
Chapter 7   Measuring Volume

One last piece of the overall method is required to achieve the goals of this dissertation:  a

technique for measuring the volume of the left ventricle.  As stated in the abstract, the

measurement of volume is to be accomplished without exact delineation of an object's

boundaries.  Most segmentation routines attempt to locate complete and precise boundaries,

which provide explicit parameters for measurements and which can be rendered with realism

using computer graphics techniques.  Perhaps explicit boundaries seems a more accurate

portrayal of physical reality, because, after all, most real surfaces are defined to a microscopic

scale and interact with light in a manner easily interpretable by the human visual system.  A

probabilistic representation of a surface may be just as useful and more robust for making

geometric measurements, but it is not so easily visualized.   The accuracy of measurements

based on probabilistic boundaries can, however, be assessed against those from manually

determined boundaries.

In previous chapters, core atoms formed the basis of a method for identifying an object.

Core atoms can also be used to derive parameters of an object's shape.  The ability of core

atom populations to accurately measure slab thickness, cylinder diameter, and sphere diameter

has already been demonstrated in Chapter 4 with parametric test objects (see Table 4.2).  This

approach is successfully adapted to measure the volumes of balloons scanned by RT3D

ultrasound in Chapter 8, using a simple spherical model.

To analyze more complicated shapes such as the left ventricle, a general theory for

measuring volume based on the medial manifold is required.  Such a theory, that of truncated

wedges  is developed in Section 7A and comprises the bulk of this chapter.  This takes a foray

into a new concept: using local boundary curvature as an aspect of local medial dimensionality.

Although very interesting and perhaps useful eventually, the idea is not actually put into

practice during the remainder of the dissertation.  Some of the underlying concepts are,

however, important in developing an iterative Bayesian method for fuzzy segmentation of the

LV in Section 7B.  The method is based on an assignment of probability to voxels of being in

the LV by their intensities and locations with respect to the medial node model.  From these

probabilities, a total volume is computed and a local estimate of error derived relative to manual

traces in Section 8E.
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7A.  Truncated Wedges: Volumes from Boundary Curvature and Medial Scale

In this section the theoretical relationship between the boundary and the medial manifold is

explored for the purpose of computing volumes.  The volume contained within any closed,

simple, piece-wise smooth boundary can be determined by integrating over the boundary a

function whose only parameters are the principal boundary curvatures and the distance to the

medial manifold. This approach is an extension of the common concept of mining rights by

which the interior of the earth is parceled out to patches of real estate on the surface. This

concept can be extended to any object in ℜm  for m ≥ 2 independent of topological genus,

yielding a one-to-one mapping between the boundary and the interior, which can be used to

compute properties such as volume.

The relationship between an object's interior and its boundary is of fundamental concern in

geometry and provides an approach by which many properties of the object's interior,

including its volume, can be determined from its surface. Since an m -dimensional object has

an m − 1( )-dimensional boundary, the boundary may provide a more convenient domain for

such calculations than the interior. One may determine a 3D object's interior volume (or a 2D

object's area) by establishing a one-to-one mapping between its surface (or boundary contour)

and its interior -- the mining rights, as it were -- and then integrating these rights over the entire

surface. Vectors normal to the surface separate the mining rights between neighboring portions

of the surface just as stakes driven into the ground separate the claims of neighboring miners.

At the very center of the earth, the mining rights transfer to the other side of the planet. The

center of the earth is just a special case of the locus of points for any shape called the Blum

medial manifold.

For closed contours in ℜ2, the Blum medial manifold is that locus of the centers of all

circles completely enclosed by the boundary contour that touch the contour in more than one

location (Blum and Nagel 1978). Thus for the rectangle in Fig. 7.1, the centers of all such

medial circles form the branching medial manifold shown as thick dotted lines.

For objects in ℜ3, the Blum medial manifold is the locus of all spheres completely

enclosed by the boundary surface that touch the surface at more than one location (Nackman

1982; Nackman and Pizer 1985). For m -dimensional objects, the generic medial manifold has

m − 1( ) dimensions, although fewer dimensions are possible in non-generic cases. In ℜ3, for

example, although the generic medial manifold has 2 dimensions, the medial manifold of a

cylinder may contain portions that collapse to 1 dimension. For a sphere, the medial manifold

has zero dimensions, i.e., that point at the center of the earth.
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medial
circle

Fig. 7.1.    The Blum medial manifold of a rectangle (thick dotted lines) is the locus of
centers of all medial circles, i.e., those circles lying completely within the rectangle that touch

the boundary in at least 2  places.

a b c

d e

Fig. 7.2    Examples of 3D objects with simple shapes. The "mineral rights" for a surface
patch are shown in each case extending orthogonal from the surface half-way through the

object to the opposite side.

Corporations that extract minerals and oil divide the planet into wedge-shaped pieces

extending straight down from any parcel of real estate to the center of the earth, as shown in
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Fig 2a. This approach conceptually permits the measurement of the earth's volume by

summing the mining rights for each patch of the earth's surface, since these rights completely

fill the earth but do not overlap. This same approach could be used to establish the volume of a

hypothetical cylindrical planet by extending mineral rights from the surface of the cylinder

down to its central axis, as shown in Fig. 7.2b. A one-to-one correspondence exists between

the surface and the interior volume that can be used to compute the volume from the surface.

In these two objects -- the sphere and the cylinder -- the mineral rights converge on the medial

manifold of the object, being the central point of the sphere and the central axis of the cylinder

(forgetting, for now, the ends of the cylinder). Beyond the medial manifold the mining rights

belong to the other side of the object.

The manner in which mining rights intersect the medial manifold is governed in part by the

principal curvatures of the surface (for a review of principal curvature, see (Koenderink

1990)). Consider again the square patch on the surface of the sphere (Fig. 7.2a) and the lines

orthogonal to the surface running straight down from the four corners of that patch to the center

of the sphere. They meet precisely at the center because the two principal curvatures of the

surface are equal and constant everywhere. The square patch on the surface of a cylinder (Fig.

7.2b) produces four straight lines orthogonal to the surface that reach the central axis in two

parallel pairs, forming a wedge cut from a disk like a piece of cheese. This happens because

one of the principal curvatures is constant while the other is zero.

Next consider the pear-shaped object in Fig. 7.2c. Like the cylinder, the pear's medial

manifold contains a line along the central axis, although now the 2 principal curvatures on the

surface patch are neither zero nor equal. For the hyperbolic surface patch shown in Fig. 7.2c,

the principal curvatures have opposite signs. The mining rights are still easily defined by

extending straight lines orthogonal to the surface from the 4 corners of the patch to the medial

manifold, to form a wedge that widens at its cutting edge like the blade of an axe. Such wedges

would fill the space within the pear and would not overlap, so they could still be used to

compute the volume from the surface exactly as before.

Fig. 7.2d shows a somewhat different case in which the borders of the mining rights do

not converge at the medial manifold. In this flat slab, the 2 principal curvatures of the surface

are both zero and the borders of the mineral rights for the surface patch extend in parallel to the

medial manifold. Half-way through the slab, those rights are simply transferred to the opposite

side. Fig. 7.2e shows a curved slab with various unequal principal curvatures and a surface

patch with its mining rights extending down to the medial manifold. In all these cases, it should

be clear that the total volume can be found by summing the volumes of the individual mining

rights.
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Fig. 7.3    a. Local coordinate system with t̂   tangential to, and n̂ normal to, the object's
boundary.   b.  Osculating circle with radius F  and a sector of that circle corresponding to

boundary interval ∆s .

Consider now the closed boundary contour of the 2D object depicted in Fig. 7.3a.  At each

boundary point a coordinate system can be defined consisting of the unit  tangent vector  t̂  and

the unit normal vector n̂.  As can be seen in Fig. 7.3b, a step along the boundary of length ∆s

can be approximated by the vector ∆s ⋅ t̂ .  The vector F ⋅ n̂  establishes the center of the

osculating circle, being that circle which shares the tangent and the curvature with the

boundary.  The focal length F  is the radius of that osculating circle and the inverse of the

boundary's local curvature.  The mining rights of the boundary segment ∆s  fall within a sector

formed by two such radii of the osculating circle. At some point within that sector, the mining

rights may be transferred to the opposite boundary. It is worth noting here that any straight line

entering an object orthogonal to its surface must intersect the medial manifold before exiting the

other side.



82

Area of an arbitrary 2D shape

A mathematical expression can now be developed for the area of any closed smooth object

in ℜ2 as a function of the boundary curvature and the distance to the medial manifold. First

consider a section of boundary that is convex, that is to say F  is positive, as shown in Fig.

7.4a. The medial manifold (thick dotted line) is shown at a distance R  from the boundary. R  is

the medial scale, the radius of the medial circle (see Fig. 7.1), while F  is the radius of the

corresponding osculating circle. The mining rights, approximated by the trapezoidal area ∆A ,

consist of a sector of the osculating circle truncated at the medial manifold.

area

medial
manifold

medial
manifold

a b

n̂

t̂

F

F

∆A
area∆A

R

∆h

R

∆h

∆s⋅ t̂

∆s⋅ t̂

r

r

Fig. 7.4     a.  Convex boundary segment (thick solid line) and corresponding medial
manifold (thick dotted line) at a distance R from the boundary ( F > 0 ). Area ∆A

approximates the "mining rights" of boundary interval ∆s .      b.  Same for a concave
boundary segment ( F < 0).

The relationship between the medial circle and the osculating circle is central to this

dissertation. Since the medial circle must lie completely within the object, it cannot be larger

than the corresponding osculating circle. Therefore, R ≤ F , and at some point along the sector

of the osculating circle (perhaps only at its vertex, if R = F), the sector intersects the medial
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manifold and the mining rights are transferred to another location on the boundary also touched

by the medial circle.

Now consider the convex boundary segment shown in Fig. 7.4b. Here the focal length F

is negative and the distance to the medial manifold R  can assume any positive value. This

would also be true for a straight boundary segment, for which  F = ∞ . Whether concave,

convex, or straight, in all cases the area of the trapezoid ∆A  can be found by integrating the

height of the trapezoid ∆h as a function of the distance r  along the n̂ axis, where

∆h = 1 − r

F




 ∆s . (7.1)

As ∆s → 0, the infinitesimal area dA corresponding to the mining rights of the infinitesimal

boundary interval ds  may therefore be expressed as

dA = 1 − r

F




 dr

0

R

∫




ds . (7.2)

The total area A  of the object can be found by integrating dA over the entire boundary contour

S , assuming convergence of ∆A  on the actual mining rights:

A = dA
S
∫ (7.3)

Several examples are illustrative here. First, consider a circle of radius R . The constant

curvature of the boundary guarantees that R = F  everywhere, so the area dA  corresponding to

the segment ds  can be found by substituting into Eq. (7.2) to yield

dA = r − r2

2R







ds
0

R

= R

2
ds (7.4)

Integrating dA over the boundary contour S  of the circle, whose length is 2πR where R  is

constant, yields the correct area:

A = R

2
S
∫ ds = πR2 . (7.5)
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Another example is shown in Fig. 7.5. This rectangle serves to demonstrate the special

case of the straight boundary segment whose focal length F = ∞ . In this case, substitution into

Eq. (7.2) yields

dA = 1 − r

∞




 dr

0

R

∫




ds = R ⋅ ds . (7.6)

Fig. 7.5    Rectangle with mining rights extending in thin ribbons

from the boundary to medial manifold.

Thus, for a straight boundary segment, dA represents an infinitesimally thin stripe

orthogonal to the surface, extending to the medial manifold along the radius of a medial circle.

The rectangle is completely filled by such stripes, which are able to reach every portion of the

interior. There can be no intervening branches of the medial manifold producing unreachable

portions of the interior, since any such branches would represent a medial circle completely

enclosed within another medial circle. This is impossible because each medial circle must touch

the boundary in more than one location. Since the boundary is piece-wise smooth, the

integration around it can be accomplished by sections that contain no sharp corners.

Alternatively, the corners can be viewed as non-zero (but very small) minima in the  focal

length F , in other words, not really corners but simply maxima in the allowable curvature of a

smooth boundary.

Volume of arbitrary shapes in 3 or more dimensions

The same approach can be applied to finding the volume of an object from its boundary in

ℜ3. All that is required for each patch of boundary surface is knowledge of the distance R to
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the medial manifold and the focal lengths F1 and F2  of the osculating disks corresponding to

the two principal curvatures (see Fig. 7.6).  Whereas a single tangent t̂  and interval ∆s  suffice

to describe the boundary contour in ℜ2, two orthogonal principal directions t̂1  and  t̂2  and a

surface patch of area ∆s( )2  are required to describe the boundary surface of an object in ℜ3.

Given such a surface patch,  the mining rights between the surface patch and the medial
manifold can be found by integrating the area ∆h1 ⋅ ∆h2( ) as a function of distance r  along the

n̂ axis, within an osculating wedge truncated by the medial manifold, where

boundary
surface

medial
manifold

∆s

∆s

R

F2

F1

∆h1

∆h2

n̂

t̂ 1 t̂ 2 r

Fig 7.6   In ℜ3 the mining rights of a surface patch form an osculating wedge

truncated at the medial manifold.

∆hi = 1 − r

Fi







∆s      i = 1,  2 (7.7)

As ∆s → 0, the infinitesimal volume dV  corresponding to the mining rights for the

infinitesimal boundary patch ds2  may be expressed as
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dV = 1 − r

F1







1 − r

F2







dr
0

R

∫








ds2 . (7.8)

The particular wedge shown in Fig. 7.6 does not converge to a point, but rather to a blade,

since evidently for this surface patch, F1 ≠ F2 . The focal length F1 corresponds to the principal

curvature in the t̂1  direction, and F2  to the principal curvature in the t̂2  direction. By the same

arguments given above for osculating and medial circles in ℜ2, any focal length corresponding

to a convex principal curvature limits R  as follows:

Fi ≥ R ,    if  Fi ≥ 0,    i = 1,2  (7.9)

The wedge must intersect the medial manifold, or at least make contact with it, within the

smallest convex focal length.

The total volume V  can be found by integrating dV  over the boundary surface A .

V = dV
A
∫ , (7.10)

again assuming convergence.

Consider an example in 3D. A sphere of radius R  has constant principal curvatures

R = F1 = F2 , so that by substituting into Eq. (7.8), the infinitesimal volume dV

corresponding to the infinitesimal surface patch ds2  is

dV = r − r2

R
+ r3

3R2







ds2

0

R

= R

3
ds2. (7.11)

Integrating everywhere on the surface A = 4πR2, where R  is constant, yields the correct

volume for a sphere of

V = R

3
A
∫ da = 4

3
πR3. (7.12)

In the general case of m  dimensions, the hypervolume V  can found by integrating  dV

over the m − 1( ) dimensional boundary, where
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dV = ∏
i=1

m−1

1 − r

Fi





0

R

∫ dsm−1dr . (7.13)

Thus dV  is a "hyper-wedge" truncated at the medial manifold for the infinitesimal
boundary patch dsm−1, where Fi  is the focal length corresponding to the ith principal direction

on the hypersurface.

The topological genus of the object makes no difference, since the method relies on the

purely local relationship between the surface and the medial manifold. For example, one can

imagine summing the mining rights for a torus, which is locally indistinguishable from a

cylinder.

boundary

medial
manifold

area error areaε

θ

error areaω

r
v

∆A

F R

n̂

t̂

∆s⋅ t̂

Fig. 7.7      Potential errors in the calculation of ∆A for a concave boundary segment.

Do the errors vanish?

The issue of convergence bears examination. Assume that the parametric descriptions of

both the boundary and medial manifold are known.  Consider an object in ℜ2. Shown in Fig.

7.7  is a concave boundary segment and corresponding medial manifold. The concave

boundary was chosen for this illustrations since it magnifies the area of error ε  between the

medial manifold and the edge   
r
v  of the trapezoid ∆A .  A second area of error ω  is shown

between the boundary contour and the boundary tangent ∆s ⋅ t̂ . Clearly ω ∆A → 0  as
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ds → 0, so ω  can be ignored in the limit. The error ε  cannot so easily be ignored, however,

since   
r
v  is generally not tangential to the medial manifold. The area ε  as ∆s → 0 can be

approximated for a concave boundary as

  
lim ε
∆s→0

=
r
v 2 tanθ

2
= ∆s( )2 F + R

F






2 tanθ
2

 ,    if  F < 0 (7.14)

and for a convex boundary segment as

lim ε
∆s→0

= ∆s( )2 F − R

F






2 tanθ
2

 ,    if  F > 0 , (7.15)

which simplifies for a straight boundary segment to

lim ε
∆s→0

= ∆s( )2 tanθ
2

 ,    if  F = ∞ . (7.16)

In all cases, ε → 0 as ∆s( )2  and thus the error ε  vanishes in the computation of the total

area A  as ∆s → 0, except whereθ → π 2 and tanθ → ∞ . This occurs when the radius vector

  
r
r = R ⋅ n̂  intersects the medial manifold tangentially, which can be divided into two special

cases.

medial
manifold

boundary

r
r

n̂

t̂

Fig. 7.8      Singular case for convex boundary.

First, consider the case for a convex boundary segment (see Fig. 7.8). In this case the

medial manifold is tangential to   
r
r at their intersection only for a local minimum in R  along the
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boundary, i.e., a smallest osculating circle, where R = F.  This in turn implies that   
r
v   in Fig.

7.7 has zero length and Eq. (7.14) mandates that ε = 0.

Next consider the case for a concave boundary segment. The phenomenon of   
r
r being

tangential to the medial manifold at their intersection can only occur at a boundary point such as

s1  in the Fig. 7.9. The corresponding medial location is an end of the medial manifold and

there must be at least two other contacts between its medial circle and the boundary. Thus it

must represent a branch point in the medial manifold and the branches must extend in such a

way as to block the expanse of error area ε , reducing the situation to the case depicted in Fig.

7.7, where θ ≠ π 2  and tanθ  is finite. The same argument can be applied to the case of the

flat boundary.

r
r

s1

n̂

t̂

Fig. 7.9  Singular case for concave boundary.

In higher dimensions ℜm , for m > 2, each ∆s( )m−1  patch of the boundary has only one

radius vector   
r
r, but m − 1( ) principal curvatures. Each principal curvature Fi  has its own

angle θi  with respect to the medial manifold. For a given Fi the degenerate case θi = π 2 may

produce a sub-manifold on the boundary of up to m − 2( ) dimensions in which one of the two

cases in Figs. 7.8 and 7.9 apply. In all cases the errors in the calculated volume will vanish as

∆s → 0.

Practical Applications for Truncated Wedges

The method presented here uses the medial manifold to resolve ownership between

boundaries across the object and it uses boundary curvature to resolve ownership between
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adjoining portions of the boundary. The resulting osculating wedges, truncated by the medial

manifold, map each portion of the boundary to a unique portion of the interior. The boundary

of an m -dimensional object has only m − 1( ) dimensions and thus may present advantages in

the practical problem of determining the volume of an object. While it is true that the medial

manifold also has only m − 1( ) dimensions, it displays a more complex relationship with the

interior, since a single location on the medial manifold may correspond to multiple locations on

the boundary.

The truncated wedges bear some resemblance to Green's and Stokes' theorems, which

relate an object's boundary to its interior by integrating a function of some underlying field

(Kaplan 1973). Eberly and others have followed this approach, viewing the boundary as a

level curve of some function whose value is greater inside the object than a threshold at the

boundary (Eberly and Lancaster 1991, November; Eberly, Lancaster et al. 1991, November).

The truncated wedges depend, instead, on a purely geometric relationship, with a deeper

connection to other geometric processes.  These include Delauney triangulation and Voronoi

diagrams, by which the interior of a shape may be assigned to its nearest boundary and thereby

broken into subunits with simpler geometric properties (O'Rourke 1998).

Any practical application of truncated wedges will depend upon prior determination of the

distance to the medial manifold, which is a non-trivial problem.  Several recent developments

hold promise. Culver finds the medial manifold from a polygonal surface using a Voronoi

approach (Culver 1998). Fritsch and Pizer have developed Deformable Shape Loci to adapt a

medial model to fit objects in gray scale data (Pizer, Fritsch et al. (in press); Fritsch, Pizer et al.

1997). Furst has devised methods of tracking ridges of medialness in gray scale data (Furst

and Pizer June 1996). The author has developed methods of describing the medial manifold

statistically in gray scale data which are the subject of this dissertation (Stetten, Landesman et

al. 1997; Stetten and Pizer 1999).

The practical application of truncated wedges will also depend upon the determination of

local boundary curvature. For sampled boundary representations, boundary curvature is a

function of scale. This suggests that a coarse-to-fine approach might provide estimates of

volume at varying levels of precision.  In situations where the derivatives of the medial locus

are known, it has been shown how to compute the corresponding boundary's curvature

(Nackman 1982).  In situations where the medial information is derived from by core atom

cluster, it may be possible to determine an appropriate scale and stabilize boundary parameters

such as curvature by permitting the proper ordering of boundary points (Amenta, Bern et al.

1998).

For any of these methods, errors may arise in the subsequent volume calculation beyond

those that vanish in the theoretical treatment above. Further problems may arise in
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parameterization of the boundary itself, to perform the integration of volume. While

parameterization of a closed contour in ℜ2 is straightforward, it can be problematic for

boundaries in higher dimensions.

Besides calculating volume, the truncated wedges approach may provide a basis for

techniques,  such as finite element analysis, that depend upon compartmentalizing the interior

of an object and that may encounter problems when distorting the standard rectilinear

coordinate system to match an object's shape. These problems might be avoided by using

truncated wedges for compartmentalization.

In summary, a simple relationship exists between the volume, the boundary curvature, and

the distance to the medial manifold for objects with m ≥ 2 dimensions, piece-wise smooth

boundaries, and any topological genus. The relationship generalizes the concept of mining

rights, allowing the interior to be mapped from the surface, for the purpose of calculating

volume and possibly determining other properties of the object.
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7B.   Fuzzy Segmentation of the Left Ventricle

The concept of truncated wedges is applicable in a general sense to the goal of computing

the volume of the LV.  Given a medial framework for a particular ventricle, an estimation of the

ventricular volume and the location of the endocardial boundary can be made by organizing

voxels into wedges.  In the following chapter, such a medial framework (in the form of the

MNM from Section 2D) will be used to locate the Apex-to-Mitral Valve (AMV) axis of the LV.

This section describes how the AMV axis so produced can be used to perform a fuzzy

segmentation of the LV.

Fuzzy Logic is an extension of Set Theory that permits an element to be partially included

in a set.  Such partial inclusion can be viewed as the probability of the element being in the set.

In this manner, each voxel in an image may be assigned a probability of being in the ventricle.

This probability depends on both the voxel's location and its intensity.  Dark voxels near the

AMV axis are likely to be in the LV.  Voxels that are brighter and/or further from the axis are

less likely to be in the LV.  In the following sections, the probability of being in the LV due to

location and that due to intensity will each be assigned an individual value.  The two will then

be combined into a single aggregate probability of being in the ventricle.

Probability due to location

The probability pL j( )  of voxel j  being within the ventricle solely because of its location is

determined by using a surface model of expected ventricular shape.  The surface model is

located and scaled to the particular ventricle and provides a more detailed description of

ventricular shape than the MNM.

Spherical rather than cylindrical coordinates are used for the surface model because

spherical coordinates incorporate medial  and end geometries into a single set of parameters

thus avoiding the need to pre-assign end points to the ventricular cylinder.  The origin chosen

for the spherical coordinate system is the midpoint of the apex-to-mitral-valve (AMV) axis, as

shown in Fig. 7.10, with the poles of the sphere being the end points of the AMV axis.  The

angle ϕ  corresponds to latitude, with   ϕ = 0o  at the mitral valve and   ϕ = 180o  at the ventricular

apex.  The angle ω  corresponds to longitude, or rotation around the AMV axis with

  0
o < ω < 360o .   The third coordinate r  is the radial distance to the midpoint of the AMV axis.

 The expected surface for the ventricle is determined by a function r0 ϕ( ) , such that

r = r0 ϕ( ) at the surface.  The function r0 ϕ( )  is invariant to ω , exhibiting cylindrical

symmetry around the AMV axis.  A second surface, defining a region of interest (ROI), is
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specified by the function r1 ϕ( ) .  The ROI surrounds and includes the expected ventricular

shape and will be used to generate regional statistics of voxel intensity in the following section.
For the purposes of this dissertation, the functions r0 ϕ( )  and r1 ϕ( )  have simply been drawn

by hand to resemble a ventricle and a reasonable surrounding ROI.  Actual values have been

taken from the drawing in Fig. 7.10, by measuring angles and distances from the axis

midpoint.  These will be adjusted to fit the orientation and size information given by the MNM

for a particular ventricle.

voxel

AMV axis

axis midpoint

apex mitral
valve

r

ventricle

ROI

ϕ
ω

r = r0 ϕ( )r = r1 ϕ( )

a

m

Fig 7.10  Surface model defining a region of interest (ROI) and an expected ventricular

boundary.

AMV axis

axis midpoint
apex mitral

valve
ventricle

ROI

Sa

Sm

Fig 7.11  Two independent scales are determined for the ventricular boundary.
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The surface model is scaled in two independent dimensions: an axial scale Sa  and a medial

scale Sm   as shown in Fig. 7.11.  The lengths of these two scales must be related to the actual

ventricle in question.   When the MNM finds a particular ventricle, two corresponding scales

Sa
′  and Sm

′  are measured.   The axial scale Sa
′  is the length of the particular AMV axis.  The

medial scale Sm
′  is the mean length of the core atoms in the cylindrical clusters that match the

particular LV.

Voxel location is related to the surface model as follows:   The AMV axis in the surface

model is set to the AMV axis found by the MNM.  For a given voxel, two orthogonal

components of the radius to the midpoint are measured, ′a  and ′m  , corresponding to a  and

m   in Fig. 7.10.  The axial component a  is signed along the AMV axis, with a > 0 towards

the mitral valve and a < 0 toward the apex from the axis midpoint.  The medial component m

is unsigned and symmetric around the axis in 3D.  The measured values ′a  and ′m  are scaled

to the surface model as follows

a = ′a
Sa

Sa
′









                 m = ′m

Sm

Sm
′









 (7.17)

As usual, the angle ϕ  and radius r  are determined as

  
ϕ = tan−1 m

a




 ,    0o ≤ ϕ ≤ 180o (7.18)

r = a2 + m2( )
1

2 .

Given voxel  j  with angle ϕ  and radius r , the probability pL j( )  of being in the ventricle is

determined as a function of r  using the probability function shown in Fig. 7.12 where ro ϕ( )
is the expected distance to the ventricular boundary at latitude ϕ .   Inside the boundary r = r0 ,

the probability is greater than 1 2 , whereas outside it is less than 1 2 .  The function in Fig.

7.12, as well as that in Fig 7.13, have simply been drawn by hand for the purposes of this

dissertation.  Finding corresponding functions that optimize the accuracy of the resulting

segmentation is beyond the scope of the present research.
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1

ro( )

1

2

r
ϕ

pL

r

ro ϕ( )


 




Fig 7.12  Probability pL  of a voxel being within the ventricle, given ϕ  and r .

Probability due to intensity

Besides location, another factor governing the probability of being in the ventricle is
intensity.  Ventricular voxels are darker than other voxels.  Let pI j( )  denote the probability of

voxel  j   being within the ventricle, given its intensity.  Intensity in ultrasound images varies

unpredictably from one scan to another.  To compensate for this, the probability function for
pI j( )  is based on a statistical study of voxels in the ROI for a particular heart.

Observe that voxels in the ROI fall into 3 categories.  The darkest voxels are in the ventricle

and tend to have intensities near zero.  The next brightest voxels are in the myocardium, located

further from the AMV axis.  Myocardial voxels are quite often difficult to distinguish from

ventricular voxels because they are nearly as dark, often making the endocardial boundary

completely indistinguishable.  The epicardial/septal voxels are generally still further from the

AMV axis and much brighter.  Core atoms in the cylindrical clusters that match the LV node of

the MNM tend to find the epicardial border rather than the endocardial border because the

gradient magnitude is larger at the epicardial border.

Statistics for a particular image are computed on voxels within the ROI as follows:  a mean
intensity  I  of all voxels in the ROI is computed weighting each voxel's intensity I j( )  by its

pL j( ) ,

I =
pL j( )I j( )

j∈ROI
∑

pL j( )
j∈ROI
∑

. (7.19)
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Ventricular voxels are thus favored by their tendency to be located near the AMV axis, although

other voxels are represented as well.  The value of I  reflects the particular intensities of voxels
in the image and is used in the function shown in Fig. 7.13 to compute the probability pI j( )
for each voxel, given its intensity I j( ) .

1

II

2

pI j( )

I j( )

Fig 7.13  Function for computing a voxel's pI j( )  from its intensity I j( )  given the

weighted mean intensity I  over the ROI.

Aggregate probability

The probabilities due to location and intensity developed in the previous two sections are
combined into a single probability for the fuzzy segmentation of the LV.  Let  pA j( ) denote the

aggregate probability that voxel j  is in the ventricle, given both its location and intensity.   The

probability pA j( ) is some combination of pI j( )  and pL j( )  defined by an operator denoted A

pA j( ) = A pI j( ), pL j( )





. (7.20)

The A  operator is designed to exhibit certain behaviors.  It is monotonic with positive
slope for both pI j( )  and pL j( ) , mapping domain 0,1[ ] for pI j( )  and pL j( )  into a range 0,1[ ]
for pA j( ).  If either argument pI j( )  and pL j( )  is equal to 1 2 , then pA j( ) equals the other

argument, so that a probability of 1 2  exerts neither positive nor negative influence.  If either

pI j( )  or pL j( )  is 0 , then pA j( ) is 0 , so that either can independently exclude any voxel from

the ventricle.
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A linear, continuous, piece-wise smooth function that satisfies the above constraints is

described by the equations

pA j( ) =  

0,

2 pL j( ),
2 pI j( ),
1,

pI j( ) + pL j( ) − 1 2,

    














pI j( ) + pL j( ) < 1 2

pI j( ) − pL j( ) > 1 2

pL j( ) − pI j( ) > 1 2

pI j( ) + pL j( ) > 3 2

otherwise

(7.21)

and is shown graphically in Fig. 7.14.

pI

pL

pI , L = 0

pI , L = 2pL

pI , L = 2pI

pI , L = 1

pI , L = pI + pL −1 2

pL

pIpI , L

0

1

0

0

1

1

Fig 7.14  The A  operator for computing aggregate probability pA j( ) from pL j( )  and pI j( )
is linear, continuous, piece-wise smooth.

This function yields an aggregate probability pA j( ) from the individual probabilities, pL j( )
and pI j( ) , in a manner consistent with the desired behavior for the A  operator.
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Computing volume from aggregate probability

Once each voxel has been assigned an aggregate probability pA j( ), a total volume vA  for

the ventricle can be computed as the sum of the aggregate probability for each voxel in the ROI

vA = pA j( )
j∈ROI
∑ v j( ) (7.22)

weighted by v j( ), the volume of that voxel.

In the following chapter, some of the methods developed thus far in this dissertation are

tested on RT3D ultrasound scans of balloons and in vivo human cardiac ventricles.  In

particular, the method for fuzzy segmentation and volume computation in this section is applied

to the in vivo left ventricle in Section 8E, with accuracy judged by comparison to manual

tracings.


