Automated Identification and Measurement of Cardiac Anatomy via Statistical Analysis of Medial Primitives

George DeWitt Stetten

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biomedical Engineering.

> Chapel Hill 1999

> > Approved by:

Advisor: Stephen M. Pizer, Ph.D.

Reader: Benjamin M. W. Tsui, Ph.D.

Reader: Carol N. Lucas, Ph.D.

Reader: James M. Coggins, Ph.D.

Reader: Olaf T. von Ramm, Ph.D.

© 1999 George DeWitt Stetten ALL RIGHTS RESERVED

ABSTRACT

George DeWitt Stetten

Automated Identification and Measurement of Cardiac Anatomy via Statistical Analysis of Medial Primitives

(Under the direction of Stephen M. Pizer, Ph.D.)

Identification and measurement of objects in 3D images can be automatic, rapid and stable, based on local shape properties derived statistically from populations of medial primitives sought throughout the image space. These shape properties are measured at medial locations within the object and include scale, orientation, endness, and medial dimensionality. Medial dimensionality is a local shape property differentiating sphere, cylinder, and slab, with intermediate dimensionality also possible. Endness is a property found at the cap of a cylinder or the edge of a slab. A model of the cardiac left ventricle during systole is constructed as a large dark cylinder with an apical cap at one end, terminated at the other end by a thin bright slab-like mitral valve. Such a model, containing medial shape properties at just a few locations, along with the relative distances and orientations between them, is intuitive and robust and permits automated detection of the left ventricular axis in vivo using Real-Time Three Dimensional (RT3D) echocardiography. The statistical nature of these shape properties allows their extraction even in the presence of noise and permits statistical geometric measurements without exact delineation of boundaries, as demonstrated in determining the volume of balloons and of *in vivo* left ventricles in RT3D scans. The inherent high speed of the method is appropriate for real-time clinical use.

THESIS

Fully automated, rapid and robust identification and measurement of cardiac structures in 3D ultrasound images can be achieved by establishing homologies between clusters of medial primitives and the nodes in a medial model of the heart, using statistical analysis of location, scale, orientation, medial dimensionality, and endness. "The poet's eye, in a fine frenzy rolling, Doth glance from heaven to earth, and earth to heaven, And as imagination bodies forth The forms of things unknown, the poet's pen Turns them to shapes, and gives to airy nothing A local habitation and a name."

King Theseus, from *A Midsummer Night's Dream*, by William Shakespeare

ACKNOWLEDGMENTS

I wish to thank Stephen Pizer for his patient teaching and constant encouragement, Olaf von Ramm and John Castelucci for including me in the adventure of 3D ultrasound, Carol Lucas for her careful reading and Ben Tsui for making me keep the application in mind. Thanks to James Coggins for adding dimensionality and Stephen Aylward for his statistical and philosophical insights. Thanks to Andrew Thall for the blues (as well as the reds and greens) and to members of the Geometry Group, IAV Seminar, and Image Lunch in the Departement of Computer Science at UNC who respectfully answered most of my stupid questions. The students at Duke contributing to the project included Richard Morris, Michael Caines, Rebekah Drezek, Roxanne Landesman, Scott Guthrie, Korin Crawford, William Portnoy, Chikai Ohazama, Visnu Pitiyanuvath, and Ge Wang. Thanks to Takahiro Shiota and Volumetrics Medical Imaging, Inc., for supplying data. Supported by a Whitaker Biomedical Engineering grant to Dr. Stetten, NSF grant CDR8622201, NIH grants 1K08HL03220, P01CA47982, and HL46242. Thanks to Nancy, Wendy, Amy, and Molly for loving me in spite of it all.

TABLE OF CONTENTS

Chapter 1	Introduction	1
1A. (Goals and Motivation	1
1B. (Claims	3
1C. (Guide to Chapters	4
Chapter 2	Background and Method Overview	5
2A. 1	Imaging of Cardiac Anatomy and Function	5
2B. A	Approaches to Analyzing Cardiac Shape	14
2C. 1	The Medial Lineage	15
2D. N	Method Overview	16
Chapter 3	Two-Boundary Medial Primitives (Core Atoms).	19
3A. I	Defining the Core Atom	19
3B. U	Inlocalized Spectra of Scale in 2D	21
3C. I	Extracting Local Medial Properties in 3D	31
Chapter 4.	Clustering Core Atoms by Location	34
4A. A	Artifacts generated by Spatial Sampling	34
4B. I	Ellipsoidal Voting to Remove Sampling	
Artifa	acts	35
4C. H	Impirical Validation	37
Chapter 5	Medial Node Models	47
5A. H	Homologies Between Core Atom Clusters and	
Nodes.		
5B. H	Homologies between Cluster Pairs and Node	
Pairs.		49
5C. I	Indness	50
Chapter 6	3D Echocardiographic Issues	56
6A. (Coordinate System Issues	56
6B. U	Jltrasound Physics Issues	62
6C. 1	Testing Core Atoms on Ultrasound Data	67
6D. F	Rendering Slices for Manual Tracing	70
Chapter 7	Measuring Volume	77
7A. 1	Fruncated Wedges: Volumes from Boundary	
Curvat	cure and Medial Scale	78
7B.	Fuzzy Segmentation of the Left Ventricle	92
Chapter 8.	Experimental Validation with 3D Ultrasound	99

8A. Identifying the AMV Axis	. 99
8B. Measuring Balloons with Core Atoms	.103
8C. Manual Tracing of LV Volume	.106
8D. Computing LV Volume with Core Atoms	.106
8E. Testing Fuzzy Segmentation of the LV	.108
Chapter 9 Conclusions	.117
9A. Claims Revisited	. 117
9B. Strengths of this Approach	. 120
9C. Weaknesses of This Approach	. 121
9D. Future Directions	.122
APPENDICES	. 124
Appendix A – Binomial Kernel and Difference of	
Gaussians Operator	.124
REFERENCES	. 125

LIST OF TABLES

Table 4.1. Mean angular error $\overline{\mathcal{E}}_{\theta}$ (in degrees) for	
displacement eigenvector $\hat{\mathbf{a}}_{p}$, and axial eigenvector $\hat{\mathbf{a}}_{a}$	
(cylinders only)	.40
Table 4.2 Actual diameter of test objects, and diameter	
determined from populations of core atoms (mean and	
s.d.)	.45
Table 6.1 Concerns arising from ultrasound physics, and	
methods of addressing them	. 62

LIST OF FIGURES

Fig. 2.1 A. Conventional 2D ultrasound uses a linear
array to steer within a slice, producing a B-mode
image. B. Real Time 3D ultrasound uses a matrix array
to scan a volume without moving the transducer. C.
Two orthogonal B-mode slices, and one C-mode slice
(parallel to the transducer) within the 3D ultrasound
pyramid
Fig. 2.2 Model of left ventricle and mitral valve17
Fig. 2.3 Overview of method to find the apex-to-mitral-
valve (AMV) axis, with associated chapters and
sections where the method is developed. Chapter 8
describes the actual experiment
Fig. 3.1 A. A core atom consists of two boundary
points that face each other across an acceptable
distance, and a center point at which the core atom is
said to be located. B. The search area (gray) for
boundary point \mathbf{b}_2 depends on boundary normal \mathbf{n}_1 and
the expected distance between the boundaries
Fig. 3.2 Angle doubling of the orientation vector $\hat{\mathbf{c}}$ 23
Fig. 3.3 The two extremes of directionality. A. Core
atoms with evenly distributed orientations. B. Core
atoms aligned along a 1D ridge
Fig. 3.4 Objects (grey), core atom centers (white) and
boundary points (black "+")
Fig. 3.5 Rectangular object showing effects of
rotation
Fig. 3.6 Objects showing the ability to remove noise
Fig. 2.7 Spade charing the officity of rotation
Fig. 3.7 Space Showing the effects of fold ton
acres (light gray) acres tom populations (line
$\hat{\alpha}$
segments) and eigenvectors \mathbf{a}_1 , \mathbf{a}_2 and \mathbf{a}_3
Fig. 3.9 The lambda triangle defines the domain of
possible elgenvalues
Fig. 4.1 A. Sphere. B. Core atom Cloud. C. Sample
displaced by P

Fig. 4.2 A. Cylinder. B. Core atom cloud. C. Sample
displaced by $\overline{\mathbf{p}}$
Fig. 4.3. Ellipsoids of three coronal core atom
samples coalescing at the true center
Fig. 4.4. Distribution of samples in lambda triangle
for parametric test objects
Fig. 4.5 Number of core atoms per sample vs.
displacement from the theoretical core, showing
dimensional distortion in the corona
Fig. 4.6 Eigenvalue associated with eigenvector $\hat{\mathbf{a}}_{p}$ for
all samples containing greater than 1% of the entire
core atom population
Fig. 4.7 Lambda triangle for the sphere showing
dimensionality of samples (dots) and the cluster with
the most votes (cross)
Fig. 4.8 Core atom samples (small symbols) and
clustered samples (large symbols) for parametric
objects (line = slab, cross = cylinder, 3-axis symbol
= sphere)
Fig. 4.9 Color mapped onto the lambda triangle
Fig. 4.10 Color version of Fig. 4.8 with color
representing dimensionality as mapped onto the laborda
triangle in Fig. 4.9
Fig 5.1 Slabs and cylinders have individual
orientations relative to the inter-cluster vector,
yleiding 3 relative orientation parameters for the
Fig 5 2 Dairs with one othere have only 1 relative
orientation parameter 51
Fig 5.3 A pair with two spheres has no relative
orientation parameters.
Fig. 5.4 Endness, manifested as the end of a stripe.
and detected as face-to-medialness by a core ion. In
2D, this is the only type of endness
Fig. 5.5 Endness, manifested by a cap on a cylinder (A)
and the edge of a slab (B). Boundary points
contributing to endness are labeled b and eigenvectors
of core atom cluster labeled al, a2, and a3 as in Fig.
3.8

Fig. 5.6 Endness introduces an additional parameter
into the dual-node metric for matching node pairs to
cluster pairs. The additional parameter can be
thought of as a normalized endness vector $\hat{\mathbf{e}}$, which is
a linear combination of $\hat{f a}_1$ and $\hat{f a}_2$ for the edge of a
slab and $\pm \hat{\mathbf{a}}_1$ for the end of a cylinder. If both nodes
have significant endness, an additional twist
parameter may be specified55
Fig. 6.1 Spherical and azimuth-elevation coordinate
systems each use two angles ($ heta$, $arphi$) and range (length
of the large black arrow, not labeled). Cartesian
coordinates (x,y,z) also shown
Fig. 6.2 Convolution kernels in physical space used to
create core atoms,
Fig. 6.3 Resolution cells in conventional ultrasound
(A) and matrix-array ultrasound (B)
Fig. 6.4. Coronal densities containing more than 1% of
Lie cotal number of core atoms per semple us
dignlagement from the manually plaged axis of the
balloon and the IV
Fig 6 6 B-mode slices through balloon (A) and in vivo
human heart, showing the nearer boundary points to the
viewer for core atoms formed near the manually-
determined axes of the objects (LV = left ventricle,
LA = left atrium)
Fig. 6.7 B-mode slices are the conventional "sector"
scans of ultrasound, C-mode slices are parallel to the
face of the transducer and Tilted C-mode (or I-mode)
scans are arbitrarily oriented
Fig. 6.8 R-mode slice contains voxels at a given range
from the transducer
Fig. 6.9 B-mode slice rendered using 2D texture mapping
of radial ribbons onto trapezoids
Fig. 6.10 B-mode slice rendered using 2D texture
mapping of radial ribbons onto trapezoids
Fig. 6.11 Space-filling RT3D voxel at the center of a
grid of 27 neighboring voxel locations, and its
projection on the image as a symmetrical hexagon74

Fig. 6.12 The intersection of 3 stripes forms a hexagon
Fig. 6.13 The intersection of 3 stripes forms a hexagon
with opposite sides of equal length
Fig. 6.13 Pre-sorting of voxels by distance along an
arbitrary axis for rapid selection of orthogonal
slices
Fig. 7.1. The Blum medial manifold of a rectangle
(thick dotted lines) is the locus of centers of all
medial circles, i.e., those circles lying completely
within the rectangle that touch the boundary in at
least 2 places
Fig. 7.2 Examples of 3D objects with simple snapes.
each case extending orthogonal from the surface half-
way through the object to the opposite side 79
Fig 7.3 a Local coordinate system with $\hat{\mathbf{t}}$
tangential to, and $\hat{\mathbf{n}}$ normal to, the object's
boundary. b. Osculating circle with radius F and a
sector of that circle corresponding to boundary
interval Δs
Fig. 7.4 a. Convex boundary segment (thick solid
line) and corresponding medial manifold (thick dotted
line) at a distance R from the boundary ($F>0$).
Area $\Delta\!A$ approximates the "mining rights" of boundary
interval Δs . b. Same for a concave boundary
segment ($F < 0$)
Fig. 7.5 Rectangle with mining rights extending in
thin ribbons
Fig 7.6 In \Re^3 the mining rights of a surface patch
form an osculating wedge
Fig. 7.7 Potential errors in the calculation of ΔA
for a concave boundary segment
Fig. 7.8 Singular case for convex boundary
Fig. 7.9 Singular case for concave boundary
Fig 7.10 Surface model defining a region of interest
(RUL) and an expected ventricular boundary
Fig /.11 Two independent scales are determined for the
venuricular boundary

Fig 7.12 Probability p_L of a voxel being within the ventricle, given φ and r .	95
Fig 7.13 Function for computing a voxel's $p_i(j)$ from its	
intensity $I(j)$ given the weighted mean intensity \bar{I}	
over the ROI.	96
Fig 7.14 The A operator for computing aggregate	
probability $p_A(j)$ from $p_L(j)$ and $p_I(j)$ is linear,	
continuous, piece-wise smooth	97
Fig. 8.1 Using a statistical model of medial	
primitives to automatically identify the axis of the	
cardiac left ventricle in Real Time 3D ultrasound	
data. A scale of 1 cm is shown in D	100
Fig. 8.3. Core atom clusters in a balloon (from the	
inside boundary of the intensity ridge) identified as	
cylindrical along the axis of the balloon, although a	
significant number of core atoms actually formed	102
Fig. 8.4 Padius of fluid-filled balloons determined	102
automatically using core atoms to analyze 3D	
ultrasound images, compared to radius of the same	
balloons determined by weight assuming a spherical	
shape. (x) outer facing boundary, (+) inner facing	
boundary, (o) weighted average of inner and outer	
boundaries, with weight determined to minimize RMS	
percent error by volume to 6.5%	104
Fig. 8.5 Proposed correction for measurement with core	
atoms displaced from the center.	105
Fig. 8.6 A. Color version of Fig. 8.1B with color	
mapped from lambda triangle as in Fig. 4.9. B. Color	
version of Fig. 8.1C. C. Automated surface map for	100
the LV	T0 \
model (dark) guporimposed on ultraceurd data	100
noder (dark) superimposed on uttrasound data	T00
Fig. 8.8 The probability $P_L(J)$ for each voxel with	
values ranging from 1 (white) inside and 0 (black)	100
	т0Э
Fig. 8.9 The aggregate probability $P_A(J)$ for each voxel	
with values ranging from 1 (white) to () (black).	110

Fig. 8.10 A. Manual tracings. B.	Corresponding set
of labeled voxels with white symbol	lizing $p_{T}(j) = 1$ and
black, $p_T(j) = 0$	
Fig. 8.11 Training data	
Fig. 8.12 Test data compensated with	n slope and
intercept from regression on train	ing data112
Fig. 8.13 Delta Volume for test dat	a computed as
difference from the mean for autom	ated vs. manual
volumes for all 65 scans	
Fig. 8.14 Training data	
Fig. 8.15 A. Training data	
Fig. A.1 Results of applying binomia	al kernel in 2D,
shown with dark outline after an e	ven number of
applications	
Fig. A.2 Difference of Gaussian (DOG	3) for binomial
kernels (dark outline in Fig A.1).	

LIST OF ABBREVIATIONS

2D	Two-Dimensional
3D	Three-Dimensional
AMV	Apex-to-Mitral Valve (axis)
ECG	Electrocardiogram
CO	Cardiac Output
СТ	Computerized Tomography
DSR	Dynamic Spatial Reconstructor
GBPT	Gated Blood Pool Tomography
LA	Left Atrium
LV	Left Ventricle, Left Ventricular
m-reps	medial representations
MNM	medial node model
MRI	Magnetic Resonance Imaging
MUGA	Multiple Gated Acquisition
MV	Mitral Valve
RA	Right Atrium
RMS	Root Mean Squared
ROI	Region of Interest
RT3D	Real Time Three-Dimensional
RV	Right Ventricle
SPECT	Single Photon Emission Computerized Tomography
SV	Stroke Volume

LIST OF SYMBOLS

\mathbf{x} or $\mathbf{\underline{x}}$	vector (in the sense of a location)
ċ	vector (in the sense of an oriented distance)
Ŷ	normalized vector (orientation)
С	matrix
a	scalar
[a,b]	range from a to b
F	operator or function
$O(n^2)$	order n^2
\mathfrak{R}^m	<i>m</i> - dimensional space of real numbers