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Abstract. We present a method of 3D/2D image registration. The algorithm is
based on the property of near projective invariance in tubular objects. The
skeletons of tubular anatomical structures (e.g., intracerebral blood vessels) are
used as registration primitives. Experiments with Magnetic Resonance
Angiogram (MRA) patient studies and both simulated and actual X-ray
angiograms suggest that the algorithm is very accurate and robust. The algorithm
requires only a small number of primitives. In addition, the algorithm is relatively
insensitive to the choice of tubular structures used. Experimental results
justifying these claims are included.

1  Introduction

The objective of 3D/2D image registration can be described thus: Given a 2D im
and a 3D model, determine the position and orientation (i.e., pose) of the imaging
device when the 2D image was taken. In this paper, we describe an algorith
registering 3D Magnetic Resonance Angiogram (MRA) images with X-r
angiograms. The imaging device for our application is a digital fluoroscope. Many
2D registration algorithms have the following paradigm. First, image structu
common to both 3D and 2D imaging modalities are chosen as registration primitives.
Examples include the images of external fiducial markers. The images are ass
registered when the projected 3D registration primitives are within a small distan
coinciding with their 2D counterparts. Second, for a given choice of primitives
objective function is formulated. The objective function has a minimum value when
primitives coincide. Finally, an optimization algorithm to minimize the objecti
function is chosen. 

Registration primitives include points, curves, and surfaces. The projec
involved in registering 3D with 2D images complicates the choice of registra
primitives. Not all types of primitives can be unambiguously projected. For exam
3D surfaces may overlap and project onto the same part of the 2D plane. In this 
we show that the property of near projective invariance permits us to use the ske
curves of tubular objects as registration primitives. With local exceptions, 3D cu
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can be projected unambiguously as 2D curves. Section 2 describes this prope
greater detail. 

2  Method
A 3D tubular structure such as a blood vessel generally appears as a 2D tube

projection. This section describes the property of projective invariance an
application in 3D/2D registration. Section 2.1 presents the concept of projec
invariance and applicable conditions. Section 2.2 describes conditions where proj
invariance is inapplicable. 

2.1  Near Projective Invariance

A 3D tube contains a central axis or skeleton such that cross sections of the obje
made perpendicular to the skeleton are circular. A 2D tube contains a skeleton wh
equidistant from the tube’s boundaries. Tubes are not required to have constant 
Generally, the projection of a 3D tube is a 2D tubular shadow. For a given projecti
the 3D skeleton projects onto the 2D skeleton of the projection’s shadow, projective
invariance is preserved. That is, a 3D tube is said to preserve projective invarian
the projection of the 3D skeleton and the 2D skeleton of the tube’s projection ar
same. 

Strict projective invariance is preserved where the tubular object is not overla
under projection. Liu [1] enumerates such conditions in detail. In practical situati
intensifier induced image distortions, the resolution of the imaging device, and
characteristics of X-ray image formation affect invariance. While strict invarianc
not preserved, it is minimally affected. Tubular objects exhibit the property of near
projective invariance in this situation. That is, the projected 3D skeleton only diffe
slightly from the projection’s 2D skeleton. Tests using both simulated and actual X
angiograms suggest that this difference does not significantly affect registration re
as shown in section 4. 

Near projective invariance simplifies the use of tubular objects for 3D/
registration. The problem is reduced to that of registering sets of curves. Curve
computationally simple structures from which a fast, highly accurate registra
algorithm can be developed. This algorithm is described in section 3. 

2.2  Exceptions to Near Projective Invariance

A tube may not display near projective invariance throughout its length. 
invariance property is not preserved when tubes overlap under projection. 
segments should not be used for registration. Two kinds of overlap are possible:
and non-local overlaps. 

A local overlap or self-occlusion occurs when a contiguous portion of the same
overlaps under projection. Fig. 1 illustrates this case. The object is a tubular helix
helix’s axis is perpendicular to the view direction. The left image shows the tube an
3D skeleton. The right image is a projection of the tube with the projection’s
skeleton. The tube’s 3D skeleton forms a cusp after projection whereas the 2D sk
is smooth and does not extend as far out the bend as its 3D complement. 

A non-local overlap occurs when portions of two distinct tubes or when two n
contiguous portions of the same tube overlap under projection. Fig. 2 illustrates
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middle image is an angiogram. The side images are magnified regions where amb
arises due to non-local overlaps. From these images, it is not clear whethe
projected vessels cross or are just touching. 

3  The Registration Algorithm

Our goal is to register 3D MRA studies with X-ray angiograms. By the propert
projective invariance, registering blood vessels with their corresponding projectio

equivalent to registering the projected 3D skeletons with their 2D analogues. A 3D
registration algorithm was developed that uses the skeletons directly. The algo
accepts as input the set of 3D skeletons extracted from volume data, the set 

skeletons extracted from X-ray images, and the correspondence between the 3D a
skeletons. The algorithm returns the pose required to register the primitives. The 

3D skeletons is assumed to be rigid. Liu [1] develops the registration algorith
length. In this paper, we summarize its key aspects. Section 3.1 describes our me
extracting tubular skeletons. Section 3.2 describes the objective function. Sectio

briefly outlines the optimization method.

Fig. 1:  The effect of self occlusion on projective invariance. Left:
projection of the 3D skeleton. Right: The projected tube’s 2D skeleton

Fig. 2:  A lateral X-ray angiogram of the head. Highlighted
areas contain overlapping projections of distinct vessels
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3.1  Extracting Tubular Skeletons

Tubular skeletons are extracted directly from digital images. Extraction
performed via cores [2], a method of multi-scale object description. For tub

structures, cores encode the object as a curve in  space, where  
dimensionality of the tube. The core-middle, or spatial component of the core
corresponds to the tube’s skeleton. Fritsch’s algorithm [3] is used to extract cores
X-ray angiograms. The 3D extraction of core-middles from MRAs is performed u
Aylward’s algorithm [4]. 

3.2  Computing the Disparity Value

From the property of projective invariance, tubular structures are accura
registered with their projections when the projected 3D skeletons overlap t
corresponding 2D equivalents. This section describes a method for meas
registration accuracy based on the degree of overlap or disparity between skeletons.

Let  be the skeleton of a 3D tubular blood vessel, and  be the skeleton extr

from the vessel’s projection. Let  be the perspective projection function. Un

perfect registration, projective invariance implies that  perfectly overlaps

When they are misregistered,  and  will be misaligned. Given a projected

and 2D curve pair , take a set of evenly spaced points  al

. For each point , the corresponding point  on  is located by computing

intersection of  with the line perpendicular to the tangent of  at . If more t

one intersection exists, the closest is selected. If there are no intersections, then 

not have an analogue on . Fig. 3 illustrates a few cases. Note that either  or 

may be incomplete. Fig. 3 (middle) illustrates point pairing when  is incomplete. 

The disparity value is taken to be the mean-square value of all point pairs 

for all curve pairs . In our registration algorithm, the association of 
skeletons with their 2D counterparts is performed by the user. Under per
registration, the disparity is at most small positive value. When misregistere
significantly larger non-zero value is obtained. The disparity value changes acco

to the projection . We write  to denote the objective function. 
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Fig. 3:  Computing the disparity between 2D and projected 3D skeletons
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3.3  Optimizing 

Various methods for optimizing  exist [5]. Liu [1] describes an efficie

method based on computing the partial derivatives of  with respect to the 
(registration) parameters. The method is similar to that described in [6]. This se
summarizes the discussion in [1].

Since rigid registration is assumed,  can be expressed as a six-parameter fu

(3 rotations and 3 translations). Let  be the vector of parameters. Let  b

projection computed using the parameters in . Given an approximation  to

final solution, the algorithm uses Newton’s method to compute the actual solu

. From section 3.2, a set of point pairs  for each curve pair  

be computed. The disparity function  is minimal when  for all po

pairs. A refinement  to  is obtained by computing a least squares solution for

in  for all points .  is the partial

derivative of  w.r.t.  evaluated at  and  is a 6-dimensional correct

vector. Given ,  can be computed. The process is repeated for 

until  falls below an arbitrary threshold.

4  Experiments
This section describes experiments to evaluate the algorithm’s accuracy

performance under various conditions. Both simulated and actual X-ray angiogram
used. Using simulated X-ray angiograms with known poses permit registra
accuracy to be quantified. The actual pose is perturbed by arbitrary amounts to d
the initial approximation. The effect of the perturbation is to displace all points in
3D volume from their actual positions. The registration algorithm is used to correc
perturbation. The total number of 3D skeletons available is considerably larger tha
set of 3D skeletons actually used for registration. By computing the difference bet
the initial and final displacements of all 3D skeletons, a measure of the algorithm
accuracy in recovering the initial pose can be determined. In the following discus
the function MAX(pose1,pose2) computes the maximum displacement among all 3
skeletons between two states. For example, pose1 may be the actual pose and pose2
may be the computed pose returned by the algorithm. The function MIN(pose1,pose2)
can be similarly defined. 

Experiments in sections 4.1 through 4.3 used two 3D MRA studies of the hea

input. Study A is a  scan with voxel size 

Study B is a  scan from a different patient. The voxel size for this st

was . In both studies, the imaging parameters were cho
to highlight intracerebral vessels. For each study, a set of 3D curves representin
central axis of intracerebral vessels was extracted using Aylward’s algorithm (se
3.1). 204 curves were extracted from Study A while 223 vessels were extracted

Cost P( )
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Study B. Simulated X-ray angiograms were generated by applying a perspe
projection on these segmented vessels. 

In contrast, the experiment in section 4.4 used actual patient angiogram

digitally subtracted angiogram was acquired ( ). A simple algorithm was use

correct for image distort ion. In addition, an MRA dataset (Study C) of s

 was acqui red f rom the same pat ient .  The voxe l s ize  w

. 

In the following sections, details of each experiment are presented together wi
results. Section 4.1 is a test of the algorithm’s interactive performance. Sectio
evaluates the algorithm’s ability to converge. Section 4.3 describes an experime
test the algorithm’s sensitivity to the choice of registration primitives. Sections
through 4.3 use synthetic 2D images. Section 4.4 describes an experiment to ev
the algorithm using actual angiograms.

4.1  Interactive Performance Test

This experiment evaluates the algorithm’s interactive performance. Three t
were conducted. Trials 1 and 2 were conducted using Study B whereas trial 3
conducted using Study A. In each trial, a simulated X-ray angiogram was gene
from an arbitrary viewpoint and the pose noted. A perturbation was introduced t
actual pose to produce the initial pose. The amount and nature of perturbation di
for each trial. To ensure fairness, the individual generating the angiograms
perturbations was different from the individual performing the registration. The ac
pose was not known to the latter until after the experiment. The individual perform
the registration was free to extract a number of 2D skeletons from each simu
angiogram. Between 27 and 37 curves per image were extracted using Frit
algorithm (section 3.1). Correspondence between the 2D and 3D skeletons

manually established. The registration algorithm was executed until  did
show any further improvement. The current solution at that point was noted.
program required approximately 3-5 minutes of run time on an HP 712/80 workst
with 64Mb of memory. 

Table 1 shows the results. In each case, MAX(actual,initial) was in the range of a
few centimeters. That is, the initial misregistration displaced all 3D skeletons on
order of centimeters. After registration, MAX(actual,final) was in the range of tenths o
a millimeter. That is, the largest amount of misregistration among all 3D skeletons
the tenths of a millimeter. We emphasize that we measure the misregistration of all 3D
skeletons (more than 200), not just the skeletons used for the registration (27 t
The results indicate that the registration algorithm performs very well in an intera
environment. The set of 2D primitives was selected with no particular limitations o
than ensuring that curves were chosen from all parts of the projected image
algorithm is sufficiently robust to converge to the true solution in each case. 
suggests that the algorithm is relatively insensit ive to the choice of ini
approximation as well as having a strong tolerance to the choice of registra
primitives. The next two sections provide additional proof to these claims.

XRAY1

256 256× 72×
0.86mm 0.86mm× 1.1mm×

Cost P( )
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4.2  Test of Robustness 

This is a test of the algorithm’s ability to converge to the true solution given a ra
of initial poses. A good registration algorithm should be relatively insensitive to
choice of starting pose, quantified by the capture radius. The algorithm is said to have

a capture radius of at least  if it converges to the correct solution from any choi

initial pose that displaces all 3D skeletons by at least . In practice, there are an infinite

number of possible starting positions where the initial misregistration is at lea
Moreover, the capture radius is partially dependent on the 2D and 3D images use
approximation of the capture radius can be determined by using a large number o
and datasets representative of typical cases.

Two experiments were conducted. The first used Study A, and the second
Study B. For each experiment a simulated angiogram was generated from an arb
pose. Thirteen 2D curves were extracted from each angiogram. These curves fo
set of 2D registration primitives. Correspondence between 2D and 3D curves
established manually. For each experiment, 100 trials were performed. In each tri

actual pose was given random perturbations to produce an initial pose. Up to 

rotation and  translation in all three coordinate axis were used for experim

on Study A. Up to  rotation and  translation in all three coordinate a

were used for experiments on Study B. For each perturbation, 
was determined. That is, the set of more than 200 3D skeletons was initially at least
that distance away from their actual position. The registration algorithm was exec

until  fell below  or 100 until iterations have occurred. Th

computed solution was noted.  was determined. That is, the
of all 3D skeletons was displaced at most that distance from their final position afte
registration. 

Fig. 4 are scatterplots of the results. The abscissa gives the initial minim
misregistration. That is, all 3D skeletons were displaced from their true position bat
least that amount. The ordinate gives the maximum final misregistration. That is
skeletons were displaced by at most that amount after registration. Apart from a sing

outlier in Study B, the capture radius is at least  in both studies. For e
experiment, the set of trials formed two distinct groups. One group terminated 

misregistrations in excess of  whereas the other has misregistrations less

. This suggests that the algorithm’s objective function is remarkably fre

Exp. Max. initial misregistration (cm) Max. final misregistration (cm)

Table 1:  Results of registration accuracy test. 

1 4.04 100× 1.16 10 2–×

2 2.85 100× 9.60 10 2–×

3 5.03 100× 9.59 10 2–×

r

r

r

30°±
10 cm±

25°± 5 cm±
MIN actual initial,( )

Cost P( ) 1.75 10 5–×  cm2

MAX actual comp,( )

15 cm

10 cm

0.1 cm
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local minima over a wide region surrounding the actual solution. Either the algor
converged to the true solution with little residual error or it did not converge at all.

4.3  Sensitivity to Choice of Primitives

This experiment evaluates the algorithm’s performance as a function of the nu
of curves used and their 3D spatial distribution. Two experiments were performed
first used Study A whereas the other used Study B. The same angiograms and 
2D skeletons described in section 4.2 were used. In each experiment, an initia
was generated by applying a perturbation to the actual pose. Each experiment ha

series of trials. For each series, a random subset of  2D curves were chosen of

available. In every series,  was chosen to be 4, 8, and 10. Fifty trials were he

each series. Fig. 5 illustrates the organization of this experiment. 

In each trial, the 3D spatial distribution of the 3D curve primitives were quanti

using , a moment of inertia measure sensitive to the number of curves 

as well as the spatial distribution or “spread” of 3D primitives [1]. The algorithm w
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Fig. 4:  The results of the capture radius experiment. Scatterplots for Study A (left) and Study B (right)
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Fig. 5:  Organization of experiment to evaluate sensitivity to choice of primitives
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executed until  fell below  or until 100 iterations hav

occurred. The computed pose was noted and  determined. 

Fig. 6 plots the results. The absicca gives the value of . The ordin

gives the amount of residual misregistration when the algorithm halts. While 
curves converged with submillimeter accuracy in some cases, the number of c
used is too small to be reliable. Using eight curves, the algorithm is very likel
succeed. With ten curves, there is virtual certainty. As the number of curves incre

 also increased. Having a larger value for  generally produc

more accurate results. Spatial distribution is not just a function of the number of c
used. In both experiments, there is considerable overlap between the ran

 achieved using 8 and 10 curves. This suggests that a well chose

smaller set of curves can perform just as well as a larger set of poorly chosen cur

4.4  Clinical Test

Unlike the previous experiments which used synthetic angiograms, this experi
evaluates the algorithm’s performance by registering an actual patient angio

Cost P( ) 1.75 10 5–×  cm2

MAX actual comp,( )

Spread3D

Spread3D Spread3D

Spread3D

Fig. 6:  Choice of registration primitives experiment. Top: Study A. Bottom: Study B
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( ) with its corresponding MRA (Study C). True angiograms have more sou

of errors and present a greater challenge to the algorithm. With actual angiogram
true pose is not known. We evaluated the algorithm’s performance by comparin
performance with a manual registration using the same images. A neurosur
familiar with the patient registered the projected 3D skeletons against the 2D im
The manual attempt was then compared with the algorithm’s solution. Fig. 7 (
illustrates the results. The attempt used an anterior-posterior (AP) orientation a
starting pose. The effort took approximately one hour. The bottom figure 
registered using our algorithm from the same starting pose. The attempt 
approximately 10 minutes in total. Approximately 5 minutes of this time was spen
the user determining the correct correspondence between 2D and 3D skeletons. 

The registration results appear very similar, indicating that the algorithm perfo
at least as well as manual registration but requiring only a fraction of the latter’s t
In some places (notably vessel “B”), the algorithm performed noticeably better tha
neurosurgeon. Since the entire intracerebral circulation was not highlighted, som
vessel skeletons did not have a corresponding 2D vessel. For example, vessels “A
“C”. 

XRAY1

B

Fig. 7:  Results of registration experiment on clinical data. Top: Manual
registration by neurosurgeon. Bottom: Registration via our algorithm
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5  Discussion
3D/2D registration algorithms have applications in surgical instrument guida

(e.g., [7], [8], and [9]) and in anatomical model synthesis (e.g., [10]). An accur
robust registration algorithm significantly improves the accuracy of reconstruction
surgical guidance. Sections 4.1 through 4.4 demonstrated our algorithm’s accurac
robustness. The algorithm is capable of submillimeter accuracy over a wide ran
starting poses and choice of primitives. 

An advantage of our registration method is the use of curves as registra
primitives. Point based algorithms (e.g., [11] and [12]) generally rely on a f
landmarks for registration. These methods have the advantage of computa
simplicity and thus speed. However, errors in locating fiducial points can resu
decreased accuracy. Some surface based algorithms register the surface’s silh
with the 2D image. However, determining the silhouette may be computation
expensive or may require auxiliary data structures. In contrast, the projection of a 
is generally still a curve. Curves may be treated as a locus of points. By using curv
registration primitives in our algorithm, we retain the computationally simplicity
point based registration without sacrificing registration accuracy. By the principl
projective invariance, registering the skeletons of tubular structures such as b
vessels is equivalent to directly registering the vessels themselves. Thus, our algo
is well suited to the task of registering X-ray angiograms to 3D MRA. 

The use of cores as a method of extracting primitives enhances the accurac
robustness of our algorithm. Cores are remarkably robust in the presence of i
noise and differences in image resolution [13]. In addition, cores are little affecte
variations in normal vessels which do not have perfectly circular cross-sections.

The algorithm as described requires both 2D and 3D tubular anatomical object
some applications, such structures may not be available in adequate numbers. W
proposed a novel method to overcome this problem [9]. 

One shortcoming of our present implementation is the need for man
correspondence between 2D and 3D vessel skeletons. Since angiograms are ty
taken from standard poses, it may be possible to automatically associate the v
based on their relative projected positions on the 2D image [14]. 

6  Conclusion
This paper described our method of 3D/2D registration. Our algorithm is base

the principle of projective invariance which permits the skeletons of tubular anatom
structures (e.g., blood vessels) to be used as registration primitives. Using curv
registration primitives is computationally straightforward and does not sacri
accuracy. Experiments under test conditions where truth is known show tha
method is capable of submillimeter accuracy. Elaborate preprocessing is unnece
Our algorithm is robust, and converges to the true solution even from large in
misregistrations. In addition, our algorithm requires only a small number (typically 
than 10) of curve pairs to achieve submillimeter accuracy. An experiment condu
using actual X-ray and 3D MRA studies suggest that the algorithm is at lea
accurate as a manual registration performed by an expert, but takes only 20% 
time required by the latter.



r for
We
rams

tance
12

tion,

The
uary,
004.
eir
g,

ect
lso

idge

es"

., III;
ality
95

az J.
m."

ical
lity
. 99-

 of
 11,

uter
ed

lay."

se of

age
ncan
7  Acknowledgments
The authors gratefully acknowledge the use of computing facilities at the Cente

Information Enhanced Medicine (CieMED), National University of Singapore. 
thank Stephen Aylward and Daniel Fritsch for assistance with and the use of prog
for core extraction, and UNC hospitals diagnostic radiology department for assis
with acquiring MRI/MRA images. This work is partially supported by R01-CA678
NCI-NIH, and by PO1 CA47982 NCI-NIH.

References
1. Liu A. "3D/2D registration and reconstruction in image-guided surgery." Ph.D. Disserta

University of North Carolina at Chapel Hill, 1998. 
2. Pizer S.M., Eberly D., Morse B.S., Fritsch D. "Zoom-invariant vision of figural shape: 

mathematics of cores" Computer Vision and Image Understanding Vol. 69 No. 1, Jan
pp. 55-71, 1998, Article No. IV970563. Also available as UNC Technical Report TR96-

3. Fritsch D.S., Eberly D.H., Pizer S.M., McAuliffe M.J. "Stimulated cores and th
applications in medical imaging" IPMI ’95: Information Processing in Medical Imagin
1995. pp. 365-368.

4. Aylward S., Pizer S., Bullitt E., Eberly D. "Intensity ridge and widths for tubular obj
segmentation and description." Proc IEEE WWMMBIA (IEEE96TB100056), 1996. A
available as UNC Technical Report TR96-018. 

5. Press W.H., et. al. "Numerical recipes in C: The art of scientific computing." Cambr
[Cambridgeshire]: New York: Cambridge University Press, 1992. 

6. Lowe D.G. "Three-dimensional object recognition from single two-dimensional imag
Artificial Intelligence, Vol. 31, No. 3, 1987. pp. 355-395.

7. Grimson W.E.L., Ettinger G.J., White S.J., Gleason P.L., Lozano-Perez T., Wells W.M
Kikinis R. "Evaluating and validating an automated registration system for enhanced re
visualization in surgery." Computer Vision, Virtual Reality and Robotics in Medicine, 19
pp. 3-12.

8. Lavallee S., Cinquin P., Szeliski R., Peria O., Hamadeh A., Champleboux G., Trocc
"Building a hybrid patient’s model for augmented reality in surgery: A registration proble
Comput. Biol. Med. Vol 25, No. 2., 1995. pp. 149-164.

9. Liu A., Bullitt E., Pizer S.M. "Surgical instrument guidance using synthesized anatom
structures" CVRMed-MRCAS ’97. First Joint Conference, Computer Vision, Virtual Rea
and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery. pp
108. 

10. Bullitt E., Liu A., Pizer, S.M. "Three-dimensional reconstruction of curves from pairs
projection views in the presence of error. I. Algorithms." Medical Physics, vol. 24, no.
Nov. 1997. pp. 1671-1678.

11. Mellor J.P. "Realtime camera calibration for enhanced reality visualization." Comp
Vision, Virtual Reality and Robotics in Medicine. First International Conference, CVRM
’95. Proceedings. pp. 471-475.

12. Uenohara M., Kanade T. "Vision-based object registration for real-time image over
Comput. Biol. Med. Vol. 25, No. 2. pp. 249-260.

13. Morse B., Pizer S., Fritsch D. "Robust object representation through object-relevant u
scale", Medical Imaging ’94, Image Processing, SPIE 2167. pp. 104-115.

14. Fritsch D., Pizer S.M., Yu L., Johnson, V., Chaney E. "Segmentation of medical im
objects using deformable shape loci." IPMI ’97, Lecture Notes in Computer Science (Du
J., Gindi G., eds), 1230, 1997. pp. 127-140.


	title - 3D/2D Registration Via Skeletal Near Projective Invariance in Tubular Objects
	Author List - Alan Liu1, Elizabeth Bullitt2, Stephen M. Pizer2
	Author List - 
	address - 1. Presently at the Center for Information-Enhanced Medicine
	address - National University of Singapore
	address - liu@ciemed.nus.edu.sg 2. Medical Image Display & Analysis Group The University of North...
	Principal heading - 1 Introduction
	Principal heading - 2 Method
	Subheading 1 - 2.1 Near Projective Invariance
	Subheading 1 - 2.2 Exceptions to Near Projective Invariance



	Figure label - Fig. 1: The effect of self occlusion on projective invariance. Left: projection of...
	Figure label - Fig. 2: A lateral X-ray angiogram of the head. Highlighted areas contain overlappi...
	Principal heading - 3 The Registration Algorithm
	Subheading 1 - 3.1 Extracting Tubular Skeletons
	Subheading 1 - 3.2 Computing the Disparity Value


	Figure label - Fig. 3: Computing the disparity between 2D and projected 3D skeletons
	Subheading 1 - 3.3 Optimizing
	Principal heading - 4 Experiments
	Subheading 1 - 4.1 Interactive Performance Test

	CellBody - 
	CellBody - 
	CellBody - 
	CellBody - 
	CellBody - 
	CellBody - 
	CellBody - 
	CellBody - 
	CellBody - 
	TableTitle - Table 1: Results of registration accuracy test.
	Subheading 1 - 4.2 Test of Robustness


	Figure label - Fig. 4: The results of the capture radius experiment. Scatterplots for Study A (le...
	Subheading 1 - 4.3 Sensitivity to Choice of Primitives

	Figure label - Fig. 5: Organization of experiment to evaluate sensitivity to choice of primitives
	Figure label - Fig. 6: Choice of registration primitives experiment. Top: Study A. Bottom: Study B
	Subheading 1 - 4.4 Clinical Test

	Figure label - Fig. 7: Results of registration experiment on clinical data. Top: Manual registrat...
	Principal heading - 5 Discussion
	Principal heading - 6 Conclusion
	Principal heading - 7 Acknowledgments
	reference heading - References
	Reference entry - 1. Liu A. "3D/2D registration and reconstruction in image-guided surgery." Ph.D...
	Reference entry - 2. Pizer S.M., Eberly D., Morse B.S., Fritsch D. "Zoom-invariant vision of figu...
	Reference entry - 3. Fritsch D.S., Eberly D.H., Pizer S.M., McAuliffe M.J. "Stimulated cores and ...
	Reference entry - 4. Aylward S., Pizer S., Bullitt E., Eberly D. "Intensity ridge and widths for ...
	Reference entry - 5. Press W.H., et. al. "Numerical recipes in C: The art of scientific computing...
	Reference entry - 6. Lowe D.G. "Three-dimensional object recognition from single two-dimensional ...
	Reference entry - 7. Grimson W.E.L., Ettinger G.J., White S.J., Gleason P.L., Lozano-Perez T., We...
	Reference entry - 8. Lavallee S., Cinquin P., Szeliski R., Peria O., Hamadeh A., Champleboux G., ...
	Reference entry - 9. Liu A., Bullitt E., Pizer S.M. "Surgical instrument guidance using synthesiz...
	Reference entry - 10. Bullitt E., Liu A., Pizer, S.M. "Three-dimensional reconstruction of curves...
	Reference entry - 11. Mellor J.P. "Realtime camera calibration for enhanced reality visualization...
	Reference entry - 12. Uenohara M., Kanade T. "Vision-based object registration for real-time imag...
	Reference entry - 13. Morse B., Pizer S., Fritsch D. "Robust object representation through object...
	Reference entry - 14. Fritsch D., Pizer S.M., Yu L., Johnson, V., Chaney E. "Segmentation of medi...





