Chapter 3 Two-Boundary Medial Primitives (Core Atoms)

In this chapter the core atomis defined, and the process by which oneisformedis
described in detail. Two methods for statistical analysis of populations of core atoms are then
developed. Thefirst of these operates on uncluttered targets in 2D images, with analysis
proceeding upon the entire population of core atomsin the image, undifferentiated by location.
The core atoms in this method are divided into sub-populations by their scale, resulting in
histograms or spectra of scae. An analysis of orientation is performed using the technique of
angle doubling. This approach represents an early step in the research that yielded important
insight into the behavior of core atoms as they describe simple geometric objects. The second
method of statistical analysis operates on core atoms formed on 3D images and differentiates
populations by location. This method uses eigenanalysisinstead of angle doubling and proves
to be of greater practical value, as will be described in subsequent chapters.

3A. Defining the Core Atom

A core atomis defined as two boundary points b, and b, that satisfy particular
requirements guaranteeing that the boundaries face each other. The boundary points, in either
2D or 3D, carry information about location and orientation. The orientation of a boundary
point is normal to the object's boundary at that location.

A core atom can be represented by asingle vector ¢, , from the first boundary point to the
second. A core atom issaid to be "located" at the center point mid-way between the boundary
points (see Fig. 3.1A). The diameter or scale of the core atom is defined as the length |61’2| .

Themedialness at the center point is high because the boundariness at both boundary pointsis
high and because the boundary normals face each other. Core atoms carry information about
orientation, scale and position, permitting populations of core atomsto be analyzed in these
terms. Unlike some media models, the angle between the lines from the center point to each
respective boundary point isfixed at 180° for a core atom, as with Brady (Brady 1983).



Fig. 3.1 A. A coreatom consists of two boundary points that face each other across an
acceptable distance, and a center point at which the core atom issaid to belocated. B. The

search area (gray) for boundary point b, depends on boundary normal n, and the expected
distance between the boundaries.

A certain flexibility in relative orientation of the associated boundaries away from paralle is
allowed. Boundarinessis regularly sampled throughout the image to select a population of
boundary points b, at locations x; with orientations i, . Any kind of boundariness, including
that which is based on gradient, variance, or texture analysis, can be used to form core atoms,
provided an orientation is established for each boundary point. In general the aperture of the
boundariness detector is held proportional to the expected scale of the core atoms.

Core atoms are created from a population of candidate boundary points by finding pairs that
satisfy the following three criteria:

(1) The scale of the core atom vector ¢, , must be in the specified distance range
[ Cmin ’ Cmax ] '

61,2 =X- X Cmin £ Iel,ZI £ Cmax (31)

The core atom vector can be oriented either way between the boundary points, since the
order of the boundary pointsis arbitrary.

(2) The boundary points must have sufficient face-to-faceness F defined as

A A

F(b,,b,) = f, xf, f, = 61,2 N, f, = E:2,1 A, (3.2

20



(""" denotes normalization, v ° V/[[V].) Since f, and f, are normalized to lie between +1 and

-1, their product F must also lie between +1 and -1. Valuesfor F near +1 occur when the

boundaries face towards (or away from) each other across the distance between them. A
threshold for acceptable face-to-faceness is set within some error e, such that

F(b,,b,) >1- e, .

(3) F(b,,b,) >0 impliesthat f, and f, are both positive, or both negative. The sign of
f, (or f,)iscaledthe polarity. The appropriate polarity is either + or - depending on whether
the expected target islighter or darker than the background.

A single boundary point can be involved in a number of core atoms, linking each to a
different partner on the other side of the object. Although at first glance the search for pairs of
boundary points appearsto be O(nz), hashing individual boundary points beforehand by

location yields alarge reduction in computation time (see Fig. 3.1B). The search areafor
boundary point b, islimited to a solid sector surrounding the orientation i, of boundary point
b,, and to arange between c_;,and ¢, . Thewidth of the sector dependson e;.

In the following sections, two methods of statistical analysis of core atom populations are
described. Core atoms tend to concentrate in clouds, forming in large numbers that often
surpass the number of boundary points. This provides for robust statistics, compensating for
the somewhat arbitrary nature of inclusion and exclusion in acloud caused by thresholding.

3B. Unlocalized Spectra of Scalein 2D

This section describes a method for statistical analysis of core atom populationsin 2D
images. It was developed in theinitial stages of this doctoral research and isincluded because
it provided early insightsinto the behavior of core atoms (Stetten, Landesman et a. 1997).
Core atoms are formed as described in the previous section, on a 2D image of a single object.
The resulting core atoms are divided into sub-populations by their scale. Each sub-population
can then be analyzed to yield a set of properties as afunction of scalethat areinvariant to
trand ation and rotation of the underlying object. Three such properties are derived.
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(1) magnitude , the number of core atoms at each scale,

(2) directionality, ameasure of whether the core atoms at each scale tend to be oriented in a
particular direction (directiondity » 1) or evenly distributed in orientation
(directionality » 0) ,

(3) orientation, the predominant orientation of the core atoms at each scale, assuming
directionality * O.

Plotting such properties as functions of scale yields spectra analogous to those used in
infrared spectroscopy to provide clues about the configurations of chemical atoms within
molecules. Clues about the configuration of core atomsin a population can be derived in a
similar fashion from the spectra of magnitude, directionality, and orientation. Trand ational
invariance isinherent in these spectra (asit isin infrared spectroscopy) since location is
ignored. The use of scale spectrafor local image properties has been described by others (Low
and Coggins, 1990).

The magnitude spectrum offers a statistical representation of the width of an object. Since
only the lengths of core atoms are involved and not their orientations, the magnitude spectrum
demonstrates rotational invariance in addition to trandational invariance. An example of a
magnitude spectrum is shown in Figure 3.4A, in which adark circular figure has been
subjected to the formation of core atoms. The resulting core atoms are superimposed on the
circle with centers shown in white and boundary points shown as black "+" symbols. The
corresponding magnitude spectrum exhibits a peak at the diameter of the circle. (Thelog of
magnitude is plotted to increase the dynamic range of the display).

Below magnitude are displayed two other spectrain Fig 3.4A, those of directionality and
orientation. These are calculated by first determining an axis vector for the population of core
atoms at each scale. The axis vector represents acomposite of individual core atom
orientations, indicating whether there is a predominant orientation, and if so, what that
orientation is. Two constraints on the calculation of the axis vector are the following: (1) If
the population has no predominant orientation, then each core atom must be canceled, on
average, by another core atom orthogonal to thefirst. (2) The order in which one selectsthe
boundary pointsin a given core atom must be arbitrary, so the orientations of two core atoms
180° apart must be indistinguishable. Both of these constraints are met by the process of angle-
doubling, in which the phase angle (angle with respect to the x axis) of each core atomis
doubled. After angle-doubling, simple vector addition of the normalized core atom orientations
can be applied to compute an axis vector for the population. If the difference in orientation
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between two core atomsis originally 90° (or 270°), it becomes 180° causing them to cancel
under addition. If the differenceisoriginally 180°, it becomes 360° (or 0°) making boundary
order irrelevant in terms of contribution to the axis vector.

The mathematics of calculating the axis vector by angle-doubling is as follows (see Fig.
3.2):

o

2a

Fig. 3.2 Angledoubling of the orientation vector c.

Given a core atom whose orientation vector ¢ has aphase angle a , the unit vector d
whose phase angleis 2a can be determined, using standard trigonometric identities:

cos2a= cos’a- sn‘a sin2a = 2sin a cosa (3.3
d =¢2-¢2 d, =288, (3.4)

where (c]X , &y) are the components of the vector d, etc. We sum over the entire popul ation of

n core atoms at a given scale, dividing by n to yield the vector b,
ad, (3.5)

where ai indicates the ith vector d. The vector b may be said to have a phase angle of 29

which, when halved, produces the axis vector a whose phase angle is. Halving the phase
angle is accomplished using the standard trigonometric identities:

sinzg :% COSZQ :% (36)
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e 4,30 if b,30 0
4=+ 12bx AN a, = 12bx (3.7)
a, <0 if b,<0

Constraints on the sign of the square root in calculating éy restrict a arbitrarily to the two

right-hand quadrants. Orientation is expected to be meaningful only over 180 degrees because
the boundary pointsin a core atom are order-independent.

Becauseb has been normalized by n, the modulus of b isa scalar between 0 and 1 that
measures the directionality of the core atom population at that scale. If al the core atoms all
have the same orientation, |b| =1. For auniform distribution of orientations |b| =0, since each
core atom has, on average, another core atom orthogonal toit. Thisisshown infigure 3.3A,
where core atoms are evenly distributed around a circular figure. The corresponding
experimental data (see figure 3.4A) shows an directionality closeto O, especialy at scales
where the number of core atomsis greatest. The dip toward zero in directionality
corresponding to the maximum number of core atoms is predictable due to random variation in
orientation according to v/n .

A. eccentricity =0 B. eccentricity =1

Fig. 3.3 Thetwo extremes of directiondlity. A. Core atoms with evenly distributed
orientations. B. Coreatomsaligned along a 1D ridge.

At the other extreme, adirectionality of 1 isshown infigure 3.3B. Here, the core atoms have
the same orientation, resulting in an axis vector a with a modulus of 1.

When a has anon-zero length, its orientation may also be reported. The underlying
direction of the ridge will be orthogonal to the orientation of the core atoms. Thisresultsin the
third spectrum, that of orientation. Although the orientation spectrum shifts vertically when the
figureisrotated as shown in Fig. 3.5, the difference between orientations as a function of
scale remains fixed, constituting a useful form of rotational invariance.
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Figure 3.4B shows an ellipse. The magnitude spectrum is now split into two distinct
modes. Within each mode, the directionality is near 1, and the orientations of the two modes
are 90° apart. These modes represent the minor and major axes of the ellipse, with the minor
axis appearing at the smaller scale, i.e., the left end of the spectrum. Some core atoms cross
the ellipse but are not oriented along the major or the minor axis. These core atoms have an
intermediate scale (shorter than core atoms of the major axis and longer than those
of the minor axis) and fall into two distinct populations in terms of their orientation. Therefore
they exhibit adirectionality of lessthan 1.

The orientation spectrain Figs. 3.4-3.7 are duplicated modulo 180° and wrap around from
-180° to +180°. The orientations are printed lightly (asin Fig. 3.4A) at scales where minimal
directionality or insufficient magnitude exists. The total number of core atoms isincluded
above each image. A large number of core atoms can form even on asmall object, because
each boundary point may form multiple links. For example, 4016 core atoms formed for the
circle, which is close to the total number of pixelsin theimage! Large populations of core
atoms are desirable for the purposes of statistical analysis.

Figure 3.4C shows a shape known as a paisley. The curved core of this figure smoothly
changes orientation as afunction of scale from thetip to the belly of the paisey. The dope of
the orientation spectrum would have the opposite sign if the mirror image of the paisey were
used. Eccentricity isnear 1 throughout, since at each scale the sub-population is uniformly
oriented across the paisley.

A vertical rectangle is shown in 3.4D, resulting in two distinct core atom populations, each
with eccentricities approximately equal to 1. The two populations correspond to separate
vertical and horizontal cores within the rectangle. The first population consists of small-scale
core atoms with 0" orientation forming on the vertical core. The second population consists of
larger-scale core atoms with 90° orientation forming on the horizontal core. The two cores
crossin the center of the figure, although they miss each other in scale space, where an extra
dimension is added to the ambient space of the image to represent scale. The direction of each
core is orthogonal to the orientation of its core atoms. Subsequent reduction in the rectangle's
sizein figures 3.4E and 3.4F resultsin shifting the spectrato the left and compressing them
along the scale dimension. If the spectrawere plotted with log(scale) along the abscissa, only
shifting would occur, demonstrating aform of scale invariance.

Figures 3.5A-F show the effect of rotation on the rectangle. The magnitude and
directionality spectraare essentially unaffected. The orientation spectrum shifts upward asthe
figure isrotated in a counter-clockwise direction Note that the change in orientation asa
function of scale remains unaffected; the long and short axes of the rectangle remain 90° apart.
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Figure 3.6A shows the effect of Gaussian noise added to the rectangle figure. Core atoms
are dispersed throughout the image as a result of the added noise. Figures 3.6B and 3.6C
show the results of clustering core atoms by requiring that the maximum distance between
centers of any two core atoms and between the scales of those two core atoms be below certain
thresholds. The two largest clusters are shown in 3.6B and 3.6C, corresponding to the two
cores of the rectangle described above. The combined spectra of 3.6B and 3.6C
approximately equal that of 3.6D with areduction in noise. Theideathat location can be
incorporated into the analysis of core atomsis devel oped extensively in the remainder of this
dissertation.

Figs. 3.6E and 3.6F demonstrate the ability of the spectrato differentiate between a heart
and a spade, which are essentially identical except for the stem of the spade. The spadein
figure 3.6F contains a population of small scale core atoms across the stem with an
directionality near 1 and an orientation of near 0°. These are missing from the spectrafor the
heart in Fig 3.6E.

Figures 3.7A-F show the effect of rotating the spade. The magnitude and directionality
spectraremain essentially unchanged, while the orientation spectra progress upward. The
strongest orientation is at small scale, where the stem accumulates a cluster with high
directionality.

The encouraging results achieved with this method suggest its adaptation to the analysis of
the cardiac ventricle using RT3D ultrasound, the stated goal of this dissertation. It ispossible
to apply the method to 2D dices from the 3D data set, but some 3D shapes simply do not lend
themselveswell to dicing. Although the LV is, infact, fairly easy to dice, the core atom
method would be more powerful if it could handle 3D shapesin general. True 3D core atoms
can easily be produced using 3D boundariness, face-to-faceness calculated in 3D, etc.
Analysis of core atomsin 3D, however, cannot proceed using angle-doubling. Asdescribed in
the following section, angle-doubling can be replaced with eigenanalysis, which can in fact
operate in any number of dimensions.

Another limitation of the method developed aboveisthat, except in Fig. 3.6B-C, location
information has not been used in the analysis. All of the core atoms in the image are lumped
together into asingle population. Thisis effective only for isolated targets without clutter or
noise, and even those targets must have relatively simple shapes. Aswill be seen in Chapters 4
and 5, more complicated shapes can be analyzed by sorting core atomsinto local clusters, each
cluster providing for the analysis of asmall piece of the overall shape. There are generaly far
fewer core atoms in each local cluster than in the entire image, and sub-dividing each cluster
further by scale leavestoo few at each scale for datistical analysis. Therefore, the concept of
scale spectrawill be abandoned for the remainder of this dissertation, and each local cluster will
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be analyzed asawhole. What islost isthe ability to differentiate two cores of different scale
that cross at a given location (such as the center of the rectangle in Fig 3.4D-F). What is
gained isthe ability to differentiate local concentrations of medialness from one another, both
within one object and between different objects in a given image.

3C. Extracting Local Medial Propertiesin 3D

Consider now core atoms formed in 3D, with boundariness being the likelihood of there
being a surface (wherein 2D it wasacurve). Observe that collections of core atomsin 3D can
group in three basic ways corresponding to the fundamental geometric shapes shown Fig. 3.8.
The surfaces of the objects are shown in dark grey with the corresponding cores shown in light
gray. Under each object is shown the population of core atoms that would be expected to form
with such objects, the core atoms now being depicted as simple line segments.

Fig. 3.8 Fundamental shapes (dark gray), correspondi ng cores (light gray) core atom
populations (line segments) and eigenvectors a,, a, and a,.

The sphere generates a"Koosh ball" configuration of core atoms with spherical symmetry,
with the core atom centers clustered at the center of the sphere.  The cylinder generatesa
"spokes-of-a-whed" arrangement with radial symmetry along the axis of the cylinder and the
core atom centers clustered aong the axis of the cylinder. The dab resultsin a"bed-of-nails’
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configuration across the dab, with core atom centers clustered in the mid-plane of the dlab. The
cores of these basic objects are the point, the line, and the plane. AsshowninFig. 3.8, a
system of shape-specific coordinate axes, namely a,, a,, and a,, can be assigned in each
case, athough not all the axes are unique given the symmetriesinvolved. For example, inthe
slab, a, and a, can rotate freely about a,. Such a set of coordinate axes can be found for any
population of core atoms using eigenanalysis, as will be shown below. Furthermore, the

extent to which a core atom population resembles one of the three basic configurations depends
on the corresponding eigenvalues. Given a population of m coreatomsc, , i =1,2,3,....m,

the analysis of a core atom population begins by separating each core atom vector C; into its
magnitude ¢, and its orientation ¢,. We continue to ignore, for the moment, the location of the
core atom. The analysis of magnitude ¢, over apopulation of core atoms yields a mean and
standard deviation for the measurement of width in the underlying figure. The orientation ¢, of

core atoms in a population lends itself to eigenanalysis, yielding measures of dimensionality
and overall orientation for the population. The eigenanalysisis developed herein m
dimensions, although for the remainder of the paper m will generally be equal to 3.

Given the population of n vectorsin m dimensions, it is possibleto find an m-
dimensional vector a, that is most orthogonal to that population as awhole by minimizing the
sum of squares of the dot product between a and each individual core atom orientation C, .

m

a, = argminié (axc)’ = argmin(éTCé) where C= %ém cc' (3.8)

1l
iy

~ i=1 ~

a a

The exterior product ¢, has the same affect as angle doubling did, namely making the
sense of ¢, irrelevant but encoding itsdirection.  Then aswith angle doubling, the C matrix
averages the results encoding both the directionality and orientation of the core atom
population.

The C matrix is positive definite, symmetric, and has aunit trace. Therefore, its

eigenvalues are positive and sum to 1, and its eigenvectors are orthogonal. If the eigenvalues
of Caresorted| ,£1, £ ... £1 ., thecorresponding eigenvectors &, . . . a,, arethe axes

of acoordinate system in which a, isthe most orthogonal to the population ¢, asawhole.

For example, a, would be the axis of the cylinder in Fig. 3. Furthermore, the eigenanalysis
guarantees that éz is the most orthogonal to the population éi among those directions that are
orthogonal to a,. This process can be repeated until a,, remainsthe least orthogonal to the
population 6i , representing a form of average orientation for 6i . The axes él C ém are thus

ordered from codimensional (orthogonal to the vector set) to dimensional (collinear with the
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vector set). In 3D the codimensional space isthat of the core itself. That is, the space most
orthogonal to the core atoms is the point, line, or plane of the core as shown in Fig. 3.8.

Returning now specifically to 3D, the previous analysis yields three eigenvalues which
describe the dimensionality of the core.

1,30 I, +1,+l,=1 (3.9)

An eigenvalue of 0.0 means that the corresponding eigenvector is perfectly orthogonal to
every coreatom C,. Such isthe casefor a, inthe cylinder, and for both a, and a, in the slab.

In the sphere none of the elgenvectors is completely orthogonal to the core atom popul ation.
Given the symmetries of the three basic shapes, the eigenvalues shown in Fig. 3.9 result.

1y
3
sphere cylinder slab sphere
l,=%¥3 [,=0 l,=0
[,=4Y3 1,=12 l,=0 !
| ;=18 l,=4y2 [1;=1
slab cylinder
I, 1 gl.
3 2

Fig. 3.9 Thelambdatriangle defines the domain of possible eigenvalues
that determine medial dimensiondlity.

Since | ; isdependent on the other two, the system may be viewed as having only two
independent variables: | ; and | ,. Because of constraints already mentioned, possible values
for |, and| , arelimitedby |, £1, and |, £(1-1,)/2 whichdefineatriangular
domain called the lambda triangle (Fig. 3.9).

The vertices of the lambda triangle correspond to the three basic shapesin Fig. 3.8, and
all possible eigenvaluesfall within thetriangle. A rather crude ssimplification of dimensionality
is possible by dividing the triangle into three compartments to provide an integer description of
dimensionality. Arbitrary thresholdsof | ; =1/5 and | , =1/3 will be used to divide the
triangle into such areas of integer dimensionality to clarify the experimental results. However,
it should be remembered that the underlying parameterization of dimensionality is not an integer
or even asingle scalar, but rather two independent scalars, | ; and | ,, whose values are
constrained to be within the lambdatriangle.
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