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ABSTRACT

George DeWitt Stetten

Automated Identification and Measurement of Cardiac Anatomy via Statistical

Analysis of Medial Primitives

(Under the direction of Stephen M. Pizer, Ph.D.)

Identification and measurement of objects in 3D images can be automatic, rapid and

stable, based on local shape properties derived statistically from populations of medial

primitives sought throughout the image space.  These shape properties are measured at medial

locations within the object and include scale, orientation, endness, and medial dimensionality.

Medial dimensionality is a local shape property differentiating sphere, cylinder, and slab, with

intermediate dimensionality also possible. Endness is a property found at the cap of a cylinder

or the edge of a slab.  A model of the cardiac left ventricle during systole is constructed as a

large dark cylinder with an apical cap at one end, terminated at the other end by a thin bright

slab-like mitral valve.  Such a model, containing medial shape properties at just a few

locations, along with the relative distances and orientations between them, is intuitive and

robust and permits automated detection of the left ventricular axis in vivo using Real-Time

Three Dimensional (RT3D) echocardiography.  The statistical nature of these shape properties

allows their extraction even in the presence of noise and permits statistical geometric

measurements without exact delineation of boundaries, as demonstrated in determining the

volume of balloons and of in vivo left ventricles in RT3D scans.  The inherent high speed of

the method is appropriate for real-time clinical use.
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THESIS

Fully automated, rapid and robust identification and measurement of cardiac structures

in 3D ultrasound images can be achieved by establishing homologies between clusters of

medial primitives and the nodes in a medial model of the heart, using statistical analysis of

location, scale, orientation, medial dimensionality, and endness.
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"The poet's eye, in a fine frenzy rolling,
Doth glance from heaven to earth, and earth to heaven,
And as imagination bodies forth
The forms of things unknown, the poet's pen
Turns them to shapes, and gives to airy nothing
A local habitation and a name."

King Theseus, from A Midsummer Night's Dream,
by William Shakespeare
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