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ABSTRACT

George DeWitt Stetten

Automated Identification and Measurement of Cardiac Anatomy via Statistical
Analysis of Medial Primitives

(Under the direction of Stephen M. Pizer, Ph.D.)

| dentification and measurement of objectsin 3D images can be automatic, rapid and
stable, based on local shape properties derived statistically from populations of medial
primitives sought throughout the image space. These shape properties are measured at medial
locations within the object and include scale, orientation, endness, and medial dimensionality.
Media dimensionality isaloca shape property differentiating sphere, cylinder, and dab, with
intermediate dimensionality also possible. Endness is a property found at the cap of a cylinder
or the edge of adab. A model of the cardiac |eft ventricle during systole is constructed as a
large dark cylinder with an apical cap at one end, terminated at the other end by athin bright
dab-like mitral valve. Such amodel, containing medial shape properties at just afew
locations, along with the relative distances and orientations between them, isintuitive and
robust and permits automated detection of the left ventricular axisin vivo using Real-Time
Three Dimensional (RT3D) echocardiography. The statistical nature of these shape properties
allows their extraction even in the presence of noise and permits statistical geometric
measurements without exact delineation of boundaries, as demonstrated in determining the
volume of balloons and of in vivo left ventriclesin RT3D scans. The inherent high speed of
the method is appropriate for real-time clinical use.



THESIS

Fully automated, rapid and robust identification and measurement of cardiac structures
in 3D ultrasound images can be achieved by establishing homol ogies between clusters of
media primitives and the nodesin amedial model of the heart, using statistical analysis of
location, scale, orientation, medial dimensionality, and endness.



"The poet's eye, in a fine frenzy rolling,

Doth glance from heaven to earth, and earth to heaven,
And as imagination bodies forth

The forms of things unknown, the poet's pen

Turns them to shapes, and gives to airy nothing

A local habitation and a name."

King Theseus, from A Midsummer Night's Dream,
by William Shakespeare
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