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Abstract
The accurate and quantitative determination of three-dimensional patient setup
errors in conformal radiotherapy, including setup errors due to out-of-plane
rotations, requires methods for registering pre-treatment, three-dimensional
planning CT images with intra-treatment, two-dimensional portal images. We
have developed a method for performing such a registration based on structural
models that emphasize medial aspects of shape. Such models (1) provide an
ability to pre-select those structures in a reference image which are known to be
reliable fiducials for registration, (2) allow for the stable recognition of the same
structures in treatment portal images, and (3) can be combined with images in
such a way as to yield a measure of agreement between the model and the features
in the image. We describe the means for creating a model in a reference image
generated from the planning CT, for deforming the model to identify
corresponding structures in a treatment portal image, and for optimizing an
objective function based on combining the deformed model with a collection of
digitally reconstructed radiographs generated from CT at tentative poses. The
optimum of the objective function yields the three-dimensional pose of the patient
relative to the planning pose, thereby indicating the three-dimensional setup error.
Pilot results using simulated images with known patient positioning errors have
shown that such an objective function obtains an optimum very near to truth.
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1 INTRODUCTION

1.1 Accuracy in radiotherapy treatment planning and delivery
The recent trend in radiotherapy toward conformal treatments — where smaller, tumor-
conforming fields are used in conjunction with escalated radiation doses — has placed greater
demands for accuracy in both treatment planning and treatment delivery. For treatment planning,
it is necessary to have accurate knowledge of the three-dimensional (3D) extent of the tumor and
surrounding, healthy tissues so that conformal fields may be prescribed which both adequately
encompass the tumor and which also minimize the dose imparted to healthy tissues. The
widespread adoption of 3D radiotherapy treatment planning (RTP) systems has had much to do
with the increased interest in conformal therapy, as such 3D RTP systems permit more complex
treatment fields to be prescribed as shown in Figure 1 [Sherouse, 1991]. The basic assumption of
3D RTP systems is that the user has accurately delineated (i.e., segmented) the 3D structures that
will be impacted by the treatment such that dose-volume metrics computed on such structures
from the conforming fields are reliable. For the remainder of this paper, we will assume that the
result of 3D RTP is an optimal treatment plan.

Figure 1.  PLanUNC – a tool for performing 3D RTP. The reference digitally reconstructed radiograph (DRR),
along with the projection of the tumor and spinal cord, is shown in the upper right panel.
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1.2 Verifying the accuracy of patient setup
The main subject of this paper has to do with the second demand for accuracy in conformal
radiotherapy; namely, that of accuracy in the delivery of treatment.1  For conformal therapy to be
successful, i.e., for the dose distribution to match the prescription, the patient must receive the
prescribed treatment plan. In turn, for the patient to receive the prescribed plan he or she must be
positioned accurately with respect to the treatment machine over the entire course of therapy.
While skin markers and immobilization devices may help to improve positioning accuracy, the
success of conformal therapy depends so highly on accurate patient positioning that more direct
methods of setup verification are needed.

Traditionally, portal images acquired during treatment with the mega-voltage treatment beam
have been used to verify patient setup. Such treatment images are compared with reference
images obtained either (1) using a simulator with the same geometric configuration as the
treatment machine but with a diagnostic-energy beam or (2) via synthetic reprojection of the
planning CT volumetric image in the case where 3D RTP has been performed. The latter type of
reference image is often called a digitally reconstructed radiograph (DRR) and is typically
printed to radiographic film [Chaney, 1995]. In standard clinical practice, the radiation
oncologist performs verification of patient setup by viewing the reference and portal images
side-by-side on a film-viewing light box. The radiation oncologist attempts to quantify setup
errors, using simple measuring devices like rulers and protractors, and then records any
corrections that are to be made for that particular field and which are then applied by the
radiotherapist prior to the next scheduled treatment session. In essence, during this film-to-film
comparison the radiation oncologist is performing an image registration, albeit a crude one,
based on structures that appear in both images and which are known to be relatively rigid with
respect to the tumor.

Unfortunately, for several reasons the current methodology for verifying treatment setup is
inadequate, at least in the conformal therapy situation. First, visualization of structures on which
to base the image comparison is often very difficult because of the poor quality of portal images,
which arises from the imaging physics of the high-energy radiation beam. Second, most setup
errors are corrected retrospectively allowing for the possibility that, especially under the
escalated doses delivered during conformal treatment, the tumor may fail to receive a sufficient
dose and healthy tissues may be irreparably damaged. Third, radiation oncologists are often
confounded by compound patient setup errors that involve more than simple translations or in-
plane rotations.2  In fact, recent observer studies have shown that in-plane rotations are often
confused with translational errors [Boxwala, 1997]. In the presence of out-of-plane rotations the
interpretation and quantification of setup errors are even more confounding.

The recent introduction of electronic portal imaging devices (EPIDs) has created much interest in
the radiotherapy community as such devices permit portal images to be acquired in near real time
using a small fraction of the dose delivered during an entire treatment session (see Boyer [1992]
for a thorough review of EPIDs). Because these images are digital, contrast enhancement
algorithms may be applied which can improve the radiation oncologists ability to identify
structures on which to base an image comparison [Rosenman, 1993]. Moreover, because of the
                                                
1 We define accuracy in the RMS sense. That is, it includes both systematic and random error components.
2 In-plane rotation refers to rotations about the central beam axis.
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immediacy of such electronic portal images (EPIs), it is possible to check patient setup at the
onset of a treatment session, rather than retrospectively as is current practice, allowing for the
opportunity to detect and correct setup errors online. Perhaps most importantly, EPIs have
fostered a number of computer-based image registration algorithms, which may allow for more
accurate determination of patient setup errors [Boyer, 1992].

1.3 Determining three-dimensional patient setup errors
To date, most portal image registration algorithms in the literature have considered only the
dimensions of 3D translation and rotation only in the plane perpendicular to the beam axis.
Hence, the assumption is that out-of-plane rotations do not exist or at least are negligible. While
actual data on the frequency and magnitude of out-of-plane rotational errors is scarce, it is
generally held that such errors do occur and that they may have significant dosimetric
consequences [Hanley, 1995, 1997]. Moreover, out-of-plane rotational errors may cause
registration algorithms that assume such errors do not exist to report erroneous values for patient
repositioning.

There have been several reports of attempts to quantify 3D patient positioning errors in
radiotherapy using planning CT data and portal images, most coming from a group in the
Netherlands Cancer Institute. Bijhold [1993] describes a method based on correspondence of
anatomical landmarks in the planning CT and the portal image. The difficulty with this method is
that it is often not possible to accurately identify such point fiducials in both 3D and in projection
in the portal image. Gilhuijs [1995] describes an interactive approach using visual comparison of
portal images with DRRs. This approach has been shown to be effective but is limited to
retrospective analysis due to the time requirements. A completely automatic method has also
been developed by Gilhuijs [1996] wherein ridge-like features extracted in portal images are
matched against projections through the planning CT data. This approach has been shown to
work well but requires portal images acquired at two different angles, and thus cannot be used in
online mode for patient repositioning.

We argue that an algorithm for determining 3D patient positioning should
1. be unobtrusive such that it requires no modifications to the patient (e.g., implanted or

external fiducial markers) nor the treatment machine (e.g., externally mounted x-ray or
camera devices),

2. perform well over a population of patients and a number of treatment sites,
3. be insensitive to image disturbances such as noise, blurring, and to non-fiducial structures

which vary in shape and position relative to the tumor,
4. be relatively unaffected by image resolution both in the CT and the portal image,
5. involve minimal user interaction,
6. be computationally efficient enough to allow for online patient repositioning.

The method described in the following section is designed to satisfy all of the above criteria.



MICCAI ’98 Review Draft Yushkevich et al.

5

2 METHODS AND MATERIALS
We define patient pose as the 3D position and orientation of the patient relative to the treatment
machine. The objective of 3D patient setup verification is to determine the pose of the patient at
the time of treatment relative to the pose of the patient as specified in the treatment plan. In
radiotherapy, patient pose may be adjusted by changing six parameters of the treatment machine:
the gantry, collimator and table angles and the x, y and z position of the table on which the
patient lies.

The basis of our method (shown schematically in Figure 2) is to compare the treatment pose as
indicated in the portal image with the planning pose as indicated in the planning DRR. Since it is
not possible to derive the 3D setup error from these two images alone, we perform error
measurement by systematically generating candidate poses, which are modifications to the
planning pose, computing candidate DRRs at those poses, and finding the candidate pose that
“best matches” the portal image. The remainder of this section describes the means by which we
can measure this match.

 

Planning 
CT Scan 

 

 

Patient 
Setup 

 

Planning DRR 

 
Candidate DRRs Portal Image  

 

Planning pose Candidate poses Treatment pose 

Figure 2. The basis for finding treatment pose from planning pose.

2.1 Overview of the registration method
As illustrated in Figure 2, we should be able to determine the difference in pose of the patient at
treatment time and the pose in the treatment plan if we can find that particular candidate pose in
which certain structures exhibit the same shape in projection in the portal image and the
candidate DRR. We base this shape comparison on fiducial structures that are projections of
bones that are known to be relatively rigid with respect to the tumor volume since soft tissue
contrast is almost non-existent in the high-energy portal image.

To find that optimal candidate pose requires a means for (1) choosing and representing structures
on which the match is to be made from the planning DRR, (2) extracting those same structures in
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the portal image, and (3) optimizing the measure of agreement between the extracted structures
in the portal image and the same structures in the candidate DRRs. These steps are summarized
in Figure 3 and are described in the subsections to follow.

Create Structural 
Model on the 
Planning DRR 

Warp Model to Portal 
Image to Extract 
Same Structures 

Optimize Match of 
Warped Model to 
Candidate Poses 

Figure 3.  Overview of the registration method.

2.2 Defining reference structures on the Planning DRR
Our method for choosing and representing those structures in the reference image that are to be
used in the registration process is based on a theory of figural models of shape [Pizer, 1996;
Pizer, 1998].  A figural model can be extracted from one image and deformed to best match
structures in another image [Fritsch 1997a]. Figural models consist of collections of medial
primitives located along the medial axis, or skeleton, of an object.  Medial primitives encode
their positions on the medial axis, the widths of the object at each position, and specify an
aperture (a spatial weighting function) with which image measurements at the primitive are to be
made.  We will describe these measurements shortly.  The primitive may also encode first order
and higher order information, such as orientation of medial axis at the primitive, or normal
directions to the boundary at boundary sites corresponding to the primitive. The links between
adjacent medial primitives in the figural model encode important shape relationships between the
primitives. Such shape relationships are used to limit the deformation of a figural model to those
configurations that are reasonable when the figural model is applied to extract like objects in
other images.

Figure 4.  Structural models of the projection of bones and their medial primitives.
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Figure 4 (left) shows a medial model corresponding to a bone structure. As discussed in Pizer
[1998], such figural models are especially attractive for use in image analysis because (1) they
provide shape measures that are invariant under the operations of translation, rotation, and zoom,
(2) they provide access to intuitive shape properties such as object width and the widening or
narrowing rate of an object and the direction and curvature of the skeleton of the object, (3) they
permit efficiency in shape representation due to the coarse sampling of medial primitives, and (4)
they can be combined with unclassified image data to extract like objects in a way that is
insensitive to noise, blurring, and other image disturbances [Fritsch, 1997a].

We use figural models to analyze and quantify shape of anatomical structures in radiograph
projections. Pre-treatment, we extract figural models from the planning DRR using either manual
drawing or using an automatic method called core extraction [Pizer 1998].  We include only
those structures whose position and shape in the body change little with respect to the tumor
between planning and treatment times. Some examples of such structures in projection include
pelvic bones, the overlaps of two or more bones, and the gaps between bones.  Figure 4 (right)
shows models corresponding to each one of these types of structures.

To obtain a figural model from a reference image and to apply it to another image we make
measurements at each medial primitive.  These measurements involve the application of one or
more aperture functions, each centered at the spatial location of the medial primitive and each
specific to the type of medial primitive used (i.e., dependent on the type of information encoded
in the primitive).  The size of the aperture (that is, its spatial “footprint”) is proportional to the
object width recorded in the medial primitive.

In results to follow, we use a medial primitive that encodes just its medial position x and the
object width w.  We use a Laplacian of Gaussian aperture function centered at the medial
primitive position x, ±σ2[Gxx(x,σ)+Gyy(x,σ)], where σ is the standard deviation of the Gaussian
and is proportional to the medial primitive’s width w. The positive signed aperture is used to
extract structures whose intensities are darker than the surround while the negative signed
aperture is used to extract structures whose intensities are lighter than the surround.

2.3 Warping a structural model to the portal image
We assume that at treatment all machine parameters have been correctly set and the only
unknown is the actual pose of the patient at treatment time. In the first instants of treatment we
obtain the portal image, a low-contrast projection of the treatment area taken with the high-
energy treatment beam. We locate fiducial bone structures in the portal image automatically by
deforming structural models that were extracted from the planning DRR. The deformation
method is described fully in Fritsch [1997a] and involves optimizing an objective function that is
the sum of an image match term and a penalty term that involves a measure of shape change as
the model warps. If the portal image is not grossly different from the planned DRR, a reasonable
assumption given that the patient should be in a pose rather near to the planned pose, models of
bones will deform to match corresponding bones in the portal image. Note that we could instead
have chosen to extract medial models from the portal image itself.  We choose to perform
deformation because it is automatic, while model extraction is an interactive process that should
be performed before treatment.
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2.4 Measuring the match between a warped model and a candidate DRR
To determine the patient pose, we evaluate image match between the warped structural model
from the portal image and a series of DRRs computed from candidate poses. Candidate poses are
specified as deviations from the planned treatment pose. A model’s image match to a candidate
DRR is a sum of image matches at each medial primitive, where each medial primitive applies
its own aperture function to measure a property called medialness.

Medialness is a measure of how skeletal a medial primitive is in reference to an object in an
image.  The sum of medialness over all points in a structural model, called integrated medialness,
is a measure of match between the model and an image.  This measurement is analytically
equivalent to applying an aperture function associated with the structural model to the image.
Shown in figure 5, such an aperture function is constructed as a sum of individual aperture
functions of each medial primitive contained in the structural model.

  
Figure 5.  Left : A structural model superimposed on a planning DRR. Middle: The aperture function associated
with the structural model. Right: The aperture function shown as a graph.

Since for every candidate pose we generate a corresponding DRR, we can speak of image match
computed by integrated medialness as a function of pose, and we call this our objective function.
To determine the patient pose, we find the pose that optimizes this objective function.  As long
as this function is smooth over all feasible poses, a good optimization algorithm can determine
the patient pose correctly.  One iteration in such optimization algorithm would involve
evaluating a pose, which is equivalent to obtaining a DRR projection and computing image
match.  The issue here is the evaluation of this objective function. If it is to be useful (a) it should
have an optimum at a pose with a small error from the actual pose, and (b) it should be
efficiently evaluated. In our implementation, it takes under a minute to evaluate one pose on a
Pentium -class machine. The next section describes how we have evaluated the method using
simulated setup errors where truth is known exactly.

3 EVALUATION
It is difficult to evaluate the accuracy of registration methods in a clinical situation because
geometry of patient setup cannot be known exactly. However, in a computer simulation the truth
about treatment geometry and patient pose are known exactly.  In such a situation we can
examine accuracy of our method relative to known truth.  We use the NLM Visible Human
frozen CT, 2mm3 voxels, and the PLanUNC 3D RTP software to generate planning and
candidate DRRs as well as the digitally reconstructed portal radiographs (DRPRs) used to
simulate portal images. Methodology for creating realistic DRPRs is described in Fritsch
[1997b].
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For our method to determine patient pose accurately, it is critical that the image match function
has its maximum when the candidate pose matches the treatment pose.  Our ability to find this
maximum depends on smoothness of the image match function over test poses near the treatment
pose. Our pilot results show that the image match function is smooth and reaches maximum at
candidate poses very near the treatment pose.

Image Match Behavior Near Patient Pose Along Three Rotation Axis

-70

-65

-60

-55

-50

-45

-40

-35

-30
-5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00

Distance to truth (deg)

Im
ag

e 
m

at
ch

Gantry

Table

Collimator

Image Match Behavior Near Patient Pose Along Three Translation Axis

-80

-60

-40

-20

0

20

40

60

-5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00

Distance to truth (cm)

Im
ag

e 
m

at
ch

X

Y(zoom)

Z

Figure 6.  Image match function behavior near the treatment pose,
projected on six cardinal axis.

We randomly generate a feasible treatment pose v0 and produce a digitally reconstructed portal
radiograph (DPRR) from that pose.  In the future, we may add intensity noise or shape noise to
this DPRR to more accurately simulate a real portal image of a patient whose anatomy may have
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changed from the time the CT scan was obtained.  We extract structural models from the
simulated portal image.  We generate candidate DRRs over a range of poses v ∈  [v0-kui, v0+kui],
where ui is a unit vector in one of six cardinal directions in pose domain.  At each pose, we
compute image match of the model and DRR.  Figure 6 plots the image match function over six
cardinal directions about the truth for a single simulated treatment pose.  The optimal value of
image match is reached within a degree of rotation and several millimeters of translation from
the truth.  Table 1 shows statistics for 8 such experiments.

Since model extraction is a manual task, we must address the effect that human bias in extraction
has on the results.  In our pilot study we found that results obtained in an experiment performed
by a second model builder were similar to, and fell within one standard deviation of, the first
builder’s results which are shown in Table 1.

4 DISCUSSION
Our results were obtained from a single CT scan of one pelvic region.  Results from this region
are encouraging; however further results on different areas of the body and for more patients are
needed to thoroughly evaluate our method.  Work in underway to produce such results.

The results show that the pose at which image match is greatest does not coincide exactly with
the pose at which structural models are extracted.  To understand reasons behind this slight
inaccuracy, and to correct it, we must examine structural models and the image match function in
close detail.  The aperture function used to perform measurements at each medial primitive has a
size proportional to the width encoded in the primitive and when evaluated to four standard
deviations covers a significant portion of the image.  The large size of the aperture has a positive
effect on our method because the primitive is “attracted” to structures that are away from the
model.  This attraction makes the image match function smooth.  The disadvantage of a large
aperture is in its attraction to other objects in images, such as gas bubbles in portal images and
other bones and bone overlaps in the DRR.  A structural model is a set of medial primitives that
best match a given structure in the image from which they were extracted.  However, it is
possible that another structure in another image (e.g., a contrast-enhanced image) may have an
even greater image match with the same model.  In our application we may extract a model at a
pose, slightly perturb the pose and find that the DRR at perturbed pose matches the model better
than the DRR at the true pose.  This is due to large size of the aperture function and dependency
on contrast in computation of image match.  Since this inaccuracy only occurs near the true pose,
we can refine our method once the optimal pose has been found.

Mean Standard
Deviation

Mean Standard
Deviation

Gantry < 0.31° < 0.29° X < 0.06 cm < 0.06 cm
Table < 0.24° < 0.30° Y < 0.45 cm < 0.27 cm

Collimator < 0.15° < 0.15° Z < 0.09 cm < 0.13 cm
Table 1. Distribution of difference of optimum from the truth, in degrees of rotation or cm of

translation, over 8 simulated patient poses.
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Improvements to our method can be made by introducing an alternative type of medial primitives
and associated measurement of image match to our method.  Such an variation can be introduced
either as a replacement of the current type of primitives or as a refinement at a late stage of
optimization.  A refinement would involve using medial primitives with measurement of image
match more sensitive to local image structure, less sensitive to distant areas of the image, and
unaffected by changes in contrast between portal and photoelectric images.  The matching of
grayscale profiles found in work by Cootes et al. [1995] is such a measurement.  An oriented
medial primitive with an aperture function that is a pair of first derivatives of Gaussians located
at boundary sites and elongated along the medial track of the model is another candidate [Pizer
1998].

Models extracted from different structures respond differently to small changes in pose.  Vertical
structures respond strongly to horizontal shifts and rotations, but do not respond to as well to
vertical ones.  A way to minimize image match error is to choose the set of structures in such a
way that at least one structure responds strongly to any small change in pose.  This is achieved
by extracting models from projections of bones that are well spread, and differently oriented in
the body.

5 CONCLUSION
Our method for registering 3D CT with 2D portal treatment images appears to provide a robust
algorithm for determining treatment setup error.  Our method bases registration on those
anatomical structures that do not vary in shape and position relative to the tumor.  We locate
such structures in portal treatment images and extract figural models from them.  We find the
treatment pose by optimizing image match of structural models with DRR projection of the CT
made at various, systematically generated guess poses.  Our method allows us to detect treatment
setup errors in translation, in-plane rotation as well as out of plane rotation.  Our research is
underway with building a robust optimization strategy for finding the treatment pose, introducing
finer image match measurements to improve accuracy at near-optimal poses, building a system
integrating model-warping step and optimizations step, and improving performance in order to
make our method a desirable alternative to current methods of error detection.
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