
 

SCAAT: Incremental Tracking 
with Incomplete Information

 

TR96-051

October 1996

 

Gregory F. Welch

 

Department of Computer Science

CB #3175, Sitterson Hall

UNC-Chapel Hill

Chapel Hill, NC 27599-3175

 

UNC is an Equal Opportunity/Affirmative Action Institution



 

SCAAT: Incremental Tracking 

with Incomplete Information

 

by

Gregory Francis Welch

 

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill

in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

 

Chapel Hill

1996

 

Approved by:

Dr. Gary Bishop, Adviser

Dr. Russell Taylor, Reader

Vernon Chi, Reader

Dr. Henry Fuchs

Dr. John Poulton

Dr. Anselmo Lastra



 

ii

© 1996
Gregory Francis Welch
ALL RIGHTS RESERVED



 

iii

 

ABSTRACT

Gregory Francis Welch

SCAAT: Incremental Tracking with Incomplete Information

(Under the direction of T. Gary Bishop)

 

The Kalman filter provides a powerful mathematical framework within which a

minimum mean-square-error estimate of a user’s position and orientation can be tracked

using a sequence of 

 

single

 

 sensor observations, as opposed to 

 

groups

 

 of observations. We

refer to this new approach as 

 

single-constraint-at-a-time 

 

or SCAAT tracking. The method

improves accuracy by properly assimilating sequential observations, filtering sensor

measurements, and by concurrently 

 

autocalibrating

 

 mechanical or electrical devices. The

method facilitates user motion prediction, multisensor data fusion, and in systems where

the observations are only available sequentially it provides estimates at a higher rate and

with lower latency than a multiple-constraint approach.

Improved accuracy is realized primarily for three reasons. First, the method avoids

mathematically treating truly sequential observations as if they were simultaneous.

Second, because each estimate is based on the observation of an individual device,

perceived error (statistically unusual estimates) can be more directly attributed to the

corresponding device. This can be used for concurrent autocalibration which can be

elegantly incorporated into the existing Kalman filter. Third, the Kalman filter inherently

addresses the effects of noisy device measurements. Beyond accuracy, the method nicely

facilitates motion prediction because the Kalman filter already incorporates a model of the

user’s dynamics, and because it provides smoothed estimates of the user state, including

potentially unmeasured elements. Finally, in systems where the observations are only

available sequentially, the method can be used to weave together information from

individual devices in a very flexible manner, producing a new estimate as soon as each

individual observation becomes available, thus facilitating multisensor data fusion and

improving the estimate rates and latencies.

The most significant aspect of this work is the introduction and exploration of the

SCAAT approach to 3D tracking for 

 

virtual environments

 

. However I also believe that this

work may prove to be of interest to the larger scientific and engineering community in

addressing a more general class of tracking and estimation problems.
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system. The units are [meters/second]. Also used as a unitless identifier for

the corresponding element of vectors or matrices. First used in

section 4.2.2 on page 75.
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ż



xxvii

Scalar position of a beacon along the  axis of the respective coordinate

system. The units are [meters]. Also used as a unitless identifier for the cor-
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page 120.

Sensor measurement or observation vector. First used in “A More Concrete
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in section 2.1.2 on page 46.
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time . First used in section 4.2.4 on page 78.
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The four-element external orientation quaternion with the elements

. First used in section 4.2.2 on page 75.

Angle between the primary axis of a beacon and the primary axis of a view-

ing camera. Units are [radians]. Used in section 6.1.6 on page 124.

The scalar magnitude component of the external orientation quaternion .
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or matrices. First used in section 4.2.2 on page 75.
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or matrices. First used in section 4.2.2 on page 75.
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or matrices. First used in section 4.2.2 on page 75.
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section 5.1.3 on page 108.

The measurement noise stability matrix. Used in section 5.1.3 on page 108.
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on page 73.
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system. Units are [radians]. Also used as a unitless identifier for the corre-
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page 75.
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system. Units are [radians]. Also used as a unitless identifier for the corre-

sponding element of vectors or matrices. First used in section 4.2.2 on

page 75.

Scalar incremental rotation about the Z axis of the respective coordinate

system. Units are [radians]. Also used as a unitless identifier for the corre-

sponding element of vectors or matrices. First used in section 4.2.2 on

page 75.

The m-dimensional measurement residual vector. First used in section 4.3.4

on page 92.

The n-dimensional difference vector between the actual unknown signal

 and an estimate of it . Used in section 5.1.5 on page 111.
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The process noise source vector. The elements are the magnitudes, i.e.

spectral densities, of zero-mean white noise sources. The units depend on

the specific context and are provided where appropriate in the text. First

used in section 4.2.1 on page 73.

Scalar angular velocity about the Y axis of the respective coordinate sys-

tem. Units are [radians/second]. Also used as a unitless identifier for the

corresponding element of vectors or matrices. First used in section 4.2.2 on

page 75.

A unitless identifier for the single lateral (  and ) translation element of

, the process noise source vector. First used in section 6.1.3 on page 121.

The autocorrelation vector for the noise sources  shown in figure 4.1

on page 74. The formal definition is given in equation (4.9) on page 77.

The units depend on the element of  of interest and can be obtained from

table 4.1 on page 74 using the relationship defined by equation (4.9).

Time-varying scalar noise signal. The units are intentionally unspecified.

Used in figure 2.1 on page 45.

The m-dimensional measurement noise vector at discrete time step . First

used in section 2.1.2 on page 46.

The -dimensional measurement noise vector at time . First used in

equation (4.10) on page 81 and defined in section 4.2.5 on page 81.

The state error vector. The units are those of the state vector and are

described in the text. First used in section 4.2.7 on page 83.

Initial uncertainty (variance) in the beacon position parameters. Units are

. First used in section 6.1.4 on page 122.
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Camera measurement uncertainty (variance). Units are . First

used in section 6.1.6 on page 124.

The standard deviation of the measurement noise for a beacon sighting

with  degrees and  meter. Units are . Used in

section 6.1.6 on page 124.

The complete simulation parameter vector for use with  constraints. First

used in section 6.2.1 on page 126, defined in section E.4 on page 197.

Device parameter vector identifier. First used in section 4.4.2 on page 100.

The estimate rate. Units are [estimates/second]. First used in section 2.2.3

on page 50.

Sensor type (general identifier). First used in section 4.2.4 on page 78.

The amount of time needed to perform one sensor measurement. Units are

[seconds]. First used in section 2.2.3 on page 50.

The amount of time needed to compute an estimate as a function of  con-

straints. Units are [seconds]. First used in section 2.2.3 on page 50.

The estimate latency, i.e. the total amount of time needed to collect con-

straints and to compute an estimate. Units are [seconds]. First used in

section 2.2.3 on page 50.

Scalar angular velocity about the X axis of the respective coordinate sys-

tem. Units are [radians/second]. Also used as a unitless identifier for the

corresponding element of vectors or matrices. First used in section 4.2.2 on

page 75.
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The Jacobian matrix of partial derivatives of f(•) with respect to . Used

in appendix B.

A single constraint. First used in “A Single Constraint” on page 37.

Scalar angular velocity about the Z axis of the respective coordinate sys-

tem. Units are [radians/second]. Also used as a unitless identifier for the

corresponding element of vectors or matrices. First used in section 4.2.2 on

page 75.

The correlation kernel for the random for the random process vector ,

where  is the time correlation interval: .

(See [Maybeck70, p. 137].) First used in section 4.2.1 on page 73. The

units depend on the element of  of interest and are described in table 4.1

on page 74.

The spectral density of the random process vector , where  is the com-

plex frequency. This is the Fourier transform of the correlation kernel

: . (See [Maybeck70, p. 140].) First used

in section 4.2.1 on page 73. The units depend on the element of  of inter-

est and are described in table 4.1 on page 74. 

The maximum target motion bandwidth in . First used in

“Sufficient Constraints” on page 109.

When used as a scalar (not a vector) this represents a complex frequency.

First used with  in table 4.1 on page 74 in particular.

The n-dimensional process noise vector at discrete time step . First used

in section 2.1.3 on page 47.
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The n-dimensional process noise vector at discrete time step . This

abbreviation for , which is common in the Kalman filter literature, is

only used in appendix B. It is used to simplify the notation.

The n-dimensional process noise vector at time . First used in

section 4.2.2 on page 75.
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Chapter 1. Introduction

1.1 Narrative, Names, and Nomenclature

Credit Where Credit is Due

The idea for one-LED-at-a-time tracking for virtual environments was originally

conceived of by my academic advisor Dr. Gary Bishop, and has been the subject of our

joint research since August of 1994. Our work has led to the method being implemented in

the new UNC “HiBall” optoelectronic tracking system, and it led me to this dissertation.

As such when I refer to “we” or “our” I am referring to collaboration with Dr. Gary

Bishop.

What’s in a Name?

Relatively early on, the name One-Step-at-a-Time (OSAAT) was suggested by Dr.

Anselmo Lastra in discussions about how the approach might generalize to other tracking

or navigation systems, e.g. systems that employ GPS receivers, magnetic devices or

inertial devices. Later reviewer comments from a paper submission led me to believe that

as part of an overall improved explanation of our work, the name needed to be more

descriptive. While bouncing around ideas, the phrase “incremental tracking” was

suggested by Vernon Chi, while “incomplete information” was suggested by Dr. Fred

Brooks. I personally decided that constraint was a better word than step because the word

step is easily (understandably) confused with a Kalman filter time step, and more

importantly because the word constraint better conveys the notion of information content

which is central to this thesis. Hence the phrase “one-step-at-a-time” became “one-

constraint-at-a-time” or OCAAT. Finally, Mark Mine (a fellow graduate student and long-

time friend) suggested changing “one-constraint-at-a-time” to “single-constraint-at-a-

time”, thus transforming the lackluster OCAAT to the more colorful SCAAT or “scat”.
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The “scat” pronunciation fits well: like scat singing where meaningless syllables are sung

to a tune, in SCAAT tracking incomplete information is woven into a trajectory. And so we

are left with the title of this dissertation, SCAAT: Incremental Tracking with Incomplete

Information. The relevance of these phrases, and the title of this dissertation, should

become more clear in the remainder of this introduction.

Defining the Nomenclature

Throughout this dissertation I refer to “sources”, “sensors”, or “devices”, and it’s

particularly important to understand what I mean by these words not only to avoid

confusion, but to understand the basic SCAAT approach. I use the words “source” or

“sensor” to refer to the single (minimal) electrical or mechanical component used to excite

or sense a particular physical medium. Using this nomenclature, some example sources

include a single-axis electromagnetic dipole, an infrared LED, and a single GPS satellite.

Some example sensors include a single-axis electromagnetic coil, a single camera, and a

GPS receiver. I will use the word “device” to refer to either a source or sensor. On the

other hand, when I want to refer to a mechanical fixture that incorporates multiple sources

or sensors, I will use phrases such as “source unit” or “sensing unit”.

For example, the Polhemus magnetic tracker [Raab79] employs a fixed source unit

which contains a three-axis electromagnetic dipole. Because each of the three axes can be

individually excited, I would say that each source unit contains three distinct sources. The

Polhemus also employs target-mounted sensing units, each of which contains another

three-axis electromagnetic device. Because the induced voltage corresponding to each axis

of the sensing unit can be individually measured, I would say that each single sensing unit

contains three distinct sensors. Figure 1.1 depicts this distinction for such a magnetic

sensing unit, and for an inertia sensing unit. 

Finally, I also frequently interchange the words “measurement” and “observation”,

depending on the context. In either case I am generally referring to the combined act of

source excitation (when necessary) and sensor reading. For systems that employs active

sources, e.g. optoelectronic or magnetic tracking systems, I generally use measurement or
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observation to refer to a combined excitation/sensing act: a single source excitation

followed by the corresponding sensor measurement. For passive systems, e.g. a purely

inertial system, I use these words to refer to the act of reading a single sensor.

This nomenclature should be contrasted with the frequent practice of loosely

referring to multi-sensor units as “sensors” and multi-source units as “sources”. This

practice is a result of the historical tendency to group the multiple source excitations or

sensor measurements corresponding to a complete unit, into what is loosely termed “a

measurement”. While the distinction may at first seem minor, it is central to the

understanding of the SCAAT approach to tracking.

1.2 Observability and Partial Information

The idea that one might build a tracking system that generates a new estimate with each

individual sensor measurement or observation is a very interesting one. After all,

individual observations usually provide only partial information about a target’s complete

state, i.e. they are “incomplete” observations. For either sensing unit in figure 1.1, only

limited information is obtained from measurements of any single sensor within the

corresponding sensing unit. In terms of control theory, systems that attempt to operate

with incomplete measurements are characterized as unobservable because the state cannot

be observed (determined) from the measurements.

Inertia Sensing Unit

3 inertia sensors (rate gyros)

Magnetic Sensing Unit

3 electromagnetic sensors (coils)

Figure 1.1: Sensors vs. sensing units. This diagram shows two common

sensing units that are frequently (loosely) referred to as “sensors”. In this

dissertation I make a distinction between sensors and sensor units.
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A Simple Estimator

Figure 1.2 depicts a simple example of an estimator that produces estimates of 

and  by observing noisy measurements of the true parameters x and y over time. This

example is particularly simple because there is a direct one-to-one correspondence

between the state  and the noisy measurements. 

Now consider the same system with the connection from the (noisy) measurement of y

severed at point A. In this case, the estimator would continue to estimate both x and y, but

would do so with only measurements of x. Because y is no longer being observed, y and 

are free to vary independently of each other. Such a system is unobservable because one

can not determine the state  from measurements of x alone.

A Single Constraint

The notion of observability can also be described in terms of constraints on the

unknown parameters of the system being estimated, e.g. constraints on the unknown

elements of the system state. In the purest mathematical sense, a single constraint consists

of a single scalar equation that describes a known relationship between the unknown

elements. However, sometimes multiple equations are collectively described as providing

a single “constraint” in a more general sense. Such is the case in geometry where people

often discuss geometric constraints involving points, lines, planes, etc. For example a 3D

point might be constrained to lie on the surface of a sphere, or a 3D line might be

constrained to intersect a 2D plane at a particular point. Furthermore, with respect to

tracking systems, some implementations allow for simultaneous multi-dimensional sensor

x̂

ŷ

x y,[ ]T

Figure 1.2: A simple estimator example.  The system produces estimates

 and  by observing noisy measurements of the true parameters x and y

over time (noise represented by  and  respectively).
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ex ey

Estimator

x

y

x̂

ŷ
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measurements. Thus I allow for, or even suggest (under certain circumstances)

consideration of a multi-dimensional constraint. Depending on the circumstances,

discussed in “The Measurement Model” on page 78, one might adopt either the single or

the multi-dimensional notion of a single constraint. As long as one remains consistent,

discussion such as that in the next section—and indeed throughout this dissertation—

remains valid. In any case, the novelty of the SCAAT approach remains.

Constraints and Observability

Given a particular system, and the corresponding set of unknowns that are to be

estimated, let  be defined as the minimal number of independent simultaneous

constraints (single or multi-dimensional) necessary to uniquely determine a solution, let

 be the number actually used to generate a new estimate, and let  be the number of

independent constraints that can be formed from the  constraints. For any 

constraints, if  the problem is well constrained, if  it is over

constrained, and if  it is under-constrained. This is depicted in figure 1.3.

C

N Nind

N N Nind≥

Nind C= Nind C>

Nind C<

Nind C= observable

Figure 1.3: SCAAT and constraints on a system of simultaneous

equations.  is the minimal number of independent simultaneous

constraints necessary to uniquely determine a solution,  is the number of

given constraints, and  is the number of independent constraints that

can be formed from the . (For most systems of interest ). The

conventional approach is to ensure  and , i.e. to use

enough measurements to well-constrain or even over-constrain the

estimate. The SCAAT approach is to employ the smallest number of

constraints available at any one time, generally  constraint.

From this viewpoint, each SCAAT estimate is severely under-constrained.
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A More Concrete Example

Figures 1.4 through 1.6 depict a more concrete (and realistic) situation in which a

single camera is used to observe known scene points to determine the camera position and

orientation. In this case, the constraints provided by the observations are multi-

dimensional: 2D image coordinates  of 3D scene points , for

. Note that the vector  represents the  image-plane coordinates of scene

point , while the scalar element  of  represents the distance of the scene point along

the  axis in figures 1.4 through 1.6. Given the internal camera parameters, a set of four

known coplanar scene points  and the corresponding image coordinates

, the camera position and orientation can be uniquely determined in closed-form

[Ganapathy84]. In other words if  constraints (image points) are used to

estimate the camera position and orientation, the system is completely observable. This

situation is depicted in figure 1.4.

On the other hand, if  then there are multiple solutions. For example with only

 non-collinear points, there are up to 4 solutions. Even worse, with  or

 points, there are infinite combinations of position and orientation that could result

zi u v,[ ]= pi x y z, ,[ ]=

i 0 1 º, ,= zi u v,

i z pi

Z

p0 º p3, ,

z0 º z3, ,

N C 4= =

x

z

y

Figure 1.4: Camera position and orientation from four scene points.

Given the internal camera parameters,  known (coplanar)

scene points , and the corresponding images , the

camera position and orientation can be uniquely determined in closed form.

Such a system is completely observable. 
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in the same camera images. (See figure 1.5 and figure 1.6.) Any single-camera system that

attempts to compute a unique camera position and orientation using known coplanar scene

points must employ observations of four or more such points or the state will be

unobservable. 

In general, for closed-form tracking approaches, a well or over-constrained system with

 is observable, an under-constrained system with  is not. Therefore, if the

individual observations provide only partial information, i.e. the measurements provide

insufficient constraints, then multiple devices must be excited and/or sensed prior to esti-

mating a solution. Sometimes the necessary observations can be obtained simultaneously,

and sometimes (discussed in section 2.2.1) they can not. The Polhemus magnetic tracker,

for example, performs three sequential source excitations, each in conjunction with a com-

plete sensor unit observation.

x

z

y

Figure 1.5: Camera position and orientation from two scene points. The

camera position and orientation is not observable. The camera origin

(attached to the image plane) could be anywhere along the great circle

around the segment , e.g. at O’ or O’’. As long as the camera was

“properly” pointing at the segment, the resulting image would be the same.
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Putting the Pieces Together

For a system that employs multiple “incomplete” measurements (each affording an

under-constrained observation) the measurement model corresponding to any single

incomplete measurement can be characterized as locally unobservable. Such a system

must collectively incorporate a sufficient set of individual measurements such that the

resulting overall system is observable.1 The corresponding aggregate measurement model

can then be characterized as globally observable. Figure 1.7 depicts this relationship in

terms of a puzzle. Individually the puzzle pieces (the locally unobservable measurements)

do not offer a complete picture, but when assembled together they do. To see the result,

one might (somehow) collect and incorporate all of the pieces simultaneously. More

likely, one would assemble the puzzle one piece at a time. Likewise, to form a globally

observable system for tracking, one might simultaneously observe a sufficient set of

sensors, or sequentially observe the individual sensors over time. In other words, global

observability can be obtained over space or over time. The SCAAT method adopts the

latter scheme, even in some cases where the former is possible.

1. If not completely observable, any unobservable states must be stable, i.e. convergent.

x

z

y

Figure 1.6: Camera position and orientation from one scene point. The

camera position and orientation is clearly not observable. The camera

origin could be anywhere. As long as the camera is “properly” pointing at

, the resulting image would be the same.p0

image plane

Op0

z0

U

V



42

For more complete discussion about the characterization and detection of unobservability

in control systems see [Brown92, Jacobs93, Maybeck70].

1.3 An Unusual Approach to Tracking

A key point of this dissertation is that even incomplete observations provide some

information, and that the partial information can be used incrementally to improve an

existing estimate of the solution. As long as individual measurements are incomplete in

complementary ways, they can be used together over time to progressively improve an

existing estimate. Rather than attempting to compute precise closed-form estimates of

points in state space, we can instead push the current state estimate along the track

indicated by the most recent (incomplete) observation. By carefully blending an ongoing

sequence of incomplete observations in this way, one can generate an improved state

estimate with each new constraint (observation)—guiding the sequence of estimates along

the target track, using a single constraint at a time.

Some readers may recognize that this method for tracking is similar to methods

explored in the late 1970’s and early 1980’s to solve what is often called the “bearings-

only” tracking problem. The relationship to the bearings-only problem is discussed in

section 3.1, but it’s worth mentioning here that the bearings-only circumstances

essentially dictated the method: the only available 2D target data was a sequence of

relatively infrequent noisy bearing measurements from a single 1D passive sensor. On the

unobservable

unobservable

unobservable

unobservable

unobservable

Figure 1.7: Putting the pieces together. A globally observable system can

be formed from a collection of locally unobservable systems. The

individual pieces offer only partial information, while the aggregate depicts

a complete picture.

 

observable
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other hand, most modern tracking or navigation systems employ multiple (relatively fast)

devices, so measurement data is more readily available. Despite these favorable

circumstances, modern tracking systems are often forced to use a group of sequentially

collected individual (incomplete) measurements to compute each estimate. This is

sometimes dictated by the physical nature of the sensing medium, and sometimes by

concerns for a cost-effective implementation. For these systems, and surprisingly even for

systems that have truly simultaneous measurements available, I present (1) specific

motivation for returning to a single observation per estimate strategy, and (2) a specific

method for doing so.

1.4 Contribution (Thesis Statement)

As far as I know, no one has ever advocated the use of a Kalman filter to estimate the state

of a globally-observable multiple-sensor system by sequentially incorporating only

measurements of locally-unobservable single-sensor systems as described herein. I believe

that the SCAAT method is not only attractive from a purely theoretical or mathematical

standpoint, but that its use is justified by some very real and heretofore unidentified

practical advantages.

While I believe that the application of the method may be justified for a broader class of

stochastic estimation problems, in this dissertation I have chosen to present the work in the

context of 3D tracking for virtual environments, thus forming a concrete basis for

explanation and analysis. Applications to other problems should be straight-forward.

Thesis Statement

A Kalman filter can be used to estimate a globally-observable process by

sequentially incorporating only measurements of locally-unobservable processes.

The use of a Kalman filter in such a manner offers several advantages: (1) a

flexible framework for heterogeneous multisensor data fusion; (2) a unique

opportunity to perform concurrent device autocalibration; and in a system that

allows only sequential measurements, (3) significantly improved estimate rates and

latencies; and (4) avoidance of the incorrect simultaneity assumption.



Chapter 2. Motivation

The primary purpose of this chapter is to justify the use of the SCAAT method. A side-

effect is to introduce some work by other researchers that is related to the subject in terms

of motivation. (The primary discussion of related work is presented in chapter 3.) I begin

in section 2.1 by motivating the use of a Kalman filter in general. In the remaining sections

of the chapter, I assume the use of a Kalman filter and argue for the SCAAT method in

particular. If necessary, see the beginning of chapter 4 for some brief discussion of the

Kalman filter, and/or appendix B for a more complete introduction.

2.1 Why a Kalman Filter?

In this dissertation I claim that there are significant benefits to using a Kalman filter in

what I call a SCAAT fashion. But why use a Kalman filter in the first place? There are four

typical reasons why people employ Kalman filters in systems where a signal (often

continuous) is to be estimated with a sequence of discrete measurements or observations:

(1) filtering; (2) data fusion; (3) prediction; and (4) calibration. In this section I briefly

examine each of these in the context of tracking or navigation. Once I’ve argued that a

Kalman filter is a good thing in general, I spend the remainder of the chapter explaining

how the SCAAT approach uniquely and elegantly addresses these four issues as well as

other concerns.

2.1.1 Filtering

To track means by definition “to observe or monitor the course of” [American81]. As it

turns out, the only means we humans have of observing or monitoring a target is by

somehow physically sensing its presence via one of several media, e.g. through

electromagnetic waves, mechanical linkage, or inertial sensing devices. In practice, all

available means of sensing are susceptible to noise, e.g. electrical, mechanical, or optical

noise. Thus an ideal system would be able to somehow perfectly separate the true signal
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from the inherently noisy observations so that the target could be tracked perfectly. See

figure 2.1.

There is another practical limitation imposed by our common desire to use digital

computers to perform tracking. Because these computers operate in discrete time steps, we

are limited to discrete observations of the target. Thus some uncertainty is introduced in

terms of the target dynamics in between our discrete observations. If we somehow knew

what the target was doing while we weren’t “looking”, we might be able to better identify

the noise when we do finally “look” again. However, given that our world is not perfect,

we would like some means to best estimate the target motion, i.e. we would like an

optimal estimator.

“An optimal estimator is a computational algorithm that processes measurements to 

deduce a minimum error1 estimate of the state of a system by utilizing: knowledge of 

system and measurement dynamics, assumed statistics of system noises and 

measurement errors, and initial condition information.” [Gelb74]

In 1960, R.E. Kalman published his famous paper describing a recursive solution to the

discrete-data linear filtering problem [Kalman60]. The Kalman filter is a set of

mathematical equations that provides an efficient computational (recursive) means of

using noisy measurements to estimate the state of a linear system, while minimizing the

expected mean-squared estimation error. The filter is very powerful in several aspects: it

supports estimations of past, present, and even future states, and can do so even when the

precise nature of the modeled system is unknown; it is inherently discrete (not derived

from a continuous model) and thus well suited to implementation on a digital computer; it

1. In accordance with some stated criterion of optimality.

Ideal
Filter

++

n t( )

s t( )
n t( )
s t( )s t( ) n t( )+

Figure 2.1: An ideal filter. Such a filter would be able to perfectly separate

the signal  from the noise .s t( ) n t( )
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can be extended to model systems with continuous dynamics; and (because it is recursive)

it makes use of past information in an efficient manner.

The derivation of the filter, and its stated optimality, depends on some assumptions

about the statistical properties of the measurement and target dynamics. While in practice

these assumptions are rarely absolutely correct, the Kalman filter has often been found to

perform extremely well anyway. As such it has been the subject of extensive research and

application, particularly in the area of autonomous or assisted navigation.

2.1.2 Data Fusion

The Kalman filter assumes that the system being estimated has a measurement equation of

the form given in equation (2.1) where the matrix  relates the state vector  to

the measurement vector , and the vector  represents the measurement noise.

Further details are presented in chapter 4 and can be found in Kalman filter texts such as

[Brown92, Gelb74, Jacobs93, Lewis86].

(2.1)

If the system being estimated has multiple forms of observation, there would be multiple

corresponding measurement equations equation (2.1), i.e. multiple instances of the matrix

, each representing a different relationship. By using the appropriate  for each

type of measurement, the filter effectively combines, blends, or fuses the information

contained in the heterogeneous measurements.

This capability for heterogeneous data fusion, combined with the properties

discussed in section 2.1.1, has made the Kalman filter a very popular means of data fusion.

For example the Kalman filter has been used for navigation [Geier87, Mahmoud94,

Watanabe94], for virtual environment tracking [Azuma95, Emura94, Foxlin96], and for

3D scene modeling [Grandjean89, VanPabst95].

H tk( ) x tk( )

z tk( ) n tk( )

z tk( ) H tk( )x tk( ) n tk( )+=

H tk( ) H tk( )
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2.1.3 Prediction

The Kalman filter assumes that the system dynamics can be modeled as in equation (2.2)

where  relates the state at time step k to the state at step k+1 (in the absence of

noise), and  represents the driving or process noise.

(2.2)

In the classical discrete Kalman filter implementation, the time between filter steps k and

k+1 is constant, and thus there is one instance of  that is used at each step of the filter

to predict the state for that step as in equation (2.3). The best state estimate of the state at

time step k+1 given measurements and corresponding estimates through time step k is

 times the previous estimate.

(2.3)

For obvious reasons, equation (2.3) reflects what is normally called a one-step prediction.

To predict more than one step into the future, one can then simply use equation (2.3) with

an appropriate change to . For a continuous-time model,  can be implemented

as a function of the time t so that predicting ahead different amounts of time involves

simply changing t. For nonlinear relationships an extended Kalman filter can be used. For

the EKF  becomes the Jacobian of the nonlinear function, and the (nonlinear)

predictions are realized by integration. (See section B.2 of appendix B, page 174.)

Even if another prediction scheme is used, the Kalman filter can often offer

assistance by estimating states that one cannot directly measure. A common example is

that of optimally estimating velocities when one only has measures of position. (Note that

the alternative of directly computing derivatives from position measurements is inherently

susceptible to noise.) With velocities in hand one can better predict where the target will

be than if the only information is where the target currently is. As stated by Henry Fuchs,

“A tracker shouldn’t tell us where the user is, it should tell us where the user will be [for

example] two image frames from now.”

A classic example of prediction in virtual environments is the work done by Rebo

at the Air Force Institute of Technology [Rebo88]. So and Griffin [So92] attempted to

compensate for system latencies by using a “signal processing algorithm” to predict the

viewing position and then “deflecting” the image appropriately. Kalman filters have been

A tk( )

w tk( )

x tk 1+( ) A tk( )x tk( ) w tk( )+=

A tk( )

A tk( )

x̂ tk 1+  | tk( ) A tk( ) x̂ tk | tk( )=

A tk( ) A tk( )

A tk( )
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employed for similar purposes by Azuma [Azuma95], Liang et al. [Liang91], and more

recently by Mazuryk and Gervautz [Mazuryk95]. In particular, [Holloway95] showed that

prediction is necessary to address otherwise insurmountable latency-induced errors, and

[Azuma95] showed how it can be done with a Kalman filter.

2.1.4 Calibration

Knowledge about source and sensor imperfections can be used to improve the accuracy of

tracking systems; thus efforts are often undertaken to measure components against a

known standard in order to improve the accuracy of their estimated characteristics. A

particularly relevant example of calibration is that of the work by Gottschalk and Hughes

[Gottschalk93]. This work is interesting and particularly relevant because my experiments

(chapter 6) reflect calibration of a similar system, using a different scheme.

The Kalman filter is generally presented as a way of estimating values of stochastic

variables (the states) of linear systems whose associated system parameters (e.g. model

dynamics and noise characteristics) have known values. Interestingly enough, the filter can

just as well be turned around and used to estimate values of unknown system parameters

when the states are known [Jacobs93]. In fact, it can even be used to estimate both system

states and parameters as represented in figure 2.2.

In particular, the characteristics outlined in sections 2.1.1 and 2.1.2 make the

Kalman filter an attractive and popular option for calibration. Referring to figure 2.2, the

situation depicted in (a) is that of a Kalman filter being used only to estimate the system

states, i.e. there is no calibration. Examples of the situation depicted in (b) include

[Wefald84] and [Foxlin96]. Recent examples of the situation depicted in (c) include

[Azarbayejani95] and the work presented in this dissertation.

2.2 Temporal Concerns

2.2.1 Fewer Observations, Improved Timing and Accuracy

Current commercial and experimental 3D tracking systems obtain some minimum fixed

sequence of measurements of one or more sensors to compute a single position and/or

orientation estimate. Multiple sensor measurements are usually necessary because the

individual measurements offer only partial position and orientation information. The
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measurements are sequential either because they must be made independently or because

replicating the hardware is not cost or space effective. This situation results in several

temporal problems when estimating human head and hand motion in virtual environment

systems: (a) the estimation rates are relatively low; (b) the latencies are relatively high;

and (c) error is introduced when sequential measurements are treated as if they had

occurred simultaneously. By estimating with individual sensor measurements, the SCAAT

method improves data rates and latencies (a & b) as discussed in this section, and as a

bonus it inherently avoids what I refer to as the simultaneity assumption (c) as discussed in

section 2.7.

Kalman

filter

parameters

measurements

state estimates

Kalman

filter
parameter

 

 estimates

measurements

states

(a)

(b)

Figure 2.2: State versus parameter estimation. (a) The system parameters

are known, and are used with the measurements to estimate the states.

(b) For calibration purposes, known states can be used with measurements

to estimate the system parameters. (c) A set of parameters can be used in

conjunction with measurements to estimate another (not necessarily

disjoint) set of parameters and the states.

Kalman

filter

parameter

 

 estimates

measurements

parameters

(c)
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2.2.2 Estimation Rates and Latencies

Per Shannon’s sampling theorem [Jacobs93] the measurement or sampling frequency

should be at least twice the true target motion bandwidth, or an estimator may track an

alias of the true motion. Given that common arm and head motion bandwidth

specifications range from 2 to 20 Hz [Neilson72, Fischer90, Foxlin93], the sampling rate

should ideally be greater than 40 Hz. Furthermore, the estimation rate should be as high as

possible so that slight (expected and acceptable) estimation error can be discriminated

from the unusual error that might be observed during times of significant target dynamics.

In addition to increasing the estimation rate, we want to reduce the latency

associated with generating an improved estimate, thus reducing the overall latency

between target motion and visual feedback in virtual environment systems [Mine93]. If

too high, such latency can impair adaptation and the illusion of presence [Held87], and

can cause motion discomfort or sickness. Increased latency also contributes to problems

with head-mounted display registration [Holloway95] and user-motion prediction

[Liang91, Friedman92, Azuma94]. Common tracker latencies, excluding communication

overhead, range from 10 to 50 milliseconds [Mine93, NRC94].

2.2.3 Measurement Collection

With these requirements in mind, let us examine the effect of sequential measurement

collection on the estimation latency and rate. Let  be the time needed to perform one

sensor measurement, i.e. to obtain one constraint. Repeating the notation of section 1.2,

figure 1.3 in particular, let  be the number of sequential non-degenerate constraints

necessary to compute a unique estimate and let  be the actual number of sequential

constraints (measurements) used to compute each estimate. In addition, let  be the

time needed to compute an estimate given  observations. For example, for the system

depicted in figure 1.6,  known coplanar scene points must be observed to compute

an estimate in closed form, however  independent points may actually be used in an

attempt to overcome measurement noise problems. The estimation latency is given by

, (2.4)

tm

C

N

tc N( )

N

C 4=

N 4≥

te Ntm tc N( )+=
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and the corresponding estimation rate is given by

. (2.5)

As the number of sequential measurements N increases, equations (2.4) and (2.5) show

how the estimation latency and rate increase and decrease respectively. For the Selspot

optical tracking system [Selspot],  beacons are observed sequentially per

estimate (for position and orientation of a single target). For the Polhemus Fastrak

magnetic tracking system,  sequential excitations are performed and sensed

per estimate [Raab79]. For the University of North Carolina (UNC) wide-area

optoelectronic tracking system,  beacons are observed sequentially per

estimate (  for the implemented iterative approach) [Ward92, Azuma91].

A diagram depicting the basic timing of the Polhemus Fastrak magnetic tracker is

given in figure 2.3. Each estimation occurs only after sensing an excitation pattern. The

excitation pattern is composed of three linearly independent excitation vectors that are

sourced and sensed sequentially in time. The complete excitation pattern contains

information sufficient to determine the 3D position and orientation of the target [Raab79].

Instead of grouping measurements, the SCAAT method allows the updating of the current

estimate with each individual sensor measurement as soon as it becomes available. This

improves the latency and data rate by effectively letting . A diagram depicting the

timing of a (hypothetically) modified SCAAT Polhemus Fastrak is given in figure 2.4. In

this case an estimate is available after sensing each individual excitation vector. Each such

re
1

te

-----
1

Ntm tc N( )+
--------------------------------=£

N C 3= =

N C 3= =

10 N 20£ £

C 3=

Source Excitation

Estimate

time

Sensor Unit Measurement
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Figure 2.3: Timing diagram for a Polhemus Fastrak magnetic tracker. The

state estimate is updated only after measuring a group of linearly

independent excitation vectors.

N 1=
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vector does not contain information sufficient to determine the 3D position and orientation

of the sensor, but it does contain some information that can be used to improve the current

state estimate.

2.2.4 Computational Complexity

There is a further measurement-related impact on the estimation latency and rate that is

indicated by equation (2.4): the computation time  for any algorithm is a function of the

number of measurements used to compute a single estimate. In other words, the amount of

computation is a function of the amount of measurement information.

For example, given an image-based tracking system (such as that described in

section 1.2) with an -dimensional target state vector (  estimated parameters) and 

pairs of observed scene points, a typical Kalman filter implementation would have to

perform several  matrix multiplications, and a  matrix inversion to

formulate a new estimate.2 As a function of  the asymptotic computation time for such a

system is

. (2.6)

As can be seen by equation (2.6), letting  reduces not only the per-estimate

measurement-collection time  in equation (2.4), but also the computation time

2. There are many variations on the set of Kalman filter equations, some more computationally 

efficient than others under certain circumstances. The expression (2.6), which agrees with 

[Maybeck70] (pp. 322, 356), is an upper bound for the implementation presented in chapter 4.

Source Excitation

Estimate

time

Sensor Unit Measurement

x y z x y z x y

Figure 2.4: Timing diagram for a (hypothetical) SCAAT magnetic

tracker. The state estimate is updated after sensing each individual

excitation vector.
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. (Note that  is constant for any particular implementation.) A more complete time

complexity analysis is presented in section 5.2.

2.3 The Simultaneity Assumption

2.3.1 Mathematics Unaware that Target is in Motion

Most current tracking systems collect sensor measurements sequentially, and then assume

(mathematically) that they were collected simultaneously. I refer to this as the simultaneity

assumption. If the target remains motionless this assumption introduces no error. However

if the target is moving the violation of the assumption does introduce error. This situation

is depicted in figure 2.5.

It is possible to modify existing closed-form mathematical solutions to address the

problem by rectifying the measurements to a common time. However to begin with, such a

scheme requires ongoing estimates of the target dynamics, which are inherently

maintained by a Kalman filter (including a SCAAT implementation). But more important,

such rectification requires some assumptions about the change in those dynamics over the

period of measurement collection. The longer the measurement collection period, the less

likely that any assumptions about dynamics will be true. In the case of a SCAAT

tc N( ) n

Measure

Compute

1

1º3

2 3 1

1º3

2 3

User motion

time

Figure 2.5: The simultaneity assumption. Most current tracking systems

col lec t  sensor  measurements  sequent ia l ly,  and  then  assume

(mathematically) that they were collected simultaneously. If the user is

moving the violation of the assumption introduces estimate error.
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implementation, not only is the measurement period minimized, but the target dynamics

(e.g. the time derivatives of position and orientation) can be maintained as part of the KF

state, and thus their estimates will also be improved with each single observation.

2.3.2 When is it a Problem?

In his Ph.D. dissertation, Burton discusses the problems related to “nonsimultaneities” in

measurements for his novel 3D position tracker (see [Burton73], pp. 70-75). While he

concluded that in practice the problem could be ignored for his system, I would argue that

this is not the case for modern tracking systems, given our current goals for accuracy in

VE systems (see [NRC94], pp. 189-190). For the purpose of illustration, table 2.1 lists the

practical timing characteristics of a few existing tracking systems.

Typical arm and wrist motion can occur in as little as 1/2 second, with typical “fast” wrist

tangential motion occurring at three meters per second [Atkeson85]. For the systems

shown in table 2.1, such “fast” motion corresponds to approximately one to ten

centimeters of translation throughout the sequence of m measurements used for a single

estimate. For systems that attempt sub-millimeter accuracies, even slow motion occurring

during a sequence of sequential measurements impacts the accuracy of the estimates. For

example, in a multiple-measurement system with 30 millisecond total measurement time,

motion of only three centimeters per second corresponds to approximately one millimeter

of target translation throughout the sequence of m measurements for one estimate.

Figure 2.6 presents the results of a simulation from appendix A (page 161). It shows how

estimates can be pulled away from the truth as the simultaneity assumption is violated.

* Estimates are based on estimating position and orientation (three markers per 

target) for 10 targets.

Table 2.1: The practical timing characteristics of a few existing tracking

systems. The data is based on [Woltring74, Selspot], [Raab79, NRC94,

Kuipers80], and [Ward92, Azuma91] respectively.

Selspot*
Polhemus 

Fastrak

UNC

ceiling

Latency (ms)

Rate (Hz)

te 3ª 20 te 30£ £ 26 te 36£ £

re 300ª 30 re 120£ £ 28 re 39£ £
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The error introduced by the simultaneity assumption is of even greater concern when

attempting any form of autocalibration (discussed further in section 2.5). Gottschalk and

Hughes state that motion during autocalibration must be severely restricted in order to

avoid such errors [Gottschalk93]. Consider for example a multiple-measurement system

with 30 ms total measurement time. With such a system, motion would have to be

restricted to approximately 1.5 centimeters per second to confine translation throughout a

measurement sequence to 0.5 millimeters. For complete calibration of a large (wide-area)

multi-device system such as the UNC optoelectronic tracker, this restriction results in

lengthy specialized autocalibration sessions. Appendix A presents a simple but concrete

example of a 2D tracking system, and how estimates are adversely affected when the

simultaneity assumption is violated.

Surprisingly, even in cases where multiple measurements are truly available

simultaneously, experiments have shown that the SCAAT method can still perform better

than other conventional approaches. (See section 6.2.5, page 144.)
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Figure 2.6: Error caused by the simultaneity assumption. The  fami ly  of

curves shows how simulated position estimates become skewed by the

simultaneity assumption as a target undergoes motion with a one Hertz

sinusoidal velocity. Note the skewing of the estimation with sensor

measurement times of  milliseconds. This figure

is a copy of figure A.6 on page 166. Details of the simulation are presented

in appendix A beginning on page 161.
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2.4 Hybrid Systems and Multisensor Data Fusion

2.4.1 Hybrid Systems, the Past and the Future

Tracking systems that employ only one form of sensing all suffer inherent drawbacks. For

example, purely inertial trackers suffer from drift, optical trackers require a clear line of

sight, and magnetic trackers are affected by ferromagnetic and conductive materials in the

environment [Raab79]. To maintain more consistent performance throughout a working

environment, across the frequency spectrum, and over a wide range of dynamics,

researchers have sought to develop hybrid tracking systems.

For example, Foxlin has developed a system that is primarily inertial, but aided by

angular position sensors [Foxlin93], both Canadian Aerospace Electronics [NRC94] and

the University of North Carolina [Meyer92] have pursued systems that are primarily

optical, but aided by inertial sensors (for prediction), researchers at the University of

Tokyo have sought to improve the data rate of the Polhemus tracker by augmenting it with

rate gyros [Emura94], while researchers at the University of North Carolina have sought to

improve the accuracy of the Ascension magnetic tracker by augmenting it with a passive

image-based system that observes known fiduciary marks in the real world [State96].

Beyond improved performance in limited working volumes, future systems that

will allow people to “move from room to room in a building without loss of tracking”

[NRC94, p. 202, Research Needs] will almost certainly involve large-scale hybrid

systems, necessitating the blending of data from heterogeneous sensors or sensor units.

This process of blending data is often referred to as data fusion or multisensor data fusion

(see for example [Crowley93]).

2.4.2 Multisensor Data Fusion

The SCAAT method represents an unusual approach to Kalman filter based multisensor

data fusion. Because the filter operates on single sensor measurements, new estimates can

be computed as soon as measurements from an individual sensor of any type become

available, in virtually any order, and at any (possibly varying) rate. Such flexibility allows

measurements from any combination of devices to be interlaced in the most convenient

and expeditious fashion, ensuring that each estimate is computed from the most recent
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data offered by any combination of devices. The information from the various

observations can then be blended using either a single SCAAT KF with multiple

measurement models, or separate SCAAT filters (and thus statistics) each with single

measurement models, in which case the estimates from the various models can be blended

using a statistical multi-model approach (see for example [Bar-Shalom93]).

2.4.3 A Simple Hybrid Example

For the sake of illustration, imagine an inertial-acoustical hybrid tracking system

composed of three accelerometers, three rate gyros, and an acoustical line-of-sight system

(to control drift from the inertial sensors). Note that not only will the acoustical

measurements take longer than the inertial measurements, the acoustical measurement

times will vary with distance between the source and sensors. A conventional method for

data fusion might repeat the fixed pattern shown in figure 2.7. Notice that an estimate is

produced only after collecting an orthogonal group of measurements from each (any one)

subsystem.

In contrast, a SCAAT implementation might interleave sensor measurements as depicted

in figure 2.8. Note the flexibility of measurement type, availability, rate, and ordering.3

Again because an estimate is produced with every sensor measurement, latency is reduced

and the estimation rate is increased.

3. The ordering here is round-robin within subsystem. In chapter 4 I explain how the method 

facilitates other (possibly dynamic) ordering schemes.

Accelerometers

Rate Gyros

Acoustic Ranging

Estimate

time

x y z

x y z

x y z

Figure 2.7: Timing diagram for a hypothetical conventional hybrid

tracking system. The state estimate is updated only after each group of 3

homogeneous measurements.
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2.5 Source and Sensor Autocalibration

2.5.1 What to Calibrate?

Following the terminology used in the fields of computer vision and image processing (see

for example [Nalwa93] p. 48) I term intrinsic those parameters that are internal to a device

or a device unit. In general these parameters are associated with a manufacturer’s design

specifications, but are impossible or unreasonable to control with sufficient precision

during manufacture. For example, given the inertia sensing unit depicted in figure 1.1, the

precise positions and orientations of the individual inertia sensors within the unit would be

considered intrinsic parameters (see figure 2.9). Other geometric examples include the

relationships between electromagnetic sources in a magnetic source unit, electromagnetic

sensors in a magnetic sensor unit, and of course a camera’s lens and image plane. While

these parameters are generally static, it is possible for an intrinsic parameter to change

with time. For example, a drifting electrical bias may significantly impact the usefulness

of a device if not sufficiently monitored and corrected.

I term extrinsic those parameters that are external to a device or unit. In general

these variations are associated with a specific end user implementation or working

environment. These parameters can generally only be determined in the field by the end

user. Some extrinsic parameters can be determined one time (statically) during or after

installation, others must be or are best determined concurrently (dynamically) during

Accelerometers

Rate Gyros

Acoustic Ranging

Estimate

time

x y z

x y z

x y

x

x y z

Figure 2.8: Timing diagram for a SCAAT inertial-acoustic hybrid tracking

system. The state estimate is updated whenever an individual measurement

becomes available.
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operation. For example, if an end user chose to form a hybrid system by physically joining

the sensor units from two commercially-available systems such as those depicted in

figure 1.1, the parameters describing the precise geometric relationship between the two

sensors would be considered extrinsic parameters (see figure 2.10). Similar geometric

relationships must also be determined between all source or sensor units, especially if they

are not physically joined. This is true for heterogeneous hybrid systems such as those

discussed in section 2.4.1, for homogeneous multi-device systems such as the Ascension

Flock of Birds, for small working volumes where precision is necessary, and for large

working volumes (e.g. an entire building) where smooth and accurate transitions are

desired. Yet even for single-device systems, the user often depends on knowing the precise

position and orientation of a device (or multiple devices) in world coordinates. In

particular, for applications that attempt registration of synthetic images with real-world

objects, such parameters are critical in terms of overall registration error [Holloway95].

Yet the user does not usually have the ability to directly measure such parameters, because

the necessary coordinate system is typically “buried” in the device. As such, the user must

attempt some form of indirect calibration in the field.

Inertia Sensing Unit

OA

OCOB

Figure 2.9: Intrinsic parameters. The precise relationship between each

inertial sensor’s coordinate system (OA, OB, and OC) must be known.

Unit coordinate system

Device coordinate system
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2.5.2 When and Where to Calibrate?

In general, static intrinsic parameters can be determined in the factory by the manufacturer

prior to individual product shipment. However, not all manufacturers perform the

calibrations necessary for their device to be used under the conditions required for

tracking in virtual environments. For example, a camera manufacturer may only provide

the intrinsic camera parameters as specified in their design, as opposed to the actual

parameters for each product. If this is the case, or if a manufacturer’s data is suspect, the

user can usually perform such calibrations in the field under properly controlled

conditions, one time prior to use.

On the other hand, extrinsic parameters are entirely dependent on the manner in

which the devices or units are used in the field. As such they have to be determined by the

end user. In cases where the parameters are few and known to remain constant, they can be

calibrated under properly controlled conditions, one time prior to use. On the other hand,

if there are many devices, it may be impractical to perform such calibrations in a thorough

manner. Consider for example a wide-area system such as the optoelectronic tracker

developed at the University of North Carolina [Ward92] where there are literally

thousands of beacons whose precise position with respect to each other (or the world)

must be known.

Inertial/Magnetic
Inertia unit coordinate system

Magnetic unit coordinate system

Inertia Sensing Unit

Magnetic
Sensing Unit

Figure 2.10: Extrinsic parameters. A hypothetical inertial/magnetic hybrid

where the two respective units are physically attached. The precise

relationship between the units’ coordinate systems must be known.

Hybrid Sensing Unit
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Even if the number of parameters is limited, it may be the case that some, typically

extrinsic, will vary over time. For example, mechanical vibrations can slightly move

devices from their original (possibly calibrated) position and orientation, electrical biases

can drift over time, and changing temperatures can affect all sorts of devices both

mechanically and electrically. In such cases it might be desirable or indeed necessary to

continually refine estimates of certain parameters dynamically while the system is in

operation.

2.5.3 Calibration vs. Autocalibration

While knowledge about intrinsic or extrinsic parameters is most commonly obtained via

off-line calibration under controlled circumstances, goals such as flexibility, ease of use,

and lower cost, make the notion of self-calibration or autocalibration attractive. The idea

is that a system should, in some sense, calibrate itself. At the very least, this means that it

should be possible for a user to calibrate a system, using the system itself without

additional apparatus. This idea is certainly not new (see for example [Wang90,

Watanabe94, Gottschalk93, Azarbayejani95]), but autocalibration appears more difficult

with current tracking schemes as discussed in the next section.

2.5.4 Why SCAAT?

For conventional systems, the practice of mathematically grouping individual

measurements makes assessment of individual device characteristics difficult as depicted

in figure 2.11. If in retrospect one can somehow determine that a particular estimate

(computed with a particular group of measurements) was “bad”, it becomes difficult to

determine the individual error contributions of the devices used in obtaining the group of

measurements. It may well be the case that one bad apple spoils the entire bunch.

On the other hand, because the SCAAT method generates a new tracking estimate

with each individual measurement, individual device imperfections are more readily

identified. Furthermore, because the simultaneity assumption is avoided, the motion

restrictions discussed in section 2.3.2 are removed, and autocalibration can be performed

while concurrently tracking a target under normal conditions. The specific autocalibration

method is presented in chapter 4, with experimental results in chapter 6.
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2.6 Broad Applicability

In terms of tracking or navigation, the SCAAT method can be implemented with many

types and combinations of devices as shown in table 2.2. In each example, the

measurement update of the SCAAT method would involve a minimal set of devices. In

some cases, current manufacturers would have to provide new “hooks” for the SCAAT

method. In particular, in addition to the conventional (complete) estimates they would

have to provide access to the individual observations.

Beyond tracking or navigation, the SCAAT method can be applied to any situation

where stochastic estimation is desired, and multiple measurements (simultaneous or not)

are used to form a complete estimate. Some examples are real-time or off-line state

estimation, parameter estimation [Lewis86], and generalized data fusion or assimilation

(e.g. see [Watanabe94, VanPabst95, Grandjean89, Mahmoud94, Ikeda95]). As such I

believe that this method may prove to be of interest to the larger scientific and engineering

community in addressing a more general class of tracking and estimation problems.
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Figure 2.11: Autocalibration and attribution of measurement error. ( a )

Most algorithms operate on multiple measurements as a group, hence

uncertainty or error (represented by the ellipses) in the final estimates is

difficult to attribute to any individual sensor. (b) With the SCAAT method,

uncertainty in final estimates can more easily be attributed to a particular

individual sensor.
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2.7 Putting Things In Perspective

Some people claim that for most VE systems insurmountable downstream latencies are so

significant that tracker accuracy and timing concerns have become moot. On the contrary I

believe that tracker timing, accuracy, and stability are critical concerns.

While other latencies certainly do exist in the typical VE system [Mine93, NRC94,

Wloka95] tracker latency is unique in that it (with the estimation rate) determines how

much time elapses before the first possible opportunity to respond to user motion. When

the user moves, we want to know as soon as possible. For example, post-rendering image

deflection techniques have been employed in an attempt to address the insurmountable

latencies in the image generation pipeline [So92, Mazuryk95]. To perform best, these

techniques need readily available, recent, and accurate tracking data.

Furthermore while accuracy and stability are important in their own right, they are

particularly important with respect to prediction. Without highly accurate and timely

estimates of where a user is and has been, one can hardly hope to predict where they will

be in the near future. Holloway showed that prediction is necessary to address the

otherwise insurmountable latency-induced errors [Holloway95], while Azuma and Bishop

saw how prediction can introduce jitter into image sequences when the tracker data is not

accurate and stable [Azuma94, Azuma95].

* See section 3.8 on page 71 for discussion of Kalman filters and GPS.

Table 2.2: Some example technologies and SCAAT observations. 

Technology SCAAT Observation

GPS* One satellite

Computer Vision One camera, or one feature

Optoelectronic One LED

Inertial One accelerometer or rate gyro

Acoustic One transducer

Mechanical One joint (one potentiometer)

Magnetic One excitation and sense



Chapter 3. Related Work

This chapter contains the primary discussion of previous work related to the topic of this

dissertation. In chapter 2 and chapter 7 I also introduce some related work, but it is related

specifically in terms of motivation and proposed future work respectively.

3.1 Bearings-Only Tracking

The SCAAT method involves the unusual use of a Kalman filter to estimate a globally

observable system using only measurements from locally unobservable systems. The

Kalman filter has been similarly used to solve the bearings-only target motion analysis

problem [Lindgren78, Petridis81]. However the bearings-only circumstances differ in that

the systems are inherently unobservable due to the availability of only one (moving)

sensor.

As depicted in figure 3.1, the problem involves trying to estimate the two-dimensional

position and velocity of a moving target, using only bearing measurements from a single

moving observer that is equipped with a single passive sensor, e.g. a passive sonar device.

Target Track
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Observer Track

b3
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Figure 3.1: The circumstances surrounding the bearings-only tracking

problem. The target is tracked by observing the bearing angles  of the

target at positions  with respect to the corresponding observer positions

. At each time  the system is inherently unobservable, so periodic

observer maneuvers are necessary (e.g. leg ).
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During any one leg of observer motion the corresponding system is unobservable. Thus

periodic observer maneuvers, e.g. leg , are required to obtain complete target

observability.

VE tracking systems, on the other hand, do not normally face a similar single-

sensor problem, but rather make use of multiple sensors and sources that are used quasi-

simultaneously to obtain complete observability of the target. Despite the availability of

multiple sensors, I present motivation and a method for recasting such multiple-sensor

problems in terms of single-sensor observations.

3.2 Sequential Updates

The Kalman filter operates in a predictor-corrector fashion, repeating a single time update

and measurement update step whenever a new measurement vector becomes available. In

the time update step the filter predicts what the state should be at the time of the

measurements, based on the previous state estimate and a model of the process dynamics.

In the measurement update step the filter uses the newly available measurement vector to

correct the predicted state. In a normal implementation, depicted in figure 3.2, the time

and measurement steps do not occur until all of the components of the measurement

vector are available, i.e. until the state can be determined uniquely from the measurement

vector. The measurement update step then processes the entire measurement vector in one

batch, e.g. all three measurements in figure 3.2. This batch processing of the measurement

data is relatively inflexible and can be computationally expensive if the measurement

vector is large.

However if portions of the complete measurement vector are available at different

times as depicted in figure 3.2, an equivalent method of sequential processing of

measurement data [Brown92] is often suggested as a means to add flexibility while

simultaneously reducing the computational complexity of the measurement update step.

This “sequential updates” method, depicted in figure 3.3, involves performing the normal

time update step, but then breaking-up the measurement update step into several smaller

steps that each process only a portion of the complete measurement vector, e.g. one

measurement in figure 3.3. The complete measurement vector is partitioned into sub-

vectors that are believed to be independent. As individual measurements become

o2o3
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available, only their corresponding partition is processed. This is repeated until all of the

partitions have been processed, at which time the measurement update step is complete

and the filter is ready for another time update step. This sequential processing of the

measurement data is more flexible and usually results in fewer computations.

As in the sequential updates method, the SCAAT method processes individual

measurements sequentially. However, similar to the standard batch method, the SCAAT

method performs only one set of computations during the measurement update. The

difference is that a SCAAT implementation maintains no explicit notion of a complete

measurement vector, and therefore does not need to construct one during the measurement

update step. Instead each individual process measurement is treated as if it was

Obtain Measurements

Time Update Step

Measurement Update Step

time

Figure 3.2: A timing diagram for a conventional Kalman filter. When  a l l

of the process measurements (3 in this example) are available, the filter

proceeds with complete time and measurement update steps.

1 2 3 1 2 3

1º3 1º3

Obtain Measurements

Time Update Step

Measurement Update Step

time

Figure 3.3: A timing diagram for a Kalman filter using the sequential

updates method. When all of the process measurements (3 in this example)

are available, the filter proceeds with a time update step, but then processes

the measurements sequentially during the measurement update step.
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individually complete. In particular a SCAAT implementation repeats a time update and

measurement update step for every new individual measurement as shown in figure 3.4.

With the sequential updates method there is just one time update step for all measurement

update steps associated with a complete measurement vector. Thus the filter dynamics

remain static during the sequential processing of the measurements. On the other hand,

with the SCAAT method there is one time update step for each measurement update step.

Thus the filter dynamics continue to change during the sequential processing of the

measurements, based on the current state and the process model.

3.3 The Iterated Kalman Filter

The extended Kalman filter is often employed for optimal estimation of a nonlinear

process, i.e. a process where the relationship between the state vector and the

measurement vector is nonlinear (e.g. see [Gelb74] or [Bell93]). The standard EKF

implements this relationship in the form of a nonlinear measurement function which is

used to predict a measurement vector given a particular state vector. The iterated Kalman

filter or IKF (see [Bell93], p. 190) successively repeats the measurement update step,

using a truncated Taylor series expansion of the measurement function in place of the

standard (un-expanded) measurement function. In this way it seeks to improve an estimate

by continually linearizing about the most recent estimate. (See figure 3.5.) Usually the

iterations are repeated until little further improvement is noticed from additional

Obtain Measurements

Time Update Step

Measurement Update Step

time

Figure 3.4: A timing diagram for a Kalman filter using the SCAAT

method. When any individual process measurement is available, the filter

proceeds with complete time and measurement update steps.
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1 2 3 1 2 3
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repetitions.1 Operating in this way, the IKF can significantly reduce EKF estimate errors

caused by the nonlinearities of the measurement function [Wishner69]. 

The IKF does not advance time, i.e. perform a time update step, between iterations of the

measurement update step because it is iterating with a single measurement vector. While a

SCAAT filter could be implemented to iterate the measurement update step as in an IKF,

each iteration contributes to the computation time, thus likely confounding efforts to

improve the estimate rate and latency as discussed in section 2.2. Certainly if there was

nothing better to do while waiting for a new measurement it would make sense.

3.4 The Collinearity Method

The original UNC optoelectronic tracker (1991-1995) estimated the target position and

orientation by setting up and attempting to solve for a set of collinearity condition

equations [Ward92, Azuma91]. The equations represent some geometric relationships

between various vectors in world and camera coordinates that must exist for the target to

be in a particular state while observing a particular set of images. Therefore given a set of

images and the imaging conditions, the target state can be estimated uniquely, but not

necessarily in closed form. As such, a Collinearity implementation inherently bases

1. Bell et al. [Wishner69] show how the iterated measurement update step of the IKF is an 

application of the Gauss-Newton method for approximating a maximum likelihood estimate.

Obtain Measurements

Time Update Step

Measurement Update Step

time

Figure 3.5: A timing diagram for an iterated Kalman filter. The  fil t e r

iterates the measurement update step some number of times i using a

truncated Taylor series expansion of the measurement function.
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estimates on a collection of observations that when used together uniquely determine the

unknowns.

In practice, because the observations may be noisy or the system may be ill-

conditioned, the UNC implementation of the Collinearity method generally collected an

over-abundance of observations prior to attempting an estimate, thus overconstraining the

system of unknowns and rendering it completely observable. Besides being slow because

of the need for multiple observations, the Collinearity method cannot directly estimate the

target motion derivatives, e.g. linear and angular velocities. (See [Azuma91] for a

complete description and mathematical derivation.) The newer UNC optoelectronic HiBall

tracker (1997) on the other hand is expected to use the SCAAT method for tracking. As

discussed in section 1.2 the SCAAT method bases estimates on individual observations so

it is faster and more accurate as described in chapter 2.

Not only are the Collinearity and SCAAT methods related by function, but the

UNC Collinearity implementation provides a real example of a batch-measurement

strategy that can be compared with a corresponding SCAAT implementation. Indeed the

primary experimental comparisons presented in chapter 6 are between Collinearity and

SCAAT implementations.

3.5 Autocalibration (Gottschalk & Hughes)

In 1993 Gottschalk and Hughes presented a method for autocalibrating beacon positions

in the original UNC optoelectronic tracking system [Gottschalk93]. (The original tracking

system and its more recent version are briefly described in appendix D, beginning on

page 191.) The presentation of a method for autocalibration was a significant event

because it meant that the special ceiling panels (see figure D.1 on page 191) could be

made less precise, hence less expensive and easier to install.

The SCAAT method for autocalibration, when applied to the same tracking

system, differs from that of [Gottschalk93] not only in terms of the actual method but also

in terms of the circumstances under which the respective methods can be used. The

autocalibration method of [Gottschalk93] required no special equipment, but it needed to

be performed off-line in a special autocalibration session. In contrast, the SCAAT method

facilitates autocalibration concurrently with unrestricted (normal) ongoing tracking.
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In chapter 6 (beginning on page 119) I present SCAAT simulations of the UNC

HiBall tracking system, a more recent version of the system described in [Gottschalk93].

As part of the chapter 6 experiments I evaluate SCAAT autocalibration.

3.6 The SELSPOT System

As in the original UNC optoelectronic tracking system discussed in section 3.4, the

SELSPOT optoelectronic tracking system [Woltring74] also employs cameras,

optoelectronic beacons, and the collinearity condition equations. It differs in that (1) it

directly estimates position only, (2) it does so off-line rather than in real time, and

(3) while it employs a Kalman filter it does so in a normal (overconstrained or locally

observable) fashion. The measurement update of the Kalman filter incorporates a pair of

2D images of a beacon from two distinct cameras. Thus the measurements obtained per

estimate (2x2=4) overconstrain the system of unknowns (3 position parameters), and the

system is completely observable.

3.7 MCAAT Estimators

For the purpose of comparison with a SCAAT Kalman filter, I categorize estimators that

use  constraints per estimate as multiple-constraint-at-a-time or MCAAT

estimators. In figure 1.3 on page 38 this represents all cases at or above 

(SCAAT) as long as . Furthermore, following the discussion in “A Single

Constraint” on page 37, I categorize estimators that employ  constraints per

estimate as well-constrained estimators. In figure 1.3 this represents all cases where

. For example I would say that the SELSPOT optoelectronic tracking system

discussed in section 3.6 employs a well-constrained Kalman filter. Also figure 3.2 depicts

a well-constrained approach. Indeed one of the reasons the SCAAT method is so

interesting is that the well-constrained implementation is the normal approach. As such the

literature is full of examples of what I call well-constrained estimators. For some

examples, see [Brown92] chapters 6 through 9.
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Because the typical Kalman filter implementation operates in a well-constrained

fashion, the experiments presented in chapter 6 compare a SCAAT implementation with

both a Collinearity (section 3.4) and a multiple-constraint-at-a-time Kalman filter

implementation.

3.8 Kalman Filters and GPS

The Kalman filter is often used in conjunction with GPS receivers to obtain filtered

position estimates. In addition, because the Kalman filter can operate with incomplete

information, it offers the advantage that one can continue to obtain position estimates for a

short period of time while less than the requisite number of satellites are available. As

pointed out in [Kaplan96] (p. 54) the ability to incorporate such incomplete sets of

measurements can be advantageous for example when an aircraft executes a banked turn

(and antennae are blocked) or a user is in a forest with an excessively thick canopy.

The SCAAT method takes this approach to the extreme by operating a Kalman

filter with only partial measurement sets—a single constraint at a time. While the Kalman

filter has been used to ride out exceptional cases of partial satellite data for short and

infrequent periods of time, I am not aware of anybody suggesting, much less justifying,

intentionally riding out partial data as the normal method of tracking as I do in presenting

the SCAAT method. A SCAAT implementation for the purpose of GPS position

estimation would operate only on individual satellite observations, i.e. one satellite at a

time.



Chapter 4. The SCAAT Method

In this chapter I attempt to describe the SCAAT method in very general terms. In doing so

I assume that the reader is somewhat familiar with the Kalman filter. As such I only

provide with a very brief introduction to the Kalman filter in section 4.1; however a more

extensive introduction with some relatively simple examples is provided in appendix B.

For those who desire a more thorough treatment, I suggest the following external

resources (in order):

8 a very accessible introduction is given in Chapter 1 of [Maybeck70];

8 a more complete introduction can be found in [Sorenson70], which also

contains some interesting historical narrative;

8 entire books on the Kalman filter include [Brown92] and [Grewal96];

8 some estimation and control theory texts that also include extensive

discussion of the Kalman filter include [Jacobs93, Gelb74, Maybeck70,

Lewis86].

The SCAAT method is presented here using an extended Kalman filter because it

accommodates both linear and nonlinear measurement models, as discussed in section 4.1

and the preceding references. If all dynamic and measurement models were known to be

linear, a standard Kalman filter could just as well have been used.

In section 4.2 I describe the SCAAT Kalman filter components, in section 4.3 I

describe the associated algorithm for tracking, and in section 4.4 I present modifications to

facilitate concurrent device autocalibration.

4.1 The Kalman Filter in Brief

Ever since R. E. Kalman published his seminal paper in 1960 [Kalman60] the Kalman

filter has been the subject of extensive research and application. It has been used
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successfully for over 30 years in applications ranging from weather and economic

forecasting, to aircraft and spacecraft navigation.

The Kalman filter is a set of mathematical equations that allows one to recursively

estimate the state of a process, given a model of the process dynamics, a model of the

measurement system, and an ongoing sequence of discrete, noisy measurements. The

process or dynamic model may be either continuous or discrete, but it is assumed to be

driven by normally distributed (Gaussian) white noise called the process noise. The

measurement model, which is discrete, deduces what a measurement should be given the

current process state. The ongoing measurements are assumed to be corrupted by normally

distributed (Gaussian) white noise with known variance.

The filter operates in a predictor-corrector cycle, predicting the process state using

the dynamic model, and then correcting the prediction with a (noisy) measurement. In

doing so it inherently maintains the first two statistical moments of the process state: the

mean and the variance. The Kalman filter is optimal in the sense that if several conditions

involving the process, the models, and the actual measurements are met, it minimizes the

expected squared estimate error. While in practice these conditions are often not met, the

Kalman filter is nevertheless very robust and quite often performs quite satisfactorily even

in sub-optimal circumstances.

While the original discrete Kalman filter described in [Kalman60] assumes linear

dynamic and measurement models, nonlinear models can be accommodated using a

variation called the extended Kalman filter. At each filter update step the EKF linearizes its

state and measurement predictions about the previous estimate using a truncated Taylor

series. While this linearization means that the filter will be sub-optimal, the EKF has

nonetheless proved very effective and has thus been historically very popular.

4.2 The SCAAT Kalman Filter

4.2.1 The Dynamic (Process) Model

Modeling the Target Motion

The use of a Kalman filter requires a mathematical (state-space) model for the

dynamics of the process to be estimated, the target motion in this case. While several



74

possible dynamic models and associated state configurations are possible, we have found a

simple position-velocity (PV) model to suffice for the dynamics of our sample data sets.1

In fact we use this same PV model for all six of the position and orientation components

. Discussion of some other potential models and the associated trade-offs

can be found in [Brown92] pp. 415-420. While we believe that a different dynamic model

might improve performance under some circumstances, we consider such model

identification to be future work. This is discussed in section 7.1 of chapter 7.

The continuous-time PV model is depicted in figure 4.1. This model assumes that

the accelerations can be modeled as zero-mean white noise sources . The velocities

are modeled as random walks (integrated white noise), while the position/orientation

states are modeled as integrated random walks. The relevant units for the noise sources are

given in table 4.1.

1. For most tracking problems the precise target motion model is unknown. The resulting effect on 

filter stability is discussed in section 5.1.5.

* [Maybeck70, pp. 137-140]  and  indicate expectation and Fourier transform.

Table 4.1: Output, correlation, and spectral density units for noise sources in figure 4.1

Property Units for Units for 

Output of 

Correlation* 

Spectral density* 
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Figure 4.1: Continuous-time position-velocity dynamic model. The linear

and angular velocities are modeled as a random walks. Each  reflects

the presumed white noise source that drives the model for the position and

orientation state elements corresponding to . 
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The variances of the noise sources can be determined empirically and tuned for different

dynamics, e.g. using the method described in section E.4 of appendix E (page 197).

4.2.2 The Model State and Discrete Transitions

Because our actual implementation is discrete with inter sample time  we model the

discrete state transitions with the standard Kalman filter linear difference equation

. (4.1)

In the standard model corresponding to equation (4.1), the n dimensional Kalman filter

state vector  would completely describe the target position and orientation at any time

t. In practice we use a method similar to [Broida86, Azarbayejani95] and maintain the

complete target orientation externally to the Kalman filter in order to avoid the

nonlinearities associated with orientation computations. In the internal state vector 

we maintain the complete target position as the cartesian coordinates , and the

incremental orientation as small rotations  about the  axis.

Externally we maintain the complete target orientation as the external quaternion

. (See [Hamilton1853, Chou92] for discussion of quaternions.) At

each filter update step, the incremental orientations  are factored into the

external quaternion , and then zeroed as shown below in section 4.3. Thus the

incremental orientations are linearized for the EKF, centered about zero. We maintain the

derivatives of the target position and orientation internally, in the state vector . We

maintain the complete angular velocities internally because the angular velocities behave

like orthogonal vectors and do not exhibit the nonlinearities of the angles themselves. The

complete target state is then represented by the  element internal state vector

(4.2)

and the four-element external orientation quaternion

, (4.3)

where the time designations (t) have been omitted for clarity.

dt
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T

=

a aw ax ay az, ,( ),( )=



76

The  state transition matrix  in equation (4.1) projects the state

forward over the discrete sample time  . For this linear model, the matrix implements

the relationships

(4.4)

for the x position element, and likewise for the remaining elements of equation (4.2). Thus

the complete state transition matrix  is given by

(4.5)

4.2.3 The Process Noise

Uncertainty in the Target Motion

The n dimensional process noise vector  in equation (4.1) models the

uncertainty in the state elements since the previous sample at time . The elements of

the process noise vector are normally-distributed zero-mean white sequences that model

the driven responses of the respective states due to the presence of the white noise sources

 over the sample time . Note that I associate the process noise vector in equation (4.1)

with sample time  as opposed to time . We assume that the elements of  are

uncorrelated over time, but as can be seen in figure 4.1 where , those

elements of  associated with the same spatial coordinates will have non trivial cross

correlations at any particular instant in time. These instantaneous mutual correlations are

reflected in the corresponding  process noise covariance matrix  of equation (4.6),
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where  denotes the statistical expected value. Note that “covariance” is used here in

the statistical sense, and should not be confused with “covariant” in the differential

geometry sense.

(4.6)

Because our implementation is discrete with inter sample time , we can use the transfer

function method illustrated by [Brown92] (pp. 221-222) to compute a sampled process

noise covariance matrix which I denote . (Because the associated random processes

are presumed to be time stationary, I present the process noise covariance matrix as a

function of the inter-sample duration  only.) For the model of figure 4.1, the non-zero

elements of  are given by

(4.7)

for each pair

, (4.8)

where

. (4.9)

The remaining elements of  are 0. The matrix  is the correlation kernel of

the noise sources  shown in figure 4.1. (See also table 4.1.) Note that when comparing

the position and orientation elements of figure 4.1, table 4.1, and equation (4.8) with the

state vector elements in  equation (4.2), , , and . Because the

noise source elements  are independent and the off-diagonal elements of  are

zero, I adopt the abbreviated diagonal-vector notation of equation (4.9). Determination of

the autocorrelation elements  is discussed in section E.4 on page 197.
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The elements  from equation (4.7) are the variances of the noise seen at each

state due to the presence of the zero-mean white noise sources  during the sample

interval . The variance units for the elements  are given in table 4.2.

The covariance matrix  describes a multivariate normal (Gaussian) probability

density similar to that depicted in figure 4.3 on page 85 for a subset of the elements in

equation (4.2). The density exists in the state space defined by equation (4.2), and reflects

uncertainty in the predicted state  in equation (4.1), given the estimated

process noise source magnitudes and the dynamic model configuration. As the inter

sample time  grows, so does the process noise covariance , resulting in an

increasing uncertainty in the value of .

4.2.4 The Measurement Model

The use of a Kalman filter requires not only a dynamic model as described in

section 4.2.1, but also a measurement model. The measurement model is used to predict

the ideal noise-free response of each sensor and source pair, given the filter’s current

estimate of the target state as in equations (4.2) and (4.3). The prediction is then compared

with an actual measurement, and the results are used to generate a correction for the filter’s

current estimate of the target state. If the system employs multiple heterogeneous sensors,

one must develop multiple corresponding heterogeneous measurement models.

It is the nature of the measurement models and indeed the actual sensor measurements 

that distinguishes the SCAAT Kalman filter from a well-constrained Kalman filter.

In the remainder of section 4.2.4 I discuss what to consider when deciding how and when

to measure the available sensors, and how to incorporate the corresponding information.

This includes discussion of how sensors, measurements, and constraints are related, and

what to consider when choosing, designing, and implementing the measurement models

for a SCAAT Kalman filter.

Table 4.2: Variance units for the elements . 
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Single Scalar Measurements

In choosing the measurement elements to incorporate during a SCAAT Kalman

filter measurement update one must consider the available sources and sensors as

described in “Defining the Nomenclature” on page 35, and then identify the constraints

and corresponding measurements that will be used to update the filter. Recall from “A

Single Constraint” on page 37 that in the purest mathematical sense, a single constraint

corresponds to one scalar equation describing a known relationship between the unknown

state vector elements. Correspondingly a SCAAT Kalman filter should, in the purest sense,

generate each new estimate with only a single scalar measurement from one source and

sensor pair.

Multi-Dimensional Measurements

However, just as it sometimes makes sense to discuss estimation problems in terms

of multi-dimensional constraints, e.g. geometric constraints involving points, lines, and

planes, it sometimes makes sense to implement a SCAAT Kalman filter that incorporates

one multi-dimensional constraint per estimate. Such might be the case if, for example, the

available devices can be used in a fashion that yields  simultaneous scalar elements per

measurement. Note that as long as , where  is as described in “A Single

Constraint” on page 37, the -dimensional measurement offers incomplete information.

A Kalman filter that relies only on a stream of such multi-dimensional but incomplete

measurements still embodies the incremental SCAAT idea.

Simultaneous Multi-Dimensional Measurements

As suggested at the end of section 2.3.2, which begins on page 54, even if the

available devices can be used in a fashion that yields  simultaneous or near-

simultaneous scalar elements per measurement, it is sometimes appropriate to sequentially

incorporate smaller groups of  elements per estimate for some . Such might be

the case if, for example, the  scalar elements are obtained simultaneously from multiple

sources and/or sensors that one wants to calibrate individually. By sequentially

incorporating the  simultaneously obtained scalar elements in smaller source/sensor-

m
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m
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specific batches of  elements, one can isolate sensor-specific errors and thus improve

the estimates. Again, if , the filter still embodies the incremental SCAAT idea.

In section 6.2.5 on page 144, I present experiments that demonstrate improved

performance when a batch of simultaneously obtained scalar elements are processed

sequentially, a single constraint at a time.

Criteria for Choosing the Measurements

So given the preceding discussion, what criteria should one use when choosing the

measurement elements or constraints to incorporate during a SCAAT Kalman filter

measurement update? Given the complete set of available sources and sensors for the

system, I suggest the following guidelines:

a. begin by identifying the set of all sensor and corresponding source

elements that can possibly be observed at any one instant in time;

b. within this set identify any single source and sensor pairs that should be

isolated from the others;

c. for each such pair identify the  scalar elements yielded from a

measurement of the sensor with the corresponding source; and

d. apply these guidelines until all the available sources and sensors have

been considered.

Consider, for example, tracking two rigidly mounted 2D cameras that can observe four

fixed beacons or scene points, as depicted for one camera in figure 1.4 on page 39. The

combined use of two sensors (the 2D cameras) and four sources (the beacons) yields a

total of 16 scalar measurement elements for the complete set of sources and sensors: a

 pair for each of four beacons as seen by each of two cameras. If the two cameras

cannot be shuttered and scanned-out simultaneously then guideline (a) would reduce the

original set to two new sets, each with one 2D camera and four beacons. If one is uncertain

about the 3D locations of the beacons, and/or wishes to calibrate (estimate) the positions

concurrently while tracking, then guideline (b) would break these two sets into eight sets,

each with one 2D camera and one beacon. Finally, per guideline (c) one would note that

the eight camera-beacon pairs each yield a  image coordinate, i.e.  scalar

ms

1 ms C<£

ms
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elements. If there were more source and sensor types, one would repeat this process per

guideline (d).

In light of the device isolation discussion in section 2.5.4 on page 61, the

application of the above guidelines in the general case leads to the following heuristic for

choosing the SCAAT Kalman filter measurement elements (constraints):

During each SCAAT Kalman filter measurement update one should observe a single 

sensor and source pair only.

Thus for the two-camera, four-beacon example, we could have immediately determined

that each SCAAT Kalman filter measurement update should incorporate the  image

coordinate of one beacon as seen in one camera. Each such observation could in fact be

considered a single geometric constraint: the intersection of a line, the line from the

beacon to the principal point of the camera lens, and a plane, the image plane.

Predicting the Measurement from the State

Applying the previous heuristic, for each physical sensor of type s we identify the

-dimensional measurement function  and the corresponding measurement

estimate vector  as in equation (4.10).

(4.10)

Each possibly nonlinear measurement function  predicts the ideal noise-free

response of a sensor of type s given the complete target state  and , along with

the device parameter vectors  and  that describe the source and sensor

respectively. One can think of the “b” and “c” in  and  as referring to beacon and

camera, the example source and sensor pair discussed above, illustrated in figure 4.4 on

page 86, and later presented in chapter 6.

4.2.5 The Measurement Noise

The -dimensional measurement noise vector  in equation (4.10) is a normally-

distributed zero-mean sequence that reflects the actual measurement uncertainty due to

random error such as electrical noise. Like the process noise vector, the elements of the

measurement noise vector are considered to be uncorrelated over time but to have an

u v,( )
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instantaneous non trivial correlation. This instantaneous correlation is reflected in the

corresponding  measurement noise covariance matrix  of equation (4.11),

where again  denotes the expected value. Again note that “covariance” is used here

in the statistical sense.

. (4.11)

Note that unlike the process noise, the measurement uncertainty is associated with a

particular instant in time, i.e. the instant of measurement, rather than an interval over time.

Thus while the process noise covariance matrix is a function of a time interval , the

measurement noise covariance matrix is a function of a particular instant in time . The

individual variance elements of  can be estimated from off-line measurements using

the actual sources and sensors, or they can be estimated in real time, perhaps based on the

current state and perhaps making use of knowledge from previous off-line measurements.

The off-diagonal elements of  may be non-zero as further discussed under “Added

Measurement Uncertainty” on page 90. Similar to the matrix  in equation (4.6),

 describes a multivariate normal probability density. In this case it reflects the

uncertainty of the actual measurement  relative to the predicted measurement 

of equation (4.10). As such, the multivariate density associated with  exists in the

measurement space defined by the physical sensor. An actual density for the tracking

system simulated in chapter 6 is given in figure C.4 on page 188.

4.2.6 The Measurement Jacobian

The Sensitivity of the Measurement

For each possible measurement function  we identify a corresponding

measurement Jacobian

, (4.12)

where , the size of the measurement vector in equation (4.10), and ,

the size of the state vector in equation (4.2). Figure 4.5 on page 87 illustrates the Jacobian

for the example image-based tracking system used throughout this dissertation.
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4.2.7 The State Error Covariance

The Filter’s Estimate of its Uncertainty

Finally, I note the use of the standard Kalman filter  error covariance matrix

 which maintains the covariance of the error in the estimated state:

, (4.13)

where  is the error in the filter’s estimate of the state;  is the true

filter state; and  is the filter’s estimate of the state. In the actual KF implementation as

described below,  reflects the filter’s estimate of its own uncertainty. In practice this

may or may not be the same as the actual error. A multivariate density corresponding to

the error covariance matrix is depicted in figure 4.3 on page 85 for a subset of the elements

in equation (4.2). 

4.3 The SCAAT Algorithm for Tracking

In this section I present the complete set of steps necessary to generate an updated SCAAT

filter estimate. While doing so I also describe, from a geometric point of view, what is

happening at each step. It is my hope that this geometric interpretation will leave the

reader with a better feeling for what occurs when a new state estimate is formed from a

locally unobservable or under-constrained measurement.

While this section is not meant as a tutorial for the Kalman filter in general, it

should also shed some light on the operation of a conventional implementation, i.e. a well-

constrained implementation. While the circumstances are different, the basic update steps

are the same. This should be especially evident in the algorithm summary of section 4.3.7

for the reader who is familiar with the conventional Kalman filter.

4.3.1 Time Update

As with the standard Kalman filter, we assume the availability of previous estimates for

, , and . Then for a new measurement  at time t. from

some sensor of type s and the corresponding source, we first compute the elapsed time 

n n¥
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since the previous estimate, and then predict the new state and error covariance. This is

often called the Kalman filter time update step.

(4.14)

During the time update step both the state  and the error covariance P are extrapolated

forward from the previous estimate to the current time. Because the results represent the

best estimates of each just prior to incorporation of the new measurement in the

subsequent steps, they are frequently called the a priori state and error covariance, and are

distinguished from their a posteriori (post measurement correction) counterparts with a

super minus.

Given the dynamic model described in section 4.2.1, the extrapolation makes use

of the derivative information in the state to integrate both  and P forward in time as in

equation (4.4). As such,  is a slightly moved and reoriented version of  as shown in

figure 4.2. Recall that in terms of orientation, the state  maintains only the incremental

rotation, thus the orientation elements are always zero for , and often non-zero for .

When P is extrapolated forward in time and augmented by , the error

covariance does not move per se, but its uncertainty grows as depicted in figure 4.3. The

error covariance can also be re-oriented in the process but this is not shown in figure 4.3.

The addition of the process noise covariance matrix  introduces a fixed amount

of uncertainty, ensuring  which actually improves stability by preventing the filter

from reaching a state where it ignores future measurements. Complete conditions for

stability are discussed in section 5.1.3.

4.3.2 Measurement Prediction

After the time update step, we begin what is often called the measurement update step by

predicting the measurement and computing the corresponding Jacobian.

(4.15)

To best illustrate the results of this step I have chosen to employ a concrete example of a

particular measurement system. Specifically I have chosen to continue with the image-
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z

y

Figure 4.2: Geometric view of state change during time update step. Pe r

the derivatives in the state, the target is predicted to move and reorient since

the time of the last filter estimate. Note that the target rotation is maintained

incrementally in the state so the state orientation is zero before the time

update and non-zero afterwards. The derivative elements of the state have

been omitted and the spacial relationship exaggerated for clarity.
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Figure 4.3: Geometric view of error covariance change during time update

step. The change is shown by a growing probability density for each of x, y,

and z. Note that reorientation is possible in general, but not for the dynamic

model given in section 4.2.1. To visualize with Euclidean dimensions, the

density has been limited to 3D: x, y, and z only. The shape, magnitude, and

orientation are illustrative only. 
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based example originally introduced in section 1.2. (See figures 1.4-1.6 beginning on

page 39.) This choice has the added benefit that it is similar to the system presented in

chapter 6.

Predicting the Measurement

It is important to emphasize that the Kalman filter measurement function 

computes what the system would measure given a certain state and the associated

parameters. With respect to VE tracking, this notion was captured elegantly by my advisor,

Dr. Gary Bishop, when observing that unlike conventional position recovery algorithms,

“Nowhere do you compute where you are from what you see, you only compute what 

you would see from where you [think you] are.”

This notion is closely related to the idea that rather than attempting to compute precise

closed-form estimates of points in state space, the SCAAT method instead pushes the

current state estimate along the track most consistent with the most recent incomplete

observation. (See section 1.3, “An Unusual Approach to Tracking”.) Figure 4.4 illustrates

the relationship between the camera, the scene point, and the measurement  for the

hypothetical image-based system.

For this system, the two scalar elements of  would be computed by using  and  to

translate and rotate the scene point described by  into the target coordinate system,

hs •( )
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camera image plane and coordinate frame described by

b t( )scene point described by

Figure 4.4: Measurement prediction from the state and associated

parameters. The measurement function  is used to predict the

measurement  of the sensor type s, a 2D camera in this example.
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then using  to translate and rotate the point into the camera coordinate system, and

finally using  again to project the point onto the image plane.

Jacobian of the Measurement Function

Figure 4.5 illustrates the meaning of the Jacobian function .

By relating small changes or error in the state to corresponding changes in the

measurement (function), the Jacobian reflects the direction and magnitude of information

or “correction” provided by the measurement. Notice in this case that the measurement

only provides information along directions orthogonal to the line of sight to the scene

point.

4.3.3 The Kalman Gain

We next compute what is usually called the Kalman gain.

(4.16)

The Kalman gain K is used in equation (4.20) below to weight the difference or residual

between the prediction and the actual noisy measurement when correcting the state and

error covariance prediction. The formulation for the gain in equation (4.16) is a result of

the derivation of the Kalman filter [Kalman60, Brown92]. Under the proper conditions,
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Figure 4.5: The measurement Jacobian . The Jacobian matrix

 reflects the change in the measurement  with respect to the state .
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the Kalman gain provides optimal estimation in the sense that the expected squared state

error is minimized. 

The Kalman Gain as a Ratio

Through inspection of equation (4.16) we see that the gain is of the form of a ratio

involving the a priori state error covariance  from equation (4.14) and the presumed

known measurement error covariance . Let us represent this ratio informally as

. (4.17)

Note that equation (4.17) is not proper in that  and  exist in different multi-

dimensional spaces, and must be transformed by H. The ratio is used here only to illustrate

the spirit of one aspect of the actual Kalman gain of equation (4.16).

From State Space to Measurement Space

The first step in actually forming the Kalman gain equation (4.16) is to compute

the product . While not reflected in the informal ratio of equation (4.17), the

Jacobian H plays two crucial roles in computing this product (and in the overall Kalman

gain computation). The first role is to transform the state error covariance  from state

space into measurement space so that it can be combined with the measurement error

covariance  to form the denominator of the informal representation equation (4.17).

Continuing with the image-based example, I illustrate this transformation for a limited set

of state elements in figure 4.6. An actual projected density  from one of the

simulations of chapter 6 is shown in figure C.4 of appendix C (page 188).

The second role of the Jacobian H is to approximate the nonlinear relationship

between the state and the measurement. It can be illuminating to consider the product

 in equation (4.16) in terms of the error magnification of the nonlinear function

 in equation (4.10). Because  uses an estimate of the state to predict the

measurement in equation (4.15), we would like to know how error in that state estimate

propagates through it into the measurement prediction. If we let  be the

standard deviation of the state error, and  be the standard deviation of the
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measurement error, we can work backwards to arrive at the measurement error covariance

corresponding to the state error covariance:

While in theory the nonlinear approximation using H is not optimal, in practice the EKF

often provides satisfactory results. (See the Kalman filter references presented at the

beginning of chapter 4 for more explanation and justification.) Recently Julier and

Uhlmann [Julier95] presented a new and very interesting method for approximating

nonlinear transformations of probability distributions. They claim that the method is more

accurate, more stable, and easier to implement than an EKF. The potential application of

their work is discussed in chapter 7.

Figure 4.6: Project state-space uncertainty into measurement space. The

Jacobian matrix H, which represents change in the measurement with

respect to each state, is used to determine the filter uncertainty in

measurement space (e.g. image plane) given , the uncertainty in state

space. As was the case with figure 4.3, the density has been limited to 3D,

the shape, magnitude, and orientation are illustrative only.
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Added Measurement Uncertainty

The next step in computing the Kalman gain equation (4.16) is to add the

transformed state error covariance  to the measurement error covariance . This

augmenting of the transformed state error covariance is depicted in figure 4.7.  Figure C.4

of appendix C (page 188) shows actual simulated densities for both  and

. The inversion of the sum  in equation (4.16) completes the

denominator of the informal gain ratio of equation (4.17).

Note that if  is of dimension greater than one, as in this example where it is two, it is

not necessarily the case that the off-diagonal elements would be zero. As discussed under

“A Single Constraint” on page 37, there may exist some known correlation between the

elements of the measurement vector. If this is the case, then both the shape and the

orientation of the final density in figure 4.7 can also change.

Back to State Space

The next-to-final step in computing the Kalman gain equation (4.16) is to

transform the  augmented and inverted covariance  back
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Figure 4.7: Completing the denominator of the Kalman gain. The

measurement error covariance  is added to the transformed state error

covariance .
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into state space by pre-multiplying it with the  transposed Jacobian  as in

equation (4.18).

(4.18)

The result of equation (4.18) is effectively the completed denominator of equation (4.17).

The error magnification viewpoint discussed above is applicable here:  reflects

how the augmented and inverted measurement-space uncertainty 

propagates back into state space. And while the  result of equation (4.18) is not

square (much less symmetric, assuming  as can be expected for the SCAAT

approach) the overall operation can be considered somewhat the reverse of that depicted in

figure 4.6.

The Final Gain

The final step in computing the Kalman gain equation (4.16) is to complete the

ratio in equation (4.17) by multiplying  by the denominator equation (4.18). The final

result of the expression equation (4.16) is the  Kalman gain matrix  which is

used to optimally weight the measurement residual  in equation (4.19) discussed in the

next section.2 In fact, the Kalman gain can also be viewed from the error magnification

perspective. From this viewpoint, the error is the measurement residual , and the

Kalman gain controls how the error (residual) propagates into state space.

It is important to note that even if the Jacobian  indicates a complete lack of

information along a particular direction in state space, the final Kalman gain may actually

indicate a non-zero gain along that same direction! Mathematically, this is because the

final operation in the gain computation is the product of  and the denominator

equation (4.18). In particular, each element of the gain matrix is a linear combination of a

row of  and a column of equation (4.18). Therefore if  has non-zero off-diagonal

elements, then an otherwise zero gain element can become non-zero. Intuitively, 

having non-zero off-diagonal elements implies a correlation between two or more states.

Thus even if the current measurement provides no information along a particular direction,

a necessary correction may be implied by a correlation indicated in .

2. Optimality is as discussed in section 2.1 beginning on page 44.
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Finally, because the measurement residual  (described next in section 4.3.4) has

units [measurement units] and the state has units [state units], we would expect the final

Kalman gain  to have units

,

since the purpose of the product  in equation (4.20), presented in the next section, is

to correct the state with the measurement information. Indeed the final result of the

product  in equation (4.20) has the appropriate units [state units]. With respect to

correcting (updating) the error covariance in equation (4.20), because the Jacobian  has

units

,

the product  in equation (4.20) is unitless, and the error covariance units remain

unchanged.

4.3.4 The Measurement Residual

The purpose for computing the preceding Kalman gain is to determine the proper

weighting for the measurement innovation or residual equation (4.19).

(4.19)

This -dimensional residual  reflects the error in the measurement prediction  of

equation (4.15) with respect to the actual (noisy) sensor measurement . As such the

residual consists of both prediction and measurement error, which is why the Kalman gain

of equation (4.16) is a function of both the estimate and measurement covariance.

Continuing with the image-based measurement example, the situation is depicted

in figure 4.8. The filter has some notion of where the target is located and how it is

oriented, which determines its prediction of the measurement  (the image coordinates

of the known scene point). But the actual measurement  indicates what the camera

really “saw”. The difference between the two is the residual—the error in the

measurement prediction.
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Note that the Kalman filter gain equation equation (4.16) is based on the assumption that

the sequence of residuals will be “white” in nature and normally distributed over some

period of time. If the residuals are not white or normally distributed, this could be an

indication that model for the target dynamics is incorrect (see section 4.2.1) or that some

component of the system has experienced a failure. Thus ad hoc residual monitoring

schemes are sometimes employed to detect events such as devices failures or model

transitions. (See for example [Maybeck70], and also section 7.3.)

ẑ

Figure 4.8: The measurement residual. Continuing with the image-based

measurement example, the residual is the -dimensional vector from the

predicted measurement (image-plane coordinates)  to the actual

measurement . The measurement prediction is what the filter thinks it

will see given the predicted state, the actual measurement comes directly

from the camera. (The relationship between the true and predicted state has

been exaggerated for the purpose of illustration.)
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4.3.5 Correct the State and Update the Error Covariance

The final step in the Kalman filter update is to obtain the a posteriori state and error

covariance estimates  and , i.e. to “correct” the a priori state estimate per the

most recent measurement and to update the error covariance appropriately. The necessary

operations are given in equation (4.20).

(4.20)

These operations are illustrated in figures 4.9 and 4.10, which can be compared with their

a priori counterparts depicted in figures 4.2 and 4.3 on page 85.

Both operations of equation (4.20) make the use of the Kalman filter gain

equation (4.16) to effect their change. And while the operation to form the a posteriori

state estimate  should seem somewhat intuitive given the preceding explanations, the

operation to form the a posteriori error covariance  is probably less so. Its origin is in

the Kalman gain derivation which can be found in the various Kalman filter books, e.g.

[Brown92]. Informally, its purpose is to reflect the increased knowledge provided by the

measurement. As such, one would expect the corresponding densities to become smaller

and smaller over time as more and more measurements are incorporated into the estimates.

For a process driven by no noise, i.e.  in equation (4.6) and equation (4.14),

this is indeed the case:  will tend to zero (the null matrix) as more measurements are

incorporated. However for purposes of stability as discussed in section 5.1 beginning on

page 107, we employ a model that is driven by non-zero noise. As such, in a sense 

approaches  in magnitude over time, and is continually being reoriented to reflect

the information (or lack thereof) provided by the most recent measurement. If all of the

measurements provide approximately the same magnitude of information, one can

visualize the density as “spinning” about the origin in response to the stream of

incomplete measurements. A real example of this reorientation can be seen in appendix C

beginning on page 184.

Referring back to figure 4.8 on page 93, two points warrant repetition. The first

point is that in a SCAAT implementation the information provided by the residual 

(which is based on the measurement) is insufficient to completely correct the filter’s a

x̂ t( ) P t( )

x̂ t( ) x̂- K Dz+=

P t( ) I KH–( )P-=

x̂ t( )

P t( )

Q dt( ) 0[ ]=

P t( )

P t( )
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z

y

Figure 4.9: Geometric view of state change after measurement correction.

Per the information in the measurement residual, the a posteriori state

estimate is formed, i.e. the estimated target coordinate frame is moved and

reoriented. Compare this with figure 4.2 on page 85. (Again the derivative

elements of the state have been omitted and the spacial relationship

exaggerated for clarity.)

O

x

world coordinate frame

state coordinate frame after measurement correction

state coordinate frame after time update

Figure 4.10: Geometric view of error covariance change after

measurement update. The change is shown by a refined probability density

for each of x, y, and z. Note that in general the density is reoriented to

reflect the constraint provided by the measurement. Compare this with

figure 4.3 on page 85. (Again to visualize with Euclidean dimensions, the

density has been limited to 3D: x, y, and z only. The absolute shape,

magnitude, and orientation are illustrative only.) 

O

P error covariance (density) after measurement correction=

P-  error covariance (density) after time update=

x

y

z
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priori state estimate. For this image-based example, the constraint provided by the

measurement is only two-dimensional, but the target position and orientation is six-

dimensional. As stated in section 1.3 on page 42, rather than attempting to compute

precise closed-form estimates of points in state space, a SCAAT filter instead “pushes” the

current state estimate along the track indicated by the most recent (incomplete)

observation as indicated by the dashed arc in figure 4.9. A second related point worth

repeating (with respect to the Kalman filter in general) is that the filter does not attempt to

compute where the target is located and how it is oriented, it only computes what the

sensors would “see” given the filter’s estimate of where the target is located and how it is

oriented.

It is interesting to point out that the a posteriori state and error covariance in

equation (4.20) are both based on their a priori counterparts from equation (4.14), which

are based on the a posteriori results from the previous filter update step. This recursive

nature of the Kalman filter means that every estimate is conditioned by all of the previous

measurements, and the initial conditions, but in a very computationally efficient manner.

4.3.6 Update External Orientation

One final bit of geometric “housekeeping” that must be performed is to update the external

orientation and to (subsequently) zero the incremental orientation elements of the state.

(4.21)

(4.22)

Figure 4.11 depicts the complete sequence of internal filter state coordinate frame

transitions throughout a single update. Recall that the incremental orientation elements in

 are zero prior to equation (4.14) as a result of equation (4.22) from the previous filter

update. After equation (4.14) they reflect the velocity-based extrapolated incremental

rotation, after equation (4.20) they reflect the measurement-corrected incremental rotation,

and after equation (4.22) they are returned to zero, i.e. the target state estimate is returned

to an “upright” orientation as depicted in figure 4.11. The entire process is then ready to

begin again when the next measurement is available.

Dâ quaternion x̂ Df[ ] x̂ Dq[ ] x̂ Dy[ ], ,( )=

â â Dâƒ=

x̂ Df[ ] x̂ Dq[ ] x̂ Dy[ ] 0= = =

x̂ t( )



97

4.3.7 The SCAAT Algorithm Summary

The following is a summary of the steps outlined in sections 4.3.1-4.3.6. Each step is

identified with an alphabetic step identifier for later reference, and the original equation

number from sections 4.3.1-4.3.6.

Given an initial state estimate , external orientation estimate , and error

covariance estimate , the SCAAT algorithm proceeds similarly to a conventional

EKF. For each measurement  at time t. from some sensor of type s and

corresponding source, we cycle through the following update steps:

a. Compute the elapsed time  since the previous estimate, predict the

state and error covariance (the Kalman filter time update step).

(4.14)

Figure 4.11: Complete sequence of filter state coordinate frame

transitions. This figure repeats the depictions in figures 4.2 and 4.9, and

adds the final handling of the incremental rotations. After the measurement

update, the incremental rotation is factored into the external orientation,

and the incremental elements are zeroed in preparation for the next filter

returned to an “upright” orientation

z

y
O

x

world coordinate frame

before time update

after time update

after measurement correction

after the incremental elements are zeroed

x̂

x̂ 0( ) â 0( )

P 0( )

zs t( )

dt

x̂- A dt( ) x̂ t dt–( )=

P- A dt( )P t dt–( ) AT dt( ) Q dt( )+=
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b. Predict the measurement and compute the corresponding Jacobian.

(4.15)

c. Compute the Kalman gain.

(4.16)

d. Compute the residual between the actual sensor measurement  and

the predicted measurement from equation (4.15).

(4.19)

e. Correct the predicted tracker state estimate and error covariance

from equation (4.14).

(4.20)

f. Update the external orientation equation (4.3) per the change indicated

by the  elements of the state vector.3

(4.21)

g. Zero the orientation elements of the state vector.

(4.22)

4.3.8 Discussion

Following up on the discussion of section 1.2 on page 36, the key to the SCAAT method is

the set of constraints provided by the measurement vector and measurement function in

equation (4.10). In the general case for the problem being solved, a unique solution

requires  non-degenerate constraints to resolve six degrees of freedom. Because

3. The operation  indicates a quaternion multiply [Chou92].
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individual sensor measurements typically provide less than six constraints, conventional

implementations generally construct a complete measurement vector (or its equivalent)

(4.23)

from some set of  sequential sensor measurements over time , and then

proceed to compute an estimate. Or a particular implementation may operate in a moving-

window fashion, combining the most recent measurement with the  previous

measurements, possibly implementing a form of a finite-impulse-response filter. (See

section E.3.3 of appendix E, page 196.) In any case, for such well-constrained systems

complete observability is obtained at each step of the filter. Systems that collect

measurements sequentially in this way inherently violate the simultaneity assumption, as

well as increase the time  between estimates.

In contrast, the SCAAT method blends individual incomplete observations over

time to provide a globally observable linear system. It does this by computing an updated

estimate using the steps in section 4.3 for each new underconstrained measurement as it

becomes available. The EKF inherently provides the means for this blending, independent

of the completeness of the information content of each individual measurement 

through use of the Kalman gain K in equation (4.16). Moreover, using the measurement

function Jacobian of equation (4.12), the Kalman gain determines a weighting for the

residual  in equation (4.19) based on the rate of change of each measurement with

respect to the current state—an indicator of the information content of the individual

measurement.

4.4 SCAAT Autocalibration

4.4.1 An Overview

The autocalibration approach I describe here involves augmenting the main tracker filter

presented in section 4.2 to effectively implement a distinct device filter (Kalman filter) for

each source or sensor to be calibrated.

In general, any constant device-related parameters used by a measurement function

 from equation (4.10) are candidates for this autocalibration method. As such I

z t( ) zs1

T t1( ) º zsN
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assume that the parameters to be estimated are contained in the device parameter vectors

 and . I also present autocalibration of both the source and sensor—once it is

understood how to include both, omission is straight-forward. Finally I add the following

new notation.

4.4.2 Device Filters

As needed for each device (source or sensor), we create a distinct device filter as follows:

Let , , represent the corresponding device parameters.

a. Allocate an  dimensional state vector  for the device, initialize

with the best a priori device parameter estimates, e.g. from design.

b. Allocate an  noise covariance matrix , initialize with

the expected parameter variances.4

c. Allocate an  error covariance matrix , initialize to indicate

the level of confidence in the a priori device parameter estimates from

(a) above.

4.4.3 Revised Tracking Algorithm

The algorithm for tracking with concurrent autocalibration is the same as that presented in

section 4.2, with the following exceptions. After step (a) in the original algorithm

summary of section 4.3.7, we form augmented versions of the state vector

, (4.24)

the error covariance matrix

, (4.25)

4. Theoretically there is no process noise in a system that estimates a constant. However in 

practice, a small amount of uncertainty prevents settling on incorrect values and allows ongoing 

correction. See the stability discussion in section 5.1.4 on page 111.
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the state transition matrix5

, (4.26)

and the process noise matrix

. (4.27)

The method then follows steps (b)-(g) from the original algorithm summary of

section 4.3.7, substituting the augmented variables, equations (4.24)-(4.27), and noting

that the measurement and Jacobian functions used in equation (4.15) have become

 and  because the estimates of parameters  and  (  and

) are now contained in the augmented state vector  per equation (4.24). After step (g)

we finish by extracting and saving the device filter portions of the augmented state vector

and error covariance matrix

(4.28)

where

and , , and  are the dimensions of the state vectors for the main tracker filter, the

source filter, and the sensor filter respectively.

5. Remember that the device parameters are modeled as constants, hence the identity matrices in 

equation (4.26).
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To summarize, we leave the main tracker filter state vector and error covariance

matrix in their augmented counterparts, while swapping the appropriate device filter

components in and out with each estimate as shown in figure 4.12. The result is that

individual device filters are updated less frequently than the main tracker filter as depicted

in figure 4.13. The more often a device is used, the more it is calibrated. If a device is

never used, it is never calibrated.

4.4.4 Discussion

The ability to simultaneously estimate two dependent sets of unknowns (the target and

device states) is made possible by several factors. First, the dynamics of the two sets are

very different as would be reflected in the process noise matrices. We assume the target is

undergoing some time-stationary random acceleration, reflected in the noise parameters

 of  in equation (4.7). Conversely, we assume the device parameters are

constant, and so the elements of  for a source or sensor simply reflect any allowed

variances in the corresponding parameters: usually zero or relatively small when

compared to the elements of . In addition, while the target is expected to be moving,

the filter expects the motion between any two estimations to closely correspond to the

velocity estimates in the state equation (4.2). If the tracker estimate rate is high enough,

poorly estimated device parameters will result in what appears to be almost instantaneous

Time Update

Measurement Update

1. Augment with device parameters

2. Main tracker algorithm

3. Extract device parameters

Figure 4.12: The revised tracking algorithm for autocalibration. The time

update consists of equation (4.14). The measurement update consists of

equations (4.24)-(4.27), then (4.15)-(4.22), and finally equation (4.28).

h i[ ] Q dt( )

Qp dt( )

Q dt( )
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target motion. The increased rate of the one-step method allows such motion to be

recognized as unlikely, and attributed to poorly estimated device parameters.

4.5 Code Optimization Strategies

Several optimizations are possible to speed the computations described earlier in this

chapter, including modifications made for autocalibration as discussed in section 4.4. All

of the following optimizations were implemented in the simulations described in

chapter 6. Additional optimizations are suggested by [Maybeck70], p. 356.

4.5.1 Jacobian Evaluation

In step (b) of the algorithm (see section 4.3.7) the measurement Jacobian  of

equation (4.15) must be computed in addition to the actual measurement prediction .

While the two sets of computations could certainly be carried out independently, it will

likely make sense to compute the two together concurrently. It is likely that between the

two sets of computations there are common sub-expressions that can be computed once

and then used repeatedly as needed. While modern compilers generally perform common

Device d measurement

Time update step

Measurement update step

time

Figure 4.13: A timing diagram for autocalibration with d devices. Each

device filter is updated only when it is used. The more often a device is

used, the more it is calibrated. If a device is never used, it is never

calibrated. The tracker filter is updated on every step.

Device 2 measurement

Device 1 measurement

Hs •( )

hs •( )
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sub-expression optimizations automatically, these expressions should be examined

manually because any common sub-expressions are not otherwise likely to be nearby in

the code and thus not likely to be optimized automatically.

4.5.2 Sparse Matrices

The computations of equations (4.14), (4.16) and (4.20) can be optimized to eliminate

unnecessary operations on matrices and vectors that are known to be sparse. In particular,

certain elements of the Jacobian H may be zero because the corresponding state elements

are not used in computing  in equation (4.15). Consider the simple case where a

measurement arrives from a rate gyro, e.g. consider . In this case equation (4.15)

becomes

A more complicated but certainly relevant example is that of the UNC HiBall tracking

system (simulated in chapter 6) in which the available measurements are from 2D cameras

observing active beacons in the environment. In this case the velocity components of the

state vector are not needed to compute the corresponding 2D measurement vector  in

equation (4.15)—it is a purely geometric computation involving only the state elements

 and the external orientation . Thus the Jacobian H is

where  represents the coordinates of the beacon as imaged by the 2D camera. (The

 notation was omitted in the denominator of the partial derivatives for clarity.)

Clearly  in equation (4.5) is sparse. Thus for example the matrix multiplies

in equation (4.14) simplify to computations not unlike equation (4.4) for both  and P.

Likewise it quite possible that  in equation (4.11) is diagonal in which case

computations in equation (4.16) can be simplified.
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4.5.3 Symmetry

The matrices ,  and  are all required to be symmetric in the original derivation

of the Kalman filter as indicated by equations (4.6), (4.11) and (4.13) respectively.

Implementing equations (4.14), (4.16) and (4.20) to take advantage of the symmetry by

copying instead of computing the upper (or lower) diagonal elements has the dual effect of

reducing computation and ensuring exact symmetry.

4.5.4 Matrix Inversion

As discussed in chapter 2, one of the basic reasons for employing the SCAAT approach is

to reduce the number of measurements used in computing a new estimate. In particular,

the reduced size of the measurement vector, as compared to a well-constrained

implementation, may allow the matrix inversion in equation (4.16) to be greatly simplified

into a few simple closed-form computations. In the extreme, a one-dimensional

measurement vector means that the inversion in equation (4.16) becomes a single scalar

reciprocal.

4.5.5 Small Angles

The increased data rate of the SCAAT method means it’s likely the 

elements of the state vector  will be relatively small, thus allowing the use of the small

angle approximations  and  in the computations of  and H in

equation (4.15), and  in equation (4.21). While this optimization can significantly

reduce the constants associated with the asymptotic time complexity by eliminating

invocations of the respective trigonometric routines, it will in general introduce some non-

white non-Gaussian noise into the system.

As it turns out, we implemented this optimization in the simulations of chapter 6

and have not perceived any problems. Perhaps this is because the noise in the residual of

equation (4.19) is associated with a particular source/sensor combination and we are

continually changing source/sensor pairs. Or perhaps other (white) system noise is more

significant. In any case, under normal circumstances where there are sufficient constraints

over time, the Kalman filter residuals from the experiments of chapter 6 appear to be

unbiased (zero-mean) and white.

Q dt( ) Rs P

Df Dq Dy, ,( )
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4.6 Source & Sensor Ordering Schemes

Beyond a simple round-robin approach, one might envision a measurement scheduling

algorithm that makes better use of the available resources. In doing so one would like to be

able to monitor and control uncertainty in the state vector. By periodically observing the

eigenvalues and eigenvectors of the error covariance matrix , one can determine the

directions in state-space along which more or less information is needed [Ham83]. This

approach can be used to monitor the stability of the tracker, and to guide the source/sensor

ordering.

The SCAAT method is uniquely positioned to make use of such information, since

conventional (observable) Kalman filters don’t have as much flexibility in picking and

choosing what to measure. As such this approach is discussed as possible future work in

section 7.5 on page 158.

P t( )



Chapter 5. Mathematical Analysis

5.1 Filter Stability

5.1.1 General Conditions for Kalman Filter Stability

Possibly the most significant (and obvious) concern with respect to a SCAAT filter is its

stability. A linear system is said to be stable if its response to any input tends to a finite

steady value after the input is removed [Jacobs93]. For the Kalman filter in general this is

certainly not a new concern, and there are standard requirements and corresponding tests

that ensure or detect stability (see [Gelb74], p. 132):

a. The filter must be uniformly completely observable, 

b. the dynamic and measurement noise matrices in equations (4.6) and

(4.11) must be bounded from above and below, and

c. the dynamic behavior represented by  in equation (4.1) must be

bounded from above.

As it turns out, these conditions and their standard tests are equally applicable to a SCAAT

implementation as presented in this section. Throughout this section I continue the

notation from chapter 4.

5.1.2 Locally Unobservable Measurement Systems

A basic description of observability and its relationship to a sufficiently constrained linear

system is presented in section 1.2 on page 36. More in-depth explanations can be found on

pp. 178-188 of [Jacobs93] and pp. 43-48 of [Maybeck70].

The linear system associated with any single SCAAT observation can be viewed

alone as a distinct time-invariant system. In section 1.2 I stated that each such system in a

SCAAT implementation is locally unobservable. From linear system theory (see

A dt( )
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[Maybeck70] p. 48) we know that a general necessary and sufficient condition for

observability of a time-invariant linear system is that the observability matrix of

equation (5.1) must have rank n.

(5.1)

where  is the dimension of the state. For example, consider a SCAAT system such as that

simulated in chapter 6 where the state vector has dimension  as in equation (4.2)

and the individual measurement vector has dimension  (a 2D camera observing a

single scene point). For any single filter update step we can demonstrate the

unobservability by forming the observability matrix of equation (5.1) and determining its

rank. In particular if we let the  matrix  as in equation (4.14) and the

 matrix H be as in equation (4.15), the resulting  matrix M has a rank of 2,

i.e. the system is unobservable.

So in general there is some number  of measurements that must be taken

before the model is completely observable [Maybeck70]. Referring back to “A Single

Constraint” on page 37,  is the actual number of measurements,  is the number of

independent constraints that can be formed from the  measurements, and . In

other words it must be the case that . A SCAAT implementation does not

explicitly collect the necessary measurements at any one point in time, but instead

implicitly and continually collects them over time by employing a different measurement

model as in equation (4.10) at each filter update step. Because the resulting overall system

is not time invariant, the global observability must be examined through some means other

than equation (5.1).

5.1.3 Complete Conditions for SCAAT Filter Stability

Fortunately there exist some broad conditions which (if satisfied) imply global

observability and stability as outlined in section 5.1.1. Per the work of [Deyst68] (see also

[Gelb74] pp. 131-132) if there are real numbers  and  such that the

conditions

(5.2)
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and

(5.3)

where

are satisfied for all  for some number of estimates , then the global system

formed by equation (4.1) and the various measurement models from equation (4.10) is

uniformly asymptotically stable (and observable) in the large.

Bounded Dynamics

Given  from equation (4.4) the requirement of equation (5.2) says that the

dynamic change over the time between estimates , and the corresponding

uncertainty, must be sufficiently bounded. In other words one must continue to produce

estimates, and one must assume some finite non-zero uncertainty in the form of  in

equation (4.6) in-between each estimate to prevent the filter from reaching a state where it

ignores future measurements.

Bounded Measurement Noise

The requirement of equation (5.3) says that over some number of estimates

, the measurement model noise  of equation (4.11) must always be

bounded. (It is reasonable to expect that both  and  are bounded in most

problems of physical interest.)

Sufficient Constraints

The requirement of equation (5.3) also says that the estimates must always make

use of a sufficient set of sources and sensors such that the Jacobians 

are also bounded. Bounding the Jacobians from below is achieved collectively over time.

Bounding from above is expected for any implementation, lest the system be ill-

conditioned. In other words, one must incorporate a sufficient set of non-degenerate
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source/sensor measurements, i.e. in general  as discussed in “A Single

Constraint” on page 37, and in particular  as discussed above in

section 5.1.2. This is a requirement for any implementation however equation (5.3) allows

the bounding to occur over the time interval .

It is interesting to note that while the requirement in equation (5.3) for sufficient

non-degenerate measurements must be ensured by the source/sensor ordering scheme, to

some extent the SCAAT method inherently addresses its own requirements for bounded

dynamics in equation (5.2). Because each estimate is based on an individual measurement,

the per-estimate measurement time is reduced; the reduced measurement time reduces

; and this in turn can improve the stability of the filter by reducing the intra

estimate dynamics.

Sufficient Sampling Rate

Recall from section 2.2.2 on page 50 that in general the measurement or sampling

frequency should be at least twice the true target motion bandwidth or an estimator may

track an alias of the true motion. The SCAAT method is in principle no different in this

respect, although the requirement has a somewhat unique implication. If the maximum

target motion bandwidth is  , then a SCAAT implementation must—in

theory—incorporate constraints at the rate of

,

where , the number of non-degenerate constraints per well-constrained (WC) estimate,

is as in “A Single Constraint” on page 37. Thus if each measurement provides a single

constraint, measurements must incorporated at the rate of  .

While at first this requirement might appear to dispel some of the temporal

advantages claimed in section 2.2 on page 48, there are three points to keep in mind. First,

in practice it is unreasonable to expect that the maximum bandwidth will always be

needed. When it is, the system will need   to track the

target, when it is not, any excess estimation bandwidth will provide additional filtering

(smoothing). Second, even when the bandwidth is needed, the target cannot move in all

directions of the state space at once. Thus one could use a measurement ordering scheme
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such as that presented in section 4.6 (page 106) to sample along the most fruitful

directions. Finally, in any case the SCAAT method affords all of the other unique benefits

described in chapter 2, e.g. the ability to perform multisensor data fusion and concurrent

autocalibration.

5.1.4 SCAAT Filter With Calibration

With appropriate substitutions, the conditions given in section 5.1.3 on page 108 also

apply to the augmented tracker filter described in section 4.4. Although one is estimating

two sets of dependent unknowns, the conditions can still be satisfied under most

circumstances, for reasonable finite tracking sessions, by tuning the filter parameters.

There is however an added concern about long-term stability of such a system. If

the process noise , see step (b) in section 4.4.2, for all device filters is non-zero,

the individual device filters may collectively drift over long periods of time as the

augmented filter tries to minimize error with general disregard for the “truth”. This is

particularly a problem if a beacon is only observed from one general direction. I claim that

this concern can be addressed by either precisely calibrating a small subset of devices or

parameters through some other (off-line) means, by governing their motion at a fixed

threshold, or by simply declaring a small subset to be perfect. One can effectively lock

parameters in place by initializing the respective device’s process noise matrix  to

zero. When the parameters are subsequently used in an estimate, the measurement residual

 will be attributed to all other elements of the state. The system would thus in a sense

be autocalibrated with respect to the locked components (devices or parameters).

5.1.5 Inaccuracy of the Dynamic Model

The stability discussion in the preceding sections 5.1.1-5.1.4 assumes that equation (4.1)

is a precise model of the actual target dynamics. In practice, the precise target motion

model is not known. For example, with VE tracking systems the target is a human for

which we have no precise motion model. This situation can be represented by rewriting

equation (4.1) as

(5.4)

Qp dt( )

Qp dt( )

Dz

x t( ) A dt( )x t dt–( ) f t( )+=
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where , representing the actual (unknown) target dynamics at time , replaces the

uncertainty represented by  in equation (4.1).

Charles Price [Price68] presents an elegant analysis of Kalman filter stability under

circumstances where one can determine  for a particular problem. However in

concluding remarks he points out that “The problem remains of determining  in a

particular application so that  is actually bounded.” (The term  represents the

difference between the actual unknown signal  and an estimate of it .)

For VE tracking systems we cannot determine or impose structure on  as Price

suggests—this would amount to determining or imposing structure on the user motion. As

such the conditions outlined in section 5.1.3 cannot be fulfilled in practice. While this is

generally the case for any Kalman filter implementation, it might seem of particular

significance for a SCAAT implementation. On the contrary, the SCAAT method inherently

mitigates the lack of knowledge about  by producing estimates at a faster rate than a

corresponding multiple-constraint-at-a-time implementation. The increased rate means

that no matter what the true nature of , the change  is minimized by

reducing . Thus the uncertainty introduced by the lack of knowledge of  can be

better subsumed by  in equation (4.1).

The experiments presented in chapter 6 all made use of the simple dynamic model

given in section 4.2.1. In other words it was assumed that the model was precise or that

. We are certain that this is not a valid assumption, but because our experiments

have demonstrated both stability and improved accuracy (as compared to the other

methods) we are not immediately concerned by the assumption. It remains to be seen

whether an improved model noticeably improves the accuracy. (See section 7.1,

page 155.)

5.2 Computational Complexity

In chapter 2 I argued for the use of a Kalman filter in general, and a SCAAT implementa-

tion in particular. In section 2.2.4 I introduced the notion that the amount of estimate com-

putation is a function of the measurement information. In this section I provide specific

numbers to support the asymptotic expression equation (2.6), and a comparison with the

previous UNC optoelectronic tracker algorithm, the Collinearity algorithm discussed in

f t( ) t

w dt( )

f t( )

f t( )

D f t( ) D f t( )

f t( ) f̂ t( )

f t( )

f t( )

f t( ) f t( ) f t dt–( )–

dt f t( )

w dt( )

f t( ) 0=



113

section 3.4 on page 68. Note that because all of the tracking data is floating-point, I count

only floating-point operations to assess the complexities.

5.2.1 EKF Methods (SCAAT and MCAAT)

Tracking (Without Autocalibration)

Table 5.1 provides floating-point instruction counts for the EKF tracking algorithm

presented in section 4.3 on page 83 for a varying number of measurement elements. The

specific implementation was that employed in the simulations of chapter 6. As discussed

in section 2.2.4 on page 52, the smaller , the less computation .

* The expression shown corresponds to the image-based example presented above in section 5.1, 

and originally in section 1.2.

Table 5.1: Upper bound on EKF floating-point operations. The bounds, which are based

on the algorithm presented in section 4.3 on page 83, are presented as a function of the

state and measurement vector dimensions  and . This allows the comparison of a

SCAAT implementation with various MCAAT implementations. No attempt was made to

account for data accesses.

Step from 

pp. 97-98

As a function of n state and 

m measurement elements

PV model 

( )

Optimized per 

section 4.3.8

a 7044 12

b*

c

d

e

f 71 71 71

g 3 3 3

Total

m m N¤( )

n m

n 12=

4n3 n2 n–+

162nm
97

2
------m+

3985

2
------------m

3985

2
------------m

4n2m 4nm2 m3 3nm–+ + m3 48m2 540m+ + m3 24m2 126m+ +

m m m

2n3 2n2m n2– 2nm+ + 312m 3312+ 204m 3312+

6n3 6n2m 4nm2+ +

+  m3 161nm n–+

+  
99

2
------m 474+

m3 48m2+

+  
5691

2
------------m 10830+

m3 24m2+

+  
4647

2
------------m 3398+
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With the exception of step (b), the expressions given in table 5.1 are valid for any

similarly-implemented 6 DOF EKF-based tracking system. The problem with step (b) is

that different types of devices will likely require different measurement function equations

(4.10). At one extreme, a sensor may offer a direct measurement of one of the state

elements in equation (4.2). In this case, the measurement function performs a trivial data

copy, i.e. no floating-point operations. For example rate gyros could be used to directly

measure each of , , and . At the other extreme, the measurement function may have

to perform relatively complicated operations (such as the case with the image-based

example used previously). For the sake of comparison, I have chosen to offer an

expression that reflects the latter. Not only is this more interesting but it also facilitates

comparison with another existing approach, the one previously employed with the UNC

optoelectronic tracking system.

For the example image-based system from section 5.1 there are 

measurement elements (camera coordinates) for  scene points. Using the expressions for

the PV model EKF from table 5.1 ( ) the total number of floating-point operations

 for an optimized EKF implementation is given in equation (5.5). Compare

equation (5.5) to equation (2.6) on page 52.

(5.5)

Adding Autocalibration

Table 5.2 shows the additional floating-point operations necessary to add device

autocalibration (see section 4.4 beginning on page 99) to the optimized EKF reflected in

table 5.1. Note that calibrating  device parameters affects the size  of the

state vector, but not the size  of the measurement vector. Thus for example while several

matrix multiplies will grow, the time for the matrix inversion in step (c) will not change.

(The expressions in table 5.2 were obtained by evaluating the expressions in table 5.1 with

, and then subtracting the original expressions in table 5.1.) Note that the

augmentation that occurs in step (a) involves only moving data, hence there are no

additional floating-point operations. Also, the increase in operations for step (b) is due

only to the additional Jacobian elements in equation (4.12), otherwise the autocalibration

will not affect the complexity of the measurement function.

ḟ q̇ ẏ

m 2N=

N

n 12=

FP N( )

FPEKF N( ) 8N3 96N2 4647N 3398,  N 1≥+ + +=

np nb nc+= n

m

n n np+=
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While the total additional floating-point operations presented in table 5.2 may appear

daunting, keep in mind that for a SCAAT implementation (in particular)  is likely to be

relatively small, e.g.  for the previous image-based examples. In addition,  is

likely to be relatively small for most devices, e.g.  when trying to

autocalibrate (better estimate) scene point locations for the same example system.

Consider again the image-based system from section 5.1 where  for 

scene points. For an EKF-based system that attempts to concurrently autocalibrate

(estimate) the 3D scene point locations, the additional necessary floating-point operations

for an optimized implementation becomes

. (5.6)

* The expression shown corresponds to the image-based example presented above in section 5.1, 

and originally in section 1.2.

Table 5.2: Added floating-point operations with autocalibration. Expressions reflect the

increase in the fourth column of table 5.1 to accommodate the autocalibration of 

source and  sensor parameters ( ) in an optimized EKF.

Step from 

pp. 97-98
Additional floating-point operations

a 0

b*

c

d

e

f 0

g 0

Total

nb
nc np nb nc+=

162npm

4npm2 4np
2 45np+( )m+

np

2np
3 3

2
---m 71+Ë ¯

Ê ˆ np
2 39m 840+( )np

95

2
------m+ + +

2np
3 11

2
------m 71+Ë ¯

Ê ˆ np
2 4m2 246m 841+ +( )np

95

2
------m+ + +

m

m 2= np

np nb 3= =

m 2N= N

DFPEKF N( ) 48N2 1670N 3216,  N 1≥+ +=
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By combining equation (5.5) and equation (5.6) one arrives at equation (5.7), an

expression for the total number of EKF floating-point operations with autocalibration.

(5.7)

5.2.2 The Collinearity Method

For the example image-based system from section 5.1 there are  measurement

elements (camera coordinates) for  scene points. Using the Collinearity method

(section 3.4 on page 68) implemented as described in [Azuma91], an upper bound on the

number of floating-point operations is given in equation (5.8).1

(5.8)

In equation (5.8) the parameters  and  reflect the number of run-time iterations in the

Collinearity algorithm for the SVD (singular value decomposition) and -convergence

respectively.2 For the experiments of chapter 6,  and .

Note that for an EKF method, equations (5.5)-(5.7) offer precise floating-point

instruction counts. This is possible because the EKF computations are closed-form. On the

other hand, for the Collinearity method equation (5.8) provides only an upper bound on

the floating-point instruction count. This is because the Collinearity computations are

iterative. If the expected values for the parameters  and  are substituted into the upper

bound of equation (5.8), the result is

(5.9)

In practice, the number of Collinearity floating-point instructions is typically fewer than

indicated by the upper bound of equation (5.9) because many loops tend to terminate

early, etc. For the experiments of chapter 6,

. (5.10)

5.2.3 Collinearity vs. the EKF Methods

To compare the computational complexities of the EKF and Collinearity methods using

any of equations (5.5)-(5.10) one must consider the practical range of scene point

1. Note that  here because the algorithm does not estimate derivatives.

2. See [Azuma91] for more explanation about the Collinearity algorithm.

FPEKF N( ) 8N3 144N2 6317N 6614,  N 1≥+ + +=

m 2N=

N

n 6=

FPCollinearity N( ) O 1597 504i+( ) N 1524i 123–+( ) j( )Œ ,  N 3≥

i j

D

E i{ } 33.0= E j{ } 1.8=

i j

FPCollinearity N( )
i 33.0= j, 1.8=

32813N 90305,  N 3≥+£

FPCollinearity N( ) 4630N ,  N 3≥ª
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observations . For a Collinearity implementation,  known scene points can in

theory be used per estimate, while  are more typically necessary in practice

for the system described by [Azuma91]. On the other hand, for an EKF implementation

 known scene points can be used per estimate. The number determines the

observability of the filter, i.e. its classification in the diagram of figure 1.3 on page 38.

Under the circumstances described in section 1.2 on page 36, the use of  known

coplanar scene points per estimate would offer a well-constrained (unique) solution, i.e. a

completely observable EKF implementation. On the other hand, the use of only one scene

point per estimate, i.e. , reflects a SCAAT EKF implementation.

Figure 5.1 (page 118) offers a graphic comparison between Collinearity and EKF

implementations for varying numbers of scene point observations , with and without

autocalibration, optimized and unoptimized. From a per-estimate standpoint, a SCAAT

EKF implementation ( ) is computationally more attractive than either a multiple-

constraint implementation with  or a Collinearity implementation where it must be

that . In addition to being more computationally complex per estimate, the

Collinearity algorithm does not directly estimate the target velocities as can a SCAAT

implementation. If these derivatives were deemed necessary, they would have to

(somehow) be computed in addition to the six parameters inherently computed by the

Collinearity algorithm.

More Estimates per Computation

It is interesting to note from equations (5.5)-(5.10) and figure 5.1 that the total

computation involved in processing a series of twelve (for example) scene points is less

for a Collinearity implementation than for a SCAAT implementation. In fact, twelve times

equation (5.7) with  indicates almost three times the floating-point operations of

equation (5.10) with . So if one was concerned only with the computation

involved in simply “processing twelve observations”, the Collinearity approach might

seem more attractive. But while the SCAAT implementation was “processing” the twelve

observations it would have provided twelve corresponding estimates. The Collinearity

algorithm on the other hand would have provided only one. The SCAAT approach

provides more estimates per computation.

N N 3≥

10 N 15£ £
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Chapter 6. Experiments

In this chapter I describe experiments using the SCAAT approach to tracking with the

UNC HiBall tracking system. See appendix D for a description of the HiBall tracking

system. As part of the development of the HiBall system software, we have built an

extensive simulation environment that makes use of detailed mechanical and electrical

models that are based on real components. In addition, we have executed the SCAAT

computations on the actual target platform to confirm the execution times, etc. See

appendix E for a description of the simulation environment. We (Bishop, Chi, Fuchs,

Welch et al. at UNC) hope to demonstrate a working HiBall shortly after the publication of

this dissertation.

6.1 SCAAT Filter Configuration

In this section, I describe the complete configuration of our SCAAT filter implementation

as it applies to both my simulations and our actual implementation of the HiBall tracking

system. Because I only simulated multiple-constraint-at-a-time and Collinearity methods

for the sake of comparison (we have no intent to actually implement these methods) I

include brief discussions of them in section E.3 of appendix E (page 195).

For the initial implementation of our HiBall system, and thus these simulations, we

have decided to implement autocalibration only for the sources, the beacon positions, and

not the sensors, the HiBall cameras. Thus the SCAAT implementation is configured to

employ both a main HiBall filter as described below in section 6.1.1, and many individual

beacon filters—one filter per LED—as described below in section 6.1.2.

The reasons for this decision coincide with those given in section 2.5.1 beginning

on page 58. The individual HiBall sensors can be readily calibrated off-line and because

they are rigidly mounted within the sensor unit the respective parameters should remain
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constant. This is not the case with the ceiling-mounted beacons. The quantity and

distributed nature of the beacons renders their off-line calibration impractical, and the

beacon positions may change over time as ceiling panels shift from building vibrations.

6.1.1 The HiBall Filter

We have implemented the HiBall filter exactly as presented in section 4.2 beginning on

page 73, including the simple PV dynamic model and the incremental rotations. At any

point in time, the complete filter state is described by the state vector equation (4.2) and

the global quaternion equation (4.3), thus these elements together provide the best

estimate of the HiBall state. The state vector is augmented to implement the beacon

position autocalibration as described in general in section 4.4, and in particular in the next

section. The final augmented state vector is then

(6.1)

where  are as in equation (4.2), and  describes the position of the

beacon currently being used in the filter update.

6.1.2 The Beacon Filters

Following the autocalibration method of section 4.4, we maintain a distinct Kalman filter

for each individual beacon (LED). Because as described earlier we are primarily

concerned with the position of each beacon in world coordinates, this is the per-beacon

parameter we have chosen to autocalibrate.

With more than 3,000 beacons in the current implementation, this may seem like a

daunting task. Referring to section 4.4.2, for each device we need to maintain a state

vector, a noise covariance matrix, and an error covariance matrix. However, because we

assume that all of the beacons are equally likely to move, very little at that, all of the

beacon filters can share a single beacon process noise covariance matrix. Therefore for

each beacon filter we only maintain a three-dimensional state vector and error covariance

matrix, for a total of 12 elements per beacon. The total memory needed for beacon

autocalibration is on the order of 36,000 double words—a relatively small amount by

today’s standards.

x x y z ẋ ẏ ż Df Dq Dy ḟ q̇ ẏ xb yb zb

T
=

)

xºẏ xb yb zb

T
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At each filter update step, after the observation of a beacon, the appropriate beacon

filter state vector and error covariance matrix are swapped in and out of their respective

HiBall filter counterparts as described in section 4.4.3. The single (common) beacon

process noise covariance matrix was determined as described below.

6.1.3 Process Noise 

Because we chose to autocalibrate the beacon positions there are actually two processes

being estimated at each filter update step: the HiBall process and the beacon process. As a

result, we need two distinct process noise matrices:  in equation (4.6) for the HiBall

filter, and  in the augmentation equation (4.27) that is shared by all of the beacon

filters as discussed above in section 6.1.2.

For  we needed to determine noise autocorrelation elements  in

equation (4.7) for . Using the definition of equation (4.9) on page 77

the units for these can be determined from table 4.1 on page 74. Because we could see no

reason to expect a user to favor lateral translation in any particular direction, we defined a

single lateral autocorrelation  to reduce the necessary parameters

from six to five.

For the common beacon noise covariance  we needed to determine the

matrix elements that would reflect a very small amount of uncertainty in the “constant”

parameters, each beacon’s position in world coordinates in this case. (See footnote 4 on

page 100.) We chose to model the uncertainty in each 3D position parameter as a random

walk, i.e. integrated white noise, and we empirically determined the correlation elements

directly as opposed to using transfer function methods. Again, to reduce the number of

parameters, we chose to define one beacon position noise source autocorrelation

 for all of the beacon position parameters , , and

. In addition we assumed that there was no correlation between these elements, i.e.

 should be diagonal:

for . The units for  are .

Q dt( )

Qb dt( )

Q dt( ) m i[ ]

i x y z f q y, , , , ,{ }Œ

m l[ ] m x[ ] m y[ ]=( )∫

Qb dt( )

m b[ ] m xb[ ] m yb[ ] m zb[ ]= =( )∫ xb yb

zb

Qb dt( )

Qb dt( ) i j,[ ] m b[ ] if i j=

0 otherwiseÓ
Ì
Ï

=

1 i j, 3£ £ m b[ ] meters[ ]2
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In total then we needed to determine six SCAAT autocorrelation parameters: 

for . Our method for empirically choosing these parameters is

discussed in section E.4 of appendix E.

6.1.4 Initial Error Covariance

Because we are estimating multiple processes there are multiple error covariance matrices:

the Hiball error covariance matrix and an error covariance matrix for each beacon. As a

result there will be multiple distinct error covariance matrices:  in equation (4.13) for

the HiBall filter, and a  in the augmentation equation (4.25) for each of the beacon

filters as discussed above in section 6.1.2. 

For the various beacon filter’s , where  is the beacon number, we needed to

determine the matrix elements that would reflect the initial uncertainty (variance) in the

constant parameters, each beacon’s position in world coordinates in this case. Because we

believed our initial beacon position estimates to all be equally good (or bad) we chose to

use a common initial error covariance matrix .  In other words, we let

 for all beacons i. To reduce the number of parameters, we chose to use a

single initial variance  for all of the beacon position parameters , , and . In

addition, we assumed that there was no correlation between these elements, i.e. 

should be diagonal. In other words,

for . The non-zero elements  of the error covariance matrix have units of

. Our method for empirically choosing  is discussed in section E.4 of

appendix E.

For the initial HiBall filter error covariance , I used two strategies as follows.

For all of the comparison simulations that I present in section 6.2.3 below, I initialized the

state vector (and the global orientation) with the correct position and orientation values,

and zero velocity components. This approach is justified because in practice we could use

a conventional method such as Collinearity to determine the initial state and then

transition to the SCAAT method once the filter was initialized. For these simulations I set

 to the null matrix to reflect the initial “certainty” in the state vector.

m i[ ]
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However when attempting a “cold start” (start-up with a null state vector) as

discussed below in section 6.2.7, I needed to set the elements of  to reflect the true

lack of confidence in the initial state. The non-zero elements of  for this case are

given in that section.

6.1.5 Measurement Function

With respect to the SCAAT method, we have chosen to define a single constraint for the

HiBall tracking system as one observation of one beacon with one HiBall lens and sensor

pair. Thus the measurement vector given in equation (4.10) and the respective components

in equations (4.11) and (4.12) are all two-dimensional, i.e. . The situation is

similar to that depicted in figure 1.6 on page 41.

For the initial UNC HiBall tracking system implementation, and hence for these

simulations, there is only one sensor type : a HiBall camera (photodiode). Therefore

there is only a need for a single measurement function equation (4.10) to predict the

measurement in equation (4.15). This function needs to predict the  coordinates

that would reflect the position of the image of the respective beacon in the HiBall camera

as discussed in section D.2 of appendix D. In particular for equation (4.15),

(6.2)

The augmented state vector  contains estimates for the HiBall position, the

incremental rotation, and the beacon position as in equation (6.1). Note that because the

source (beacon) information is contained in the augmented state vector there is no need for

a source parameter vector  as in equation (4.10). The sensor parameter vector  on

the other hand contains the camera geometry, the camera position and orientation in

HiBall coordinates and the focal length of the lens/sensor pair. Therefore given the

augmented state vector prediction , the global orientation estimate , and the

camera parameter vector , the measurement function  in equation (6.2) predicts

the measurement as follows:

a. transform the beacon from world space into HiBall space using the

HiBall and beacon position estimates in the predicted state , the

P 0( )

P 0( )

ms 2=

s

u v
T
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T
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global orientation , and the incremental rotation in ;

b. transform the beacon from HiBall space into camera space by using the

results of step (a) and the camera position and orientation in ; and

c. project the results from step (b) onto the camera’s image plane using

the focal length in .

We have implemented the Jacobian matrix function  in

equation (4.12) as a set of functions that collectively reflect the derivative of the predicted

measurement  in equation (6.2) with respect to the augmented state vector . We

determined the set of functions in an off-line examination of the expressions

corresponding to the preceding steps. The resulting  Jacobian indicated in

equation (4.15) is therefore 

for all  and . In the interest of brevity, I have omitted the mathematical details

for both the preceding steps and the Jacobians, as they are relatively straightforward. Keep

in mind that throughout we have implemented the optimizations discussed in section 4.5

on page 103.

6.1.6 Measurement Noise 

To compute the Kalman gain in equation (4.16) we need an estimate of the uncertainty in

each actual camera measurement . This uncertainty takes the form of a

measurement error covariance matrix  as in equation (4.11), where the elements

reflect the expected variances and covariances of the measurement vector elements. While

not necessary, I chose for these simulations to represent the uncertainty in both
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measurement elements with a single variance . In addition, I assumed that there was no

correlation between the elements, i.e. I chose to make  diagonal. In other words,

(6.3)

for . We might achieve improved accuracy with a more selective . Note

that like the error covariance matrix discussed in section 6.1.4 above, the non-zero

elements  of the measurement error covariance matrix have units of . 

For the beacon and camera approach of the HiBall, the variance  in the

measured camera coordinates depends primarily on the beacon signal strength as seen by

the camera. For a particular (constant) beacon energy, this signal strength depends

primarily on two factors: the angle  between the primary axis of the beacon and the

primary axis of the camera, and the distance  from the camera to the beacon as shown

below in figure 6.1. So while not reflected by equation (6.3), the uncertainty (variance) 

is actually a function of this angle and distance, which in turn depend on the state (the

position and orientation of the HiBall), which of course varies with time.

In 1995 Vernon Chi at UNC published a technical report that developed a very complete

noise model for outward-looking optical tracking systems—such as the UNC HiBall

system—along with MACSYMA simulation code and suggested parameters [Chi95].
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Figure 6.1: Measurement signal strength. The strength of the beacon

signal as seen by the camera depends on the angle  and the distance .

As the angle and the distance increase, the signal strength decreases.
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Using Chi’s model, Gary Bishop formulated an approximation for  as a function of the

angle and the distance:

, (6.4)

where

The element  is the standard deviation of the measurement noise for a sighting with

 degrees and  meter. The coefficients a, b, and c were determined by

Bishop using the MACSYMA simulation environment along with the noise model, the

MACSYMA code, and the parameters provided in [Chi95]. An important thing to note

about equation (6.4) is that the noise increases with the square of the distance, and because

, it increases with the cube of the angle.

Just prior to computing the Kalman gain in equation (4.16), we use the HiBall and

beacon information contained in the augmented state vector  to compute the

camera-to-beacon angle  and distance . We then compute  using equation (6.4),

and form  as in equation (6.3).

6.2 Simulation Results

6.2.1 EKF Parameters

High Sampling Rate

Choosing a representative portion of the “typical” data set discussed in section E.1

of appendix E and the method discussed in section E.4, I determined the parameter sets

, , for the three sets of circumstances simulated throughout this

section: no beacon error; 1.7 millimeter RMS beacon error without autocalibration, and

1.7 millimeter RMS beacon error with autocalibration.1 (Gottschalk and Hughes reported

approximately one millimeter of beacon error after use of their calibration scheme

xc

sdb
2

aab
3 bab

2 cab 1+ + +
----------------------------------------------------=

x0 170e-9,=

a -1.074e-6,=

b -2.331e-6,=

c -2.394e-3.=

x0

ab 0= db 1=

a b c, , 1<

x - t( ))
ab db xc

Rs t( )

P N[ ] N 1 3 10, ,=
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[Gottschalk93].) The results of the parameter searches for each of these circumstances,

with each of , are presented below in tables 6.4-6.6 for an observation rate of

1000 Hz. Note that an EKF with  is a SCAAT implementation.

1 1.7 millimeter RMS error was measured after perturbing the beacon positions with zero-mean 

normally-distributed position error with a one millimeter standard deviation.

Table 6.4: EKF parameter sets for perfect beacons.  Parameters   and  do not

apply here because beacon autocalibration was not employed. The units are discussed in

sections 4.2.1 and 6.1.3.

units

N

1 5.05e-1 1.58e-1 6.08e-1 3.66e-1 2.04e-1 — —

3 4.48e-2 3.47e-2 2.68e-1 1.48e-1 4.43e-2 — —

10 1.28e-2 3.44e-3 3.70e-2 2.16e-2 2.94e-2 — —

Table 6.5: EKF parameter sets for 1.7 mm beacon error without autocalibration. Aga in

as with table 6.4, parameters  and  do not apply. The units are discussed in

sections 4.2.1 and 6.1.3.

units

N

1 1.48e-1 5.81e-2 1.05e+1 1.19e+1 1.34e+1 — —

3 3.50e-2 1.83e+0 1.40e+0 9.34e-1 6.71e-1 — —

10 5.64e-3 3.79e-3 4.07e+1 1.17e-2 3.93e-1 — —

N 1 3 10, ,=

N 1=

m b[ ] xb

P N[ ]

meters sec2§[ ]2 radians sec2§[ ]2 meters[ ]2

m l[ ] m z[ ] m f[ ] m q[ ] m y[ ] m b[ ] xb

m b[ ] xb

P N[ ]

meters sec2§[ ]2 radians sec2§[ ]2 meters[ ]2

m l[ ] m z[ ] m f[ ] m q[ ] m y[ ] m b[ ] xb
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Notice in table 6.4 that as the number of constraints N grows, the noise autocorrelation

values ...  shrink. This same inverse relationship is shown in table 6.6 for the

beacon filter parameters  and . This is likely due to the corresponding relationship

between the filter update rate and the number of constraints N—the smaller N, the higher

the update rate, and the higher the allowable target motion cutoff frequency.

On the other hand, in table 6.5 and table 6.6 there appears to be no clear

relationship between the HiBall filter parameters and the number of constraints N. This

appears to be a result of the noise introduced by the beacon error: along some directions in

parameter space the search algorithm was able to take large strides with no significant

improvement in the cost function.

Low Sampling Rates

One question we were interested in was how high (in practice) the filter update rate

must be to ensure the stability of a SCAAT implementation, in particular when beacon

autocalibration was being used. I attempted to address this question by simulating HiBall

systems with lower measurement rates. Because it is reasonable to expect any given

HiBall sampling rate to remain relatively constant, we would likely determine a unique set

of SCAAT filter parameters for the given rate. As such, I repeated the parameter search for

Table 6.6: EKF parameter sets for 1.7 mm beacon error with autocalibration. The  un i t s

are discussed in sections 4.2.1 and 6.1.3.

units

N  

1 3.95e-1 1.07e-1 5.18e-1 1.14e+0 5.89e-1 3.29e-4 2.41e-6

3 4.88e-2 1.42e+0 8.25e-1 1.24e+0 4.49e-1 6.24e-5 5.83e-9

10 4.85e-3 3.29e-3 8.41e+1 8.59e-3 2.14e-2 1.91e-10 9.09e-7

P N[ ]

meters sec2§[ ]2 radians sec2§[ ]2 meters[ ]2

m l[ ] m z[ ] m f[ ] m q[ ] m y[ ] m b[ ] xb

m l[ ] m y[ ]

m b[ ] xb
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both 100 and 10 Hz sampling rates. The resulting SCAAT parameters are given in

table 6.7. The corresponding tracking simulation results are presented below in

section 6.2.9.

Notice that the HiBall filter noise autocorrelation values ...  do not appear to

change significantly with the sampling rate. On the other hand, the beacon filter

parameters  and  clearly decrease in magnitude with the sampling rate. This

makes sense because when the sampling rate approaches the target motion cutoff

frequency it becomes more difficult to distinguish between filter residuals due to target

motion and those due to beacon position error.

Low Dynamics

The PV model employed in these simulations (section 4.2.1 beginning on page 73)

is based on the assumption that the user’s acceleration can be modeled as normally

distributed white noise. While this may or may not be a valid characterization for most

user motion of interest, the level of user dynamics is directly related to the magnitude of

the EKF noise source parameters.

In particular, one would suspect that the optimal set of parameters for low target

dynamics, e.g. a user attempting to remain still, would be very different from those for

high user dynamics. Indeed this turns out to be the case. Using the “still” data set

Table 6.7: SCAAT parameter sets for low sampling rates. The filter parameters were

optimized for 1.7 mm beacon error with autocalibration. The process noise parameters

 have units as discussed in sections 4.2.1 and 6.1.3,  has units .

units

rate 

(Hz)

100 3.07e-1 1.65e-1 5.10e-1 4.20e-1 3.43e-1 1.27e-3 5.94e-6

10 2.74e-1 1.46e-1 7.64e-1 6.89e-1 8.29e-1 1.53e-10 9.42e-10

h i[ ] xb meters[ ]2

P 1[ ]

meters sec2§[ ]2 radians sec2§[ ]2 meters[ ]2

m l[ ] m z[ ] m f[ ] m q[ ] m y[ ] m b[ ] xb

m l[ ] m y[ ]

m b[ ] xb
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described in section E.1 of appendix E, I repeated the parameter search (optimization) for

the SCAAT EKF, with 1.7 mm beacon error and autocalibration. The results are presented

below in table 6.8.

Notice that the parameters given in table 6.6 are relatively small when compared to the

parameters in the SCAAT row ( ) of table 6.8. In section 6.2.10 below, I present, for

the sake of comparison, simulation results using both the parameters of table 6.8 and those

of the SCAAT row from table 6.6. As one would expect, the tracker accuracy is best when

the parameters and the structure of the dynamic model match the target dynamics.

Depending on the expected dynamics, one might therefore consider implementing a

multiple-model implementation, where the filter automatically switches or continuously

varies between multiple dynamic models and (or) parameters. In section 7.3 beginning on

page 156, I discuss such a multiple-model filter as future work.

6.2.2 Error Nomenclature

Throughout sections 6.2.3-6.2.10 I use three main phrases to indicate error quantities:

overall RMS error, overall peak error, and per-estimate RMS error. All three phrases refer

to measures of error in the positions of each of three points in a group located 1 meter in

front of the HiBall as described in section E.4 on page 197 with respect to the cost

function used for parameter optimization (searches). Whenever I refer to point error vector

length, I mean the length of the vector between one of the points’ estimated position and

its true position.

Table 6.8: SCAAT parameters for “still” target dynamics. Compared with the SCAAT

row ( ) of table 6.6 these parameters are small. The parameters were optimized for

1.7 mm beacon error with autocalibration. The units, provided in the second row, are

discussed in sections 4.2.1 and 6.1.3.

 

4.14e-6 9.30e-4 5.95e-4 1.63e-1 7.27e-3 6.99e-3 1.91e-7

N 1=

P 1[ ]

meters sec2§[ ]2 radians sec2§[ ]2 meters[ ]2

m l[ ] m z[ ] m f[ ] m q[ ] m y[ ] m b[ ] xb

N 1=
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Overall RMS Error

When I use the phrase overall RMS error, I mean the root-mean-square point error

vector length over all three points and all of the tracker estimates for a particular run.

Because there are three points examined per estimate, this is the RMS length of  point

error vectors, where E is the overall number of estimates for the simulation run. This

provides a measure of the point error over an entire simulation run. 

Overall Peak Error

When I use the phrase overall peak error, I mean the largest (peak) point error

vector length over all three points and all of the tracker estimates for a particular run. This

provides a measure of the worst-case point error over an entire simulation run.

Per-Estimate RMS Error

When I use the phrase per-estimate RMS error, I mean the root-mean-square point

error vector length within the group of all three points for a single tracker estimate. This

provides a measure of the per estimate point error.

6.2.3 EKF and Collinearity Tracking

Accuracy

Figures 6.2-6.6 (pages 132-135) are plots that offer comparisons between the

simulated accuracy of the Collinearity and EKF methods (including SCAAT) under

various conditions. Figure 6.2 presents Collinearity and EKF comparisons for the

“typical” motion data set (described in section E.1 of appendix E) with no beacon error

and thus no autocalibration. Figure 6.3 presents Collinearity and EKF comparisons for the

same data set with 1.7 mm beacon error without autocalibration. Figure 6.4 presents a

similar comparison, but only for EKF implementations with autocalibration. No

Collinearity results are included in figure 6.4 because Collinearity cannot directly perform

autocalibration. Indeed, part of the motivation for using a Kalman filter is the ability to

perform autocalibration (see section 2.1.4 on page 48).

3E
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Figure 6.2: Collinearity vs. EKF for perfect beacons  (“typical” data set

as described in section E.1 of appendix E). An EKF with  beacons

is a SCAAT implementation. The EKF parameters were taken from

table 6.4.
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Figure 6.3: Collinearity vs. EKF without autocalibration  (“typical” data

set, 1.7 mm RMS beacon position error). The EKF parameters were taken

from table 6.5.
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Figure 6.4:  EKF with autocalibration  (“typical” data set, 1.7 mm RMS

beacon position error). Collinearity results are not included here because

Collinearity cannot (directly) perform autocalibration. The † symbol

indicates a second EKF run through the same data set, inheriting the

autocalibrated beacon position estimates from the first run. The EKF

parameters were taken from table 6.6.
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As a sanity check for the results in figure 6.4, figure 6.5 (page 136) provides a comparison

of Collinearity and SCAAT (with autocalibration) implementations for various other

individual motion data sets (see section E.1 of appendix E). For both methods, all of the

runs began with 1.7 mm beacon error.

Additionally, a SCAAT run through the data sets was repeated a second time to see

how SCAAT would perform if given already (partially) autocalibrated beacons. This is

meant to simulate a user walking under a particular area of the ceiling more than once, or

possibly the systematic inheritance of calibration values from a previous user’s session.

The results for this second run are denoted with the † symbol in each of figures 6.4-6.6.

Finally, figure 6.6 (below) summarizes the individual results of figure 6.5 with

high, low, and average RMS and peak error.
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Figure 6.6: Summary—Collinearity vs. SCAAT with autocalibration.

This chart summarizes the data from figure 6.5, providing the high, low,

and average for each method.
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Figure 6.5: Collinearity vs. SCAAT with autocalibration  ( va r i ous  da t a

sets, 1.7 mm RMS initial beacon position error). The data sets are a subset

of those described in section E.1 of appendix E. The † symbol indicates a

second run through the same data set, inheriting the autocalibrated beacon

position estimates from the first run. (The “typical” data set is not included

in sets a-g.)
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Error Spectra

Figures 6.7-6.9 (pages 138-140) are plots that offer comparisons between the

simulated per-estimate RMS error spectra of the Collinearity and EKF methods, including

SCAAT, under various conditions. Figure 6.7 presents a comparison between Collinearity

and EKF methods with varying numbers of perfectly calibrated beacons. Figure 6.8

presents a similar comparison but for the case where the beacons have 1.7 millimeter RMS

position error, and autocalibration is turned off. Compared with the case of perfect

beacons, the Collinearity noise increased only slightly across the spectrum, while the EKF

noise was “lifted” to approximately that of the Collinearity results. Compare figure 6.8

with figure 6.7.

Figure 6.9 presents a comparison of the different SCAAT results with and without

1.7 mm beacon error, with and without autocalibration. No Collinearity results are

presented in figure 6.9 because Collinearity cannot directly perform autocalibration. As

discussed with figure 6.5 (above), results for a repeat SCAAT run—with inherited

calibrated beacons—are denoted with the † symbol in figure 6.9. Both the first and

second-run SCAAT results with calibration appear to be near perfect in terms of per-

estimate RMS error, i.e. the SCAAT results of figure 6.9 very closely resemble the SCAAT

results of figure 6.7.

The filtering offered by the EKF methods can be seen in each of figures 6.7-6.9 as

the MCAAT and SCAAT error tends to roll-off with higher frequencies. There is no reason

to expect the Collinearity method to do the same because it does not perform any

intentional filtering (by design). Like autocalibration, the ability to filter or smooth

estimates is one of the motivations for using a Kalman filter (see section 2.1.1 on page 48).

Notice in each of figures 6.7-6.9 that there are peaks in the 100-500 Hz range of

the SCAAT data. We believe these result from a correlation between the direction of user

motion and the directions of beacon sightings. Because our camera view selection

algorithm is simply round-robin, we may regularly visit views that provide little

information. For example, if one-third of all sightings are along or near the direction of

motion, then there will likely be a peak at  Hz. This hypothesis is

reinforced by the results presented in figure 6.10; when the view selection is random, the

peaks disappear. A more intelligent view selection algorithm would likely do the same.   

1000 3§ 333.3=
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Figure 6.7: Error spectra for perfect beacons  (“typical” data set). The

numbers in parenthesis in the legend indicated the number of beacons used.

Note the interesting SCAAT peaks above 100 Hz. These are discussed on

page 137 and with figure 6.10. The SCAAT approach clearly has the best

noise characteristics under the perfect-beacon conditions, certainly the best

conditions any autocalibration scheme could hope to achieve.
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Figure 6.8: Error spectra without autocalibration  ( “ t yp i ca l ”  da t a  s e t ,

1.7 mm RMS beacon position error). Collinearity appears to be relatively

flat above 15 Hz, while the EKF methods continue to roll-off the error.

Note the interesting SCAAT peaks above 100 Hz. These are discussed on

page 137 and with figure 6.10.
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Figure 6.10: Peaks in the error spectrum. In all of the error spectrum plots

of figures 6.7-6.9 there are interesting SCAAT peaks above 100 Hz. We

believe that these result from a correlation between the direction of user

motion and the direction of regular beacon sightings. If the camera

selection is random rather than round-robin, the peaks go away. See “Error

Spectra” on page 137 for more information.
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6.2.4 EKF Beacon Autocalibration

Figures 6.11 and 6.12 (page 143) are charts that show the effects of MCAAT and SCAAT

(EKF) autocalibration on the RMS beacon position error. In all of the autocalibration

experiments of this chapter the beacons were initially perturbed with normally distributed

random position error. (See footnote 1, page 127.) I seeded the random number generator

in all simulations to ensure a consistent distribution.

Figure 6.11 compares the results for EKF implementations with the “typical” data

set and varying numbers of beacons: MCAAT implementations with 10 and 3 beacon

observations, and a SCAAT (single beacon at a time) implementation. Figure 6.12

compares the SCAAT autocalibration results for a variety of data sets.

Close inspection of the final position errors for individual beacons in several

simulations revealed that some beacon position estimates actually got worse. This is to be

expected for the reasons discussed in section 4.4.4 (page 102) and section 5.1.4

(page 111). I actually implemented a method for “locking” particular individual beacons

in place as suggested in section 5.1.4, and this seemed to prove successful for these cases.

In any case, the overall  beacon estimates always improved with the SCAAT

autocalibration implementation.

While I did observe occasional individual beacon drift (worsening position) with

autocalibration, I did not observe any collective drift as mentioned in section 5.1.4 of

chapter 5 (page 111). Perhaps this is because my simulations were not long enough—only

four minutes at the longest. However it is my belief that as beacons are seen more and

more, and seen from different perspectives, the beacon estimates should converge to the

true positions. Indeed the occasional drift that I observed was with beacons that were only

briefly observed, and from only one general direction. Like the main tracker Kalman filter,

the individual beacon filters must have observable measurement systems to remain stable,

i.e. to avoid divergence. If a particular beacon is observed only along one direction, the

corresponding measurement system is unobservable and divergence would be expected.

See section 5.1.4 for more discussion on addressing potential drift.
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Figure 6.11: Final beacon error for EKF runs with autocalibration

(“typical” data set).

Figure 6.12: Final beacon error for SCAAT with autocalibration  (various

data sets).
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6.2.5 Simultaneous Observations

At the end of section 2.3.2, which begins on page 54, I stated that the SCAAT approach

had proved valuable even in cases where the observations were truly simultaneous, i.e.

cases where the simultaneity assumption was not inherently violated. In this section I

present some simulation results to support this claim.

For the Collinearity and MCAAT methods, the use of simultaneous observations is

relatively easy to understand as the methods inherently operate on groups of 

observations anyway. But what does it mean for a SCAAT implementation to operate on

such a group? It means that even though the SCAAT filter has access to a relatively “large”

simultaneously obtained measurement vector with  constraints, it still operates on

the individual constraints one at a time. Each time a measurement vector with N

simultaneous constraints becomes available, the SCAAT implementation updates the

entire state N distinct times, resulting in N times the computation. That is, it offers N

complete estimates for the same point in time—each estimate better than the previous, the

Nth being the best for that particular point in time. In this way the SCAAT filter looks a

little bit like an iterated Kalman filter (section 3.3, page 67) in that it offers multiple, N in

this case, subsequently improving estimates for a particular point in time. And while it is

similar, it is not the same as sequential updates (see section 3.2, page 65) because each of

the N SCAAT measurement updates, with its filter residual and associated Kalman gain,

still involves only a single constraint.

Figures 6.13 and 6.14 below are plots that offer comparisons between the

simulated accuracy of the Collinearity and EKF methods, including SCAAT, in systems

where the N beacons can be observed simultaneously. Figure 6.13 presents the case where

the beacon positions are known perfectly and no autocalibration was used. Figure 6.14

presents the case where the beacon estimates are initially perturbed with 1.7 mm RMS

error, and autocalibration is used (for the EKF implementations only). Finally, in a manner

similar to that of section 6.2.4, figure 6.15 depicts the effects of simultaneous observations

on beacon position autocalibration. In each of figures 6.13-6.15 the SCAAT

implementation actually performs better with ten beacons than it does with three as the

ten-beacons heavily overconstrain the solution at each point in time—each of the ten

constraints simply improves the particular estimate more and more. 

N 1>

N 1>
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Figure 6.13: Simultaneous observations, perfect beacons. For the SCAAT

implementation, the N simultaneous beacon observations were still

processed one at a time. Note that there are no  SCAAT results

because “one simultaneously observed beacon” does not make sense.
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Figure 6.14: Simultaneous observations with autocalibration  ( 1 . 7  mm

RMS beacon position error).



147

6.2.6 Moving-Window Observations

I performed several simulations of SCAAT, MCAAT, and Collinearity implementations

using moving-window observations as described in section E.3.3 of appendix E, page 196.

The results were disappointing in that while the data rates were better, the respective

accuracies were not, indeed the accuracy was usually slightly worse than for the fixed-

window counterparts in the presence of beacon position error. I attribute these results to

the fact that a moving-window version “holds on to” a bad measurement, i.e. a

measurement of a poorly located beacon, longer than a fixed-window version. The

resulting error is certainly not white, but is biased along a particular direction as long as

the beacon is “held”. In the interest of time and space I have omitted the quantitative

results of these experiments.
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Figure 6.15: Autocalibration with truly simultaneous observations

(“typical” data set, 1.7 mm RMS beacon position error). Even if the

simultaneity assumption is not violated, a SCAAT EKF implementation

offers improved performance in terms of autocalibration.
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6.2.7 Cold Start

It is possible for a SCAAT implementation to converge even when starting with a

completely erroneous initial state vector. In other words, it is possible for it to perform a

“cold start”. Similarly it is possible for a SCAAT implementation to recover from a

randomly destroyed state. This behavior under proper conditions is a testament to the

stability of the SCAAT method.

Whether or not such cold-start convergence can occur depends on several factors

including the observables of the particular system and the degree of difference between

the actual state and the “cold” state estimate. It is possible to encounter circumstances

where the measurement prediction of equation (4.15) on page 84 has no physical

interpretation. For example, in the case of the UNC HiBall tracking system, one can

encounter circumstances where a beacon is actually in front of a camera, but the filter

thinks it is behind. The problem is that for this particular system, the measurement

function “doesn’t care”, i.e. it will happily predict a measurement, but one that is

backwards.

While there are problems with SCAAT cold starts in general, we have observed

successful cold-start and recovery convergence in various simulations. For the cases where

convergence will not occur, we currently see two possibilities. First, we feel that we

should be able to come up with an elegant method for addressing the “backwards camera”

problem completely within the framework of the SCAAT filter. This seems like the most

attractive option. As a somewhat less attractive, but nonetheless reasonable option, we

could implement a conventional method, e.g. Collinearity, to be used only in times of cold

start or recovery. The SCAAT method would otherwise always be used in the steady-state

operation of the system.

Figure 6.16 (page 150) presents the results of a cold start simulation that

successfully converges. The chart shows the actual per-estimate RMS error (right axis,

thicker line) and the filter error covariance elements (left axis, thinner lines) that

correspond to the given state elements. I show the error standard deviations because they

are more intuitive than covariances. Given 1000 Hz observations it takes a fraction of a

second for the error covariances to converge at some steady-state values and the per-

estimate RMS error to converge to near zero from over four meters initially.
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For this simulation I used , , ,

and . The initial error covariance values need to be large

(qualitatively) so that the filter will rely heavily on the measurements at first. The position

values were chosen based on the dimensions of the simulated ceiling.)

6.2.8 Blocked Cameras

Similar to the case of cold start or recovery described in section 6.2.7, it is possible for the

filter to weather a loss of measurements for some period of time, and then to recover when

measurements are again available. While measurements are unavailable the Kalman filter

offers predictions based on the last state update and the dynamic model.

For the UNC HiBall tracker, we envision these circumstances occurring when the

HiBall cameras are not pointed at the ceiling, e.g. because the user’s head is tilted to one

side, or equivalently when the camera views are physically blocked, e.g. because the user

places their hands over the lenses.

In a manner similar to that of figure 6.16, figure 6.17 (page 150) presents the

results of a simulation where for two seconds the cameras are effectively blocked. While

the cameras are blocked, the KF error covariance diagonals continue to grow as shown by

the respective standard deviations (left axis) as do the KF error estimates as reflected in the

growing per-estimate RMS error (right axis). When the cameras are unblocked, the filter

quickly recovers in terms of the estimated and actual error. 

6.2.9 Low Data Rates

The effect of the measurement rate on SCAAT stability is addressed in theory by the

discussions of general stability in section 5.1.1 (page 107). However we wanted to have

some idea of how the method is affected by low data rates in practice. In particular, we

wanted to know “How slow can we go?” before the filter becomes unstable.

Our simulations seem to indicate that the overriding factor is the Nyquist rate

associated with the bandwidth of the user motion. Given the 5 Hz low-pass filtering that I

performed on the data sets (see “Motion Bandwidth” on page 199) I observed stability,

albeit increased per-estimate RMS error, with measurement rates as low as 10 Hz. On the

other hand, a simulation with a 7 Hz measurement rate quickly diverged.

x 0( ) 0=

) â 0( ) 0= P 0( ) xºz[ ] 2  meters[ ]2=

P 0( ) fºy[ ] 180  degrees[ ]2=
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Figure 6.16: Cold start  (“typical” data set).  For this experiment I

initialized the SCAAT filter state to the null vector and the error covariance

elements to relatively large values: one-half the dimension of the ceiling in

translation, 180 degrees in orientation. 

Figure 6.17: Blocked HiBall cameras  (“typical” data set). At one second

into the data set all of the cameras are blocked, and two seconds later they

are all unblocked.
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While I opted to omit quantitative information about the accuracy at low data rates,

figure 6.18 presents quantitative error spectrum data. Clearly the systems with lower data

rates suffer more in general in terms of noise—compare figure 6.18 with figure 6.9 on

page 140. In figure 6.18 the 10 Hz simulations, both first and second pass through the data

set, demonstrate an order of magnitude greater noise in the common area of the spectrum.

It makes perfect sense that as the sampling rate approaches the user motion bandwidth the

estimator becomes less effective.
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Figure 6.18: Error spectra for SCAAT with low sampling rates  (“typical”

data set, 1.7 mm initial beacon position error, with autocalibration). Note

that the 10 Hz and 10 Hz† signals cannot be distinguished.
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6.2.10 Low Dynamics

In choosing EKF parameters as described in section E.4 of appendix E (page 197) it was

clear that the results would not be optimal for all user motion (optimal in terms of

minimized error for a given dynamic model) but only for the particular motion data set

used during the parameter search. Furthermore, it is likely that the dynamic model we

present in section 4.2.1 and figure 4.1 (page 74) will also be appropriate for only certain

types of VE motion.

This is not a problem that is unique to the subject of this dissertation—it spans a

large area of research usually referred to as system identification. (See for example

[Jacobs93] and [Maybeck70].) Because it is not an inherent SCAAT problem I only touch

on it briefly here, leaving further investigations as suggested future work (see sections 7.1

and 7.3 of chapter 7, page 155).

To demonstrate the effectiveness of multiple parameter sets, I simulated a SCAAT

run of the “still” data set discussed in section E.1 of appendix E (page 194) with and

without specially optimized parameters. The results are given in figure 6.19.
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Figure 6.19: Collinearity vs. SCAAT with autocalibration (“still” data

set). The third SCAAT run uses the specially optimized “still” parameters

from table 6.8. The other two SCAAT runs, plain SCAAT and SCAAT†,

used parameters given in table 6.6.
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Notice in figure 6.19 that the initial SCAAT results are worse than the Collinearity results.

We believe that this is a result of the averaging effect of the over-constrained Collinearity

approach as the simultaneity assumption (see section 2.7 on page 63). In the case of low or

no dynamics, the simultaneity assumption is reasonable, but in the face of dynamics it is

not. Having said this, notice that the second SCAAT results are approximately the same as

the Collinearity results. This demonstrates the improvement due to the autocalibration of

the SCAAT approach. Finally notice the further (possibly unnoticeable) SCAAT

improvements with a specially optimized parameter set.

Figure 6.20 illustrates the filtering by the SCAAT implementation under the

conditions of very low user dynamics, with and without specialized parameters. Again the

filter performs better when the parameters are optimized to match the actual dynamic

conditions.

The results presented in figure 6.19 and figure 6.20 are not meant to be

comprehensive, but to give some indication of the potential improvements from a

multiple-model implementation with, for example, a specialized low user dynamics mode.

It remains to be seen whether or not a multiple-model approach is warranted in practice

for specific circumstances.

6.2.11 Single Scalar Measurements

Recall from “Single Scalar Measurements” on page 79 that a SCAAT Kalman filter

should, in the purest sense, generate each new estimate with only a single scalar

measurement from one source and sensor pair. Yet for my experiments I follow the

“Criteria for Choosing the Measurements” on page 80 and present results for

measurements and the corresponding models where  scalar measurement

elements, a  camera image coordinate.

I note here, only for reassurance, that I did indeed repeat the simulations of this

chapter incorporating only a single scalar element at each measurement update, i.e. I

designed the filter with . The results, as might be expected, were better in terms of

error and noise, but only to a very minor extent. Given the additional computational cost, I

continue to recommend the heuristic presented on page 81.

ms 2=

u v,( )

ms 1=
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Figure 6.20: Error spectra for the “still” data set. The parameters for the

SCAAT and SCAAT† runs were taken from table 6.6, i.e. they were not

optimized for still motion. The remaining SCAAT run used specially

optimized parameters. As with earlier experiments, the unusual peaks

appear to result from regular sightings along directions with little

information. The peaks disappear with random camera selection.



Chapter 7. Future Work

7.1 An Improved Dynamic Model

It is our opinion that the dynamic model presented in section 4.2.1 of chapter 4 (page 73)

is possibly the simplest model one could reasonably imagine implementing. Our reasons

for implementing such a simple model were twofold. First, our simulations (with the

simple model) indicate that error is dominated by other phenomena (e.g. noise). Second,

the simple model was convenient. Since the form of the dynamic model is not a key point

for this dissertation I chose to implement the simplest one that we could get away with.

(We sometimes joke that it’s a testament to the Kalman filter that our simple model works

at all!)

As such we wonder what model is the right model to use. Consider that the PV

dynamic model presented in chapter 4 (see figure 4.1) assumes that the user’s acceleration

can be modeled as normally distributed white noise. Clearly if the acceleration is zero the

assumption is invalid. (See the experiments of section 6.2.10 on page 152.) Likewise if the

acceleration is constant but non-zero the assumption is invalid.

Some valid attempts have been made to choose dynamic models, sometimes based

on reasonable assumptions about or observations of human motion, e.g. see [Azuma95,

Liang91, So92], but we feel that there may be significant performance improvement

hidden in an as-yet unknown better model for human motion.

7.2 Model Parameter Sensitivity

In section E.4 of appendix E (beginning on page 197) I presented a method for

determining the SCAAT filter parameters used in the experiments of chapter 6, and in

tables 6.4-6.6 (page 127) I presented some specific results. However, based on our

experiences using Powell’s method to determine the dynamic model parameters, we

remain curious about how slight changes in those parameters would affect the filter
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performance. While monitoring the progress of the parameter search, we noticed large

improvements (error reductions) with some parameter changes, and almost no change

with others.

As such, no matter what the configuration of the dynamic models (section 7.1) it

would be interesting to evaluate the sensitivity of a particular system to changes in the

dynamic model parameters. Such an assessment might lead to a different configuration, or

even a change in the tracking system itself.

7.3 An Adaptive or Multiple-Model Filter

Because the activities relating to interactive computer graphics range from sitting

essentially still, e.g. looking at a computer monitor, to relatively fast swinging of arms or

even jogging, e.g. a simulator for soldiers, I feel that there may be tremendous advantage

to a multiple-model filter approach [Bar-Shalom93]. Such a multiple-model filter could be

implemented statically where one particular model is chosen one-time just prior to a

tracking session, or dynamically where one or more filters monitor the user dynamics and

switch models as necessary. The switching could involve changes in model form or simply

model parameters, and it could be discreet or piece-wise continuous in nature. (Again, see

[Bar-Shalom93] for a thorough discussion of this topic.)

One source of information that is often used to make switching decisions is the

filter’s residual sequence  from equation (4.19) on page 98. Often, the characteristics of

the residual stream as observed over some finite window of time can indicate the validity

of the current dynamic model or parameter set. If several models or sets are used in

parallel, a separate process can monitor all of the residuals and at every step choose the

estimate from the one filter that seems most likely, based on the size of the residual as

compared to the filter’s current error covariance.

A somewhat unusual or tricky aspect of the SCAAT method with respect to such

residual monitoring is that the ongoing sequence of residuals is based on a constantly

changing set of sources and sensors. In other words, the filter employs a family of

measurement systems as opposed to a single measurement system. Because a constant

overall filter bias, e.g. that resulting from an improper dynamic model, will affect the

Dz
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individual measurement systems in different ways, biases that are clearly evident for each

individual measurement system can begin to appear normal (Gaussian) when examined

collectively! 

This problem is related to the central limit theorem of probability theory [Kelly94,

Maybeck70]. Informally the theorem says that the distribution of a sum of random

variables will approach a normal (Gaussian) distribution as the number of individual

random variables grows. Somewhat surprisingly, this phenomenon actually begins to

occur with even a small number of individual random variables, and is true no matter what

their individual distributions.

Therefore residual monitoring schemes applied to a SCAAT filter must take care to

monitor a separate residual sequence for each measurement system, i.e. source/sensor pair,

as opposed to the single residual sequence resulting from equation (4.19) as would be the

case for a standard Kalman filter. Otherwise, it is possible that an overall filter bias may go

undetected as the very act of switching between measurement systems tends to “whiten”

the collective residual sequence of equation (4.19).

7.4 A Better Estimator

Although I have not taken the opportunity to more thoroughly examine their recent

publications, I am very interested in recent work by Julier and Uhlmann at Oxford

University. In [Julier95] the authors convincingly argue that the linearization approach of

the EKF can actually lead to significant problems for a vehicle (target) undergoing certain

dynamics. They then present a new approach to non-linear filtering, an approach that they

claim is “...more accurate, more stable, and far easier to implement than an extended

Kalman filter.”

Their approach, if I understand it correctly, is to essentially pass around, through

the estimator, complete “miniature” sample sets for the distribution in question. By

transforming the actual values in the sets, the non-linearities are preserved. The necessary

statistics are then extracted from the sample sets as needed. In contrast, these non-

linearities are lost in the EKF as it is implemented using a truncated Taylor series to

approximate the non-linear function.
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I think that this work warrants further investigation, as it may offer noticeable

improvements resulting from a better and possibly even faster (computationally)

estimator. The potential improvements discussed above in sections 7.1 and 7.3 still apply

to this method also.

7.5 Source and Sensor Ordering

As discussed in section 4.6 on page 106, it might be possible to improve performance and

flexibility by dynamically altering the individual source/sensor selection strategy. For

example, in the HiBall simulations of chapter 6 we observed peaks in the error spectra that

we believe are induced by repeated visitation of source/sensor pairs that do not provide

useful information. See figure 6.10 on page 141 and the corresponding discussion in

“Error Spectra” on page 137. This strategy could also prove useful in other systems, e.g.

hybrid tracking or estimation systems.

I believe that relatively fast eigenvector and eigenvalue determination strategies

exist and could be applied to this problem as discussed in section 4.6. In any case, the

computations may not be necessary at each step but might be performed periodically to

choose a new selection strategy. Furthermore it may be possible to compute the

eigenvectors and eigenvalues one time at initialization and then propagate them along at

the same time as the Kalman filter error covariance matrix, using the same or similar

mathematics.

7.6 Solving a System of Simultaneous Equations

Given a set of  unknowns, and a set of  equations (linear or nonlinear) that

simultaneously describe a known relationship between the unknowns, several methods

exist for solving for the unknowns. For several examples, see [Press90]. The Kalman filter

can also be used to estimate the unknowns by mapping the given equations and constraints

into the Kalman filter framework.Furthermore, I believe that it would be interesting to

investigate the application of the SCAAT method to this problem.

For example, consider a linear system of equations

.

n m

Ax b=
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where , , and  have dimensions , , and  respectively. In this case one could

use the vector  as the state vector, the vector  as the measurement vector, and the matrix

 as the measurement matrix. Then as with equation (4.10), one could define the

measurement models as

(7.1)

for all . (The notation  is used to indicate row  of matrix .) In

this case, each corresponding noise element  could be used to represent the

uncertainty in the actual constraint . Because the unknowns are (presumably)

constant, the state transition matrix would be the identity matrix, and the process noise

would likely be very small and constant.

Note that for this simple example one could indeed perform the estimation in batch

mode, that is by using equation (7.1) to estimate the  elements of , then computing the

-dimensional residual , and using that to update the filter. However, I believe

that there might be case where one wants to estimate using fewer than  elements at a

time. For example, one might want to trade-off computation time for convergence time in

order to reach some relatively quick approximation of .

Furthermore if the elements of  are changing over time, one could implement a

“smart” ordering scheme in the spirit of section 7.5. One could for example maintain a

sorted list of the residuals (the individual elements) from , and at each update

incorporate only those constraints (equations) with the largest corresponding residuals,

perhaps even just a single constraint.

7.7 Other Tracking Implementations

Finally, I would like to see the SCAAT algorithm implemented in some other tracking

systems beyond the UNC HiBall tracking system, for example the systems listed in

table 2.2 on page 63. In particular, I would be interested in seeing the method applied to

(1) magnetic tracking systems, e.g. the Polhemus Fastrak and the Ascension Bird, (2) a

GPS navigation system, and (3) an computer-vision-based system. With respect to the

magnetic systems, the implementation could be difficult because it’s not clear what level

of measurement control or insight the general user has. A GPS implementation shows
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more promise as many modern receivers provide the user with access to relatively low-

level measurement information [Kaplan96]. Finally, a computer-vision based system may

be in the future as we (Bishop, Chi and Welch) are currently in the process of proposing a

new inertial/optical hybrid tracker. 



APPENDIX A. THE SIMULTANEITY ASSUMPTION

A.1 An Example 2D Tracker

Let us evaluate a hypothetical two-dimensional inside-looking-out optoelectronic tracker

as shown below in figure A.1. In this case, the target to be tracked is a platform with two

one-dimensional pinhole cameras (sensors) mounted on it, side by side, both looking out

at a beacon that is fixed in the environment at point . Let’s assume that we are interested

in estimating the platform’s true position  as it moves about in two dimensions.

Each of the two pinhole cameras mounted on the platform has an origin that is distance

 from the platform origin  as shown in figure A.2. An observation of either

camera consists of measuring the point along the respective camera’s 1D image axis at

which the image of the beacon at  impinges. We will refer to this point as  for

camera 1, and  for camera 2 as shown in figure A.2. Each of these measurements is

taken with respect to corresponding camera’s origin.

b

x x y,[ ]=

(0,0)

Figure A.1: A simple 2D inside-looking-out optoelectronic tracker. The

diagram represents a 2D tracking application where a platform with origin

 moves about in  and . On the platform are two 1D pinhole

cameras, side by side with baseline , and a fixed beacon at .
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Assuming that we know the fixed position  of the beacon, the common focal length f of

the cameras, and the baseline  between the cameras, we can measure the values  and

, and then compute the position  of our platform:

, (A.1)

. (A.2)

A.2 The Target in Motion

Referring back to figure A.1 and figure A.2, given a true platform position , the

fixed position  of the beacon, the common focal length f of the cameras, and

the baseline  between the cameras, we can arrive at closed-form equations for the

observed camera measurements  and :

, (A.3)

. (A.4)

f

Figure A.2: A close up of the 2D target platform and the two 1D pinhole

cameras. The focal length f is the same for both cameras, the origins of the

cameras with respect to the platform origin  are  and ,

and the camera coordinate axis extend right and up. The image of the bea-

con  along each 1D camera’s image plane is at  and  respectively.
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Using these equations we can illustrate the effect of the simultaneity assumption on our

2D tracker by simulating a position estimate while making the assumption. If we assert

that  is measured first, then equation (A.3) can remain as is. If it takes  seconds to

measure , then we would be measuring  not at position  but at position

 as shown in figure A.3.

If during time  we are moving with linear velocities  and , then  measured at time

 becomes

. (A.5)

For the purpose of our example let us fix  [meters],  [meters], and

 [meters]. Then let’s assume that the object being tracked is moving diagonally

with  [meters/second], and that the measurement time is  ms. At

the time of the first beacon observation, , let’s say that the target is located at

 [meters]. (A.6)

Then at the time of the second beacon observation, , the target has moved to the

position

 [meters]. (A.7)

In other words, the target has moved 5 mm in x and y between observations  and . So

what would be the actual measured values of  and  given the preceding conditions?

Using equations (A.3) and (A.5) we see that the tracker would have measured

u1 tm

u1 u2 x t( )

x t tm+( )

(0,0)

Figure A.3: Sample track. Example motion undergone during time  by

our simple 2D tracker. The scale is exaggerated for illustration of the point.
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tm ẋ ẏ u2

t tm+

u2

f

2
---Ë ¯
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ẋ ẏ 0.5= = tm 10=

u1

x t( ) 1 1,[ ]=

u2

x t tm+( ) 1.005 1.005,[ ]=

u1 u2

u1 u2



164

 [meters], and 

 [meters].

These numbers represent the observations that would have occurred under the given

circumstances. Given these observations we can then use equations (A.1) and (A.2) to see

what our estimate would have been:

 [meters], and (A.8)

 [meters], (A.9)

in other words,

 [meters]. (A.10)

Comparing equation (A.10) with equations (A.6) and (A.7) we see significant differences.

Our estimate in y was off by almost three centimeters when compared to the true position

at either time t or . I like to think of this error as a “distortion” introduced by the

simultaneity assumption.

 To further observe the effect of this distortion we can substitute equations (A.3)

and (A.5) into equations (A.1) and (A.2) to obtain closed-form solutions for the distorted x

and y position estimates. In figure A.4 I have plotted the distorted x and y estimates versus

 from 0 to 100 milliseconds for the given conditions, and in figure A.5 a parametric

version showing the distorted x versus the distorted y (i.e. the distorted position) for the

same range of .

A.3 Further Illustrations

For this particular simulation, the problems caused by the simultaneity assumption are

even more evident when the platform undergoes acceleration. figure A.6 below contains a

family of curves that show how the x position estimates become skewed as the platform

undergoes one second of motion with  [meters/second].

The “truth” curve with  resembles  for some

constant  as would be expected when integrating a sinusoidal velocity. Note the skewing

of  with measurement delay  = {0, 10, 40, 70, 100} milliseconds.
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Figure A.4: Estimated position versus measurement delay. The  pos i t ion

estimate (in meters) versus the time  between observations  and .

Note that if  is 0, then the simultaneity assumption is valid and the esti-

mated position is the true position [1,1]. However as the measurement time

increases, the final estimates for x and y become distorted as shown for

delays from 0 to 100 milliseconds. The solid dots show the distorted posi-

tions reported by equations (A.8) and (A.9).
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Figure A.5: A parametric version of figure A.4. The plot depicts the 2D

position estimate  parametric in  from 0 to 65 milliseconds.

The sol id  dot  marks the dis tor ted posi t ion est imate given by

equation (A.10). Again if  is 0 (lower left on curve) then the simultane-

ity assumption is correct and the estimate position is the true position [1,1].

It is not shown, but with a measurement time of 100 milliseconds the esti-

mate is off by approximately two centimeters in x, and two decimeters in y.
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This example was meant to highlight the distortion caused by the simultaneity assumption.

It should be apparent that as measurement times increase, the SCAAT method appears

more and more attractive in terms of avoiding the distortion caused by the simultaneity

assumption.
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Figure A.6: Error caused by the simultaneity assumption. The family of

curves shows how simulated position estimates become skewed by the

simultaneity assumption as a target undergoes one second of motion with

sinusoidal velocity. Note the skewing of the estimate with sensor measure-

ment times of  milliseconds.tm 0 10 40 70 100, , , ,{ }Œ

assumption with 100 ms measurement time.
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APPENDIX B. THE KALMAN FILTER

This appendix is a copy of a UNC technical report written by Welch and Bishop in 1995

[Welch95]. It is included to provide a ready and accessible introduction to both the

discrete Kalman filter and the extended Kalman filter.

B.1 The Discrete Kalman Filter

In 1960, R.E. Kalman published his famous paper describing a recursive solution to the

discrete-data linear filtering problem [Kalman60]. Since that time, due in large part to

advances in digital computing, the Kalman filter has been the subject of extensive research

and application, particularly in the area of autonomous or assisted navigation. A very

“friendly” introduction to the general idea of the Kalman filter can be found in Chapter 1

of [Maybeck70], while a more complete introductory discussion can be found in

[Sorenson70], which also contains some interesting historical narrative. More extensive

references include [Jacobs93, Gelb74, Maybeck70, Lewis86, and Brown92]

B.1.1 The Process to be Estimated

The Kalman filter addresses the general problem of trying to estimate the state  of

a first-order, discrete-time controlled process that is governed by the linear difference

equation

, (B.1)

with a measurement  that is

. (B.2)

x ¬nŒ

xk 1+ Akxk Buk wk+ +=

z ¬mŒ

zk Hkxk nk+=
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The random variables  and  represent the process and measurement noise

(respectively). They are assumed to be independent (of each other), white, and with

normal probability distributions

, (B.3)

. (B.4)

The  matrix A in the difference equation (B.1) relates the state at time step k to the

state at step k+1, in the absence of either a driving function or process noise. The 

matrix B relates the control input  to the state . The  matrix H in the

measurement equation (B.2) relates the state to the measurement zk.

B.1.2 The Computational Origins of the Filter

We define  (note the “super minus”) to be our a priori state estimate at step k

given knowledge of the process prior to step k, and  to be our a posteriori state

estimate at step k given measurement . We can then define a priori and a posteriori

estimate errors as

(B.5)

The a priori estimate error covariance is then

, (B.6)

where  denotes mathematical expectation, and the a posteriori estimate error

covariance is

. (B.7)

In deriving the equations for the Kalman filter, we begin with the goal of finding an

equation that computes an a posteriori state estimate  as a linear combination of an a

priori estimate  and a weighted difference between an actual measurement  and a
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measurement prediction  as shown in equation (B.8). Some justification for

equation (B.8) is given in section B.1.3.

(B.8)

The difference vector  in equation (B.8) is called the measurement

innovation, or the residual. The residual reflects the discrepancy between the predicted

measurement  and the actual measurement . A residual of zero means that the two

are in complete agreement. 

The  matrix K in equation (B.8) is chosen to be the gain or blending factor

that minimizes the a posteriori error covariance of equation (B.7). This minimization can

be accomplished by first substituting equation (B.8) into the above definition for ,

substituting that into equation (B.7), performing the indicated expectations, taking the

derivative of the trace of the result with respect to K, setting that result equal to zero, and

then solving for K. For more details see [Jacobs93, Maybeck70, and Brown92]. One form

of the resulting K that minimizes equation (B.7) is given by*

. (B.9)

Looking at equation (B.9) we see that as the measurement error covariance  approaches

zero, the gain K weights the residual more heavily. Specifically,

.

On the other hand, as the a priori estimate error covariance  approaches zero, the gain

K weights the residual less heavily. Specifically,

.

Another way of thinking about the weighting by K is that as the measurement error

covariance  approaches zero, the actual measurement  is “trusted” more and more,

* All of the Kalman filter equations can be algebraically manipulated into to several forms. 

Equation (B.9) represents the Kalman gain in one popular form.
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while the predicted measurement  is trusted less and less. On the other hand, as the a

priori estimate error covariance  approaches zero the actual measurement  is trusted

less and less, while the predicted measurement  is trusted more and more.

B.1.3 The Probabilistic Origins of the Filter

The justification for equation (B.8) is rooted in the probability of the a priori estimate 

conditioned on all prior measurements  (Bayes’ rule). For now let it suffice to point out

that the Kalman filter maintains the first two moments of the state distribution,

The a posteriori state estimate equation (B.8) reflects the mean (the first moment) of the

state distribution— it is normally distributed if the conditions of equations (B.3) and (B.4)

are met. The a posteriori estimate error covariance equation (B.7) reflects the variance of

the state distribution (the second non-central moment). In other words,

.

For more details on the probabilistic origins of the Kalman filter, see [Jacobs93,

Maybeck70, and Brown92].

B.1.4 The Discrete Kalman Filter Algorithm

We will begin this section with a broad overview, covering the “high-level” operation of

one form of the discrete Kalman filter (see the previous footnote). After presenting this

high-level view, we will narrow the focus to the specific equations and their use in this

version of the filter.

The Kalman filter estimates a process by using a form of feedback control: the

filter estimates the process state at some time and then obtains feedback in the form of

(noisy) measurements. As such, the equations for the Kalman filter fall into two groups:

time update equations and measurement update equations. The time update equations are

responsible for projecting forward (in time) the current state and error covariance
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estimates to obtain the a priori estimates for the next time step. The measurement update

equations are responsible for the feedback—i.e. for incorporating a new measurement into

the a priori estimate to obtain an improved a posteriori estimate.

The time update equations can also be thought of as predictor equations, while the

measurement update equations can be thought of as corrector equations. Indeed the final

estimation algorithm resembles that of a predictor-corrector algorithm for solving

numerical problems as shown in figure B.1.

The specific equations for the time and measurement updates are presented in table B.1

and table B.2. Again notice how the time update equations in table B.1 project the state

and covariance estimates from time step k to step k+1.  and B are from equation (B.1),

while  is from equation (B.3). Initial conditions for the filter are discussed in the earlier

references.

Table B.1: Discrete Kalman filter time update equations.

(B.10)

(B.11)

Time Update
(“Predict”)

Measurement Update
(“Correct”)

Figure B.1: The ongoing discrete Kalman filter cycle. The  t ime  update

projects the current state estimate ahead in time. The measurement update

adjusts the projected estimate by an actual measurement at that time.

Notice the resemblance to a predictor-corrector algorithm

Ak

Qk
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-
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The first task during the measurement update is to compute the Kalman gain, . Notice

that the equation given here as equation (B.12) is the same as equation (B.9). The next step

is to actually measure the process to obtain , and then to generate an a posteriori state

estimate by incorporating the measurement as in equation (B.13). Again equation (B.13) is

simply equation (B.8) repeated here for completeness. The final step is to obtain an a

posteriori error covariance estimate via equation (B.14).

After each time and measurement update pair, the process is repeated with the

previous a posteriori estimates used to project or predict the new a priori estimates. This

recursive nature is one of the very appealing features of the Kalman filter—it makes

practical implementations much more feasible than (for example) an implementation of a

Weiner filter which is designed to operate on all of the data directly for each estimate

[Brown92]. The Kalman filter instead recursively conditions the current estimate on all of

the past measurements. Figure B.2 offers a complete picture of the operation of the filter,

combining the high-level diagram of figure B.1 with the equations from table B.1 and

table B.2.

B.1.5 Filter Parameters and Tuning

In the actual implementation of the filter, each of the measurement error covariance matrix

 and the process noise , given by equations (B.4) and (B.3) respectively, might be

measured prior to operation of the filter. In the case of the measurement error covariance

 in particular this makes sense—because we need to be able to measure the process

(while operating the filter) we should generally be able to take some off-line sample

measurements in order to determine the variance of the measurement error.

Table B.2: Discrete Kalman filter measurement update equations.

(B.12)

(B.13)

(B.14)
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In the case of , often times the choice is less deterministic. For example, this noise

source is often used to represent the uncertainty in the process model equation (B.1).

Sometimes a very poor model can be used simply by “injecting” enough uncertainty via

the selection of . Certainly in this case one would hope that the measurements of the

process would be reliable.

In either case, whether or not we have a rational basis for choosing the parameters,

often times superior filter performance (statistically speaking) can be obtained by “tuning”

the filter parameters  and . The tuning is usually performed off-line, frequently with

the help of another (distinct) Kalman filter.

In closing we note that under conditions where  and .are constant, both the

estimation error covariance  and the Kalman gain  will stabilize quickly and then

remain constant (see the filter update equations in figure B.2). If this is the case, these

parameters can be pre-computed by either running the filter off-line, or for example by

solving equation (B.11) for the steady-state value of  by defining  and solving

for .
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Figure B.2: The complete Kalman filter algorithm. This figure combines

the high-level diagram of figure B.1 with the equations from table B.1 and

table B.2.
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It is frequently the case however that the measurement error (in particular) does

not remain constant. For example, when sighting beacons in our optoelectronic tracker

ceiling panels, the noise in measurements of nearby beacons will be smaller than that in

far-away beacons. Also, the process noise  is sometimes changed dynamically during

filter operation in order to adjust to different dynamics. For example, in the case of

tracking the head of a user of a 3D virtual environment we might reduce the magnitude of

 if the user seems to be moving slowly, and increase the magnitude if the dynamics

start changing rapidly. In such a case  can be used to model not only the uncertainty in

the model, but also the uncertainty of the user’s intentions.

B.2 The Extended Kalman Filter (EKF)

B.2.1 The Process to be Estimated

As described above in section B, the Kalman filter addresses the general problem of trying

to estimate the state  of a first-order, discrete-time controlled process that is

governed by a linear difference equation. But what happens if the process to be estimated

and (or) the measurement relationship to the process is non-linear? Some of the most

interesting and successful applications of Kalman filtering have been such situations. A

Kalman filter that linearizes about the current mean and covariance is referred to as an

extended Kalman filter or EKF.†

In something akin to a Taylor series, we can linearize the estimation around the

current estimate using the partial derivatives of the process and measurement functions to

compute estimates even in the face of non-linear relationships. To do so, we must begin by

† A fundamental “flaw” of the EKF is that the distributions (or densities in the continuous case) of 

the various random variables are no longer normal after undergoing their respective nonlinear 

transformations. The EKF is simply an ad hoc state estimator that only approximates the opti-

mality of Bayes’ rule by linearization. Some very interesting work has been done by Julier et al. 

in developing a variation to the EKF, using methods that preserve the normal distributions 

throughout the non-linear transformations [Julier95].

Qk

Qk

Qk

x ¬nŒ
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modifying some of the material presented in section B. Let us assume that our process

again has a state vector , but that the process is now governed by the non-linear

difference equation

, (B.15)

with a measurement  that is

. (B.16)

Again the random variables  and  represent the process and measurement noise as in

equations (B.3) and (B.4). 

In this case the non-linear function f(•) in the difference equation equation (B.15)

relates the state at time step k to the state at step k+1. It includes as parameters any driving

function  and the process noise . The non-linear function h(•) in the measurement

equation (B.16) now relates the state to the measurement .

B.2.2 The Computational Origins of the Filter

To estimate a process with non-linear difference and measurement relations, we begin by

writing new governing equations that linearize about equations (B.15) and (B.16),

, (B.17)

. (B.18)

where

•  and  are the projected state and measurement vectors from 

equations (B.15) and (B.16),

•  is an a posteriori estimate of the state at step k,

• the random variables  and  represent the process and measurement noise 

as in equations (B.3) and (B.4). 

•  is the Jacobian matrix of partial derivatives of f(•) with respect to , that is

, (B.19)
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• W is the Jacobian matrix of partial derivatives of f(•) with respect to ,

, (B.20)

• H is the Jacobian matrix of partial derivatives of h(•) with respect to ,

, (B.21)

• V is the Jacobian matrix of partial derivatives of h(•) with respect to ,

. (B.22)

Now we define a new notation for the prediction error,

, (B.23)

and the measurement residual,

. (B.24)

Using equations (B.23) and (B.24) we can rewrite equations (B.17) and (B.18) as follows,

, (B.25)

, (B.26)

where  and  are sets (ensembles) of independent random variables having zero mean

and covariance matrices  and . Note that  and  have very different

meanings here than from previous chapters.

Notice that the equations (B.25) and (B.26) are linear, and that they closely

resemble the difference and measurement equations (B.1) and (B.2) from the discrete

Kalman filter. This motivates us to use the measured residual  in equation (B.24) and a

second (hypothetical) Kalman filter to estimate the prediction error  given by

equation (B.25). This estimate, call it , could then be used along with equation (B.23) to

obtain the a posteriori state estimates for the original non-linear process as

. (B.27)

wk

W i j,[ ]
wk j[ ]∂

∂
f i[ ] xk uk 0, ,( )=

xk

H i j,[ ]
xk j[ ]∂

∂
h i[ ] xk 0,( )=

nk

V i j,[ ]
nk j[ ]∂

∂
h i[ ] xk 0,( )=

x̃xk
xk x̃k–∫

x̃zk
zk z̃k–∫

x̃xk
X xk x̂k–( ) ek+ª

x̃zk
H x̃xk

hk+ª

ek hk

WQWT VRVT ek hk

x̃zk

x̃xk

x̂k

x̂k x̃k x̂k+=



177

The random variables of equations (B.25) and (B.26) have approximately the following

probability distributions (see the previous footnote):

Given these approximations and letting the predicted value of  be zero, the Kalman

filter equation used to estimate  is

. (B.28)

By substituting equation (B.28) into equation (B.27) and making use of equation (B.24)

we see that we do not actually need the second (hypothetical) Kalman filter:

(B.29)

Equation (B.29) can now be used for the measurement update in the extended Kalman

filter, with  and  coming from equations (B.15) and (B.16), and the Kalman gain 

coming from equation (B.12) with the appropriate substitution for the measurement error

covariance. The complete set of EKF equations is shown in table B.3 and table B.4.

Table B.3: Extended Kalman filter time update equations.

(B.30)

(B.31)

Table B.4: Extended Kalman filter measurement update equations.

(B.32)

(B.33)

(B.34)
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As with the basic discrete Kalman filter, the time update equations in table B.3 project the

state and covariance estimates from time step k to step k+1. Again f(•) in equation (B.30)

comes from equation (B.15),  and W are the Jacobians of the respective equations

(B.19) and (B.20) at step k, and  is the process noise covariance matrix of

equation (B.3) at step k.

As with the basic discrete Kalman filter, the measurement update equations in

table B.4 correct the state and covariance estimates with the measurement . Again h(•)

in equation (B.33) comes from equation (B.16),  and V are the respective Jacobians of

equations (B.21) and (B.22) at step k, and  is the measurement noise covariance matrix

of equation (B.4) at step k.

The basic operation of the EKF is the same as the linear discrete Kalman filter.

Figure B.3 offers a complete picture of the operation of the EKF, combining the high-level

diagram of figure B.1 with the equations from table B.3 and table B.4.

An important feature of the EKF is that the Jacobian  in the equation for the Kalman

gain  serves to correctly propagate or “magnify” only the relevant component of the

measurement information. For example, if there is not a one-to-one mapping between the
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Figure B.3: The complete extended Kalman filter operation. Th i s  figu re

combines the high-level diagram of figure B.1 with the equations from

table B.3 and table B.4.
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measurement  and the state via h(•), the Jacobian  affects the Kalman gain so that it

only magnifies the portion of the residual  that does affect the state. Of

course if for all measurements there is not a one-to-one mapping between the

measurement  and the state via h(•), then as you might expect the filter will quickly

diverge. The control theory term to describe this situation is unobservable.

B.3 Example: Estimating a Random Constant

In the previous two sections we presented the basic form for the discrete Kalman filter, and

the extended Kalman filter. To help in developing a better feel for the operation and

capability of the filter, we present a very simple example here.

B.3.1 The Process Model

In this simple example let us attempt to estimate a scalar random constant, a voltage for

example. Let’s assume that we have the ability to take measurements of the constant, but

that the measurements are corrupted by a 0.1 volt RMS white measurement noise. In this

example, our process is governed by the linear difference equation

,

with a measurement  that is

.

The state does not change from step to step so . There is no control input so

. Our noisy measurement is of the state directly so . (Notice that we

dropped the subscript k in several places because the respective parameters remain

constant in our simple model.)
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B.3.2 The Filter Equations and Parameters

Our time update equations are simply

,

,

and our measurement update equations are

(B.35)

,

.

Presuming a very small process variance, we let . (We could certainly let

 but assuming a small but non-zero value gives us more flexibility in “tuning” the

filter as we will demonstrate below.) Let’s assume that from experience we know that the

true value of the random constant has a standard normal probability distribution, so we

will “seed” our filter with the guess that the constant is 0. In other words, before starting

we let .

Similarly we need to choose an initial value for , i.e. . If we were absolutely

certain that our initial state estimate  was correct, we would let . However

given the uncertainty in our initial estimate , choosing  would cause the filter to

initially and always believe . As it turns out, the alternative choice is not critical.

We could choose almost any  and the filter would eventually converge. We’ll start

our filter with . 

B.3.3 The Simulations

To begin with, we randomly chose a scalar constant  (there is no “hat” on

the z because it represents the “truth”). We then simulated 50 distinct measurements 

that had error normally distributed around zero with a standard deviation of 0.1 (remember

x̂k 1+

-
x̂k=

Pk 1+

-
Pk Q+=

Kk Pk

-
Pk

-
R+( ) 1–

=

Pk

-

Pk

-
R+

----------------,=

x̂k x̂k

-
K zk x̂k

-
–( )+=

Pk 1 Kk–( )Pk

-
=

Q 1e 5–=

Q 0=

x̂k

-
0=

Pk Pk

-

x̂k

-
0= Pk

-
0=

x̂k

-
Pk

-
0=

x̂k 0=

Pk

-
0π

Pk

-
1=

z 0.37727–=

zk



181

we presumed that the measurements are corrupted by a 0.1 volt RMS white measurement

noise). We could have generated the individual measurements within the filter loop, but

pre-generating the set of 50 measurements allowed me to run several simulations with the

same exact measurements (i.e. same measurement noise) so that comparisons between

simulations with different parameters would be more meaningful.

In the first simulation we fixed the measurement variance at .

Because this is the “true” measurement error variance, we would expect the “best”

performance in terms of balancing responsiveness and estimate variance. This will

become more evident in the second and third simulation. Figure B.4 depicts the results of

this first simulation. The true value of the random constant  is given by the

solid line, the noisy measurements by the cross marks, and the filter estimate by the

remaining curve.

When considering the choice for  above, we mentioned that the choice was not

critical as long as  because the filter would eventually converge. In figure B.5 we

have plotted the value of  versus the iteration. By the 50th iteration, it has settled from

the initial (rough) choice of 1 to approximately 0.0002 (Volts2).

In section B.1.5 we briefly discussed changing or “tuning” the parameters Q and R

to obtain different filter performance. In figure B.6 and figure B.7 we can see what

happens when R is increased or decreased by a factor of 100 respectively. In figure B.6 the

filter was told that the measurement variance was 100 times greater (i.e. ) so it was

“slower” to believe the measurements. In figure B.7 the filter was told that the

measurement variance was 100 times smaller (i.e. ) so it was very “quick” to

believe the noisy measurements.

While the estimation of a constant is relatively straight-forward, it clearly

demonstrates the workings of the Kalman filter. In figure B.6 in particular the Kalman

“filtering” is evident as the estimate appears considerably smoother than the noisy

measurements. 
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Figure B.4: The first simulation: . The true value of

the random constant  is given by the solid line, the noisy

measurements by the cross marks, and the filter estimate by the remaining

curve.
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Figure B.5: Error covariance, first simulation. After 50 iterations, our ini-

tial (rough) error covariance  choice of 1 has settled to about 0.0002
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Figure B.6: Second simulation: . The filter is slower to respond to

the measurements, resulting in reduced estimate variance.
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Figure B.7: Third simulation: . The filter responds to mea-

surements quickly, increasing the estimate variance.
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APPENDIX C. ACTUAL PROBABILITY DENSITIES

This appendix presents plots of both actual (from simulation) error probability densities in

various forms, and an actual Jacobian (measurement) matrix. These plots should be

compared with the sketches in section 5.1 of chapter 5 (page 107). As such I have included

(when appropriate) with each figure caption below references to the appropriate

counterpart in chapter 5.

Aside from the figure captions, this appendix is presented entirely without

commentary, other than to remind the reader that all of the densities are normal (normally

distributed).     
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Figure C.1: Actual state error density before and after time update step.

To visualize with Euclidean dimensions, the densities have been limited to

the three position elements of the state. All axes are in meters. Darker

points reflect greater densities. Notice that the region of darker points in the

lower plot  is “fatter” (and slightly reoriented) as the likelihood

of error has increased. The given Eigenvectors further indicate the

direction of uncertainty. (c.f. figure 4.3, page 85, and figure C.2 below.)
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Figure C.2: 

 

Multiple viewpoints of densities from figure C.1. Any sl ight

horizontal grey regions above and below some of the views are artifacts of

the visualization process.
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Figure C.3: 

 

Actual measurement Jacobian H. I n  o rde r  t o  s imp l i fy

visualization, the Jacobian data has been limited to the three position

elements of the state. All axes are in meters/meters. Note that for this

measurement, the rate of change of the 
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 camera coordinate with respect to

the state position parameters is greater than that for the 
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 camera
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Figure C.4: 

 

Actual measurement-space error densities. The  uppe r- l e f t

density reflects an actual 2D projection of the state error covariance  as

depicted in figure 4.6 on page 89. The upper-right density is the same

augmented by the measurement error covariance  as depicted in

figure 4.7 on page 90. The two are superimposed in the lower image for

comparison. Note the augmented density is “shorter” but slightly “fatter”

as would be expected for an increasing variance.
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Figure C.5: 

 

Actual state error density before and after complete filter

update. The density in the upper plot is the same as that in figure C.1.

Notice that the density in the lower plot  is “skinnier”

(and slightly reoriented) as the likelihood of error has 

 

decreased

 

 per the

actual measurement and the Jacobian shown in figure C.3. (c.f. figure 4.10,

page 95, and figure C.6 below.)
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Figure C.6: 

 

Multiple viewpoints of densities from figure C.5. The left set

of panes is the same as in figure C.2 (left panes).
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APPENDIX D. THE UNC HIBALL TRACKER

 

The tracking system that I employ in my experiments is an “inside-looking-out”

optoelectronic system designed for interactive computer graphics or 

 

virtual environments

 

.

The system, which we call the “HiBall tracker”, is an improved version of the wide-area

system described in [Ward92]. In these systems, user-mounted optical sensors observe

infrared light-emitting diodes (LEDs) or 

 

beacons

 

 mounted in the ceiling above the user.

The locations of the beacons are known (to some degree) so observations of them can be

used to estimate the user’s position and orientation. The overall system is depicted in

figure D.1.

 

Figure D.1: 

 

An outward-looking optoelectronic tracking system. Use r-

mounted cameras look outward (generally upward) at active beacons in the

environment.
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D.1 The Ceiling

 

One goal of the HiBall system is to provide a user with 

 

wide-area

 

 tracking. To this end, the

LEDs are installed in special ceiling panels that replace standard-size acoustic ceiling

tiles. (See figure D.1.) These tiles can be installed over a large area, thus providing a large

working area. In fact, the current UNC installation consists of enough ceiling tiles to cover

an area of approximately 5x5 meters, with a corresponding total of over 3,000 LEDs. The

LED positions in world coordinates are initially estimated based on the ceiling panel

design, which has them installed in a regular two-dimensional grid.

The LEDs are connected to special circuit boards that are mounted on (above) the

ceiling tiles, and these circuit boards are then connected to a computer. Thus LEDs can be

individually activated under computer control as needed for the SCAAT observations.

(The ceiling circuitry allows beacon activation at over 5000 LEDs per second.)

 D.2 The Hiball  

In the original system described by [Ward92] the user wore a relatively large head-

mounted mechanical fixture that supported several individually self-contained optical

sensors or “cameras” and a backpack that contained the necessary signal processing and

A/D conversion circuitry as shown in figure D.2.

Figure D.2: The original UNC optoelectronic ceiling tracker. Gradua t e

student Stefan Gottschalk is shown wearing the cumbersome camera

fixture (on his head) and the electronics backpack.

camera fixture

electronics “backpack”
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In the new system the camera fixture and backpack in figure D.2 are together replaced by a

relatively small sensor cluster called the 

 

HiBall. 

 

Figure D.3 is a picture of an unpopulated

HiBall with a golf ball to convey a notion of size.

A populated HiBall contains six lenses, six photodiodes with infrared filters, and all of the

necessary circuitry for signal processing, A/D conversion, control, and high-speed serial

communication. It is designed so that each photodiode can view infrared beacons (LEDs

in this case) through each of several adjacent lenses, thus implementing up to 26 distinct

infrared cameras.

The photodiodes provide four signals that together indicate the position of the

centroid of light (infrared in this case) as it appears on the two-dimensional photodiode

surface. At any point in time, the internal A/D conversion circuitry can sample these

signals for any one photodiode. These samples would then be sent to an external computer

via a high-speed serial link where they would be converted to the measurement

 that reflect the position of the image of the infrared beacon on the two-

dimensional photodiode.

If the photodiode measurements are viewed as images of the ceiling beacons

(known scene points), the HiBall tracker can be viewed as an implementation of the

abstract image-based example initially introduced in section 1.2 on page 39 (see

figures 1.4-1.6) and later used in chapter 5. Hence my frequent references to a HiBall lens

and sensor pair as a camera.

 

Figure D.3: 

 

The new HiBall camera cluster. The HiBall is shown next to a

golf ball to convey a notion of size.
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APPENDIX E. THE SIMULATION ENVIRONMENT

E.1 User Motion Data Sets

 

To observe the performance of the various methods, we chose to employ real user motion

data in our simulations. Specifically we used several motion data sets that were collected

by Ron Azuma during various “demo days” at UNC. On a regular basis we at UNC offer

public demonstrations of the systems we have devised in our ongoing virtual environments

research. Among other things, the original UNC wide area optoelectronic tracking system

was demonstrated with a head-mounted display driven by UNC’s Pixel-Planes 5 graphics

engine. On several occasions, Ron Azuma configured the ceiling tracker to transparently

dump the position and orientation estimates to a file in real-time so that they could be

examined off-line at a later time. The lengths of these data sets range from 15 seconds to

4 minutes. These are the data sets that I used for the simulations described in chapter 6,

except for section 6.2.10 as described in the next paragraph. From all of the motion data

sets I chose one particularly representative or “typical” 3 minute data set to use for

comparisons where one such data set would suffice to demonstrate a phenomenon of

interest. The characteristics of this data set are given in table E.1 (page 195).

In addition, I created a special “still” data set that simulates holding the HiBall

perfectly still for several minutes, as if resting on a sturdy table, with the state

in meters and degrees. I used this data set to investigate SCAAT performance under low

dynamics in section 6.2.10 on page 152.

 

E.2 Beacon Observations

 

For all of the data sets discussed in section E.1, we low-pass filtered (see section E.5

below) and then resampled the data to obtain position and orientation sequences that we

defined as the “truth”. These sequences were used to generate a sequence of beacon

x y z f q y, , , , ,( ) 2.74 4.27 1.60 0 0 0, , , , ,( )=
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observations as they would have occurred under the “true” circumstances, given a round-

robin selection strategy (between HiBall camera views, and then between beacons within

the individual camera views). Specifically, the truth sequences were used to project

beacons onto camera “image planes”, and the corresponding measurements were then

passed along to the appropriate implementation, e.g. SCAAT or Collinearity. (See

section E.5 below for a related assumption about “Primary HiBall Views”.)

The observations (image plane measurements) were corrupted with normally-

distributed random error as needed to simulate measurement error. All random number

generators could be seeded to maintain consistency in comparisons between methods.

 

E.3 EKF and Collinearity Implementations

 

In chapter 6 I present simulations of a SCAAT EKF implementation, an multiple-

constraint-at-a-time EKF implementation (see section 3.7 on page 70), and a Collinearity

 

Table E.1: 

 

Characteristics of the “typical” data set. Note that linear and angular velocities

are given as magnitudes (absolute values).

units dimension minimum maximum range average

x

 

1.599658 3.892787 2.293129 2.524411

 

y

 

3.031233 5.502644 2.471410 4.223665

 

z

 

0.774936 1.584778 0.809842 1.454678

0.000000 0.731384 0.731383 0.080369

0.000001 0.662029 0.662029 0.079128

0.000000 0.466307 0.466307 0.030943

 -58.057716 9.848511 67.906227 -21.270809

-17.455811 5.933789 23.389600 -6.233829

-179.985365 179.979526 359.964891 -14.975613

0.000043 95.192619 95.192576 14.003885  

 

 

0.000176 88.479740 88.479565 6.324057

0.000031 88.886032 88.886001 6.409921
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implementation (see section 3.4 on page 68). In this section I present a brief explanation

for the implementation of each.

 

E.3.1 SCAAT and MCAAT

 

To facilitate both SCAAT and MCAAT simulations I actually implemented a generic EKF

HiBall simulator where the number of observations 

 

N was made a command line

parameter. A call to the simulator with  would result in a SCAAT simulation, a call

with  would result in an MCAAT simulation. The simulator simply allocated a

measurement vector for the N observations and then invoked the measurement function N

times, once for each of the N observations as they arrived. When the N observations were

collected and the measurement vector was “full”, the filter would compute the residual and

update the state. Hence a new estimate was generated every N observations.

E.3.2 Collinearity

I implemented a Collinearity version of the HiBall (for the purpose of simulation) exactly

as described in [Azuma91]. In particular, I implemented the singular value decomposition

approach described as the current “method of choice”. As it turns out, this does not appear

to be the exact method used in the most recent implementation of UNC wide-area

optoelectronic tracking system, however it is very similar in terms of computational

complexity.

The Collinearity position-recovery algorithm was encapsulated within the same

framework as the generic EKF implementation described above in section E.3.1. It was

also designed to use the number of observations indicated by the command line parameter

N, although in this case it was ensured that  as required by the algorithm.

E.3.3 Moving-Window Observations

Both the EKF implementation of section E.3.1 and the Collinearity implementation of

section E.3.2 were designed to allow moving-window observations as depicted in

figure E.1 The normal (fixed-window) version simply discards the most recent N

observations after they are used, while the moving-window version preserves the most

recent observations in a circular buffer of size N, using the N most recent observations at

each step. Though not implemented directly as such, the moving-window version can be

N 1=

N 1>

N 3≥
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thought of as a finite impulse response (FIR) filter. In this case, the influence of any one

observation extends over N steps in time. Almost all of the experiments in chapter 6

process observations in a normal normal (fixed-window) fashion, with the exception being

the experiments described in section 6.2.6 on page 147.

E.4 EKF Parameters

In chapter 6 I present simulations of both SCAAT and multiple-constraint-at-a-time

extended Kalman filters. Because these implementations differ only in N, the number of

constraints incorporated during the filter update, they can (indeed should) employ the

same dynamic models. As such they share a need for the determination of the process

noise and initial error covariance parameters as described in section 6.1.3 and

section 6.1.4 (respectively) for our HiBall SCAAT implementation.

In particular, for any extended Kalman filter implementation that employed the

process models presented in section 6.1 and employed  constraints, I needed to be

able to determine the complete parameter set

.

To find a reasonable parameter set for any particular N could prove difficult. To find such a

set for any  is even more difficult. In order to make the task more manageable I

Figure E.1: Moving vs. fixed-window observations. This example shows a

system that uses  observations per estimate. The estimate rate for

the moving-window version is clearly higher.

N 3=

observations

fixed-window
estimates

moving-window
estimates

N 1≥
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chose to follow the approach taken by Azuma and Bishop in [Azuma94] and to employ

Powell’s method as given in [Press90] to search the parameter space represented by 

for any .

To use Powell’s method, I needed to define a cost function that returned a scalar

indication of the “goodness” of a particular set of parameters. In simulations I had access

to both the estimated filter state and the “true” state (see “Motion Bandwidth” below) for

several motion data sets as described in section E.1. Again employing a scheme similar to

that of Azuma and Bishop, I designed a special simulation framework for the purpose of

parameter optimization. At every filter update step I compute the locations (in world

coordinates) of three points arranged in a triangle that is oriented upright and faces the

HiBall approximately one meter in front of the HiBall. I compute these three points for

both the estimated filter state and the true state, and then I compute the average distance

between the respective estimated and true point groups. This average distance provides a

per-estimate scalar cost, which I then average for an entire simulation run (for a particular

data set) to obtain the necessary scalar cost for a particular parameter set . This

approach nicely combines position and orientation error into a single cost. The parameters

found using this method for various test cases are given in section 6.2.1 of chapter 6.

E.5 Assumptions

Computation Time

We assumed that the computation time  was negligible, i.e. zero. This is a

reasonable assumption because for any method the measurement and computation stages

could be pipelined, adding only a fixed amount of latency to the corresponding estimates.

In any case, if the actual computation times were accounted for, the SCAAT performance

would be affected the least because its computation time is the smallest. (See section 5.2

on page 112.)

P N[ ]

N 1≥

P N[ ]

tc N( )
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Motion Bandwidth

To create “truth” position and orientation sequences, we low-pass filtered and

resampled actual data sets as described above in section E.2. For all of the experiments

described in chapter 6 we used a low-pass cutoff frequency of 5 Hz. While in general one

would desire a motion bandwidth of 20 Hz (see section 2.2 of chapter 2), we examined the

power spectra for the various data sets described above in section E.2 prior to filtering and

determined that the majority of the power was below 5 Hz. This makes sense under the

circumstances of the original data collection—inexperienced users and a relatively bulky

headset (see figure D.2 of appendix D, page 192). Other filter parameters could easily be

obtained using the method of section E.4 above as necessary for other dynamics.

Primary HiBall Views

Because the HiBall camera cluster contains sensors that can image beacons

through multiple lenses it is possible to see both primary and secondary views of a beacon

as shown below in figure E.2. (See also figure D.3 of appendix D, page 193.)

Figure E.2: Primary and secondary HiBall views. Each sensor can “see”

light from multiple lenses. A sensor’s view through the lens directly

opposite is called a primary view (rays with arrows). There are only six

such views corresponding to the six lens and sensor opposite pairs. The

other rays shown correspond to secondary views. Tertiary views are also

possible but none are shown. (This cut-away figure shows only three each

of the six lenses and sensors.)

lens

sensor

light rays

HiBall
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For the purpose of these simulations we assumed the various implementations, e.g.

SCAAT or Collinearity, received only observations from primary views, thus they were

limited to only six cameras. (That is to say that we only generated observations through

primary views.) This approach is reasonable because primary vs. secondary is an issue that

is not directly related to the subject of this dissertation—while it is an issue that would be

of concern for any implementation. In addition, we feel that our actual SCAAT

implementation will be able to (under most circumstances) distinguish between primary

and secondary sightings of beacons. As such we believe that the incorporation of

secondary views will improve performance by facilitating a larger number of beacon

observations.
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