wherea < B<y. Consistent with maximum convexity

ridges, we will assume that the eigenvectors form an orthonormal system whose derivatives satisfy

uJi.D 00 0 aEﬂ]J'

o oV E— BO 0 b EID’ Efor some choice of continuous tensarsandb;. Define P = u fi,

WiH Ha -b OfwE

Q= v f,,andR= w fi. Core points satisff =0, Q=0, anda < 3<0.

All of the techniques for core extraction begin from an approximate core point in scale space and flo
(see Appendix A.7.1) or search for a nearby point on the ridge. There are four techniques that we he
used to follow the core locus from such a starting point:
1) Integrating the differential equatidd=0, Q =0 (see Appendix A.7.2).
2) Extending the ridge in the direction and finding the root & =0, Q =0 in the plane of the
maximum convexity eigenvectors at the extended point (see Appendix A.7.3 and [13]).
2a) Extending the ridge in the direction and minimizingDMt(DzM - yi)DM in the plane of the
maximum convexity eigenvectors at the extended point (see Appendix A.7.4 and [13]).
3) Sampling the local scale space in a Cartesian fashion and applying zero-trapping techniques
combined with convexity constraints, resulting a marching ridges approach [22] that is compare

to the well-known marching cubes approach [32].

The relative strengths of these methods are as follows:
1) Following the ridge direction explicitly increases the chance that the ridge will not be lost.
2) Avoiding the solution of the differential equation lowers the required order of differentiation by ot
and allows much larger steps, considerably speeding the process. Methods 1 and 2 are in mos

common use in our laboratory.
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2a) This method avoids having to decide whether a Hessian eigenvector or its negative is the
continuous extension of the that eigenvector used at the previous step.

3) This method is speedier than the others because it allows larger steps and requires second
derivatives of P and Q only at points that satisfy the zero test. It also generalizes nicely to

following higher dimensional ridges in higher dimensional ridges.

3.3 Core Extraction Examples

Figs. 3.1 shows a number of examples of cores extracted from objects in 2D test images or medica
images. The medial axes (the projections of the cores onto image space) are shown as tracks on the
images, and the core widths are indicated by darkening or brightening the region formed by the unio
disks at each core point with each disk having the radius given by the core point at which it is center

These cores were extracted on various workstations in a period of just under a second to 3 seconds

The results shown in Figs. 3.1 all use method 1 described in section 3.2 to find optimal scale ridges.
medialness function used for the test object and the MRI brain slice was obtained via the linear, cen
medialness kernel described in section 2.3.1. The medialness function used for the blood vessels ar

portal image was obtained via the adaptive, central medialness kernel described in section 2.3.3.

3.4 2D-from-3D Core Extraction

The aforementioned theory generalizes to intensity functions HfThis produces a 4-dimensional
scale spaceD3 x 07, in which normally cores are 2D manifolds. Each point on this manifold gives a
medial position between two opposing boundary faces as well as a radius (scale) of the fuzzy tangel

sphere.
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A A
Fig. 3.1: Original images and selected cores (light grey or black) and width envelopes (dark grey or

white): Gun-shaped test object, MRI head, artery tree in angiogram, bones in portal radiograph.
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We call thes@D-from-3D coresbecause they are 2D manifolds extracted from 3D images (via a 4D
scale space). The underlying mathematics is given in section A.8 of the appendix. An algorithm for z
from 3D core extraction with an approach similar to the marching cubes algorithm [32] is reported in

separate paper [22].

4 INSENSITIVITIESTO IMAGE DISTURBANCES
Images and their content typically suffer from various forms of disturbance, the results of variations i
the imaging process, e.g., blur, which produce different images of the same scene when imaged
different modalities, devices, or settings;
random variables in the imaging process, e.g., intensity noise, which produce different images o
same scene even with the same device and settings; or
the image content, which produce different images of scenes that are identical except for small o
deformations or changes in boundary texture, or possibly the addition of protrusions or

indentations.

Each of these disturbances may be thought of as having an associated spatial scale, i.e., spatial
magnitude of the disturbance. Image blur clearly has a spatial extent. Greater levels of noise have ¢
larger spatial influence when low-pass filtered to a fixed mean amplitude. And minor variations

between objects may often be described as indentations or protrusions of varying size.

The companion paper entitl@@dom-invariant vision of figural shape: effects on cores of image
disturbances[39] presents mathematics and Monte Carlo experiments that indicate that the effect of
disturbance on cores is determined by the scale of the disturbance relative to the scale of the core.
Disturbances that are much smaller than the scale(s) used to make measurements in the image hav
effect, while those comparable to the core scale have significant effect. The reason for this behavior
that the core is extracted from medialness that uses an aperture whose size is proportional to the fig
width there. Measurements using this aperture strongly damp variations in intensity at contrasts

comparable to or less than that of the figure and at scales distinctly smaller than that of the aperture
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It is the stability of cores against small scale disturbances, together with the way in which medial loc

capture figural shape, that leads to its usefulness in image analysis.

Spatial integration of information using an aperture is what allows cores to capture certain relationsh
much more easily than in other approaches that begin with boundaries measured with a single fixed
(usually small) aperture. Consider the example shown in Fig. 4.1. Hierarchical approaches to shape
representation that begin with an initial fixed-scale contour [27, 40, 45] perform an initial separation ¢
the figure into interior and exterior, and separately represent-éaei can't realize that the notch is a

piece missing from the interior instead of a part of the exterior. They represent this shape as two

touching rectangles (admittedly, a valid interpretation in some settings) instead of a rectangle with a
notch cut out from it. As shown, cores are able to represent both the notch and the overall properties

the object without the notch (the rectangle).

Fig 4.1. The spatial projections of cores of a notched rectangle.

5 CORE-BASED IMAGE ANALYSIS

The invariances of the core and its insensitivities to image disturbances make it a good basis for or ¢
various image analysis tasks, including figural shape description and shape change measurement,
segmentation, recognition, and registration. Each of these are described briefly in the following

paragraphs.

In segmentation the core leads to an approximate object boundary that aids in methods, such as
deformable contours, which require a good initial boundary estimate [33, 43]. It also allows the

identification of protrusions and subfigures that necessarily begin near this approximate boundary [2
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Also, simultaneous extraction of an object's core and boundary using a model that reflects all of figu

interfigural, and boundary shape can stabilize a deformable contour method [48, 49, 50, 43].

Registration methods involving fiducials are based on either matching corresponding fiducial loci in ¢
target image and a reference image or optimizing an integrated image property on the target image
fiducial extracted from a reference image [18, 19]. Cores provide a fiducial locus that is insensitive tc
image disturbances. When the core is chosen as a fiducial, the locus matching requires the measure
of distance between loci in scale space, and the property optimization approach involves the
measurement of medialness in the target image on the geometrically transformed locus from the

reference image.

Recognition involves measuring how the loci and spatial relations representing shape accord with th
of a model. Cores are useful in in characterizing the figural shape in a model and in extracting a moc
from training images. Shape change measurement and the measurements of shape variability that f
useful part of a model benefit from involving the figural shape measures locally extractable from a

sampled core.

Using cores for these tasks requires core-based measurements, loci, and models. In particular, it is
for the distance between cores and core-based image coordinates to satisfy the conceptual basis of
that all distances are relative to object width (core scale). A core-based approximation of the figural
boundary, called thboundary at the scale of the cqi2ASOC), is useful to link medial information

with boundary and subfigure information. And segmentation and recognition benefits from a means
representing a) structured collections of figures to form object models and b) all aspects of the shap:
variations of an object from a model or within a family of scenes or images. The computer vision
methods based on these ideas and the performance of these methods are reported in separate pap:
mathematics of the necessary core-based measurements, loci, and models are covered in the follow

sections.

5.1 Distance in Scale Space
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The principle of zoom invariance of objects implies that both spatial distances and scale changes mi

measured relative to object width. This is the relation stated by equation 5. From this relation geode:

distances in scale space can be determined. The result is that the distance (pgtmgeand (%,, o)

C

e‘ 2
1+.1-(ao
N ( ) C, whered = p‘x2 - xl‘ (Euclidean norm) and

is given by— InDU—
1 —ad+1+ 1 (a0y)

2d
J(Glz _022)2 + dz[dz + 2(012 + 022)] .

a=

One use for this distance is in core-based registration methods, where the distance between two coi
that are supposed to match can be measured as the integral of interpoint distances between the cor
However, registration in real images requires that these distances be normalized by their variability

under the imaging and scene disturbances.

5.2 The Boundary at the Scale of the Core, and Multifigure Objects

The core specifies a medial locus in spatial coordinates, a locus that we calietimeiddle The core

also specifies the radius of a fuzzy n-sphere at each point of the medial locus. If the sphere is made
and the envelope of these spheres is taken, the result is a locus welualintiery at the scale of the
core and abbreviate as tBASOC The core is the Blum medial manifold of the BASOC, so the core is
isomorphic to the BASOC. The BASOC gives, at the scale of the core, an approximation to the

boundary of the figure represented by the core.

As illustrated in Fig. 5.1, the normal to the BASQLCBASOC raymeets the core middle at an angle

given by cos‘lé\%ﬁ— 0051% Efor a 2D image. For a 3D image the normal to the BASOC meets

the core middle surface at angjes’1B;|Da|E in the directionCo /|Jo], where the gradient is taken

with respect to motion in the core middle surface.
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Fig. 5.1. Relation between core middle and BASOC. The coordinate y measures arc length along th
core middle.

By this means each point on the core is associated with one (for core endpoints) or two (the normal
continuous regions of boundarit.has been proven that cores cannot generically branch [8], so

generically no core point corresponds to more than two boundary regions.

A full object is typically represented by a collection of cores, one for the main figure and others for
subfigures, sub-subfigures, etc. These subfigures can be either protrusions or indentations. The BA
can be generalized for a collection of figure and subfigure cores by taking the boundary of the envel
of union of the interiors of the BASOCs of the main core and protrusion figures and taking the set

subtraction of the union of the interiors of the BASOCs of the indentation figures.

Fritsch [1995b] has shown how subfigure cores can be extracted by using as new stimulation points
maxima of medialness as a function of scale and BASOC arc length. Each subfigure core is taken a
child of the core whose BASOC stimulates it. In general, the resulting structure is a directed acyclic

graph (see Fig. 5.2 for an example).

McAuliffe [1996] has shown that the BASOC forms an effective starting point for an active contours
boundary refinement. Thus core-based segmentation involves first core extraction, then BASOC

computation, and finally active contour refinement (see Fig. 5.3).
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Fig. 5.2. DAG of brain ventricle computed automatically from single stimulation at center of ventricle
the image in Fig. 5.3.

Fig. 5.3. Cores, BASOC, and evolved boundary of brain ventricle in MR image

Each BASOC point is associated with a single ray from a single core point, defined in Fig 5.1. Actua
object boundary points are usefully thought of as being associated with a nearby BASOC point [42].
practice, continuing the ray from the core middle of the narrowest figure defining the BASOC locally,

its intersection with the boundary is used to associate boundary points with BASOC and core points.

5.3 Core-Based Gibbs Object M odels
The recognition of image objects involves starting from a set of training images and using the shape
information of an object of interest in these training images to extract the corresponding objectinar

image. The core, in combination with a related boundary representation, provides a powerful means
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representing the statistics of object shape from the training images [48, 49, 50, 43] and for extracting

object in this training phase. Medialness is a useful measure in the recognition and segmentation pl

In this approach, the shape of an object is taken to be characterized by the three aspects of shape li
early in this paper:

1) figural shape, each given by a connected, unbranching medial locus;

2) interfigural shape, given for a protrusion or indentation subfigure by the positional, angular, an
size relation of its medial locus endpoint near the parent BASOC and a medial locus point in 1
parent core;

3) boundary shape, given by each point on the object boundary relative both to adjacent bounda
points and to the medial point with which it is associated.

Wilson has shown how all of these can be captured by a Markov random field, with each site being ¢
point on a medial locus or a boundary point and the random variables at each site being the location
scale space of the corresponding point (see Fig. 5.4). Corresponding to the three aspects of shape,
types of neighbor relations, or links, are established:

1) The relation between a medial point and an adjacent medial point on the same figure's medial
locus. The scale space vector between the locations of these neighbors characterizes the loc
figural shape.

2) The relation between a medial point of one figure and the proximal endpoint of its subfigure's
medial locus. The scale space vector between the locations of these neighbors, and the angls
the first link from the subfigure endpoint relative to the links from the parent figure medial poir
characterize the position, width, and orientation of the proximal end of the protrusion or
indentation relative to the parent figure there.

3) The relation between a medial point and either of the two corresponding boundary points alon
the associated BASOC rays. The difference between the width in the medial point and the le
of the image space vector between the locations of these neighbors characterizes the the le\
detail or texture of the boundary there.

3) The relation between a medial endpoint and the corresponding boundary vertex. The scale sp

vector between the locations of these neighbors characterizes the local shape of the boundar
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the vertex relative to the core. The importance of vertices in shape characterization in human
vision has been emphasized by Hoffman [1984] and by Leyton [1992].
4) The relation between adjacent boundary points. This is the relation commonly used in deformz

contours methods in computer vision.

—— Boundary pt to boundary pt
=== Medial pt to medial pt

Medial pt to boundary pt
3Figure to subfigure

@Medial pt
@Boundary pt

Fig 5.4. Sites and scale space vectors whose statistics define a brain ventricle. [Courtesy of Liyun'

The approach to recognition described by Wilson [1995a,b,c] and by Pizer [1996]is Bayesian, with tf
prior containing the statistics on the relations just listed as derived from the family of training images
Wilson and Johnson have shown how a Gibbs distribution can be used for this prior, with potentials
measuring the variance-normalized scale space squared distance between the vector between neig

and the vector between the corresponding means for the families :

logp(@)=logZ- 5 U(6, -6, 6 4 -6 .9)

i~
where® is the set of sitei&) is the corresponding set of sites in the model, Z is a normalizing
constant, eachd, represents a site; represents the neighbor relationship, - represents a difference ir

image space or scale space, as appropriate, and the potentials U measure the scale space differenc

between the interneighbor lirfk — 6; and the corresponding link in the model relative to the standard

deviation of this link in the training set. In the case of interfigural links, the scale space difference is
relative to properties at the parent site. Cores are used to extract the medial loci used in the training

stage.
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[43] discusses how recognizing and segmenting an object in a new image, as well as object -based
registration of a pair of images, can be done by optimizing the posterior of linked medial and bounc
loci. The log likelihood function used in this deformable loci expresses the likelihood of the image as
sum of the medialness at the medial points C, boundariness at the boundary points B, and vertexne:

the vertex points V:

logp(l |©)= kciDzCM(ei) + kBigBB(Hi% wi%wei)-

Such posterior optimization has produced a stable, automatic recognition and segmentation in early
on ventricles in MR images [43]. The power of this variant of a deformable contours technique [e.g.,
47, 6, 46, 34] is that medial loci's ability to capture figural shape and the stability of medialness agait
image disturbances, causes a stabilization of the localization of the boundary, relative to methods th
are purely boundary based, while retaining the advantages of previous methods in the boundary bei
measured at small scale when the image information supports that. It also provides a means of

identifying where and how much the resulting boundary deviates from the model shape.

The result of all the image analysis methods discussed in this section, as applied to medical images

covered in [17, 18, 19, 20, 21] and [43].

SUMMARY

We have argued that the invariance requirements commonly associated with the concept of shape, 1
use of a medial approach to figural shape description, and a recognition that measurement aperture
is an essential aspect of image analysis lead to the core as the representation of figural shape. After
giving the mathematics associated with the definition and extraction of cores, we sketched why and
the core is stable against smaller-scale image disturbances. We then sketched ways in which cores
proving to be useful for image analysis tasks, and we gave mathematics relevant to core-based ima

analysis.
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APPENDIX: THE GEOMETRY OF SCALE SPACE AND CORES

Let scale space be denoted BY x O with typical element denoted kfy: (%,0). For indexing

purposes, we havé = x for 1<i<n and{,; =0.

A.1Tensor Notation

Tensor calculus is used throughout. Indices are used both for denoting the components of a tensor
(scalar, vector, matrix, etc.) and for denoting derivatives with respect to independent vdyiables
Subscripted indices are used for covariant components and superscripted indices are used for
contravariant components. If a tensor quantity contains covariant derivatives of indexed quantities, :

comma is used to separate the subscripted indices from derivatives. For examges dero-order

tensor (depending o), thenT; is the first-order covariant tensor whose components are the
derivatives of T with respect ta;. The covariant derivative of the first-order covariant tetgiois the
second-order covariant tensdy;. The covariant derivative of the first-order contravariant tenSas

denoted\/,ij .

The Einstein summation convention will be used. If an index occurs twice in a term, once as a subs
and once as a superscript, it indicates a summation over the repeated index. Occurrence of an inde

more than two times in a term is not allowed, and contraction of two subscripted indices or of two

superscripted indices is not allowed. For example; ifs a second-order covariant tensor ahds a

first-order contravariant tensor, then= g; bl is a first-order covariant tensor obtained by summing

over thej index.

A.2 Metric Tensor
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The metric (eq. 5) can be written in tensor forndas= G &' whereg is called themetric tensor
It is a diagonal matrix whose first n diagonal entrieslde’ and whose last diagonal entrwj,é(pa)z.

In contrast, the metric tensor for standard Euclidean spage=s); , the Kronecker delta which is 1 if
both indices are equal, but O otherwise. The inverse metric tensor is den@bduhnjr has the property
gikg"j = 5ij The metric can be used to raise or lower indices through contractian.islfa covariant
tensor andJ' is its contravariant counterpart, they are relatedibydj Y (raising an index) and

U =g u (lowering an index).

A.3 Christoffel Symbols
The analysis involves tensor quantities which need to be differentiated. In general, the partial derive

of a tensor is not necessarily a tensor. Tensor differentiation requires the use of some nontensorial

ledg” ﬁg” _dgij

r
. Letg OO™?! denote then+1) x 1
Ha‘x oX. 0><|E & gn+1)

objects called Christoffel symboIEi}‘

unit length vector whose components are all 0 except foﬁfthmmponent which is 1. For the scale
Q<Eh+1+ ¢|+1é 1< ke n E =

space metric, define the matifiX = [r ] then X = or
aﬂan+1en+1 p ZI l@é ST
1r 3-p? 00
example, ifn=1, = andr2=-1 —0 P Og and ifn=2,
o H E ogo 17
0 0 10 Go? 0 ol
Flz—lg) 0 Ogr2 g) 0 15r3=- 1DO -p? 05 Eachr® is a symmetric matrix.
o
A 0 oF @) 1 og Ho 0 1

A.4 Riemann Tensor and Curvature

The implication of using the scale space metric is that the geometry is Riemannian. The Riemann te

of the second kind is defined lch}ld o"x
k

- =X i, -k, . The Riemann curvature relative

RJk|U|\)l§V
q]k|UVJd(V

to the metricg; is defined for each pair of contravariant vectorandVv' as K(E u, v)
where Ry = gm Iﬁ‘ﬁ andGjy =g g — § & - It can be shown that the only nonzero independent

components areR;; =-p 2/g%andG:;: =1/0%, for 1<i <j <n +1. The other components are either

ijij

0 or are determined by the values of the terms mentioned above. Consequently, the Riemann curve
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of the space is identically a constarit,= —p?>. When p =1, this particular Riemannian geometry is

calledhyperbolic geometrgnd has been studied extensively in the differential geometry literature.

A.5 Covariant and Scale Space Derivatives
Covariant differentiation provides the generalization of partial differentiation to scale space. The

covariant derivative of a tensor is itself a tensor. The scale space derivatives we define are

dimensionless quantities but turn out not to be tensors. Define the non-tensorial gyatttibe the
square-root of the metric tensgy. The firstn diagonal entries o&; arel/o, and the last diagonal
entry is1/(po). Similarly, define the non-tensorial quantay to be the inverse of;. Thus,

Oj = &i&; g’ =a'd, and a9 = akiakj =9

j » where the summation convention is used despite the

terms not being tensors. The idea is that the metric can be written symbolically as
ds® = g & o :( & Gfi)( ) dj), where the summation convention is still used. The teyu’ are

the natural dimensionless 1-forms used for scale space measurements.

Let f(E) be a smooth real-valued function. The calculation of cores will require third-order derivative

The first covariant derivative of is given by f;. The total derivative of is
df = f;d& = f ' g :(éi f)( & ij), so the dimensionlessale space first derivativeare

defined by [3fi =ak f;,which is not a tensor. The covariant derivativef pis given by

of -
fij = 5—5'] - Fi}‘ f, where the Christoffel symbols were defined earlier. The dimensisdaksspace

second derivativesre defined byD?f; = a*al f;, which is not a tensor. The covariant derivative of

ij’

fik = d_flf‘ - fii = Fj'k f,, and the dimensionlessale space third derivativeare defined by

D3fy =a'd"™ & f,,, which is not a tensor.

Define A;; to be the matrix whose diagonal values are the ordered eigenvaltiessay

A Az <...< A, and whose off-diagonal values are zero. \L;ebe the matrix whose columns are the
covariant eigenvectors df; . The contravariant eigenvectors are obtained by raising an index,

v} = dk V- Additionally assume that the selected eigenvectors form an orthonormal system with res

to the metric. That isvkiv}‘ =9;. The eigensystems are collectively representecﬂ,ijh& = v,|/\'k.
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A.6 Maximum Convexity Ridges of M edialness
We define the maximum convexity ridge of dimensionl since that provides the—1-dimensional
core manifold that is appropriate for general object§lih The definition is easily restated for a ridge

of arbitrary dimensiord by modifying the number of dimensions in which derivative constraints must

hold from 2 ton+1- d. Define the directional derivativeg = v} fiforl<j<n+1 Then-
dimensional core points are those ridge points of medialr(ei‘ss,), for which f has a local maximum
when restricted to the 2-dimensional geodesic surface whose tanggnts)aire the first two
eigenvectorsd andvb [12]. This is equivalent to finding those poirfis o) such thath (% o) = 0;
P,(%0) =0, A (X,0) < A,(%,0) <0. We are solving 2 equations in+1 variables, so we generally

expect the solutions to lie on —1-dimensional manifolds.

The testsR, = 0 and B, = 0 implicitly assume the continuity of eigenvectafsand b, which is true
when A; and A, are distinct eigenvalues, but may not hold otherwise. This problem can be

circumvented, but the details are very technical and tedious, so are not presented here [11]. The ba

idea is to restrict our attention to regions for whigh < A5 to avoid eigenvector swaps between the first
2 eigenspaces and the last 1 eigenspaces. The eigenvecto}scan be replaced by smoothly varying
orthonormal eigenvectorsi; for which (1) the span af andu} is equal to the span o andv, and

(2) the span oﬂg throughuﬁwl is equal to the span oyg throughvﬁwl. Moreover, the vectors can be
chosen so that (1) the derivativm%:fk for j =1,2 are linear combinations of thﬁ; for3<j<n+1land

(2) the derivatives oﬁ} k for 3<j<n+1are linear combinations of thfi; for j =1,2. Defining

Q= u} f;, the testsh =0 and P, =0 can be replaced b, =0 andQ, = 0. Core calculation requires

computing derivatives of th®;. These derivatives are used for initially locating a core point and

traversing the core by following tangents to the core. In[11] it is shown that the direction of continuc
flow to the ridge can be calculated using only the eigenvalues and eigenvectors, despite the

discontinuities that occur in the eigenvectors. It is also shown that continuous tangent vectors can b
calculated using only the eigenvalues and eigenvectors. The discontinuity of eigenvectors is capturt

a single coefficient in the tangent vector equations. This coefficient is the determinant of the matrix
[v']] and is either 1 or -1. In the numerical calculations it is necessary to keep track of the determina

36



and adjust the computed tangent vectors in the event the determinant is -1. In light of this result, in 1

next sections we will treat the eigenvectu}sas if they have the properties assigned to the smujoth

to simplify the development.

A.7 Flow toand AlongaCore

Differentiating P and Q yields Pe=ufu+ufi=ay+ Ry, Q=Vi+ \ f=pu+ Rb

The tensorsa, andby, are determined by the eigensystemiarDifferentiate this eigensystem to obtain
f,]wk + f”kw Wi+ W. Substitute forw =-g u - b v, W ; =—a 4 - b v to obtain

(a-y)u iak +(B-y)ylx = fijk w -y, w. Contracting withu' andV', then solving fora, andh, yields

ay = a—y fUwW, f= 7 fix v W. Substituting back into the gradients frandQ yields

Py =auy,+

R R
y WUW, Qe =Py + A= v w.

Our core extraction algorithms all consist of finding an approximation in scale space to a core point,
moving to the ridge of medialness that is the core, and then traversing the core. These formulas will

used both in finding an initial core point and in determining the core direction.

A.7.1 Finding a Core Point from an Approximation

Given an approximatiorﬁb = ()LQ,GU) to a core point, finding the core point involves solving the
equationP(u) = 0, Q'U) = 0 subject to the constraing (U) < A,(U) < 0. Recall that P and Q are defined
in terms of the vectors/(ti) andv?(Ui). The numerical approach is then to take a step to a root of

P({) =0, Q1) = 0 in the space spanned k¥(li) andv?({) for the & that is the present approximation

to the core point, and then to iterate this process. We have found that the stability of a root-trapping
method is necessary, so a method based on bisection is used for this root trapping. However, a vari

other root finding methods have been tried, and some are also in use.

A.7.2 Traversing the Core by Integration of the Differential Equation
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Let U be a core point. To find successive points on the core, we can use the fact that the core is a
solution to a differential equation, or we can take a step in a direction approximately along the core ¢

then return to the core using the method described in section A.7.1.

I/ L
Let us first derive the differential equation for which the core is the solutio‘ﬁ(f)fis a tangent vector

to the core, the core can be traversed by solving a system of ordinary differential equations,

dé (1) | T |
? =+T;(&(t), &(0) =y, where two traversals are required, one in the dlreetl’b(rf) and one in

Iy L i
the direction—T(E). The problem is now to construct a closed formula for the ridge dire€tion

The core curve is the intersection of surfaces implicitly define@(d) = 0 andQ(&) =0. The curve
direction is therefore a vector which is orthogonal to both surface normals. The contravariant vector
N'=d' P, andM' =g’ Q; are surface normals, so a core direction is the cross product of the two
vectors, T; = g NI MV, whereey, is the permutation tensor defined by

€23~ €31~ €310=1, €37 €5 ez1 —1 Ootherwise. If the sign of the tangent vectors is handled

carefully, the core tangent is a continuous function despite discontinuities in the eigenvectors.

A.7.3 Traversing the Core by Approximation of Ridge Tangent and Root Finding

We have found that it frequently is more efficient and more stable to use the fact that typically the thi
eigenvector of the Hessian of medialness approximately points along the core so a step proportiona
the extracted radius at a core point (proportional to the extracted scale) produces an approximation

core point. From this approximation, the method of section A.7.1 can be applied to return to the core

A.7.4Traversing the Core by Approximation of Ridge Tangent and Use of Gradient Orthogonality

Expressing the gradient df in terms of the eigenvectors &M leads toDM = Pu+ Qv+ Rw. It
follows that(DzM - yi)DM =(a - y)Pu+(B-y)Qv. Thus the ridge point can be found as a zero of

(DZM - yi)DM , Which can be computed by minimizir[y\/lt(DzM - yi)DM and assuring that the

minimum value in magnitude is below some threshold.
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All of the methods that we have programmed for core extraction calculate medialness derivatives us
n+1-dimensional splines fit to local medialness values. Only medialness values needed for this

purpose, i.e., in the neighborhood of the core, are evaluated.

A.8 2D Maximum Convexity Ridges of Medialnessfrom 3D Images
Let fyul =ay, f;v1 =By, f;w) =yw, and f;¢' =@, wherea < B<y <3.

mij 0 o 0 a g [u]J'
Ey" B: BO 0 bj ’%/ Efor some choice of continuous tensaas, b Cj, andd Define
SN*IJB -a —q 0 OyC
2 He —d o o,k
gd,j 8 0% i ' E
= fi, Q= Y, fi, R= w fi., andS= ) f,. Core points satisffp =0, Q=0, anda < 3 <0.

Differentiating P and Q yields

Pe=ufyp+Ucfi=ay+ Ra+ Sg Q= 'vif+ v =B RB &

The tensorsy, by, ¢, andd, are determined by the eigensystemyioand ¢. Differentiate the
eigensystems to obtairiij Wi + fuW =yw o +yw, @+ fy@ =80, +8,@. Substitute for
=-au-Qv, w;=-ay-bhy ¢ =-cu-dV, andg; =—gy - d v to obtain
(a —yuac+(B-y)vhk = fwW -y w, (@-3)up+(B-3) vp= f& -,@. Contracting with
u'" andV', then solving yields
=L fudw, =t fodw, g= o, de g
ak_a_y,ijku , l?<—'B_y,ijk , Q_a—é ik, d=——F f ¥.

Substituting back into the gradients lBrand Q yields

.S
P, =ay, + pu'w o+
K Kk Jijk o —

|Jkl'I (ol Qk _:ka ﬁ y ukV WJ t o< B ;Jngd

These formulas will be used both in finding an initial core point and in determining the core tangent

spaces.

The 2-dimensional tangent space of a 2D-from-3D core is determined by the system of differential
equations defining steps in the tangent space to the core. We restrict the expressions to the maximi

convexity ridge, though the generalization is similar for the optimal scale ridge. The core surface is tl

intersection of two 3-dimensional surfaces implicitly definedrf§) = 0 andQ(€) =0. The core
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tangent space is therefore the orthogonal complemerif(inof the space spanned by the normals

N'=d P, andM' =g¢' Q;. DefineT; =de{V)g N M, wheregy, is the permutation tensor on four

symbols andV is the matrix of eigenvectors @?M so defV) = 1.

The four eigenvectors of the matrix=T; give two normals and two tangents to the core. The two

tangents correspond to the nonzero eigenvalue of multiplicity 2.
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