
Exploiting Proprioception in
Virtual-Environment Interaction

by

Mark Raymond Mine

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the
Department of Computer Science.

Chapel Hill

1997

Approved by:

_____________________________ __________________________

Dr. Frederick P. Brooks Jr., Advisor Dr. Henry Fuchs

_____________________________ __________________________

Dr. Gary Bishop, Reader Dr. Anselmo Lastra

_____________________________ __________________________

Dr. John Tector, Reader. Dr. Carlo H. Sequin

ii

© 1997
Mark Raymond Mine

ALL RIGHTS RESERVED

iii

ABSTRACT

Mark Raymond Mine
Exploiting Proprioception in Virtual-Environment Interaction

(Under the direction of Frederick P. Brooks, Jr.)

Manipulation in immersive virtual environments is difficult partly because users

must do without the haptic contact with real objects they rely on in the real world to orient

themselves and the objects they are manipulating. To compensate for this lack, I propose

exploiting the one real object every user has in a virtual environment, his body. I present a

unified framework for virtual-environment interaction based on proprioception, a person's

sense of the position and orientation of his body and limbs. I describe three forms of

body-relative interaction:

• Direct manipulation—ways to use body sense to help control manipulation

• Physical mnemonics—ways to store/recall information relative to the body

• Gestural actions—ways to use body-relative actions to issue commands

Automatic scaling is a way to bring objects instantly within reach so that users can

manipulate them using proprioceptive cues. Several novel virtual interaction techniques

based upon automatic scaling and our proposed framework of proprioception allow a user

to interact with a virtual world intuitively, efficiently, precisely, and lazily.

Two formal user studies evaluate key aspects of body-relative interaction. The

virtual docking study compares the manipulation of objects co-located with one's hand and

the manipulation of objects at a distance. The widget interaction experiment explores the

differences between interacting with a widget held in one's hand and interacting with a

widget floating in space.

Lessons learned from the integration of body-relative techniques into a real-world

system, the Chapel Hill Immersive Modeling Program (CHIMP), are presented and

discussed.

iv

ACKNOWLEDGMENTS

Thanks to

Frederick P. Brooks Jr., Gary Bishop, Henry Fuchs, Anselmo Lastra, John
Tector, and Carlo H. Sequin for serving on my doctoral dissertation committee;

Frederick P. Brooks Jr., my advisor, for his insights, inspiration, and for making it
all so clear;

Gary Bishop for many fruitful years of collaboration and for not minding too much
that my dissertation didn't have wires and accelerometers coming out of it;

Henry Fuchs for the inspiration of his boundless energy, enthusiasm, and love of
knowledge;

Anselmo Lastra for his kindness, advice, and for keeping Pixel-Planes 5 alive long
enough for me to graduate;

Carlo Sequin for asking the hard questions, and for helping me to keep it simple;

John Tector for the many wonderful conversations about architecture and design;

Warren Robinett for leading me to the University of North Carolina;

Rick Zobel for paving the way for my investigations into immersive design;

Robert Zeleznik for his invaluable contributions to this work;

Linda Houseman, Dave Harrison, Todd Gaul, and Peggy Wetzel for all of their
help during the years;

Hans Weber and Greg Welch for being such good friends and for the meetings of
the IHBI at the TOTH1;

Erik Erikson for Vinimini, G2, Speed Racer, and for keeping it fun;

Eliza Graves for the laughter and the smiles;

My parents for all they have done for me through the years;

Dylan for the incredible joy he has brought to my life;

Baby X for the many wonderful years to come;

and most importantly,

Sandra for her unwavering love, support, faith, and devotion, and for, more than
anyone else, making it all possible.

Financial support for this work came from the following agencies: Defense Advanced
Research Projects Agency, Link Foundation, Lockheed Missiles and Space, Inc. (indirect
DARPA)

1Institute for Half-Baked Ideas at the Top of the Hill

v

TABLE OF CONTENTS

Page

LIST OF TABLES... x

LIST OF FIGURES.. xi

LIST OF ABBREVIATIONS .. xiii

Chapter

I . Introduction.. 1

1.1 The Research... 1

1.2 The Challenge.. 1

1.3 The Attack... 2

1.4 A Complication... 3

1.5 A Proposal... 5

1.6 Overview.. 6

II. Related Work... 8

2.1 3-DoF and 6-DoF Object Manipulation Using 2D Input............ 8

2.2 Object Manipulation Using Higher-Dimensional Input............. 11

2.3 Two-handed Interaction..................................... 14

2.3.1 Example Techniques................................ 14

2.3.2 Theoretical and Experimental Results................... 19

2.4 Manipulating Objects Using Gesture and Voice................... 22

2.5 Systems for Interactive Design................................ 24

2.5.1 Working Through-the-window........................ 25

2.5.2 Working Immersed................................. 30

III. Body-Relative Interaction Techniques................................ 33

3.1 Working Within Arm's Reach................................ 33

3.2 Sample Interaction Techniques................................ 36

3.2.1 Direct Manipulation................................. 36

3.2.1.1 Scaled-World Grab for Manipulation.......... 36

3.2.1.2 Scaled-World Grab for Locomotion........... 38

3.2.2 Physical Mnemonics................................ 38

3.2.2.1 Pull-Down Menus......................... 38

3.2.2.2 Hand-Held Widgets....................... 39

3.2.2.3 FOV-Relative Mode Switching............... 41

3.3.3 Gestural Actions................................... 41

3.3.3.1 Head-Butt Zoom.......................... 41

vi

3.3.3.2 Look-at Menus........................... 43

3.3.3.3 Two-Handed Flying....................... 43

3.3.3.4 Over-the-Shoulder Deletion.................. 44

IV. User Study 1—Virtual Object Docking............................... 46

4.1 Introduction.. 46

4.2 Hypotheses.. 47

4.3 The Experiment... 47

4.3.1 Subjects.. 47

4.3.2 Experimental Platform............................... 47

4.3.3 The Task... 48

4.3.4 Experimental Conditions............................. 49

4.3.5 Experimental Procedure............................. 50

4.4 Results.. 51

4.5 Questionnaire Results....................................... 54

4.6 Discussion... 56

4.7 Conclusion... 56

V. User Study 2—Proprioception and Virtual Widget Interaction............. 58

5.1 Introduction.. 58

5.2 Hypotheses.. 59

5.3 The Experiment... 59

5.3.1 Subjects.. 59

5.3.2 Experimental Platform............................... 60

5.3.3 The Task... 61

5.3.4 Experimental Procedure............................. 62

5.4 Results.. 63

5.5 Questionnaire Results....................................... 64

5.6 Discussion... 65

5.7 Conclusions.. 66

VI. CHIMP—The Chapel Hill Immersive Modeling Program................. 68

6.1 CHIMP Overview... 68

6.2 Managing Modes.. 73

6.2.1 Rotary Tool Chooser................................ 74

6.2.2 Two-Dimensional Control Panels...................... 75

6.2.3 Look-at Menus.................................... 77

6.2.4 Pull-Down Menus.................................. 77

6.3 Object Selection... 78

vii

6.4 Object Manipulation.. 81

6.5 Object Generation.. 82

6.6 Constrained Object Manipulation.............................. 83

6.6.1 Co-Located Widgets................................ 83

6.6.2 Hand-Held Widgets................................ 85

6.7 Numeric Input in a Virtual World.............................. 86

VII. Final Words.. 90

7.1 Conclusions.. 90

7.2 Contributions... 91

7.3 Future Work.. 93

Localized Haptic Feedback................................... 93

A. A Review of the State-of-the-Art of Computer-Aided Modeling............ 95

A.1 Introduction.. 95

A.2 Modeling Techniques and Paradigms........................... 96

A.2.1 Input for a Three-Dimensional Task.................... 96

A.2.1.1 Numeric Input............................ 96

A.2.1.2 Relative Input............................. 96

A.2.1.3 2D Interactive Input........................ 97

A.2.2 Output of a Three-Dimensional Space................... 98

A.2.2.1 Format of the Modeling View................ 99

A.2.2.2 Three-Dimensional Visualization: Separate or
Integrated............................... 100

A.2.2.3 Three-Dimensional Visualization: Static or
Interactive............................... 101

A.2.2.4 Complications of Two-Dimensional Output..... 101

A.3 Modeling System Capability Comparison....................... 102

A.4 Modeler Reviews Overview.................................. 105

A.5 Archicad... 107

A.5.1 Overview... 107

A.5.2 Model Creation.................................... 108

A.5.3 Model Modification................................. 108

A.5.4 Model Interaction/Visualization........................ 109

A.5.5 Manual .. 109

A.5.6 Comments/Impressions.............................. 110

A.6 AutoCAD.. 111

A.6.1 Overview... 111

A.6.2 Model Creation.................................... 112

viii

A.6.3 Model Modification................................. 113

A.6.4 Model Interaction/Visualization........................ 114

A.6.5 Manual .. 114

A.6.6 Comments/Impressions.............................. 114

A.7 DesignWorkshop.. 115

A.7.1 Overview... 115

A.7.2 Model Creation.................................... 116

A.7.3 Model Modification................................. 117

A.7.4 Model Interaction/Visualization........................ 117

A.7.5 Manual .. 118

A.7.6 Comments/Impressions.............................. 118

A.8 Designer's Workbench...................................... 119

A.8.1 Overview... 119

A.8.2 Model Creation.................................... 120

A.8.3 Model Modification................................. 121

A.8.4 Model Interaction/Visualization........................ 122

A.8.5 Manual .. 122

A.8.6 Comments/Impressions.............................. 122

A.9 Form-Z.. 123

A.9.1 Overview... 123

A.9.2 Model Creation.................................... 124

A.9.3 Model Modification................................. 125

A.9.4 Model Interaction/Visualization........................ 125

A.9.5 Manual .. 126

A.9.6 Comments/Impressions.............................. 126

A.10 IGRIP .. 128

A.10.1 Overview... 128

A.10.2 Model Creation.................................... 130

A.10.3 Model Modification................................. 130

A.10.4 Model Interaction/Visualization........................ 131

A.10.5 Manual .. 131

A.10.6 Comments/Impressions.............................. 132

A.11 Minicad+4... 133

A.11.1 Overview... 133

A.11.2 Model Creation.................................... 134

A.11.3 Model Modification................................. 135

ix

A.11.4 Model Interaction/Visualization........................ 136

A.11.5 Manual .. 136

A.11.6 Comments/Impressions.............................. 136

A.12 MultiGen .. 138

A.12.1 Overview... 138

A.12.2 Model Creation.................................... 139

A.12.3 Model Modification................................. 140

A.12.4 Model Interaction/Visualization........................ 140

A.12.5 Manual .. 141

A.12.6 Comments/Impressions.............................. 141

A.13 Sculpt 3D.. 143

A.13.1 Overview... 143

A.13.2 Model Creation.................................... 144

A.13.3 Model Modification................................. 145

A.13.4 Model Interaction/Visualization........................ 145

A.13.5 Manual .. 146

A.13.6 Comments/Impressions.............................. 146

A.14 Upfront ... 148

A.14.1 Overview... 148

A.14.2 Model Creation.................................... 149

A.14.3 Model Modification................................. 150

A.14.4 Model Interaction/Visualization........................ 150

A.14.5 Manual .. 151

A.14.6 Comments/Impressions.............................. 151

A.15 WalkThrough... 153

A.15.1 Overview... 153

A.15.2 Model Creation.................................... 154

A.15.3 Model Modification................................. 154

A.15.4 Model Interaction/Visualization........................ 155

A.15.5 Manual .. 155

A.15.6 Comments/Impressions.............................. 156

B. References... 157

x

LIST OF TABLES

Table 1.1: Successful virtual-world application domains..................... 3

Table 2.1: Interactive design systems input/output comparison................ 25

Table 4.1: Mean time of trial completion by experimental condition............ 52

Table 4.2: Mean questionnaire results by technique......................... 54

Table 4.3: F statistic and significance by questionnaire category............... 54

Table 4.4: Co-located vs. fixed-offset, F statistic and significance by
questionnaire category...................................... 55

Table 4.5: Co-located vs. variable-offset, F statistic and significance by
questionnaire category...................................... 55

Table 4.6: Fixed-offset vs. variable-offset, F statistic and significance by
questionnaire category...................................... 55

Table 5.1: Mean positional accuracy by experimental condition............... 63

Table 5.2: Mean questionnaire results by technique......................... 65

Table 5.3: F statistic and significance by questionnaire category............... 65

Table 6.1: CHIMP system overview.................................... 70

Table 6.2: CHIMP's hand-held widgets................................. 71

Table 6.3: CHIMP's control panels..................................... 72

Table A.1: Modeling packages reviewed................................. 95

Table A.2: Modeling system capability comparison......................... 103

Table A.3: Modeling system paradigms.................................. 106

xi

LIST OF FIGURES

Figure 2.1: Nielson's triad cursor....................................... 8

Figure 2.2: Constrained geometric transformation using widgets............... 10

Figure 2.3: Using object associations.................................... 11

Figure 2.4: The Rockin' Mouse.. 12

Figure 2.5: Zhai et al.'s framework for the study of multi-degree-of-freedom
manipulation schemes....................................... 13

Figure 2.6: Layers in a toolglass system.................................. 14

Figure 2.7: Using toolglasses, two-hands, and transparency in T3............. 15

Figure 2.8: Marking Menus interaction................................... 16

Figure 2.9: Using two hands and props in Netra........................... 17

Figure 2.10: Object manipulation and spline editing using Fitzmaurice et al's
graspable user interface...................................... 18

Figure 2.11: The Responsive Workbench.................................. 19

Figure 2.12: Guiard's handwriting experiment.............................. 20

Figure 2.13: Buxton and Meyer's two handed input experiment................. 21

Figure 2.14: Kabbash et al's two-hand connect the dots experiment.............. 22

Figure 2.15: VIDEODESK two-handed interaction........................... 23

Figure 2.16: Using a gesture to move a group in GEdit....................... 23

Figure 2.17: Schmandt's stereoscopic display.............................. 26

Figure 2.18: University of Alberta's JDCAD system......................... 27

Figure 2.19: Using T junctions to infer object placement in SKETCH............ 29

Figure 2.20: UNC's nanoWorkbench..................................... 30

Figure 2.21: University of Virginia's World-In-Miniature..................... 31

Figure 3.1: Automatic scaling of the world when the user grabs and releases an
object. .. 34

Figure 3.2: Vectors used in determining automatic scaling factor............... 35

Figure 3.3: Using a pull-down menu.................................... 39

Figure 3.4: Using a hand-held widget.................................... 40

Figure 3.5: Selecting a region for closer inspection.......................... 42

Figure 3.6: Look-at menu... 43

Figure 3.7: Two-handed flying... 44

Figure 3.8: Over-the-shoulder deletion................................... 45

Figure 4.1: Experimental conditions for the docking test..................... 49

Figure 4.3: Mean docking times by technique.............................. 53

xii

Figure 5.1: Widget test objects... 60

Figure 5.2: Widget test experimental conditions............................ 62

Figure 5.3: Mean positional accuracies by technique......................... 64

Figure 6.1: Using the CHIMP system.................................... 69

Figure 6.2: CHIMP's primary and secondary input devices................... 69

Figure 6.3: Rotary tool chooser... 74

Figure 6.4: Interacting with a control panel using a laser beam................. 76

Figure 6.5: Interacting with a control panel using occlusion selection............ 76

Figure 6.6: CHIMP's look-at menus..................................... 77

Figure 6.7: Occlusion selection, first person point of view.................... 79

Figure 6.8: Occlusion selection, third person point of view................... 79

Figure 6.9: Spotlight selection, third person point of view.................... 80

Figure 6.10: Spotlight selection, first person point of view.................... 80

Figure 6.11: First and second generation constrained manipulation widgets....... 84

Figure 6.13: Constrained manipulation mode selection based upon hand
separation.. 86

Figure 6.14: Numeric input using the Arithma Addiator....................... 87

Figure 6.15: Linear interactive numbers................................... 87

Figure 6.16: Rotary interactive numbers................................... 88

Figure A.1: Orthogonal-view system..................................... 100

Figure A.2a: Perspective projection ambiguity.............................. 101

Figure A.2b: Three orthogonal views of the object in Figure A.2a............... 101

Figure A.3: Archicad interface.. 107

Figure A.4: AutoCAD interface... 111

Figure A.5: DesignWorkshop interface................................... 115

Figure A.6: Designer's Workbench interface............................... 119

Figure A.7: Form-Z interface... 123

Figure A.8: IGRIP interface.. 128

Figure A.9: Minicad+ interface... 133

Figure A.10: 2D vs. 3D objects... 134

Figure A.11: MultiGen interface... 138

Figure A.12: Sculpt 3D interface... 143

Figure A.13: Upfront interface... 148

Figure A.14: WalkThrough interface...................................... 153

xiii

LIST OF ABBREVIATIONS

1D one-dimensional

2D two-dimensional

3D three-dimensional

ANOVA analysis of variances

CAD computer-aided design

CHIMP Chapel Hill Immersive Modeling Program

DoF degree of freedom

GUI graphical user interface

HMD head-mounted display

K kilo

MANOVA multivariate analysis of variances

U I user interface

UNC University of North Carolina

VE virtual environment

VR virtual reality

WIM world in miniature

Chapter 1

Introduction

1.1 The Research

The goal of my research is a better understanding of what it means to work in a

virtual world. The focus is the characterization of the benefits and limitations of this new

medium. The hope is that improved understanding will lead to more effective virtual-

environment interaction techniques; those that minimize user energy and make it possible to

perform real-world work in a virtual world.

To motivate my research I have chosen the driving problem of three-dimensional

(3D) modeling for architectural design, for several reasons. First, to evaluate the benefits

and limitations of working in a virtual world fairly, it is important to concentrate on real-

world tasks and not toy problems; architectural models are complex models that are difficult

to build. Second, if we are to realize any benefits from working in a virtual world, it is

important to focus on tasks that will truly profit from being in an immersive environment;

the shapes and spaces inside architectural models, more so than mechanical models, are just

as important as their external form.

1.2 The Challenge

The architectural design of three-dimensional spaces is inherently a difficult task.

Even given the ultimate design system, in which thoughts magically become material, an

architect would still encounter many difficulties in solving a typical design problem with its

myriad of trade-offs and constraints.

In the real world, these inherent difficulties are compounded by incidental

difficulties, problems which are the result of the chosen medium of expression and not

inherent in the design problem itself. The duration and flexibility of the design cycle is

highly sensitive to the amount of time required to represent and modify designs in the

2

chosen medium. This is clearly true of sketches, of formal drawings, and of scale

model—all media used for the expression of architectural designs.

The choice of the computer as a design medium has greatly simplified and sped up

many aspects of the architectural design process. Just ease of copying and erasing is one

big plus. Many of the gains, however, are restricted to the transformation of existing

design data or aspects (structural, mechanical, electrical) such as redrawing a single design

from many views, or managing large databases of materials and parts. The specification of

original data is still a time-consuming and difficult task (a half a man year for a 30K-

element model [Brooks, 1994]).

It is my belief that many of the shortcomings of the computer as medium for the

design of three-dimensional spaces are the result of the limitations of existing two-

dimensional (2D) interfaces. Two-dimensional displays inherently inject ambiguity into the

interpretation of displayed information [Gregory, 1973] . The use of two-dimensional

input devices, such as the mouse or the data tablet, precludes the direct specification of

three-dimensional positions, orientations and extents. Designers are forced to look and

work through small windows onto their virtual world. They tend to limit themselves to

views along the principal axes plus a few other classical view directions. Indeed, despite

many years of research and development, few computer-aided design programs approach

the flexibility of the cocktail napkin or the architect's "trash"2 as a design tool.

1.3 The Attack

The underlying thesis motivating this research is that architects can design three-

dimensional spaces more easily in an immersive environment than they can modeling

through-the-window using conventional workstation inputs and displays. I believe this to

be true for several reasons.

In an immersive environment one can directly perceive and manipulate three-

dimensional objects instead of interacting with abstract interface elements. Users can

harness interaction skills learned in the real world. This helps to make the computer

interface really transparent and allows users to work more directly with the objects of

design.

2Tracing paper used by architects which can be placed on top of existing drawings to try out new design

ideas quickly without having to redraw the entire design.

3

In a virtual world one turns his head to look at something. Contrast this with the

frustration of setting one's viewpoint in a 3D through-the-window application. Dynamic

viewpoint change, whether immersive or through the window, gives better space

perception.

Finally, using a head-mounted display, one becomes immersed within the virtual

space within which one intuitively changes viewpoint. Not only does this make it easier to

understand the shapes and spaces being created, it means that controls and information can

now be distributed about the user instead of being packed into a small window.

1.4 A Complication

Working in a virtual world is not without its own set of incidental difficulties.

Indeed, though promising results have been demonstrated in several key application

domains (Table 1), the number of successful virtual environment applications still remains

small, with even fewer applications having gone beyond the research laboratory. Why?

Table 1.1: Successful virtual-world application domains.

Domain Example Applications
"Being There", experience for the sake of
experience

Phobia treatment: [Rothbaum, et al., 1995]
Aesthetics: [Davies and Harrison, 1996]
Entertainment: [Pausch, et al., 1996]

Training and practice of different skills Surgery: [Hunter, et al., 1993]
Military : [Macedonia, et al., 1994]
Maintenance: x[Wilson, et al., 1995]
Wayfinding: x[Witmer, et al., 1995]x

Visualization of unrealized or unseeable
objects

Architecture: [Brooks, 1986]
Fluid Flow: [Bryson and Levit, 1992]
Nano-surfaces: [Taylor, et al., 1993]

Design 3D models: [Butterworth, et al., 1992]
Cityscapes: [Mapes and Moshell, 1995]

Besides the well known technological limitations such as system latency and

display resolution, several less obvious factors complicate the task of virtual object

manipulation and hamper the development of real-world virtual environment applications.

Many of these successes fall within the realm of spatial visualization. The

applications exploit the intuitive view specification (via head tracking) offered by VR

systems but make little use of direct virtual-object manipulation. Why is it difficult to do

much more than look around in a virtual world?

4

1) The precise manipulation of virtual objects is hard. Although immersion, head-

tracked view specification, and six DoF hand tracking facilitate the coarse manipulation of

virtual objects, the precise manipulation of virtual objects is complicated by:

• Lack of haptic feedback: Humans depend on haptic feedback and physical

constraints for precise interaction in the real world; the lack of physical work-

surfaces to align against and rest on limits precision and exacerbates fatigue.

Though there is considerable ongoing research in the area of active haptic

feedback [Durlach and Mavor, 1995] , general-purpose haptic feedback devices

that do not restrict the mobility of the user are not yet practical or available.

• Limited input information: Most virtual-environment systems accept position

and orientation (pose) data on the user's head and (if lucky) two hands. One

also typically has a button or glove to provide signal/event information. This

suffices for specifying simple 6-DoF motion and placement. In the real world,

we do this and much more:

a) Object modification, usually with tools.

b) Directing the cooperation of helping hands, by spoken commands ("Put that
there").

c) Measuring.

d) Annotating objects with text.

In contrast, today in most VR systems:

a) Tool selection is difficult.

b) Voice command technology is marginally effective.

c) Measuring tools are rarely available.

d) Alphanumeric input is difficult.

• Limited precision: The lack of haptic and acoustic feedback, inaccurate tracking

systems, and the whole-hand input typical of current VR systems restrict users

to the coarse manipulation of virtual objects. Fine-grained manipulations are

extremely difficult using this "boxing-glove" style interface. Shumin Zhai of

the University of Toronto, for example, has demonstrated that users' task

completion times were slower in a 3D docking task when using a 3D input

device which excluded the use of the fingers (vs. a similar device that utilized

the fingers) [Zhai, et al., 1996] .

2) Virtual environments lack a unifying framework for interaction, such as the

desktop metaphor used in conventional through-the-window computer applications.

5

Without haptics neither real-world nor desktop computer interaction metaphors are adequate

in a virtual environment. Knowledge on how to manipulate objects or controls can no

longer be "stored in the world" [Norman, 1988] , with the physical constraints of the

devices giving the user clues as to their use (e.g. a dial can only be rotated about its axis).

The desktop metaphor further breaks down when the user is inside the user

interface. Interface controls and displays must move with the user as he moves through the

environment and be made easy to locate and reach. The differences between working in a

conventional computer environment and working immersed are analogous to the

differences between a craftsman at a workbench and one moving about a worksite wearing

a toolbelt. His toolbelt had better be large and filled with powerful tools.

1.5 A Proposal

Thesis statement:

By providing a real-world frame of reference in which to operate and a more
direct and precise sense of control, proprioception helps to compensate for
the lack of haptic feedback in virtual-environment interaction.

Without touch, a user can no longer feel his surroundings to tell where he is nor use

the felt collision of a manipulandum (an object being manipulated) with stationary objects to

refine spatial perception. It is imperative, therefore, to take advantage of one thing every

user can still feel in the virtual world, his body.

A person's sense of the position and orientation of his body and its several parts is

called proprioception [Boff, et al., 1986] . I propose that proprioception can be used to

develop a unified set of interaction techniques that allow a user to interact with a virtual

world intuitively, efficiently, precisely, and lazily.

In a series of user observations, I have found that body-relative interaction

techniques (exploiting proprioceptive feedback) are more effective than techniques relying

solely on visual information. Such body-relative interaction techniques provide:

• a physical real-world frame of reference in which to operate

• a more direct and precise sense of control

• "eyes off" interaction (the user doesn't have to constantly watch what he's
doing)

A user can take advantage of proprioception during body-relative interaction in at

least three ways:

6

• Direct manipulation: If a virtual object is located directly at the user's hand

position, the user has a good sense of the position of the object (even with eyes

closed) due to proprioception, and thus a greater sense of control. It is easier to

place an object precisely by hand than when it is attached to the end of a fishing

rod. Manipulation schemes that provide conflicting stimulus/response cues or

use non-linear mappings between hand motion and object motion are more

difficult for a user to understand and control [Britton, et al., 1978] .

• Physical mnemonics: Since a user can no longer feel the world around him, it

can be difficult to find, select, and use virtual controls in world space,

especially if the user is free to walk about the environment. Users can store

virtual objects, in particular menus and widgets [Conner, et al., 1992] , relative

to his body. If controls are fixed relative to the user's body, he can use

proprioception to find the controls, as one finds his pen in his pocket, or his

pliers in his tool belt. If controls are attached to the user's body, they move

with him as he moves through the environment and are always within reach.

Finally, controls can be stored out of view (behind the user's back for

example), reducing visual clutter, yet remaining easily accessible (like an arrow

from a quiver).

• Gestural actions: Just as a user's body sense can be used to facilitate the recall

of objects, it can be used to facilitate the recall of actions, such as gestures used

to invoke commands or to communicate information.

1.6 Overview

This dissertation presents the results of my investigations of proprioception and

body-relative interaction as a framework for virtual environment interaction. It is organized

as follows:

Chapter two: Related Work presents relevant work in the areas of interactive

design, object manipulation, two-handed interaction and haptic feedback.

Chapter three: Body-relative Interaction describes several novel body-relative

interaction techniques based on the framework of proprioception introduced in section 1.5.

Automatic scaling is presented as a means of instantly bringing objects in reach so that

users can manipulate them using proprioceptive cues.

7

Chapter four: Virtual Object Docking presents the results of a user study

investigating the benefits of direct manipulation by comparing the manipulation of a virtual

object attached to the user's hand versus one at a fixed offset.

Chapter five: Proprioception and Virtual Widget Interaction presents the results of a

user study exploring the benefits of body-relative interaction by comparing interaction with

widgets floating in space with those attached to the user's hand.

Chapter six: The Chapel Hill Immersive Modeling Program demonstrates and

analyzes the effectiveness of the integration of body-relative interaction techniques in a real-

world system.

Chapter seven: Final Words presents some final thoughts and discussion of future

work such as the use of localized haptic feedback and fingertip control for greater precision

and control in situations where proprioception information alone will not suffice.

Appendix A: A Review of the State of the Art of Computer-Aided Modeling

presents the results of a review of the interaction techniques used and functions included in

several commercial through-the-window computer-aided modeling packages. I performed

this review at the start of my dissertation research to obtain a better understanding of the

current state-of-the-art of computer-aided modeling.

8

Chapter 2

Related Work

2.1 3-DoF and 6-DoF Object Manipulation Using 2D Input

Researchers have explored many alternatives in their search for effective techniques

for 3D interaction using 2D inputs. Much of the earliest work exploited the relationship

between 2D mouse movements and the projected image of the scene.

Gregory Nielson of Arizona State University and Dan Olsen of Brigham Young

University developed a technique they called the triad mouse [Nielson and Olsen, 1986] .

2D mouse motions were mapped into three-dimensions by comparing the screen-space

movement of the triad cursor with the projected image of its three axes (Figure 2.1).

Nielson and Olson similarly took advantage of the projections of object features in

performing object translations, rotations and scales. Users, for example, could translate

objects parallel to selected edges or rotate objects about the normal of a selected face.

(Yx,Yy)

(Zx,Zy)

(Xx,Xy)

(Dx,Dy)

(Yx,Yy)

(Zx,Zy)

(Xx,Xy)

(Dx,Dy)

A B

Figure 2.1: In Nielson's system 3D movement of the triad cursor depends

on the relationship between its screen-space movement (Dx,Dy) and the

projection of its axes. Case A would move the triad cursor in Z, case B

would move the triad cursor in X [Nielson and Olsen, 1986] .

9

Eric Bier of Xerox Parc has developed many innovative techniques for the precise

6-DoF manipulation of shapes relative to one another (scene composition) using only 2D

input devices and displays. In [Bier, 1986] he presents a type of 3D cursor he calls a

skitter. Movement of the skitter depends upon the projected image of objects in the scene.

The skitter moves along or perpendicular to the surface of objects and is used to place 3D

jacks in the scene. Jacks in turn are used during object transformations as anchors (such as

an axis of rotation) or to specify end conditions (such as the number of degrees to rotate).

Alternately they can be used as reference frames for moving the skitter in free space.

With [Bier, 1990] Bier continued his work in interactive scene composition by

extending his 2D Snap Dragging technique [Bier and Stone, 1986] to three dimensions.

Snap dragging combines a gravity function with alignment objects and interactive

transformations. The gravity function is used to snap the skitter to points, curves, and

surfaces in the scene. Alignment objects such as lines, planes, and spheres can be quickly

generated relative to existing features in the scene to allow for ruler-and-compass style

constructions in three dimensions. Finally, objects can be translated, rotated and scaled

interactively using the skitter, which continues to snap to objects during transformations.

Maarten van Emmerik of Delft University of Technology utilized a gesture-based

technique in [van Emmerik, 1990] for the direct manipulation of 3D objects with a

conventional 2D input device. As in the systems described by Nielson et al. and Bier, the

user interacts with a 3D perspective or parallel projection of the scene. In this case,

however, seven virtual control points are defined on the coordinate system associated with

each object or group. One point on the coordinate system is used for specifying

translation, the other six are used for specifying rotation and scaling. The user picks a

control point and drags it on the screen. The effect of the drag operation depends on the

selected control point, on the 2D movement of the cursor in screen space, and on the

orientation of the projected axes. If the user picks the center control point and drags along

the projection of the Z axis, for example, the object will move in the Z direction. This

scheme restricts transformations specified using the control points to single DoF changes.

In [Conner, et al., 1992] Conner, Snibbe et al. of Brown University formalized

the notion of using geometric objects as spatial referents which can be used to select

mappings of cursor motion to object behavior. They present the concept of 3D widgets,

encapsulated three-dimensional geometry and behavior which can be treated as any other

object in a 3D world (Figure 2.2). Widgets can be primarily geometric, such as the

dividing lines and frames which organize and partition an interface. Others, such as a

gestural rotation widget, may have no inherent geometry. Conner et al. claim that the

10

treatment of widgets as first-class objects results in higher bandwidth between interface and

application than exists in most traditional UI toolkit-based interfaces. Numerous examples

have been presented in the literature of ways to use explicit and implicit geometry to help

determine the mapping of 2D cursor movement in screen space to 3D object behaviors. See

for example the work on interactive shadows described by [Herndon, et al., 1992] or the

techniques for specifying 3D rotations using implied geometry such as the virtual sphere

[Chen, et al., 1988]x or the arcball x[Shoemake, 1992] .

Figure 2.2: Constrained geometric transformation using widgets [Conner,

et al., 1992] .

Instead of being explicitly encapsulated in three-dimensional geometry, object

behaviors can be implicitly encoded in a set of heuristics. Bukowski and Sequin of the

University of California at Berkeley, for example, define a set of pseudo-physical

behaviors they call object associations which determine the mapping between cursor motion

in screen space and the corresponding object motion in the 3D virtual world, see Figure 2.3

and [Bukowski and Sequin, 1995] . Objects are assigned behaviors such as on-horizontal

or on-vertical which are combined with association procedures such as pseudo-gravity,

anti-gravity, and on-wall to determine the object's resulting 3D motion. Bukowski and

Sequin also developed several implicit grouping mechanisms which helped to simplify

interaction in complex schemes.

11

Figure 2.3: Using object associations to map 2D cursor motions to three

dimensions [Bukowski and Sequin, 1995] .

2.2 Object Manipulation Using Higher-Dimensional Input

Realizing the limitations of using two-dimensional input devices for three-

dimensional manipulation, several researchers have explored the potential of higher

dimensional input devices.

Dan Veniola of Apple Computer, Inc. created a 3-DoF mouse he called the roller

mouse [Veniola, 1993] . In addition to the standard mouse ball encoder on the underside,

the roller mouse had two wheels on the front, one on either side of the single mouse

button. Moving the body of the mouse in the conventional way resulted in movements of a

3D cursor in the plane of the screen. Moving the wheels resulted in movements of the

cursor in a direction perpendicular to the screen. Users could thus control three degrees of

freedom simultaneously. To allow changes in both position and orientation to be specified

simultaneously with only a 3D input device, Veniola created an interaction technique he

called tail-dragging Objects moved using tail-dragging swing around like a rock on the end

of a string, trailing behind the direction of movement.

Balakrishnan of the University of Toronto along with Baudel, Kurtenbach and

Fitzmaurice of Alias|Wavefront have created a device they call the Rockin' Mouse

[Balakrishnan, et al., 1997] . Like Veniola's roller mouse, the Rockin' Mouse has a shape

that is similar to a conventional mouse. Instead of wheels mounted on the front of the

mouse, however, the Rockin' Mouse has a rounded bottom (Figure 2.4). This allow users

12

to control two additional degrees of freedom (for a total of four) by tilting the mouse left

and right and/or forward and backward while simultaneously moving the body like a

regular mouse. User studies conducted by the authors have shown that the Rockin' Mouse

has the potential of providing at least a 30% performance gain over the regular mouse on a

3D object-positioning task. The results also indicate that subjects were able to control all

three dimensions of an object's translation simultaneously.

Figure 2.4: The Rockin' Mouse [Balakrishnan, et al., 1997] .

Colin Ware of the University of New Brunswick has investigated the use of 6-DoF

input devices he calls bats, hand-held input devices using magnetic trackers [Ware and

Jessome, 1988] . Ware found that subjects can perform coarse positioning tasks faster

when they simultaneously control all six degrees of freedom of an object's position and

orientation than they can when they control position and orientation separately. He also

found, however, that precise 3D positioning is difficult to achieve when the arm or hand is

unsupported. Rotations of the bat produce inadvertent translations and vice versa.

University of Toronto researchers Zhai, Milgram, and Buxton have performed a

series of evaluations of manipulation techniques which use 6-DoF input devices.

[Zhai and Milgram, 1993] presents a three-dimensional conceptual space for

classifying multi-degree-of-freedom manipulation schemes (see Figure 2.5). The X axis of

the discrete space represents mode of sensing. The two extremes for this axis are: isotonic

(muscular contraction in the absence of significant resistance) and isometric (muscular

contraction against resistance) sensing. The region between the extremes represents

spring-loaded elastic sensing. An example of an isotonic controller would be the

magnetically tracked glove used in many virtual environment systems. The Spaceball TM

input device is an example of an isometric input device.

13

Figure 2.5: Zhai et al.'s framework for the study of multi-degree-of-

freedom manipulation schemes [Zhai and Milgram, 1993] .

The Y axis of the model represents different mapping relationships between the

user's limb and the resulting movement of an object. Near the origin of this axis is pure

position control in which the output of the user's limb is mapped to object position or

orientation by a pure gain. At the outer extreme of the axis is rate control in which output

of the user's limb is mapped to object velocity using a first order time integration.

The final axis of their model is the degree of integration, where the origin represents

a fully integrated (6 DoF) control and the outer extreme represents six separate 1 DoF

controllers. Between the extremes would lie two 3 DoF controllers, one for rotation and

one for translations.

Zhai et al. compared isotonic-position, isotonic-rate, isometric-rate, and isometric-

position control approaches in an experimental 6 DoF docking task. They observed a

strong interaction between sensing mode and mapping; performance was better only when

isometric sensing was combined with rate control or when isotonic sensing was combined

with position control. They noted that comparisons of interface design based simply on

comparing sensing mode or mapping function would be misleading.

[Zhai, et al., 1996] discusses the advantages of using the fine, smaller muscle

groups and joints in the fingers for the 6 DoF manipulation of objects. They found that in a

3D object docking experiment, users' task completion times were significantly shorter with

devices that utilized the fingers.

Balakrishnan and MacKenzie from the University of Toronto and the University of

Guelph respectively, however, found that the finger(s) do not necessarily perform better

14

than the other segments of the upper limb in the context of a reciprocal point-select task

[Balakrishnan and MacKenzie, 1997] . The bandwidth of the unsupported index finger is

actually less (3.0 bits/second) than the wrist and forearm which have bandwidths of

approximately 4.1 bits/second. They also found that the thumb and index finger working

together in a pinch grip have an information processing rate of about 4.5 bits/second. They

concur with Zhai et al., however, that well designed pointing devices which rely on all

parts of the human upper limb working in synergy can indeed outperform devices which

depend on a particular limb segment for their entire operation.

2.3 Two-handed Interaction

2.3.1 Example Techniques

Recently, many researchers have explored the benefits of using two-handed

interaction techniques in human-computer interfaces. The work of Bier et al. on the

Toolglass and Magic Lenses interface, for example, demonstrated that the use of two hands

exploits user's everyday skills and reduces steps, cursor motion and errors during

interaction [Bier, et al., 1993] . In the Toolglass and Magic Lens system, one hand

positions a movable see-through interface, a cursor controlled by the other hand points

through to underlying objects (Figure 2.6).

Figure 2.6: Layers in a toolglass system [Bier, et al., 1994] .

15

Figure 2.7: Using toolglasses, two-hands, and transparency in T3

[Kurtenbach, et al., 1997] .

Toolglasses and two-handed input also play an important role in recent research by

Kurtenbach, Fitzmaurice, Baudel, and Buxton of Alias|Wavefront [Kurtenbach, et al.,

1997] . Their goal in developing a system they call T3 (for toolglasses, two-hands, and

transparency) was to maximize the amount of screen used for application data and to

minimize the amount the UI diverts visual attention from the application data. Users

interact with the workspace using two tablet-based puck devices which sense single-axis

rotation in addition to x and y position (Figure 2.7). Using his non-dominant hand the user

moves semi-transparent toolglasses. He interacts with these toolglasses using cursors

controlled by his dominant hand. Marking menus (Figure 2.8 and [Kurtenbach and

Buxton, 1993]) are used to allow the user to select quickly among the set of toolglass

sheets.

16

Figure 2.8: Marking Menus interaction. Novice users can perform

selections by popping-up a radial (or pie) menu. Expert users can make

selections more quickly by making a straight mark in the direction of the

desired menu item without popping-up the menu [Kurtenbach and Buxton,

1993] .

Goble, Hinckley, et al. at the University of Virginia have demonstrated the

advantages of using two hands in conjunction with props, (real-world hand-held tools) in

their Netra system, an interactive tool for neurosurgical planning [Hinkley, et al., 1994;

Goble, et al., 1995] . In the Netra system neurosurgeons control the current viewpoint and

cross-section plane used to display medical imaging data on a conventional workstation by

manipulating real-world props held in their two hands (Figure 2.9). A small doll head held

in one hand controls the viewpoint and scale of the displayed information. A small plate

held in the other hand controls the current cross-sectioning plane. The use of physical

props takes advantage of a human's highly developed ability to manipulate real-world

objects and provides visual and kinesthetic feedback that reminds the user of the prop's

use. Hinkley's work supports previous work [Badler, et al., 1986] which showed that

interaction relative to a real (as opposed to imaginary) object made a previously difficult

and/or tedious task, such as the specification of a camera viewpoint relative to a virtual

object, quite simple.

17

Figure 2.9: Using two hands and props in Netra [Hinkley, et al., 1994] .

Related work at Alias|Wavefront and the University of Toronto by George

Fitzmaurice and Bill Buxton further demonstrates the advantages of interacting with

computer applications using dedicated physical interface widgets. [Fitzmaurice, et al.,

1995] describes an innovative system called Bricks which allows direct control of

electronic or virtual objects through physical handles for control called bricks. Users, for

example, move and rotate a virtual object by manipulating a physical brick placed on top of

it (see Figure 2.10a). With multiple bricks user can perform more complex operations such

as simultaneously positioning and sizing a virtual object (using a brick held in each hand)

or specifying multiple control points on a spline curve (see Figure 2.10b). In [Fitzmaurice

and Buxton, 1997] they present the results of experimental evaluations of their graspable

user interface. They show that the space-multiplexed graspable interface (in which multiple

physical objects are used to control several virtual objects) outperforms a conventional

time-multiplexed interface (in which a single input device such as a mouse controls

different functions at different points in time) for a variety of reasons, including the

persistence of attachment between the physical device and the logical controller.

18

Figure 2.10: Object manipulation and spline editing using Fitzmaurice et

al's graspable user interface [Fitzmaurice, et al., 1995] .

Robert Zeleznik, and Andrew Forsberg of Brown University along with Paul

Strauss of Silicon Graphics Computer Systems have developed several techniques for

object transformation, geometric editing, and viewpoint control which use two hands to

control two independent cursors [Zeleznik, et al., 1997] . They report that the best

mappings of application DoFs to cursor DoFs are those which seem to have the strongest

physical analogs. They also state that given appropriate mappings, two-handed interaction

allows users to perform complex 3D operations more quickly and efficiently than with

single cursor techniques.

Cutler, Fröhlich and Hanrahan of Stanford University have built a system which

allows users to manipulate virtual models using both hands on a tabletop VR device called

the Responsive Workbench (Figure 2.11) [Cutler, et al., 1997] . They present a

framework of three basic building blocks: manipulators which encapsulate devices, tools

which define the interactions, and toolboxes which allow for transitions between different

tools. One of their most interesting findings was that users often performed two-handed

manipulations by combining otherwise independent one-handed tools in a synergistic way.

19

Figure 2.11: The Responsive Workbench [Stanford, 1997] .

Several interactive design systems (3-Draw, U.Va's WIM, Polyshop, Gobetti's

Animation system, and THRED) described in Section 2.5 below also use two hands for

object manipulation and environment interaction. In all of these systems, researchers report

that users quickly adapt to the two-handed mode of interaction, finding it intuitive, easy to

use, and often more effective than one-handed interaction.

2.3.2 Theoretical and Experimental Results

Yves Guiard (of the Centre National de la Recherche Scientifique in Marseille,

France) presents a theoretical framework which can be used in the study of two-handed

interaction [Guiard, 1987] . Guiard proposes that human bimanual behavior can be

modeled as a kinematic chain, a serial linkage of abstract motors. Based on this model he

presents three high-order principles governing the asymmetry of human bimanual gestures.

• The actions of a person's dominant hand are typically performed relative to a
coordinate frame defined by his non-dominant hand.

• The dominant hand works at a finer spatial-temporal scale than the non-
dominant hand.

20

• The actions of the dominant hand typically start after those of the non-dominant
hand.

Effective two-handed interaction techniques must take these results into

consideration, with the non-dominant hand setting the context in which the dominant hand

interacts.

Guiard presents several experimental findings to support his claim. In an ingenious

experiment using a hidden sheet of carbon paper to record handwriting movement, Guiard

shows that humans frequently reposition the page with their non-dominant hand as they

write (see Figure 2.12). Instead of working relative to a static coordinate frame defined by

the paper, subjects worked in a surprisingly small working volume relative to their non-

dominant hand which was holding and moving the paper. Athénes, a student of Guiard's,

reports that subjects in fact wrote 20% slower when instructions prevented them from

using their non-dominant hand to manipulate the page when repeatedly writing a

memorized one line phrase [Athènes, 1984] .

Figure 2.12: Guiard's handwriting experiment. The resulting carbon-

paper image of a user's handwriting when he is prevented from

manipulating the page (left) and is allowed to manipulate the page (right)

with his non-dominant hand. Note that when subjects were allowed to

manipulate the page, translation movements of the dominant hand were

made obliquely on the table and that the rectangle within which dominant-

hand motion was confined represents roughly one third of the surface of the

page [Guiard, 1987] .

21

Several experimental evaluations of two-handed interaction have been performed at

the University of Toronto under the guidance of Bill Buxton. [Buxton and Myers, 1986]

presents the results of two tests comparing two-handed with one-handed interaction. The

first test was a selection/positioning task in which selection and positioning were performed

by separate hands using separate transducers (Figure 2.13). They observed that subjects

independently adopted two-handed strategies that involved performing the two sub-tasks

simultaneously. In the second task they compared one-hand with two-hand techniques for

finding and selecting words in a stylized document. The found that the two-handed

techniques significantly outperformed the common one-handed techniques on a number of

measures.

Figure 2.13: Buxton and Meyer's two handed input experiment [Buxton

and Myers, 1986] .

Kabbash, Buxton, and Sellen did several experiments comparing bimanual and

unimanual drawing/color selection tasks in [Kabbash, et al., 1994] . Subjects were

evaluated under four different interaction techniques on a color-coded connect-the-dots task

(Figure 2.14). Interaction techniques included: a unimanual technique, a bimanual

technique where different hands controlled independent subtasks, and two other bimanual

techniques in which the action of the dominant hand depended upon that of the non-

dominant hand (derived from the toolglass technique described above). Kabbash et al.

observed that with properly designed interaction techniques, two hands for interaction can

be very much superior to one. If the two-handed interaction techniques are improperly

designed, however, performance can in fact degrade, despite the fact that less hand motion

is required than in the one-handed case. This is particularly true for techniques which

assign independent subtasks to each hand (such as tapping one's head while rubbing one's

stomach).

22

Figure 2.14: Kabbash et al's two-hand connect the dots experiment

[Kabbash, et al., 1994] .

Leganchuk, Zhai, and Buxton compared two bimanual techniques with a

conventional one-handed technique for sweeping out a bounding box [Leganchuk, et al.,

1997] . The bimanual techniques resulted in a significantly better performance than the

one-handed techniques. Interestingly, the differences in performance cannot be wholly

accounted for by time-motion efficiency. They postulate that the representation of the task

as a bimanual task reduces cognitive load.

2.4 Manipulating Objects Using Gesture and Voice

In [Krueger, 1991; Krueger, 1993] Myron Krueger, president of Artificial Reality

Corporation, describes his VIDEOTOUCH, VIDEOPLACE, and VIDEODESK

applications. Championing a "come as you are" interface, Krueger prefers the use of

external devices, such as video cameras, instead of hand-held or body-mounted devices to

track the user and his body parts. Krueger uses image processing techniques to extract

image features, such as the position and orientation of the user's hands and fingers, and

uses them in a set of intuitive gestures for the manipulation of virtual objects. Users, for

example, can swat at a virtual ball using a whole-hand gesture or can use their fingertips to

manipulate the control points of a spline curve (Figure 2.15).

23

Figure 2.15: VIDEODESK two-handed interaction [Krueger, 1991] .

Kurtenbach and Buxton of the University of Toronto developed an interactive

system for 2D graphical editing using contiguous gestures they called GEdit [Kurtenbach

and Buxton, 1991] . They defined a set of simple gestures, such as striking a mark

through an object to delete it or drawing a lasso around a group of objects to select and

move them (see Figure 2.16), which were both intuitive and easy to implement using a

mouse or a stylus.

Zeleznik of Brown University has extended the concept of using of 2D gestures for

graphical editing to include techniques for the creation of 3D objects in his SKETCH

system, described in Section 2.5 below [Zeleznik, et al., 1996] .

Figure 2.16: Using a gesture to move a group in GEdit [Kurtenbach and

Buxton, 1991] .

24

Interesting results from several researchers have shown that the combination of

speech input with gestures results in much richer forms of interaction than is possible with

either modality alone.

Some of the earliest work was performed by Richard Bolt at MIT's Media Lab. In

his innovative Put-that-there system [Bolt, 1980] users could manipulate objects on a large

screen using a combination of speech and gestures. Gestures were used to select objects

and to specify destinations, and voice input was used to specify actions. Not only did the

combination of speech and gestures increase the power of the resulting interactions it also

simplified the respective components. Through pronomialization users could replace

complex commands such as "Move the blue triangle to the right of the green square" to

simple and intuitive phrases such as "Put that there". The pronoun and the desired

destination were disambiguated using the pointing gesture. Bolt and other researchers at

the Media Lab have extended these techniques to include two-handed interaction and eye

tracking [Bolt and Herranz, 1992; Thorison, et al., 1992] .

A classic study exploring the use of speech input and/or gestures for the 3D

translation, rotation and scaling of objects was performed by Alexander Hauptmann at

Carnegie-Mellon University [Hauptmann, 1989] . Acknowledging the challenges of both

speech and gesture recognition, Hauptmann substituted a human in an adjacent room for

the recognition devices. Hauptmann's experiment revealed that users strongly preferred

using simultaneous speech and gestures and that they intuitively used multiple hands and

multiple fingers in all three dimensions. Hauptmann also reported that there was a

surprising uniformity and simplicity in the gestures and speech used for the manipulation

tasks. Though given no prior instructions or limits on what they could say, subjects only

used on average 5.8 words per trial and had a surprisingly compact lexicon of 141 different

useful words.

Weimer and Ganapathy of AT&T Bell Laboratories used speech with single-hand

gestural input to perform a set of object placement and solid-modeling tasks [Weimer and

Ganapathy, 1989] . They reported that their system, which was initially implemented

without speech input, was dramatically improved by the addition of speech. Gesturing was

limited to a small vocabulary that consisted of three different gestures using only the

thumb.

2.5 Systems for Interactive Design

Several systems have moved beyond the limitations of two-dimensional input and

output in the interactive design of virtual objects. One can categorize these systems

25

according to the type of input devices used (number and degrees-of freedom of each), and

the type of outputs used:

Input:

• Single 3-DoF input (3D position only)

• Single 6-DoF input (3D position and orientation)

• Two 6-DoF inputs (one for each hand)

Output:

• Conventional workstation display

• Static stereo display (workstation monitor with stereo output)

• Head-tracked kinetic display (non-stereo display with head tracking)

• Head-tracked stereo display (Fish Tank VR)

• Immersive head-mounted display

Table 1 tabulates the inputs and outputs used in the systems discussed below.

Table 2.1: Interactive design systems input/output comparison. Systems are specified by

author/institution/system-name (if applicable).

INPUT

OUTPUT 3-DoF 6-DoF 2 X 6-DoF

Conventional
Display

Sachs/MIT/3-Draw

Shaw/Alberta/THRED

Zeleznik/Brown/Sketch (2x2-DoF)

Stereo Display Schmandt/MIT/

Head Tracking Liang/Alberta/JDCAD

Head-tracked Stereo Deering/Sun/HoloSketchGobetti/CRS4/

Immersive Head-
mounted Display

Clark/Utah/ Butterworth/UNC/3DM

Bowman/Ga.Tech/CDS

Stoakley/U.Va./WIM

Mapes/IST/Polyshop

Mine/UNC/CHIMP

2.5.1 Working Through-the-window

Christopher Schmandt of the Architecture Machine Group at the Massachusetts

Institute of Technology (MIT) used a video display combined with PLZT shutter glasses

and a half-silvered mirror to create a stereo image that was registered with a physical

workspace (Figure 2.17) [Schmandt, 1983] . Users could reach in and directly interact

with virtual objects in the workspace using a 6-DoF magic wand. The wand used an early

Polhemus tracking system and included a button for user input. Though users were

26

enthusiastic about the ability to work directly in a three-dimensional space, they

encountered problems such as: magnetic interference in the tracking system, errors in depth

judgment, and difficulty in creating planar and rectilinear objects without the proper

constraints, both physical (such as arm rests) and virtual (snap to grid).

Figure 2.17: Schmandt's stereoscopic display [Schmandt, 1983] .

The 3-Draw system developed by Sachs et al. at MIT used two hands, each tracked

by a 6-DoF sensor, to interact with an image shown on a conventional (non-stereo) display

[Sachs, et al., 1991] . Sachs developed 3-Draw for the design of complex free-form

shapes. In the 3-Draw system the user held a tracked palette in one hand that acted as a

movable reference frame in modeling space. By using a stylus held in the other hand, one

could draw 2D curves on the palette which resulted in curves in three-dimensional space.

Sachs reported that users found the interface natural and quick, and that the simultaneous

use of two hands provided kinesthetic feedback that enabled users to feel as though they

were holding the objects displayed on the screen.

27

JDCAD, an interactive 3D modeling system designed and built by Jiandong Liang

at the University of Alberta, used a single 6 DoF input device (the bat) combined with a

kinetic head-tracked (non-stereo) display (Figure 2.18) [Liang and Green, 1994] . JDCAD

included: object selection using the spotlight metaphor, innovative menuing systems (the

daisy and the ring menus); and object creation, manipulation, and viewing techniques

customized for the 6-DoF input. Liang showed promising results when comparing JDCAD

with more conventional through-the-window modeling systems. Development of JDCAD

system (now called JDCAD+) continues at the University of Alberta with the addition of

new animation editing and scene composition functions. These functions allow non-

programmers to construct interesting virtual environments without the aid of a programmer

[Halliday and Green, 1996] .

Figure 2.18: University of Alberta's JDCAD system [Liang and Green,

1993] .

Chris Shaw's THRED system (Two-handed Refining Editor), also developed at the

University of Alberta, is a two-handed (6-DoF each) computer-aided design system for

sketching free-form polygonal surfaces such as terrains and other natural objects [Shaw

and Green, 1994] . Surfaces are hierarchically-refined polygonal surfaces based on

quadrilaterals. Models are displayed on a conventional workstation monitor. In the

28

THRED system each hand has a distinct role; the less dominant hand sets context such as

the axis of interaction while the dominant hand is responsible for actions such as picking

and manipulation.

Michael Deering at Sun Microsystems Computer Corporation has created the

HoloSketch system, a VR based sketching system that extends the 2D sketch-draw

paradigm to 3D [Deering, 1996] . A head-tracked stereo system that uses a 6-DoF wand,

the HoloSketch system supports several types of 3D drawing primitives such as rectangular

solids, spheres, cylinders, cones, free-form tubes, and many more. Users control

HoloSketch using a 3D multi-level fade up circular menu which, when invoked, fades up

centered around and slightly behind the current location of the wand. The fade-up menu is

used to select the current drawing primitive or to perform one-shot actions such as cut or

paste. Deering reports that trials with non-computer scientists (the intended users) have

shown that significant productivity gains are possible over conventional 2D interface

technology.

Gobbetti and Balaguer of the Center for Advanced Studies, Research and

Development in Sardinia have created an integrated environment for the rapid prototyping

of 3D virtual worlds [Gobbetti and Balaguer, 1995] . Their system is built on top of the

VB2 system, a graphics architecture based on objects and constraints developed by the

authors at the Swiss Federal Institute of Technology, Lausanne [Gobbetti and Balaguer,

1993] . The system uses two hands for input (using a mouse and a Spaceball), and a head-

tracked stereo display (using LCD shutter glasses) for output. It also uses multi-way

constraints to simplify the development of 3D widgets and the specification of compound

widgets and interaction techniques.

Zeleznik, Herndon, and Hughes of Brown University have developed an

innovative system using a conventional 2 DoF mouse for the rapid conceptualization and

editing of approximate 3D scenes (as contrasted with precise 3D models generated in

conventional computer modeling systems) called SKETCH [Zeleznik, et al., 1996] .

SKETCH utilizes a gestural interface based on simplified line drawings of primitives that

allows all operations to be specified within the 3D world. To create a cube for example,

users simply draw three perpendicular lines which intersect at a point. The lengths of the

lines determine the dimensions of the cube. To create a different shape the user simply

makes a different gesture (two parallel lines for a cylinder, for example) instead of selecting

a different tool from a tool palette. SKETCH also uses several heuristics to determine the

relative 3D location of objects based on the sequence of input strokes. T junctions, for

example, are used to infer the relative placement of objects, such as a leg intersecting a table

29

top (see Figure 2.19). Zeleznik has recently extended the SKETCH interface to two-hands

as described in [Zeleznik, et al., 1997] .

Figure 2.19: Using T junctions to infer object placement in SKETCH

[Zeleznik, et al., 1996] .

A current trend not specific to the field of interactive design, but important to the

development of interactive through-the-window systems in general, is the use of horizontal

or near horizontal display surfaces which project stereoscopic images.

Poston and Serra at the Centre for Information-Enhanced Medicine at the University

of Singapore, for example, use a tilted mirrored display system [Poston and Serra, 1994;

Poston and Serra, 1996] similar to that employed by Schmandt. Users can reach into a

virtual space and interact with virtual objects using a physical tool handle which can have

different virtual end effectors attached to it. Though designed for medical applications the

authors foresee potential applications in many areas including computer-aided design.

The Responsive Workbench, originally developed at GMD (the German National

Research Center for Information Technology) [Krueger and Fröhlich, 1994] with

continued work at Stanford University [Stanford, 1997] , uses a projector-and-mirrors

system to project a high-resolution, stereoscopic image onto a horizontally-mounted

projection screen (Figure 2.11). This system makes it possible for users to interact with

applications using an intuitive tabletop metaphor. Similar systems include the Immersive

Workbench by Silicon Graphics and Fakespace [Fakespace, 1997] , the ImmersaDesk

from the Electronic Visualization Laboratory at the University of Illinois at Chicago [EVL,

1997] , and the NanoWorkbench at the University of North Carolina [UNC, 1997] which

also incorporates a PhantomTM force feedback arm (Figure 2.20).

30

Figure 2.20: UNC's nanoWorkbench [UNC, 1997] .

2.5.2 Working Immersed

Back in the mid 70's at the University of Utah, Jim Clark built one of the earliest

interactive design systems that used an immersive head-mounted display. Clark developed

his pioneering system for use in the interactive design of free-form surfaces in three-

dimensions [Clark, 1976] . Clark's system used a mechanically tracked head-mounted

display designed by Ivan Sutherland and a 3 DoF wand that computed positions by

measuring the length of three monofilament lines attached to the ceiling. Primarily limited

by the state of available technology (in particular the tracking technology and graphics

system), the system addressed many of the issues that face developers of interactive design

systems today.

3DM (Three-dimensional modeler) is an interactive design system created at the

University of North Carolina in the early 90's [Butterworth, et al., 1992] . Using a stereo

head-mounted display and a single 6 DoF bat, 3DM allows users to interactively create

geometric objects from within a virtual environment. 3DM includes several grid and snap

functions, but it lacks many of the other aids and constraints that we since have found

necessary for accomplishing precise work.

The University of Virginia's Worlds-in-Miniature (WIM) system ([Stoakley, et al.,

1995]) is an innovative system that uses a hand-held miniature representation of the virtual

31

environment (the WIM) for object manipulation and viewer navigation (Figure 2.21). The

system uses two 6-DoF inputs, one attached to a physical clipboard held in one hand, and

one attached to a 6-DoF bat held in the other hand. Users manipulate objects in the virtual

world by manipulating objects in the virtual hand-held miniature which is attached to the

clipboard. Moving the copy of an object in the WIM results in the corresponding

movement of the full-sized original. Moving a representation of the user in the WIM

effects a change in viewpoint. The authors report that users quickly adapted to the WIM

interface finding it intuitive and easy to use.

Figure 2.21: University of Virginia's World-In-Miniature [Stoakley, et

al., 1995] .

The Conceptual Design Space system is an immersive head-mounted display

system for interactive architectural design that was developed at the Graphics, Visualization

and Usability Center at the Georgia Institute of Technology [Bowman and Hodges, 1995] .

Using a single 6-DoF input, users interact with objects and widgets using a ray-casting

metaphor. The developers of the CDS system have adapted many of their interface

elements and tools directly from 2D interfaces. To help create a highly usable immersive

architectural design tool, the developers of CDS have worked closely with actual architects

and members of the College of Architecture at Georgia Tech.

In the Polyshop system, developed at University of Central Florida's Institute for

Simulation and Training, two hands are used to scale, rotate, and translate objects within

the virtual world [Mapes and Moshell, 1995] . Users select specific modes of operations

32

using two ChordGloves, which provide a discrete form of gesture recognition.

ChordGloves have separate electrical contacts at the end of each finger and on each palm.

Different gestures consist of different chord patterns of electrical contacts. Mapes and

colleagues continue this work at MultiGen Inc. with the development of the SmartScene, a

virtual-world scene-building application [MultiGen, 1997] . SmartScene includes many

powerful and intuitive techniques such as hand-held palettes, two-handed flying, dynamic

scaling of the world (also using two-hands), and ModelTime Behaviors (predefined

snapping, popping, and stretching behaviors).

33

Chapter 3

Body-Relative
Interaction Techniques

This chapter is intended to give the reader a better understanding of the concept of

body-relative interaction. First I present automatic scaling as a means of bringing objects

instantly in reach so that users can manipulate them using proprioceptive cues. Then I

present detailed examples of three forms of body-relative interaction: direct manipulation,

physical mnemonics, and gestural actions.

3.1 Working Within Arm's Reach

I have found that interacting within a user's natural working volume (i.e. within

arm's reach) gives the user a greater sense of the position and orientation of the objects

being manipulated than interacting with remote objects outside of this range (e.g. using

laser beams). Interacting within a user's natural working volume has these advantages:

• takes advantage of proprioceptive information

• provides a more direct mapping between hand motion and object motion

• yields stronger stereopsis and head-motion parallax cues

• provides finer angular precision of motion

Often the target of manipulation lies outside of the user's reach. Though he can

move to reach it, constantly switching between object interaction and movement control

breaks the natural rhythm of the operation and adds significant cognitive overhead. An

automatic scaling mechanism is a convenient way to allow the user to interact instantly with

objects falling at any distance as though they were within arm's reach.

34

1) Select 2) Grab

3) Manipulate 4) Release

Figure 3.1: Automatic scaling of the world when the user grabs and

releases an object.

Selected objects that lie outside of the reach of the user are brought instantly into

reach by automatically scaling down the world about the user. For example, if the user's

arm is extended 0.5 meters, the application brings a selected object that is 5 meters away to

the user's hand by scaling down the world by a factor of 10 (see Figure 3.1)3. Scaling

takes place at the start of each manipulation and is reset when the user is done (when the

user grabs and then releases an object, for example). The scale factor depends on the

currently selected object; if the user selects an object that is 15 meters away instead of 5

meters, the application scales down the world by a factor of 30.

The scaling factor used to scale down the world (or conversely, scale up the user) is

equal to the ratio of the distance of the object being manipulated to the distance of the user's

hand:

3More precisely the object will move to a point on the surface of a sphere whose radius is equal to the

user's current arm extension. The object will move to the user's hand only if his hand lies along the vector from
the scaling center (the user's head) to the object. This is the case when the user's hand visually occludes the
object.

35

head_ object

projection of head_ hand onto head_ object

where head_object is the vector from the user's head (defined to be the midpoint

between the user's eyes) to the object, and head_hand is the vector from the user's head to

his hand (Figure 3.2).

head_hand

head_object

Figure 3.2: Vectors used in determining automatic scaling factor.

If the center of the scaling operation is chosen to be the point midway between the

user's eyes, the user will, usually, be unaware that scaling has taken place, due to the

ambiguity of perspective projections. This is particularly true if the inter-pupilary distance

used to compute stereo images is also adjusted by the same scaling factor. This saves the

user's having to reconverge the eyes. The most noticeable change is an apparent change in

the size of the user's hand (which was not scaled). This can be offset by using non-

realistic hand representations such as 3D crosshairs whose size is harder for the user to

estimate visually.

A more implicit effect of the scaled-down world is the more dramatic effects of head

movements; a small movement left-to-right may enable the user to see a big object such as a

house from different sides, as though it were a dollhouse. While, in general, this is

desirable, in some cases head motion results in distracting movement of small, nearby

objects.

36

3.2 Sample Interaction Techniques

3.2.1 Direct Manipulation

3.2.1.1 Scaled-World Grab for Manipulation

An example of the power of automatic scaling is scaled-world grab. In scaled-

world grab, the world is automatically scaled down about the user's head every time he

grabs an object and scaled back up when he releases it. With the object at the user's hand

he can exploit proprioception, stereopsis, and head-motion parallax as he grabs an object

and moves it.

Scaled-world grab is a powerful technique with an important property: it minimizes

user work for a given result. With scaled-world grab the user can bring the most remote

object in the scene to his side in a single operation; he doesn't have to fly (or worse, walk)

to reach it or repeatedly grab, drop, and regrab the object to reel it in. Furthermore, since

the scale factor is automatically set, the user can manipulate near and far objects with equal

ease. Scaled-world grab makes excellent use of a user's proprioceptive information for

radial object movement, too: if the user halves his arm extension, the distance to the object

will be halved. Movement of an object is easy for the user to control, predict and

understand. Scaled-world grab is a surprising yet intuitive technique. In our informal user

trials we have observed that users are often surprised to learn that scaling has taken place,

but they have no problem using the technique.

Related Work

The principles on which scaled-world grab is based have their foundations in the

lessons I learned while exploring other forms of remote object manipulation.

Originally, for example, I tried the remote manipulation of objects via laser beams

[Mine, 1996; Mine, 1997] (and later spotlights, following [Liang and Green, 1994]). I

found, however, that even though these beams extend a user's reach, they are effective

only for translations perpendicular to the beam direction and rotations about the beam axis.

While it is easy to move an object about in an arc, translations in the beam direction and

arbitrary rotations are much more difficult, requiring the user to repeatedly grab, move,

drop, and re-grab the object.

A very effective way to specify arbitrary rotations is to use an object centered

interaction paradigm [Wloka and Greenfield, 1995; Mine, 1997] in which changes in pose

of the user's hand are mapped onto the center of a remote object. One technique that I

developed that grows out of this paradigm I call extender grab. Changes in orientation of

37

the user's hand are applied 1:1 to the object's orientation. Translations are scaled by a

factor which depends upon the distance of the object from the user at the start of the grab.

The further away the object, the larger the scale factor. By automatically setting the scale

factor based on object distance, extender grab enables a large dynamic range of

manipulation. No matter how far away an object lies it can be brought to the user's side in a

single operation. A key distinction between scaled-world grab and extender grab is that in

the latter, manipulanda are not necessarily co-located with the user's hand as they are in

scaled-world grab. This makes it harder for the user to exploit proprioception to determine

object position and orientation (Chapter 4). Similar techniques have been presented in

[Bowman and Hodges, 1997] and [Pierce, et al., 1997] . In Pierce's image-plane

interaction techniques the user interacts with the two-dimensional projections that 3D

objects in the scene make on his image plane.

A closely related technique for extending a user's reach called go-go interaction has

been developed by Poupyrev et al. at the University of Washington [Poupyrev, et al.,

1996] . In go-go interaction a user's virtual arm extension is a function of his physical arm

extension, with a 1:1 mapping applied close to the user's body and a nonlinear function

used further out. The maximum distance a user can reach depends upon the length of the

user's arm and the scaling function used. Go-go interaction may require different scaling

functions in scenes with different distributions of objects (i.e. mostly nearby or faraway).

Scaled-world grab has some common features with the Worlds-in-Miniature (WIM)

paradigm discussed above (see [Pausch, et al., 1995; Stoakley, et al., 1995; Mine, 1996;

Mine, 1997] and related earlier work in [Teller and Sequin, 1991]), in which objects are

brought into reach in the form of a miniature copy of the environment floating in front of

the user. WIMs have shown excellent promise in areas such as remote object manipulation

and wayfinding. With a WIM, users can perform large scale manipulations of remote

objects (moving a chair from one room in the house to another, for example) simply by

manipulating the corresponding miniature copy in the WIM.

One drawback I have observed with WIMs is that they force one to split limited

display real estate between the miniature copy and the original environment. Moreover, I

have found that fine-grained manipulations are difficult, particularly if the user is forced to

hold a copy of the entire environment in his hand (as was the case in our system). If the

entire environment has been scaled down to WIM size, individual scene elements may be

quite small, and thus difficult to see, select, and manipulate. Note that manipulations at

arbitrary resolutions would be easier if the user could interactively select a subset of the

environment to view in the WIM (choosing to look at a single room instead of the whole

38

house, for example). In that case the WIM could be thought of as a more general three-

dimensional windowing system.

3.2.1.2 Scaled-World Grab for Locomotion

Automatic world-scaling also yields a useful locomotion mode, in which the user

transports himself by grabbing an object in the desired travel direction and pulling himself

towards it. With scaled-world grab one can reach any visible destination in a single grab

operation.

Since the point of interest is attached to the user's hand, he can quickly view it from

all sides by simply torquing his wrist. Alternately, if the virtual world stays oriented with

the laboratory (which aids wayfinding), the user can swing himself about the point of

interest, in a fashion similar to Chung's orbital mode (discussed later), by holding it in

front of his face while he turns around (the world pivoting about his hand).

A similar movement metaphor called virtual walking is used in MultiGen's

SmartSceneTM application [MultiGen, 1997] . With virtual walking users can pull

themselves through the environment hand-over-hand, like climbing a rope. Virtual

walking, however, is more suitable for the exploration of nearby objects, since the extent

of the pulling operation is limited to the reach of the user. To go much beyond his

immediate surroundings, the user must either invoke a separate scaling operation to scale

down the world until the desired destination is within reach or switch to one of

SmartScene's other movement modes such as two-handed flying.

3.2.2 Physical Mnemonics

3.2.2.1 Pull-Down Menus

A thorny problem is the management and placement of virtual menus. If menus are

left floating in space they are difficult to find. If they are locked in screen space they

occlude parts of the scene. One solution is to keep the menu hidden and use a virtual

button (like a menu bar) or a physical button to invoke the menu. However, small virtual

buttons that minimally occlude are difficult to hit, and the cost of dedicating a physical

button just for menu activation is high, since the number of buttons available on an input

device is inherently limited.

As an alternative, I propose that one can hide virtual menus in locations fixed

relative to the user's body, just above his current field of view for example. To access a

menu the user simply reaches up, grabs the menu, and pulls it into view (Figure 3.3). The

user can then interact with the menu using his other hand (if two hands are available) or

39

through some form of gaze-directed interaction. Once the user is done with the menu he

lets go, and it returns to its hiding place. This obviates a dedicated menu button, avoids

occlusion of the scene by the menu, uses an existing operation (grab) for menu invocation,

and keeps menus easy to find and access. In informal trials I have found that the user can

easily select among three menus from above his field of view; one up and to the left, one

just above, and one up and to the right.

Figure 3.3: Using a pull-down menu.

The user's body can similarly be used to locate other tools or modes switches.

Widgets for changing the viewing properties can be stored by the user's head; widgets for

manipulating objects can be stored by the user's hands. The user's own body parts act as

physical mnemonics which help in the recall and acquisition of frequently used controls.

Furthermore, since the user is interacting relative to his own body, controls can remain

invisible until acquired and can snap back to their hiding place when no longer needed.

This minimizes occlusion of the scene by the virtual controls.

3.2.2.2 Hand-Held Widgets

In [Conner, et al., 1992] , widgets (such as handles to stretch an object) were

attached directly to the objects they control. To use such object-bound widgets in an

immersive environment requires either the ability to reach the widget or some form of at-a-

distance interaction. As an alternative I developed hand-held widgets: 3D objects with

40

geometry and behavior that appear in the user's virtual hand(s). Hand-held widgets can be

used to control objects from afar like using a TV remote control (Figure 3.4).

Hand-held widgets have several advantages over object-bound ones. First, I have

observed in both formal user studies (Chapter 5) and informal user trials that users can

select and work with hand-held widgets (assisted by proprioceptive information) more

easily than they can with object-bound widgets (whose position can be deduced only

visually). Second, hand-held widgets enable a user to interact with selected objects from

afar; he doesn't have to reach an object to use its widgets. Third, hand-held widgets reduce

visual clutter, since each object doesn't have to have its own set of widgets, only a single

copy of each kind of widget is needed. Finally, hand-held widgets eliminate obscuration of

an object by its widgets since the object is no longer surrounded by the widget's

affordances. As a result of these factors, I find that it is preferable to work with widgets

held in the hand, even though at-a-distance interaction with object-bound widgets could be

accomplished using image-plane interaction techniques or automatic scaling.

Object Movement

Figure 3.4: Using a hand-held widget.

Several researchers have explored a similar form of interaction called the virtual

tricorder [Angus and Sowizral, 1994; Wloka and Greenfield, 1995] , in which different

virtual-environment controls are mapped onto a hand-held, real-world input device. The

advantage of using a real-world input device is that it provides haptic feedback to the user

[Hinkley, et al., 1994] . It also, however, somewhat constrains the form of the resulting

virtual controls since they always maintain their resemblance and one-to-one mappings to

the real device.

41

3.2.2.3 FOV-Relative Mode Switching

One knows when one's hand or foot is in one's field of view (FoV), and one

knows intuitively how to bring it into view. I have found that this can be effectively used

for mode switching. Applications can, for example, switch between different forms of

object selection. Occlusion selection, the selection of objects that visually lie behind a

hand-attached cursor [Pierce, et al., 1997] , requires the user's hand to be visible. The

selection of objects pointed at by a laser beam or spotlight attached to the user's hand, does

not. A logical and intuitive form of body-relative mode switching is to automatically

change between occlusion selection and ray casting whenever the user's hand moves out

of/into his current field of view.

3.3.3 Gestural Actions

3.3.3.1 Head-Butt Zoom

Promising results have been reported on the potential of head pose as an auxiliary

input channel into the system. In orbital mode, for example, the user's head orientation is

tracked and mapped so as to move the viewpoint of the user about the surface of a virtual

sphere surrounding an object [Chung, 1994] . Orbital mode is an excellent example of a

technique not possible in the real world that gives the user powerful capabilities in the

virtual environment. Chung found radiologists to prefer it over six other methods of view-

direction control such as mouse, joystick, and walkaround.

I developed head-butt zoom as another way for head motion to be used in

controlling interaction. At UNC we have observed that users routinely and frequently

switch between close-up local (and detailed) views and pulled-back global (and simplified)

views when using interactive design systems, whether architectural CAD, molecular map

tracing, or technical illustration preparation. Head-butt zoom enables a user to switch

quickly between these two types of views as simply as leaning forward for a closer look.

Setting up head-butt zoom is similar to using a zoom tool in a conventional through-

the-window application. The user frames the chosen detailed subset of his current view

using a screen-aligned rectangle in front of his face. He sizes the rectangle like a movie

director framing a shot; the position of his hands setting the corners of the rectangle (Figure

3.5). The size of this rectangle determines the zoom factor; its placement in world space

determines the transition point. To remind the user that he is in head-butt zoom mode, a

semi-transparent rectangle is left floating in space.

42

Figure 3.5: Selecting a region for closer inspection.

The user switches between the two views simply by leaning forward and

backward. Lean forward (across the plane of the rectangle) to get a close up and detailed

view; lean back to return to the normal view.4 If the user wishes to remain in the close-up

view, he simply steps forward at which point he will translate to the point of view of the

zoomed-in view. Stepping back, he will return to the original view.

Instead of having the user explicitly frame a region of interest, the current zoom

factor can be based upon the currently selected object (chosen so that when he leans

forward the object fills his field of view). This mode makes it easier to integrate head-butt

zoom with other forms of interaction, since the user does not have to interrupt his current

operation in order to switch modes and specify a zoom rectangle.

Head-butt zoom makes good use of an additional input channel, i.e., head position.

Users can change zoom levels without having to interrupt the current operation they are

performing with their hands. Head-butt zoom also makes good use of limited display

space, since one no longer needs to share screen space between two versions of the same

scene at different scales, as in a World-In-Miniature.

4Note that head-butt zoom can also be used to switch between other kinds of viewing modes. Instead of

views at different scale, for example, the user could specify views in different rendering style. The user could lean
forward to get a wireframe view, lean back to get a full shaded representation.

43

3.3.3.2 Look-at Menus

Head orientation can be used instead of the traditional hand position to control the

cursor used to select an item from a menu. To make a selection, one turns the head instead

of moving the hand. The pick ray is fixed relative to the head, thus tracking head motion

(Figure 3.6). This gives an intuitive way to select an item simply by looking at it. To

confirm selection, the user presses a physical button or, with pull-down menus, releases

the menu.

Figure 3.6: Look-at menu.

Note that look-at menus can be hand-held, floating free in space, or associated with

objects in a scene, automatically appearing when the user looks at a control point on the

object [Mine, 1996] .

3.3.3.3 Two-Handed Flying

Numerous results describe the benefits of two-handed input in interactive

applications ([Buxton and Myers, 1986; Bier, et al., 1993; Shaw and Green, 1994; Goble,

et al., 1995; Mapes and Moshell, 1995; Cutler, et al., 1997; Zeleznik, et al., 1997]). I

have found two-handed flying an effective technique for controlled locomotion. The

direction of flight is specified by the vector between the user's two hands, and the speed is

44

proportional to the user's hand separation (see Figure 3.7)5. A dead zone (some minimum

hand separation, e.g. 0.1 m) enables users to stop their current motion quickly by bringing

their hands together (a quick and easy gesture). Two-handed flying also exploits

proprioception for judging flying direction and speed.

Direction of Flight

Figure 3.7: Two-handed flying.

Two-handed flying is easier ergonomically than conventional one-handed flying in

which the user's hand orientation specifies direction and arm extension specifies speed.

Flying backwards using one-handed flying, for example, requires the user to regrab the

input device or to turn his hand around awkwardly. With two-handed flying the user

simply swaps the position of his hands. Moreover, speed control based on hand separation

is less tiring than speed control based on arm extension, the user doesn't have to hold his

hands out.

3.3.3.4 Over-the-Shoulder Deletion

A common operation is deletion; users need an easy way to get rid of virtual

objects. Over-the-shoulder deletion is an intuitive gesture that exploits body sense. To

delete an object the user simply throws it over his shoulder (Figure 3.8). It is easy to do,

easy to remember, and it does not use up any buttons or menu space. It is unlikely to be

accidentally invoked, since users do not typically manipulate objects in that region.

5A similar flying technique has been implemented by Mapes and colleagues in MultiGen's

SmartSceneTM [MultiGen, 1997] .

45

Figure 3.8: Over-the-shoulder deletion.

The space behind a user's head can be treated as a virtual clipboard. A user can

later retrieve the last object deleted by simply reaching over his shoulder and grabbing it.

46

Chapter 4

User Study 1
Virtual Object Docking

This chapter presents the results of a user study designed to explore the differences

between manipulating virtual objects that are co-located with one's hand and manipulating

objects at a distance. Would experimental data substantiate the intuition that it is easier to

manipulate an object held in one's hand than it is using some form of remote object

manipulation such as laser beams? I present a description of the experimental design, the

statistical analyses, and some conclusions based upon the results.

4.1 Introduction

The last chapter presented the notion of using automatic scaling to bring remote

objects instantly within reach in a form of remote object manipulation called scaled-world

grab. I recommended scaled-world grab as an effective alternative to remote object

manipulation using laser beams based upon the intuition that it is easier to manipulate an

object held in one's hand than it is to manipulate an object at the end of a beam.

To evaluate quantitatively the differences between manipulating virtual objects held

in one's hand and those at some offset I designed the Virtual Docking Experiment. The

experiment was a repeated measures experiment with three primary experimental

conditions: the manipulation of objects held in one's hand, objects held at a fixed offset,

and objects held at a variable offset. These three conditions were abstractions of three

forms of remote object manipulation: scaled-world grab, laser beam interaction, and

extender grab.

The results confirm that subjects can manipulate objects attached to their hands

more efficiently, as measured by trial completion time, than they can objects at an offset

(either fixed or variable). The mean trial time completion for objects held in one's hand

47

was 3.87 seconds, it was 5.10 seconds for objects held at a fixed offset, and 4.96 seconds

for objects held at a variable offset. No significant difference was found between

manipulating objects at a fixed offset and those at a variable offset.

4.2 Hypotheses

The null hypothesis for this experiment is:

H0: M0 = M1 = M2. In the population, there is no difference between manipulating

a virtual object that is co-located with the hand, one that is offset at some fixed distance,

and one that is at a variable offset which depends on arm extension.

The alternative hypothesis:

H1: M0, M1, and M2 are not all equal. In the population, there is a difference

between manipulating a virtual object that is co-located with the hand, one that is offset at

some fixed distance, and one that is at a variable offset which depends on arm extension.

4.3 The Experiment

4.3.1 Subjects

Eighteen unpaid subjects (7 female, 11 male) were recruited from the staff and

students at the University of North Carolina at Chapel Hill. Staff volunteers were

employees of the university's Administrative Information Services department. Student

volunteers were from an introductory course in computer programming offered by the

university's department of computer science. The subjects received no immediate benefit

from participation in the study, nor were they provided with any tangible inducement for

their participation.

All subjects were right handed. All subjects had experience using conventional

computer interfaces (keyboard, mouse, and monitor) and eleven had limited exposure to

immersive virtual environments (game or demonstration systems). None were regular or

expert users of immersive VR systems.

4.3.2 Experimental Platform

The head-mounted display used for all tests in this study was a Virtual Research

Flight Helmet. Tracking of the subject's head and two hands was performed by a

Polhemus Fastrak magnetic tracker. The magnetic sensor held in the subject's dominant

hand was embedded in a styrofoam cube which measured approximately 1.75 inches on a

48

side. Attached to the magnetic sensor held in the subject's non-dominant hand was a single

input button. Real-time stereoscopic images displayed in the head-mounted display were

generated by UNC's Pixel-Planes 5 graphics computer. The graphics-system update rate

during the experiment was approximately 20 frames/second and the estimated end-to-end

latency was about 80 ms [Mine, 1993] .

The virtual environment consisted of target shapes and hand-held docking shapes.

Target shapes were semi-transparent red cubes floating in space in front of the subject.

Hand-held docking shapes were fully opaque blue cubes attached to the subject's hand.

Docking shapes were either co-located with the subject's dominant hand or at some random

initial offset ranging from 0.1 - 0.6 meters.

4.3.3 The Task

The task given to the subjects was to align the hand-held docking cube with the

target cube floating in space as quickly as possible. The two cubes were considered

aligned if the distance between cube centers was less than 1 cm and the minimum rotation

to align the cubes was less than 10 degrees. The docking cube also had to be moving less

than 5 cm/sec. This velocity threshold was included to encourage more deliberate behavior

on the part of the subjects (i.e. to keep the subject from just waving his hand around

randomly until the cubes were aligned).

Target cubes were presented to the subject one at a time. Each time the subject

successfully aligned the docking cube with the target cube, both the target cube and

docking cube would disappear from their current locations and then reappear in their new

locations. Target cube positions and orientations were randomly generated. The positions

were constrained to fall within a frustum which extended from 0.25 to 0.55 meters in front

of the subject (roughly within the subject's current field of view). Docking cube

orientations matched the orientation of the hand-held styrofoam cube. Docking cube

positions depended upon experimental condition, as explained below.

The subject controlled the virtual docking cube using the small styrofoam cube held

in his dominant hand. Movement of the docking cube in response to movements of the

hand-held styrofoam cube depended upon the experimental condition.

To start the test the subject pressed an input button held in his non-dominant hand.

Once the test had begun the subject's non-dominant hand was no longer used.

49

4.3.4 Experimental Conditions

The experiment compared three conditions: the manipulation of a docking cube co-

located with the subject's hand, the manipulation of a docking cube at a fixed offset from

the subject's hand, and the manipulation of a docking cube at a variable offset from the

subject's hand.

In the co-located condition, the virtual docking cube was co-located with the

styrofoam cube held in the subject's hand (see Figure 4.1a). Changes in position and

orientation of the styrofoam cube were mapped 1:1 onto the position and orientation of the

docking cube. This condition was meant to simulate the manipulation of a virtual object co-

located with one's hand, as is the case in scaled-world grab.

A

C

B

Figure 4.1: Experimental conditions for the docking test. A) Co-located

object B) Fixed-offset object C) Variable-offset object.

In the fixed-offset condition, the virtual docking cube was given a random

horizontal offset from the styrofoam cube for each docking trial (see Figure 4.1b). This

offset would vary from cube to cube (ranging from 0.1 - 0.6 meters) but would remain

fixed during the manipulation of a single cube. Changes in position and orientation of the

styrofoam cube were again mapped 1:1 onto the position and orientation of the docking

50

cube. This condition was meant to simulate the object centered manipulation (see Section

3.2.1) of a remote object that is typical of laser beam interaction.

In the variable-offset condition, the virtual docking cube was given a different

random offset from the styrofoam cube (ranging from 0.1 - 0.6 meters) for each docking

trial, as was the case in the fixed offset condition. In the variable case, however, instead of

being offset horizontally, the docking cube was constrained to lie along the vector from the

subject's head through the magnetic sensor embedded in the styrofoam cube (see Figure

4.1c). This resulted in the docking cube moving with, though at some random offset

behind, the subject's hand as seen from his current point of view. The offset of the

docking cube depended upon the subject's current arm extension. If he halved his arm

extension the distance to the object (along the vector from his head through his hand)

would halve. This condition was meant to simulate the manipulation of an object using

extender grab (see Section 3.2.1).

I included this third condition to see if there were any statistically significant

differences between scaled-world grab and extender grab. I was particularly interested in

this comparison since the two manipulation techniques are quite similar. Both techniques

enable a similar range of manipulation of remote objects, and in both techniques the range

of manipulation depends upon a scale factor which is automatically set based upon object

distance. The primary difference between the two techniques is that in scaled-world grab

the scaling factor is applied to world size, whereas in extender grab it is applied to the

resulting translations of the object.

4.3.5 Experimental Procedure

The study was designed as a single-factor within-subject investigation with repeated

measures. The independent variable was manipulation method; subjects manipulated

docking cubes co-located with their hands, at a fixed offset from their hand, or at a variable

offset from their hand. The dependent variable measured was trial completion time under

each manipulation method.

Each experimental session was preceded by a stereoscopic vision test, a handedness

check, and the signing of a consent form. Prior to the start of the test, subjects were

exposed to a brief (5 minutes) virtual reality demonstration to acclimate them to the virtual

environment system.

A fully counterbalanced design was used. Each subject was tested under all three

experimental conditions. A single test consisted of 36 separate docking trials under a single

51

experimental condition. Subjects were randomly divided into six groups, and each group

was presented the three experimental conditions in one of the six possible orders. Each

subject repeated the chosen sequence of experimental conditions twice (i.e. two blocks:

ABC ABC) for a total of six tests per user. The total number of docking trials performed

by each user was: (2 blocks) * (3 tests/block) * (36 docking trials/test) = 216 docking

trials.

The subjects were permitted to take a short break between tests if necessary.

Following the tests subjects filled out a short questionnaire.

4.4 Results

Time for trial completion was the dependent variable measured for this test. This

was the total time from the appearance of a target cube to the successful alignment of the

docking cube with the target cube.

The results of the first three tests (108 docking trials) were not used in the statistical

analyses below. This decision was based on the results of pilot studies which showed a

marked improvement in performance, which can be attributed to learning, over the first

several trials. Figure 4.2, shows the average docking time, averaged across users and all

techniques, for the 216 trials of the experiment. It shows the same learning behavior the

pilot experiment did.

52

Average Docking Times

Trial

S
ec

o
n

d
s

0

5

10

15

20

25

0 50 100 150 200 250

Block 1 Block 2

Figure 4.2: Average trial completion time over all users and all techniques.

The first three tests, therefore, were used as a training period that would allow the

subjects to become familiar with all three techniques before actual performance evaluations.

Table 4.1 presents the overall means obtained from the second block of tests in each

experimental condition. Figure 4.3 presents this information graphically.

Table 4.1: Mean time of trial completion by experimental condition.

Condition Mean (seconds) Standard Deviation (seconds)

Co-located 3.9 2.1

Fixed offset 5.1 3.8

Variable offset 5.0 4.5

53

Task Completion Time

Technique

S
ec

o
n

d
s

0

1

2

3

4

5

6

co-located fixed offset variable offset

7

8

9

Figure 4.3: Mean docking times by technique (with 1 sigma error bars).

Results were analyzed using a one-way multivariate analysis of variances

(MANOVA), repeated measures design. This analysis revealed significant differences

among the mean trial completion times for the three manipulation techniques (F(2,16) =

7.86; p < 0.005). Contrasts of trial completion times showed that the manipulation of

objects co-located with one's hand was significantly faster than the manipulation of objects

at a fixed offset (F(1,17) = 16.70; p < 0.001), and the manipulation of objects at a variable

offset (F(1,17) = 8.37; p = 0.01). No significant difference was found between the

manipulation of an object at a fixed offset and one at a variable offset (F(1,17) = 0.25; p =

0.62).

Results were also analyzed for both sex and order effects using a factorial ANOVA

with one repeated-measures factor and two between groups factors. No significant

interaction was found for sex (F(2,8) = 0.03; p = 0.97), and order-of-presentation

(F(10,14) = 0.92; p = 0.54).

54

4.5 Questionnaire Results

Subjects were asked to rate the interaction techniques for ease of manipulation,

precision, fatigue, and overall usability. Each technique was rated on a scale of -3 to +3,

with positive values being better, i.e. easier to manipulate, more precise, or less fatiguing.

Table 4.2 presents the means obtained over all subjects from the results of the

questionnaire.

Table 4.2: Mean questionnaire results by technique.

Co-located Fixed offset Variable offset

Category Mean Std Dev Mean Std Dev Mean Std Dev

Ease of manipulation 2.6 0.5 1.0 1.6 0.7 1.9

Precision 2.6 0.5 1.0 1.7 0.1 1.7

Fatigue 1.6 1.3 0.6 1.6 -0.1 1.4

Overall rating 2.6 0.5 1.2 1.5 0.5 1.4

Results from each category were analyzed using a one-way multivariate analysis of

variances (MANOVA), repeated measures design. This analysis showed significant

differences among subject's ratings of the three manipulation techniques in all categories

(Table 4.3).

Table 4.3: F statistic and significance by questionnaire category.

Category F statistic Significance

Ease of manipulation F(2,12) = 7.8 p < 0.01

Precision F(2,12) = 17.8 p < 0.001

Fatigue F(2,12) = 4.8 p = 0.03

Overall F(2,12) = 14.6 p < 0.001

Tables 4.4 - 4.6 present the statistical results of contrasts of subject ratings for the

various techniques. According to the ratings, manipulating an object co-located with one's

hand was significantly easier, more precise, and preferable to manipulating an object with a

fixed offset (Table 4.4).

55

Table 4.4: Co-located vs. fixed-offset, F statistic and significance by questionnaire

category.

Category F statistic Significance

Ease of manipulation F(1,13) = 14.3 p < 0.005

Precision F(1,13) = 14.0 p < 0.005

Fatigue F(1,13) = 3.1 p = 0.10

Overall F(1,13) = 15.2 p < 0.005

Manipulating an object co-located with one's hand was significantly easier, more

precise, less fatiguing, and preferable to manipulating an object with a variable offset

(Table 4.5).

Table 4.5: Co-located vs. variable-offset, F statistic and significance by questionnaire

category.

Category F statistic Significance

Ease of manipulation F(1,13) = 13.7 p < 0.005

Precision F(1,13) = 28.8 p < 0.001

Fatigue F(1,13) = 10.1 p < 0.01

Overall F(1,13) = 30.7 p < 0.001

No significant differences were found between the manipulation of an object at a

fixed offset and one at a variable offset (Table 4.6).

Table 4.6: Fixed-offset vs. variable-offset, F statistic and significance by questionnaire

category.

Category F statistic Significance

Ease of manipulation F(1,13) = 0.6 p = 0.47

Precision F(1,13) = 2.0 p = 0.18

Fatigue F(1,13) = 2.5 p = 0.14

Overall F(1,13) = 4.2 p = 0.056

56

4.6 Discussion

This evidence strongly supports the hypothesis that the manipulation of an object

co-located with one's hand is more efficient than the manipulation of an object at an offset.

Subjects were able to place the hand-held docking cube within the target cube significantly

faster when the docking cube was co-located with their hand then they could when it lay at

some offset (either fixed or variable). Furthermore, based on the results of the

questionnaire, subjects preferred the manipulation of an object co-located with their hand,

rating it significantly higher than the manipulation of an object with an offset. No

significant difference was found between the manipulation of an object with a fixed offset

and one with a variable offset in task completion time or the results of the questionnaire.

Subjects' written comments also reflected the preference for the manipulation of an

object co-located with one's hand. Several subjects described it as being "the most natural"

or "much more natural" and stated that it gave them a "feeling of exact control". Other

comments included, "I liked it when the object was at my hand the best", and "It reacts just

like I think its going to".

When manipulating an object with an offset there was "more of a sense of

detachment from the manipulator cube". In general, subjects disliked offsets, stating that

they "had more feeling of being too detached" and that they felt it was "more awkward to

control and more tiring".

Some subjects felt that the manipulation of objects with a fixed offset got easier

with time. One subject said, "Fixed offset is okay once you get used to it", while another

said, "I liked the object at a fixed offset once I got used to it".

One subject did prefer the manipulation of objects with a variable offset "because of

speed" but most others felt variable offset was harder to control. Comments included, "I

was just chasing cubes", and "With the variable offset you can't get used to the 'feel',

constantly having to adjust".

4.7 Conclusion

Statistical results and test-subject comments indicate that there is a difference

between manipulating an object co-located with one's hand and manipulating an object at

some offset, either fixed or variable. In fact, the results show that subjects can position an

object faster when it is co-located with their hand and that they find that form of interaction

57

easier, and more precise. No statistically significant difference was shown between the

manipulation of objects at a fixed offset and a variable offset.

These results support the notion presented in Chapter 3 that it is better to manipulate

objects within arm's reach, as is done in scaled-world grab. Recall that in scaled-world

grab, objects are automatically brought within reach by scaling down the world about the

user's head every time he grabs an object. Since the manipulandum is at the user's hand,

he has a greater sense of control and can position it more rapidly than he can when it is at

some offset, either fixed, as is the case in laser beam interaction, or variable, as is the case

in extender grab.

The results, however, do not measure the effects of automatic scaling on the user's

ability to manipulate objects. They show that when objects are co-located with the user's

hand, which is the case after automatic scaling, he can manipulate them faster than when

they are at some offset.

I excluded automatic scaling from the experiment because I wanted to compare the

benefits of in-hand manipulation with at-offset manipulation independently of the particular

technique used to bring an object within reach; automatic-scaling is only one of potentially

many different ways to manipulate an object within arm's reach. In addition, the exclusion

of automatic scaling simplified the experimental design. It is difficult to isolate the effects

of automatic scaling from other potentially confounding factors such as object selection

(scaled-world grab, for example, is tightly coupled with occlusion selection). Future

experiments should be conducted to evaluate the differences between manipulation with and

without automatic scaling.

58

Chapter 5

User Study 2
Proprioception and

Virtual Widget Interaction

This chapter presents the results of a user study developed to explore the

differences between interacting with a widget held in one's hand and interacting with a

widget floating in space. The hypothesis was that it would be easier for subjects to interact

with hand-held widgets than it would be for them to interact with widgets floating in space.

I present a description of the experimental design, the statistical analyses, and some

conclusions based upon the results.

5.1 Introduction

The virtual widget experiment evaluated the merits of using hand-held widgets,

virtual controllers held in the user's hand. Chapter three presented hand-held widgets as an

alternative to conventional widgets that are co-located with the object they control. I

asserted that widgets held in one's hand are easier to locate, access, and use. This was

because one could augment visual information on the location of a widget and its

affordances with proprioceptive cues. To evaluate how well a subject could take advantage

of proprioceptive cues when interacting with widgets, I measured how well he could return

his hand to a known point on a virtual widget without visual feedback. Using a repeated

measures design, I measured subject performance under two experimental conditions,

widget held in hand and widget fixed in space. Note that this experiment deals directly

only with the first two aspects of my claim, the relative ease with which a user can locate

and access a hand-held widget.

This experiment is similar to an experiment performed by Ken Hinkley of the

University of Virginia as part of his research for his doctoral dissertation. The primary

59

difference is that in his experiment subjects worked through-the-window and in my

experiment they worked immersed, wearing a head-mounted display. In [Hinkley, 1996] .

he presents the results of his study of using two hands in the manipulation of virtual

objects. His task consisted of two phases. The first phase involved the manipulation of

two virtual objects using two hand-held props. The second phase consisted of a "memory

test" where users tried to reproduce the placement of the dominant hand without any visual

feedback. He compared two experimental conditions, a unimanual case in which the

subject could manipulate only one device at a time and a bimanual case where the subject

manipulated both devices simultaneously. He found that two hands together form a frame

of reference which was independent of visual feedback. His conclusion was that when

both hands can be involved in a manipulation, the user may not have to maintain visual

attention constantly.

The results of my experiment strongly support the results of Hinkley. Subjects

were able to return to a position relative to their own hand much more precisely than they

could to a position in space.

5.2 Hypotheses

The null hypothesis for this experiment is:

H0: M0 = M1. In the population, there is no difference between interacting with a

virtual widget that is held in your hand versus one that is floating in space.

The alternative hypothesis:

H1: M0 ≠ M1. In the population, there is a difference between interacting with a

virtual widget that is held in your hand versus one that is floating in space.

5.3 The Experiment

5.3.1 Subjects

Eighteen unpaid subjects (7 female, 11 male) were recruited from the staff and

students at the University of North Carolina at Chapel Hill. These were the same subjects

who performed the docking experiment presented in Chapter 4. Staff volunteers were

employees of the University's Administrative Information Services department. Student

volunteers were from an introductory course in computer programming offered by the

university's department of computer science. The subjects received no immediate benefit

60

from participation in the study, nor were they provided with any tangible inducement for

their participation.

All subjects were right handed. All subjects had experience using conventional

computer interfaces (keyboard, mouse, and monitor). Prior to the docking test, which all

subjects performed first, only eleven had limited exposure to immersive virtual

environments (game or demonstration systems). None were regular or expert users of

immersive VR systems.

5.3.2 Experimental Platform

The head-mounted display used for all tests in this study was a Virtual Research

Flight Helmet. Tracking of the subject's head and two hands was performed by a

Polhemus Fastrak magnetic tracker. Attached to the magnetic sensor held in the subject's

dominant hand was a single input button. The sensor held in the subject's non-dominant

hand (for only one of the two experimental conditions) was embedded in a styrofoam cube

which measured approximately 1.75 inches on a side. Real-time stereoscopic images

displayed in the head-mounted display were generated by UNC's Pixel-Planes 5 graphics

computer. The graphics-system update rate during the experiment was approximately 20

frames/second and the estimated end-to-end latency was about 80 ms [Mine, 1993] .

Figure 5.1: Widget test objects.

The virtual environment consisted of a virtual widget, a current-color indicator, a

three-dimensional cursor, and target cubes (Figure 5.1). The virtual widget consisted of

three orthogonal rods with colored spheres at each end (for a total of six spheres). Each

61

sphere represented a single affordance or handle of the virtual widget. Depending upon the

experimental condition, the virtual widget was either attached to the subject's non-dominant

hand or was fixed floating in space (Figure 5.2). The current-color indicator was an

additional colored sphere that was fixed in the upper right hand corner of the subject's

display. This displayed the color of the target sphere, the next handle on the widget to be

selected by the subject. The subject selected the handle using the three-dimensional cursor,

a small sphere attached to the subject's dominant hand. Also included in the environment

were target cubes, red semi-transparent cubes which appeared at random positions and

orientations about the subject.

5.3.3 The Task

Each trial was divided into three phases. First, the subject moves the 3D cursor to

the specified handle on the virtual widget (one of the six colored spheres). Next, he

performs an unrelated abstract task (moving his hand from the widget to a target cube and

clicking on the input button). Finally, he returns his hand as closely as possible to the

handle specified in phase one, without visual feedback. Subjects were instructed that for

this test, accuracy was more important than speed. The test is now described in more

detail.

For the first phase of each trial the current-color indicator displayed a different color

from a random sequence of colors. This color matched the color of one of the six spheres

on the virtual widget. The subject was instructed to move the 3D cursor held in his

dominant hand to the correspondingly colored sphere on the widget and then click on the

input button. If the 3D cursor was close enough to the correct sphere when the subject

clicked on the button, the sphere would turn black to signal success. If the cursor was not

close enough, he had to try again.

Once the subject successfully clicked on the correctly colored sphere, a semi-

transparent cube appeared at some random position in space. Once the subject determined

the location of the cube, he reached inside of it, and clicked his input button. This would

make the cube, the widget, and the three-dimensional cursor all disappear from view.

This began the final phase of the trial, in which the subject was required to return

his hand, without visual feedback, to the position of the last colored sphere he clicked on.

When he felt he had returned to the original position he pressed the button for a third time,

at which point the system recorded the current offset of the cursor from the actual position

of the sphere.

62

5.3.4 Experimental Procedure

The study was designed as a single-factor within-subject investigation with repeated

measures. The independent variable was location of the virtual widget, which took the

nominal values of hand-held or fixed in space (see Figure 5.2). When hand-held the

widget co-located with to the styrofoam cube held in the subject's non-dominant hand.

When fixed-in-space the widget was set at a fixed height above the ground that was easy

for the user to reach.

A B

Figure 5.2: Widget test experimental conditions: A) The hand-held widget

was attached the subject's non-dominant hand (the subject's left hand in the

diagram) and moved as the hand moved. B) The in-space widget floated at

a fixed point in space in front of the subject and did not move when the

subject moved his hand.

The dependent variable measured was the positional accuracy with which the user

could return his hand to a point in space. For hand-held widgets this point was relative to

the styrofoam cube held in the subject's hand and thus would move during the trial as the

subject moved his hand. This point would not move when the widget was fixed in space.

Each experimental session was preceded by a stereoscopic vision test, a handedness

check, and the signing of a consent form.

A fully counterbalanced design was used. Each subject was tested under both

experimental conditions. A single test consisted of 30 separate widget tasks under a single

63

experimental condition. Subjects were randomly divided into two groups, and each group

was presented the experimental conditions in one of the two possible orders: hand-held first

or in-space first. The total number of widget tasks performed by each user was: (2 tests) *

(30 widget tasks/test) = 60 widget tasks.

The subjects were permitted to take a short break between tests if necessary.

Following the tests subjects filled out a short questionnaire.

5.4 Results

Positional accuracy was the dependent variable measured for this test. This was a

measure of how closely the subject could return his hand to the position of the active target

sphere.

The first six trials of each test were used as training and were excluded from the

statistical analyses below.

Table 5.1 presents the overall means obtained in each experimental condition.

Figure 5.3 presents this information graphically.

Table 5.1: Mean positional accuracy by experimental condition.

Condition Mean (cm) Standard Deviation (cm)

Hand held 5.1 4.0

In space 10.4 6.1

64

Positional Accuracy

Technique

O
ffs

et
 (c

m
)

0

2

4

6

8

10

12

hand-held in-space

14

16

Figure 5.3: Mean positional accuracies by technique (with 1 sigma error

bars).

Results were analyzed using a one-way analysis of variances (ANOVA), repeated

measures design. This analysis revealed a significant difference in positional accuracy

between widgets held in one's hand and widgets fixed in space (F(1,17) = 115.52; p <

0.001). Contrasts of positional accuracy showed that subjects were able to return to a

position relative to their own hand more accurately than to a position fixed in virtual space.

Results were also analyzed for both sex and order effects using a factorial ANOVA

with one repeated-measures factor and two between groups factors. No significant

interaction was found for sex (F(1,14) = 1.26; p = 0.28), and order-of-presentation

(F(1,14) = 2.20; p = 0.16).

5.5 Questionnaire Results

Subjects were asked to rate the interaction techniques for ease of interaction,

precision, fatigue, and overall usability. Each technique was rated on a scale of -3 to +3,

with positive values being better, i.e. easier interaction, more precise, or less fatiguing.

Table 5.2 presents the means obtained over all subjects from the results of the

questionnaire.

65

Table 5.2: Mean questionnaire results by technique.

Hand-held In space

Category Mean Std Dev Mean Std Dev

Ease of interaction 2.8 0.4 0.9 1.8

Precision 2.1 0.8 -0.3 2.1

Fatigue 0.9 1.6 -0.2 1.7

Overall rating 2.4 0.6 0.3 1.7

Results from each category were analyzed using a one-way multivariate analysis of

variances (MANOVA), repeated measures design. This analysis showed significant

differences between subject's ratings of the two widget interaction techniques in the

categories of ease of interaction, precision, and overall rating (Table 5.3). No significant

difference between hand-held and in-space widget interaction was found in the category of

fatigue (Table 5.3).

Table 5.3: F statistic and significance by questionnaire category.

Category F statistic Significance

Ease of interaction F(2,12) = 15.1 p < 0.005

Precision F(2,12) = 19.4 p < 0.001

Fatigue F(2,12) = 4.1 p = 0.06

Overall F(2,12) = 21.2 p < 0.001

5.6 Discussion

The above evidence strongly supports the hypothesis that interaction with a widget

held in one's hand is significantly different from interacting with a widget fixed in space.

Not only were subjects able to return to a position relative to their hand more accurately

than they could to a fixed position in space, they also rated interaction with a hand-held

widget as being easier, more precise and better overall.

As in the docking experiment, subjects' written comments supported the statistical

results. One subject said, "I think it was easier to interact with a widget held in my hand.

It seems more real and the objects seemed easier to manipulate". Another subject said that

it was harder interacting with a widget fixed in space because it required him to "keep a

mental note of where it was....The hand widget was much easier".

66

Several subjects commented on the "feeling of being in control" when using the

hand-held widgets. They described hand-held widgets as being easier to use "because of

the ability to control position of widget" or, as one subject put it, "because I could move it

where I wanted it". Similarly, another subject stated, "I liked being able to move the

widget and keep it close to the hand that needed to tag it".

Subject comments also indicated that they were able to use their non-dominant hand

as a reference frame when using hand-held widgets. One subject stated, "With the two-

hand technique I could remember the relative position of my hands as a frame of

reference". Another said, "I had my hand as a reference point", and still another said, "I

could use (the) sense of relationship of both hands to my entire body"

Proprioception, however, also played a role in interaction with widgets fixed in

space. One user explained, "I used my body and memory of how I moved as a point of

reference".

One subject noted the advantage of having a frame of reference that moved with him

as he moved through the environment, "I can take my hand with me so I don't lose track of

how far I've gone from the widget as easily as when the widget is just floating in space

somewhere".

When asked about the relative precision of hand-held widgets vs. widgets fixed in

space one subject said about the hand-held widgets, "I've had a lot of experience working

with tools to do sculpture - feels like the same thing to me". Another replied, "By holding

the widget I could judge distances better in returning to where I clicked initially"

5.7 Conclusions

The experimental results and test-subject comments indicate that there is a difference

between interacting with hand-held widgets and widgets fixed in space. Indeed, the fact

that subjects can return to a previously-visited point on a hand-held widget more accurately

than a similar point on a widget fixed in space strongly suggests that subjects can take

advantage of proprioception when interacting with widgets held in their hand. This in turn

suggests that it will be easier for subjects to locate and access widgets held in their hands

than it will be to locate and access widgets fixed in space, co-located about the object they

control.

The results do not, however, say anything about the relative ease of use of a widget

held in hand and one fixed in space. This is more task-specific and may have to be

evaluated on a case-by-case basis. The results also do not give any indication as to what is

67

the best method for selecting and switching among the various widgets available in an

application. Further experiments are required to evaluate the relative merits of techniques

such as conventional toolbars and pull-down menus, and newer techniques such as look-at

menus (Chapter 3) and Kurtenbach's marking menus [Kurtenbach and Buxton, 1993] .

68

Chapter 6

CHIMP
The Chapel Hill

Immersive Modeling Program

This chapter presents a description of CHIMP, the Chapel Hill Immersive Modeling

Program. CHIMP is an immersive system intended for the preliminary stages of

architectural design. The main goal during the development of the CHIMP system has

been the creation of an integrated set of virtual-environment interaction techniques that

exploit the benefits of working immersed while compensating for its limitations. I present

an overview of the CHIMP system and discuss several relevant aspects of the CHIMP

design.

6.1 CHIMP Overview

In the CHIMP system users create and manipulate models while immersed within a

virtual world, as opposed to the customary through-the window computer-aided design

(CAD) environment. CHIMP includes both one and two-handed interaction techniques,

minimizes unnecessary user interaction, and takes advantage of the head-tracking and

immersion provided by the virtual environment system.

Figure 6.1 shows the author using the CHIMP system. The hardware

configuration includes an immersive head-mounted display, a magnetic tracking system

with three 6 degree-of-freedom (DoF) sensors (one for the head and one for each hand),

two separate input devices (one for each hand) and a high speed graphics computer (Pixel-

Planes 5, see [Fuchs, et al., 1989]).

Figure 6.2 shows the two input devices in detail. The user holds the primary input

device in his dominant hand and the secondary input device in his non-dominant hand. The

primary input device is a modified handle of a commercial joystick with five buttons (only

69

three are used in the CHIMP system). The secondary input device is a custom built device

with two buttons.

Figure 6.1: Using the CHIMP system.

Figure 6.2: CHIMP's primary (shown on the right) and secondary

(shown on the left) input devices.

70

Table 6.1 presents an overview of the CHIMP's features.

Table 6.1: CHIMP system overview.

Object Generation Rectangular solid
Cylinder
Cone
Sphere
2D/3D path
Library object

Derivative Object Generation Surface of revolution
6 DoF Manipulation Scaled-world grab

Extender grab
Selection Occlusion selection

Spotlight selection
2D multiselect
3D multiselect

Object Transformation 1D/2D/3D translate
1D/3D rotate
3D scale
Duplicate
Set center of rotation/scaling
Align centers/extents

Surface Attribute Control Color sample
Color set

Viewpoint Manipulation Pan (scaled-world grab)
Two-handed fly
Orbital mode
Head-butt zoom
Dynamic Scaling

Snaps Grid
Ground plane
Bounding box vertex
Bounding box edge
Midpoint bounding box edge
Bounding box face
Center bounding box face
Bounding box normal
Bounding box orientation

Object control Numeric input (interactive numbers)

There are four primary forms of interaction in CHIMP:

• object selection/manipulation

• object generation

• object transformation

• viewpoint manipulation

71

Object selection/manipulation is CHIMP's default mode. Users select and

manipulate objects with their dominant hand. The default form of manipulation is

unconstrained 6 DoF manipulation.

Object generation is performed using the CHIMP's five basic modeling objects:

rectangular solid, cylinder, cone, sphere, 2D/3D path. The user adds new modeling

objects to the environment using his dominant hand.

Object transformation is performed using CHIMP's hand-held widgets. There are

six hand-held widgets, some of which perform multiple functions (Table 6.2). The user

holds CHIMP's widgets in his non-dominant hand and interacts with them using his

dominant hand.

Table 6.2: CHIMP's hand-held widgets.

Widget Function
Multiselect Multiple object selection using a 2D or 3D box
Constrained Manipulation 1D/2D/3D translation

1D/3D rotation
3D scaling

Color cube Color set/sample
Viewpoint Control Two-handed flying

Orbital mode
Head-butt zoom
Dynamic scaling

Center of action Set the center of rotation/scaling for the selected object
Alignment Align selected object centers/extents

CHIMP provides several forms of viewpoint manipulation. At any time the user

can pan the world using his non-dominant hand. With CHIMP's hand-held viewpoint-

control widget the user can fly through the scene (two-handed flying), quickly look at an

object from all sides (orbital mode), look at an object at different scales (head-butt zoom),

and look at the scene at different scales (dynamic scaling).

The user selects the current modeling object or hand-held widget using two pull-

down, look-at menus. When the user has finished using a modeling object or hand-held

widget he gets rid of it using over-the-shoulder deletion. This returns him to CHIMP's

default object selection/manipulation mode.

The user controls various aspects of the CHIMP environment using four pull-down

control panels (Table 6.3).

72

Table 6.3: CHIMP's control panels.

Control Panel Function
Main • Quit

• Cut, copy, paste
• Duplicate,delete
• Select/deselect all
• Group/ungroup
• Undo/redo
• Reset user/object position/scale
• Multiselect fence mode
• New object extents mode
• Set object color

Snap • Position
• Center
• Vertex
• Midline
• Edge
• Face
• Grid
• Ground plane

• Orientation
• Bounding box normal
• Bounding box orientation
• Grid orientation

• Snap distance
Grid • Translation grid spacing (X,Y,Z)

• Orientation grid spacing
Numeric Control • Object position (X,Y,Z)

• Object orientation (R,P,Y)
• Object scale (X,Y,Z)

I have used the CHIMP system as a testbed for the evaluation of virtual-

environment interaction techniques. I consider CHIMP a suitable testbed since computer-

aided modeling for the preliminary stages of architectural design is a real-world problem

that depends on the complex six degree-of-freedom manipulation of objects and shapes and

intuitive viewpoint specification.

The design of CHIMP is the end product of several years of research into virtual

environment interaction techniques. The following sections describe some of the more

interesting aspects of CHIMP's design and present some of the lessons learned during the

development of CHIMP about working in a virtual world.

One of the first tasks I undertook as part of my dissertation research was a review

of the state of the art in computer-aided modeling. The results of my review are presented

in Appendix A.

73

Section 6.2 discusses the challenge of mode control in complex virtual-environment

applications such as CHIMP.

Sections 6.3 - 6.5 discuss issues concerning object selection, manipulation, and

generation.

Section 6.6 gives a brief history of the development of CHIMP's constrained

motion widgets, one of the primary techniques used for the controlled transformation of

CHIMP objects.

Finally, Section 6.7 discusses numeric input in a virtual world.

6.2 Managing Modes

Most complex applications such as CHIMP rely on a large assortment of tools and

modes. Developing effective techniques for managing these modes is one of the most

difficult challenges facing developers of virtual-environment applications. Several factors

contribute to this situation.

First of all, most immersive virtual-environment systems are limited in terms of the

forms and rates of input information that are available. Wearing a non-transparent head-

mounted display and standing free in the VR environment makes it nearly impossible to use

conventional keyboards, mice, or slider-button boxes effectively. This makes it difficult to

use traditional techniques for mode control and interaction such as hot keys, command

strings, numeric input, and interactive dials. Available inputs such as gestures and the

buttons on hand-held input devices must be used differently for many different forms of

interaction and quickly become overloaded. In informal user trials I have observed that this

results in user confusion; users often forget which button or gesture invokes a specific

function.

Secondly, conventional two-dimensional graphical user interface (GUI) elements

(such as toolbars, menus, and dialog boxes) used for mode control and interaction in

through-the-window environments are difficult to use in a virtual world. Whereas it is

possible to create three-dimensional equivalents of many of these GUI elements, their lack

of haptic feedback, their higher dimensionality, and the limitations in display space and

display resolution all complicate and slow user interaction.

Finally, users are still unfamiliar with virtual environments and the new virtual-

environment-specific interaction techniques. The years of experience users have using

conventional through-the-window computer applications typically do not apply to working

in a virtual world and in some cases actually confound the use of VR systems.

74

The remainder of this section describes several of the techniques I have

experimented with for selecting tools and controlling modes in virtual environment

applications. I include discussions of the merits and limitations of each technique. Though

each technique has its advantages (such as simplicity, familiarity, or ease of use), none is

totally satisfactory. The most common problem is lack of scalability—the number of

modes or tools that can be reasonably selected using the technique is limited. Another

problem is ease of use. Though virtual menus and control panels are familiar and scalable,

for example, they are often difficult and frustrating to use in a virtual world.

6.2.1 Rotary Tool Chooser

One of the first techniques I developed for switching between high level tools (such

as fly, grab, and select) I called the Rotary Tool Chooser (RTC). The rotary tool chooser

was a one-dimensional menu based upon J.D. Liang's ring menu [Liang 1994]. A one-

dimensional menu is one in which a user has to vary only one degree of freedom to move

between menu selections [Mine 1995].

To invoke the RTC the user presses a button on his input device. This results in the

available tools being displayed in an arc about the user's hand (Figure 6.3). To select a

tool the user simply rotates his hand, like turning a dial, until the desired tool falls within

the selection box. To confirm his selection the user releases the input button.

Figure 6.3: Rotary tool chooser.

Instead of being centered about the user's hand, the arc of items can appear in front

of the user's face, locked in head space. I have found this to improve interaction with the

RTC since the user no longer has to bring his hand into view in order to see the chooser.

75

The key advantage of the Rotary Tool Chooser is its simplicity. Since the user only

has to control one parameter, the twist about one axis (all other changes in user hand

position are ignored), the rotary tool chooser is quick and easy to use.

The main problem I had with the RTC is that the number of tools which can be

selected in this fashion is limited. The resolution of the HMD limits the number of items

which can be displayed clearly in an arc. Similarly the resolution and noise characteristics

of the tracking device, combined with the instability of the user's hand, limit the user's

ability to discriminate between choices. I have found that users can reasonably select from

among six item arranged in a semi-circle given current HMDs and tracking systems.

6.2.2 Two-Dimensional Control Panels

I have also experimented with conventional toolbars and control panels as ways of

selecting tools and modes in a virtual environment. An earlier version of CHIMP, for

example, included a toolbar, a row of buttons on a virtual control panel which was used to

select the current modeling tool.

The advantage of using control panels is that they are familiar to users. The

disadvantage is that the invocation of a control panel to change modes breaks the flow of

work in an application. This is particularly true in a virtual environment, since control

panels are difficult to locate and they are more difficult to use due to the lack of 2D

constraints and haptic feedback.

One way to compensate for the lack of haptic feedback in a virtual environment is to

limit the number of degrees of freedom that the user has to specify in order to interact with

the menu. To use a 2D menu, for example, a user should only have to specify two

dimensions. Forcing the user to position his hand in three-dimensions in order to press a

virtual button slows down menu interaction and increases user frustration.

In my experience two effective techniques for interacting with 2D control panels are

laser beams and occlusion selection. With laser beams the cursor location (i.e. the point of

interaction on the control panel) is based upon the intersection of a laser beam attached to

the user's hand and the control panel (Figure 6.4). With occlusion selection the cursor

location tracks the point on the control panel which visually lies behind some point on the

user's virtual hand, such as his fingertip (Figure 6.5). Laser beams minimize required user

hand motion but amplify tracking system noise due to lever arm effects. Occlusion

selection techniques are more precise but are more fatiguing due to the need to hold one's

76

hand up over the control panel and the larger hand motions required to reach all points on

the control panel.

Figure 6.4: Interacting with a control panel using a laser beam.

Figure 6.5: Interacting with a control panel using occlusion selection.

77

6.2.3 Look-at Menus

More recently I have found that interaction and mode selection in a virtual world can

be enhanced if one takes advantage of additional user output channels. The look-at menus

technique presented in Chapter 3 allows users to select among a limited set of options using

just head motion. As described in that chapter, the currently selected object in a menu

depends upon the current orientation of the users head. By moving his head the user can

move from item to item within a menu.

CHIMP includes two look-at menus which are used to select the current hand-held

widget and the current modeling object (Figure 6.6). The user selects items from these

menus using his head motion.

Figure 6.6: CHIMP's look-at menus used to select current hand-held

widget (left) and modeling object (right). The circular crosshairs cursor

moves with the user's head.

6.2.4 Pull-Down Menus

As described in Chapter 3, menus and control panels are easier to find if they are

stored relative to the user's body. Currently, CHIMP's four control panels and two look-at

menus are stored just above the user's field of view as a set of pull-down menus. This

makes them easy to access and eliminates problems of obscuration of the scene by the

menus.

Since the menus are pull-down menus that move with the user as he moves through

the environment they are easy to locate and access. Whenever the user needs a menu he

simply reaches up and pulls it into view. He does not have to search through the

environment to find it. Once he has finished using a menu, he releases it, at which point it

floats back up to its body-relative hiding place.

78

Though pull-down menus are easy to acquire, the number of items that can be

reasonably be stored above the user's field of view is limited. In informal user trials I have

found that one can reasonably store three menus above one's field of view (one to the left,

one directly above, and one to the right of the current view direction). To access many

more menus than that requires some supplemental form of menu selection. In the CHIMP

system, for example, the four control panels (Table 6.3) are condensed into a single pull-

down item. When the user reaches up and pulls down a control panel, he pulls down a

single panel (the last one he used). A set of buttons found at the bottom of each panel is

used to access the other three panels.

As an alternative to using a row of buttons I have considered using some more

scalable form of menu selection such as Kurtenbach's Marking Menus [Kurtenbach and

Buxton, 1993] . Instead of pressing a button to switch between menus the user might

instead make the appropriate marking gesture (Chapter 2). A two level marking menu with

eight items at each level could be used to select up to 64 control panels quickly and easily.

6.3 Object Selection

CHIMP provides two forms of object selection: occlusion selection and spotlight

selection. CHIMP automatically switches between these two forms of selection based

upon the current position of the user's hand, his head pose, and his field of view. The user

can select objects using occlusion selection whenever his hand is in view, spotlight

selection is used at all other times. CHIMP also includes several widgets for

selecting/deselecting multiple objects.

Occlusion selection is an image plane interaction technique [Pierce, et al., 1997] ,

selection is based upon the relationship of projected images on the 2D screen in the user's

head-mounted display. Attached to the user's dominant hand is a crosshairs cursor. To

select an object the user moves the projection of the crosshair cursor over the projected

image of the object to be selected and presses the trigger button (Figure 6.7). In three-

dimensions this equates to the selection of objects that are intersected by the vector from the

user's head through his hand (Figure 6.8).

79

Figure 6.7: Occlusion selection, first person point of view.

Figure 6.8: Occlusion selection, third person point of view.

In spotlight mode, the user selects an object by pointing a spotlight attached to his

dominant hand and pressing the trigger button (Figure 6.9). CHIMP uses a partially

transparent cone to represent the spotlight (Figure 6.10). I follow Zhai who showed with

his innovative Silk Cursor technique [Zhai, et al. 1994] that transparency can help in the

80

selection of objects. To signal when objects can be selected, both the spotlight and the

indicated object's bounding box change color.

Figure 6.9: Spotlight selection, third person point of view.

Figure 6.10: Spotlight selection, first person point of view.

CHIMP uses spotlight selection, selection of objects which fall within a cone,

instead of laser beam selection, the selection of objects whose bounding box is intersected

by a beam, because spotlight selection facilitates selection of small and distant objects that

are hard to hit with a laser beam [Liang and Green, 1994] .

81

I include occlusion selection in CHIMP because it is an effective technique for

selecting among multiple closely grouped objects, and it is similar to conventional mouse-

based techniques used in through-the-window systems (and thus easily understood).

Occlusion selection, however, requires the user to keep his arm upraised for extended

periods of time, since his hand must be visible for occlusion selection to work. Spotlight

selection avoids this potentially tiring situation by allowing users to select objects with their

hands resting comfortably at their side. Selecting between several closely grouped objects,

however, is somewhat more difficult with spotlight selection than with occlusion selection.

The two selection techniques, therefore, nicely complement each other; the more accurate

occlusion selection can be used when the user's hand is in view, the less fatiguing spotlight

selection when his hand is out of view.

6.4 Object Manipulation

CHIMP offers two primary forms of direct manipulation, extender grab and scaled-

world grab, both of which were described in Chapter 3. The user manipulates objects with

extender grab if, at the start of the grab, his hand is outside of his current field-of-view,

otherwise he uses scaled-world grab. This corresponds directly to the relationship between

spotlight selection and occlusion selection; objects selected with a spotlight are manipulated

using extender grab, those selected with occlusion selection are manipulated using scaled-

world grab. The switching between the two forms of manipulation is automatic and

intuitive to the user.

The reasons for including two forms of manipulation in CHIMP are similar to the

reasons for including two forms of object selection. Scaled-world grab, like occlusion

selection, works best when the user's hand is in view. Extender grab and spotlight

selection work well when the user's hand is out of view. In addition, the pairings of

manipulation and selection techniques are logical. Scaled-world grab, the manipulation of

objects co-located with one's hand, works well with occlusion selection, the selection of

objects occluded by one's hand. Similarly, extender grab, the manipulation of objects at a

distance, works well with spotlight selection, the selection of objects at a distance.

Initially I used two different techniques for remote object manipulation in CHIMP,

hand-centered and object-centered grab. In hand-centered grab, objects pivot about the

center of the user's hand, like objects at the end of a long stick. In object-centered grab

objects pivot about their own center. This allows the user to rotate an object about its

center while being physically removed from the object (standing back to get a better

perspective, for example).

82

I switched to scaled-world grab and extender grab because they minimize

unnecessary user interactions. Users can make large-scale changes to the environment

more quickly and easily than they can with hand-centered and object-centered grab.

Though large-scale changes are possible using hand-centered grab, particularly when the

lever arm between hand and object is big, these changes are primarily restricted to

directions perpendicular to the lever arm. The range of motion in object-centered grab is

limited because changes in the position and orientation of the user's hand are only mapped

1:1 onto the position and orientation of the selected objects. In both cases arbitrary, large-

scale changes in position and orientation of an object require the user to repeatedly grab,

move, release, and then re-grab the object.

Contrast this with scaled-world grab and extender grab where the resulting motion

of the object is automatically scaled based upon the distance of the object from the user at

the start of the grab. This means that the user can bring to most distant object to his side in

a single operation. It also means that the range and precision of manipulation correspond to

the visual scale at which the user is viewing the scene. When looking at a tree close up he

can move it within its local environment. If he pulls back so that he can see the entire forest

he can easily move the tree from one end of the forest to the other. In addition, for scaled-

world grab, the user has a better sense of the position and orientation of the manipulandum

since it is co-located with his hand (Chapter 4).

6.5 Object Generation

Though two-handed techniques are good for the creation of approximate geometric

objects, I have found that, for more exact specification of objects, one-handed techniques

are easier to control, less tiring, and more precise.

The difficulty I encountered with many two-handed techniques is that the user has

to control too many degrees of freedom simultaneously. To create an object with two

hands the user typically makes an "I want it this big" gesture to simultaneously size all three

dimensions of the object. Though excellent for the rough specification of an object's

position, orientation, and size, this form of interaction is less suitable for the precise

construction of objects relative to other objects in the scene. The user, for example, may

want to create a new object that is on top of object A, as wide as object B, and as tall as

object C. This is difficult to do if the user is simultaneously controlling all three-

dimensions of the object's size as well as its position and orientation using two hands.

I have opted, therefore, for a three-step process of object construction. Users first

specify the position and orientation of the origin of the new object. Next they specify the

83

size and shape of the object's profile. Finally they set the object's height. Though a

greater number of steps, I personally find that the amount of information that must be dealt

with at each step is more manageable.

6.6 Constrained Object Manipulation

In real-world manipulation, people depend intuitively on constraints - we move

objects along the floor, for example. CHIMP provides several widgets which can be used

for constrained object manipulation. Selected objects can be:

• translated along a line (1D) or in a plane (2D)

• translated (3D) without rotation

• rotated (1D) about any vector

• rotated (3D) without translation

• uniformly scaled

The evolution of CHIMP's constrained manipulation widgets has taught several

important lessons about interaction in a virtual world.

6.6.1 Co-Located Widgets

Initially I experimented with widgets that were co-located with the objects they

control, a direct adaptation to the virtual environment of the 3D widgets work performed at

Brown University [Conner, et al., 1992] . I found that there are several important

differences between using a widget through the window and using one in the immersive

environment.

Typically, users select widgets in a through-the-window environment by placing a

2D cursor on top of the projection of the widget on the 2D screen. They interact with the

widget by moving the 2D cursor, the resulting behavior of the associated object depending

upon the programming of the widget. A 2D translation widget, for example, might restrict

resulting movement of an object to a plane parallel to the plane of the screen. Alternately,

the widget might restrict object movement to a plane aligned with one of the scene's

principal planes. In either case, the resulting object movement depends upon the change in

the projected location of the 2D cursor within the selected plane.

Analogous image-plane interaction techniques can be used in an immersive

environment. A key difference in the immersive environment, however, is that the image

plane used for interaction is tied to user head pose, which changes continually during

interaction (users can not keep their head still for extended periods of time). This must be

84

accounted for in the specification of widget behavior. For the screen-aligned 2D translation

widget described above, for example, a snapshot of the user's head pose must be used to

select the orientation and position of the screen-aligned plane used to constrain object

motion. If not, the plane would change continuously during interaction as the user moved

his head.

More typically than image-plane techniques, users interact with widgets in virtual

environments using physical interaction or laser pointing. In the case of physical

interaction, users interact with widgets by reaching out and grabbing them. Since the user

can leverage off of real world interaction skills this form of widget interaction is natural and

intuitive. With laser pointing users select and interact with widgets by pointing at them

using hand-held laser beams. The advantage of laser beams is that they allow users to

interact with widgets at a distance. Note that some form of intersection must be calculated

between the laser beam and the widget to define the point of interaction.

Figure 6.11a shows the design of the original constrained-manipulation widget

used in the CHIMP system. Figure 6.11b shows a second generation of the widget. Both

widgets were co-located with the object they control. The user interacted with both using

laser beams. In both, the design of the widgets was driven by the poor resolution of the

head-mounted displays in use. Affordances had to be highly exaggerated in order to be

visible within the head-mounted display.

Figure 6.11: A) First and B) second generation constrained manipulation

widgets.

Changes between the first and second generation widgets were primarily intended

to improve the widget's affordances and minimize obscuration. Translation handles, for

example, were changed from three-dimensional bars to simple arrows to make the direction

of motion afforded by the handle much clearer. Rotational handles were changed from

85

three-dimensional disks (which were intended to suggest wheels) to two-dimensional

rings. This was intended to minimize obscuration of the object by the handle when the

handle was viewed from a high angle of incidence.

In my experience, there are several problems with using co-located widgets in a

virtual environment. When using physical interaction, the user must be able to reach a

widget to use it. If it is out of reach, the user is forced to switch to a locomotion mode to

move to the widget. This slows down interaction and breaks the flow of work. When

using laser beams, the user will find small and/or distant widgets difficult to select and use.

Finally, in both forms of interaction, the lack of haptic feedback in a virtual environment

makes widget interaction more difficult since the user must depend heavily on visual

information to select and use a widget.

6.6.2 Hand-Held Widgets

To overcome some of the limitations of widgets co-located with the objects they

control I switched to hand-held widgets (Chapter 3).

Figure 6.12: CHIMP's hand-held constrained manipulation widgets.

Figure 6.12 shows the hand-held constrained manipulation widgets currently used

in the CHIMP system. The user selects the current mode of transformation using relative

hand position; grab the ring to rotate the object, grab the arrows to scale it, grab the rod to

move it along a vector. The axis of rotation or translation is based upon the orientation of

the hand-held widget which the user controls with his non-dominant hand. He can choose

to have the axis of interaction snapped to the principal axis closest to the current orientation

86

of the widget or to have it precisely aligned with the current widget orientation. The user

can adjust the scale of the resulting transformation by pressing a modifier key and changing

his hand separation; for fine-grained motion he brings his hands together, for large scale

transformations he pulls them apart.

I tried and rejected several alternate forms of hand-held widget interaction before

settling on the current design. I tried both relative hand orientation (hands pointing parallel,

anti-parallel, and perpendicular) and hand separation (Figure 6.13) for selecting the current

manipulation mode (translate, rotate, or scale). The problem with these forms of mode

selection is that they lacked good visual feedback to help the user make his selection, and

they could only be used to select among a small set of choices. Similarly I tried using arm

extension for controlling the scale of transformation. Though this was easy to use, it was

considerably more tiring than hand separation.

Figure 6.13: Constrained manipulation mode selection based upon hand

separation.

I have found that hand-held widgets are easier and more efficient to use. Widgets

stored in body-relative locations are easier to locate and access. Widgets held in the hand

do not obscure the object they control. They are easier to see since the user can easily bring

them up for a closer look. Finally, since the user is interacting relative to his own hand, he

can take advantage of proprioception when using the widget.

6.7 Numeric Input in a Virtual World

In the CHIMP system interactive numbers are used to provide a means for

specifying numeric values from within the virtual environment.

87

Figure 6.14: Numeric input using the Arithma Addiator.

The original interactive numbers were inspired by the old mechanical calculating

devices such as the Arithma Addiator (Figure 6.14) in which numbers are input by moving

physical sliders up and down using a pointed stylus. In place of the pointed stylus is a

laser beam emanating from the user's hand. The user can point the beam at any digit in a

number and press and hold on the trigger button. This will invoke a linear pop-up list that

includes the digits 0-9 (figure 6.15). By moving his hand up or down the user can then

slide the desired new digit into place.

Figure 6.15: Linear interactive numbers.

In more recent versions I have replaced the linear pop-up list with a pie menu which

surrounds the currently selected digit (Figure 6.16). To select a number the users strokes

in the direction of the desired digit in the pie menu (see [MacKenzie, et al., 1994] for an

analysis of similar techniques used for numeric input in pen-based computers). The

advantage of this scheme is that users quickly learn the stroke direction required for a

88

particular digit and as a result doesn't have to pay as close attention when inputting a

number. Another advantage is that the pie menu can be treated as an interactive dial. If the

user moves the cursor in a circle about the selected digit, the appropriate carry will be

propagated when the cursor crosses the zero point on the dial. This means the user can use

the interactive number to crank up (or down) the entire value, the selected digit controlling

the rate of change of the selected parameter.

Figure 6.16: Rotary interactive numbers.

If the user selects an empty space to the left of the number's current most-

significant digit he can change that space to any digit (1-9) and zeros will fill in all the

intermediate spaces. This allows him to quickly enter large values. If the user points at an

existing number, presses a modifier key, and then moves his hand left or right he copies

the currently selected digit left or right, clearing any numbers already there.

The user can also grab the decimal point and slide it left or right (increasing or

decreasing the number of digits to the right of the decimal point), and he can change the

sign of the current value at any time.

The advantages of the interactive numbers scheme is that it allows one to double up

input and output in the same region of the control panel instead of having a numerical

display and a separate input widget (such as a slider or a virtual keypad). Moreover, in

principle, interactive numbers are unbounded, though in practice they are limited by the

number of digits that can be displayed. Furthermore, the technique doesn't require the user

to learn how to use an unfamiliar input device such as a chord keyboard or have to struggle

with a virtual keypad that suffers from the lack of haptic feedback (touch typing without the

touch). Interactive numbers are, however, susceptible to noise in tracking data.

89

Techniques such as interactive numbers may be unnecessary if one has means for

reliable voice input. However there may be cases in which it is not possible or desirable to

use voice input (loud environmental conditions, difficulty talking all day, or simple user

preference). In such cases a manual technique for numeric input is required.

90

Chapter 7

Final Words

7.1 Conclusions

One of the fundamental advantages of working in a virtual world is that natural

forms of interaction such as reaching out to grab and manipulate an object, leaning forward

to get a closer view, and turning one's head to look at something, can be powerfully

enhanced in ways not possible in the real world. Simple and intuitive actions become

powerful and effective virtual-environment interaction techniques that minimize user work

such as scaled-world grab, head-butt zoom, and orbital mode.

The virtual world, however, is not without incidental difficulties. In a typical

virtual world a person's vision is poor, and the sense of touch is limited at best. He

communicates without voice and the written word, and interacts using whole-hand gestures

but not his fingers. He lacks physical surfaces on which he can ground himself to steady

his actions and on which he can rest to limit fatigue. These incidental difficulties

complicate interaction in a virtual world and limit the effectiveness of virtual-world

applications.

The goal of my research has been a better understanding of the strengths and

weaknesses of working in a virtual world. My interests lay in the development of intuitive

and effective virtual-environment interaction techniques that enhance natural forms of

interaction, exploit the benefits of working in a virtual world, and compensate for its

limitations.

In this dissertation, I proposed that one use proprioception to compensate for the

lack of haptic feedback in a virtual world. I presented three ways that a user can exploit

proprioception during virtual-environment interaction: by manipulating objects within his

natural working volume (direct manipulation), by storing objects at fixed locations relative

91

to his body (physical mnemonics), and by using his body sense to help recall actions used

to invoke commands or to communicate information (gestural actions).

To bring instantly within reach objects which lie outside of the user's reach, I

devised automatic scaling. Automatic scaling minimizes user work and enables direct

manipulation within a user's natural working volume.

I developed several novel virtual-environment interaction techniques based upon my

framework of body-relative interaction. Both formal user studies and informal user trials

have shown these techniques to be effective forms of interaction in a virtual world.

The virtual docking study confirmed the intuition that it is more effective to

manipulate an object that is co-located with one's hand (as is the case in scaled-world grab)

than it is to manipulate an object held at some offset. Subjects were able to align hand-held

docking cubes with target cubes significantly faster than they were able to align docking

cubes held at a fixed and variable offsets. The results of the experiment, however, did not

measure the effects of automatic scaling on the user's ability to manipulate objects.

The virtual widget interaction study demonstrated that subjects could take advantage

of proprioception when interacting with virtual widgets. In the absence of visual feedback,

they were able to return to a point on a widget held in their hand significantly more

accurately than they could to a similar point on a widget floating in space. This suggests

that proprioceptive cues can be used to augment visual feedback when interacting with

hand-held widgets.

Observations during informal user trials of the CHIMP system support and

complement the results of the formal user studies. Users have found body-relative

interaction to be intuitive and easy to use. They quickly adapt to techniques such scaled-

world grab, head-butt zoom, and over-the-shoulder deletion. Automatic scaling of the

world for both manipulation and locomotion is a powerful technique which enables users to

quickly and easily accomplish their goals. Though it has no real-world counterpart, it feels

natural and intuitive. Users manipulate distant objects with ease and are often surprised to

learn that scaling has taken place.

7.2 Contributions

The overall contribution of my work is an improved understanding of what it means

to work in a virtual world. The byproducts of this understanding are natural, intuitive, and

effective virtual-environment interaction techniques that minimize user work and thus

maximize user efficiency.

92

I consider the following specific items to be the significant contributions of this

research:

• A Framework for Virtual Environment Interaction. The development of a

framework for virtual environment interaction based upon proprioception.

• Automatic Scaling. The invention of automatic scaling as a technique for

bringing remote objects instantly within reach.

• Body-relative Interaction Techniques. The creation of several novel virtual-

environment interaction techniques based upon the framework of proprioception

for virtual-environment interaction.

• Direct Manipulation:
• Scaled-world grab for manipulation
• Scaled-world grab for locomotion

• Physical Mnemonics
• Pull-down menus
• Hand-held widgets

• Gestural Actions
• Head-butt zoom
• Two-handed flying
• Over-the-shoulder deletion

• The virtual docking user study. A formal user study which compared the

manipulation of virtual objects co-located with one's hand and the manipulation

of virtual objects held at an offset.

• The virtual widget interaction study. A formal user study which contrasted

interaction with widgets held in the hand and interaction with widgets floating in

space.

• CHIMP. Integration of numerous body-relative interaction techniques into a

real-world system, the Chapel Hill Immersive Modeling Program.

• Interactive Numbers. The development of Interactive Numbers, a manual

technique for numeric input in a virtual world.

• Modeling System Review. A detailed review of the current state-of-the-art in

computer-aided modeling.

93

7.3 Future Work

Localized Haptic Feedback

Though proprioception greatly enhances virtual-environment interaction, precise

manipulation is still harder in virtual spaces than in real space. Several factors complicate

fine-grained manipulation.

First, the lack of physical work surfaces and haptic feedback makes the controlled

manipulation of virtual objects much more difficult. Users typically manipulate virtual

objects by holding their arms out without support. In the real world, a person generally

grounds the arm at the forearm, or elbow, or heel of hand to steady hand motions and to

reduce fatigue when performing precise manipulation.

Second, humans depend upon naturally occurring physical constraints to help

determine the motion of objects they are manipulating (sliding a chair along a floor, for

example). Whereas it is possible to implement virtual equivalents of physical constraints

[Bukowski and Sequin, 1995] , it is more difficult for the user to take advantage of these

constraints without haptic feedback. He can only see that the chair is on the floor, he can't

feel the contact, hear it, or sense the vibration as the chair slides.

Third, users in a virtual world must typically do without the fingertip control they

rely on for the fine-grained manipulation of objects in the real world. Though instrumented

gloves show promise for the fine-grained manipulation of objects [Kijima and Hirose,

1996] , their use has been primarily limited to the recognition of a few commands

associated with hand posture [Kessler, et al., 1995] .

I am interested in exploring the use of hand-held tablets as a means of giving users

a real surface on which they can work using haptic constraints (following the lead of

[Sachs, et al., 1991] and [Stoakley, et al., 1995]). The tablet can be used as a two-

dimensional drawing surface (to define detailed two-dimensional shapes) or it can be used

as the input space for a two-dimensional menu (allowing users to interact precisely with

widgets and controls).

If the user interacts with the tablet using a hand-held stylus, he can take advantage

of the user's fingertip control precision. In addition the friction between tablet and stylus

and the grounding of the stylus against the tablet give the user better control.

94

To provide a larger work surface the tablet can be docked in a larger fixed physical

surface such as a lectern or a drafting table which can also provide grounding and support

during object manipulations (see related work in [Mapes and Moshell, 1995]).

95

Appendix A

A Review of the
State of the Art of

Computer-Aided Modeling

This appendix presents the results of a detailed review of the current state-of-the-art

of computer-aided modeling performed in 1993-1994 by the author at the University of

North Carolina at Chapel Hill. The packages I reviewed were divided between low-end

systems which ran on personal computers (Macintosh) and high-end packages that ran on

high-power graphics workstations (Silicon Graphics machines). My goal in performing

the review was to gain a thorough understanding of the kinds of modeling functions and

interaction techniques that were being used in the typical computer-aided modeling

packages of the day. I was particularly interested in analyzing the impact of two-

dimensional inputs and displays on the modeling task. My intent was to categorize the

modeling functions at a high level and to begin to ascertain which functions and interaction

techniques would translate well to the immersive domain.

A.1 Introduction

The term through-the-window is being used here to denote modeling systems

which use two-dimensional (2D) input devices and displays. I reviewed the modeling

systems in order to evaluate the current state-of-the-art of computer-aided modeling and to

perform a preliminary analysis of the impact of using two-dimensional input devices and

displays on the modeling task.

Table A.1 presents the packages that were investigated in detail for this review.

Table A.1: Modeling packages reviewed.

Package Company Version Reviewed Platform
Archicad Graphisoft 4.0.2 7/8/93 Mac
AutoCAD Autodesk 12 11/3/94 Mac
DesignWorkshop Artifice Inc. 1.0.3 10/19/93 Mac

96

Designer's WorkbenchCoryphaeus Software 2.1 10/26/94 SGI
Form-Z Auto-Des-Sys 2.6.1 8/24/93 Mac
IGRIP Deneb Robotics 2.2.3 9/21/94 SGI
Minicad+4 Graphsoft 4.0v3 9/24/93 Mac
MultiGen Software Systems 14.0 10/19/94 SGI
Sculpt 3D Byte by Byte Corp. 2.06 7/21/93 Mac
Upfront Alias Research 2 10/8/93 Mac
WalkThrough Virtus Corporation 1.1.3 6/3/93 Mac

Section A.2 is a discussion of the modeling techniques and paradigms identified

during this review. Section A.3 is a detailed comparison of the capabilities of all the

modeling systems reviewed. Section A.4 introduces the modeling system reviews and

presented in Sections A.5-A.15 are the individual modeler reviews themselves

(highlighting the distinguishing characteristics of each system).

A.2 Modeling Techniques and Paradigms

Though the most apparent difference between modeling systems is the type and

extent of modeling primitives provided to construct three-dimensional shapes (see Section

A.3), modeling systems can also be classified according to the interaction techniques used

to perform the three-dimensional modeling task.

A.2.1 Input for a Three-Dimensional Task

One of the primary input tasks in the generation of three-dimensional shapes is the

specification of three-dimensional positions, orientations and extents. Several different

techniques are used to specify these parameters. These include:

1) Numeric input.

2) Relative input.

3) 2D interactive input.

A.2.1.1 Numeric Input.

Numeric input enables the specification of precise values by allowing the user to

input quantities directly using the numeric keys on the computer's keyboard. By using

numeric input, the user can specify the exact position, orientation and extents of an object.

Each component of a three-dimensional parameter is controlled separately.

A.2.1.2 Relative Input.

Relative input is the specification of parameters based upon the state of existing

objects. Arrow keys, for example, can be used to modify an object relative to its current

97

state (e.g. larger, smaller, move left, move right). Alternately, alignment commands can

by used to position an object relative to other objects within the modeling space (e.g. align

left sides, align tops).

A.2.1.3 2D Interactive Input.

Two-dimensional interactive input involves the use of input devices such as the

mouse and the data tablet to interactively specify modeling parameters. For the majority of

modeling systems, this is one of the primary means of controlling the modeling cursor (the

point in the three-dimensional modeling space at which all modeling actions occur). Using

a 2D input device the user may interact directly with the model or indirectly via control

panels (using interactive controls such as sliders and dials).

The use of a 2D input device necessitates some form of mapping between the

movements of the 2D input device and movements of the modeling cursor in the three-

dimensional modeling space. Two-dimensional input devices preclude the direct

specification of three-dimensional parameters; at least two separate inputs are required to

fully specify all three components. Though I observed many different variations of the

mapping of a three-dimensional task to a two-dimensional input device, most modelers fall

into two basic categories:

Working-Plane Plus Extrusion

In many cases the current elevation of the modeling cursor must be prespecified.

During subsequent modeling actions this component is held constant and movements of the

input device are mapped directly onto the remaining two components of the cursor position.

In many modeling systems this prespecified component is what is known as the current

working plane. All movements of the input device are mapped directly onto the current

working plane. The elevation of the current working plane remains fixed until it is reset

using some separate form of specification such as numeric input, the movement of a slider,

or through movements of the input device that are differentiated from normal device

movements by the simultaneous pressing of a modifier key (see for example

DesignWorkshop).

Similarly for extents, all movements of the input device are used to specify the

extents of an object in two dimensions only. The third dimension, or extrusion height,

must be specified separately, again using techniques such as numeric input, sliders, and

modified input-device motions.

In systems using working-plane-plus-extrusion input device mapping, objects are

created by drawing a two-dimensional profile in the current working plane that is then

98

extruded to the specified extrusion height. All objects are at the same elevation (the current

working plane) and have the same height (the extrusion height). To create an object at a

different elevation (a shelf four feet above the ground, for example), the user must reset the

working plane to the new desired elevation. To create an object with a different height, he

must reset the extrusion height.

Some systems, such as the Upfront program from Alias Research, allow the user to

quickly position the working plane relative to existing objects by snapping the working

plane to be coincident with any indicated object face. This makes it easy to quickly create a

vase on top of a table for example. It also makes it necessary, however, to create

construction surfaces, objects whose sole purpose is to assist in the construction process.

Thus to create a shelf four feet off the ground you would first create an object that is 4 feet

high, snap the working plane to the top of the object, and then create the shelf at that

height.

Arbitrary rotations are difficult to specify in a working-plane-plus extrusion system;

most rotations are generally limited to rotations about the normal of the current working

plane. More complex rotations often require the use of numeric input (via separate dialog

boxes) to be fully specified.

Orthogonal Input

As an alternative to the use of working planes, some systems allow the direct

specification of all three components of the current cursor position. In an orthogonal-input

system, the user is given three orthogonal views into the modeling space (see Section

A.2.2 below). Associated with each view is a 2D marker, which indicates the position of

the 3D modeling cursor relative to that view. The 3D modeling cursor can be directly

positioned at any three-dimensional coordinate in space (to perform some modeling action)

by specifying the position of the 2D marker in any pair of windows. This determines all

three coordinates of the 3D cursor with one coordinate specified redundantly in both

windows.

Rotations in an orthogonal-input system are typically about an axis perpendicular to

the currently active window.

A.2.2 Output of a Three-Dimensional Space

Modeling system output can be classified according to the three following

characteristics:

1) The format of the view provided into modeling space.

99

2) The visualization view: Is it separate from or integrated with the modeling view?

3) The visualization view: Is it static or interactive?

A.2.2.1 Format of the Modeling View.

One of the most important characteristics of a modeling system is the format of the

views provided into the modeling space (the space in which the user performs all modeling

actions). Several different types of views are available for the visualization of the three-

dimensional modeling space:

1) 2D Plan

2) Orthogonal

3) Arbitrary Viewpoint

2D Plan

This is a straightforward extension of two-dimensional drafting. In a 2D-plan

system, the user is presented a two-dimensional parallel projection (plan view) of the

modeling space. The projection is typically along one of the principal axes of the space

with the default view being an overhead view - similar to an architectural blueprint.

Examples of modeling systems of this type include: Archicad and Virtus WalkThrough.

Orthogonal

In an orthogonal-view system the user is given three orthogonal views into the

modeling space (see Sculpt 3D). Each view is typically a parallel projection along one of

the principal axes and can be thought of as the unfolded views into a cube surrounding the

modeling space (see Figure A.1). The main drawback of this type of system is the need to

integrate three orthogonal views into a mental picture of the three dimensional shape being

created. Sculpt 3D is an orthogonal-view system.

100

Figure A.1: Orthogonal-view system.

Arbitrary Viewpoint

In an arbitrary-viewpoint system the user is presented a two-dimensional projection

of the three-dimensional modeling space. The view is completely arbitrary and the user can

specify eye-point (center-of-projection) and focus-point (center-of-interest). AutoCAD,

DesignWorkshop, Designer’s Workbench, Form-Z, IGRIP, Minicad+4, MultiGen, and

Upfront are all arbitrary-viewpoint systems.

A.2.2.2 Three-Dimensional Visualization: Separate or Integrated

Most modeling systems provide some form of visualization view, a three-

dimensional rendering of the modeling space. Projections in the visualization view can be

parallel or perspective and the renderings can range from wire frame to fully textured and

shaded. The visualization view can either be separate from or integrated with the modeling

view.

2D-plan-view and orthogonal-view systems, for example, typically include a

separate visualization view (not essential, but it can be difficult to infer the shape of the

modeled objects using only the modeling views provided in these systems). In an

arbitrary-viewpoint system, on the other hand, the modeling view and the visualization

view are integrated into one.

Separation of the modeling view and visualization view limits the impact of

rendering costs on modeling interaction. A separate visualization view, on the other hand,

must be mentally integrated by the user with the modeling space.

A.2.2.3 Three-Dimensional Visualization: Static or Interactive

101

The three-dimensional visualizations of modeling space may either be static (in

which the user must specify a new eye-point and focus-point for each new view of the

model) or interactive (in which the user can interactively navigate through the model).

Virtus WalkThrough, for example, provides an interactive walkthrough, a separate

visualization window in which the user can move through the model in near real-time.

Interactive visualization helps to provide a better understanding of the shapes being created.

A.2.2.4 Complications of Two-Dimensional Output

The use of two-dimensional (non-stereoscopic) displays for output inherently

injects ambiguity in the interpretation of the displayed information [Gregory, 1973] , this

complicates the modeling task.

3D Perspective View

Figure A.2a: Perspective projection ambiguity.

In a perspective projection system, for example, equal lengths have different

projections depending upon their distance from the viewer. This complicates the

interpretation of the modeling space as shown in Figure A.2a. When viewed in the

perspective projection, the smaller cube appears to lie in the center of the face of the larger

cube. The three orthogonal views (Figure A.2b), however, show that this is not actually

the case.

Top View Front View Side View

Figure A.2b: Three orthogonal views of the object in Figure A.2a.

102

Though the cube position is presented unambiguously in the three orthogonal

views, interaction in these type of systems may be more complicated since the user must

correlate the position of a two-dimensional marker in multiple windows in order to

determine the three-dimensional position of the modeling cursor.

A.3 Modeling System Capability Comparison

Presented in Table A.2 is a detailed comparison of the capabilities of the modeling

systems reviewed. Note that only three-dimensional modeling capabilities are included in

this comparison; two-dimensional drafting and text layout tools are not reviewed. The

categories used for comparison include:

• 3D Object Generation. Techniques used to create three-dimensional objects.

• Derivative Object Generation. Advanced techniques used to create three-
dimensional objects.

• Object Selection. Techniques used to select objects or groups of objects.

• Object Information Functions. Techniques used to determine information about
selected objects and/or the modeling environment.

• Object Transformation. Techniques used to modify an object's shape and
position.

• Surface Attribute Control. Techniques used to specify object surface
characteristics (such as color and texture).

• View Manipulation. Techniques used to manipulate viewpoint in the modeling
views and visualization views.

• Cursor Controls. Techniques used to control the modeling cursor.

The cursor-controls section of Table A.2 is divided into three sub-sections: snaps,

constraints, and construction assists. Snaps completely define all three components of a

three-dimensional coordinate (in effect overriding the current modeling cursor position).

Constraints define only one or two components of the three-dimensional coordinate

(confining the cursor to a line or a plane). The user interactively specifies the remaining

components. Construction assists are temporary geometric objects used (in conjunction

with the snaps and constraints) for the placement of the cursor and model objects.

103

Table A.2: Modeling system capability comparison.

• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

Object Generation
vertex
block

sphere
cone

regular prism
irregular prism

3D polygon
polygon strip

terrain/contour surface
curved surface

wall
roof
slab

rectangular opening
irregular opening

library object

Derivative Object Generation
extrude

surface of revolution
loft

sweep along path
level of detail generation

Object Selection
pointer

marquee
by name/hierarchy

by type

Object Information Functions
edge/radius dimensions

area calculation
materials database

A
rc

hi
ca

d

A
ut

o
C

A
D

D
es

ig
ne

r's
 W

o
rk

be
n

ch

D
es

ig
nW

or
ks

ho
p

F
or

m
-Z

IG
R

IP

M
in

ic
a

d
+4

M
ul

tiG
en

S
cu

lp
t

3
D

U
pf

ro
nt

W
a

lk
th

ro
ug

h

104

Table A.2 (cont'd): Modeling System Comparison

• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

Object Transformation
move
rotate
scale

reshape
duplicate

duplicate linear
duplicate circular

mirror
trin/slice

cut to grid
filet

project
plant
bend

CSG operators
surface intersection
magnet attract/repel

set/modify convergence

Surface Attribute Control
color sample

color set
transparency control

texture control

View Manipulation
pan

zoom
set eye point

set focus point
rotate about eye point

rotate about focus point
set field-of-view

interactive walkthrough

A
rc

h
ic

ad

A
ut

oC
A

D

D
es

ig
ne

r's
 W

or
kb

en
ch

D
es

ig
nW

or
ks

ho
p

F
or

m
-Z

IG
R

IP

M
in

ic
ad

+
4

M
ul

tiG
en

S
cu

lp
t 3

D

U
pf

ro
n

t

W
al

kt
h

ro
ug

h

105

Table A.2 (cont'd): Modeling System Comparison

• • • • • • • • • • •

• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

Cursor Controls
numeric input

Snaps
grid

vertex
object center

coordinate system
Constraints

line
face

tangent
parallel to an edge

perpendicular to an edge
perpendicular to a face
principal axis (X,Y,Z)

angle
distance

symmetrical
Construction Assists

3D hotspot
average vertex value

midpoint
distance along a line

closest point on a line
intersection of two lines
closest point on a plane

A
rc

hi
ca

d

A
ut

oC
A

D

D
es

ig
ne

r's
 W

or
kb

en
ch

D
es

ig
nW

or
ks

h
op

F
or

m
-Z

IG
R

IP

M
in

ic
ad

+4

M
u

lti
G

en

S
cu

lp
t 3

D

U
pf

ro
nt

W
al

kt
hr

ou
gh

A.4 Modeler Reviews Overview

Modeler reviews are broken down into the following main categories:

1) Overview: A high level description of the modeler interface and any special
features that make the program unique.

106

2) Model Creation: A description of the techniques used in creating model objects.
Note that the focus is on three-dimensional rather than two-dimensional
modeling techniques.

3) Model Modification: A description of the functions provided by the program
for altering existing model objects (move, rotate, scale).

4) Model Interaction/Visualization: The types of features provided for interaction
with the modeling and visualization views.

5) Manual: A description of the quality, completeness, and usefulness of the
manuals/tutorials provided with each package.

6) General Impressions: Observations/opinions about the utility of each package
as a three-dimensional modeling tool. Descriptions of outstanding/useful
features and of limitations/problems encountered.

Table A.3 is a summary of the input and output paradigms (defined in section A.2)

used by each modeling system.

Table A.3: Modeling system paradigms.

Modeler Input Technique Output Format 3D Visualization
Archicad Working Plane 2D Plan Separate, Static
AutoCAD Working Plane Arbitrary Integrated, Interactive
Designer's Workbench Working Plane Arbitrary Integrated, Interactive
DesignWorkshop Working Plane Arbitrary Integrated, Interactive
Form-Z Working Plane Arbitrary Integrated, Interactive
IGRIP Numeric Arbitrary Integrated, Interactive
Minicad+4 Working Plane Arbitrary Integrated, Interactive
MultiGen Working Plane Arbitrary Integrated, Interactive
Sculpt 3D Orthogonal Orthogonal Separate, Static
Upfront Working Plane Arbitrary Integrated, Interactive
WalkThrough Working Plane 2D Plan Separate, Interactive

Archicad version 4.0.2, reviewed 7/8/93

107

A.5 Archicad

A.5.1 Overview

Input technique: Working-plane plus extrusion.
Output format: 2D Plan view.
3D Visualization: Separate, static.

The main components of the Archicad interface include:

• Archicad plan worksheet. 2D plan view used to interact with the model.

• 3D view. The visualization view used to view a three-dimensional projection of
the current model.

• Menu bar. Provides access to the various commands and dialog boxes used to
interact with Archicad.

• Toolbox. The graphical toolbox used to switch between the various modes of
interaction and modeling tools.

• Control box. Used to turn snap-to-grid on and off and control placement of
walls relative to the specified lines.

• Coordinate box. Used for direct numerical input of positions, angles and
distances (can be specified in either relative or absolute coordinates).

Figure A.3 presents a snapshot of the Archicad interface.

Figure A.3: Archicad interface.

Archicad version 4.0.2, reviewed 7/8/93

108

Most tools have a related dialog box which can be used to adjust the default

behavior of each tool. Included in each dialog box are settings such as heights of walls,

and widths of doors. Object settings can also be copied from object to object (e.g. to make

two doors look identical).

Archicad is a three-dimensional modeler which has been optimized for architectural

design. Special tools are included for creating walls, roofs, doors and windows. Also

included is a large library (with third party libraries also available) of default three-

dimensional objects (such as cabinets, tables, and chairs) that can be used to populate the

model. The library also includes sample window and door types which can be used to fill

door and window openings. Each of these library objects can be placed with a click of the

mouse button and are parametric so that you can adjust characteristics such as the width of

a door, or the height of a window above the floor. New library objects can be created

using GDL, Archicad's graphics description language.

A.5.2 Model Creation

Using Archicad's specialized set of architectural building tools, a user can quickly

create a fairly complex building shell, with doors and windows cut out of the walls and a

fairly complicated roof. Sample doors and windows can be added with just a few

additional clicks of the mouse button.

Object positions and sizes can be specified interactively or directly using the

numerical input feature. The multiple modes of numeric input (combinations of absolute

and relative coordinates) are somewhat awkward to use but it is easy to transition between

mouse mode and numeric input (it is not necessary to move the mouse cursor into a

numeric input window to switch between the two modes).

To aid in model creation, Archicad provides the standard aids such as snap to

vertex, and snap to grid. Archicad also provides the capability of specifying a hot spot

which can act as an additional snap location. Two grids are provided: the standard snap

grid and a more complicated construction grid (which is used to specify both the spacing

and width of regularly placed objects).

A.5.3 Model Modification

Model components can be moved, rotated and resized. Since most objects (except

the roof segments) are assumed to be perpendicular to the floor, Archicad does not include

a means of specifying arbitrary 3D orientation. A diagonal coal chute, for example, would

Archicad version 4.0.2, reviewed 7/8/93

109

be difficult to model. Instead, objects are rotated around a vertical axis perpendicular to the

floor. Objects are repositioned using the drag feature. Archicad also includes a drag-with-

repeat and a rotate-with-repeat feature to create regular structures (such as a colonnade)

where objects have regular spacing or rotation angles.

A.5.4 Model Interaction/Visualization

The user can pan, zoom and scroll in the modeling view.

Archicad uses special cursor shapes to convey information to the user about the

type of object being pointed at by the mouse. These are used to help in the selection of

objects such as vertices, wall edges, and doors.

Archicad utilizes static three-dimensional visualizations which are displayed in a

separate 3D visualization view. Using the view control dialog box, the user can specify

parameters such as view direction, observer location, field-of-view (where applicable), and

lighting direction. There are several different projection options: top view, elevation,

isometric, oblique, plan oblique, axonometric, perspective. The user can also specify a

path for generating a walkthrough of the model. The quality of the images can be quite

high, but Archicad suffers from the lack of an interactive visualization. This hampers the

interactive design process since the user must wait to see the results of a design change.

The 3D view by default only renders the items currently selected on the plan

worksheet. This is useful for rendering a subpart of a complex model but it is easy to

forget to deselect the last item you were working on. It can be frustrating to end up with a

rendering of only a portion of your model when you intended to render the entire thing.

A.5.5 Manual

Archicad provides a complete set of reference manuals that describe each function in

detail. Though comprehensive, the manuals suffer from the lack of an introductory

tutorial. Important details on how to use the tools are often buried in the tool descriptions.

To get a good understanding of how to use Archicad you would have to read all the

manuals in detail.

Archicad also includes a hypercard tutorial stack, however it adds little beyond what

is found in the reference manuals.

Archicad version 4.0.2, reviewed 7/8/93

110

A.5.6 Comments/Impressions

Archicad is a well thought-out product for exploring the preliminary stages of

architectural design (i.e. the basic shape and spaces of a building). I was very impressed

at how easy it was to build the basic shell of a house. Within a half an hour I could place

all the walls in a building and specify holes for the doors and windows. If you require a

tool for preliminary design exploration, Archicad is an excellent choice.

Archicad is not as effective when it comes time to add additional detail such as

specific doors and windows, or furniture to a model (to add realism or to lend a sense of

scale). Archicad particularly suffers from the lack of an interactive 3D visualization. This

makes it difficult to explore design alternatives such as the exact placement of a window.

Archicad is also not well suited for the creation of arbitrary three-dimensional

shapes. The 3D object creation tools are optimized for doors and windows and are not

general modeling tools. Objects can be created from scratch using the Graphics Description

Language (GDL) and saved as library items, but GDL is more easily used for making

modifications to existing objects (changing an existing window for example). It would be

difficult to use GDL for complex modeling tasks.

Archicad's plan notes and materials computation options are useful features. The

plan notes are used to attach general notes and the material computation keeps a running

estimate on the amounts of materials required for the specified model. There is a large

variety of material types (such as brick, concrete, and wood) to choose from for each

component of the model.

Autocad version 12, reviewed 11/3/94

111

A.6 AutoCAD

A.6.1 Overview

Input technique: Numeric input, Working-plane plus extrusion.
Output format: Arbitrary viewpoint.
3D Visualization: Integrated, Interactive.

The main components of the AutoCAD interface include:

• Command line. Text window used to enter commands from the keyboard and
to display prompts and messages.

• Graphics area. Graphics window used for interactive editing and model
display.

• Menu bar. Pull-down menus which provide access to the various commands
and dialog boxes used in AutoCAD.

• Screen menu. Text based set of menus and submenus used for interaction with
the AutoCAD commands.

• Icon menus. Iconic tear-off menus used for object creation, modification and
dimensioning commands.

• Status line. Text line displaying current information about the model (such as
the active layer and cursor coordinates)

Figure A.4 presents a snapshot of the AutoCAD interface.

Figure A.4: AutoCAD interface.

Autocad version 12, reviewed 11/3/94

112

AutoCAD, one of the oldest and most widely available CAD programs, is a general

purpose modeling tool for the preparation of two-dimensional drawings and three-

dimensional models.

AutoCAD is a professional drafting program which includes numerous construction

assists, drafting tools and utilities (such as the geometry calculator described below)

designed to help in the generation of detailed drawings. AutoCAD is highly configurable;

users can control the layout and placement of menus, create scripts to automate complex

tasks, and generate add-on applications using AutoCAD programming tools (AutoLISP and

the AutoCAD Development System). AutoCAD also supports numerous extensions such

as the Advanced Modeling Extension (reviewed with this package) which help to augment

AutoCAD's capabilities.

A.6.2 Model Creation

AutoCAD is a working-plane-plus-extrusion system (see Section A.2.1). The

working plane can be: aligned with the XY, YZ, and ZX planes, moved to any point

(maintaining its current orientation), aligned with any three vertices, aligned with any

selected entity, or oriented to be perpendicular to the current viewing direction. The

working plane can also be moved to any arbitrary position and orientation using numeric

input.

AutoCAD provides tools for creating several different types of graphical objects

(called entities): points, lines, arcs, circles, rectangles, 3D polygons, polygonal meshes,

and curved surfaces. Three-dimensional entities (such as spheres, cones, and cylinders)

can be created using the Advanced Modeling Extension (discussed below) or can be

extruded from existing two-dimensional objects. Several different curved surface and

polygonal mesh types are available including ruled surfaces, tabulated surfaces, surfaces of

revolution, and Coons surface patches. The various AutoCAD entities can be grouped to

create blocks, which can in turn be stored in separate files and used as library objects.

To help in the creation of accurate drawings, AutoCAD includes numerous cursor

snap modes that allow the user to create objects relative to existing geometry (such as the

endpoint of a line or the center of a circle). AutoCAD also includes a geometry calculator

which can be used to evaluate vector, real or integer expressions. For example, the

expression (mid + cen)/2 can be used to locate the point halfway between the midpoint of a

line and the center of a circle (using the cursor to indicate the appropriate entities).

Autocad version 12, reviewed 11/3/94

113

AutoCAD is heavily biased toward numerical input. Coordinates can be specified

using absolute or relative values, can be specified relative to world or user defined

coordinate systems, and can be given in cartesian, polar (2D), spherical (3D), and

cylindrical formats. Filters can be used to specify coordinate components separately (for

example setting the X coordinate of a point interactively with the mouse and the Y and Z

components using numeric input).

AutoCAD includes extensive dimensioning capability useful in the generation of

presentation drawings. AutoCAD will determine linear, radial, angular, and ordinate

(distance from User Coordinate System origin) dimensions of selected entities.

AutoCAD includes an isometric drawing mode for creating two-dimensional

isometric drawings. Though useful, it is less flexible than the isometric viewing modes

provided by many other applications.

The default AutoCAD environment can be augmented with several extension

packages such as the Advanced Modeling Extension (AME) and the AutoCAD SQL

Extension (ASE). The AME is a constructive solid geometry package which enables you to

perform boolean operations on two and three-dimensional entities and includes many

analysis functions for determining properties of a solid such as the mass, centroid and

moments of inertia. The ASE makes it possible to link your AutoCAD drawings with

external database management systems (such as dBASE, Oracle, or Paradox).

AutoCAD also provides several different programming tools: Scripts (a text-based

scripting language), AutoLISP (an implementation of the LISP programming language) and

ADS the AutoCAD Development System (a C-language programming environment).

These allow the user to create macro programs and functions to perform complex tasks

which can be executed at the AutoCAD command prompt.

A.6.3 Model Modification

Objects can be positioned, oriented, scaled, mirrored and duplicated. AutoCAD

includes circular and rectangular array commands which enable the creation of repeating

structures. Two-dimensional entities can be extruded into three-dimensions by modifying

their thickness. An adjustable taper can also be specified for solids created using the AME.

A grips mode is included which allows you to select objects and modify them directly (i.e.

move or rotate) using the mouse.

AutoCAD includes functions for editing polygonal meshes and curved surface

entities (including functions for fitting smooth surfaces to polygonal meshes).

Autocad version 12, reviewed 11/3/94

114

A.6.4 Model Interaction/Visualization

The user can pan and zoom on the model and can specify camera location and

center-of-focus. To help in the visualization of complex models, AutoCAD enables a user

to hide selected layers of model (this also enhances rendering performance). AutoCAD

models are typically presented as wireframe renderings, though shaded versions of the

model can be generated. AutoCAD does not have an interactive visualization mode.

A.6.5 Manual

AutoCAD has extensive documentation (13 lbs worth) including a user's guide,

command reference, installation guide and several programming guides. Also included is a

detailed tutorial which introduces the user to most of the AutoCAD commands. The

manuals are well written and the step-by-step instructions in the tutorial are easy to follow.

The main drawback of the manuals is that they concentrate on the command line interface of

AutoCAD (which is consistent across the many platforms on which AutoCAD is

supported). It can be difficult to find the menu or icon command for your specific platform

which corresponds to the command line function discussed in the manual.

A.6.6 Comments/Impressions

Key advantages of AutoCAD include the highly customizable interface, the various

analysis tools (for the calculation of areas, mass properties, geometric calculations, etc.),

the ability to extend the AutoCAD application with Autodesk or third party extensions and

the ability to enhance the AutoCAD environment with command scripts, AutoLISP and

ADS applications (the programming languages available with AutoCAD).

The disadvantages of AutoCAD are closely related to this wealth of options and

flexibility. The AutoCAD interface is complex and somewhat cumbersome to use. There

are many different menu types (some redundant), many different ways to do the same thing

and an overall feeling of a graphical user interface that was tacked on top of a command line

application. Models can be created interactively in the graphics window, but AutoCAD is

heavily biased towards keyboard input (as is reflected in its manuals). It is typically faster

to use the AutoCAD commands than it is to go through the menu interface.

Design Workshop version 1.0.3, reviewed 10/19/93

115

A.7 DesignWorkshop

A.7.1 Overview

Input technique: Working-plane plus extrusion.
Output format: Arbitrary viewpoint.
3D Visualization: Integrated, interactive.

The main components of the DesignWorkshop interface include:

• Modeling toolbox. The graphical toolbox used to switch between the various
modes of interaction and modeling tools.

• Modeling window. Arbitrary viewpoint of modeling space. Used to interact
with the model.

• Location bar. Dialog box used to display information about the current cursor
location.

• Object Info. Dialog box displaying information about the currently selected
object.

Figure A.5 presents a snapshot of the DesignWorkshop interface.

Figure A.5: DesignWorkshop interface.

Design Workshop version 1.0.3, reviewed 10/19/93

116

DesignWorkshop is a "three-dimensional modeling package for conceptual design

and design development" (from the front cover of the manual). Though still a little rough at

edges (this is one of the first releases), the program incorporates some interesting solutions

to the problem of modeling in a two-dimensional projection of three-dimensional space.

Most actions such as extrude, translate, resize, reshape are all done with the default

cursor, with no additional tools required.

An outline of the currently selected object is projected onto the working plane to

help in the interpretation of the three-dimensional shapes and relationships of the model

under construction.

There is support for architectural modeling such as the ability to construct walls

directly or to derive them from existing forms, also openings can be cut into any surface to

form doors and windows.

A.7.2 Model Creation

DesignWorkshop is a working-plane-plus-extrusion system where the working

plane elevation and extrusion height are specified interactively by modified movements of

the input device (moving the mouse while holding down the option key). This means that

the working plane can be quickly positioned at any elevation and objects of different

extrusion heights can be created easily.

DesignWorkshop includes cues to aid in the determination of the current three-

dimensional position of the cursor. Three grids are drawn (one perpendicular to each of the

3 main axes) which are used to show the point of intersection of 3D crosshairs which

extend from the current position of the modeling cursor to the grid surface. Also, during

creation and modification of objects, a two-dimensional profile is projected onto the grid

parallel to the current working plane. This is used as an aid in the alignment of the 3D

objects.

DesignWorkshop provides additional feedback on the current cursor location with

the location bar. This shows the X, Y, and Z location of the cursor in absolute coordinates

and the relative East, South and Vertical coordinates of the cursor relative to the location of

last reset (the relative cursor location is reset to zero at the beginning and end of all cursor

drag operations). The location bar may also be used for direct numeric input (in specifying

positions and sizes) by typing the letter of the coordinate you wish to specify

(X,Y,Z,E,S,V) or hitting the tab key to start directly with the East relative coordinate.

Design Workshop version 1.0.3, reviewed 10/19/93

117

To aid in the direct creation of architectural shapes, DesignWorkshop includes a

block tool (for creating building masses to show the shape of a building, for example), a

poly-wall tool (for creating walls that define the inner spaces of a building), and tools to cut

openings in walls (for doors and windows).

A.7.3 Model Modification

All objects can be translated, rotated, reshaped and scaled. Many operations

(extrusion, translation, resizing and reshaping) are done with the default cursor. Rotation

of objects is accomplished by selecting the special rotation tool. Objects are rotated around

either their center or an edge depending upon where the object is grabbed. The trim

operator slices objects in two. The slice is perpendicular to a line drawn across one of the

object faces. A faces mode is included which allows you to manipulate individual faces of

blocks. Duplicate-linear and duplicate-circular are two menu items which allow you to

create repeating arrays of objects. By selecting a special dialog box item (miter edges) the

duplicate-circular becomes, in effect, an object of revolution tool.

A special Object Info floating palette is included which displays information about

the currently selected object. The Object Info palette can also be used to modify the

characteristics of the selected object by typing into the appropriate field. Characteristics

which can be modified include: position, orientation and extents.

A.7.4 Model Interaction/Visualization

DesignWorkshop has an integrated, interactive visualization view, all model

interaction is done in a three-dimensional perspective view. Design workshop includes the

standard ability to pan and zoom the current working view.

Two main tools, the Eye and Look tool are provided for changing the three-

dimensional view into the modeling world. The eye tool is used to move the current eye-

point around the center-of-interest. By pressing the option key the eye-point can be moved

in and out along the view vector. The look tool is used to move the center-of-interest

around in model space. The center-of-interest can be quickly set to the center of the model

(by double clicking on the look tool) or to any specific three-dimensional location by using

the standard DesignWorkshop cursor positioning methods.

Shadows can be generated to aid in the understanding of the three-dimensional

relationships between objects. A sun position can be chosen by selecting a latitude and a

time and date. QuickTime Sun study movies can be generated.

Design Workshop version 1.0.3, reviewed 10/19/93

118

A.7.5 Manual

DesignWorkshop includes a fairly brief manual and a quick reference guide. The

manual includes a quick start tutorial which explains the basics of using DesignWorkshop

and more detailed DesignWorkshop techniques section (covering site modeling, roofs,

surfaces of revolution, walls and stairs). DesignWorkshop can be learned fairly quickly,

due to its simple interface.

A.7.6 Comments/Impressions

DesignWorkshop shares the advantages and disadvantages common to all the

modelers that allow you to work directly in a 3D perspective view (see Section A.2.2).

DesignWorkshop does include several aids to assist in the proper placement of the

cursor. This includes: 3D crosshairs which extend to and intersect with 3 orthogonal

modeling grids, shadows that show the relationships of models in the working space, and

DesignWorkshop's Space-Jump, a method of instantaneously moving the cursor to the

three-dimensional position of any vertex in the model (the desired vertex is selected by

placing the image of the cursor over the image of the vertex and then tapping the space bar).

The ability to move the modeling cursor in all three directions makes it easier to

create objects at different elevations and with different extrusion heights than in systems

where the working plane and extrusion height are manipulated separately.

The main problem with DesignWorkshop at this time is the fact that it is such an

early release. This is quite evident in the number of features which are not completely

implemented and the number of bugs encountered during program execution. This leads to

an overall impression of the program as still being somewhat rough around the edges.

Designer’s Workbench version 2.1, reviewed 10/26/94

119

A.8 Designer's Workbench

A.8.1 Overview

Input technique: Working-plane plus extrusion.
Output format: Arbitrary viewpoint.
3D Visualization: Integrated, Interactive.

The main components of the Designer's Workbench (DWB) interface include:

• Database window. The window used to display and edit information in a single
database file. The database window can display an arbitrary viewpoint of
modeling space or a hierarchical representation of the model. The graphics
view can be split to include three orthogonal views of the modeling space.

• Menu bar. Provides access to the various commands and dialog boxes used to
interact with Designer's Workbench.

• Icon Menus. The graphical toolbox used to switch between the various modes
of interaction and modeling tools.

• Coordinate Window. Used for direct numerical input of positions, and extents
(can be specified in either relative or absolute coordinates).

Figure A.6 presents a snapshot of the DWB interface

.

Figure A.6: Designer's Workbench interface.

Designer’s Workbench version 2.1, reviewed 10/26/94

120

Designer's Workbench is a three-dimensional modeler which runs on a Silicon

Graphics workstation. Notable features in Designer's Workbench include:

• The hierarchy view, a graphical representation of the model's hierarchical structure

(showing all parent-child relationships) which greatly simplifies interaction with

complex models. The hierarchy view can be used to quickly select portions of the

model with a single mouse click.

• Construction vertices: temporary vertices which can be used to help in the construction

and positioning of objects.

In addition to general-purpose modeling tools, DWB incorporates features useful in

the generation of flight simulator databases. Links, for example, are used to specify the

relationship between geometry and state variables making it possible to create animated

cockpit displays that are driven by dynamic data (such as simulated airspeed).

A.8.2 Model Creation

Designer's Workbench is a working-plane-plus-extrusion system (see Section

A.2.1). The working plane can be: aligned with the XY, YZ, and ZX planes, moved to

any vertex (maintaining its current orientation), aligned with any object face, or aligned

with any three vertices. The working plane can be moved to any arbitrary position and

orientation using numeric input and the working plane offset (translation along the normal

of the working plane) can also be set interactively using the mouse.

Designer's Workbench provides tools for the creation of irregular and regular

polygons, rectangles, spheres, cylinders, cones and strips (fixed width polygons along a

path which can be used for roads). Polygons may also be created from B-spline

construction curves (see below) using a B-spline to Poly tool. All objects are created

interactively (using the mouse) or with numeric input (to specify absolute or relative

positions of vertices). Two-dimensional faces can be extruded into three-dimensional

objects using the extrude tool. Unlike vertex positions, extrusion heights must be specified

in a separate numeric input window and can not be set interactively using the mouse in the

graphics window. Designer's Workbench also includes advanced tools for the creation of

surfaces of revolution and lofted objects (objects defined by a sequence of two-dimensional

profiles).

Designer's Workbench includes several types of construction assists. A rectangular

grid can be used during construction to constrain the cursor position to regular, adjustable

spacings. Grid spacing can be specified using numeric input or set interactively using the

Designer’s Workbench version 2.1, reviewed 10/26/94

121

mouse. The cursor can also be snapped to any vertex, edge or face using special modifier

keys. Construction vertices can be created: along a B-spline curve, at the midpoint of

selected vertices, at even intervals along a line, at the point on a plane or a line closest to a

selected vertex and at the intersection of any plane and line.

All objects created in Designer's Workbench are inserted into an object hierarchy

which encapsulates the relationship between objects, groups of objects, faces, edges and

vertices. The user can view a graphical representation of the hierarchy in which he can

reorganize structural relationships using commands or interactive drag and drop editing to

detach and attach nodes in the hierarchy.

A.8.3 Model Modification

The user can interact with the model at many different topological levels; the user

can select and manipulate vertices, edges, faces, objects, and groups of objects.

Designer's Workbench includes several techniques for object selection which

facilitate interaction with complex models. Objects can be selected: in the graphics view,

using the object hierarchy, and by attribute.

When selecting objects in the graphics view, the user controls the scope of selection

(verticies, edges, faces, objects, and group of objects) through the topological level. The

user can choose between overlapping objects by cycling through a pick hit list, a list of all

elements within the vicinity of the cursor during the last selection. The Imploded View

command is used to aid in the selection of coincident vertices by causing faces to

temporarily contract about their center (separating coincident vertices).

The hierarchical view is useful when the model has grown complex enough that it is

difficult to select objects in the graphics view. Related segments of a model can be selected

using a single mouse click by selecting the appropriate node in the object hierarchy. An

excellent feature of Designer's Workbench is the inclusion of a thumbnail sketch in the

hierarchical view which displays the currently selected item. This avoids the need to toggle

between the hierarchy view and graphics view to verify object selection.

Finally, objects can be selected by attributes (such as color) or boolean

combinations of attributes.

Objects can be positioned, oriented and scaled. Designer's Workbench includes

several more advanced scaling modes including scale to size and scale along a vector.

Designer’s Workbench version 2.1, reviewed 10/26/94

122

A.8.4 Model Interaction/Visualization

One of the key advantages of Designer's Workbench is that it runs on a Silicon

Graphics workstation; this provides the graphics power required for smooth interaction

with complex models. Designer's Workbench is an integrated system, the modeling view

and visualization view are combined into one.

Designer's Workbench allows you to rotate the viewpoint about the model, zoom in

and out and pan your view. Up to ten different eyepoint locations can be saved and then

immediately recalled using eyepoint controls. The fit command centers the selected

database items in the window and moves the eyepoint so the selected items fill the window.

Using the isolate command will result in the selected items appearing alone in the graphics

window. Several isolate views can be defined and DWB automatically generates buttons

that can be used to quickly switch between the available views.

A.8.5 Manual

The DWB documentation is divided into a user's manual, which gives an overview

of the basic operation of Designer's Workbench, and a reference manual, a detailed

description of all DWB features. Though these are fairly well written, it is sometimes

difficult to find a description of a specific function. For example the eyepoint controls

discussed above are described in both the user's manual and the reference manual but the

reference manual lacks an appropriate index entry to help locate the description. Designer's

Workbench includes a context sensitive help mode which displays information about each

icon and menu command.

A.8.6 Comments/Impressions

Designer's Workbench is a good choice for the generation of complex models.

Running on a Silicon Graphics workstation, the user has the necessary power to work with

large complex models. The ability to interact with a hierarchical representation of the model

is invaluable in the selection and isolation of segments in complex models. Learning to use

to hierarchy effectively, however, does take some time.

The disadvantages of Designer's Workbench include a complex interface, a limited

set of modeling primitives (no curved surface and constructive solid geometry operators),

and a high price.

Form-Z version 2.6.1, reviewed 8/24/93

123

A.9 Form-Z

A.9.1 Overview

Input technique: Working-plane plus extrusion.
Output format: 2D plan & Arbitrary viewpoint.
3D Visualization: Integrated, interactive.

The main components of the Form-Z interface include:

• Modeling/Drafting window. 2D plan view or 3D arbitrary viewpoint used to
interact with the model.

• Menu Bar. Provides access to the various commands and dialog boxes used to
interact with Form-Z

• Modeling Tools toolbox. The graphical toolbox used to switch between the
various modes of interaction and modeling tools.

• Window Tools toolbox. Tools to control working plane orientation, cursor
movement (including snaps), viewpoint on modeling space and error and
memory information.

Figure A.7 presents a snapshot of the Form-Z interface.

Figure A.7: Form-Z interface.

Form-Z version 2.6.1, reviewed 8/24/93

124

Form-Z is a general purpose solid and surface modeler. Surface objects are simple

open and closed lines and meshed surfaces. Solid objects are three-dimensional shapes

enclosing volumes (cubes, spheres, cylinders etc.). In-between these two are surface

solids which are two sided surfaces that are completely enclosed but contain no volume (for

example the simple surface of revolution resulting from rotating a line about an axis).

Form-Z objects are primarily two-dimensional outlines which either remain two-

dimensional (surface objects) or get extruded into the third dimension (solid objects).

Extrusion height is either: chosen from a (customizable) menu of object heights, set

interactively using the mouse, or specified using numeric input.

Form-Z provides both 2D plan view and arbitrary viewpoint visualizations of

modeling space. Objects can be created in any of the 6 orthogonal views or in any arbitrary

three-dimensional view.

In addition to providing the standard types of objects such as circles, rectangles,

and polygons (all of which can be in 2D or 3D form), Form-Z includes many advanced

features: terrain models, derivative objects (objects of revolution, sweeps along paths,

sections of solids), controlled meshes, and Boolean operations (union, intersection,

difference).

Form-Z has made an interesting attempt to divide the modeling task up into its

orthogonal components. Included in the toolbox are several orthogonal tool modifiers

which control:

• The type of object (e.g. 2D or 3D)

• The topological level you are working at (point, edge, face, object)

• Whether or not you are working on the original object (self) or on a copy (or
multiple copies). This only applies to the geometric transformations (translate,
rotate, scale)

This provides a large range of function without the introduction of a large number

of specialized tools.

A.9.2 Model Creation

Form-Z is a working-plane-plus-extrusion system (see Section A.2.1). Model

generation takes place in a three-dimensional view that allows you to look at the model

from any arbitrary viewpoint. Models can also be created in something similar to a 2D plan

view system since axial views are also included (front, back, top, bottom, left, right). The

default interaction, however, is in the 3D view which may be either a perspective or

axonometric projection.

Form-Z version 2.6.1, reviewed 8/24/93

125

Objects are created in Form-Z by drawing a two-dimensional outline on the

working plane. The type toolbox-modifier is used to select the desired object that will

result from this 2D outline (such as 2D outline, 2D enclosure, or 3D object). If the object

is one of the 3D types, the extrusion height is controlled by a menu (with a user

configurable selection of heights) or via mouse input with the user moving the mouse until

the object is at the desired extrusion height.

Since all objects are created on the current working plane, Form-Z has several tools

dedicated to positioning, orienting, and defining new working planes and a dialog box for

naming, saving and selecting working planes. There are three default working planes

(aligned with the XY, YZ, or ZX planes). A new plane can be defined relative to 3 points,

two edges, an object face, or via numeric input).

All objects in Form-Z can be specified interactively in the modeling window or

numerically using the numeric input window.

Form-Z has a wide array of higher level tools such as derivative objects (objects of

revolution, sweeps along paths), and curves and meshes. This enables the generation of

quite complex shapes.

A.9.3 Model Modification

Form-Z provides both the standard geometric transformations (rotate, scale,

translate, mirror) and some more advanced features not available in most packages:

primarily Boolean functions to take the union/intersection/difference of model objects.

Based upon the self/copy modifier, the transformation will either operate on the

original object (self) or will result in the generation of a new or multiple new copies of the

original which are positioned based upon the transformation that was performed. This

provides a means of rapidly generating regular groups of objects (a colonnade for example)

by transforming a single copy of the base component (e.g. the single column).

The Boolean operations provide a means of generating interesting shapes by

combining objects with the different modifiers.

A.9.4 Model Interaction/Visualization

The view into the modeling world can panned, rotated and zoomed. It is important

to remember that the selected center of rotation is on the working plane and not in the

middle of the indicated object (as you might think from looking at the three-dimensional

Form-Z version 2.6.1, reviewed 8/24/93

126

view). The three-dimensional view, however, helps in the interpretation of the 3D

structure of the model under construction.

A.9.5 Manual

Form Z includes a detailed user manual and an introductory tutorial. The user

manual is divided up into three volumes: an introduction, a detailed modeling tools

reference and a detailed drafting tools reference. The tutorial is very extensive and covers

the vast majority of the FormZ tools. FormZ also includes a quick reference guide which

highlights the location of all tools and menu items and lists all hot key accelerators. It is

some indication of the complexity of the program that the quick reference guide is 24 pages

long.

A.9.6 Comments/Impressions

The two most notable aspects of Form-Z are the many advanced features included

in the package and the ability to work directly in a three-dimensional view. Very complex

shapes can be generated using tools such as the Boolean operators, sweeps along paths,

round edges, curves, and meshes. The 3D view is a more satisfying way to interact with

three dimensional models and also frees the user from having to mentally integrate separate

visualization views and modeling views. As described in Section A.2.2, however,

working in two-dimensional projection of three-dimensional space can lead to some

confusion.

These advantages, however, come with a price. Form-Z is not a simple program to

learn how to use. There are many different tools and each tool has an extensive array of

modifiers and options. Learning to use the full power of Form-Z takes time.

The tool modifiers described above, (type, topological level, self/copy) are an

interesting attempt to decompose the modeling functions into orthogonal components. As

with the other benefits there is an associated cost in that each action requires more levels of

specification (e.g. instead of selecting a box tool you must select both the polygon tool and

the 3D extruded object modifier).

Finally, Form-Z shares a problem that is common to most of the packages that

create objects using a working plane: the need to explicitly re-position the working plane to

create objects at different elevations and orientations. Form-Z, however, provides many

options for the positioning of the working plane including techniques that allow the

Form-Z version 2.6.1, reviewed 8/24/93

127

generation of objects relative to existing objects (for example at the level of this face, or

aligned with 3 specific corners of a cube).

IGRIP version 2.2.3, reviewed 9/21/94

128

A.10 IGRIP

A.10.1 Overview

Input technique: Numeric.
Output format: Arbitrary viewpoint.
3D Visualization: Integrated, interactive.

Figure A.8 presents a snapshot of the IGRIP interface.

Context

World Display

Page

Action

Figure A.8: IGRIP interface.

Interaction with IGRIP is broken up into several main modes called contexts:

CONTEXT DESCRIPTION

CAD 3D modeling and part creation
DEVICE Creation of devices by assembling parts
LAYOUT Placement of devices within a workcell
MOTION Generation of programs for devices
PROG GSL (Graphic Simulation Language) generation
DRAW Creation of 2D drawings of lines and text
DIM Calculation and annotation of part dimensions
USER User configurable buttons
ANALYSIS Determination of part dimensions

IGRIP version 2.2.3, reviewed 9/21/94

129

SYS Specification of defaults/system interaction

Each context is further broken down into pages, the secondary division of function

in IGRIP. The currently selected context and page determines which functions are

currently available for use.

All three-dimensional modeling takes place in the CAD context (though collection of

parts are assembled in the DEVICE context). There are seven pages associated with the

CAD context:

PAGE DESCRIPTION

CREATE Creation/manipulation of standard 3D objects
MODIFY Translate, rotate, merge, split, Boolean functions
CURV Generation of connected sets of lines
SURF Generation of polygons or NURBS surfaces
IGES+File translation
APP Application specific buttons
AUX Coordinate system functions/collision detection

All objects are created by specifying the desired object type (such as block,

cylinder, or sphere) and then filling out a dialog box specifying the location and dimensions

of the object and any additional required information (e.g. eccentricity for cylinders).

IGRIP is a high-end modeling system designed to be run on a Silicon Graphics

workstation. Much more than just a three-dimensional modeler, IGRIP has many

specialized features beyond the standard modeling tools. These additional features are

primarily in support of IGRIP's simulation modules. Designed to be used in the simulation

of robotic devices, IGRIP allows you to model parts which are assembled into devices

(collections of parts which have specifiable kinematic relationships), which are then

arranged in workcells (a collection of devices positioned in arbitrary locations and

orientations). Simulations are run on the workcells to determine the operating behavior of

the modeled devices. Included in the simulations are functions such as: calculation of

kinematic constraints (e.g. reach), simulation of joint dynamics, collision detection and

many other programmable constraints.

IGRIP is geared towards the very precise modeling of objects rather than to more

generic modeling (e.g. the preliminary design and the exploration of shapes and spaces).

Though it is possible to interact with models graphically, IGRIP is heavily oriented

towards numeric input. Most objects are created by specifying exact numerical values in

dialog boxes rather than via direct mouse input. All modeling is done directly in a three-

dimensional perspective view.

IGRIP version 2.2.3, reviewed 9/21/94

130

One of the main advantages of IGRIP stems from the fact that it runs on a Silicon

Graphics workstation and thus can take advantage of the graphical power of the SGI.

A.10.2 Model Creation

All parts created in the CAD context are made up of objects and each object is made

up of sub-objects. All objects consist of polygons.

As was mentioned above, the position, orientation and size of an objects is

specified using numeric input rather than interactively. To create a cylinder for example,

you would:

1) Select the cylinder tool

2) Fill out a dialog box specifying the cylinder's characteristics: X,Y,Z origin,
diameter, eccentricity, height, start angle, end angle, number of facets, axis,
circumference (inscribed or circumscribed), and if you want an upper and lower
cap and a center point

3) The object will show up at the specified location where it can then be snapped to
a surface, or translated and or rotated into its final location (either through direct
numeric input or interactively using a mouse with numeric feedback).

Each object has its own coordinate system which is used for the positioning of

objects both in absolute world coordinates and relative to each other.

More advanced features included in IGRIP are: extrusion, surface of revolutions,

lofting (the creation of a surface blending one polygon to another), fillets and NURBS

based surfaces.

IGRIP does not include modeling primitives that are directly related to architectural

design. It is geared more towards the creation of models of mechanical parts.

A.10.3 Model Modification

All objects can be translated, rotated and scaled by amounts specified numerically

(via dialog boxes) or graphically (via mouse input). Associated with each object is a

default coordinate system, and any object can be reset to its default orientation via simple

mouse clicks.

The types of model modification allowed in IGRIP include the ability to split and

merge objects, Boolean functions (such as union and difference), cloning, mirroring and

the ability to reverse the normals of individual polygons (a back-facing polygon is indicated

by semi-transparency).

IGRIP version 2.2.3, reviewed 9/21/94

131

One feature included in IGRIP that is not found in many other modelers is a tool for

the determination of object collisions. This can be useful in determining if separate objects

are interpenetrating.

Polygon color may also be specified.

A.10.4 Model Interaction/Visualization

All model creation in IGRIP is done in a three-dimensional perspective view.

Common to all of the IGRIP contexts is a collection of WORLD control buttons which

allow you to zoom in and out of the current view, and to translate and rotate the viewpoint

to a new location. When using mouse input to control the viewpoint, all actions (such as

rotation and translation) are broken down into the three main orthogonal components. Each

component is controlled by pressing the appropriate mouse button. Thus to translate the

view in the Y direction you would press the middle mouse button before moving the

cursor.

Since IGRIP is running on an SGI, sufficient graphics power exists to work

directly with a 3D perspective rendering of a shaded object (vs. a 2D plan or wireframe

model). Included in the WORLD controls are tools for changing lighting direction

interactively.

A.10.5 Manual

A large collection of manuals accompany the IGRIP program. Only a small portion

of these, however, are devoted to a description of the CAD tools. The manuals are

primarily arranged in the form of tutorials which take you through the basic steps of object

creation. Use of each of the basic tools is described, though it is difficult to find a

description of many features

On-line help is available and can be useful in determining a tool function.

The majority of the documentation is devoted to a description of the simulation

portion of the IGRIP package including a description of GSL (the Graphical Simulation

Language used in controlling/animating the kinematic devices) and many of the other

modules available with IGRIP (such as tools for translating to/from other robotic

programming languages, and modules for performing calibration of robotic devices and

positioners, device dynamics simulations, and other specialized applications).

IGRIP version 2.2.3, reviewed 9/21/94

132

A.10.6 Comments/Impressions

IGRIP is an excellent tool for the creation of detailed models. The heavy emphasis

on numeric input, however, makes it difficult to use in design exploration (given only a

vague notion of the size and shapes of the spaces you wish to create).

IGRIP includes many functions not directly related to 3D modeling, the CAD

context (mode) is only one of many different program modes (e.g. DEVICE, LAYOUT,

MOTION etc.). The majority of the IGRIP package is devoted to the specification,

simulation and control of the kinematic and dynamic relationships between parts.

IGRIP does demonstrate the advantages of increased graphical power in the 3D

modeling task. Since you are free to interactively view your model from any direction and

with any level of zoom, it is easy to get a better understanding of the 3-dimensional shape

of the objects being created. This graphics power, however, is not exploited during object

creation, since all objects are specified numerically and not interactively.

Minicad+ version 4.0v3, reviewed 9/24/93

133

A.11 Minicad+4

A.11.1 Overview

Input technique: Working-plane plus extrusion.
Output format: 2D plan & arbitrary viewpoint
3D Visualization: Integrated, interactive

The main components of the Minicad interface include:

• Drawing window. 2D plan view or arbitrary viewpoint used to interact with the
model.

• 2D/3DToolbox. The graphical toolbox used to switch between the various
modes of interaction and modeling tools.

• Menu bar. Provides access to the various commands and dialog boxes used to
interact with Minicad+.

• Data display bar. Displays current mouse position and is used for numeric
input.

• Mode bar. Used to control tool specific modes.

• 2D/3D Constraints Palette. Controls cursor snaps and constraints.

• Attribute Panel. Control attributes such as fill and pen color, line type, and
arrowhead style.

Figure A.9 presents a snapshot of the Minicad+ interface.

Figure A.9: Minicad+ interface.

Minicad+ version 4.0v3, reviewed 9/24/93

134

Minicad+ is a general purpose CAD/modeling package for both two-dimensional

and three-dimensional CAD design. Minicad+ has a complete complement of two-

dimensional modeling tools and a slightly more limited set of three-dimensional tools. In

Minicad+ there is a clear distinction between operating in a 2D or a 3D mode. Each mode

has an entirely different set of tools.

Included in Minicad+ are some specialized tools used in support of architectural

modeling. This includes tools for building walls, roofs, and slabs directly; the ability to

create hybrid 2D/3D symbols such as doors and windows which can be placed in the model

with a single mouse click; and a layer management scheme for organizing the different

floors in a building.

Other notable features include: multiple snap modes; a hints cursor which

graphically aids in the alignment of objects by changing its shape depending upon the

current position of the cursor; and Minipascal, a macro programming language for

customizing the application.

A.11.2 Model Creation

Objects may be created in either the 2D or 3D views. Two-dimensional views

include the standard plan and elevation views and the three-dimensional views include a

standard set of isometric views plus the ability to look at the model from any arbitrary

viewpoint.

3D box 2D rectangle

2D TOP/PLAN VIEW 3D ISOMETRIC VIEW

3D box 2D rectangle

Figure A.10: 2D vs. 3D objects.

As was mentioned earlier, there are two very distinct modes for the creation of 2D

and 3D objects. All 2D objects are considered to lie in a single plane (i.e. the screen) and

the orientation and location of that plane is undefined in the 3D model space. For this

Minicad+ version 4.0v3, reviewed 9/24/93

135

reason, when a switch is made from a 2D to a 3D view, all 2D objects remain floating in

the plane of the screen, and do not move as the 3D viewpoint is changed. For example the

left half of Figure A.10 shows a 3D box and a 2D rectangle as seen in the 2D top/plan

view. The right half of Figure A.10 shows the same 3D box and 2D rectangle in one of the

3D isometric views. Note how the 2D rectangle remains in the plane of the screen and does

not have a corresponding 3D location. This is how the 2D box will look regardless of the

3D viewpoint chosen.

A two-dimensional outline may be extruded into 3D, but to fully transfer into the

three-dimensional world the object must then also be converted to 3D polygons (via menu

command).

Only the wall tool (in the 2D menu) creates hybrid 2D/3D objects. In the 2D plan

view, the wall tool creates a double line which indicates the wall thickness. When a switch

is made to a 3D view, the walls (unlike the other 2D objects), will switch from a 2D line to

a three-dimensional object (with corresponding position and orientation in the 3D modeling

space).

A certain number of tools are used to create objects directly in the 3D view. This

includes the 3D extrude tool, the 3D slab tool, the 3D polygon tool, and the 3D roof and 3D

sweep menu items.

The 3D extrude tool is used to create a multi-sided polyhedron with sides

perpendicular to the working plane. This is similar to using a 2D polygon tool except that

the polygon has an extrusion height set (via dialog box) by the user. The 3D slab tool

creates a three-dimensional box which can be used as the slab for the currently selected

floor. A 3D polygon is a two-dimensional shape which has position and orientation.

All objects created in the 3D view are created relative to the currently selected

working plane and there are assorted tools used for moving the working plane around to

the desired position and orientation (e.g. for creating 3D objects at different heights and

orientations)

A.11.3 Model Modification

Both the 2D and 3D modes allow for the standard types of model modifications.

Objects may be translated (using the selection pointer), rotated and scaled. In the 3D mode,

the rotation of objects may either be around the working plane normals or around some

secondary (user defined) vector. 3D objects can also be reflected about an axis and

reshaped (by moving selected vertices). For all of the modification operators, the operation

Minicad+ version 4.0v3, reviewed 9/24/93

136

can be performed on either the original object or a new object (a clone) can be created in the

new target location.

A.11.4 Model Interaction/Visualization

Both the 2D and 3D modes provide the ability to pan and zoom around the current

view-plane.

Almost half of the available three-dimensional tools in Minicad+ are used for

changing the view into the 3D modeling space. In addition to the pan and zoom tools

discussed above, Minicad+ also provides: 3D translate, view rotate, walkthrough, flyover,

translate along working plane normal, and rotate about working plane normal. Though a

large set of options, most of these view manipulation tools just represent a slightly different

way of moving around the three-dimensional world (each with a different set of constraints

on how you can move).

3D translate moves the eye-point in and out along the direction of view. View

rotate changes the angle at which the user is viewing the model (either around the direction

of view or around the X and Y axis of the screen). To quote the manual: view rotate "can

be so flexible that it is awkward to use". Walkthrough allows user centered motion and all

rotations are about the user viewpoint. Flythrough rotates the user view with the additional

restriction that the user view up is always constrained to an upright position. Working-

plane normal rotation and translation change the viewpoint relative to the currently defined

working plane.

A.11.5 Manual

Overall, the Minicad+ manuals are comprehensive and are fairly well written.

There is a complete user manual (plus index) and a separate tutorial manual (which focuses

on the creation of architectural models). Also included in the package is a separate manual

describing programming in Minipascal, a macro programming package for customizing the

application; and an introductory video which demonstrates the basic use of the package.

A.11.6 Comments/Impressions

Minicad's strengths lie primarily in the two-dimensional domain. Overall it seems

to be a sophisticated 2D CAD package that allows you to create complex two-dimensional

drawings. Minicad has several useful features such as a context-sensitive help bar and a

screen hints mode which helps you during drawing creation. The screen hints mode is a

Minicad+ version 4.0v3, reviewed 9/24/93

137

particularly useful feature which changes the cursor into a smart cursor which can indicate

snap points and alignment information. I also liked features such as the inclusion of a

rotated rectangle tool which allows you to draw non-axial rectangles.

Minicad+ is less strong as you move into the 3D domain. In fact, the 3D tools feel

more like something tacked onto a 2D package rather than an integral part of a unified

system for 2D/3D design. The strong division between the 2D and 3D worlds, though

useful in creating presentation drawings that include both 2D and 3D views, takes some

getting used to.

Minicad+ is also somewhat limited in terms of three-dimensional object creation

tools, only two tools on the 3D tool pallet are devoted to creating 3D objects and both of

these are limited to creating multi-sided objects with sides perpendicular to the working

plane. Though more complicated objects can be created using the menu items for 3D

extrusion and 3D surfaces of revolution, these features are not directly integrated as 3D

tools.

The majority of the Minicad+ 3D mode seems devoted to means of changing your

viewpoint in the 3D model space. 9 tools (when pan and zoom are included) are devoted to

changing your viewpoint relative to the model. Most of these, however, represent different

ways of doing the same thing. This part of the Minicad interface could be simplified and

reduced.

Minicad has the potential to be a very powerful modeler, however, this will require

some redesign and a more careful integration of the 2D and 3D modes.

MultiGen version 14.0, reviewed 10/19/94

138

A.12 MultiGen

A.12.1 Overview

Input technique: Working-plane plus extrusion.
Output format: Arbitrary viewpoint.
3D Visualization: Integrated, Interactive.

The main components of the MultiGen interface include:

• Database window. Window used to display and edit information in a single
database file. Can display an arbitrary viewpoint of modeling space or a
hierarchical representation of the model.

• Menu bar. Provides access to the various commands and dialog boxes used to
interact with MultiGen.

• Icon Menus. The graphical toolbox used to switch between the various modes
of interaction and modeling tools.

• Coordinate Window. Used for direct numerical input of positions, and extents
(can be specified in either relative or absolute coordinates).

Figure A.11 presents a snapshot of the MultiGen interface.

Figure A.11: MultiGen interface.

MultiGen version 14.0, reviewed 10/19/94

139

MultiGen is a high-end modeling system designed to run on Silicon Graphics

workstations. MultiGen is a general purpose modeler though its roots are in the flight

simulator industry (it still includes tools for generating runway lights for example).

The most notable features of MultiGen include multiple techniques for object

selection (including a hierarchical representation of the model) and a large number of

construction assists to help in the construction and positioning of models. The hierarchical

view allows the user to see a representation of the models hierarchical structure (showing

all parent-child relationships) and can be used to quickly select portions of the model for

later manipulation.

MultiGen allows the user to interact with the model at many different topological

levels; the user can select and manipulate vertices, edges, faces, objects, and groups of

objects.

MultiGen includes an extensive set of tools for applying and editing textures.

A.12.2 Model Creation

MultiGen is a working-plane-plus-extrusion system. The working plane can be:

aligned with the XY, YZ, and ZX planes, moved to any vertex (maintaining its current

orientation), aligned with any object face, or aligned with any three vertices. The working

plane can also be moved to any arbitrary position and orientation using numeric input.

MultiGen provides tools for the creation of irregular and regular polygons,

rectangles, spheres and strip faces (fixed width polygons along a path - ideal for roads).

All objects are created interactively (using the mouse) or with numeric input (to specify

absolute or relative positions of vertices). Two-dimensional faces can be extruded into

three-dimensional objects which have either walled (perpendicular) or peaked (converging)

sides. MultiGen also includes advanced tools for the creation of surfaces of revolution and

lofted objects (objects defined by a sequence of two-dimensional profiles). The default

behavior of most tools is controlled using a related preferences page.

All objects created in MultiGen are inserted into an object hierarchy which

encapsulates the relationship between objects, groups of objects, faces, edges and vertices.

The user can view a graphical representation of the hierarchy in which he can reorganize

structural relationships using commands or interactive drag and drop editing to detach and

attach nodes in the hierarchy (see below).

MultiGen has a large variety of construction assists. A rectangular or radial grid

can be used during construction to constrain the cursor position to regular, adjustable

MultiGen version 14.0, reviewed 10/19/94

140

spacings. The cursor can also be snapped to any vertex or edge using coordinate

referencing techniques. The referenced edge and vertex can be a part of the existing model

or they can be construction objects, temporary objects used solely as points of reference.

MultiGen includes many types of construction objects. Construction edges are used to

generate points parallel to edges, perpendicular to an edge or face, along a curve, along the

line connecting the midpoints of any two existing edges, or at the intersection of two

planes. Construction vertices are used to define points at the average value of a set of

vertices, at the intersection of two edges, at the point on a line or a plane closest to a

selected vertex, or at even intervals along a line.

A.12.3 Model Modification

MultiGen includes several techniques for object selection which facilitate interaction

with complex models. Objects can be selected: in the graphics view, in the hierarchy view,

and by attribute.

When selecting objects in the graphics view a topological level is used to control the

level of selection (vertices, edges, faces, objects, and groups of objects). The shrink faces

command is used to aid in the selection of coincident vertices by causing faces to

temporarily contract about their center (separating coincident vertices).

The hierarchical view is very useful when the model has grown complex enough

that it is difficult to select objects in the graphics view. Related segments of a model can be

selected using a single mouse click by selecting the appropriate node in the object

hierarchy.

Finally, objects may be selected by attributes (such as color) or boolean

combinations of attributes.

In MultiGen the standard tools to position, orient and scale an object are enhanced

by the numerous construction assists mentioned above. This makes it very easy to quickly

position objects relative to one another in the database.

Other transformation functions in MultiGen include: automatic level of detail

generation, a slice operator (to split an object along the working plane), tools to split faces,

and to add and position vertices.

A.12.4 Model Interaction/Visualization

One of the key advantages of MultiGen is that it runs on a Silicon Graphics

workstation; this provides the graphics power required for smooth interaction with complex

MultiGen version 14.0, reviewed 10/19/94

141

models. MultiGen is an integrated system, the modeling view and visualization view are

combined into one.

MultiGen allows you to rotate the viewpoint about the model, zoom in and out and

flythrough the model. It can sometimes be difficult to get a desired viewpoint using the

interactive controls. This is somewhat compensated for by the ability to save and recall

viewpoints. MultiGen also includes commands to automatically zoom in on the selected

portion of the model. To assist in interaction with complex models, MultiGen enables the

user to open a separate window in which he can work on a subset of model. All changes in

the new window will be reflected in the original model. Interaction with complex models is

also helped by the ability to turn off the display of selected portions of the model using the

hierarchical view.

A.12.5 Manual

The MultiGen manual is fairly well written and organized. A significant portion of

the manual is dedicated to MultiGen's texture mapping and editing features. Included in the

manual is a tutorial section which steps you through the creation of a typical scene.

Though useful, the tutorial is sometimes ambiguous in its description of the desired

operations.

MultiGen also includes a context-sensitive help mode which can be used to display

information about each icon and menu command.

A.12.6 Comments/Impressions

Several features help to make MultiGen a good choice for working with complex

models. The graphics power of Silicon Graphics Workstations enable an interactive

visualization which helps in the understanding of the model and in the specification of

positions, orientations, and extents. Numerous techniques for object selection make it easy

to isolate desired portions of the model for further manipulation. A large number of

construction assists help in the construction and positioning of objects relative to each

other. MultiGen also includes many tools for model cleanup not found in lower-end

modeling systems (including tools to check for non-coplanar vertices, duplicate vertices,

concave faces and objects, and to simplify faces sharing common edges). MultiGen also

has an extensive set of tools for dealing with texture maps (including a full texture editor).

The ability to interact with a hierarchical representation of the model is one of the

key advantages of MultiGen. It is very helpful in the selection and isolation of segments of

MultiGen version 14.0, reviewed 10/19/94

142

the model and it is a good practice to set up a structural hierarchy during, rather than after

model generation. Learning to use to hierarchy effectively, however, does take some time.

The disadvantages of MultiGen include a complex interface, a fairly limited set of

modeling primitives (limited to polygonal objects with no support for curved surfaces and

CSG operators), and a high price.

Sculpt 3D version 2.06, reviewed 7/21/93

143

A.13 Sculpt 3D

A.13.1 Overview

Input Technique: Orthogonal input
Output format: Orthogonal
3D Visualization: Separate, static

The main components of the Sculpt 3D interface include:

• Tri-View window. 3 orthogonal views used to interact with the model.

• Tri-View Palette. The graphical toolbox region of the Tri-View used to switch
between the various modes of interaction and modeling tools.

• Menu bar. Provides access to the various commands and dialog boxes used to
interact with Sculpt 3D

• Coordinate dialog. Displays current mouse position and is used for numeric
input.

• Scene dialog. Contains information about number of vertices, edges, and faces
in the current scene plus memory information.

Figure A.12 presents a snapshot of the Sculpt 3D interface.

Figure A.12: Sculpt 3D interface.

Sculpt 3D version 2.06, reviewed 7/21/93

144

Sculpt 3D is a general purpose three-dimensional modeling tool. (Sculpt 4D is the

same 3D modeling package with the addition of animation tools).

Sculpt 3D is an orthogonal view system. In Sculpt 3D, the user directly specifies

the three-dimensional shape of all objects created. This is accomplished through the

specification of the X, Y and Z position of all the vertices and edges (and thus the faces)

that make up an object.

Visualization of Sculpt objects is either done directly in the modeling window

(which is in essence an orthographic wire frame view) or via higher quality ray traced

images displayed in a separate visualization window.

A.13.2 Model Creation

In Sculpt 3D, objects are entirely made up of triangular faces, each face made up of

vertices and edges. Objects are created in Sculpt using the Tri-View windows, three

orthogonal views into the three-dimensional modeling space. The creation of objects in

Sculpt requires the specification of:

1) the X, Y, and Z coordinate of each defining vertex in 3 space (either defined by
the position of the cursor in any two orthogonal views or by numeric input in a
coordinate dialog box).

2) the connectivity of the vertices by edges.

3) the grouping of vertices and edges into triangular faces (using the create face
tool.

To facilitate the specification of all this information, Sculpt provides many means of

creating vertices (both connected and unconnected by edges) and Sculpt automatically

creates faces whenever three edges are connected together into a triangle.

To support the creation of complex three-dimensional shapes (which would nearly

be impossible if you had to explicitly specify the location of every vertex), Sculpt provides

a set of default objects (such as spheres, hemispheres, blocks, prisms, disks, and circles)

which can be incorporated into the model and then modified as desired. Sculpt also

provides several more advanced methods of creating objects such as reflections, and

surfaces of revolution (spin and twist).

A coordinate dialog box relays information to the user about the current cursor

location. Cursor position can be reported in absolute or relative coordinates. A temporary

origin can be defined for relative modes. The coordinate dialog box can also be used for

direct numeric input of cursor coordinates.

Sculpt 3D version 2.06, reviewed 7/21/93

145

A.13.3 Model Modification

Sculpt provides many different means of vertex selection and deselection, which is

often one of the most time-consuming modeling actions in an orthogonal input modeling

system. The basic goals of each of these methods is to provide a different method of

isolating and specifying the desired vertices.

Since many models tend to be quite regular and axis-aligned, selection of a single

vertex can often be quite confusing. Vertices that lie along a line orthogonal to one of the

view planes, for example, will all project to same point in that view. To disambiguate this,

vertex selection depends on specifying cursor position in multiple Sculpt windows, since

vertices in different locations in 3 space will have different positions in the three orthogonal

views. Even with three separate views, however, it still may be difficult to select a

particular vertex since it may be obscured by different vertices in each of the orthogonal

views.

In order to simplify the current view, Sculpt only renders the vertices that are

enclosed in the cube defined by the Tri-View windows, thus simplifying vertex selection.

By resizing each window or changing the level of zoom, you can change the portion of

modeling space that is enclosed by the Tri-View, thus isolating vertices of interest.

Vertex selection in more complex models is greatly helped by a hierarchy dialog.

This can be used to selectively name parts of a model. Once named, entire segments of a

model can be selected, deselected, deleted, and hidden. As the name implies, models can

also be arranged hierarchically (e.g. a door could be further broken down into door knobs,

hinges etc.)

Once selected, vertices may be moved, rotated, scaled (uniformly or along any

combination of individual axes), mirrored, duplicated, deleted, snapped to a grid (or a

plane or sphere), spun around an axis or twisted along a path. Magnet tools can be used to

apply a force to all selected vertices, moving them a distance proportional to the inverse of

the distance from the cursor.

A.13.4 Model Interaction/Visualization

Conventional scroll bars are provided for panning through the current model.

Movement can also be accomplished by grabbing the Tri-View rulers and moving them

over the desired amount. Tools are provided for zooming in and out from the current view,

with amount of zoom controlled by various combinations of key specified modifiers (e.g.

Sculpt 3D version 2.06, reviewed 7/21/93

146

zoom in 2X,4X, 1/2X etc.). Tri-Views can also be quickly centered around the current

modeling cursor location using the Center on Cursor button.

Sculpt 3D visualizations are static ray-traced images that are displayed in a separate

window. Image quality can be enhanced using textures and bump maps and selectable

levels of anti-aliasing, and dithering. Multiple lights can be placed in the scene and the

observer and target position can be specified using the Tri-View window. The speed of

rendering, however, is too slow for interactive viewing. Sculpt renderings are more useful

for final analysis of the modeled object and for final presentation. Most other times, the

user must use the three Tri-View windows as a wire-frame representation of the model.

This, however, is not optimum, since this requires the user to combine the information

from the three Tri-View windows in his head into a three-dimensional representation. It is

likely that some confusion will exist about the actual shape of the modeled object (due to

the ambiguity in the three views described above).

A.13.5 Manual

Overall, the manual is well written, with a good description of how to use the

modeler, a good index and a detailed functional reference. In addition to giving a

description of what each tool does, the Sculpt manual demonstrates how each tool would

be used, and gives examples of how to create sample objects. Each section of the manual

clearly lists the functions to be described, has a detailed description of those functions and

ends with a summary of what was learned.

Sculpt 3D comes with sample files and a straightforward tutorial that steps the user

through the basics of modeling using Sculpt 3D.

A.13.6 Comments/Impressions

Overall, Sculpt 3D is a consistently written, relatively powerful 3D modeler. All

tools have a predictable behavior with modifiers that exhibit consistent behavior across

related tools. Sculpt enables the user to create very complex three-dimensional shapes by

using low level primitives such as vertices and edges, combined with a complete set of

default objects and powerful modifying actions (such as spin, and reflect).

The use of low level primitives, however, is also one of the primary source of

difficulties when using Sculpt. Dealing directly with vertices and edges (instead of with

some higher level primitive) means that a considerable amount of Sculpt's resources must

be spent in providing ways of selecting, deselecting, and modifying vertices. This can be a

Sculpt 3D version 2.06, reviewed 7/21/93

147

hindrance since there are times when the user does not want to think in terms of vertices but

would rather think at a higher level (such as faces or objects). This is complicated by the

fact that, as models get more complex, the resulting views in the Tri-View windows can

become quite confusing. Vertices can become doubled (tripled, quadrupled.....) where a

single vertex in a view actually represents many vertices lying in a row. Though Sculpt

provides many means of selecting/disambiguating vertices, it sometimes can become quite a

chore isolating the desired vertices in a model.

Another difficulty with Sculpt is that it forces the user to think of a models in terms

of its three orthogonal projections. This makes it difficult to obtain the desired shape since

it is hard to determine how the desired shape decomposes into the three orthogonal

components.

Upfront version 2, reviewed 10/8/93

148

A.14 Upfront

A.14.1 Overview

Input Technique: Working-plane plus extrusion.
Output format: Arbitrary viewpoint
3D Visualization: Integrated, interactive

The main components of the Alias Upfront interface include:

• Workspace. 3D arbitrary viewpoint used to interact with the model.

• Main toolbox The graphical toolbox used to switch between the various modes
of interaction and modeling tools.

• View toolbox. Used for changing the user's viewpoint on the modeling space.

• Message box. Used to prompt the user with information about the current
operation.

Figure A.13 presents a snapshot of the Upfront interface.

Figure A.13: Upfront interface.

Upfront version 2, reviewed 10/8/93

149

Alias Upfront is a three-dimensional design package which is targeted for the

preliminary stages of architectural design. This means that the main objective of Upfront is

the exploration of spaces and shapes rather than the detailed design of a particular item. As

a result, the interface in Upfront is geared towards allowing the user to quickly create three-

dimensional shapes with minimal user interaction.

Alias Upfront is a member of the class of modelers in which the user creates objects

directly in a 3D perspective view. Unlike other modelers, however, object creation in

Upfront is solely done in a 3D view. Even though it is possible to view an object using

what looks like the standard plan and elevation views (orthogonal parallel projections),

these views are in fact 3D perspective views and not really parallel projections. Contrast

this with most other modelers that model in a 3D view, which also provide model

interaction in two-dimensional parallel projection windows (plan views).

Notable features of Alias Upfront include: modeling in fully shaded scenes, tools to

directly create walls with thickness, shadow calculations, and full floating point arithmetic.

A.14.2 Model Creation

Objects are created in Alias Upfront as follows:

• Select a tool (box, sphere cylinder etc.)

• Click to set base point

• Rubberband up and down to set object height (or use numeric input)

• Move cursor to define shape (e.g. click on each vertex for a wall or define the
angle of revolution for a section of a sphere)

All objects in Upfront are created relative to a working plane. In Upfront, the

working plane is quickly moved to any surface by clicking on that surface with the mouse

cursor (unlike other modeling packages which have separate working-plane positioning

modes). This makes it easy to build objects relative to other objects (a vase on a table for

example). Selection of faces (for snapping of the working plane) is facilitated by several

factors. First, all objects in Upfront are fully shaded and not wireframe models. This

makes it easier to identify component faces. Second, the Upfront cursor changes shape

and orientation depending upon its current position in the model. Based upon the shape of

the cursor, the user can identify when the cursor is over a vertex, line or face.

Furthermore, the orientation of a face is indicated by displaying a line indicating the

direction of the surface normal.

Several constraint modifiers control the shape and orientation of the resulting

object. The direction tool determines if the extrusion direction is vertical, horizontal (e.g.

Upfront version 2, reviewed 10/8/93

150

for creating a dormer), or perpendicular to the current working surface. The height tool

determines the means of specifying the extrusion height of an object. Heights can either be

specified by rubber-banding, set to match the length on any line in the scene, or set to

match the height of any existing point or surface in the scene.

For all steps requiring specification of dimensions it is possible to alternate between

mouse input and numeric input. Numbers can be input directly and the cursor will move

appropriately. If however, you move the mouse again (after numeric input), then mouse

cursor control resumes.

In Upfront, objects are created in terms of surfaces (vs. specifying individual

vertices). By default, objects are single-sided (to speed up rendering) but can be promoted

to two-sided (to enable seeing the insides of a box, for example.

Upfront is clearly a preliminary design package (as advertised), consequently it is

somewhat limited in terms of the types of objects it can create directly. The main primitives

are box, cylinder, sphere, multi-sided polyhedra and wall. More complex objects can

created by performing intersection operations on objects but Upfront does not directly

include operators such as: surfaces of revolution and sweeps along paths (though surfaces

of revolution can be created by a modified use of the cylinder tool).

A.14.3 Model Modification

Entire objects or subsets of objects (e.g. a single line or face) can be moved,

rotated (around specified points), scaled and reshaped (by moving individual vertices, lines

or faces). The topological level of the selection (vertex, line, face, or object) depends on

the cursor location (and shape) at the time of selection. Position the cursor over a single

edge of the object and only that edge is selected.

During all modeling actions the cursor movement can be constrained to a surface,

an object edge, a line between any two points in the model, a surface defined by any three

points in the model or on an object edge with distance measured relative to an intersecting

surface.

A.14.4 Model Interaction/Visualization

All model interaction is done in the 3D perspective view. Interaction can be

performed from any viewpoint. The standard means of changing the view (pan, zoom) are

included.

Upfront version 2, reviewed 10/8/93

151

Since all interaction with the model is done in the 3D view, it is important to be able

to change the viewpoint relative to the model in order to aid in the understanding of the 3D

shape of the object being created. There are several ways to change the viewpoint and view

direction in Alias Upfront.

The view toolbox provides several modes for changing the viewpoint. These

roughly correspond to: changing the eye-point, changing the center-of-interest, changing

the distance between the eye-point and the center-of-interest, and changing the field-of-

view (FOV). All of these can be controlled by moving the mouse in the main window or

by clicking on control buttons in the view toolbox.

All of these parameters can be changed simultaneously by selecting the view tool.

One of the most complex tools to use, the view tool sets the position and height of the

center-of-interest, the position and height of the eye-point (and thus the distance between

the two), and the field-of-view. This involves several clicks, rubberbandings and mouse

movements; the end result of which is a new viewpoint on the scene.

Several default views may be chosen from via menu selection including plan view

and elevation view (the direction of view being set by drawing a line in the model

specifying the look vector).

One nice feature which aids in the interpretation of the 3D shapes shown in the 3D

perspective projection is the ability to calculate and display shadows. This helps the user

understand the three dimensional relationship between objects. The shadows help

immeasurably in letting the user determine if an object is resting on the ground plane or

floating several units above.

A.14.5 Manual

Upfront includes a detailed user manual (plus index) and a tutorial which walks you

through the basics of model creation. Since Upfront is a fairly simple package (in terms of

the number of features) the tutorial quickly gives the user a fairly complete understanding

of the package in just a few hours. Alias also includes a quick reference card, something

essential in helping the user remember the function of the various tools.

A.14.6 Comments/Impressions

Alias Upfront has attempted to deal with some of the difficulty in working directly

in a three-dimensional projection. Having fully shaded objects and shadows helps in

understanding the 3D shape of the objects being created. It is easier to create an object

Upfront version 2, reviewed 10/8/93

152

where you want in Upfront because of the ease moving the working plane to the surfaces

and edges of existing objects (though in some cases this necessitates the creation of

construction surfaces - see Section A.2.1). The changing cursor shape and orientation also

help in interpreting the current cursor position which is complicated by working in a

perspective projection (see Section A.2.2).

Upfront suffers from the lack of more complex operators (such as sweeps along

paths), though the inclusion of such operators would naturally complicate the user

interface.

Though the ability to quickly change viewpoints is nice (and helps in 3D shape

understanding), Upfront would benefit from a more interactive 3D visualization.

WalkThrough version 1.1.3, reviewed 6/3/93

153

A.15 WalkThrough

A.15.1 Overview

Input Technique: Working-plane plus extrusion.
Output format: 2D plan view
3D Visualization: Separate, interactive

The main components of the Virtus WalkThrough interface include:

• Design view. 2D plan views used to interact with the model.

• Walk View. An interactive visualization of the model.

• Tools Window The graphical toolbox used to switch between the various
modes of interaction and modeling tools.

• Surface Editor. Used to add surface features (such as window and door
openings).

• Tumble Editor. Used to add a surface to a selected object by slicing off a piece
of the object.

Figure A.14 presents a snapshot of the WalkThrough interface.

Figure A.14: WalkThrough interface.

Virtus WalkThrough is a general purpose modeler with an emphasis on architectural

design. Virtus can be used to create and manipulate three-dimensional models. Objects are

WalkThrough version 1.1.3, reviewed 6/3/93

154

generated in Virtus using 2D plan views in which (convex) polygonal outlines are created

which are extruded into the third dimension based upon separate depth controls. One of the

most notable features of Virtus is that it provides an interactive walkthrough of the current

model in which the user can move freely and observe the model from all directions.

Another notable feature of Virtus is the ability to add features (primarily holes) to

the faces of polygonal objects.

A.15.2 Model Creation

Models are created using the working-plane plus extrusion method. The elevation

of the current working plane and the extrusion height are controlled using a depth slider

(which is in a separate window or in a view orthogonal to the current working plane). The

depth slider can also be used to change the extrusion height of an existing object.

Virtus provides modeling aids such as a ruler for determining current cursor

position and a modeling grid. Also included are movable alignment guides which can be

used in the alignment of objects. Note that the spacing of the modeling grid is dependent

upon the current level of zoom in the active window (which determines the spacing of the

tic marks on the ruler). To get a particular spacing, you must zoom your view in or out.

Some of the primary requirements of all Virtus models (which somewhat restrict the

flexibility of the program) are: 1) Virtus can only create convex outlines, 2) polyhedra must

not intersect (they can either be contained or entirely non-intersecting).

A.15.3 Model Modification

Virtus allows the standard operations such as rotation, skewing, and scaling. Some

difficulty results from the fact that the three-dimensional objects are treated as two-

dimensional outlines extruded along an orthogonal axis. This means that objects have a

direction associated with them and are not truly general 3D shapes. Thus it is not possible

to modify all aspects of the shape of a 3D object in a view that is orthogonal to view in

which the two-dimensional outline was created. You can modify the extrusion depth, for

example, but not the shape of the outline. Objects can be rotated, skewed and scaled in the

orthogonal view but if the two-dimensional outline is rotated out of the plane of creation,

the object must be unrotated if the polygonal outline needs to be modified.

An important feature of Virtus is that it allows the modification and editing of

specific faces of an object. This means that properties of an object (such as color, and

opacity) can be set on a face by face basis. It is also possible to add features to the

WalkThrough version 1.1.3, reviewed 6/3/93

155

individual faces of an object. These features can range from opaque to transparent which

will have corresponding results ranging from colored features to holes in the face.

A.15.4 Model Interaction/Visualization

All modifications of the model are performed in the 2D plan view (Design View).

User can select any one of 6 orthogonal views to work in (and multiple orthogonal views

may be open at any one time).

Virtus uses scroll bars to pan around the Design view and zoom in/out buttons to

move in/out in predetermined size steps. There is also a zoom-in selection marquee where

the desired portion of the Design view is framed in a marquee and it is expanded to fill the

design view.

Also provided are menu options for recentering the modeling space on the location

of the virtual observer (the eye-point in the Walk View) and to recenter the Design view at

origin.

The primary 3D visualization in Virtus is in the Walk mode. In this mode, the user

moves around the Virtus model through interaction in the Walk view. Using a mouse (with

different modifier keys available) the user can change position relative to the model, view

direction, and view orientation. By restricting the allowable type of objects to be convex

non-intersecting polyhedra, Virtus has achieved a relatively fast rendering speed.

Renderings in Virtus, however, are often inaccurate, with the depth ordering of objects in

error and/or their shapes grossly distorted.

A.15.5 Manual

The manual is well written and easy to understand. It includes a detailed tutorial

which steps you through the creation of a basic object and explains the manipulation of and

interaction with that object. A new user could sit down and learn Virtus in a few short

hours. This is facilitated by the fact that Virtus is a fairly straightforward program with

relatively few tools to learn how to use.

A.15.6 Comments/Impressions

The most significant feature of Virtus is its interactive, three-dimensional walk

view. The ability to interactively move through a model and change views in real time is a

very powerful feature. Unfortunately, Virtus is hampered by the day-to-day frustrations of

bugs (e.g. the incorrect computation of containment of small objects) and other

WalkThrough version 1.1.3, reviewed 6/3/93

156

shortcomings (in particular the lack of numeric input). Also, dealing with the constraint

that objects must be convex and non-interpenetrating makes it difficult to create arbitrary

complex shapes in Virtus.

REFERENCES

Angus, Ian and Henry A. Sowizral (1994). “Embedding the 2D interaction metaphor in a

real 3D virtual environment.” Boeing Computer Services, Technical Report.

Athènes, S. (1984). “Adaptabilité et développement de la posture manuelle dans l'écriture:

Etude comparative du droiter et du guacher. (Adaptability and development of

manual posture in handwriting: a study comparing right-handers and left-handers).”

University of Aix-Marseille II, France, Unpublished memorandum.

Badler, Norman I., Kamran H. Manoochehri and David Baraff (1986). “Multi-dimensional

input techniques and articulated figure positioning by multiple constraints.”

Proceedings of 1986 Workshop on Interactive 3D Graphics (Chapel Hill, NC),

ACM, pp. 151-69.

Balakrishnan, Ravin, Thomas Baudel, Gordon Kurtenbach and George Fitzmaurice

(1997). “The Rockin' Mouse: integral 3D manipulation on a plane.” Proceedings of

CHI '97 (Atlanta, GA), ACM, pp. 311-318.

Balakrishnan, Ravin and Scott I. MacKenzie (1997). “Performance differences in the

fingers, wrist, and forearm in computer input control.” Proceedings of CHI '97

(Atlanta, GA), ACM, pp. 303-310.

Bier, Eric Allan (1986). “Skitters and jacks: interactive 3D positioning tools.” Proceedings

of the 1986 Workshop on Interactive 3D Graphics (Chapel Hill, NC), ACM, pp.

183-96.

Bier, Eric Allen (1990). “Snap-dragging in three dimensions.” Proceedings of the 1990

Symposium on Interactive 3D Graphics (Snowbird, UT), ACM, pp. 193-204.

Bier, Eric A. and Maureen C. Stone (1986). “Snap-dragging (graphics).” Proceedings of

SIGGRAPH '86 (Dallas, TX). In Computer Graphics, 20(4), ACM, pp. 233-40.

Bier, Eric A., Maureen C. Stone, Ken Fishkin, William Buxton and Thomas Baudel

(1994). “A taxonomy of see through tools.” Proceedings of CHI '94 (Boston,

MA), ACM, pp. 358-364.

Bier, Eric Allen, Maureen C. Stone, Ken Pier, William Buxton and Tony D. DeRose

(1993). “Toolglass and magic lenses: the see-through interface.” Proceedings of

SIGGRAPH '93 (Anaheim, CA). In Computer Graphics Proceedings, Annual

Conference Series, ACM, pp. 73-80.

158

Boff, Kenneth R., Lloyd Kaufman and James P. Thomas, Eds. (1986). Handbook of

Perception and Human Performance. New York, John Wiley and Sons.

Bolt, Richard A. (1980). “Put-that-there.” Proceedings of SIGGRAPH '80 (Seattle, WA).

In Computer Graphics, 14(3), ACM, pp. 262-270.

Bolt, Richard A. and Edward Herranz (1992). “Two-handed gesture in multi-modal natural

dialog.” Proceedings of UIST '92 (Monterey, CA), ACM, pp. 7-14.

Bowman, Doug and Larry F. Hodges (1995). “Immersive design tools for virtual

environments.” SIGGRAPH 95 Technical Sketch (Los Angeles, CA), ACM.

Bowman, Doug and Larry F. Hodges (1997). “An evaluation of techniques for grabbing

and manipulating remote objects in immersive virtual environments.” Proceedings

of the 1997 Symposium on Interactive 3D Graphics (Providence, RI), ACM, pp.

35-38.

Britton, Edward G., James S. Lipscomb and Michael E. Pique (1978). “Making nested

rotations convenient for the user.” Proceedings of SIGGRAPH '78 (Atlanta, GA).

In Computer Graphics, 12(3), , pp. 222-227.

Brooks, Frederick P., Jr. (1986). “Walkthrough-a dynamic graphics system for simulating

virtual buildings.” Proceedings of the 1986 Workshop on Interactive 3D Graphics

(Chapel Hill, NC), ACM, pp. 9-22.

Brooks, Frederick P., Jr. (1994). Personal Communication.

Bryson, Steve and Creon Levit (1992). “The virtual wind tunnel.” IEEE Computer

Graphics & Applications 12(4), pp. 25-34.

Bukowski, Richard W. and Carlo H. Sequin (1995). “Object associations: a simple and

practical approach to virtual 3D manipulation.” Proceedings of the 1995

Symposium on Interactive 3D Graphics (Monterey, CA), ACM, pp. 131-138.

Butterworth, Jeff, Andrew Davidson, Stephen Hench and T. Marc Olano (1992). “3DM: a

three-dimensional modeler using a head-mounted display.” Proceedings 1992

Symposium on Interactive 3D Graphics (Boston, MA). In Computer Graphics,

25(2), ACM, pp. 135-138.

Buxton, William and Brad A. Myers (1986). “A study in two-handed input.” Proceedings

of CHI '86 (Boston, MA), ACM, pp. 321-326.

159

Chen, Michael, S. Joy Mountford and Abigail Sellen (1988). “A study in interactive 3D

rotation using 2D control devices.” Proceedings of SIGGRAPH '88 (Atlanta, GA).

In Computer Graphics, 22(4), ACM, pp. 121-129.

Chung, James (1994). Intuitive Navigation in the Targeting of Radiation Therapy

Treatment Beams. University of North Carolina, Ph.D. Thesis.

Clark, James H. (1976). “Designing surfaces in 3-D.” Communications of the ACM 19(8),

pp. 454-460.

Conner, D. Brookshire, Scott S. Snibbe, Kenneth P. Herndon, Daniel C. Robbins, Robert

C. Zeleznik and Andries vanDam (1992). “Three-dimensional widgets.”

Proceedings of the 1992 Symposium on Interactive 3D Graphics (Boston, MA). In

Computer Graphics, 25(2), ACM, pp. 183-188.

Cutler, Lawrence D., Bernd Fröhlich and Pat Hanrahan (1997). “Two-handed direct

manipulation on the responsive workbench.” Proceedings of the 1997 Symposium

on Interactive 3D Graphics (Providence, RI), ACM, pp. 107-114.

Davies, Char and John Harrison (1996). “Osmose: towards broadening the aesthetics of

virtual reality.” Computer Graphics 30(4), pp. 25-28.

Deering, Michael F. (1996). “The holoSketch VR sketching system.” Communications of

the ACM 39(5), pp. 54-61.

Durlach, Nathaniel I. and Anne S. Mavor, Eds. (1995). Virtual Reality: Scientific and

Technological Challenges. Washington, D.C., National Academy Press.

EVL, Electronic Visualization Laboratory at the University of Illinois at Chicago (1997).

“ImmersaDesk.” http://www.evl.uic.edu/EVL/VR/systems.html.

Fakespace, Inc. (1997). “Immersive workbench.” URL: http://www.fakespace.com/.

Fitzmaurice, George W. and William Buxton (1997). “An empirical evaluation of graspable

user interfaces: towards specialized space-multiplexed input.” Proceedings of CHI

'97 (Atlanta, GA), ACM, pp. 43-50.

Fitzmaurice, George W., Hiroshi Ishii and William Buxton (1995). “Bricks: laying the

foundations for graspable user interfaces.” Proceedings of the CHI '95 (Denver,

CO), ACM, pp. 442-449.

Fuchs, Henry, John Poulton, John Eyles, Trey Greer, Jack Goldfeather, David Ellsworth,

Steve Molnar, Greg Turk, Brice Tebbs and Laura Israel (1989). “Pixel-Planes 5: a

heterogeneous multiprocessor graphics system using processor-enhanced

160

memories.” Proceedings of SIGGRAPH '89 (Boston, MA). In Computer

Graphics, 23(3), ACM, pp. 79-88.

Gobbetti, Enrico and Jean-Francis Balaguer (1993). “VB2-an architecture for interaction in

synthetic worlds.” Proceedings of UIST '93 (Atlanta, GA), , pp. 167-78.

Gobbetti, Enrico and Jean-Francis Balaguer (1995). “An integrated environment to visually

construct 3D animations.” Proceedings of SIGGRAPH '95 (Los Angeles, CA). In

Computer Graphics Proceedings, Annual Conference Series, , pp. 395-8.

Goble, John C., Ken Hinckley, Randy Pausch, John W. Snell and Neal F. Kassell

(1995). “Two-handed spatial interface tools for neurosurgical planning.” Computer

28(7), pp. 20-6.

Gregory, Richard L. (1973). Eye and Brain. London, World University Library.

Guiard, Yves (1987). “Asymmetric division of labor in human skilled bimanual action: the

kinematic chain as a model.” The Journal of Motor Behavior 19(4), pp. 486-517.

Halliday, Sean and Mark Green (1996). “A geometric modeling and animation system for

virtual reality.” Communications of the ACM 39(5), pp. 46-53.

Hauptmann, Alexander (1989). “Speech and gestures for graphic image manipulation.”

Proceedings of CHI '89 (Austin, TX), ACM, pp. 241-245.

Herndon, Kenneth P., Robert C. Zeleznik, Daniel C. Robbins, D. Brookshire Conner,

Scott S. Snibbe and Andries Van Dam (1992). “Interactive shadows.” Proceedings

of UIST '92 (Monterey, CA), ACM, pp. 1-6.

Hinkley, Ken (1996). Haptic Issues for Virtual Manipulation. Department of Computer

Science, University of Virginia, Ph.D. thesis.

Hinkley, Ken, Randy Pausch, John C. Goble and Neal F. Kassell (1994). “Passive real-

world interface props for neurosurgical visualization.” Proceedings of CHI '94

(Boston, MA), ACM, pp. 452-458.

Hunter, Ian W., Doukoglou D. Tilemachos, Serge R. Lafontaine, Paul G. Charette,

Lynette A. Jones, Mark A. Sagar, Gordon D. Mallinson and Peter J. Hunter

(1993). “A teleoperated microsurgical robot and associated virtual environment for

eye surgery.” Presence 2(4), pp. 265-280.

Kabbash, Paul, William Buxton and Abigail Sellen (1994). “Two-handed input in a

compound task.” Proceedings of CHI '94 (Boston, MA), ACM, pp. 417-423.

161

Kessler, G. Drew, Larry F. Hodges and Neff Walker (1995). “Evaluation of the

CyberGlove(TM) as a whole hand input device.” ACM Transactions on Computer-

Human Interaction 2(4), pp. 263-283.

Kijima, Ryugo and Michitaka Hirose (1996). “Representative spherical plane method and

composition of object manipulation methods.” Proceedings of the 1996 Virtual

Reality Annual International Symposium (Santa Clara, CA), IEEE, pp. 196-202.

Krueger, Myron W. (1991). Artificial Reality II. Reading, MA, Addison-Wesley.

Krueger, Myron W. (1993). “Environmental technology: making the real world virtual.”

Communications of the ACM 36(7), pp. 36-37.

Krueger, Wolfgang and Bernd Fröhlich (1994). “The responsive workbench (virtual work

environment).” IEEE Computer Graphics and Applications 14(3), pp. 12-15.

Kurtenbach, Gordon and William Buxton (1991). “GEdit: a testbed for editing by

contiguous gestures.” SIGGCHI Bulletin 23(2), pp. 22-26.

Kurtenbach, Gordon and William Buxton (1993). “The limits of expert performance using

hierarchic marking menus.” Proceedings of INTERCHI '93 (Amsterdam,

Netherlands), IOS Press, pp. 482-487.

Kurtenbach, Gordon, George Fitzmaurice, Thomas Baudel and William Buxton (1997).

“The design and evaluation of a GUI paradigm based on tablets, two-hands, and

transparency.” Proceedings of CHI '97 (Atlanta, GA), ACM, pp. 35-42.

Leganchuk, Andrea, Shumin Zhai and William Buxton (1997). “Bimanual direct

manipulation in area sweeping tasks.” URL:

http://www.dgp.toronto.edu/people/andrea/bimanual.html.

Liang, J. and M. Green (1993). “Highly interactive 3D geometric modeling.” Proceedings

of VIDEA 93. Visualization and Intelligent Design in Engineering And Architecture

(Southampton, UK), Comput. Mech. Publications, pp. 269-79.

Liang, Jiandong and Mark Green (1994). “JDCAD: a highly interactive 3D modeling

system.” Computers & Graphics 18(4), pp. 499-506.

Macedonia, Michael R., Michael J. Zyda, David R. Pratt, Paul T. Barham and Steven

Zeswitz (1994). “NPSNET: a network software architecture for large scale virtual

environments.” Presence 3(4), pp. 265-287.

162

MacKenzie, I. Scott, Blair Nonnecke, Stan Riddersma, Craig McQueen and Malcolm Meltz

(1994). “Alphanumeric entry on pen-based computers.” International Journal of

Human-Computer Studies 41, pp. 775-792.

Mapes, Daniel P. and J. Michael Moshell (1995). “A two-handed interface for object

manipulation in virtual environments.” Presence 4(4), pp. 403-416.

Mine, Mark (1997). “ISAAC: a meta-CAD system for virtual environments.” Computer-

Aided Design , pp. to appear.

Mine, Mark R. (1993). “Characterization of end-to-end delays in head-mounted display

systems.” University of North Carolina, Technical Report TR93-001.

Mine, Mark R. (1996). “Working in a virtual world: interaction techniques used in the

chapel hill immersive modeling program.” University of North Carolina, Technical

Report TR96-029.

MultiGen (1997). “SmartSceneTM.” URL: http://www.multigen.com/smart.htm.

Nielson, Gregory M. and Dan R. Olsen, Jr. (1986). “Direct manipulation techniques for

3D objects using 2D locator devices.” Proceedings of the 1986 Workshop on

Interactive 3D Graphics (Chapel Hill, NC), ACM, pp. 175-82.

Norman, Donald A. (1988). The Psychology of Everyday Things. New York, Basic

Books.

Pausch, Randy, Tommy Burnette, Dan Brockway and Michael E. Weiblen (1995).

“Navigation and locomotion in virtual worlds via flight into hand-held miniatures.”

Proceedings of SIGGRAPH '95 (Los Angeles, CA). In Computer Graphics

Proceedings, Annual Conference Series, ACM, pp. 399-400.

Pausch, Randy, Jon Snoddy, Robert Taylor, Scott Watson and Eric Haseltine (1996).

“Disney's Aladdin: first steps toward storytelling in virtual reality.” Proceedings of

SIGGRAPH '96 (New Orleans, LA). In Computer Graphics Proceedings, Annual

Conference Series, ACM, pp. 193-202.

Pierce, Jeffrey S. , Andrew Forsberg, Matthew J. Conway, Seung Hong, Robert Zeleznik

and Mark R. Mine (1997). “Image plane interaction techniques in 3D immersive

environments.” Proceedings of the 1997 Symposium on Interactive 3D Graphics

(Providence, RI), ACM, pp. 39-44.

Poston, Timothy and Luis Serra (1994). “The virtual workbench: dextrous VR.”

Proceedings of the VRST '94 (Singapore), ACM, pp. 111-121.

163

Poston, Timothy and Luis Serra (1996). “Dextrous virtual work.” Communications of the

ACM 39(5), pp. 37-45.

Poupyrev, Ivan, Mark Billinghurst, Suzanne Weghorst and Tadao Ichikawa (1996). “The

Go-Go interaction technique: non-linear mapping for direct manipulation in VR.”

Proceedings of UIST '96 (Seattle, WA), ACM, pp. 79-80.

Rothbaum, B., L. Hodges, R. Kooper, D. Opdyke, J. Williford and M. North (1995).

“Effectiveness of computer-generated (virtual reality) graded exposure in the

treatment of acrophobia.” American Journal of Psychiatry 152(4), pp. 626-628.

Sachs, Emanuel, Andrew Roberts and David Stoops (1991). “3-Draw: a tool for designing

3D shapes.” IEEE Computer Graphics and Applications 11(6), pp. 18- 26.

Schmandt, Christopher (1983). “Spatial input/display correspondence in a stereoscopic

computer graphic work station.” Proceedings of SIGGRAPH '83 (Detroit, MI). In

Computer Graphics, 17,(3), ACM, pp. 253-61.

Shaw, Chris and Mark Green (1994). “Two-handed polygonal surface design.”

Proceedings of UIST '94 (Marina del Rey, CA), ACM, pp. 205-12.

Shoemake, Kenneth (1992). “Arcball: a user interface for specifying three-dimensional

orientation using a mouse.” Proceedings of Graphics Interface '92 (Vancouver,

BC, Canada), Canadian Inf. Process. Soc, pp. 151-6.

Stanford, University (1997). “Responsive workbench.” http://www-

graphics.stanford.edu/projects/RWB/.

Stoakley, Richard, Matthew J. Conway and Randy Pausch (1995). “Virtual reality on a

WIM: interactive worlds in miniature.” Proceedings of CHI '95 (Denver, CO),

ACM, pp. 265-272.

Taylor, Russell M, Warren Robinett, Vernon L. Chi, Frederick P. Jr. Brooks, William V.

Wright, Stanley Williams and Erik J. Snyder (1993). “The Nanomanipulator: a

virtual-reality interface for a scanning tunnel microscope.” Proceedings of

SIGGRAPH '93 (Anaheim, CA). In Computer Graphics Proceedings, Annual

Conference Series, ACM, pp. 127-134.

Teller, Seth J. and Carlo H. Sequin (1991). “Visibility preprocessing for interactive

walkthroughs.” Proceedings of SIGGRAPH '91 (Las Vegas, NV). In Computer

Graphics, 25(4), ACM, pp. 61-69.

164

Thorison, Kristinn R., D.B. Koons and Richard A. Bolt (1992). “Multi-modal natural

dialogue.” Proceedings of CHI '92 (Monterey, CA), ACM, pp. 653-654.

UNC, the University of North Carolina nanoManipulator project (1997). “The

nanoManipulator.” http://www.cs.unc.edu/Research/nano.

van Emmerik, M.J.G.M. (1990). “A direct manipulation technique for specifying 3D

object transformations with a 2D input device.” Computer Graphics Forum 9(4),

pp. 355-61.

Veniola, Dan (1993). “Facile 3D direct manipulation.” Proceedings of INTERCHI '93

(Amsterdam, Netherlands), IOS Press, pp. 31-36.

Ware, Colin and Danny R. Jessome (1988). “Using the bat: a six-dimensional mouse for

object placement.” IEEE Computer Graphics and Applications 8(6), pp. 65- 70.

Weimer, David and S.K. Ganapathy (1989). “A synthetic visual environment with hand

gesturing and voice input.” Proceedings of CHI '89 (Austin, TX), ACM, pp. 235-

40.

Wilson, John R., David J. Brown, Susan V. Cobb, Mirabelle M. D'Cruz and Richard M.

Eastgate (1995). “Manufacturing operations in virtual environments (MOVE).”

Presence 4(3), pp. 306-317.

Witmer, Bob G., John H. Bailey and Bruce Knerr, W. (1995). “Training dismounted

soldiers in virtual environments: route learning and transfer.” United States Army

Research Institute for the Behavioral and Social Sciences, Technical Report 1022.

Wloka, Matthias M. and Eliot Greenfield (1995). “The virtual tricorder: a uniform interface

for virtual reality.” Proceedings of UIST '95 (Pittsburgh, PA), ACM, pp. 39-40.

Zeleznik, Robert, Kenneth P. Herndon and John F. Hughes (1996). “SKETCH: an

interface for sketching 3D scenes.” Proceedings of SIGGRAPH '96 (New Orleans,

LA). In Computer Graphics Proceedings, Annual Conference Series, ACM, pp.

163-170.

Zeleznik, Robert C., Andrew S. Forsberg and Paul S. Strauss (1997). “Two pointer input

for 3D interaction.” Proceedings of the 1997 Symposium on Interactive 3D

Graphics (Providence, RI), ACM, pp. 115-120.

Zhai, Shumin and Paul Milgram (1993). “Human performance evaluation of manipulation

schemes in virtual environments.” Proceedings of the 1993 Virtual Reality Annual

International Symposium (Seattle, WA), IEEE, pp. 155-61.

165

Zhai, Shumin, Paul Milgram and William Buxton (1996). “The influence of muscle groups

on performance of multiple degree-of-freedom input.” Proceedings of CHI '96

(Vancouver, BC), ACM, pp. 308-315.

