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Abstract. We present a method of 3D/2D image registration. The algorithm is
based on the property of near projective invariance in tubular objects. The
skeletons of tubular anatomical structures (e.g., intracerebral blood vessels) are
used as registration primitives. Experiments with Magnetic Resonance
Angiogram (MRA) patient studies and both simulated and actual X-ray
angiograms suggest that the algorithm is very accurate and robust. The algorithm
requires only a small number of primitives. In addition, the algorithm is relatively
insensitive to the choice of tubular structures used. Experimental results
justifying these claims are included.

1 Introduction

The objective of 3D/2D image registration can be described thus: Given a 2D image
and a 3D model, determine the position and orientation fiosg of the imaging
device when the 2D image was taken. In this paper, we describe an algorithm for
registering 3D Magnetic Resonance Angiogram (MRA) images with X-ray
angiograms. The imaging device for our application is a digital fluoroscope. Many 3D/
2D registration algorithms have the following paradigm. First, image structures
common to both 3D and 2D imaging modalities are choseegistration primitives
Examples include the images of external fiducial markers. The images are assumed
registered when the projected 3D registration primitives are within a small distance of
coinciding with their 2D counterparts. Second, for a given choice of primitives, an
objective function is formulated. The objective function has a minimum value when the
primitives coincide. Finally, an optimization algorithm to minimize the objective
function is chosen.

Registration primitives include points, curves, and surfaces. The projection
involved in registering 3D with 2D images complicates the choice of registration
primitives. Not all types of primitives can be unambiguously projected. For example,
3D surfaces may overlap and project onto the same part of the 2D plane. In this paper,
we show that the property of near projective invariance permits us to use the skeleton
curves of tubular objects as registration primitives. With local exceptions, 3D curves



can be projected unambiguously as 2D curves. Section 2 describes this property in
greater detail.

2 Method

A 3D tubular structure such as a blood vessel generally appears as a 2D tube under
projection. This section describes the property of projective invariance and its
application in 3D/2D registration. Section 2.1 presents the concept of projective
invariance and applicable conditions. Section 2.2 describes conditions where projective
invariance is inapplicable.

2.1 Near Projective Invariance

A 3D tube contains a central axisskeletonsuch that cross sections of the object
made perpendicular to the skeleton are circular. A 2D tube contains a skeleton which is
equidistant from the tube’s boundaries. Tubes are not required to have constant width.
Generally, the projection of a 3D tube is a 2D tubular shadow. For a given projection, if
the 3D skeleton projects onto the 2D skeleton of the projection’s shadojective
invarianceis preserved. That is, a 3D tube is said to preserve projective invariance if
the projection of the 3D skeleton and the 2D skeleton of the tube’s projection are the
same.

Strict projective invariance is preserved where the tubular object is not overlapped
under projection. Liu [1] enumerates such conditions in detail. In practical situations,
intensifier induced image distortions, the resolution of the imaging device, and the
characteristics of X-ray image formation affect invariance. While strict invariance is
not preserved, it is minimally affected. Tubular objects exhibit the propemgaf
projective invariancen this situation. That is, the projected 3D skeleton only differs
slightly from the projection’s 2D skeleton. Tests using both simulated and actual X-ray
angiograms suggest that this difference does not significantly affect registration results,
as shown in section 4.

Near projective invariance simplifies the use of tubular objects for 3D/2D
registration. The problem is reduced to that of registering sets of curves. Curves are
computationally simple structures from which a fast, highly accurate registration
algorithm can be developed. This algorithm is described in section 3.

2.2 Exceptions to Near Projective Invariance

A tube may not display near projective invariance throughout its length. The
invariance property is not preserved when tubes overlap under projection. Such
segments should not be used for registration. Two kinds of overlap are possible: local
and non-local overlaps.

A local overlap or self-occlusion occurs when a contiguous portion of the same tube
overlaps under projection. Fig. 1 illustrates this case. The object is a tubular helix. The
helix’s axis is perpendicular to the view direction. The left image shows the tube and its
3D skeleton. The right image is a projection of the tube with the projection’s 2D
skeleton. The tube’s 3D skeleton forms a cusp after projection whereas the 2D skeleton
is smooth and does not extend as far out the bend as its 3D complement.

A non-local overlap occurs when portions of two distinct tubes or when two non-
contiguous portions of the same tube overlap under projection. Fig. 2 illustrates. The



Fig. 1: The effect of self occlusion on projective invariance. Left:
projection of the 3D skeleton. Right: The projected tube’s 2D skeleton

middle image is an angiogram. The side images are magnified regions where ambiguity
arises due to non-local overlaps. From these images, it is not clear whether the
projected vessels cross or are just touching.

Fig. 2: A lateral X-ray angiogram of the head. Highlighted
areas contain overlapping projections of distinct vessels

3 The Registration Algorithm

Our goal is to register 3D MRA studies with X-ray angiograms. By the property of
projective invariance, registering blood vessels with their corresponding projections is
equivalent to registering the projected 3D skeletons with their 2D analogues. A 3D/2D
registration algorithm was developed that uses the skeletons directly. The algorithm
accepts as input the set of 3D skeletons extracted from volume data, the set of 2D
skeletons extracted from X-ray images, and the correspondence between the 3D and 2D
skeletons. The algorithm returns the pose required to register the primitives. The set of
3D skeletons is assumed to be rigid. Liu [1] develops the registration algorithm at
length. In this paper, we summarize its key aspects. Section 3.1 describes our method of
extracting tubular skeletons. Section 3.2 describes the objective function. Section 3.3
briefly outlines the optimization method.



3.1 Extracting Tubular Skeletons

Tubular skeletons are extracted directly from digital images. Extraction is
performed via cores [2], a method of multi-scale object description. For tubular
structures, cores encode the object as a curvenin O* space, where s the
dimensionality of the tube. Theore-middle or spatial component of the core,
corresponds to the tube’s skeleton. Fritsch’s algorithm [3] is used to extract cores from
X-ray angiograms. The 3D extraction of core-middles from MRAs is performed using
Aylward’s algorithm [4].

3.2 Computing the Disparity Value

From the property of projective invariance, tubular structures are accurately
registered with their projections when the projected 3D skeletons overlap their
corresponding 2D equivalents. This section describes a method for measuring
registration accuracy based on the degree of overldjsparity between skeletons.

Let C be the skeleton of a 3D tubular blood vessel,@and be the skeleton extracted
from the vessel’s projection. L&  be the perspective projection function. Under
perfect registration, projective invariance implies tR4C) perfectly overdaps
When they are misregistered, aR({C) will be misaligned. Given a projected 3D

and 2D curve pai(P(C), c) , take a set of evenly spaced p@ptp, ..., P, along
P(C) . For each poinp; , the corresponding paipt con s located by computing the
intersection ofc  with the line perpendicular to the tangeR(@@) p; at . If more than
one intersection exists, the closest is selected. If there are no intersectioms, then  does
not have an analogue an . Fig. 3 illustrates a few cases. Note thatceithd?( C)or

P(C) P(C)

Fig. 3: Computing the disparity between 2D and projected 3D skeletons

may be incomplete. Fig. 3 (middle) illustrates point pairing when is incomplete.
The disparity value is taken to be the mean-square value of all point(paigg)

for all curve pairs(P(C), c) . In our registration algorithm, the association of 3D

skeletons with their 2D counterparts is performed by the user. Under perfect
registration, the disparity is at most small positive value. When misregistered, a
significantly larger non-zero value is obtained. The disparity value changes according

to the projectiorP . We writ€os{ B to denote the objective function.



3.3 Optimizing Cost( P

Various methods for optimizin@ost( P)  exist [5]. Liu [1] describes an efficient
method based on computing the partial derivative® of  with respect to the pose
(registration) parameters. The method is similar to that described in [6]. This section
summarizes the discussion in [1].

Since rigid registration is assumeel, can be expressed as a six-parameter function
(3 rotations and 3 translations). L¥t  be the vector of parameterd,L et be the

projection computed using the parameterxXin . Given an approximagion to the
final solution, the algorithm uses Newton’s method to compute the actual solution
X,o- From section 3.2, a set of point pa{rs, q;) for each curve(P4iC), c) can

be computed. The disparity functi@®ost P) is minimal whgre q; for all point
pairs. A refinemenk,; t&X, is obtained by computing a least squares solutitiX for
in g; = p; + Jacobiar( F)|6- AX for all points(p;, g;) .Jacobiarn( F)|6 is the partial

9
derivative of P w.r.t.X evaluated a = 0 aiX is a 6-dimensional correction
vector. GivenAX ,X; can be computed. The process is repeate),fof,, ..., X, or

until Cost( R ) falls below an arbitrary threshold.

4 Experiments

This section describes experiments to evaluate the algorithm’s accuracy and
performance under various conditions. Both simulated and actual X-ray angiograms are
used. Using simulated X-ray angiograms with known poses permit registration
accuracy to be quantified. The actual pose is perturbed by arbitrary amounts to derive
the initial approximation. The effect of the perturbation is to displace all points in the
3D volume from their actual positions. The registration algorithm is used to correct the
perturbation. The total number of 3D skeletons available is considerably larger than the
set of 3D skeletons actually used for registration. By computing the difference between
the initial and final displacements afi 3D skeletons, a measure of the algorithm’s
accuracy in recovering the initial pose can be determined. In the following discussion,
the functionMAX(posel,poseomputes the maximum displacement among all 3D
skeletons between two states. For exampdselmay be the actual pose apdse2
may be the computed pose returned by the algorithm. The fundti(posel,pose?2)
can be similarly defined.

Experiments in sections 4.1 through 4.3 used two 3D MRA studies of the head as

input. Study A is &256x% 256x 61 scan with voxel si@e78mmx 0.78mmx 1.3mm

Study B is a256x 256x 48 scan from a different patient. The voxel size for this study
was 0.62nmx 0.62mmx 1mm . In both studies, the imaging parameters were chosen
to highlight intracerebral vessels. For each study, a set of 3D curves representing the

central axis of intracerebral vessels was extracted using Aylward’s algorithm (section
3.1). 204 curves were extracted from Study A while 223 vessels were extracted from



Study B. Simulated X-ray angiograms were generated by applying a perspective
projection on these segmented vessels.

In contrast, the experiment in section 4.4 used actual patient angiograms. A
digitally subtracted angiogram was acquir&RAY, ). A simple algorithm was used to
correct for image distortion. In addition, an MRA dataset (Study C) of size
256x 256x 72 was acquired from the same patient. The voxel size was
0.86mmx 0.86mmx 1.1mm.

In the following sections, details of each experiment are presented together with the
results. Section 4.1 is a test of the algorithm’s interactive performance. Section 4.2
evaluates the algorithm’s ability to converge. Section 4.3 describes an experiment to
test the algorithm’s sensitivity to the choice of registration primitives. Sections 4.1
through 4.3 use synthetic 2D images. Section 4.4 describes an experiment to evaluate
the algorithm using actual angiograms.

4.1 Interactive Performance Test

This experiment evaluates the algorithm'’s interactive performance. Three trials
were conducted. Trials 1 and 2 were conducted using Study B whereas trial 3 was
conducted using Study A. In each trial, a simulated X-ray angiogram was generated
from an arbitrary viewpoint and the pose noted. A perturbation was introduced to the
actual pose to produce the initial pose. The amount and nature of perturbation differed
for each trial. To ensure fairness, the individual generating the angiograms and
perturbations was different from the individual performing the registration. The actual
pose was not known to the latter until after the experiment. The individual performing
the registration was free to extract a number of 2D skeletons from each simulated
angiogram. Between 27 and 37 curves per image were extracted using Fritsch’s
algorithm (section 3.1). Correspondence between the 2D and 3D skeletons was
manually established. The registration algorithm was executed@osi P did not
show any further improvement. The current solution at that point was noted. The
program required approximately 3-5 minutes of run time on an HP 712/80 workstation
with 64Mb of memory.

Table 1 shows the results. In each cdgéaX(actual,initial)was in the range of a
few centimeters. That is, the initial misregistration displaced all 3D skeletons on the
order of centimeters. After registratiddAX(actual,final)was in the range of tenths of
a millimeter. That is, the largest amount of misregistration among all 3D skeletons is in
the tenths of a millimeter. We emphasize that we measure the misregistreglbBDf
skeletons (more than 200), not just the skeletons used for the registration (27 to 37).
The results indicate that the registration algorithm performs very well in an interactive
environment. The set of 2D primitives was selected with no particular limitations other
than ensuring that curves were chosen from all parts of the projected image. The
algorithm is sufficiently robust to converge to the true solution in each case. This
suggests that the algorithm is relatively insensitive to the choice of initial
approximation as well as having a strong tolerance to the choice of registration
primitives. The next two sections provide additional proof to these claims.



Exp. Max. initial misregistration (cm) Max. final misregistration (cm)
1 4.04x 10 1.16x 102
2.85x 10 9.60x 102
3 5.03x 10 9.59x 102

Table 1: Results of registration accuracy test.
4.2 Test of Robustness

This is a test of the algorithm’s ability to converge to the true solution given a range
of initial poses. A good registration algorithm should be relatively insensitive to the
choice of starting pose, quantified by #epture radius The algorithm is said to have

a capture radius of at least if it converges to the correct solution from any choice of
initial pose that displaces all 3D skeletonsabyeastr . In practice, there are an infinite
number of possible starting positions where the initial misregistration is atrleast
Moreover, the capture radius is partially dependent on the 2D and 3D images used. An

approximation of the capture radius can be determined by using a large number of trials
and datasets representative of typical cases.

Two experiments were conducted. The first used Study A, and the second used
Study B. For each experiment a simulated angiogram was generated from an arbitrary
pose. Thirteen 2D curves were extracted from each angiogram. These curves form the
set of 2D registration primitives. Correspondence between 2D and 3D curves was
established manually. For each experiment, 100 trials were performed. In each trial, the

actual pose was given random perturbations to produce an initial pose.#3p°to
rotation and+10 cm translation in all three coordinate axis were used for experiments
on Study A. Up tox25° rotation antl5 cm  translation in all three coordinate axis
were used for experiments on Study B. For each perturbafitii{actual initial)

was determined. That is, the set of more than 200 3D skeletons was iritishst
that distance away from their actual position. The registration algorithm was executed

until Cost P fell below 1.75x 10° cn? or 100 until iterations have occurred. The
computed solution was noteMAX(actual] comp  was determined. That is, the set
of all 3D skeletons was displacatl mostthat distance from their final position after
registration.

Fig. 4 are scatterplots of the results. The abscissa gives the initial minimum
misregistration. That is, all 3D skeletons were displaced from their true positan by
leastthat amount. The ordinate gives the maximum final misregistration. That is, all
skeletons were displaced by mostthat amount after registration. Apart from a single

outlier in Study B, the capture radius is at ledStcm in both studies. For each
experiment, the set of trials formed two distinct groups. One group terminated with
misregistrations in excess @D cm  whereas the other has misregistrations less than
0.1 cm. This suggests that the algorithm’s objective function is remarkably free of



local minima over a wide region surrounding the actual solution. Either the algorithm
converged to the true solution with little residual error or it did not converge at all.

Final maximum misregistration (cm)

1000

100

10 7

ORI X SO XX I M KIBONRK XX XX

0 10 20 30 40

Initial minimum misregistration (cm)

50

Final maximum misregistration (cm)

1000

100

10 7

0.001

10 20 30 40 50
Initial minimum misregistration (cm)

Fig. 4: The results of the capture radius experiment. Scatterplots for Study A (left) and Study B (right)

4.3 Sensitivity to Choice of Primitives

This experiment evaluates the algorithm’s performance as a function of the number
of curves used and their 3D spatial distribution. Two experiments were performed. The
first used Study A whereas the other used Study B. The same angiograms and sets of
2D skeletons described in section 4.2 were used. In each experiment, an initial pose
was generated by applying a perturbation to the actual pose. Each experiment has three

series of trials. For each series, a random subdet of 2D curves were chosen of the 13

available. In every serie&, was chosen to be 4, 8, and 10. Fifty trials were held for
each series. Fig. 5 illustrates the organization of this experiment.

Experiment
Study A Study B
k=4 k=8 k=10 k=4 k=8 k=10
50 trials 50 trials 50 trials 50 trials 50 trials 50 trials
Resultsin  Resultsin  Results in Results in  Resultsin  Results in
fig. 6 top fig. 6 top fig. 6 top fig. 6 bot.  fig. 6 bot.  fig. 6 bot.
(diamonds) (squares) (triangles) (diamonds) (squares) (triangles)

Fig. 5: Organization of experiment to evaluate sensitivity to choice of primitives

In each trial, the 3D spatial distribution of the 3D curve primitives were quantified
using Spreadp , a moment of inertia measure sensitive to the number of curves used
as well as the spatial distribution or “spread” of 3D primitives [1]. The algorithm was



executed untilCost{ P) fell belowl.75x 10° cm? or until 100 iterations have
occurred. The computed pose was noted l#dX( actual comp determined.

Fig. 6 plots the results. The absicca gives the valuSmfeady . The ordinate

gives the amount of residual misregistration when the algorithm halts. While four
curves converged with submillimeter accuracy in some cases, the number of curves
used is too small to be reliable. Using eight curves, the algorithm is very likely to
succeed. With ten curves, there is virtual certainty. As the number of curves increased,

Spread also increased. Having a larger value &pread, generally produced

more accurate results. Spatial distribution is not just a function of the number of curves
used. In both experiments, there is considerable overlap between the range of

Spreadp achieved using 8 and 10 curves. This suggests that a well chosen but
smaller set of curves can perform just as well as a larger set of poorly chosen curves.
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Fig. 6: Choice of registration primitives experiment. Top: Study A. Bottom: Study B

4.4 Clinical Test

Unlike the previous experiments which used synthetic angiograms, this experiment
evaluates the algorithm’s performance by registering an actual patient angiogram



(XRAY, ) with its corresponding MRA (Study C). True angiograms have more sources

of errors and present a greater challenge to the algorithm. With actual angiograms, the
true pose is not known. We evaluated the algorithm’s performance by comparing its
performance with a manual registration using the same images. A neurosurgeon
familiar with the patient registered the projected 3D skeletons against the 2D image.
The manual attempt was then compared with the algorithm’s solution. Fig. 7 (top)
illustrates the results. The attempt used an anterior-posterior (AP) orientation as the
starting pose. The effort took approximately one hour. The bottom figure was
registered using our algorithm from the same starting pose. The attempt took
approximately 10 minutes in total. Approximately 5 minutes of this time was spent by
the user determining the correct correspondence between 2D and 3D skeletons.

The registration results appear very similar, indicating that the algorithm performs
at least as well as manual registration but requiring only a fraction of the latter’s time.
In some places (notably vessel “B”), the algorithm performed noticeably better than the
neurosurgeon. Since the entire intracerebral circulation was not highlighted, some 3D
vessel skeletons did not have a corresponding 2D vessel. For example, vessels “A” and
“C".

Fig. 7: Results of registration experiment on clinical data. Top: Manual
registration by neurosurgeon. Bottom: Registration via our algorithm



5 Discussion

3D/2D registration algorithms have applications in surgical instrument guidance
(e.g., [7], [8], and [9]) and in anatomical model synthesis (e.g., [10]). An accurate,
robust registration algorithm significantly improves the accuracy of reconstruction and
surgical guidance. Sections 4.1 through 4.4 demonstrated our algorithm’s accuracy and
robustness. The algorithm is capable of submillimeter accuracy over a wide range of
starting poses and choice of primitives.

An advantage of our registration method is the use of curves as registration
primitives. Point based algorithms (e.g., [11] and [12]) generally rely on a few
landmarks for registration. These methods have the advantage of computational
simplicity and thus speed. However, errors in locating fiducial points can result in
decreased accuracy. Some surface based algorithms register the surface’s silhouette
with the 2D image. However, determining the silhouette may be computationally
expensive or may require auxiliary data structures. In contrast, the projection of a curve
is generally still a curve. Curves may be treated as a locus of points. By using curves as
registration primitives in our algorithm, we retain the computationally simplicity of
point based registration without sacrificing registration accuracy. By the principle of
projective invariance, registering the skeletons of tubular structures such as blood
vessels is equivalent to directly registering the vessels themselves. Thus, our algorithm
is well suited to the task of registering X-ray angiograms to 3D MRA.

The use of cores as a method of extracting primitives enhances the accuracy and
robustness of our algorithm. Cores are remarkably robust in the presence of image
noise and differences in image resolution [13]. In addition, cores are little affected by
variations in normal vessels which do not have perfectly circular cross-sections.

The algorithm as described requires both 2D and 3D tubular anatomical objects. For
some applications, such structures may not be available in adequate numbers. We have
proposed a novel method to overcome this problem [9].

One shortcoming of our present implementation is the need for manual
correspondence between 2D and 3D vessel skeletons. Since angiograms are typically
taken from standard poses, it may be possible to automatically associate the vessels
based on their relative projected positions on the 2D image [14].

6 Conclusion

This paper described our method of 3D/2D registration. Our algorithm is based on
the principle of projective invariance which permits the skeletons of tubular anatomical
structures (e.g., blood vessels) to be used as registration primitives. Using curves as
registration primitives is computationally straightforward and does not sacrifice
accuracy. Experiments under test conditions where truth is known show that our
method is capable of submillimeter accuracy. Elaborate preprocessing is unnecessary.
Our algorithm is robust, and converges to the true solution even from large initial
misregistrations. In addition, our algorithm requires only a small number (typically less
than 10) of curve pairs to achieve submillimeter accuracy. An experiment conducted
using actual X-ray and 3D MRA studies suggest that the algorithm is at least as
accurate as a manual registration performed by an expert, but takes only 20% of the
time required by the latter.
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