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Abstract

The accurate and quantitative determination of three-dimensionahtpagtip
errors in conformal radiotherapy, including setup errors due to epiaok
rotations, requires methods for registering pre-treatment,e-tiraensional
planning CT images with intra-treatment, two-dimensional porteges. We
have developed a method for performing such a registration baseductursir
models that emphasize medial aspects of shape. Such models (De paovi
ability to pre-select those structures in a reference énvelgich are known to be
reliable fiducials for registration, (2) allow for the stabdéeognition of the same
structures in treatment portal images, and (3) can be combinedmdaties in
such a way as to yield a measure of agreement between the model fraduties
in the image. We describe the means for creating a modelréfierence image
generated from the planning CT, for deforming the model to igenti
corresponding structures in a treatment portal image, and for iigman
objective function based on combining the deformed model with a colleattion
digitally reconstructed radiographs generated from CT at teatgtoses. The
optimum of the objective function yields the three-dimensional pose qfatinent
relative to the planning pose, thereby indicating the three-dimmaissetup error.
Pilot results using simulated images with known patient positioniraysehave
shown that such an objective function obtains an optimum very near to truth.

Correspondence to:

Paul Yushkevich

Sitterson Hall, CB# 3175

The University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175

email: pauly@cs.unc.edu




MICCAI '98 Review Draft Yushkevich et al.

1 INTRODUCTION

1.1 Accuracy in radiotherapy treatment planning and delivery

The recent trend in radiotherapy toward conformal treatments —rewhmaller, tumor-
conforming fields are used in conjunction with escalated radiatioesdes has placed greater
demands for accuracy in both treatment planning and treatmentrgelfee treatment planning,
it IS necessary to have accurate knowledge of the three-donah§3D) extent of the tumor and
surrounding, healthy tissues so that conformal fields may be fredavhich both adequately
encompass the tumor and which also minimize the dose imparted tbyh&afiues. The
widespread adoption of 3D radiotherapy treatment planning (RTRInsydias had much to do
with the increased interest in conformal therapy, as such 3DgR3®ms permit more complex
treatment fields to be prescribed as shown in Figure 1 [Sherouse, TB8Hasic assumption of
3D RTP systems is that the user has accurately delinestedégmented) the 3D structures that
will be impacted by the treatment such that dose-volume meticguted on such structures
from the conforming fields are reliable. For the remainder af plaiper, we will assume that the
result of 3D RTP is an optimal treatment plan.

F|gure 1. PLanUNC - a tool for performing 3D RTFhe reference dlgltally reconstructed radiograptRiD),
along with the projection of the tumor and spinaid; is shown in the upper right panel.
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1.2 Verifying the accuracy of patient setup

The main subject of this paper has to do with the second demandctoa@c in conformal
radiotherapy; namely, that of accuracy in the delivery ofrimeat’ For conformal therapy to be
successful, i.e., for the dose distribution to match the prescriptiopatient must receive the
prescribed treatment plan. In turn, for the patient to receive #sefpibed plan he or she must be
positioned accurately with respect to the treatment machine lgegmtire course of therapy.
While skin markers and immobilization devices may help to improveiposig accuracy, the
success of conformal therapy depends so highly on accurate ppets#ndning that more direct
methods of setup verification are needed.

Traditionally, portal images acquired during treatment with thganeltage treatment beam
have been used to verify patient setup. Such treatment imagesmapared with reference
images obtained either (1) using a simulator with the same ejgontonfiguration as the
treatment machine but with a diagnostic-energy beam or (2$yrithetic reprojection of the
planning CT volumetric image in the case where 3D RTP has beennped. The latter type of
reference image is often called a digitally reconstructetioggaph (DRR) and is typically
printed to radiographic film [Chaney, 1995]. In standard clinical practithe radiation
oncologist performs verification of patient setup by viewing theregfce and portal images
side-by-side on a film-viewing light box. The radiation oncologittrapts to quantify setup
errors, using simple measuring devices like rulers and protsacnd then records any
corrections that are to be made for that particular field ahdthware then applied by the
radiotherapist prior to the next scheduled treatment session.dncessluring this film-to-film
comparison the radiation oncologist is performing an image ragi@siy albeit a crude one,
based on structures that appear in both images and which are knowretatively rigid with
respect to the tumor.

Unfortunately, for several reasons the current methodology fafywey treatment setup is
inadequate, at least in the conformal therapy situation. Firsialization of structures on which
to base the image comparison is often very difficult becaudeeqddor quality of portal images,
which arises from the imaging physics of the high-energy tiadidbbeam. Second, most setup
errors are corrected retrospectively allowing for the possibifitat, especially under the
escalated doses delivered during conformal treatment, the tunyofarh#o receive a sufficient
dose and healthy tissues may be irreparably damaged. Third,iaadistcologists are often
confounded by compound patient setup errors that involve more than simplativassor in-
plane rotation$. In fact, recent observer studies have shown that in-plane rotatiensften
confused with translational errors [Boxwala, 1997]. In the presence -aif-gl&ne rotations the
interpretation and quantification of setup errors are even more confounding.

The recent introduction of electronic portal imaging devices (EPIDs) hasdnmeach interest in
the radiotherapy community as such devices permit portal images to be aayuieed real time
using a small fraction of the dose delivered during an entirentesd session (see Boyer [1992]
for a thorough review of EPIDs). Because these images araldigontrast enhancement
algorithms may be applied which can improve the radiation oncologistgy to identify
structures on which to base an image comparison [Rosenman, 1993]. Moreceeisebof the

! We define accuracy in the RMS sense. That isgcltides both systematic and random error components
2 In-plane rotation refers to rotations about thetad beam axis.
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immediacy of such electronic portal images (EPISs), it is ptsso check patient setup at the
onset of a treatment session, rather than retrospectivelycasrént practice, allowing for the
opportunity to detect and correct setup errors online. Perhaps mosttanifyorEPIs have
fostered a number of computer-based image registration algsritiuhich may allow for more
accurate determination of patient setup errors [Boyer, 1992].

1.3 Determining three-dimensional patient setup errors

To date, most portal image registration algorithms in thealilee have considered only the
dimensions of 3D translation and rotation only in the plane perpendiculfuetbeam axis.
Hence, the assumption is that out-of-plane rotations do not existearsatare negligible. While
actual data on the frequency and magnitude of out-of-plane rotatiowat & scarce, it is
generally held that such errors do occur and that they may hawnéicsint dosimetric
consequences [Hanley, 1995, 1997]. Moreover, out-of-plane rotational errorscausg
registration algorithms that assume such errors do not exigptotrerroneous values for patient
repositioning.

There have been several reports of attempts to quantify 3D pawsitioning errors in
radiotherapy using planning CT data and portal images, most cadimding a group in the
Netherlands Cancer Institute. Bijhold [1993] describes a method basedrrespondence of
anatomical landmarks in the planning CT and the portal image. The diffieitythis method is
that it is often not possible to accurately identify such point fiducials in both 30hgudjection
in the portal image. Gilhuijs [1995] describes an interactive appnasioly visual comparison of
portal images with DRRs. This approach has been shown to be \&fféxtt is limited to
retrospective analysis due to the time requirements. A complategmatic method has also
been developed by Gilhuijs [1996] wherein ridge-like features drttam portal images are
matched against projections through the planning CT data. This apgraadheen shown to
work well but requires portal images acquired at two differegtes) and thus cannot be used in
online mode for patient repositioning.

We argue that an algorithm for determining 3D patient positioning should

1. be unobtrusive such that it requires no modifications to the patient {(eplanted or
external fiducial markers) nor the treatment machine (e.gerreaty mounted x-ray or
camera devices),

perform well over a population of patients and a number of treatment sites,

be insensitive to image disturbances such as noise, blurring, amah#ducial structures
which vary in shape and position relative to the tumor,

4. be relatively unaffected by image resolution both in the CT and the portal image,

5. involve minimal user interaction,

6. be computationally efficient enough to allow for online patient repositioning.

W

The method described in the following section is designed to satisfy all of the aliexia.




MICCAI '98 Review Draft Yushkevich et al.

2 METHODS AND MATERIALS

We define patient pose as the 3D position and orientation of the pafi@inte to the treatment
machine. The objective of 3D patient setup verification is to daterthe pose of the patient at
the time of treatment relative to the pose of the patienpasified in the treatment plan. In
radiotherapy, patient pose may be adjusted by changing six gi@rarof the treatment machine:
the gantry, collimator and table angles and xhg and z position of the table on which the
patient lies.

The basis of our method (shown schematically in Figure 2) is to a@mpetreatment pose as
indicated in the portal image with tipkanning pose as indicated in the planning DRR. Since it is
not possible to derive the 3D setup error from these two images, alengerform error
measurement by systematically generating candidate poses, at@cmodifications to the
planning pose, computing candidate DRRs at those poses, and finding theateapdse that
“best matches” the portal image. The remainder of this sedéearibes the means by which we
can measure this match.

Patient

Planning Setup

CT Scan

Planning pose Candidate poses wnt pose

—t NN
WL 'y
Ny’ i>"f |j

Planning DRR Candidate DRRs Portal 1 mage

Figure 2. The basis for finding treatment pose ffgdemning pose.

2.1 Overview of the registration method

As illustrated in Figure 2, we should be able to determine therdif€e in pose of the patient at
treatment time and the pose in the treatment plan if we canhigbarticular candidate pose in
which certain structures exhibit the same shape in projection irpanal image and the

candidate DRR. We base this shape comparison on fiducial strutitateare projections of

bones that are known to be relatively rigid with respect to thertwolume since soft tissue
contrast is almost non-existent in the high-energy portal image.

To find that optimal candidate pose requires a means for (1) chooglnmg@esenting structures
on which the match is to be made from the planning DRR, (2) extractingdhiosestructures in
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the portal image, and (3) optimizing the measure of agreementdyetive extracted structures
in the portal image and the same structures in the candidate DR&® steps are summarized
in Figure 3 and are described in the subsections to follow.

Create Structural Warp Model to Portal Optimize Match of
Model on the I ! Image to Extract L p| Warped Model to
Planning DRR Same Structures Candidate Poses

Figure 3. Overview of the registration method.

2.2 Defining reference structures on the Planning DRR

Our method for choosing and representing those structures in grened¢ image that are to be
used in the registration process is based on a theory of figudéls of shape [Pizer, 1996;
Pizer, 1998]. A figural model can be extracted from one imagedaf@med to best match
structures in another image [Fritsch 1997a]. Figural models consistlieictions of medial
primitives located along the medial axis, or skeleton, of an obj®kdial primitives encode
their positions on the medial axis, the widths of the object at pastiion, and specify an
aperture (a spatial weighting function) with which image mesamsants at the primitive are to be
made. We will describe these measurements shortly. Theigamty also encode first order
and higher order information, such as orientation of medial axtheaprimitive, or normal
directions to the boundary at boundary sites corresponding to the peimitie links between
adjacent medial primitives in the figural model encode important sledgg@nships between the
primitives. Such shape relationships are used to limit the defammatia figural model to those
configurations that are reasonable when the figural model isedpfwi extract like objects in
other images.

Figure 4. Structural models of the projection ofibs and their medial primitives.
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Figure 4 (left) shows a medial model corresponding to a bone seu&srdiscussed in Pizer
[1998], such figural models are especially attractive for usenage analysis because (1) they
provide shape measures that are invariant under the operations lattimansotation, and zoom,
(2) they provide access to intuitive shape properties such as olijtbtamd the widening or
narrowing rate of an object and the direction and curvature ok#ieten of the object, (3) they
permit efficiency in shape representation due to the coarse samplingliad pramitives, and (4)
they can be combined with unclassified image data to extractobiects in a way that is
insensitive to noise, blurring, and other image disturbances [Fritsch, 1997a].

We use figural models to analyze and quantify shape of anatostioatures in radiograph
projections. Pre-treatment, we extract figural models from thenpigrDRR using either manual
drawing or using an automatic method called core extractiore{Ri298]. We include only
those structures whose position and shape in the body changevilittleespect to the tumor
between planning and treatment times. Some examples of suchirgsuict projection include
pelvic bones, the overlaps of two or more bones, and the gaps between bmnugs. 4 (right)
shows models corresponding to each one of these types of structures.

To obtain a figural model from a reference image and to apgly @&nother image we make
measurements at each medial primitive. These measuremeoltgei the application of one or
more aperture functions, each centered at the spatial locatithwe ofiedial primitive and each
specific to the type of medial primitive used (i.e., dependent orypreedf information encoded
in the primitive). The size of the aperture (that is, itsiapdbotprint”) is proportional to the
object width recorded in the medial primitive.

In results to follow, we use a medial primitive that encodesijsisnedial positiorx and the
object widthw. We use a Laplacian of Gaussian aperture function centerdte ahedial
primitive positionx, ioZ[Gm(x,o)+ny(x,o)], where o is the standard deviation of the Gaussian
and is proportional to the medial primitive’s widith The positive signed aperture is used to
extract structures whose intensities are darker than the surmebiel the negative signed
aperture is used to extract structures whose intensities are lighten¢hsuritound.

2.3 Warping a structural model to the portal image

We assume that at treatment all machine parameters lesre dorrectly set and the only
unknown is the actual pose of the patient at treatment time. lirshéngtants of treatment we
obtain the portal image, a low-contrast projection of the treatmeat taken with the high-
energy treatment beam. We locate fiducial bone structures ipottti@ image automatically by
deforming structural models that were extracted from the planBiR§R. The deformation
method is described fully in Fritsch [1997a] and involves optimizing arctivgefunction that is
the sum of an image match term and a penalty term that inv@liesasure of shape change as
the model warps. If the portal image is not grossly differemhfthe planned DRR, a reasonable
assumption given that the patient should be in a pose rather neamptarthed pose, models of
bones will deform to match corresponding bones in the portal image.thlitwe could instead
have chosen to extract medial models from the portal image. itd&% choose to perform
deformation because it is automatic, while model extraction istaractive process that should
be performed before treatment.
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2.4 Measuring the match between a warped model and a candidate DRR

To determine the patient pose, we evaluate image match betweesmrfed structural model
from the portal image and a series of DRRs computed from cangiosgs. Candidate poses are
specified as deviations from the planned treatment pose. A madele match to a candidate
DRR is a sum of image matches at each medial primitiheraveach medial primitive applies
its own aperture function to measure a property cafiedial ness.

Medialness is a measure of how skeletal a medial primisiviea reference to an object in an
image. The sum of medialness over all points in a structural model, callgagiatemedialness,
IS a measure of match between the model and an image. Thssiramaant is analytically
equivalent to applying an aperture function associated with the stlobhodel to the image.
Shown in figure 5, such an aperture function is constructed as a sumdivtiual aperture
functions of each medial primitive contained in the structural model.

Figure 5. Left : A structural model superimposedaoplanning DRR. Middle: The aperture functionoassted
with the structural model. Right: The aperture fimt shown as a graph.

Since for every candidate pose we generate a correspondingvidRéan speak of image match
computed by integrated medialness as a function of pose, and we call this our ohjactiee.

To determine the patient pose, we find the pose that optimizeshieistive function. As long
as this function is smooth over all feasible poses, a good optimizdgorithm can determine
the patient pose correctly. One iteration in such optimizatiooritdigh would involve
evaluating a pose, which is equivalent to obtaining a DRR projectiorcamguting image
match. The issue here is the evaluation of this objective function. If it isuselha (a) it should
have an optimum at a pose with a small error from the actual pase(b) it should be
efficiently evaluated. In our implementation, it takes under a mitwutevaluate one pose on a
Pentiunt-class machine. The next section describes how we have evalbatetethod using
simulated setup errors where truth is known exactly.

3 EVALUATION

It is difficult to evaluate the accuracy of registratiorthods in a clinical situation because
geometry of patient setup cannot be known exactly. However, in a carsputdation the truth
about treatment geometry and patient pose are known exactly. Inassithation we can
examine accuracy of our method relative to known truth. We use It Wsible Human
frozen CT, 2mm voxels, and the PLanUNC 3D RTP software to generate planning and
candidate DRRs as well as the digitally reconstructed paadibgraphs (DRPRs) used to
simulate portal images. Methodology for creating realisticPBR is described in Fritsch
[1997D].
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For our method to determine patient pose accurately, it isalrithat the image match function
has its maximum when the candidate pose matches the treatment@uos ability to find this
maximum depends on smoothness of the image match function over testgarsi® treatment

pose. Our pilot results show that the image match function is smodtheaches maximum at
candidate poses very near the treatment pose.

Image Match Behavior Near Patient Pose Along Three Rotation Axis

-400 300 200 100 000, 100 200 300  4.00

— Gantry
——Table
Collimator

Image match

Distance to truth (deg)

Image Match Behavior Near Patient Pose Along Three Translation Axis

—X
——Y(zoom)
z

Image match

Distance to truth (cm)

Figure 6. Image match function behavior near teattment pose,
projected on six cardinal axis.

We randomly generate a feasible treatment ppsand produce a digitally reconstructed portal
radiograph (DPRR) from that pose. In the future, we may add intersig or shape noise to
this DPRR to more accurately simulate a real portal imagepattient whose anatomy may have
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changed from the time the CT scan was obtained. We extractusal models from the
simulated portal image. We generate candidate DRRs over aoghpgsess [/ [Vo-Ku;, Votkui],
whereu; is a unit vector in one of six cardinal directions in pose domaihea&h pose, we
compute image match of the model and DRR. Figure 6 plots the imatghl function over six
cardinal directions about the truth for a single simulated tredtpese. The optimal value of
image match is reached within a degree of rotation and sewdliaheters of translation from
the truth. Table 1 shows statistics for 8 such experiments.

Mean Sandard Mean Sandard

Deviation Deviation
Gantry <0.3r <0.29 X <0.06cm <0.06cm
Table <0.2% <0.30 Y <045cm <0.27cm
Collimator <0.1% <0.1% Z <0.09cm <0.13cm

Table 1. Distribution of difference of optimum frattme truth, in degrees of rotation or cm of
translation, over 8 simulated patient po

Since model extraction is a manual task, we must address theteéfehuman bias in extraction
has on the results. In our pilot study we found that results obtaireederperiment performed
by a second model builder were similar to, and fell within one stdndiaviation of, the first
builder’s results which are shown in Table 1.

4 DISCUSSION

Our results were obtained from a single CT scan of one pegion. Results from this region
are encouraging; however further results on different aredsediddy and for more patients are
needed to thoroughly evaluate our method. Work in underway to produce such results.

The results show that the pose at which image match is grdatesinot coincide exactly with
the pose at which structural models are extracted. To understasdns behind this slight
inaccuracy, and to correct it, we must examine structural models and thenmataefunction in
close detail. The aperture function used to perform measuremaashamedial primitive has a
size proportional to the width encoded in the primitive and when evaluatémut standard
deviations covers a significant portion of the image. The lamgedithe aperture has a positive
effect on our method because the primitive is “attracted” nacttres that are away from the
model. This attraction makes the image match function smooth. $hdvdntage of a large
aperture is in its attraction to other objects in images, sugasabubbles in portal images and
other bones and bone overlaps in the DRR. A structural model ioaraedial primitives that
best match a given structure in the image from which they wetected. However, it is
possible that another structure in another image (e.g., a contrast-etharage) may have an
even greater image match with the same model. In our applicagionay extract a model at a
pose, slightly perturb the pose and find that the DRR at perturbeaadskes the model better
than the DRR at the true pose. This is due to large size opdniige function and dependency
on contrast in computation of image match. Since this inaccuracy onlysatear the true pose,
we can refine our method once the optimal pose has been found.

10
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Improvements to our method can be made by introducing an alternative type of medtalgy
and associated measurement of image match to our method. Suchatiaorvean be introduced
either as a replacement of the current type of primitivessoa afinement at a late stage of
optimization. A refinement would involve using medial primitives withasurement of image
match more sensitive to local image structure, less sensitidestant areas of the image, and
unaffected by changes in contrast between portal and photoeietaiges. The matching of
grayscale profiles found in work by Cootes et al. [1995] is sucle@asurement. An oriented
medial primitive with an aperture function that is a pair ddtfaterivatives of Gaussians located
at boundary sites and elongated along the medial track of the ma@ther candidate [Pizer
1998].

Models extracted from different structures respond differentlmall changes in pose. Vertical
structures respond strongly to horizontal shifts and rotations, but deesmand to as well to
vertical ones. A way to minimize image match error isHoose the set of structures in such a
way that at least one structure responds strongly to any shaige in pose. This is achieved
by extracting models from projections of bones that are wedlaghrand differently oriented in
the body.

5 CONCLUSION

Our method for registering 3D CT with 2D portal treatment iesagppears to provide a robust
algorithm for determining treatment setup error. Our method sbasgistration on those
anatomical structures that do not vary in shape and position relatives tumor. We locate
such structures in portal treatment images and extract figuvdels from them. We find the
treatment pose by optimizing image match of structural modighsRR projection of the CT
made at various, systematically generated guess poses. Our niktlwsdia to detect treatment
setup errors in translation, in-plane rotation as well as out of ptaa&éon. Our research is
underway with building a robust optimization strategy for finding the treatpose, introducing
finer image match measurements to improve accuracy at nearabposes, building a system
integrating model-warping step and optimizations step, and improving p@rce in order to
make our method a desirable alternative to current methods of error detection.
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