Chapter 7 Measuring Volume

One last piece of the overal method is required to achieve the goals of this dissertation: a
technique for measuring the volume of the left ventricle. As stated in the abstract, the
measurement of volume isto be accomplished without exact delineation of an object's
boundaries. Most segmentation routines attempt to locate compl ete and precise boundaries,
which provide explicit parameters for measurements and which can be rendered with realism
using computer graphics techniques. Perhaps explicit boundaries seems a more accurate
portrayal of physical reality, because, after all, most real surfaces are defined to a microscopic
scale and interact with light in amanner easily interpretable by the human visual system. A
probabilistic representation of a surface may be just as useful and more robust for making
geometric measurements, but it isnot so easily visualized. The accuracy of measurements
based on probabilistic boundaries can, however, be assessed against those from manually
determined boundaries.

In previous chapters, core atoms formed the basis of a method for identifying an object.
Core atoms can aso be used to derive parameters of an object's shape. The ability of core
atom populations to accurately measure dab thickness, cylinder diameter, and sphere diameter
has already been demonstrated in Chapter 4 with parametric test objects (see Table 4.2). This
approach is successfully adapted to measure the volumes of balloons scanned by RT3D
ultrasound in Chapter 8, using a ssimple spherical model.

To analyze more complicated shapes such asthe |eft ventricle, ageneral theory for
measuring volume based on the media manifold isrequired. Such atheory, that of truncated
wedges isdeveloped in Section 7A and comprises the bulk of this chapter. Thistakes aforay
into anew concept: using local boundary curvature as an aspect of local medial dimensionality.
Although very interesting and perhaps useful eventually, the ideais not actually put into
practice during the remainder of the dissertation. Some of the underlying concepts are,
however, important in developing an iterative Bayesian method for fuzzy segmentation of the
LV in Section 7B. The method is based on an assignment of probability to voxels of beingin
the LV by their intensities and locations with respect to the media node model. From these
probabilities, atotal volume is computed and alocal estimate of error derived relative to manua
tracesin Section 8E.



7A. Truncated Wedges: Volumes from Boundary Curvature and Medial Scale

In this section the theoretical relationship between the boundary and the medial manifold is
explored for the purpose of computing volumes. The volume contained within any closed,
simple, piece-wise smooth boundary can be determined by integrating over the boundary a
function whose only parameters are the principal boundary curvatures and the distance to the
media manifold. This approach is an extension of the common concept of mining rights by
which the interior of the earth is parceled out to patches of real estate on the surface. This
concept can be extended to any object in (1™ for m> 2 independent of topological genus,
yielding a one-to-one mapping between the boundary and the interior, which can be used to
compute properties such as volume.

The relationship between an object'sinterior and its boundary is of fundamental concernin
geometry and provides an approach by which many properties of the object's interior,
including its volume, can be determined from its surface. Since an m-dimensional object has
an (m-21)-dimensiona boundary, the boundary may provide a more convenient domain for
such calculations than the interior. One may determine a 3D object's interior volume (or a2D
object's area) by establishing a one-to-one mapping between its surface (or boundary contour)
and itsinterior -- the mining rights, asit were -- and then integrating these rights over the entire
surface. Vectors normal to the surface separate the mining rights between neighboring portions
of the surface just as stakes driven into the ground separate the claims of neighboring miners.
At the very center of the earth, the mining rights transfer to the other side of the planet. The
center of the earth isjust aspecia case of the locus of points for any shape called the Blum
medial manifold.

For closed contoursin 02, the Blum medial manifold isthat locus of the centers of all
circles completely enclosed by the boundary contour that touch the contour in more than one
location (Blum and Nagel 1978). Thusfor the rectanglein Fig. 7.1, the centers of all such
medial circlesform the branching medial manifold shown asthick dotted lines.

For objectsin 03, the Blum medial manifold isthe locus of all spheres completely
enclosed by the boundary surface that touch the surface at more than one location (Nackman
1982; Nackman and Pizer 1985). For m-dimensional objects, the generic medial manifold has
(m-1) dimensions, although fewer dimensions are possible in non-generic cases. In O°, for
example, although the generic medial manifold has 2 dimensions, the medial manifold of a
cylinder may contain portions that collapse to 1 dimension. For a sphere, the medial manifold
has zero dimensions, i.e., that point at the center of the earth.
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Fig. 7.1. The Blum medial manifold of arectangle (thick dotted lines) is the locus of
centers of all medial circles, i.e., those circles lying completely within the rectangle that touch
the boundary in at least 2 places.

a b

Fig. 7.2 Examples of 3D objects with simple shapes. The "minera rights’ for a surface
patch are shown in each case extending orthogonal from the surface half-way through the
object to the opposite side.

Corporations that extract minerals and oil divide the planet into wedge-shaped pieces
extending straight down from any parcel of real estate to the center of the earth, as shown in
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Fig 2a. This approach conceptually permits the measurement of the earth's volume by
summing the mining rights for each patch of the earth's surface, since these rights completely
fill the earth but do not overlap. This same approach could be used to establish the volume of a
hypothetical cylindrical planet by extending mineral rights from the surface of the cylinder
down to its central axis, as shown in Fig. 7.2b. A one-to-one correspondence exists between
the surface and the interior volume that can be used to compute the volume from the surface.

In these two objects -- the sphere and the cylinder -- the mineral rights converge on the medial
manifold of the object, being the central point of the sphere and the central axis of the cylinder
(forgetting, for now, the ends of the cylinder). Beyond the medial manifold the mining rights
belong to the other side of the object.

The manner in which mining rights intersect the medial manifold is governed in part by the
principal curvatures of the surface (for areview of principal curvature, see (Koenderink
1990)). Consider again the square patch on the surface of the sphere (Fig. 7.2a) and the lines
orthogonal to the surface running straight down from the four corners of that patch to the center
of the sphere. They meet precisely at the center because the two principal curvatures of the
surface are equal and constant everywhere. The square patch on the surface of acylinder (Fig.
7.2b) produces four straight lines orthogonal to the surface that reach the central axisin two
paralld pairs, forming awedge cut from adisk like a piece of cheese. This happens because
one of the principal curvatures is constant while the other is zero.

Next consider the pear-shaped object in Fig. 7.2c. Like the cylinder, the pear's medial
manifold contains aline along the central axis, although now the 2 principal curvatures on the
surface patch are neither zero nor equal. For the hyperbolic surface patch shown in Fig. 7.2c,
the principa curvatures have opposite signs. The mining rights are still easily defined by
extending straight lines orthogonal to the surface from the 4 corners of the patch to the medial
manifold, to form awedge that widens at its cutting edge like the blade of an axe. Such wedges
would fill the space within the pear and would not overlap, so they could till be used to
compute the volume from the surface exactly as before.

Fig. 7.2d shows a somewhat different case in which the borders of the mining rights do
not converge at the medial manifold. In thisflat dab, the 2 principal curvatures of the surface
are both zero and the borders of the mineral rights for the surface patch extend in parallel to the
medial manifold. Half-way through the dlab, those rights are simply transferred to the opposite
side. Fig. 7.2e shows a curved slab with various unequal principal curvatures and a surface
patch with its mining rights extending down to the medial manifold. In al these cases, it should
be clear that the total volume can be found by summing the volumes of the individua mining
rights.
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circle

Fig. 7.3 a. Loca coordinate system with t tangential to, and n normal to, the object's
boundary. b. Osculating circle with radius F and a sector of that circle corresponding to
boundary interval As.

Consider now the closed boundary contour of the 2D object depicted in Fig. 7.3a. At each
boundary point a coordinate system can be defined consisting of the unit tangent vector t and
the unit normal vector n. Ascan be seenin Fig. 7.3b, a step aong the boundary of length As
can be approximated by the vector As. Thevector F [ establishesthe center of the
osculating circle, being that circle which shares the tangent and the curvature with the
boundary. Thefocal length F istheradius of that osculating circle and the inverse of the
boundary'slocal curvature. The mining rights of the boundary segment As fall within a sector
formed by two such radii of the osculating circle. At some point within that sector, the mining
rights may be transferred to the opposite boundary. It is worth noting here that any straight line
entering an object orthogonal to its surface must intersect the medial manifold before exiting the
other side.
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Areaof an arbitrary 2D shape

A mathematical expression can now be devel oped for the area of any closed smooth object
in 02 asafunction of the boundary curvature and the distance to the medial manifold. First
consider a section of boundary that is convex, that isto say F is positive, as shown in Fig.
7.4a. The medial manifold (thick dotted line) is shown at adistanceR from the boundary. R is
the medial scale, the radius of the medial circle (see Fig. 7.1), while F isthe radius of the
corresponding osculating circle. The mining rights, approximated by the trapezoidal area AA,
consist of asector of the osculating circle truncated at the medial manifold.

areaAA

—>. . . .

medial

Fig. 7.4 a. Convex boundary segment (thick solid line) and corresponding medial
manifold (thick dotted line) at adistance R from the boundary (F > 0). Area AA
approximates the "mining rights" of boundary interval AS.  b. Same for a concave
boundary segment (F < 0).

The relationship between the medial circle and the osculating circleis central to this
dissertation. Since the medial circle must lie completely within the object, it cannot be larger
than the corresponding osculating circle. Therefore, R< F, and at some point along the sector
of the osculating circle (perhaps only at its vertex, if R= F), the sector intersects the media
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manifold and the mining rights are transferred to another |ocation on the boundary also touched
by the medial circle.

Now consider the convex boundary segment shown in Fig. 7.4b. Here the focal length F
is negative and the distance to the medial manifold R can assume any positive value. This
would also be true for a straight boundary segment, for which F = co. Whether concave,
convex, or straight, in all cases the area of the trapezoid AA can be found by integrating the
height of the trapezoid Ah as afunction of the distance r along the n axis, where

Ah= - %E@s. (7.1)

As As - 0, theinfinitesmal area dA corresponding to the mining rights of the infinitesimal
boundary interval ds may therefore be expressed as

dA= a:%.—%gpr gjs. (7.2)

Thetotal area A of the object can be found by integrating dA over the entire boundary contour
S, assuming convergence of AA on the actual mining rights:

A= fdA (7.3)

Several examples areillustrative here. First, consider acircle of radius R. The constant
curvature of the boundary guaranteesthat R = F everywhere, so the area dA corresponding to
the segment ds can be found by substituting into Eq. (7.2) to yield

0 o]t R
dA=F -1 g ="d 7.4
H 2RE‘H0 2® (74

Integrating dA over the boundary contour S of the circle, whose length is 271R where R is
congtant, yields the correct area:

ds= nR’. (7.5)

N | o

1
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Another exampleis shown in Fig. 7.5. This rectangle serves to demonstrate the special
case of the straight boundary segment whose focal length F = . In this case, substitution into
Eq. (7.2) yields

dA = a':g—ggpr gjs: R[ds. (7.6)

Fig. 7.5 Rectangle with mining rights extending in thin ribbons
from the boundary to medial manifold.

Thus, for astraight boundary segment, dA represents an infinitesimally thin stripe
orthogonal to the surface, extending to the medial manifold along the radius of amedial circle.
Therectangleis completely filled by such stripes, which are able to reach every portion of the
interior. There can be no intervening branches of the medial manifold producing unreachable
portions of the interior, since any such branches would represent amedial circle completely
enclosed within another medial circle. Thisisimpossible because each media circle must touch
the boundary in more than one location. Since the boundary is piece-wise smooth, the
integration around it can be accomplished by sections that contain no sharp corners.
Alternatively, the corners can be viewed as non-zero (but very small) minimain the focal
length F, in other words, not really corners but ssmply maximain the allowable curvature of a
smooth boundary.

Volume of arbitrary shapesin 3 or more dimensions

The same approach can be applied to finding the volume of an object from its boundary in
0%, All that is required for each patch of boundary surface is knowledge of the distance Rto
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the medial manifold and the focal lengths F, and F, of the osculating disks corresponding to

the two principal curvatures (see Fig. 7.6). Whereas a single tangent t andinterval As suffice
to describe the boundary contour in 02, two orthogonal principal directions fl and f2 and a
surface patch of area (As)2 are required to describe the boundary surface of an objectin 02,

Given such a surface patch, the mining rights between the surface patch and the media
manifold can be found by integrating the area (Ahl mhz) as afunction of distance r aong the

n axis, within an osculating wedge truncated by the medial manifold, where

boundary
surface

medial
manifold

As

)
=
~—+ )

5 N

, Fi |

Fig 7.6 In [ 3 the mini ng rights of a surface patch form an osculating wedge
truncated at the media manifold.

_g_ rg L
Ah-% Fi%s i=1 2 (7.7)

As As - 0, theinfinitesmal volume dV corresponding to the mining rights for the
infinitesimal boundary patch ds® may be expressed as
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v = é’f%—%%—é@m E@sz. (7.8)

The particular wedge shown in Fig. 7.6 does not converge to a point, but rather to a blade,
since evidently for this surface patch, F, # F,. Thefocal length F, corresponds to the principal
curvature in the fl direction, and F, to the principal curvaturein the fz direction. By the same
arguments given above for osculating and medial circlesin 2, any focal length corresponding
to aconvex principa curvature limits R asfollows:

F >R, if F>0, i=12 (7.9)

The wedge must intersect the medial manifold, or at least make contact with it, within the
smallest convex focal length.
Thetotal volume V can be found by integrating dV over the boundary surface A.

V=fav, (7.10)

again assuming convergence.

Consider an examplein 3D. A sphere of radius R has constant principal curvatures
R=F, = F,, so that by substituting into Eq. (7.8), the infinitessimal volume dV
corresponding to the infinitesimal surface patch ds” is

R

o r? r*0,, R
— = —ds’. 7.11
raaad Rl (710

V=g Rr*

Integrating everywhere on the surface A = 47iR?, where R is constant, yields the correct
volume for a sphere of

V= jfgda = —R. (7.12)

In the general case of m dimensions, the hypervolume V can found by integrating dV
over the (m-1) dimensional boundary, where
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rm-1[]

av = Qg—%@s’“ﬂdr. (7.13)

Thus dV isa"hyper-wedge" truncated at the medial manifold for the infinitesimal
boundary patch ds™*, where F, isthe focal length corresponding to theith principal direction
on the hypersurface.

The topological genus of the object makes no difference, since the method relies on the
purely local relationship between the surface and the medial manifold. For example, one can
imagine summing the mining rights for atorus, which islocally indistinguishable from a
cylinder.

error area | areaAA error aree

medial
manifold

t
T—»ﬁ

boundary

Fig. 7.7  Potentia errorsin the calculation of AA for a concave boundary segment.

Do the errors vanish?

Theissue of convergence bears examination. Assume that the parametric descriptions of
both the boundary and medial manifold are known. Consider an object in %, Shown in Fig.
7.7 isaconcave boundary segment and corresponding medial manifold. The concave
boundary was chosen for thisillustrations since it magnifies the area of error € between the
medial manifold and the edge v of the trapezoid AA. A second area of error w is shown
between the boundary contour and the boundary tangent Asii. Clearly w/AA - 0 as
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ds - 0, so w canbeignoredinthelimit. The error € cannot so easily be ignored, however,
since v isgeneraly not tangential to the media manifold. Thearea € as As — 0 can be
approximated for a concave boundary as

_ Nftan6 _,, w2OF+Rftang

lime = =(As) OF 0 3 ° if F<O (7.14)
and for a convex boundary segment as

ime = (asPE-ROMNE 4 o (7.15)

£s-0 g O 2 7 ' '

which simplifies for a straight boundary segment to

. _ »tand . _
Igrjg‘—(As) — if F=o0. (7.16)
Inall cases, € - 0 as (As)’ and thusthe error & vanishesin the computation of the total
area A as As - 0, except where8 — 717/2 and tan8 — . This occurs when the radius vector
r = RO intersects the medial manifold tangentially, which can be divided into two special

cases.

medial
manifold

r’ﬁ)
=)

boundary
Fig. 7.8  Singular case for convex boundary.

First, consider the case for a convex boundary segment (see Fig. 7.8). In this case the
medial manifold istangential to r at their intersection only for alocal minimumin R aong the
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boundary, i.e., asmallest osculating circle, whereR=F. Thisinturnimpliesthat v in Fig.
7.7 has zero length and Eq. (7.14) mandatesthat € =0.

Next consider the case for a concave boundary segment. The phenomenon of r being
tangential to the medial manifold at their intersection can only occur at a boundary point such as
S, inthe Fig. 7.9. The corresponding medial location is an end of the medial manifold and
there must be at least two other contacts between its medial circle and the boundary. Thusit
must represent a branch point in the medial manifold and the branches must extend in such a
way as to block the expanse of error area &, reducing the situation to the case depicted in Fig.
7.7, where 6 # /2 and tan 8 isfinite. The same argument can be applied to the case of the

flat boundary.

Fig. 7.9 Singular case for concave boundary.

In higher dimensions 0™, for m> 2, each (As)™ patch of the boundary has only one
radius vector T, but (m-1) principal curvatures. Each principal curvature F, hasitsown
angle 68, with respect to the medial manifold. For agiven F, the degenerate case 6, = 772 may
produce a sub-manifold on the boundary of up to (m-2) dimensionsin which one of the two
casesin Figs. 7.8 and 7.9 apply. In al casesthe errorsin the calculated volume will vanish as
As - 0.

Practical Applications for Truncated Wedges

The method presented here uses the medial manifold to resolve ownership between
boundaries across the object and it uses boundary curvature to resolve ownership between
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adjoining portions of the boundary. The resulting osculating wedges, truncated by the medial
manifold, map each portion of the boundary to aunique portion of the interior. The boundary
of an m-dimensional object has only (m-1) dimensions and thus may present advantagesin
the practical problem of determining the volume of an object. While it is true that the medial
manifold also has only (m—1) dimensions, it displays a more complex relationship with the
interior, since asingle location on the media manifold may correspond to multiple locations on
the boundary.

The truncated wedges bear some resemblance to Green's and Stokes' theorems, which
relate an object's boundary to itsinterior by integrating a function of some underlying field
(Kaplan 1973). Eberly and others have followed this approach, viewing the boundary asa
level curve of some function whose value is greater inside the object than a threshold at the
boundary (Eberly and Lancaster 1991, November; Eberly, Lancaster et a. 1991, November).
The truncated wedges depend, instead, on a purely geometric relationship, with a deeper
connection to other geometric processes. These include Delauney triangulation and V oronoi
diagrams, by which the interior of a shape may be assigned to its nearest boundary and thereby
broken into subunits with smpler geometric properties (O'Rourke 1998).

Any practica application of truncated wedges will depend upon prior determination of the
distance to the media manifold, which isanon-trivial problem. Severa recent devel opments
hold promise. Culver finds the medial manifold from a polygonal surface using aVoronoi
approach (Culver 1998). Fritsch and Pizer have developed Deformable Shape Loci to adapt a
medial model to fit objectsin gray scale data (Pizer, Fritsch et al. (in press); Fritsch, Pizer et al.
1997). Furst has devised methods of tracking ridges of medialnessin gray scale data (Furst
and Pizer June 1996). The author has devel oped methods of describing the medial manifold
statistically in gray scale datawhich are the subject of this dissertation (Stetten, Landesman et
al. 1997; Stetten and Pizer 1999).

The practica application of truncated wedges will aso depend upon the determination of
local boundary curvature. For sampled boundary representations, boundary curvatureisa
function of scale. This suggests that a coarse-to-fine approach might provide estimates of
volume at varying levels of precision. In situations where the derivatives of the media locus
are known, it has been shown how to compute the corresponding boundary's curvature
(Nackman 1982). In situations where the medial information is derived from by core atom
cluster, it may be possible to determine an appropriate scale and stabilize boundary parameters
such as curvature by permitting the proper ordering of boundary points (Amenta, Bern et al.
1998).

For any of these methods, errors may arise in the subsequent volume cal culation beyond
those that vanish in the theoretical treatment above. Further problems may arisein
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parameterization of the boundary itself, to perform the integration of volume. While
parameterization of aclosed contour in [] 2 isgtrai ghtforward, it can be problematic for
boundariesin higher dimensions.

Besides cal culating volume, the truncated wedges approach may provide a basis for
techniques, such asfinite eement analysis, that depend upon compartmentalizing the interior
of an object and that may encounter problems when distorting the standard rectilinear
coordinate system to match an object's shape. These problems might be avoided by using
truncated wedges for compartmentalization.

In summary, asimple relationship exists between the volume, the boundary curvature, and
the distance to the medial manifold for objectswith m=> 2 dimensions, piece-wise smooth
boundaries, and any topological genus. The relationship generalizes the concept of mining
rights, allowing the interior to be mapped from the surface, for the purpose of calculating
volume and possibly determining other properties of the object.
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7B. Fuzzy Segmentation of the Left Ventricle

The concept of truncated wedgesis applicable in agenera senseto the goal of computing
the volume of the LV. Given amedia framework for a particular ventricle, an estimation of the
ventricular volume and the location of the endocardial boundary can be made by organizing
voxelsinto wedges. Inthe following chapter, such amedia framework (in the form of the
MNM from Section 2D) will be used to locate the Apex-to-Mitra Vave (AMV) axisof theLV.
This section describes how the AMV axis so produced can be used to perform a fuzzy
segmentation of the LV.

Fuzzy Logic is an extension of Set Theory that permits an element to be partially included
inaset. Such partial inclusion can be viewed as the probability of the element being in the set.
In this manner, each voxel in an image may be assigned a probability of being in the ventricle.
This probability depends on both the voxel's location and its intensity. Dark voxels near the
AMYV axisarelikely to beinthe LV. Voxesthat are brighter and/or further from the axis are
lesslikely to beintheLV. Inthefollowing sections, the probability of beinginthe LV dueto
location and that due to intensity will each be assigned an individual value. The two will then
be combined into a single aggregate probability of being in the ventricle.

Probability due to location

The probability p, (j) of voxel j being within the ventricle solely because of itslocation is
determined by using a surface model of expected ventricular shape. The surface model is
located and scaled to the particular ventricle and provides a more detailed description of
ventricular shape than the MNM.

Spherical rather than cylindrical coordinates are used for the surface model because
spherical coordinatesincorporate medial and end geometriesinto asingle set of parameters
thus avoiding the need to pre-assign end points to the ventricular cylinder. The origin chosen
for the spherical coordinate system isthe midpoint of the apex-to-mitral-valve (AMV) axis, as
shown in Fig. 7.10, with the poles of the sphere being the end points of the AMV axis. The
angle ¢ correspondsto latitude, with ¢ = 0" at themitral valveand ¢ =180" at the ventricular
apex. Theangle w correspondsto longitude, or rotation around the AMV axis with

0" <w<360°". Thethird coordinate r istheradia distance to the midpoint of the AMV axis.
The expected surface for the ventricle is determined by afunction ro(d)) , such that

r =r,(¢) at the surface. Thefunction r,(¢) isinvariantto c, exhibiting cylindrical
symmetry around the AMV axis. A second surface, defining aregion of interest (ROI), is
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specified by the function r,(¢). The ROI surrounds and includes the expected ventricular

shape and will be used to generate regiona statistics of voxel intensity in the following section.
For the purposes of this dissertation, the functions r,(¢) and r,(¢) have simply been drawn
by hand to resemble a ventricle and a reasonable surrounding ROI. Actual values have been
taken from the drawing in Fig. 7.10, by measuring angles and distances from the axis
midpoint. These will be adjusted to fit the orientation and size information given by the MNM
for aparticular ventricle.

voxelO

w AMV axis r J
{\ k‘ .;/t’ﬁ l mitral
U «—m—> valve

ventricle  axis midpoint

Fig 7.10 Surface model defining aregion of interest (ROI) and an expected ventricular
boundary.

| | mitral
valve

axis midpoint

ventricle

Fig 7.11 Two independent scales are determined for the ventricular boundary.
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The surface model is scaled in two independent dimensions: an axial scale S, and amedial
scale S, asshownin Fig. 7.11. Thelengths of these two scales must be related to the actual
ventriclein question. When the MNM finds a particular ventricle, two corresponding scales
Sa' and Sn' aremeasured. Theaxial scale Sa' isthe length of the particular AMV axis. The
media scale S,n' isthe mean length of the core atomsin the cylindrical clusters that match the
particular LV.

Voxe location isrelated to the surface model asfollows: The AMV axisin the surface
model is set to the AMV axisfound by the MNM. For agiven voxel, two orthogonal
components of the radius to the midpoint are measured, @' and m' , corresponding to a and

m inFig. 7.10. The axia component a issigned aong the AMV axis, with a >0 towards
the mitral valve and a < O toward the apex from the axis midpoint. The medial component m
isunsigned and symmetric around the axisin 3D. The measured values @' and m' are scaled
to the surface model asfollows

Dsa ] DSn 0
a=am—sn m=m3+50q (7.17)
0S, 0O 0S, 0

Asusual, theangle ¢ and radius r are determined as

= tan‘lggg 0 < ¢ <180° (7.18)
1
r= (a2 + m2)2.

Givenvoxel | withangle ¢ andradius r, the probability pL(j) of being inthe ventricleis
determined as afunction of r using the probability function shown in Fig. 7.12 where ro(¢)
is the expected distance to the ventricular boundary at latitude ¢ . Insidethe boundary r =r,,,
the probability is greater than 1/2, whereas outside it islessthan 1/2. The function in Fig.
7.12, aswell asthat in Fig 7.13, have ssimply been drawn by hand for the purposes of this
dissertation. Finding corresponding functions that optimize the accuracy of the resulting
segmentation is beyond the scope of the present research.
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Fig 7.12 Probability p, of avoxel being within the ventricle, given ¢ and r.

Probability dueto intensity

Besides |ocation, another factor governing the probability of being in the ventricleis
intensity. Ventricular voxels are darker than other voxels. Let p, (J) denote the probability of
voxel | being within the ventricle, givenitsintensity. Intensity in ultrasound images varies
unpredictably from one scan to another. To compensate for this, the probability function for

p,(j) isbased on astatistical study of voxelsin the ROI for aparticular heart.

Observe that voxelsin the ROI fall into 3 categories. The darkest voxels arein the ventricle
and tend to have intensities near zero. The next brightest voxels are in the myocardium, located
further from the AMV axis. Myocardial voxels are quite often difficult to distinguish from
ventricular voxels because they are nearly as dark, often making the endocardial boundary
completely indistinguishable. The epicardial/septal voxels are generally till further from the
AMYV axisand much brighter. Core atomsin the cylindrical clusters that match the LV node of
the MNM tend to find the epicardia border rather than the endocardial border because the
gradient magnitude is larger at the epicardial border.

Statistics for a particular image are computed on voxels within the ROI asfollows. amean
intensity I of all voxelsin the ROI is computed weighting each voxel'sintensity 1(j) by its

p.(i),
> p()1(i)

== (7.19)

p.(i)

faze]
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Ventricular voxels are thus favored by their tendency to be located near the AMV axis, although

other voxels are represented aswell. Thevalueof | reflects the particular intensities of voxels
in theimage and is used in the function shown in Fig. 7.13 to compute the probability p, (j)

for each voxel, given itsintensity 1(j).

p (i)

] i 1(j)

Fig 7.13 Function for computing a voxel's p,(j) fromitsintensity 1(j) giventhe
weighted mean intensity | over the ROI.

Adqggregate probability

The probabilities due to location and intensity devel oped in the previous two sections are
combined into a single probability for the fuzzy segmentation of theLV. Let p,(j) denotethe

aggregate probability that voxel j isin the ventricle, given both itslocation and intensity. The
probability p,(j) issome combination of p,(j) and p,(j) defined by an operator denoted A

pa(i) = Ad pi(i).p.() B (7.20

The A operator is designed to exhibit certain behaviors. It is monotonic with positive
slope for both p,(j) and p,(j), mapping domain [0,1] for p,(j) and p (j) intoarange [0,1]
for p,(j). If either argument p, (j) and p, (j) isequal to 1/2, then p,(j) equalsthe other
argument, so that a probability of 1/2 exerts neither positive nor negative influence. If either
p,(j) or p.(j) is 0, then p,(j) is 0, so that either can independently exclude any voxel from
the ventricle.
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A linear, continuous, piece-wise smooth function that satisfies the above constraintsis
described by the equations

0o, p (i) +p(i) <2
EZpL(j), p.(i) - p.(i)>¥2

p(i)=02p (i) p.(i)-m(i)>12 (7.21)
oL p(i)+p(i)>32

@p.()+pL(J) 12, otherwise

and is shown graphically in Fig. 7.14.

A
1‘\ \/
1
p
pl,L p|/

Y
0 —~—p

Fig 7.14 The A operator for computing aggregate probability p,(j) from p_(j) and p,(j)
islinear, continuous, piece-wise smooth.

This function yields an aggregate probability p,(j) from theindividual probabilities, p, (j)
and p,(j), inamanner consistent with the desired behavior for the A operator.
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Computing volume from aggregate probability

Once each voxd has been assigned an aggregate probability pA(j ) atotal volume v, for
the ventricle can be computed as the sum of the aggregate probability for each voxel in the ROI

va= > Pa(iMi) (7.22)

j ROl

weighted by v(j), the volume of that voxel.

In the following chapter, some of the methods developed thus far in this dissertation are
tested on RT3D ultrasound scans of balloons and in vivo human cardiac ventricles. In
particular, the method for fuzzy segmentation and volume computation in this section is applied
to thein vivo left ventricle in Section 8E, with accuracy judged by comparison to manual
tracings.
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