
Real-Time Incremental Visualization of Dynamic
Ultrasound Volumes Using Parallel BSP Trees

William F. Garrett, Henry Fuchs, Andrei State, and Mary C. Whitton

Department of Computer Science
University of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175
{garrett, fuchs, state, whitton}@cs.unc.edu

ABSTRACT

We present a method for producing real-time volume
visualizations of continuously captured, arbitrarily-oriented
2D arrays of data. Our system constructs a 3D
representation “on-the-fly” from incoming 2D ultrasound
slices. The slices are modeled as planar polygons with
translucent surface textures to take advantage of high-
performance polygon rendering on a Silicon Graphics
RealityEngine2. Parallel, time-shifted BSP trees efficiently
maintain the continuously captured geometry data and
produce polygonal fragments in back-to-front order for
transparent opacity-accumulation rendering. Although
demonstrated only with ultrasound echography, we expect
that this technique can be applied to any imaging modality
in which real-time visualization is desired as the sensor
collecting 2D data moves along an arbitrary path.

1 INTRODUCTION

Ultrasound echography is a popular imaging modality for
many medical applications including fetal examination,

needle-guided breast biopsy, and cardiology. As the
visualization target is inherently three dimensional, the user
would ideally like to see the data rendered as a volume rather
than as the series of 2D cross-sectional images provided by
most ultrasound machines. 3D ultrasound acquisition
systems are being developed but are not yet commercially
available. Even when they become available, they may not
be suitable for applications such as breast biopsy because
the apparatus may obstruct the physician’s access to the
patient’s body. 2D acquisition systems will remain the
standard for several years, so it is fruitful to investigate
rendering this class of sensor data.

Our goal is to provide the physician a volume rendering of
ultrasound data displayed in real time as she scans a patient
with a hand-held 2D probe. Example images depicting
scanning of static and changing data, acquired by imaging a
human hand inside a water tank, are in Figures 1 and 2.
The system must address three problems: arbitrary position
and orientation of the data, continuous data input stream,
and real-time operation.

First, the manual probe can be moved freely with six
degrees of freedom, so ultrasound slices are sampled with
arbitrary position and orientation. Slices may intersect (see
Figure 3), and the volume may be sampled with non-
uniform density due to variations in the speed of probe
movement across the target area and the physician’s choice
of where to scan. Amongst medical imaging modalities,
only manually-scanned ultrasound exhibits this data-
positioning difficulty. In CT and MRI, for example, the
patient is moved mechanically along a well-defined path
relative to the sensor, resulting in a fairly regular volume of
data comprised of parallel slices or slices that do not
intersect.

transducer path

transducer

breast

ultrasound
slices

Figure 3: Intersecting ultrasound slices. Lighter shading
indicates older slices.

The second problem is the real-time, continuous nature of
the source data. Clearly, displaying all the data collected in
a scanning session would lead to non-interpretable images.
The system must manage the “active set” of data by
maintaining a continually changing display list, adding new
slices and eliminating older ones. The system should also
(optionally) visually distinguish older and newer data, as the
physical volume may be changing over time during the
scanning session. In computing the volume-rendered
image, older data should be weighted less than newer data.

The third issue: for augmented reality applications the
system must run in stereo, in real time, at a minimum of
10 frames per second. The real-time constraint made us
look beyond traditional computationally intense volume
visualization methods.

In [State 1996] we described an augmented reality system
that merges ultrasound rendering with live images of the
physical environment (Plate 5). The work reported here
enabled the 3D real-time volume rendering in that system,
but was described only briefly in the paper. It is presented
here in full detail.

2 PREVIOUS WORK

Our work builds on previous research in volume rendering,

ultrasound visualization, and BSP trees. Of particular
relevance is work in using textures and texture hardware
accelerators to render volumes and using polygonal
primitives to represent ultrasound slices.

2 . 1 Volume Rendering

Volume rendering methods, like rendering methods in
general, can be divided into two categories: backward-
mapping methods (e.g.., ray casting [Tuy 1984], where the
image plane is mapped onto the data, and forward-mapping
methods (e.g., splatting [Westover 1990]) where the data
geometry is mapped to screen space. Traditionally, both
types of methods require resampling data to a regular 3D
grid, or compiling adjacency information for irregular grids.
Moreover, to render with translucency (e.g., “Levoy
rendering” [Levoy 1988] or simple opacity accumulation),
the volume must be sampled in back-to-front or front-to-
back order for proper compositing.

Modern computers are not powerful enough to resample
large datasets (2563 voxels) at interactive rates (10 Hz or
better) but many modern computers do have polygon-
rendering hardware that can draw hundreds of thousands of
textured polygons per second. Cullip and Neumann [Cullip
1994] proposed a simple method for using the texture-
rendering capabilities of a Silicon Graphics Reality Engine
for volume rendering. Stein, Becker, and Max [Stein 1994]
demonstrate how the volume rendering method of cell
projection [Shirley 1990] can be implemented with
hardware-assisted texture mapping. Cabral, Cam, and Foran
[Cabral 1994] provide some of the mathematical
foundations for generating volume-rendered images with
texture-mapping hardware.

2 . 2 Ultrasound Visualization Systems

Thune and Olstad [Thune 1991] presented a system for
capturing time-varying 3D ultrasound data using a
restricted-motion ultrasound probe and rendering images off-
line. Sakas and Walter [Sakas 1995] built a system for 3D
data, characterized by the use of a motion-controlled
ultrasound probe and superior volume reconstruction and
processing quality. This included space-filling interpolation
between ultrasound slices during volume reconstruction.
State, et. al. [State 1994] had lower volume reconstruction
quality but tracked a freely movable hand-held ultrasound
probe and also captured tracking data for a head-mounted
video camera together with matching video images. The
data was used to generate (off-line) a “movie” in which the
reconstructed volume (a fetus) could be seen within the
pregnant patient from the moving observer’s point of view,
simulating what a powerful augmented-reality visualization
might look like.

Bajura, Fuchs, and Ohbuchi [Bajura 1992] introduced the
concept of rendering ultrasound slices as polygon-like
objects in an early real-time augmented reality system. The

system displayed intersecting, opaque slices via z-buffering.
Ohbuchi, Chen, and Fuchs [Ohbuchi 1992] developed a
system that incrementally resampled and rendered (via ray
casting) ultrasound slice data. This work was improved to
near-real-time frame rates (~1Hz) with a parallel ray caster
on the Pixel-Planes 5 graphics multicomputer [State 1995].
The present work can best be described as improving on the
results of [State 1995] by using new rendering algorithms
on a different hardware platform to achieve real-time frame
rates (10-15 Hz).

2 . 3 BSP Trees

Objects defined with geometric primitives can be inserted
into a binary spatial partitioning (BSP) tree. The tree can
subsequently be traversed to produce primitives in a low-to-
high visibility ordering for any given viewpoint [Fuchs
1980]. BSP trees are best for maintaining static geometry
with a moving viewpoint; the tree can be built once and
traversed many times [Fuchs 1983]. One serious drawback
in using BSP trees in an application with a changing data
set is that while adding new objects requires only inserting
the new primitive(s) into the tree (an inexpensive
operation), removing geometry may require rebuilding the
entire tree (discussed in greater detail in 3.2). [Chrysanthou
1996] shows how the rebuilding can be avoided by
recombining subtrees resulting from geometry removal (for
the display of dynamic shadows).

3 REAL TIME VOLUMES FROM
ULTRASOUND SLICES

Our work makes two contributions: First, it demonstrates
real-time volume rendering of arbitrarily oriented slices of
data using BSP trees and texturing on a standard,
commercial high-end graphics workstation; second, it
presents a method of parallel BSP trees to manage a
dynamically changing “active set” of recent ultrasound data,
suitable for the visualization of moving or changing
structures (Figure 2 and Plate 4).

3 . 1 Direct Rendering of Textured Slices

Ultrasound echography data is captured as a live, gray scale
video image that represents a 2D “slice” of samples. With
hand-held probes, these slices have arbitrary position and
orientation relative to each other. Slices frequently intersect.
We looked to polygons and texture mapping, and the
specialized commercial hardware for rendering them, for the
rendering speed needed in our augmented reality application.

We model each ultrasound slice as a polygon with the
ultrasound video image applied to it as a texture. The
precise polygon size, shape, and position relative to the
ultrasound probe is predefined by a one-time calibration
procedure [State 94]. We track the position and orientation
of the probe with a highly accurate mechanical arm (Faro

Technologies Metrecom IND-01). The tracking
information, combined with the probe calibration data,
gives the 3D position and orientation of each polygon
representing an ultrasound slice.

Using the various texturing modes of the RealityEngine2
we can duplicate traditional volume rendering modes such as
opacity accumulation or maximum intensity projection.
We have also begun applying well-known volume rendering
techniques to improve, for instance, brightness and opacity
ramps (via the texture lookup tables provided by the
texturing system) in order to allow better discrimination of
the target in our visualization.

Rendering of the entire volume is achieved by drawing the
set of (possibly intersecting) slice polygons, one for each
ultrasound image in the active display list. For example,
proper opacity-accumulation compositing requires that
polygons must be non-intersecting and rendered in either
back-to-front or front-to-back order. We have chosen a
BSP tree algorithm to compute this ordering.

3 . 2 Managing Continuously Captured Data
with Dual BSP Trees

A BSP tree works well for a static data set viewed
repeatedly. Our goal, however, is real-time visualization of
a “time-space window” of data containing the n most
recently captured slices from a continuous data stream.
This active set of data changes every frame. One new slice
arrives and one old slice expires at each time step. While
adding the new geometry requires only inserting the new
primitive(s) into the tree, deleting a geometric primitive is
problematic.

Actually removing the geometry usually requires rebuilding
the entire tree. Expired slices can be “virtually” removed —
flagged as “invisible” and not rendered during traversal —
but such an operation doesn't reduce the number of nodes in
the tree. The constantly growing number of nodes causes
greater fragmentation of newly-inserted geometry.
Eventually the tree becomes too cumbersome and must be
rebuilt without the expired nodes. On the other hand, BSP
trees are attractive for our application since most of the
geometry in one frame is still present in the next. Our
experience shows the minimum number of slices needed to
make a volume is about 10; hence at least 90% of the tree
contents can be retained between time steps.

We balance the problem of deleting and rebuilding by
maintaining two parallel BSP trees, out of phase in time.
Consider that we want to render the n most recent slices
every frame. When we start the system, we build a single
tree and insert the first n slices into it, one per frame. At
frame n+1 , we start a new tree and insert the next n slices
into both trees. At frame 2n we have two trees: the older
tree contains 2n slices and the younger contains n. The
younger tree now has enough slices to provide all the
history we desire, so we dispose of the older tree and start a

new tree. Rendering is always done from the older tree.
Figure 4, below, illustrates how this building and rendering
process works over time.

Time
Step

Contents
Tree 1

Contents
Tree 2

Sample
Numbers

Displayed
Tree Used for

Display
1 1 - 1 1
2 1-2 - 1-2 1
3 1-3 - 1-3 1
4 1-4 - 1-4 1
5 1-5 5 2-5 1
6 1-6 5-6 3-6 1
7 1-7 5-7 4-7 1
8 1-8 5-8 5-8 1
9 9 5-9 6-9 2
10 9-10 5-10 7-10 2
11 9-11 5-11 8-11 2
12 9-12 5-12 9-12 2
13 9-13 13 10-13 1
14 9-14 13-14 11-14 1
15 9-15 13-15 12-15 1
16 9-16 13-16 13-16 1
17 17 13-17 14-17 2
.

Figure 4: Behavior of dual BSP tree with an active set of
n=4.

Figure 4 shows that 4 slices are displayed at any one time,
except for start-up in steps 1 through 3. Note that after
filling the pipe, the 4 most recent slices are displayed at
each step and the active BSP switches every fourth step, i.e.
when the tree has 8 (or 2n) entries.

It is easy to see that the value of n can be changed
interactively. If n is increased, we can simply delay
switching from one tree to the replacement tree. Decreasing
n can be accommodated by switching early.

TIME

Tree 1:

Tree 2:

2n n

Moving Window
of Displayed Slices

AAA
AAA
AAA

Figure 5: Maintaining and rendering from two BSP trees

3 . 3 Analysis of Dual BSP Trees

One of the goals of our real-time system is to have a
consistent frame rate. The computation of regular
rebuilding of the BSP tree has the potential to cause the
update rate to be uneven; this is likely to cause timing
“spikes.”

The dual-tree approach amortizes the cost of rebuilding by
flagging slices as “invisible” when they expire — so that
they are not rendered during traversal and are thus virtually
deleted — and at the same time gradually growing the
replacement tree. Once the active tree (used for rendering)
becomes too large, it is destroyed and the replacement tree
takes over the rendering assistance task. Our hypothesis is
that this scheme will result in more even computational
load per frame and lower spikes.

The premise of the dual-tree system is that performing an
insert to each of two small BSP trees is faster than
performing one insert to a large tree. [Fuchs 1980] shows
that BSP trees can have as many as O(n3) internal nodes
after n inserts. Insertion time is roughly proportional to
the number of internal nodes; in the worst case, an
incoming slice must be checked and split against each plane
in the BSP tree. Geometry data and BSP tree statistics
compiled from several ultrasound scans shows that BSP
trees grow at between O(n) and O(n2) during a typical scan,
and that the cost of insertion parallels the internal size of
the tree.

Even though the dual BSP system makes two insertions per
frame, its performance compares favorably to that of a
single-tree solution. The figures below summarize the
number of recursive calls to the BSP tree insert routine
taken per frame. In the first case (Figure 6a), n=50 (the
system displays the most recent 50 slices). In the second
case (Figure 6b), n=100 (the system displays 100 samples).
In both cases, the single-tree solution involved
incrementally building a BSP tree up to 2n samples, twice
the desired active data set size. When the tree reached that
size, it was destroyed and a new tree of size=n was built
immediately (using saved data describing the unfragmented
geometry).

Analysis of the number of recursive insert operations
required for the rebuild to size n in the single tree case
shows that (aside from data-dependent occasional spikes
probably caused by polygons causing high fragmentation) it
regularly exhibits, as expected, high spikes for the
rebuilding operation. On the other hand, the dual parallel
tree data does not exhibit spikes.

B
S

P
 T

re
e

In
se

rt
io

n
T

im
e,

 5
0

S
lic

e
W

in
do

w

0

50
0

10
00

15
00

20
00

25
00

0
50

10
0

15
0

20
0

25
0

30
0

35
0

F
ra

m
e

BSP Insert Calls

D
ua

l B
S

P

S
in

gl
e

B
S

P

Figure 6a: Number of recursive insertions per frame for
single and dual tree systems with an active set of 50 slices.

B
S

P
 T

re
e

In
se

rt
io

n
T

im
e,

 1
00

 S
lic

e
W

in
do

w

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

0
50

10
0

15
0

20
0

25
0

30
0

35
0

F
ra

m
e

BSP Insert Calls

D
ua

l B
S

P

S
in

gl
e

B
S

P

Figure 6b: Number of recursive insertions per frame for
single and dual tree systems with an active set of 100

slices.

3 . 4 Generalization to b Parallel BSP Trees

In our system we used dual BSP trees, but one could
generalize this to a system of b parallel BSP trees. With 2
trees, the larger tree holds at most 2n slices and the smaller
tree holds at most n (where n is the number of slices to be
shown at any time). Each new slice must be inserted into
two trees. An old tree is thrown out and a new one created
every n frames. Figure 8 summarizes the characteristics of
b-parallel BSP trees.

Tree 1:
Tree 2:
Tree 3:

Tree b:

TIME

nbn
b-1

AA
AA

Moving Window
of Displayed Slices

Figure 7: Rendering from and maintaining a system of b
parallel BSP trees.

#trees 2 3 4 b
max. size of

tree
2n 3n

2
4n
3

bn
b - 1

tree added every
#frames

n n
2

n
3

n
b

inserts per
frame

2 3 4 b

Figure 8: Characteristics of parallel BSP tree systems.

3 . 5 Rendering Issues

Since we are not computing a surface representation or
surface characteristics explicitly, we have a great degree of
interactive control over the rendering. We can interactively
switch rendering modes such as opacity accumulation,

maximum intensity projection, or intensity accumulation.
We can also interactively adjust lookup tables for intensity
and opacity as a function of incoming intensity of the
ultrasound image.

One of the stated goals of the project was to weight data by
age; older data are less certain because the physical volume
may have changed since they were collected, hence they
should influence the resulting image less as they age. We
built our system with an exponential age-based attenuation.
Since the image is completely re-rendered from the slice
fragments during every frame, we are able to attenuate slice
image intensities and opacities as a rendering effect. A time
stamp for each slice polygon is computed as the slice is
“emitted.” The time stamps are propagated to the slice
fragments during BSP tree insertion. During tree traversal
for rendering, the time stamps are used to compute each
fragment's age and attenuate the polygon's brightness
accordingly. The slice images themselves are not changed
(Plate 2).

4 CONCLUSIONS AND FUTURE WORK

We have presented a method and demonstrated a system for
incrementally rendering 3D ultrasound data in real time.
Polygonal slices are a recognizable, meaningful
representation of 3D structure and do not require
resampling. The resulting images are surprisingly good for
something so simple.

We uncovered several problems during the preliminary use
of this system. Slice expiration is not a simple issue.
How many slices should be displayed? How should older
data be displayed relative to newer data? Our physician
colleague disagreed with some of the approaches we thought
most sensible. Since we do not use space-filling
interpolation between ultrasound slices, the intensity and
thus the useful visual content of the rendered image varies
greatly depending on whether slices are viewed mostly face-
on or mostly edge-on. This is a fundamental problem of
the 2D primitives we render.

Image quality remains a problem. Ultrasound images tend
to be fairly noisy, exhibiting problems such as speckle and
reflection. There is much work in the literature on
improving the quality of ultrasound images via image
processing techniques. For example, Watkin, et. al.
[Watkin 1992?] explore filtering methods for both
ultrasound imagery and probe tracking. Sakas and Walter
[Sakas 1995] demonstrate a multi-pass filtering technique
for removing many ultrasound artifacts. We have just
begun to add some of these techniques to our system but are
constrained by the real-time requirement of our driving
application. Much work remains to be done in this area.

ACKNOWLEDGMENTS

Chris Tector built the preliminary system for direct texture-
based ultrasound data rendering. Mark Livingston helped

with some of the BSP tree code. We would like to thank
PIE Medical for generously providing us an ultrasound
machine. This work was supported by ARPA grant
DABT63-93-C-0048.

REFERENCES
[Akeley 1993]

Akeley, Kurt. "RealityEngine Graphics." Proceedings of
SIGGRAPH '93 (Anaheim, CA, August 1-6, 1993). In
Computer Graphics Proceedings, Annual Conference
Series, 1993, ACM SIGGRAPH, New York, 1993, pp.
109-116.

[Bajura 1992]
Bajura, Michael, Henry Fuchs, and Ryutarou Ohbuchi.
"Merging Virtual Objects with the Real World: Seeing
Ultrasound Imagery within the Patient." Proceedings of
SIGGRAPH '92 (Chicago, Illinois, July 26-31, 1992). In
Computer Graphics 26, 2 (July 1992), 203-209.

[Cabral 1994]
Cabral, B., Cam, N., and Foran, J. "Accelerated Volume
Rendering and Tomographic Reconstruction Using
Texture Mapping Hardware." Proceedings of the 1994
Symposium on Volume Visualization (Washington, DC,
October 17-18,1994), pp. 91-98.

[Chrysanthou 1996]
Chrysanthou, Yiorgos. “Shadow Computation for 3D
Interaction and Animation.” Ph.D. Thesis. University of
London (January 1996).

[Cullip 1994]
Cullip, Timothy and Ulrich Neumann. "Accelerating
Volume Reconstruction With 3D Texture Hardware." UNC
Technical Report TR93-027 (May 1994).

[Fuchs 1980]
Fuchs, Henry, Zvi Kedem, and Bruce Naylor. "On Visible
Surface Generation by a Priori Tree Structures."
Proceedings of SIGGRAPH '80 (July 1980). In Computer
Graphics 14, 3 (July 1980), 124-133.

[Fuchs 1983]
Fuchs, Henry, Gregory Abram, and Eric Grant. "Near
Real-time Shaded Display of Rigid Objects." Proceedings
of SIGGRAPH '83 (July 1983). In Computer Graphics 17,
3 (July 1983), 65-72.

[Herman 1979]
Herman, Gabor and Hsun Kao Liu. "Three-Dimensional
Display of Human Organs from Computed Tomograms."
Computer Graphics and Image Processing, 1979, 1-21.

[Lengyel 1995]
Lengyel, Jed, Donald Greenberg, and Richard Popp.
"Time-Dependent Three-Dimensional Intervascular
Ultrasound." Proceedings of SIGGRAPH 95 (Los
Angeles, CA, August 6-11, 1995). In Computer Graphics
Proceedings, Annual Conference Series, 1995, ACM
SIGGRAPH, pp. 457-464.

[Levoy 1988]
Levoy, Marc. "Display of Surfaces from Volume Data."
IEEE Computer Graphics and Applications 8, 5 (May
1988), 29-37.

[Nelson 1993]
Nelson, Thomas and Todd Elvins. “Visualization of 3D
Ultrasound Data.” IEEE Computer Graphics and
Applications (November 1993), 50-57.

[Ohbuchi 1992]

Ohbuchi, Ryutaro, David Chen, and Henry Fuchs.
“Incremental Volume Reconstruction and Rendering for
3D Ultrasound Imaging.” SPIE Vol. 1808 Visualization
in Biomedical Computing 1992, 312-323.

[Ohbuchi 1994]
Ohbuchi, Ryutarou. "Incremental Acquisition and
Visualization of 3D Ultrasound Images." Ph.D. Thesis.
UNC 1994-0362 (1994).

[Sakas 1995]
Sakas, Georgios and Stefan Walter. "Extracting Surfaces
from Fuzzy 3D-Ultrasound Data." Proceedings of
SIGGRAPH 95 (Los Angeles, CA, August 6-11, 1995). In
Computer Graphics Proceedings, Annual Conference
Series, 1995, ACM SIGGRAPH, pp. 465-474.

[Shirley 1990]
Shirley, Peter and Allan Tuchman. “A Polygonal
Approach to Direct Scalar Volume Rendering.” Computer
Graphics 24, 5 (November 1990), 63-70.

[State 1994]
State, Andrei, David Chen, Chris Tector, Andrew Brandt,
Hong Chen, Ryutarou Ohbuchi, Mike Bajura, and Henry
Fuchs. "Case Study: Observing a Volume Rendered Fetus
within a Pregnant Patient." Proceedings of IEEE
Visualization '94 (Washington, DC, October 17-21,
1994).

[State 1995]
State, Andrei, Jonathan McAllister, Ulrich Neumann,
Hong Chen, Timothy Cullip, David Chen, and Henry
Fuchs. "Interactive Volume Visualization on a
Heterogeneous Message-Passing Multicomputer."
Proceedings of the 1995 Symposium on 3D Interactive
Graphics (Monterrey, CA, April 9-12, 1995), pp. 69-74.

[State 1996]
State, Andrei, William Garrett, Gentaro Hirota, Mark
Livingston, Henry Fuchs, and Mary Whitton.
"Technologies for Augmented-Reality Systems:
Realizing Ultrasound-Guided Needle Biopsies." To
appear in Proceedings of SIGGRAPH 1996 (New Orleans,
Lousiana, August 4-9, 1996).

[Stein 1994]
Stein, Clifford M., Barry Becker, and Nelson Max.
"Sorting and Hardware Assisted Rendering for Volume
Visualization." Proceedings of 1994 Symposium on
Volume Visualization (Washington, DC, October 17-
18,1994), pp. 83-89.

[Thune 1991]
Thune, Nils and Bjørn Olstad. "Visualizing 4-D Medical
Ultrasound Data." Proceedings of Visualization 1991
(San Diego, CA, October 22-25, 1991), 210-215.

[Tuy 1984]
Tuy, Heang, and Lee Tan Tuy. "Direct 2-D Display of 3-D
Objects." IEEE Computer Graphics and Applications 4,
10 (November 1984), 29-33.

[Westover 1990]
Westover, Lee. "Footprint Evaluation for Volume
Rendering." Proceedings of SIGGRAPH '90 (August
1990). In Computer Graphics 24, 4 (1990), 367-376.

[Watkin 1962??]
Watkin, K., L. Baer, S. Mathur, R. Jones, S. Hakim, I.
Diouf, B. Nuwayhid, and S. Khalife. “Three-Dimensional
Reconstruction and Enhancement of Arbitrarily Oriented
and Positioned 2D Medical Ultrasonic Images.” McGill
University.

Plate l. UltrasuunU s<.:an of a small plastii.:
bowling pin, rendered in "opacity
accumulation'' mode. TI1e wireframe
object at the far end is a representation
of the ultrasound probe.

Plate 2. During sweeping,
progressive, age-dependent intensity

attenuation of emitted polygons depicts
decreasing confidence in older data. At the

time of this snapshot. the probe was moving
left-to-right; the polygons dme to the probe

are the most recent and appear brightest.

Plate 3. Stereogram of image in Figure 1 (see also caption for Figure I).

Plate 4. Stereogram of image in Figure 2 (see also caption for Figure 2).

Plate 5. Stereogram of head-mounted display view from augmented reality system designed to assist a physician \Vith ultrasound-guided
needle biopsy of the breast. A cyst aspiration needle has been inserted into a training phantom and is visually aligned with its scanned

image and the imaged lesion inside the red computer-generated opening within the breast.

