Performance Modeling and Access Methods
for Temporal Database Management Systems

TR86-018
August, 1986

Ilsoo Ahn

The University of North Carolina at Chapel Hill
Department of Computer Science
Sitterson Hall, 083A

Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Afirmative Action Institution.

Performance Modeling and Access Methods

for Temporal Database Management Systems

by

Ilsco Ahn

A dissertation submitted to the faculty of the University
of North Carolina at Chapel Hill in partial fulfillment of
the requirements for the degree of Doctor of Philosophy
in the Department of Computer Science.

Chapel Hill
1986
Approved by:
° N ‘ l‘
}(“ l\:l.i-'b » i\-\ { [71 vl
Advisor ‘)
F\/(((C,[/Z“/(%52(* (1-_6{/_
Reader

7, y
//L v S. 7

Reider

© 1986
Ilsoo Ahn

ALL RIGHTS RESERVED

~

ILSOO AHN. Performance Modeling and Access Methods for Temporal Database Management Systems

(Under the direction of Richard Snodgrass)

Conventional databases storing only the latest snzipshot lack the capability to record and process
time-varying aspects of the real world. The need for temporal support has been recognized for over ten

years, and recent progress in secondary storage technology is making such support practically feasible.

There are three distinct kinds of time in databases: transaction time, valid time, and user-defined
time. Depending on the capability to support either or both of transaction time and valid time, databases
are classified into four types: snapshot, rollback, historical, and temporal. Each of the four types. has

different semantics and different implementation issues.

Database systems with temporal support maintain history data on line together with current data,
which causes problems in terms of both space and performance. This research investigates the temporally
partitioned store to provide fast response for various temporal queries without penalizing conventional .
non-temporal queries. The current store holds current data and possibly some history data, while the
history store cont:ﬁns the rest. The two stores can utili;e different storage formats, and even different
storage media, depending on the individual data characteristics. Various issues on the temporally

partitioned store were studied, and several formats for the history store were investigated.

To analyze the performance of TQuel queries on various access methods, four models forming a
hierarchy were developed: one each for algebraic expressions, datqbase/relan_’ons. access paths, and
storage devices. The model of algebraic expressions maps the algebraic expression to the file primitive
expression, based on information represented by the model of database/relations. The model of access
paths maps the file primitive expression to the access path expression, which is converted to the access

path cost by the model of storage devices,

As a test-bed to evaluate the access methods and the models, a prototype of a temporal DBMS was
built by modifying a snapshot DBMS. The prototype was used to identify problems with conventional
access methods and also to provide performance data'to check the analysis results from the models.
Reverse chaining, among the temporally partitioned storage structures, was incorporated in the prototype

to enhance its performance.

Acknowledgements

I wish to express my sincere gratitude and appreciation to Professor R. Snodgrass, who has guided,
encouraged, and entightened me throughout this research.

I would also like to thank my committee, Professors J. Nievergelt, D. Stanat, J. Smith, and D. Beard, for
their valuable suggestions 611 various aspects of this researbh.

Last, but not least, I thank my family, on both sides of this globe, for their love and support.

Table of Contents

PART L IDNIrOdUCIIONcovirveirrecsressiseesrsmeersssssssssssas sesssssassassmrsssemsnssrssnssasess srrentaesusseanenrrens

Chapter 1. OVEIVIEW .civicvevscesormaeacnceneressanres eoritsbsustsenare s st rane vensasnsnsere
1.1, MOtivatione.ceeeeees dbee st e e e bRt s st seaseer e r e s nenas

1.1.1. TErMUNOIOBY ...ccceoveerereercrsnrsresescesesmssnssmassncnsassamsssrsssaressssessasenen sesnsssssen

1.1.2, Applications for Databases with Temporal Supportccweeeercronsnsee.

1.2, TRE PIODIBIMNcccvirosssosssosssssssienesonssasnensesmarsas seseasasassessmenssssssssn srsssanssssomemmmnennans

1.2.1. Characteristics of Databases with Temporal SUPPOItcoveeeeeveeecanecsnns

1.2.2. Conventional Access Methods
1.3. The APProachcueeesiersccssssrsnass

.................

1.3.1. Temporally Partitioned Store ..

1.3.2. Performance Models

ooooooooo

1.3.3. Experiments

1.34. Summary cetanaeeees GG b srerenesevassrrnas
1.4, Structure Of the diSSEITALION ...uvcceerrrsrsescssssrorsssnesosmsrns sermrsansssssesnssessssesses sresssssmmmns

Chapter 2. Previous WoIkour.s

2.1. Access Methods and Performance Analysis

san

2.1.1, AcCess MethodS ..ceveemecneeserressnressrns

2.1.2. Access CostEstimationcoccceeecveene.

....................

2.1.3. Systems and Models

2.2, Databases with Temporal Support

.........

230 TQUEL et crrnisnsssssssisssssssssssrmnsessnmss s sassassssssnsessseams s ssssssss s sbasseesastenane

PART II. Temporal Database Management Systemseuue.n.

...............

Chapter 3. Types of Databasesececeesasivsessessnsesssnsorssons
3.1, Snapshot Databases

3.2, RoOlIback Databasescreerosscossomsusrsnimemersoosssoenasseces
3.3. Historical Databasesccccevreecrerssssssssssomsemmcennsessssens

3.4, Temporal Databaseseeeveeeissinirormnsersesersens

can

ooooo

.......

3.5. User-defined timeeevs

3.6. Summary

Chapter 4. Models and Performance Analysis

4.1. Modelscomuiiiimisiserermneens

4.1.1. Model of Algebraic Expressions

............

4.1.1.1. Algebraic EXpPressions ... s ssssasorsissssssonns

4.1.1.2, File Primitive Expressions

.............

4.1.1.3. Model of Algebraic Expressions
4.1.2. Model of Database/Relations

ooooooo

nnnnnnnnn

...................

4.1.3. Model of Access Paths

.........

NPOND = O O A e L W e

PN o T ™ Gy
OO

i e o S Sy
0 =) th P W W W

21

23
23
25
29
32
36
36

39
39
39
40
43
45
50
52

4.2,

Chapter 3,
5.1.

5.2.

5.3,

54.

5.5.

PART III. Benchmarks

Chapter 6.
6.1.
6.2.

6.3.
6.4,

Chapter 7.

7.1
7.2.

7.3.

4.1.4. Model of Storage Devices

.......

Performance Analysis
4.2.1. Examples

...

4.2.2. Performance Analyzer

New Access Methods
Temporally Partitioned Store

nnn

5.1.1. Split Criteriacceceuesnmons

ooooooo

5.1.2. Update ProCEAUIES ..ccocenrermoocosorsessmsemeassssssorssomcasessassons essesnssosenssonsenases
5.1.3. Retroactive or Proactive ChaNZESooeeeeereereereeesseeessessesesssssssessssens

5.14. Key Changes

5.1.5. Performance

ooooo

ooooo

Structures Of the HiSIOTY SIOE w.u.uuvueerreerrersrensssssssssssessnecsenssssoncssnessessssssmssessessens
5.2.1. Reverse ChANING .uccucereemsereassssrmsroscsssesosse vessssoresssosssosssessesesossssensesns
3.2.2. ACCESSION LSS wuisnmreerrsererersnrnesrerensassssssesessoreresssacensensnessssssssssssensonssssons

5.2.3. Indexing

.....................................

5.24. Clustering .

5.2.4.1. Variations

................................

ooooooooooooooooo

5.24.2. Nonlinear Hashing
5.2.5. STACKING ..ovrnrcuisssonsursorscscasassmssmsrsscsonsassssssrossssaasssocsssessosssosessensesnssseseans

Secondary Indexing .

nnn

5.3.1. Types of Secondary Indlces

5.3.2. Stuctures of Secondary Indlces ...
Attribute VErSioningccccmeerversssessssssensssesessssssnens bevreersosnsrsresnans

5.4.1. CONVEISION ...curuerroronsororsoosnseanssssssssessssssssssassssrnessensssssossssesssrassssssressses

..........

5.4.2. Storage Requirements .

5.4.3. Temporally Partitioned Stote ..

Summary

...

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Prototype with Conventional Access Methodscueeerseoreressesssossoreonorse socssssees

Prototype

--

Benchmarking the Prototype

6.2.1, A Benchmark

Summary

..............

...

.................

..

Temporalily Partitioned Store

aaaaaaaaaaaaaaaaa

Implementation of the Temporally Partitioned Store ..

Performance Analysis ..

..

7.2.1. Performance on a Rollback Databasececreieeecncerimnoenmseronsesssssonssns
7.2.2. Performance on a Temporal Database (s3btatmimassensnsestecasnscananaransasasase

Secondary Indexing

...

vi

62

65
69

71
73
74
80
81
82
83
83
86
88
90
91
o4
105
106
108
108
109
110
111
114
115
117

119

121
121
127
127
132
135
138
139
142

143
144
147
148
151
156

PARTIV. Conclusions

Chapter 8. Conclusions and Future Work ...
8.1, ConcluSionsccevoecemsrersrersenne

8.2. Future WOIKccccrvrvrerene

....................

...............................

Bibiographye.eceneicrscrsecne

.........................

Appendix A, TQuel Syntax in BNFcesruerirenn

Appendix B. Nonlinear Hashing

..................

Appendix C. Benchmark Results

Appendix D. Performance Analysis (1) ...ccoeeveeenne

.............................

.....

...........................

Appendix E. Update Algorithms

.........

Appendix F. Performance ANALYSIS (2) ..o.esmecsossmssesesssssssssessssnssomneassasscssssossssonsensesenssnssesssoesonees

vii

163

165
165
167

. 169

177
181
187
193
205
213

sce

Vil

Figure 3-1:
Figure 3-2:
Figure 3-3;
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:

Figure 3-10:

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6;
Figure 4-7:
Figure 4-8;
Figure 4-9:

List of Figures

.............................

A Snapshot Relation ...

A Rollback Relation

......

A Rollback Relation

..

Historical RELAON «.vvveeeeever s eesonessone

A Temporal Relation

..

..

A Temporal Relation ..

A TRM Relation

Types of Databases

Time to be Supported by Databases
BNF Syntax for Algebraic Expressions

BNF Syntax for File Primitive Expressions
IDL Description for the Model of Database/Relations ..
BNF Syntax for File Path Expressions (Single File)
Structures for an Inverted File and a Muitilist File (n = 3)

--

--

...............

Access Paths with Three Files

BNF Syntax for Access Path Expressions (Multiple Files)

................

Access Path Graphs (n = 3)
Time (in msec) to Access a Block

8 O r kNN RO AR TN RS EeCEEESIO0RASSs RN EREAR S

Figure 4-10: Performance Analysis with the Four Models O

Figure 4-11; Performance Analyzer for TQuel Queries ..

Figure 5-1;
Figure 5-2:
Figure 5-3;
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9;

Figure 5-10:
Figure 5-11:
Figure 5-12;
Figure 5-13:
Figure 5-14;
Figure 5-15:
Figure 5-16:
Figure 5-17:
Figure 5-18:
Figure 5-19:
Figure 5-20:
Figure 5-21:

--

A Delete Statement

Base Interval vs. Update Interval for Delete

Base Interval vs. Update Interval fOr REPLACEcovecreeeereevscarsnssrrsnsssesssesssssmensssossssassans

Reverse Chaining

Accession List

.........

Indexing ..

..

Clustering

Insertions in Nonlinear Hashing
Insertions in Nonlinear Hashing
Insertions in Nonlinear Hashing

Deletions in Nonlinear Hashing

a5e0

..............................

..................................

Deletions in Nonlinear Hashing
Stacking (depth d = 3)

Cellular Chaining (cell sizec =3)
Types of Secondary Indices for Each Type of Databases

A Relation in Tuple Versioning
A Relation in Attribute Versioning

Partial UNNEST’ing of A Relation with Attribute Versions
Full UNNEST’ing of the Relation in Figure 5-17

Attribute Versions

--

ooooooooooo

...

--

Structures for the History Store

--

--

24
25
26
29
30
33
33
35
37
37
4
44
51
54
56
60
60
61
63

69
76
76
78
84
86
39
91
97
98
99
101
102
105
107
109
111
112
112
113
116
117

Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:

Figure 6-12: Error Rates in the Analysis Results
Figure 6-13: Elapsed Time (in sec)
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 7-6:
Figure 7-7:
Figure 7-8:
Figure C-1;
Figure C-2:
Figure C-3:
Figure C-4:
Figure C-5:
Figure C-6:
Figure C-7:
Figure C-8:
Figure C-0:
Figure C-10: Space for the Temporal DBMS with 100% Loading

Figure C-11: 1/O Cost for the Temporal DBMS with 50% Loading
Figure C-12: Space for the Temporal DBMS with 50% Loading

Internat Structure of INGREScomonersneenresrsnssseanseneenns

A TQuel QUELY ...oveevemrcrereianes
A SYNAX TIEL .veeccerrernerrersassaserensacosonsnsone

Creating a Temporal Database

Benchmark QUEHEScccerneirsocssssssscocsssesssmerarmersssssssens

aaaaaaaaaaaaa

.......................................

Space Requirements (in Blocks)

Input Costs for the Temporal Database with 100% Loading .
Inpat Cosis for Four Types of Databasescocvorevcocaonsomens

.........................

Figure 6-11: Analysis Results using Performance Models

...

...

Space Requirements for the Rollback_h Relation ...

................

...

The Rollback Database with 100% Loadingc.ceoeecvvun.e.
Space Requirements for the Temporal h Relation

...

...

The Temporal Database with 100% Loadingocsen.
Fixed Costs, Variable Costs, and Growth Rates

Space Requirements for a Secondary Indexc..o.oooecrrence.

Secondary Indexing as Snapshot or Rollback ..

aaa

Secondary Indexing as Historical or Temporal

17O Cost for the Rollback DBMS with 100% Loading
Space for the Rollback DBMS with 100% Loading
/O Cost for the Rollback DBMS with 50% Loading

Space for the Rollback DBMS with 50% Loading

.............

...

...

/O Cost for the Historical DBMS with 100% Loading
Space for the Historical DBMS with 100% Loading
170 Cost for the Historical DBMS with 50% Loading

Space for the Historical DBMS with 50% Loading

...

/O Cost for the Temporal DBMS with 100% Loading

ooooo

nnnnnnnnnn

............

...

...

...

122
123
123
127
129
132
133
134
134
137
140
141
142
148
149
152
153
155
157
158
160
187
187
188
188
189
189
190
190
191
191
192
192

PART I

Infroduction

Temporal databases with the capability to record and process time-dependent data expand the area of
database applications, bringing a wide range of benefits. The thesis of this dissertation is that new access
iheﬂmds can be developed to provide temporal support in database management systems without
penalizing conventional non-temporal queries and the performance of such systems can be analyzed by a

set of models forming a hierarchy.
Part one consists of two chapters. The first chapter describes the background, motivation, and
approach of this dissertation. The second chapter summarizes previous work in the area of this research

and describes TQuel, a temporal query language used throughout this dissertation.

Chapter 1

Overview

This chapter describes the motivation for database management systems with temporal support and
discusses the benefits and applications for such systems. It then identifies the problems involved in

providing temporal support and presents the approach taken in this dissertation.

1.1. Motivation

Time is an essential part of information concerning the real world, which is constantly evolving.
Facts or data need to be interpreted in the context of time. Causal relationships among events or entities
are embedded in temporal information. Time is a universal attribute in most information management

applications and deserves special treatment as such,

Databases are suﬁposed to model] reality, but conventional database management systems (DBMS’s)
lack the capability to record and process time-varying aspects of the real world. With increasing
sophistication of bBMS applications, the lack of temporal support raises serious problems in many cases.
For example, conventional DBMS’s cannot support temporal queries about past states, nor can they
perform trend aralysis over a series of history data. There is no way to represent retroactive or proactive
changes. Support for error correction or an audit trail necessitates costly maintenance of backups,
checkpoints, or transaction logs to preserve past states. There is a growing interest in app!ying database
methods for version control and design management in computer aided design, requiring capabilities to
store and process time-dependent data. Without temporal support from the system, many applications have

been forced to manage temporal information in an ad hoc manner.

The need for providing temporal support in database management systems has been recognized for at
least a decade. A bibliographical survey contained about 70 articles relatihg time and information
processing [Bolour et al. 1982); at least 90 more articles have appeared in the literature since 1982

[MCKENZIE 1986]. In addition, the steady decrease of secondary storage cost, coupled with emergence

of promising new mass storage technologies such as optical disks {Hoagland 1985], have amplified interest

in database management systems with temporal support or version management. G. Copeland asserted that

- a8 the price of hardware continues tc plummet, thresholds are eventually reached at which these
compromises [io achieve hardware efficiency] must be rebalanced in order to minimize the total cost of a
system. ... If the deletion mechanism common to most database systems today is replaced by a non-deletion
policy ..., then these systems will realize significant improvements in functionality, integrity, availability,
and simplicity. [Copeland 1982]

G. Wiederhold also observed, in a review of the present state of database technology and its future, that

The availability of ever greater and less expensive storage devices has removed the impediment that
prevented keeping very detailed or extensive historical information in on-line databases. ... An immediate
effect of these changes will be the retention of past data versions over long periods. {Wiederhold 1984]

As a result, numerous schemes have been proposed to provide temporal support in database
management systems by incorporating one or more time atiributes in recent years. However, there has
been some confusion concerning terminology and definitions on several concepts in this area, and many

issues remain to be investigated for implementing such systems with adequate performance.

1.1.1. Terminology

The first question concerning temporal data'bases is the definition of the term temporal database
itself. The term in the generic sense, as used in the title of this dissertation, refers to databases with any
degree of support for recording and processing temporal or time-dependent data. Databases in this
category are, for example, an engineering database with a collection of design versions, a personnel
database with a history of employee records, or a statistical database with time series data from scientific

experimernts,

If we look into the characteristics of fime supported in these databases, we can identify three distinct
kinds of time with different semantics, as will be discussed further in Chapter 3: valid iime, transaction
time, and user-defined time [Snodgrass & Ahn 1985, Snodgrass & Ahn 1986]. Valid time is the time when
an event occurs in an enterprise. Transaction time is the time when a transaction occurs in a database to
record the event, User-defined time is defined by a user, whose semantics depends on each application.
This taxonomy of time naturaily leads to the next question of what kind of time is io be supported.
Depending on the capability to support either or both of valid time and transaction time, databases are

classified into four types: snapshot, rollback, historical, and temporal, Roliback databases support

Ay

transaction time, recording the history of database activities. Historical databases support valid time,
recording the history of a real world, Databases supporting both kinds of time are termed temporal
databases in the narrower sense to emphasize the importance of both kinds of time in database management

systems. In the remainder of this dissertation, the term temporal databases is used in this narrower sense,

unless indicated otherwise.

1.1.2. Applications for Databases with Temporal Support

Providing temporal Support in database management systems brings about many benefits and
interesting applications. For example, it is possible to make historical queries to ask the status of an
enterprise valid at a past or even fu_ture moment, or to perform rollback operations shifting the reference
point back in time and inquiring the state of a database in the past [Snodgrass & Ahn 1985, Snodgrass &
Ahn. 1986]. These capabilities help in understanding the dynamic process of state_evolution in an

enterprise, and in identifying temporal or causal relationships among events or entities.

The capability for retrospective analysis is essential in decision support systems to evaluate planning
models based.on the frozen state of knowledge about the world at the time of planning [Ariav 1984]. Itis
possible to ask what if questions on the past events, to perform trend analysis over a series of data, to

forecast the future based on the past and the current data, and to plan resources over time.,

Temporal databases can recqrd retroactive changes which occurred in the past, or proactive changes
‘which will take effect in the future. Correct handling of time is important in modeling temporal constraints
or writing complex rules such as those in legislation or high level system specifications [Jones & Mason
1980]. Maintaining history data without physical deletion facilitates error correction, audit trail, and.
accounting applications.. The ability to control the configuration of a series of versions is useful for version

management in engineering or textual databases [Katz & Lehman 1984].

Supporting time in database management' systems not only adds td the functionality for various -
applications, but also benefits system operations. Temporal information or time stamps can be utilized for
coﬁcurrency control of muitiple transactions, recovery after systems crashes, and synchronization of
distributed databases [Bernstein & Goodman 1980). Enforcing the no-update-in-place paradigm increases

reliability, facilitates error recovery, reduces burdens on backups, check-points, or transaction-logs, and

Y

results in lower system cost [Copeland 1982, Schueler 19771. Retention of history data is also attractive for

utilizing low cost and large capacity write-once media such as optical disks.

1.2. The Problem

Despite the benefits of database systems with temporal support as described above, there are several
problems to be overcome before implementing such systems with adequate performance. This section
describes the characteristics of databases with temporal support and then discusses whether conventional

access methods are appropriate for such databases,

1.2.1. Characteristics of Databases with Temporal Support

Database systems with temporal support follow the nan-deletion. policy in one way 6r another to
preserve past information needed for historical queries or rollback operations. Tt means that ﬁo record will
ever be deleted once it is inserted, except to correct errors in the case of historical databases. For each
update operation, a new version is created without destroying or over-writing existing ones. This strategy
solves many of the problems caused by the update-in-place practice common in conventional DBMS’s

[Schueler 1977], but also introduces several new problems.

An immediate. concem is the large volume of data to be maintained on line. Storage requirements
will increase monotonically, potentially to an enormous amount, no matter what data compression
technique is utilized. This problem is one of the major reasons why databases with temporal support have
not been put into practice even though their benefits have been long recognized. It is often impractical to
store all the states of a database while it evolves over time. It is necessary to devise mechanisms dealing
with the eirer-growing storage size effectivel}, and to represent temporal versions into physical storage in

such a way that past states of a database can be maintained with little redundancy.

The large amount of data to be maintained also causes performance problems. For example, the
number of block accesses to get a record from an unordered file with m blocks is O (m). Storing temporal
data in such a file will require a large m, significantly degrading the performance. In addition, each update
operation adds a new version, generating multiple versions for some tuples. Unless temporal information is
utilized as a ban of a key, there will be multiple records for a single key value. However, time attributes

are in general not suitable to be used as a key for storing and accessing records. A time attribute alone

cannot be used as a key in most applications. Including time atiributes in a key results in a multi-attribute
key, which complicates the maintenance of the key. Even though time attributes are maintained as a part
of a key, it is difficult to make a point query (exact match query), which requires a single point in time
specified as a predicate, especially when the resolution of time values is fine. Thus, we should be able to
support a range query on time attributes, which is not possiblé with many access methods, e.g. various
forms of hashing. These issues present serious problems for most cOnveﬁtional access methods, as will be

further discussed in the next section and in Chapter 6. -

On the other hand, there are several interesting characteristics unique in databases with temporal
support. There are two distinct types of data, the current and the history, which exhibit clear differences in
their characteristics on many aspects; There is only one current version for each 'tuple' at 6ne tirhe, yet
multiple versions exist for some tuples in history data. Storage requirements for history'data ﬁlay be
potentially enormous, while the size of current data is relatively static once it has stabilized. Unlike current |
data, history data need not be updated except when errors are corre&ed in the case of historical databases,

which makes write-once optical disks attractive as the storage media.

There is alsé a correlation between the age of data and tﬁeir access frequencies or abcess_ urgencies,
Conventional databases store only the latest snapshot of an enterprise being modeled, which repreéents the
current data. Hence all the .conventional database applications deal with only the current data. Retaining
history data for temporal support will encourage new applications to process history data mgeﬂ]er with
current data, such as historical queries, rollback omrﬁons, and trend analysis. But in general,
conventional applications dealing with current data are still expected to dominate nmew applications
concerning history data. Therefore, history data are accessed less frequently than current data. Likewise,
history data are needed lesé urgently than current data. Since databases with tempofal support have these
unique characteristics, not found in conventional databases, it is a challenge to exploit them in system

implementation for better performance.

1.2.2, Conventional Access Methods

Access methods such as sequential, hashing, indexing; and ISAM are static in the sense that they do

not accommodate growth of files without significant loss in performance. Accessing data in a sequential

file requires sequential scanning, which is often too expensive. Access methods such as hashing and ISAM
also suffer from rapid degradation in performance due to ever-growing overflow chains caused not only by
key collisions but also by the existence of multiple versions for a sinéle key, as will be demonstrated in
Chapter 6. Reorganization does not help to shorten overflow chains, because all versions of a tuple share
the same key. Hence performance will deteriorate rapidly not only for temporal queries but also for non-

temporal queries [Ahn & Snodgrass 1986].

There are dynamic access methods that adapt to dynamic growth better, such as B-trees [Bayer &
McCreight 1572], virtual hashing [Litwin 1978), linear hashing [Litwin 1980], dynamic hashing [Larson
1978], extendible hashing [Fagin et al. 1979], K-D-B trees [Robinson 1981], or grid files [Nievergelt et al.
1984]. These methods maintain certain structures as records are added or deleted. But the performance is
still dependent on the count of all versions, which is significantly higher than the count of current versions.
Furthermore, a large number of versions for some fuples wiil require more than a bucket for a single key,
causing similar problems to those exhibited in conventional hashing. It is also difficult to maintain
secondary indices for these methods, because they often split a bucket and rearrange its records.
Performance problems of conventional access methods in the environment of databéses with temporal

support will be further discussed in Chapter 6.

Seconﬂary storage cost has been decreasing rapidly and consistently, and various new technologies
are emerging in recent years. In particular, optical disks are becoming commercially available from
several manufacturers at a reasonable cost [Fujitani 1984, Hoagland 1985]. A single disk provides storage
capacity of up to 5 Gbytes, whose per byte cost is about four orders of magnitude lower than magnetic
disks. Data can be accessed randomly, though about an order of magnitude slower, with data transfer rate
comparable to magnetic disks. It takes about a minute io mount a new disk manually, but there is a system
which houses 64 disks with the total capacity of 128 Gbytes and changes a disk in less than 5 sec [Ammon
et al. 1985]. One limitation of optical disks is that they are currently write-once, not allowing
reorgaﬁization or rewriting of data once they are stored. This peculiarity makes many of the conventional
' étorage structures, especially the dynamic ones such as B-trees or dynamic hashing, unsuitable for optical

disks, and requires new storage structures to utilize their potential benefits.

1.3. The Approach

These observations on the inadequacy of conventional access methods lead to the conclusion that

“new access methods need to be developed to provide fast access paths for a wide range of temporal queries
without penalizing conventional non-temporal queties. Therefore, this dissertation investigates new access
methods tailored to the particular characteristics of database management systems with temporal support,

and also develops a set of models to analyze the performance of query processing'in such systems.

For this research, TQuel (Temporal QUEry Language) (Snodgrass 1986] was chosen as the query
language, because it is the only temporal language to support both historical queries and rollback

operations. A description of TQuel will be given in Section 2.3.

1.3.1. Temporally Partitioned Store

The solution proposed in this dissertation to the problems discussed in Section 1.2 is the temporally
partitioned store 1o divide current data and history data into two storage areas. The current store holds
current data and possibly some history data, while the history store contains the remaining history data.
This scheme to separate current data from the b.ulk of history data can minimize the overhead for
conventional non-temporal queries, and at the same time provide a fast access path for temporal queries.
The two stores can utilize different storage formats, and even different storage media, depending on

individual data characteristics.

There are many issues to be investigated about the temporally partitioned storage structure. The
main issues are the split criteria on how to divide data between the current and the history store, update
procedures for each type of databases with temporal support, methods to handle retroactive changes,
proactive changes, or key changes, and the performance with regard to the update count. This research
addresses these issues in general, then concentrates on the details of various formats for the history store.
It investigates various forms of the history store, studies their characteristics, analyzes their performance,
and'implements one of them to obtain perfohnance data for comparison with analysis results. Relative
advantages and disadvantages of the various formats will be evaluated in this process to determine the cost
of supporting temporal queries. Issues on how to support secondary indexing and attribute versioning in

~ the temporally partitioned storage structure are also studied.

10

1.3.2. Performance Models

Models of the various phases of query processing in database management systems can facilitate the
process of investigating access methods by reducing the need to implement each method for performance
evaluation. Though significant contributions have been made for models and systems to analyze the
performance of file organizations and database management systems as will be described in Section 2.1,
the general problem of evaluating the access cost given a query as an input has not been addressed
adequately. Furthermore, particular characteristics of query processing and access methods considered in
this research for database management systems with temporal support demand a new set of models

different from those for conventional systems,

Therefore, this research develops four models, forming a hierarchy, to characterize the process of
temporal query processing: one each for algebraic expressions, da:abase/re!atio}:s, access paths, and
storage devices. The model of algebraic expressions maps the algebraic expression to the file primitive
expression, based on information represenied by the model of database/relations. The model of access
paths maps the file primitive expression 1o the access path expression, which is converted to the access
path cost by the model of storage devices.

These models combined can estimate the input and output cost for a coﬂection of TQuel queries, and
analyze various alternatives in the design of new access methods without the time consuming process of

case by case implementation or simulation.

1.3.3. Experiments

As a test-bed to evaluate the access methods and the models, a prototype of a temporal DBMS was
built by modifying a snapshot DBMS. Since TQuel is a superset of Quel, INGRES [Stonebraker et al.

1976] was a natural choice as the host system for this purpose.

The initial prototype uses the conventional access methods available in INGRES. Therefore, it can
be used to identify problems with conventional access methods, and to suggest possible improvements,
One of the temporally partitioned storage structures is actually implemented énd incorporated in the
prototype to enhance its performance. Performance data measured from the prototype will be compared in

Part JII with the analysis results from the models described above to check the accuracy of models.

1

1.3.4. Summary

This research investigates various forms of temporally partitioned storage structures for database
management systems with temporal support, and develops models to analyze the performance of query
processing in such systems. It also demonstrates the feasibility of providing temporal support in database
management systems without penalizing conventional non-temporal queries. By investigating performance
models and access methods for database management systems with temporal support, this research will

contribute to expanding the capabilities and application areas of database management systems.

L4. Structare of the dissertation
This chapter described the background, motivation, and the approach of this research. The second
chapter summarizes previous work related with this research, and briefly describes TQuel, a temporal

query language used throughout this dissertation.

Part II consists of three chapters. Chapter 3 defines the types of databases in terms of temporal
support. Chapter 4 describes the models developed to analyze the performance of query prdc_essing in
database systems with temporal support. Chapter 5 discusses various issues for the temporally partitioned

storage structure, and investigates the formats of the history store.

Part IIT presents the benchmark results, measured from the prototype implementation. Chapter 6 is
for the prototype with the conventional access methods, and Chapter 7 is for the the prototype with the

temporally partitioned storage structure developed in Chapter 5.

Finally, Part IV presents the conclusions of this research and suggests areas of future work.

Chapter 2

Previous Work

This chapter reviews previous research in the area of access methods and performance analysis for
conventional database systems, and in the area of database management systems with temporal support

emphasizing the aspects of implementation.

2.1. Access Methods and Performance Analysis

Contributions in this area are described below in three categories, access methods, access cost

estimation, and systems and models for performance analysis.

2.1L.1, Access Methods

There has been a massive amount of research on the des_ign and analysis of specific file structures
with various characteristics. Some examples are ISAM files [Larson 1981], B-trees [Bayer & McCreight
1972, Comer 1979, Held 1978, prefix B-trees [Béyer & Unterauer 1977], and a performance comparison -

between ISAM and B-trees [Batory 1981].

Hashing schemes can Ee classified into fixed size and variable size, depending on the adaptability to
the change of the file size. For fixed size hashing [Bloom 1970, Coffman & Eve 1970, Lum et al. 1971],
schemes such as linear probing [Mendelson 1980] and coalesced hashing [Chen & Vitter 1984] were
studied to handle overflow records. Perfect hashing attempts to eliminate overflow records for a given set
of keys by selecting a perfect hash function [Cichelli 1980, Larson & Ramakrishna 1685, Sprugnoli 1977).
. Various methods have been proposed to extend the hashing technique to maintain high performance even
when the file size changes dynamically. Among those are virtual hashing {Litwin 1978},' dynamic hashing
[Lar_son 1978], extendible hashing [Fagin et al. 1979, Mendelsor 1982, linear hashing [Litwin 1980],
linear hashing with partial expansions [Larson 1982], and recursive linear hashing [Ramamohanarao &

Sacks-Davis 1984].

14

Differential files [Aghili & Severance 1982, Gremillion 1982, Severance 1976] were proposed to
increase data availability by localizing modifications to a separate file, Grid files [Nievergelt et al. 1984]
and multi-dimensional K-D-B-trees [Robinson 1981] have been developed for random access through
multiple keys. Many of these structures are applicable to the current store, and some variations may also
be useful for the history store of the temporally partitioned storage structure, as will be discussed in

Chapter 5.

2.1.2, Access Cost Estimation

There are two basic problems to be solved for evaluating the cost of a query. One is to determine the
size of the response set which satisfies the query, and the other is to estimate the number of block accesses

required to retrieve those records.

[Yu et al. 1978] studied the problei of estimating the number of records accessed for a given query
from a clustered database. They compared empirical data with the estimations under the assumpiion of
attribute independence, and improved the accuracy of the estimations by relaxing the assumption of
independence. [Richard 1980] presented a probabilistic model for evaluating the size of derived relations
from a query expresséd in relational algebra, given the expected size of all projections of each relation in a

database.

The problem to estimate the number of block accesses for retrieving & records out of » records stored
in m blocks was first addressed Sy [Cardenas 1975]. [Yao 1977A] noted that the solution of [Cardenas
1975] was for the case where records might have duplicates, and gave a solution when all records were
distinct. [Cheung 1982] presented a formula for the case where requested records might have duplicates
but their ordering was immaterial. [Whang et al. 1983] derived a closed, noniterative formula for fast
computation of this problem, and analyzed resulting errors. [Luk 1983] examined the case where the
variables k, n, and m were stochastic and non-uniform. [Christodoulakis 1983] provided estifnates of the
number of sequential and random block accesses for retrieving a number of records from a file when the

distribution of records was not uniform, and applied the result to estimating the size of the join operation.

[Christodoulakis 1984] noted that most performance analyses assumed uniformity and independence

of attribute values, uniformity of queries, a fixed number of records per block, and random placement of

15

qualifying records. He showed that these assumptions predicted the upper bound of expected system cost,

and led to the choice of worst-case strategies.

2.13. Systems and Models

There have been several systems to analyze the performance of file organizations based on a
_ collection of individual models. [Cardenas 1973] designed and implemented a system to evaluate and
select file organizations. The system estimated disk access time and storage requirements given a measure
of query comflexit’y for a single file retrieval. It contained file structure modules derived from analytical
analysis for inverted files, multilists, and doubly chained tree files. [Siler 1976] implemented a stochastic
model of data retrieval systems td analyze inverted list, threaded list, ceﬂular list organization, and hybrid

combinations under varying degrees of query complexity.

[Scheuelmaz_m 1977] presented a simulation model to compute a weighted cost function of storage
and retrigval tune for a hierarchical DBMS given descriptions of workload and storage structure. Data
definition and query definition sublanguages described the workload, and a mapping sublanguage
represented several levels of mappings to storage structures. [Satyanarayanaﬁ 1983] developed a
methodology aﬁd a simulator for modeling storage systems with | device modules and hierarchy

descriptions.

[Hawthorn & Stonebraker 1979] measured the performance of INGRES with a benchmark query
stream, rather than a performance modeling approach. They studied /O reference and CPU usage patterns
for each of data-intensive, overhead-intensive, and multi-relation query. types. The result was used to
discuss the effect of storing temporary relations in a cache, using multiple processors, and prefetching data
blocks.

'On the other hand, a series of generalized models have been proposed with varying complexity and
descriptive power for the past 15 years. Hsiao and Harary proposed a formal model to analyze and
evaluate generalized file organizations [Hsiao & Harary 1970]. The model represents the directory of a file
with a set of sequences (K;, n;, i; a;1, 4;5, ..., ay,) for each keyword K,-; where n; is.the number of records
containing the keyword, 4; the number of sublists holding such records, and a;;, the starting address of the

h;’th sublist. By varying the number and the length of sublists for each keyword, it can represent structures

16

such as multilist files, inverted files, indexed sequential files, and some combinations of those.

Severance noted that this one dimensional model is unable to represent files which are not strictly list
oriented, so introduced a two-dimensional model [Severance 1975]. One dimension is whether the
successor node is physically contiguous (address sequential), or connected through a pointer (pointer
sequential). The other dimension is whether there is an index for the data (data indirect), or not (data
direct). The four corners of this two-dimensional space represent sequential files, inverted files, list files,

and pointer sequential inverted files.

Yao observed that Severance’s model represents only a one-level index, imprecisely modéls indexed
sequential files, and cannot model cellular list organizations [Yao 1977B]. Instead, he represenied the
process of searching a file By an access tree composed of hierarchical levels such as attributes, keywords,
accession lists, and virtual records. Additional parameters to characterize the access path were the average
number of records, overflow ratio, loading factor, and maximum overflow ratic for each level. Based on
this access path model, generalized access algorithms and cost functions for search and retrieval were
presented. He also presented a file retrieval algorithm and an associated cost function for a single file
query in a disjunctive normal form. Some of the parameters for the query were the total number of
attributes and the average number of conjuncts in a query. Since this model has the underlying structure of
the tree shaped access path, it is suitable for directory based file organizations such as inverted files, but is

less applicable to files with other structures.

Based on this generalized model of [Yao 1977B], a file design analyzer was built to evaluate storage
structures and access methods such as sequential, direct, inverted, multilist, and network structures [Tecrey
& Das 1976]. It estimated 'O cost and storage requirements given a user workload expressed in terms of
the number of retrievals and updates on a single record type. [Teorey & Fry 1980] presented a logical
record access (LRA) approach as a practical stepwise database design methodology, and {Teorey & Fry
1982] used the physical block access (PBA) approach to estimate I/O performance of various file structures
for a set of typical query types.

Yao also proposed a model for systematic synthesis of a large collection of access strategies for two
relation queries [Yao 1979). He identified 11 basic access operators such as restriction, join, record access,

and projection, then presented without derivations cost equations for each operator measured in terms of

17

page accesses. Permuting these operators gave 7 classes of evaluation algorithms for each relation, and
339 different algorithms for two relation queries, whose cost could be computed from cost equations of
each operator. He modeled the storage structures with parameters indicating the existenée of clustéring,
parent, child or chain links among relations, and the existence of clustering or non-clustering index for

each attribute of relations. However, the model of [Yao 1977B] was not used for this study.

[Yao & DeJong 1978] built the model of [Yao 1979] described above into a system \irhich can
calculate access path costs given parameters for the model and particular algorithms to be evaluated. Some
examples of typical parameters were attributes per record, records per page, levels of index; fraction of file

after projection, restriction selectivity, and join selectivity.

Batory and Gotlieb proposed a unifying model, which decomposes phy_sical databases into simple
files and linksets [Batory & Gotlieb 1982]. The model for simple files characterizes file structures with a
set of parameters grouped as design parameters, file parameters, and cost parameters. The model for
linkse& describes relationships between records in two simplé files with parameters such as parent, child,
cell size, and implementation methods. Basic operations and associated cost funcﬁon§ were also defined
for simple ﬁIés and linksets. This.model relies on a chIection of parameters to describe various file
orgaﬁizations, rather than mapping their characteristics to an abstract structure. Batory augmented the
unifying model later with transformation model which defines a set of elementary transformations [Batory

1985] to aid the process of decomposing physical databases into simple files and linksets.

As described above, significant contributions have been made for models and systems to evaluate the
performance of file organizations and database management systems. [Yao 1977B], [Yao 1979] and
(Batory & Gotlieb 1982] are particularly relevant to this research, but none of these actually addressed the
whole problem of evaluating the access cost given relational queries as an input, Furthermore, particular
characteristics 6f query prbcessing and access methods considered in this research for the database

management systems with temporal support are not adequately handled by any of the above models.

2.2. Databases with Temporal Support

There have been vigorous research activities in formulating the semantics of time at the conceptual

level [Anderson 1982, Breutmann et al. 1979, Bubenko 1977, Hammer & McLeod 1981, Klopprogge

18

1981], developing models for time varying databases analogous to the conventional relational model
[Clifford & Warren 1983, Codd 1979, Sernadas 1980], and the design of temporal query languages [Ariav
& Morgan 1981, Ben-Zvi 1982, Jones & Mason 1980, Snodgrass 1986]. We will discuss these efforts in
Chapter 3, grouping them into three types based on the capability for temporal support. However, there has
been no major effort to investigate implementation aspecis for either historical or temporal database

systems, Iet alone performance analysis of such systems.

2.3. TQuel

For this research, TQue! (Temporal QUEry Language) [Snodgrass 1986] was chosen as the query
language, because it is the only temporal language to support both historical queries and rollback
operations. TQuel supports two types of relations, interval relations and event relations. An interval
relation, with two time attributes, consists of tuples representing a state valid during 2 time interval. An

event relation, with a single time attribute, consists of tuples mpresenting instantaneous occurrences.

TQuel extends several Quel [Held et al. 1975] statements to provide query, data definition, and data
‘ manipulation capabiliﬁes supporting ali four types of databaéés. It expresses historical queries by
augmenting the retrieve statement with the when predicate o specify temporal relaﬁonships among
participating tuples, and the walid clause to specify how the implicit txme attributes are computed for
resuli tples. The rollback operation is specified by the as of clause for the rollback or the temporal
databases. These added constructs handle complex temporal relationships such as precede,
overlap, extend, begin of, and end of. They are composed of a reserved word followed by
an event expression Or a temporal expression, whose syntax is derived from path expressions [Andler
1979].

The append, delete, and xeplace statements were augmenied with the valid and the
when clauses in a similar manner. Finally, the create statement was extended to specify the type of a
relation, whether snapshot, rollback, historical or temporal, and to distinguish between an interval and an

event relation if the relation is historical or temporal.

In addition, temporal aggregates for TQuel have been developed to provide a rich set of statistical

functions that range over time [Snodgrass & Gomez 1986], Aggregates are either instantaneous or

19

cumulative, are either unigue or not, and may be nested. The formal semantics for the aggregates were
defined in the tuple relatidnal calculus. TQuel also defines how to handle indeterminacy or incomplete
information, but this dissertation focuses on- the core of the language withont aggregates and
indeterminacy. Since TQuel is a superset of Quel, both syntactically and semantically, all legal Quel
statements are also valid TQuel statements. Statements have an identical semantics in Quel and TQuel
when the time domain is fixed. The semantics of TQuel was formalized using tuple relational calculus and
transformation rules [Snodgrass 1986], demonstrating that when and valid clauses are direct semantic

analogues of Quel’s where clause and target list. The complete syntax of TQuel is given in Appendix A.

PART It

Temporal Database Management Systems

Part two consists of three chapters, describing the conceptual aspects of this research. Chapter 3
defines the types of databases in terms of their capability for temporal support. Chapter 4 develops four
ilriodels forming a hierarchy to analyze the process of query processing in database management systems
with' temporal support. Chapter 5 investigates various issue; for the temporally partitioned storage
structure which can provide temporal support for database managemént systems without penalizing

conventional non-temporal queries,

Chapter 3

Types of Databases

As presented in [Snodgrass & Ahn 1985, Snodgrass & Ahn 1986), there are three distinct kinds of
time with different semantics in databases: valid time, transaction time, and user-defined time. Valid time
is the time when an event occurs in an enterprise. Transaction time is the time when a transaction to
account for the event is executed in a database modeling the enterprise. User-defined time is defined by a
user, whose semantics depends on each applicétion. This taxonomy of time naturafly leads to the next
question_of what kind of time is to be supported. Depending on the capability to support.either or both of
transaction time and valid ﬁme, databases are classified into four types: snapshot, roflback. historical, and
temporal. This chapter, a summary of [Snodgrass & Ahn 1985], first discusses representational
inadequacies of snapshot dqtabases, and then compares three types of databases with temporal support.
Though the following discussion is based on the relational model, analogous arguments readify apply to

hierarchical or network models.

3.1. Snapshot Databases

'Conventional databases mode! an enterprise, as it changes dynanﬁcaliy, by ;1 snapshot at a particular
point in time. A state or an instance of a database is its current cof:tents, which does not necessarily reflect
the current status of the enterprise. The state of a database is updated using data manipulation operations
such as append, delete or replace, taking effect as soon as they are committed. In this process,
past states of the database, representing those of the enterprise, are discarded. We term this type of
database a snapshot database. |

In the relational model, a database is a collection of relations. Each relation consists of a set of
tuples with the same set of attributes, and is usually represented as a two dimensional table (see Figure 3-

1). As changes occur in the enterprise, this table is updated appropriately.

24

Figure 3-1: A Snapshot Relation

For example, an instance of a relation ‘Faculty’, with two attributes Name and Rank, at a certain

moment may be

Name Rank
Merrie Full
Tom Associate

and a query in Quel, a tuple calculus based language for the INGRES datzbase management system [Held
et al. 1975], inquiring Merrie’s rank,

range of f is Faculty

retriaeve {f.Rank)
where f.Name = "Merrie®

yields

Rank
Fuill |

There are many situations where this snapshot database relying on snapshots is inadequate. For
example, it cannot answer queties such as

What was Merrie’s rank 2 years ago? (historical query)

How did the number of faculty change over the last 5 years? (trend analysis)
nor record facts like

Merrie was promoted to a full professor starting last month. (retroactive change)

James is joining the faculty next month. (proactive change)
Without system support in these respects, many applications have been forced to fnanage temporal
information in an ad hoc manner. For instance, many personnel databases atiempt o record the entire
employment history of the company’s employees. The facts that somé of the attributes record time, and

that only a subset of the employees actually work for the company at any particular point in time are not

25

the concerns of the DBMS itself. The DBMS provides no facility for interpreting or manipulating this
information; such operations must be handled by specially-wﬂtten application programs. The fact that data
changes values over time is not application specific, but should be recognized as being universal. It is
possible to identify the properties and the semantics of time common to all database applications,
distinguish different kinds of time in databases, and provide the capability to handle each kind of time.
These aspects should be supported in 2 general fashion by the database' management systems, rather than

by application programs.

3.2. Rollback Databases

One approach to resolve the above deficiencies is to store all past states, indexed by time, of the
snapshot database as it evolves. Such an approach requires the support of transaction time, the time when
the information is stored into the database. A relation under this approach can be illustrated conceptually
in three dimensions with transaction ;ime-serving as the third axis (Figure 3-2). The relation can be
regarded as a sequence of snabshot relations (termed snapshot states) indexed by time, and provides the
capability to return to any previous state o execute a (snapshot) query. By moving along the time axis and
selecting a particular snapshot st#te, it is possible io retrieve a snapshot of the relation as of some time in
the past, and to make queries upon it. The operation of selecting a snapshot state is termed rollback, and a

database supporting the operation is termed a snapshot rollback database, or simply a rollback database.

N I B

fransaction
time

Figure 3-2: A Rollback Relation

Changes to a rollback database may be made only to the most recent snapshot state, The relation

illustrated in Figure 3-2 had three transactions applied to it, starting from the null relation:

(1) three tuples were added,

26

(2) one tuple was added, and
(3) one tuple (entered in the first transaction) was deleted, and another tuple was added.

Each transaction results in a new snapshot state being appended to the front of the time axis. Once a

transaction is commiited, the snapshot states in a rollback relation may not be altered.

A typical relation in this approach looks like Figure 3-3. The double vertical bars separate the non-
temporal attributes from the implicit time attributes transaction start and transaction stop. The latter
attributes do not appear in the relation scheme, but may rather be considered as a part of the overhead
associated with each tuple. Note the fact that Merrie was previously an associate professor, a fact which
could not be expressed by a snapshot relation. The value ‘-’ for the transaction stop attribute denotes ‘on-

going’ or “still true’.

Name Rank transaction time
(start) (stop)

Mermie | Associate 08/25/77 | 12/15/82

Merrie Full 12/15/82 -

Tom Associate 12/07/82 -

Mike Assistant 01/10/83 | 02/25/84

Figure 3-3: A Rollback Relation

Any query language may be extended to one for rollback databases by adding a clause effecting the
rollback operation. TQuel (Temporal QUEry Language) [Snodgrass 1986], an extension of Quel for
temporal databases, augments the retrieve statement with an as of clause to specify the point of

reference in ﬁme. The TQuel query

range of f is Faculty

retrieve (f.Rank)
where f.Name = "Merrie"”
as of "12/10/82"

on a ‘Faculty” relation shown in Figure 3-4 will find the rank of Merrie as of 12/10/82:

27

Rank
Associate

Note that the result of a query on a rollback database isa pure snapshot relation.

' One limitation of supporting transaction time is that the history of database activities, rather than the
history of the real world, is recofded. When a tuple is entered into a database, the transacﬁon start time is
set to the current time, making the tuple effective immediatély as in a snapshot détabase. There is no way
to mcord retroacﬁVe!proacﬁve changes, nor to correct errors in past tuples. Em)r_s can sométimes be
overridden (if they are in the current state) but cannot be forgotten or corrected. Fbr instance, if Merrie’s
promotion date was later found to be "12/01/82" instead of "12/15/82", ihis error could not be corrected in

arollback database,

There have been séverél systems which can be classified as rollback détabase systems. .MDM/DB
(Model Data Management/Database) presented the history and dynamics in the source data by maintaining
cumulative, apl;end-only, time ordered .lists of transactions [Ariav & Morgan 1982]. anh transaction
contains a time stamp and a pointer to the previous transaction related to the same entity. The status of an
enti_ty at aﬁy given moment is computed from the collection of transactions for die ent.ity,' which havé been

‘recorded prior to that moment.

In [Lum et al. 1934], current tuples are stored in a table carrying a time stamp and a pointer to
history tuples in reverse txme order. History tuples are of the same structure, but are stored in a separate
table, and may be compacted to save space. A module to walk through the data and deliver appropriate
tuples according to ﬁe specified time is created in the database system, To support access of random data,
history information for the index is maintained with two trees, a current index tree and a history index tree.
The former contains all the index values from current tuples, the latter for those that exist_:ed in the past but
no longer in current tuples. These trees are of conventional structures, such as B-trees or B*-trees, with
leaves containing pairs of an index value and a pointer. The pointer references a ;;ointer list storéd ina
separate area ha;ring a similar structure to the data area. Each pointer list and its history chain correspond

to only one index value from one of the two trees.

GemStone [Copeland & Maier 1984], an extension of Smalltalk-80 [Goldberg & Robson 1983] for

database management applications, uses transaction time as an index to map an element name to its

28

associated value. It supports navigation through history tuples using a notation

E!rank@"12/05/82"
which retrieves E’s rank as of 12/05/82. It represents an object as a block of contiguous memory; which
SIOWS with.ti.me to retain history data. An object is broken into elements, each of which is represented as
an element name and a table of associations. This table, composed of pairs of ransaction times and object
pointers, provides the mapping from arbitrary time to an element value. Each pair represents that the
element acquired the object as its value at the moment shown in the transaction time. This system was

implemented with special purpose hardware.

Version Storage is a component for a distributed data storage system called SWALLOW, rather than a
database system, but it is mentioned here because it maintains the history of data objects and information
necessary for concurrency control and crash recovery [Svobodova 1981]. Each time an object is updated, a
tentative version called token is created, and eventually saved as a current version if committed. Each
;.rersion carries a pointer to its immediate predecessor in the history, and a time attribute to specify its range
of validity. The start time of a version is the time specified in the write request that created the token. A
read operation selects a version that has the highest start time lower than the time specified in the read
request. The object header contains pointers to the current version and a potential token together with

information for synchronization and recovery.

[Katz & Lehman 1984] applied database methods to support versions and alternatives in computer
aided design. It uses record level versioning to reduce the redundancy of stored records, where each
logical record in a design file is identified by a system generated surrogate. A versioned file consists of a
history index and two separate files. The history index is a B *-tree with leaf nodes containing pointers
{version history) to records stored in either of the two separate files. Though time domain addressing is not
supported explicitly, it is possible to access all records within a version, or all versions of a certain logical
record. But it is not clear how to handle inserted records which disrupt the logical ordering of surrogate
values.

Compared i historical or temporal DBMS’s, there have been more efforts for the actual

implementation of roflback DBMS’s. Some of the systems described above are being implemented, or

have already been built. All of these support transaction time explicitly or implicitdy for roliback

29

operations. However, there is no query language to expi'ess complex relationships among history data,

which is only reasonable considering the simple semantics of rollback databases.

3.3. Historical Databases

Another alternative is the historical database which records the history of the real world by
sﬁpporting valid time, the time when the relationship in the enterprise being modeled is valid. While a
rollback database records a sequence of snapshot states, a historical database tecords a single historical
state per relation. As errors are discovered, they are corrected by modifying the database. Previous states
of the database itself are not retained, so it is not possible to view the database as it was at a past moment,
No record is kept about errors that have been corrected. Historical databases are similar to snapshot

databases in this respect.

o~
N NN N
\II

[T T
ume

Figure 3-4: Historical Relation

Another distinction between historical and rollback databases is that historical databases support
arbitrary modification, whereas rollback databases only allow snapshot states to be appended. The same
sequence of transactions which led to the rollback relation in Figure 3-2 followed by a change of the valid
from time will result in the historical relation in Figure 3-4, where the label of the time axis indicates the
valid time. However, the historical relation can represent that a later transaction has changed the time
when a 'tuple takes effect in the réIation, which is not possible on a rollback relation. Rollback DBMS’s
can rollback to an incorrect previous snapshot relation; historical DBMS’s can represent the current

knowledge about the past.

30

As with rollback databases, implementing a historical relation directly as a sequence of snapshot
states is impractical. Figure 3-5 illustrates an alternative: appending the implicit time attributes valid from
and valid to to each tuple, indicating the period while the tuple was actually in effect. Like the transaction
time attributes in rollback databases, the valid time attributes are not included in the relation scheme, Note
that the relation in Figure 3-5 models an interval. A relation modeling an event needs only one attribute
valid from. The value ‘e’ for the valid to attribute denotes ‘forever’, distinguished from the value ‘- for

the transaction stop attribute. Handling incomplete information is beyond the scope of this dissertation.

Name Rank valid time
{from) (t0)
Merrie | Associaie 09/01/77 | 12/01/82
Merrie | Full 12/01/82 oo
Tom Associate 12/05/82 o0
Mike Assistant 0i/01/83 | 03/01/34

Figure 3-5: A Historical Relation

The seméntics of valid time is closely related to reality, hence more complex than the semantics of
transaction time concerned with database activities. Therefore, historical databases need sophisticated
operations t0 manipulate the complex semantics of valid time adequately. TQuel supports such queries
(termed historical queries) by augmeniing the retrieve statement witha validclause to specify how
the implicit temporal atiributes are computed, and a when predicate to specify the temporal relationship of
tuples participating in 2 derivation. These added constructs handle complex temporal relationships such as
precede, overlap, begin of, and end of. The TQuel query requesting Merrie’s rank when

Tom arrived,

range of £l is Faculty
range of f2 is Faculty

retrieve {f1.Rank)
where fl.Name = “"Merrie” and f2.Name = "Tom"

when f1 overlap begin of f£2

on the historical relation ‘Facuity® in Figure 3-5 yields

31

Rank valid time
(from) | (t0)
Full 12/01/82 oo

Note that the derived reIatién 1s also a historical relation, which may be used in further historical
queries. While both this query and the example given for a rollback relation seem to ask Merrie’s rank on
12/05/82, the answers are differeﬁt.- The reason is that Merrie was promoted on 12/01/82, but this
information wés recorded into the rollback database of Figure 3.3 two weeks later, The historical database
of Figure 3.5 represents the correct information, but it is not possible to determine whether some error had

ever been corrected.

Historical databases have been the subject of several research efforts, especially on the conceptual
aspects such as formal semantics and the design .of query languages, LEGOL 2.0 {Jones & Mason 1980]
was developed for writing complex rules such as those in legislatioﬁ 6: high level system specifications
‘where the correct handling of time is important. It augments each tuple with two time attributes, start time
and end time, which delimit the period of existence for the associated member of the entity set. Its query
" language is based on the relational algebra with temporal operators such as while, during, since, until,
“begin of, and end of.

Clifford and Warren presented a formal semantics for time in databases [Clifford & Warren 15831
based on the intensional logic (IL,), ﬁrhere a database is a collection of relations idealized as a cube fully

specified over a set of states.

CSL (Conceptual Schema Language) is a high level data definition language to define conceptual
schemas, not only for static but also for dynamic aspects of the database universe. It has the option of
embedding database instances into the time axis based on an application specific calendar system

.[Breutmann et al. 1979],

TERM (Time-extended Entity Relationship Model) augments the entity-relationship model to include
the semantics of temporal aspects into the database schema. It provides facilities for data definition and
manipulation of problem dependent representation structures for time, values and histories [Klopprogge

1981].

32

[Findler & Chen 1971] built a question answering system which understands explicit or implicit
temporal relations and causal relationships among time-dependent events based on information entered by
a user. It used AMPPL-II (Associative Memory Parallel Language IT), and stored data in list structures or

as a sequence of content-addressable relations.

HTQuel (Homogeneous Temporal Query Language) is based on the representation of a historical
database where the time intervals are associated with attributes [Gadia & Vaishnav 1985]. The language
introduces the temporal domain which is finite unions of intervals, and is based on the homogeneity
requirement that the temporal domains of all the attributes in a tuple should be the same. The semantics of

temporal operators were defined using saapshots.

As described above, significant contributions have been made to the conceptual aspects, such as
formal semantics and the design of query languages of the historical DBMS. But little work has been done
towards the actual implementation, except that an earlier version of LEGOL 2.0 [Jones et al. 1979] was

implemented.

3.4. Temporal Databases

Benefits of both approaches can be combined by supporting both kinds of time in a database. Such a
database supporting both transaction time and valid time is termed a temporal database in the narrower
sense to emphasize the need for both kinds of time in handling temporal information, The rollback
database views stored tuples, whether valid or not, as of some moment in the past, and the historical
database views tuples valid at some moment as of now. But the temporal database can view tuples valid at
some moment seen as of some other moment, thereby completely capturing the history of retroactive and
proactive changes. Users of a temporal DBMS can examine historical information from the viewpoint of a

previous state of the database by specifying both kinds of time in a query.

Since there are two orthogonal time axes involved now, a temporal relation should be illustrated in
four dimensions. Figure 3-6 shows a single temporal relation which may be regarded as a sequence of

historical states, each of which is a complete historical relation.

33

vpﬁ\ vah\ vpﬁ\ vpﬁ\\
time time time time

transaction
time

Figure 3-6: A Temporal Relation

v

The rollback operation on a temporal relation selects a particular historical state, on which a-
historical query may be executed. Fach transaction causes a new historical state to be created. Thus,
temporal relations are append-only. The temporal relation in Figure 3-6 is the result of four transactions,

- starting from a null relation:
(1) three tuples were added,
(2) one tuple was added,

(3) one tuple was added and an existing one deleted, and

(4)' one tuple was modified so that it became effective at a later valid time.

Name | Rank valid time transaction time

: (from) (to) (start) {end)
Merrie | Associate |[09/01/77 oo 08/25/77 | 12/15/82
Merrie | Associate [{09/01/77 | 12/01/82 {|12/15/82 -
Merrie | Full 12/01/82 o 12/15/82 -

Tom Full 120582] o 12/01/82 | 12/07/82
Tom Associate]12/05/82 oo 12/07/82 -

Mike | Assistant |}01/01/83 o 01/10/83 | 02/25/84
Mike | Assistant ||01/01/83 | 03/01/84 || 02/25/84 -

Figure 3-7: A Temporal Relation

For example, the relation in Figure 3-7 combines iﬁfonnation represented in Figures 3-3 and 3-5,
supporting both valid time and transaction time, It has four implicit time attributes: valid from, valid to,
transaction start, and :ransacti_on stop. It shows that Merrie started as-an assistant professor on 09/01/77,
which was recorded into the database .on 08/25/77 as a proactive change. Then she was promoted on

12/01/82, but the fact was recorded retroactively on 12/15/82. Tom was entered into the database on

34

12/01/82, joining the faculty as a full professor on 12/05/82, but the fact that his rank was actually an
associate professor was éorrected on 12/07/82. Mike lefi the faculty effective on 03/01/84, which was
recorded proactively on 02/25/84. Note all the details of history captured here, which were not expressible
in other databases with less temporal support. |

There are only three examples which can be cited as temporal databases. TQuel (Temporal QUEry
Language) [Snodgrass 1986] is an extension of a relational calculus query language Quel [Held et al. 1975]
for supporting temporal queries. TQuel uses the as of clause to perform rollback operation, and the

- when clause for specifying historical queries. Further details on TQuel were given in Section 2.3.

Since TQuel supports both historical queries and rollback operations, it can be used to query

temporal databases. The TQuel query

range of fl is Faculty
zrange of f2 is Faculty

retrieve (fl.Rank)
where fl.Name = "Merrie" and £2.Name = "Tom"
when fl overlap begin of f£2
as of "12/10/82"

on this relation retrieves Merrie’s rank when Tom arrived, according to the state of the database as of

12/10/82. The result is

Rank valid time transaction time
(from) [(to}|| (star) (end)
Associate {|09/01/77 | = [{08/25777 | 12/15/82

This derived relation is a temporal relation, so further temporal relations can be derived from it. If 2

similar query were made as of 12/20/82, the answer would be Full because the fact was recorded
retroactively by that time.

TRM (Temporal Relational Model) [Ben-Zvi 1982] is another example of a temporal database,
though it was not actually implemented. It maintains 5 time attributes:
Tes/Tee : effective-time-start/end
Trs/Tre : registration-time-start/end
Td : deletion time

in each tuple, where deletion time is used to correct erroneous data [Ben-Zvi 1982]. It extends SQL [IBM

35

1981] with the time view operator to search data effective at some moment seen as of some other point in

time,

Tre

name rank Tes Tee Trs Td

Merrie | Associate || 09/01/77 | 12/01/82 ||08/25/77 | 1215/82 z

Merrie | Full 12/01/82 - 12/15/82 “

Tom | Full 12/05/82 - 12/01/82 - 12/07/82
Tom | Associate ||12/05/82 - 12/07/82 - -

Mike | Assistant | 01/01/83 | 03/01/84 || 01/10/83 | 02/25/84 -

Figure 3-8: A TRM Relation

The relation in Figure 3-8 shows the same information contents as in Figure 3-7. Note that **Tom”’

was mistakenly entered as a full professor on 12/01/82 (which was a proactive entry), but corrected later

using the deletion time. A query

TIME-VIEW
SELECT
FROM
WHERE

E-TIME=12/5/82

RANK

FACULTY

NAME

AS-OF=12/10/82 .

"Merrie™

on the relation in Figure 3-8 gives the answer Assistant since her promotion was not recorded untl

12/15/82. If a similar query is made as of 12120!_82,

TIME-VIEW
SELECT
FROM
WHERE

E-TIME=12/5/82

RANK

FACULTY
NAME = "Merrie™

AS-QF=12/20/82

the answer is Associate because the fact was recorded retroactively by that time. However, this is not a

true temporal query language, because it can derive only snapshot relations.

TODMS (Ten:poraliy Oriented Data Management System) is similar to TRM in that it supports both

valid and transaction time, and its query language is an extension of SQL. [Ariav -1984]. Unlike TRM, it is

a true temporary query language, supporting both historical queries and rollback operations. The major

limitation is that only one relation may be referenced in a query, and no implementation has been

36

attempted.

3.5. User-defined time

User-defined time is necessary when additional temporal information, not handled by transaction or
valid time, is stored in the database. Such an attribute needs to be specified in the relation scheme. The
values of user-defined temporal attributes are not interpreted by the DBMS, and thus are easy to support.
The system only needs to provide definitions of external and internal representations, and input/output
functions to convert one form to the other. Multiple representations with varying resolutions, each
assrociated with input and output, are also useful. As an example of user-defined time, consider a
‘Promotion’ relation with three attributes: Name, Rank, and Approval-Date. Bpproval-Date
is the user-defined time indicating when the promotion was approved. The valid time is the date when the
promotion takes effect, and the transaction time is the date when the promotion was recorded into the

database.

Supporting user-defined time is orthogonal to supporting rollback operations or historical queries.
Hence the three kinds of time actually define eight different types of databases. However, we note that
user-defined time is much closer o valid time than to transaction time, in that both valid time and user-
defined time are concerned with reality itself, as opposed to transaction time which is concemed with the
representation of reality (i.e., the database). Database management systems and their query languages

purporting to provide full temporal support should handle all three kinds of time.

3.6, Summary

Fou.lw types of databases in terms of temporal support were defined and compared with one another.
Snapshot databases provide no temporal support. Rollback databases provide rollback operations requiring
the support of transaction time, which records the history of database activities. Historical databases
provide historical queries requiring the support of valid time, which is associated with the history of the
real world. Temporal databases provide both rollback operations and historical queries, supporting both
transaction time and valid time. Figure 3-9 shows the four types of databases differentiated by the
capability to support rollback operations and historical queries: snapshot, rollback, historical and temporal.

Each of these types may or may not support user-defined time,

37

No Rollback Rollback

Snapshot Queries Snapshot Rollback

Historical Queries Historical Temporal

Figure 3-9: Types of Databases

Figure 3-10 summarizes the kinds of time to be supported in each type of database management

systems.

Transaction Valid User-defined
Snapshot
Rollback v
Historical ' v vy
Temporal v v ¥

Figure 3-10: Time to be Supported by Databases

It is interesting to note that those concemed with the physical implementation leaned towards
transaction time, while those more interested in conceptual aspects favored valid time. Most
implementation oriented efforts have been on the version managemeni systems [Katz & Lehman 1984,
Svobodova 1981]), or rollback DBMS’s [Ariav & Morgan 1982, Copeland & Maier 1984, Lum et al. 1984].
To the author’s knowledge, there has been no major effort to investigate implementation aspects for either

the historical or the temporal DBMS, let alone the performance analysis of such systems.

Chapter 4

Models and Performance Analysis

As described in Section 2.1, there have been several models and systems attempting fo analyze the
~ performance of database management systems with various forms of access methods. However, none of
those actﬁally address the whole problem of evaluating the access cost given queries as input, nor can
adequately handle the particular characteristics of query processing and access methods for databases with
temporal support considered in this dissertation. Therefore, a set of new models to analyze the
performance of database management systems with temﬁoral support were developed. The first section of
this chapter describes the models, and the second section discusses how these models can be combined

together to estimate the /O cost given one or more TQuel queries as input.

4.1. Models

Performance analysis of a database inanagément system requires models, whose quality détermines
the effectiveness of the analysis. We want to analyze the input and output cost for temporal queries on a
database with temporal supinort using various access methods. Thus we need models which can
characterize various phases of query processing in datébase management systems with temporal support.
For this purpose, four modéis forming.a hiérarchy were developed: one each for algebraic expressions,

databaselrelations, access paths, and storage devices,

4.1.1. Model of Algebraic Expressions

TQuel is a language based on the tuple calculus, and hence is non-procedural. There are rﬁany
different ways to evaluate a TQuel query and obtain the same answer, each exhibiting different I/O cost,
This section first defines the algebraic expression to describe procedurally the process of evaluating TQuel
queries.- Next, the file primitive expression is defined to characterize the input and output activities
involved in evaluating the algebraic expression. Finally, the model of algebraic expressions is constructed

to represent the mapping between the algebraic expression and the file primitive expression.

40

4.1.1.1. Algebraic Expressions

An algebraic expression consists of algebraic operators and connectives. Algebraic operators are of
three types: snapshot, temporal, and auxiliary.

Snapshot operaiors are the conventional relaﬁonal operators such as Select, Project,
Join, Uxiion and Difference. Select has two parameters: a relation and a predicate to specify
the constraint that result tuples must satisfy. Project takes as parameters a relation and 2 set of
attributes to be extracted from the relation. Join is to perform B-join of two relations given as the first
two parameters. The third parameter, the join method, specifies how to perform the join operation, since
there are many ways to perform the operation. The fourth parameter is the predicate specifying how to
combine information from two relations. Both Union and Difference take two relations as

parameters, performing set addition and set subtraction respectively.

Temporal operators are included for temporal query constructs in TQuel. When performs temporal
selection on a relation according to a temporal predicate applied to the values of valid time attributes.
AsOf also performs temporal selection on a relation, but takes two time constants as parameters to
compare with the values of transaction time auributes. Valid performs temporal projection,

determining the value of the attribute valid from, valid to, or valid at.

Auxiliary operators are introduced to account for miscellaneous operations which do not change the
quer§ result but affect the query cost significantly. Tamporary is used to create and access a temporary
relation for the result of the operation marked by the parameter label. Sort is used to sort fuples in
the relation specified by the first parameter, using the remaining parameters as the key attributes for sorting.
Reformat is used 0 change the structure of the relation specified by the first parameter to the form given

by the second parameter, using the remaining parameters as the key attributes.
These algebraic operators can be combined together through connectives which specify information
on ordering and grouping of the component operators. Two operators may be ordered in sequence,

expressed as

Oopl ; Op2

41

when Opl should complete execution before Op2 starts. Or they may be in parallel, denoted by

Oopl , Op2

when two operations can proceed concurrently. Grouping of operators to delimit a query is denoted by a
pair of braces, ‘{” and ‘}’, while a pair of square brackets, ‘[’ and ‘), represent a set of operators which can
be evaluated simultaneously for each tuple. ‘These connectives can characterize different strategies for
evaluating a query expressed by a combination of algebraic operators.

An operator may have a label which can be referred to in other operators such as Temporary. By
using labels, we can eliminate deeply nested parentheses common in algebraic descriptions of a query.
Thus an algebraic expression, describing TQuel queries in a procedural form, is a combination of labels,

algebraic operators with appropriate parameters, and connectives.

For example, an algebraic expression, to be referred to as AE-1,

{ L1: Select (h, h.id = 500);
Project (L1, h.id, h.seq) }

specifies that it is for a single query that selects tuples with id = 500 from the relation h, then extracts

attributes id and seq from the result of the previous operation labeled as L1.

Another example is AE-2:

{[L1: Select (h, h.id = 500);
Project (L1, h.id, h.seq) 1}

| This is similar to AE-1, but specifies that Select and Project can be evaluated together for each
tuple. Thus the need for a temporary file to store intermediate results between the two operations is
explicitly eliminated.

Abbreviated BNF syntax for the algebraic expression is shown in Figure 4-1. In this description,
<temporal pred>isa remporﬁ predicate invol.ving time attributes and temporal predicate operators

such-as precede and overlap in TQuel. <event expr> is an event expression involving time

42

attributes and temporal constructor operators such as extend and overlap in TQuel, which yields a
time value as its result. Complete syntax for the temporal predicate and the event expression is given in
Appendix A. <stor spec> specifies one of the storage structures such as Heap, Hash, Isam,

Bt ree, efc., or one of the new access methods to be developed in Chapter 5.

<alg exp> = <query>

| <alg exp> <query>
<query> 1= { <access> }
<access> = <acc term>

| <access> <acc term>
<acc term> :: <term>
I [<term>]

<term> I <1 oper>
| <term> <order> <1 oper>

<order> 1= ; | ’

<1 oper> o= <oper>

<label> : <oper>

<label> 1= <id>

<oper> tim <Snapshot>
| <Temporal>
| <Auxiliary>

<Snapshot> ::= Select { <rel> , <predicate>)
| Project (<rel> , <attr list>)
| Join (<rel> , <rel> , <join method>

¢ <predicate>)

| Union { <rel> , <rel>)

| Difference (<rel> , <rel>)

<Temporal> ::= When (<rel> , <temporal pred> }

| As0f { <rel> , <event expr> , <event expr>)

| Valid (<rel> , <FTA> , <event expr>)
<Auxiliary> ::= Temporary (<label>)

| Sort (<rel> , <attr list>)

| Reformat (<rel> , <stor spec> , <attr list>)
<FTA> 1= From

i To

| At
<attr list> ::= <attribute>

| <attr list> , <attribute>

oo

<rel> 1= <rel id> | <label>

Figure 4.1: BNF Syntax for Algebraic Expressions

43

A more complex example is AE-3:

{ Ll: Join (h, i, TS, h.id = i.amount & h overlap i);
L2: When (L1, i overlap "now"):;
Project (L2, h.id, i.id, i.amount) }

This specifies Join of two relations, h and i, followed by temporal selection When, followed by

Project, all in sequence. Another example is AE4:

{ Ll: when (i, i owerlap "now");
L2: Project (L1, i.id, i.amount, i.valid from, i.valid to);
L3: Join (h, L2, TS, h.id = i.amount & h overlap i);
. Project (L3, h.id, i.id, i.amount) }

This is functionally equivalent to AE—S, but differs in evaluation procedures. AE-4 specifies that the
When operation is first executed to select tuples from the relation i whose valid to attribute is
"now", then four attributes are extracted from the result tuples, the_n the result is joined with the relation h
using tuple substitution (TS), and finally three attributes are exltractedﬂ Howevef, AE-4 does not provide
information on what operations cén proceed together and whether a temporary relation is needed. Adding

such information leads to AE-5:

{[IL1: when (i, i overlap "now");
L2: Project (L1, i.id, i.amount, i.valid from, i.valid__t.o)];
L3: Temporary (L2); _
{ L4: Join (h, L3, TS, h.id = i.amount & h ovarlap i);
Project (L4, h.id, i.id, i.amount) i}

This is similar to the previous expression AE-4, but specifies that When and Project can be evaluated
together on each tuple, the intermediate result is stored into a temporary relation, and Join and

Project can also be performed together.

4.1.1.2, File Primitive Expressions

In this section, we define the file primitive expression which represents the process of accessing a file
in terms of two file primitives: Read and Write. Both of the primitives take parameters such as the

access method, tﬁe size of a file, or the length of the overflow chain. The access method may be one of

4“4

Heap, Hash, Isam, Btree, efc., or one of the new access methods to be developed in the next
éhapter.

Primitives are combined to form an arithmetic expression, called the file primitive expression, to
describe the situation when one or more primitives are repeated or executed together to perform an

algebraic operaton. | Abbreviated BNF syntax for the file primitive expression is shown in Figure 4-2,

where <expr> is evaluated to a constant, and <parm> is a constant to denote the size of 2 file, or the

length of the overflow chain.
<fpe> f2= <term>
| <fpe> <a op> <term>
<term> i= <primitive:>
| <term> <m op> <primitive>
<primitive> ::= <oper> (<acc method> <parm list>)
| { <fpe>)
<oper> T Read
N Write
<parm list> ::= <parm>
! <parm list> <parm>
<a op> 1= + ; -
<m op> 1= * [/

Figure 4-2: BNF Syntax for File Primitive Expressions

For example, a file primitive expression may be as simple as FPE-1;

Read (Hash, 0)

specifying one hashed access without any overflow records, or more complex like FPE-2:

Read (Heap, 128)

{ Read (Heap, 19) * 2 - 1
Weite (Heap, 19) * 3 = 1)
Read (Heap, 19)

Read (Hash, 0) * 1024

+ + + +

45

Ay

specifying one read from the heap of 128 blocks, two read’s from the heap of 19 blocks, three write’s to
the heap of 19 blocks, another read from the heap of 19 Blocks, and finally a hashed access repeated 1024

times.

4.1.1.3. Model of Algebraic Expressions

Now that the algebraic expression and the file pﬁnﬁtive expression have been defined, the model of

- algebraic expressions is constructed to represent how the algebraic expression can be evaluated in terms of
the file primitive expression. For example, the algebraic expression AE-2 can.be mapped to the file
primitive expression FPE-1 shown eatlier, assuming that the relation h is hashed on the attribute id with

no overflow records.

There are a large number of valid combinations for algebraic expressions even for conventional
snapshot databases. The problem gets more complicated with introducing historical queries and roliback
operetions for temporal databases. It is neither possible nor useful to list all the possible algebraic
expressions and evaluate their costs one by one. Rather, we identify basic constructs occurring in snapshot
and temporal queries,. and map the subset of algebraic expressions, composed of such constructs, to file
primitive expressions. The mapping is also dependent on the characteristics of data such as the structure
and the size of each relation, selectwlty and distribution of each attribute value, and the update count in
case of a database with temporal support, as will be represented by the model of database/relations in the

next section.

Algebraic operators involve either one relation or two relations. Select, Project, When,
AsOf, Valid, Temporary, Sort, and Reformat operate on ‘one relation, while Join,
Union, and Difference operate on two relations. The characteristics of each operator is discussed

one by one in terms of the file primitive expression.

* Select (relation, predicate)
The first parameter relarieﬂ is the base relation for the operation, and the second parameter predicate
specifies constraints on the relation that result tuples must satisfy. Performance of Select
depends on various factors such as d}e structure of the relation, the type of the predicate, and the

characteristics of data stored in the relation.

46

Y

(1) If the predicate fully specifies a key for a random access path existing for the relation, the file

primitive expression is:

Read (access path, n)

where the access path may be one of Hashing, Isam, Btree, or one of the new access
methods to be developed in the next chapter. The second parameter » is the length of the

overflow chain, which is determined from the model of database/relations.

(2) Otherwise, the file primitive expression is:

Read (Heap, b}

where b is the size of the relation in blocks, meaning the relation is sequentially scanned.

* Project (relation, aur list)
This operation scans the relation to extract a list of attributes, atr list, hence its file primitive

expression is:

Read (Heap, b)

where b is the size of the relatior in blocks.

~ ® Join (relation,, relation,, join method, predicate)

There are several methods to perform a join, such as TS, BS, and SM. Let

ty : the number of tuples in relation,
ty : the number of tuples in relation,
b,y : the size of relation | in blocks
by : the size of relation , in blocks

Each method is briefly described with the corresponding file pri:hitive expression.

(1) Ts : tuple substitution method
Each wmple in the smaller relation is substituted to select tuples from the other relation

satisfying the predicate.

47

Read (Heap, b)) +
FPE,* t,

assuming ¢, < t,. FPE, is the file primitive expression for

Select (relation,, predicate’)

where predicate’ is the predicate with the tuple variable for relation 1 replaced by each tuple in

relation ;.

(2) BS : block substitution method
For each block in the smaller relation, the other relation is scanned. In this process, all tuples
in one block of each relation are joined according to the predicate. It is faster than tuple

substitution especially when there is no random access path o evaluate the predicate,

Read (Heap, b} +
Read (Heap, b,) * b,

where b, < b,.

(3) sMm : sort & merge method
Each relation is sorted first, then the resulting relations are scanned in parailel to merge tuples

satisfying the predicate.

Read (Heap, b} +

Read (Heap, b,) +

FPE (Sort (relation,, aurlist)) +
FPE (Sort (relation,, attr list))

where FPE (Sort (..)) is the file primitive expression for Sort to be described later, and
atir list is the list of attributes participating in the predicate. If both relations are already in

order, the file primitive expression is simply

48

Read (Heap, &) +
Read (Heap, bj)

¢ Union (relation, relation,)

® Difference (relation,, relation,)

Both operators need to scan two relations, so the file primitive expression is:

Read (Heap, by} +
Read (Heap, b,)

where b and b, are the sizes of relation ; and relation ,, respectively, in blocks.

® When (relation, temporal pred)
When is similar 10 Select, where the temporal predicate, temporal pred, is restricted to a single
variable predicate specifying the constraint on the valid time attributes that result tuples must satisfy.

Hence the file primitive expression is, like Select:

Read (access path, b)

or

Read (Heap, b)

depending on the type of the predicate, and the existence of a random access path to satisfy the
temporal predicate.
® AsOf (relati'on, by, 23)
As0f is similar to Select with the predicate of:
where {; < transaction_stop and transaction start <i,

Hence the file primitive expression is similar to that for Select.

¢ Valid (relation, From/To/At, temporal expr)

Valid is similar to Project, where the temporal expression, femporal expr, is restricted to a

49

single variable expression with the domain of time values. The file primitive expression is

Read (Heap, b}

where b is the size of the relation in blocks.

¢ Temporary (label)
This operator, as shown in AE-5, is to create a temporary relation, and to store the intermediate result

from the previous operation marked by the label. Its file primitive expression is in general:

(Read (Heap, b) * k. -I +
Write (Heap, b) * k,~1I, }

where b is the number of blocks in the resulting relation, and &,,1,, &, I, are implementation
dependent constants. For the prototype to be used in Chapters 6 and 7, each block, except the last

one, of a temporary relation is read twice and written three times, so &, = 2, k,=3,andl =1,=1.

{ Read (Heap, b) * 2 - 1 +
- Write (Heap, b) * 3 - 1)

* Sort (relation, atir list)
This is used to sort the relation using a list of attributes, attr kst, as key attributes for sorting. Since
it takes O (b x log,, b) block accesses o sort a file of b blocks using the m-way sort-merge, the file

primitive expression is in general:

Read (Heap, b,) * O (log,b,) +

Write (Head, b;) * O (log,b,) +
Read (Heap, by} * O (log,by) +
Write (Head, b,) * O (log,b,)

* Refoxmat (relation, stor spec, attr list)
This is to reformat the relation 1o the storage structure, stor spec, using a list of attributes, attr list, as

key attributes. Its file primitive expression is in general:

50

{ Read (Heap, &) +
Write (Heap, b) +
FPE (Sort (relation, attrlist))

where FPE (Sort (...)} is the file primitive expression for Soxt in case we need to sort the relation

for reformating. '

Thus far, each operator has been discussed in terms of file primitive expressions. An algebraic
expression with muitiple operators can be hlapped to the file primitive expression which is the sum of the
file primitive expressions for the component operators. An exception to this rule is the case when
Project or valid follows Select, Join, or When, and the two operations are grouped together
by a pair of square brackets. In this case, the file primitive expression is simply that of the first operation.

For example, an algebraic expression

{[L1: Select {(h, id = 500);
Project (L1, h.id, h.seg)]}

is mapped to '

Read (Hash, 0)

performing Project effectively for free.

4.1.2. Model of Database/Relations

The second model in the hierarchy is the model of databaseirelations which characterizes
information on the relations composing a database. Typical catalog relations in conventionai DBMS’s hold
information for all relations such as relation names, temporal types, storage structures, attribute counts,

attribute names, attribute formats, attribute lengths, key attributes, tuple lengths, and tuple counts.

Additional information on data contents is needed to provide data for the model of algebraic
expressions so that the algebraic expression can be mapped to the file primitive expression. Examples are
selectivity and distribution of attribute values, volatility of data, and the update count in case of a database

with temporal support. Figure 4-3 shows an abbreviated /DL (Interface Description Language [Nestor et

51

al. 1982]) description of information to be represented by the model of database/relations.

Structure DbRel Root database Is

database =3 name :t String,
relations : Set Of relation;

ralation => name : String,
temporalType : TemporalType,
attributes : Seq Of attribute,
tupleCount : Integer,
updateCount : Integer,
storageType : StorageType,
keys : Seq Of key,
loadingFactor : Rational,
blockSize : Integer:

TemporalType ::= snapshot } rollback |
historicallInterval | historicalEvent |
temporallnterval | temporalEvent;

snapshot =>; rollback =>;
historicallnterval =>; historicalEvent =>;
temporalInterval =>; temporalEvent =>;

key = name : String,
attributes : Seq Of attribute;

attribute => name : String,
type : ValueType,
length : Integer,
selectivity : Rational,
volatility : Rational;

ValueType 1:= typelnteger } typeRational |
typeString | typeBoolean |
typeTime; '

typelInteger =>; typeRational =>;
typeString =>; typeBoolean =>;

typeTime =>;
End

Figure 4-3: IDL Description for the Model of Database/Relations

.In this description, a database consists of a name and a set of relations. Each relation consists of a
name and various information on the relation. For example, temporalType specifies one of six
possible temporal types: snapshot, rollback, historical interval, historical event,.temporal interval, and
temporal évent. storageType specifies the storage structure of the relation, whether it is a heap, a

hashed file, an ISAM file, or one of the structures to be discussed in Chapter 5. An example of a database

52

represented in IDL’s ASCII external representation is found in Appendix D.

It is a difficult problem to estimate the response set of a query and the number of block accesses
without actually examining stored data, though there has been significant research on the subject as
summarized in section 2.1.2. This problem may account for a large portion of the discrepancy between the

analysis result and the actual performance data,

4.1.3. Model of Access Paths

The third model in the hierarchy is the model of access paths (MAP) which represents the path taken
through the storage structure to satisfy an access request represented by a file primitive expression. An
access path is usually confined to a single file, but it may involve more than one file, which is the case with
| storage structures for temporal databases discussed in the next chapter. This section first describes how the

model of access paths represents a single file path, and then extends it for a multiple file path.

The conceptual unit of an access in this model is a node, which consists of one or more physically
contiguous records participating in the access. The node itself consists of one or mare records, depending

on the underlying storage structure,

A set of nodes are connected together to make up an access path either directly or indirectly, In
simple cases, an access path is directly represented as a set of nodes. In other cases, it helps to
conceptualize an access path as being composed of some components, each of which is itself a set of

nodes. This process of hierarchical decomposition may proceed for as many levels as useful.

The process of decomposition is restricted to three levels, which is sufficient to describe the storage
structures -discussed in this dissertation. However, it is straightforward to extend it to incorporate more
levels. In this three level hierarchy, a set of nodes are grouped to make up a chain, and a set of chains
compose an access path. Therefore, an access path through a single file, or simply a file path, is
represented as a set of chains, each of which is a set of nodes. As mentioned above, each node itself
consists of one or more records.

The model of access paths identifies a fixed number of modes, specifying hov;v components such as
nodes, chains, or file paths are connected with one another. We can classify the modes as either guided or

searched,

53

Guided : If a random access mechanism exists to locate the component
H: the address is computed by a hash function -
P : the address is provided by a pointer
A: the component is physically adjacent to its predecessor
S : the component shares the same starting address with its higher level component
M: the component is in the main memory
Searched : If no random access mecﬁanism exists
0: the file is ordered, so logarithmic search is possible

U: the file is unordered, so sequential search is necessary.

This process of hierarchical decomposition, decomposing an access path or a file path into chains, a
chain into nodes, and a node into records, is all captured into a single expression called the access path

expression (APE). A canonical form for an access path expression, whose syntax is shown in Figure 44, is

(Mode count; (Mode count, (Mode county)*)*)

where

count 1 is the number of chains in the file path,

count 5 is the number of nodes in the chaiﬁ, and

count 5 is the number of records in the node,
As described earlier, the components in the three level hierarchy are the access path, chains, and nodes.
Each component is described by a ‘mode-count’ pair, where the mode tells how to locate the component,
and the count shows the number of subcomponents in it. Then the ‘mode-_count' pair is followed by a list
of descriptors for its subcomponents enclosed in parentheses. The lew;el of a component in the hierarchy is
determined by the depth of enclosing parentheses. The outermost parentheses représent the access path,

while the innermost parentheses represent a node which is defined to consist of records.

54

<APE> T <FilePath>
<FilePath> ::= { <desc> <chains>)
<desc> 2 e= <Mode> <count>
<chains> s = <chain>

| <chains> <chain>
<chain> 23= { <desc> <nodes> }
<nodes> 5= <node>

<nodes> <node>

<node> so= { <desc>)
<Mode> 1= H

| P

i A

! s

| M

| Q

| (¢}
<count> sa= <integer>

Figure 4-4: BNF Syntax for File Path Expressions (Single File)

Each subcomponent is described one by one in sequence, but if all the successors of a certain
subcomponent are the same, they need not be repeated. Therefore, if the number of descriptors is smaller
than the specified count, the remaining subcomponents are assumed to have the same descriptor as the last
one. When a component has only one subcomponent and the mode of the subcomponent is § (meaning
the subcomponent shares the same starting location), the extra level of decomposition does not provide any

further information, and may be omited,

In the access path expression, a set of file parameters are used to quantify physical properties of a
file. Some of the parameters are:

f: number of records in a file

b: number of records in a block

r : number of bytes in a record, and

n: number of records to be accessed.
Some examples of access path expressions are described now for various access methods.

Example-1. Scanning a sequential file:

The access path can be considered as an unordered collection of f records. The access path

expression is:

{U f* records)

or simply:

(U f)

Since the head of the path expression is U, the path needs to be searched sequentially. The access
path can also be regarded as consisting of a single node, which has frecords. Then the expression

becomes:

(Ul (sh

. We can follow the three level hierarchy by introducing the level of chain. Then the access path has a

single chaih, which has one node. The node itself consists of f records.

(U1l (s1(5f)))

Example-2. Accessing a hashed file without an overflow:

(H1l) = (R1 (S1))=(H1(81(s1)))

This is similar to Example-1 except that the head of the access path is located through hashing, and

that a node is of one record,

Example-3. Accessing an inverted file as shown in Figure 4-5 (a):

(P3(P1(S1)) (P1(S1)) (P1(S1)))

The path, whose head is located through a pointer, contains a key value and three chains. Each chain

is also located through a pointer, and each has one node. Each node shares the same address with the

56

chain, and is of one record. Since all the chains are identical, we need not repeat the descriptor for

each chain. Then the expression is abbreviated to:

(P 3 (1 (8 1))

In general, there will be » chains:

(Pn (P1(S1)))

R

R | [R | [&]

(a) an Inverted File (b) a Multilist File
Figure 4-5: Structures for an Inverted File and a Multilist File (n = 3)

Example-4. Accessing a cellular inverted file, where each node is a cellular block of size b

n
(P 5 (81 (s b)))

Similar to Example-3, but the path has -z- chains. Each chain has one node, which consists of b

records.

Example-5. Accessing a mulrilist file as shown in Figure 4-5 (b}:

(1 (3 (81) (P 1) (P 1)))

The path, whose head is located through a. pointer, has one chain. The chain is located through a

57

pointer, and has three nodes, each of which has one record. The first node sﬁares the same address as
the chain, and the subsequent nodes are located through pointers. Since the second node and the

third node are identical, the expression can be abbreviated to:

{1l (P 3 (81 (P 1))

In general, there will be a chain of » nodes:

(PlL(Pnr (81 (P 1))

Note the difference from the expression for an inverted file in Example-3.

Example-6. Accessing a cellular multilist file, where each node is a cellular block of size &:

(@1 (e 5 (85 (B b))

Similar to Ex'ample-S, but the chain has % nodes, each of which consists of b records. Note that we
— can repeat the descriptor for the second node, (2 b), -E- — 1 times.

Example-7. Accessing an ISAM file with the master index in core:

M1 ((P1(P 1))

An entry in the master index, which resides in the main memory, points to the head of a single chain,
corresponding to a directory entry. The chain consists of 2 node, which consists of a single record.
The head of the node is located through a pointer. If the file has an overflow chain of # nodes, each

of which is a single record, the access path expression is:

M1 (P n+tl (P 1})))

58

Example-8. Accessing a hashed file with an overflow éhain of » records:

(H1{Pn(81) (P 1)))

The access path is located by hashing, and has a single chain. The chain has » nodes, each of which
has a single record. The head of the chain is located through a pointer, and shares the same address

with the head of the first node.

Thus far, we have discussed access paths involving only one file. When two or more files are
involved in an access, the composite access path is represented by the combination of the individual file
paths. There are two criteria to determine the relationship between two files. One is ordering, which
determines whether two files are ordered or not. If ordered, they are accessed in serial, where one file path
always precedes the other one. If unordered, there is no restriction on oi'dering, so two files may be
accessed in parallel. The other criterion is whether only one file needs to be accessed, or both files should
be accessed. Obviously, if both files should be accessed, the ordering information between the two files

must be known. With this restriction, the two criteria lead to five possible combinations as follows,

(1 [FilePath; ; FilePath,]
Two files are accessed in serial, like the temporally partitioned storage structure to be discussed in
the next chapter.

@) [FilePath, , FilePath,]
Both files need to be accessed, but there is no fixed ordering, like a horizontally partitioned relation
[March & Severance 1977].

3) { FilePath, 2; FilePath, 1
The first file is accessed. If it is unsuccessful, then the second file is accessed. An example is a
differential file [Severance 1976].

@ [FilePath, 2, FilePath,]
Either of the two files is accessed. If it is unsuccessful, then the other file is accessed, An example is

to retrieve a record from a vertically partitioned relation [Ceri & Pelagatii 1984].

59

5 [FilePath; ? FilePath,]
Only one of the two files needs to be accessed, and which one to access is known. An example is

found inside the access path expression of the differential file with the Bloom filter in main memory

[Gremillion 1982]:

[(M 1) ; [FilePath; ? FilePath, 1]

It is also possible to involve more than two files in various combinations.

file, file, file,
file, file, - _ file,
(a) atree (b) a graph

Figure 4-6: Access Paths with Three Files

Example-9. Accessing 2 path composed of three files:

If they are accessed in sequence like a three level store, the access path expression is;

[[FilePath, ; FilePath,] ; FilePath, 1]

If they are in the shape of a tree, as in Figure 4-6 (a), file 1 is accessed first, then the other two files

are accessed in any order. The access path expression is:

[FilePath; ; [FilePath, , FilePathy 1]

In Figure 4-6 (b), files 1 and 2 are accessed in any order, then then the third file is accessed. The

access path expression is:

69

[[FilePath, , FilePath, 1 ; FilePathj]

BNF syntax for the access path expression involving muitiple files is given in Figure 4-7, where

<F'ilePath> was defined in Figure 4-4,

<AFPE> 1= <term>
f <APE> <a op> <term>

<term> = <AccPath>
<term> <m op> <AccPath>
<a op> = + i -
<m op> = ok | /
<AccPath> = <FilePath>
! [<AccPath> <one> <ord> <FilePath>]
| { <APE> }
<one> 1= ?
<ord> 1:= ; [’

Figure 4-7: BNF Syntax for Access Path Expressions (Multiple Files)

Given an access path expression, it is possible to parse the expression, and derive an access path
graph (APG). In the graph, each component is denoted as a vertex, while relationships among Componenis
are denoted as an edge marked with the associated mode. For an access path involving a single file, the
graph results in a tree, with the vertex for file path as the root. Access path graphs for the access path
expressions in Example-3 and Example-S are shown in Figure 4-8. While there is a similarity beiween the
physical structure in Figure 4-5 and the access path graph in Figure 4-8, this is not always the case. The

access path graph is only conceptual, and not necessarily tied to the physical siructure itself.

61

[] access path

O O O chains

s S S S
P P
(] o ' o nodes R o & e |
(a} an inverted file (Ex-2) (b} a multilist file (Ex-4)

Figure 4-8: Access Path Graphs (n = 3)

The access path graph not only visualizes the process of accessing files, but also represents the cost
incurred in traversing an access path by the length of the path. In fact, it is possible to estimate the access
path cost (APC) from the access path expression, based on the modes to connect components. The rule to

estimate the upper bound for the access path cost is:

H (Hashing) : (1 + o) random accesses
where @ is determined by the overflow handling method
P (Pointed) : 1 random access
A (Adjacent) : 1 sequential access
S (Same-as-before) " no access cost
I (Main-memory) 1 NO access cost
0 (Ordered) : logarithmic search (O (log -g))
U (Unordered) : sequential search (Lté)

2h

In summary, the model of acceés paths (MAP) represents access paths, taken through a storage
structure to satisfy a request represented by a file primitive expression, with the access path expression
augmented with a set of file parameters. The access path expression is simple and well-defined, yet
veréatile in representing a variety of access methods which may involve more than one file. Given an

access path expression, it is also possible to derive the associated access path graph and the access path

62

cost. The model of access paths is loosely based on four models described in Section 2.1.3. It captures the
concepts of the sublist in [Hsiao & Harary 1970], data direct/indirect & address/pointer sequential in
[Severance 1975], hierarchy of levels in [Yao & Merten 1975] and a set of parameters in [Batory &

Gotlieb 1982], but extends them significantly in a systematic framework.

4.1.4, Model of Storage Devices

The last model in the hierarchy is the model of storage devices which represents physical
characteristics of storage media. There are many parameters affecting the performance of storage devices,
such as the medium type, fixed or moving heads, read/write or write-once, seek time, transfer rate, number
of cylinders-tracks-sectors, sector size, etc, Though it is difficult to model exact behaviors of storage
devices under typical time sharing environments, significant contributions have been made to analyze their
characteristics [Satyanarayanan 1983]. For the purpose of this research, we adopt a model of storage
devices characterizing the performance with two parameters. They are ¢, ., time needed to access a block
randomly, and #,,, time needed to access a block sequentially. Given the count of random and sequential
accesses, e.g. from the model of ‘access paths, it is possible to calculate the time required to satisfy the

request.
For a typical moving head disk, time needed to access a block randomly is the sum of seek time,
rotational delay, and data transfer time.
bra = bpek + g + by
The average seek time, #,,,;, assuming uniform distribution of seek distances is [Wiederhold 1981]:

-1 _
E (tea)=3 1 X &@z_,ﬂ
i=1 cT—=c

where ¢; is the seek time for distance over i cylinders, and ¢ is the total number of cylinders for the disk.
The average rotational delay, 1,4, is the time for one revolution divided by two, and the data transfer time,

%, is the block size divided by the data transfer rate.

Ideally, accessing a block sequentially is free of any head movement and even the rotational delay.

63

However, a logically sequential block may not be physically adjacent under many operating systems, e.g.
Unix, which may allocate a block to a file ran.domly from the pool of free pages [Stonebraker 1981]. Even
when the block is physically adjacent, it is highly probable in a multi-process system that another process

sharing the disk disrupts the sequentiality by moving the head to another sector or cylinder.

Another factor to be considered is the difference between the block size of the database management
system and the page size of the operating system. Let by, be the block size of the database management
system, and let p,, be the page size of the operating system. If b, is bigger than p,,, it takes extra disk
accesses 1o retrieve one database block. In the opposite case, which is actually the case in the prototype to

be described in Chapters 6 and 7, some sequential blocks are already in the main memory with the effect of

read-ahead, If weletn = -’;’—“’, the average ¢, in a multi-process environment will be:
db

1
tMI:(tS£¢k+tM+n x‘lr)

An experiment was run to measure the'average t,, and £, on a moving head disk connected to a

Vax/780. Here, the file used for sequential access was in fact physically contiguous. The results were:

LowLoad | HighLoad | Average
Sequential 169 199 184
Random 248 37.8 313

Figure 4-9: Time (in msec) to Access a Block

Figures for the average time were used successfully in estimating the elapsed time to process sample

queries, as will be described in Chapter 6.

4.2. Performance Analysis

With the four models described in the previous section, it is possible to analyze the input and output
cost to process TQuel queries. Any complex query involving more than two relations can be decomposed

into simpler queries of two or less relations [Wong & Youssefi 1976]. Hence a TQuel query can be

64

represented by an algebraic expression, which consists of algebraic operators involving one or two
relations, reflecting the sﬁatégy used to process the query. The algebraic expression is then mapped into

the file primitive expression according to the model of algebraic expressions and the model of

daiabasefrelations.
i | A
TQuel \ ! Evaluation Algebraic
Query Strategy Expression
o s L, _________________ _|
Model of
Algebraic Expressions

File Primitive ™\ _ .

Expressi - N
x"mrf‘fi/ Model of
Database/Relations
. Model of Access path:
: Access Paths Expression

Model of
Storage Devices

Input/QOutput
Cost

Figure 4-10: Pexformance Analysis with the Four Models

Next, the model of access paths maps the file primitive expression into the access path expression,
and eventually to the access path cost in terms of the number of random and sequential block accesses.
Finally, the access path cost is converted to the time required to satisfy the request according to the model
of storage devices. These steps are illustrated in the Figure 4-10, where we show the evaluation strategy in

a dotted box to denote that the evaluation strategy is not a part of the models.

65

4.2,1. Examples
This section describes how the performance of two sample queries in TQuel can be analyzed using
the four models developed in Section 4.1. For example, both of the algebraic expressions AE-1 and AE-2,

shown in Section 4.1.1.1, represent the TQuel query:

range of h is relation h

retrieve (h.id, h.seq) " where h.id = 500

Since AE-2 provides more information on how to process the query, let’s evaluate the input and cutput cost
for AE-2 using the four models. We first try the case where the model of database/relations shows that
relation_h is a hashed file with no overflow records. Then from the model of algebraic expressions,

we get the file primitive expression:

Read (Hash, 0)

which is the same as FPE-1 shown in Section 4.1.1.2, This is converied, according to the model of access

paths, to the access path expression:

(B 1)

whose access path cost is

APC = C(APE) = C ((B 1)) = 1 random access

Now the average time to perform 1 random access is found to be about 31.3 msec according to the model
of storage devices.
If the model of database/relations shows that relation h is a hashed file with 14 overflow

records, then its file primitive expression becomes:

66

Read (Hash, 14)

Now the corresponding access path exprassion is:

(H1 (P14 (s 1) (P 1))

Its access path cost is

APC = C(APE)=C((H 1 (P 14 (5 1) (P 1)))) = 15 random accesses

which is equivalent to 470 msec according to the model of storage devices.

For another example, algebraic expreésions AE-3, AE-4, and AE-5 can all be considered as

representations of the TQuel query:

range of h 4is relation_h
range of i is relation_i

retrieve (h.id, i.id, i.amount)
where h.id = i.amount
when h overlap i and i overlap "now"

Let’s evaluate the input and output cost for AE-S:

{[L1: When {i, i overlap "now”);

L2: Project (L1, i.id, i.amount, i.valid from, i.valid to)1l;

L3: Temporary (L2);
{ Ld: Join - (h, L3, TS, h.id = i.amount & h overlap i);
Project (L4, h.id, i.id, i.amount) 1}

First, the model of database/relations is assumed to show that relation h is a hashed file and

relation_1i is an ISAM file, each without any overflow records. It is also assumed that the size of

relation_i is 128 blocks, the size of the temporary relation is 19 blocks, and there are 1024 tuples in

the temporary relation. Then the model of algebraic expressions maps AE-5 to the file primitive

expression:

67

Read (Heap, 128)

{ Read (Heap, 19) * 2 - 1
Write (Heap, 19) * 3 - 1)
Read (Heap, 19) .
Read (Hash, 0) * 1024)

+ + + +

which is in fact the same as FPE-2 shown earlier. The first Read primitive accounts for the When and
the Project operations, the second Read and the Write primitives account for the Temporary
operation, and the third and the fourth Read primitives account for the Join and the Projeét

operations.

According to the model of access paths, the Read operations in the file primitive expression are

mapped to the access path expression for input:

(U 128} +
(U 19) * 2 - 1 +
(U 19) +

(H 1) * 1024

Likewise, the Write operation in the file primitive expression is mapped to the access path expression for

output:

(U 19) * 3 -1

Now, the access path cost for input is:

APC; =C(U128))+C((U19)*2-1)+C{(U19))+C ((H 1) * 1024
= 1028 random accesses + 180 sequential accesses

and the access path cost for output is:

APC, =C(U19)*3-1)
= 3 random accesses + 53 sequential accesses

Hence it takes 35.5 sec for input, and 1.07 sec for output according to the model of storage devices.

68

Let’s consider the case where relation_h is a hashed file, and relation i is an ISAM file,
but both of them are temporal relations with the update count of 14 according to the model of
database/relations. Then on the average, there are 28 overflow records for each tuplb, since each
replace operation inserts two versions into a temporal relation. We also assume that the size of
relation i is 3712 blocks, which is 128 blocks multiplied by 29, that the size of the temporary relation
is 19 blocks, and that there are 1024 tuples in the temporary relation. Now the file primitive expression

corresponding to the algebraic expression AE-5 becomes:

Read (Heap, 3712)

{ Read (Heap, 19) * 2 - 1
Write (Heap, 19) * 3 - 1)
Read (Heap, 19)

Read (Hash, 28) * 1024

+ + + +

As in the previous example, the first Read primitive accounts for the When and the Project
operations, the second Read and the Write primitives account for the Tempozary operation, and the
third and the fourth Read primitives account for the Join and the Project operations. This is

mapped to the access path expression for input:

(U 3712) +
(U 19) *» 2 - 1 +
(U 19) +

(H1 (P 28 (81) (P 1))) * 1024

and the access path expression for output:

(U 19) = 3 - 1

Then, the access path cost for input is:

APC; =C(U37TI2N+C[(U19)*2- 1)+ C (7 19)
+CO((BI@28(S 1) (e 1)) *1024
= 29700 random accesses + 3764 sequential accesses

and the access path cost for output is:

69

APC, =C(U193*%¥3-1)
= 3 random accesses + 53 sequential accesses

which is equivalent to 999 sec for input, and 1.07 sec for output according to the model of storage devices.

In fact, these queries, among others, were run on the prototype temporal database management
system, which was built by extending a snapshot DBMS INGRES. Measuring input and output cost for
sample queries on the prototype provided performance figures, which were quite close to the analysis
results obtained by using the four models as discussed in this section. Further descriptions and the results

of the benchmark will be presented in Chapter 6,

4.2.2. Performance Analyzer

Based on the four models forming a hierarchy, it is possible to construct the Performance Analyzer

Jor TQuel Queries (PATQ), which can amtomate computation of the input and output cost given a

- collection of TQuel queries as input. The internal structure of the PATQ is shown in Figure 4-1 1'.

i

g
TQuel - f o
Parser = Sequencer Evaluator
' A

Algebraic
Expressions

Database/
Relations

Models

Access
Paths

Storage
Devices

Figure 4-11: Performance Analyzer for TQuel Queries

7¢

The parser will take TQuel queries and generate_a parse tree, The sequencer converts the iree into
an algebraic expression consisting of algebraic operators and connectives as described in Section 4.1.1.1.
Since TQuel is a non-procedural language based on the tuple calculus, there are many ways to process a
TQuel query, and many variations of algebraic expressions. The sequencer is the embodiment of the query
evaluation and optimization strategy for a particular database management system. Four models described
above are all available to it, But the extent of utilizing such information depends upon the system being

modeled.

The resulting algebraic expression will be processed by the evaluator to compute the input and
output cost based on information representéd by the set of models. The evaluator converts the algebraic
expression to the file primitive expression according to the model of algebraic expressions and the model of
database/relations. Next, it converts the file primitive expression to the access path expression, and
‘eventually to the access path cost, using the model of access paths. Finally, it calculates the time required

to satisfy the access path cost according to the model of storage devices.

PATQ can be used to test and analyze various alternatives in the design of new access methods,
database conﬁgurations,'or query proces;sing strategies, eliminating the tedious process of case by case
implementation or simulation. However, actual implementation of PATQ is beyond the scope of this
dissertation, and is left as a future work. In this dissertation, we analyzed the performance of sample

queries manually, but in the same manner PATQ would have employed.

PATQ can be extended to be an optimization tool by providing a feedback path, as shown by a
dotted line in Figure 4-11, from the evaluator output to the sequencer. The sequencer can generate all
possible algebraic expressions for an input parse tree, and can choose the one with the Iowest input and
output cost as computed by the evaluator. The algebraic expression chosen that way represents the best

strategy to minimize the cost of processing ihe query.

Chapter 5

New Access Methods

As discussed in Section 1.2, databases with temporal support face problems in terms of both space
and performance, due to the need for maintaining history data together with current data on line.
Conventional access methods such as hashing or ISAM are not expected to be effective for such databases
witlt a large number of temporal versions, which will be demonstrated by the benchmark results in Chapter
6. Other access methods that adapt to dynamic growth better also have various problems as described in
Section 1.2.2. Therefore, new access methods and storage structures tailored to the particular
characteristics of database management systems with temporal support need to be developed to provide

fast response for a wide range of temporal queries without penalizing conventional non-temporal queries.

The first section of this chapter addresses general issues of the temporally partitibnéd stordge
structure, Thé second section investigates various formats for the history store which can improve the
performance of temporal queries. Then the third section studies issues on how to support secondary
indexing for databases with temporal support, and the. fourth section discusses aftribute versioning in
contrast with tuple versioning. Unless specified otherwise, tuple versioning is assumed throughout this

dissertation.

5.1. Temporally Partitioned Store

A database with temporal support maintainsrthe hist_ory of an enterprise, or the history of activities on
the database modeling an enterprise, or the history of both, depending on the type of temporal support.. In
any case, there can be multiple versions to represent a single entity over a period of time. Thus, the term
version set is defined to identify a set of versions for one entity. A version set usually has a single key
value for ail of its versions. But a version set may have multiple keys if there has been key changes, as will

be discussed in Section 5.1.4.

72

As discussed in Section 1.2.1, databases with temporal support contain two distinct types of data,
current data and history data. The characteristics of current data and history data exhibit clear differences
in terms of the version count, storage requirements, access frequency, access urgency, and update pattern.
These differences make it natural to store and process them separately depending on their individual
characteristics. It leads us to the temporally partitioned storage structure with two storage areas, the
current store and the history store. The current store contains current versions which can satisfy all non-
temporal queries, and possibly some of frequently accessed history versions. The history store holds the
remaining history versions.

This scheme to separate current data from the bulk of history data can minimize the overhead for
non-temporal queries, and at the same time provide a fast access path for temporal queries. It is possible to
use different access methods for each of the two, The current store may utilize any conventional access
method suitable for a snapshot relation, such as hashing, ISAM, or B-tree. The history store may also use
any conventional access method, but several variations are conceivable to exploit the concept of version
inherent in history data. It is even possible to use different types of storage media for each of the two. For

example, history data may be stored on optical disks, while current data are kept on magnetic disks. -

This temporally partitioned storage structure can also be regarded as the reverse differential file. The
scheme of differential file represents two versions of data with the main file and the differential file
[Severance 1976). The main file contains the reference version (R), and is never modified. All changes io
the main file are recorded in the differential fife, which are either additions (A) or deletions (D). Thus, the
current version (C) can be found by R U A — D. Note that accessing the current version is slower than
accessing the old version. On the other hand, the scheme of reverse differential file directly represents the
current version in the file C. It also records additions (A) and deletions (D) to and from a reference version
in a separate file. Then, the current version is readily available from C, and the reference version (R) can
be found by C w D — A. Since A ¢ C, A need not be stored separately. They can, instead, be represented
as a part of C by marking them with appropriate information, e.g. attaching time attributes to each record to
show when it was appended. Attaching time atiributes o each record also generalizes the number of

versions from two to any number.

73

Storage structures similar to this temporally partitioned scheme have been mentioned in other papers
[Ben-Zvi 1982, Katz & Lehman 1984, Lum et al. 1984], but none of them has investigated .van'ous
characteristics and possible variations, nor has analyzed their performance. There are many issues to be
investigated about the temporally partitioneﬂ storage structure [Ahn 1986]. This section discusses the split
criteria specifying how to divide data between the current and the history store, update procedures for each
type of databases with temporal support, methods to handle retroactive changes, proactive changes, and

key changes, and the performance with regard to the update count.

5.1.1. Split Criteria

The main objective of the temporally ﬁartitioned storage structure in this dissertation is to separate
current data from history data so that the overhead for supporting temporal queries éan be minimized.
- Hence the basic criterion is to keep current versions in the current store, and to keep history versions in the
history store. All non-temporal queries can be evaluated by consultiﬁg only the current store without any
inﬁerenw from the bulk of history versions. This criten'on. appéars to be quite simple, but there are many

complications especially with a historical or a temporal database.

The term current version has different implications depending on the temporal type of databases.
For a rollback database, the current version of a version set is the version entered into the database most
recently for the version set, and has ‘~’ as the value of the fransaction stop attribute. Such tuples are put

into the current store, and the other tuples are put into the history store.

But determining current versions for a historical or a temporal database is complicated by retroactive
or proactive changes, which will be discussed further in Section 5.1.3. For a historical database, the
current version has the attributes valid from and valid to overlapping with the current time. For a temporal
database, the current version has the attributes valid from and valid to overlapping with the current time,
and a transaction s'top' value of ‘-’, If we ignore retroactive or proactive changes for the moment, the
current store keeps tuples with a valid to value of ‘e’ for a historical database, and tuples with a valid to
value of ‘e’ and a transaction stop value of ‘-’ for a temporal database. An extension to the temporally
partitioned storage structure with the current and the history stores would be to add the third store, called

the archival store, which contains tuples with values other than ‘— for the transaction stop attribute. The

74

archival store will be consulted only for queries as of some moment in the past.

~ As discussed in Section 1.2.1, current data are in general smaller in volume, but acéessed more
frequently and urgently, than history data, Thaus, the current store can be more efficient than the history
store in accessing data. To take advantage of this property, we can relax the basic criterion by keeping
some history data, which tend to be accessed rather frequently, in the current store. In this case, care
should be taken to limit the amount of history data in the current store so that the performance of non-
temporal queries would not suffer from the increased size of the current store. For example, the current
store may keep up to two, instead of one, most recent versions for each version set. Furthermore, deletions

or proactive changes can be handled following this criterion, as will be discussed later.

It is also possible to adopt the strategy of vertical partitioning [Ceri & Pelagatti 1984] which moves
some of the cutrent versions, with relatively low access frequencies, o the history store. Though it is not
pursued any further in this research, a special case related with this scheme is later described for proactive
changes. Another factor affecting the criteria is the availability of an access path to history versions, since
a version in the history store needs an access path either through some index or through a corresponding

version int the current store.

5.1.2. Update Procedures

Unlike snapshot databases relying on update in place, databases with temporal support update
existing information in a non-destructive way, and maintain out of date information as history data. Hence
the semantics of append, delete and replace are particularly important in databases with
temporal support. Handling delete and replace is more complicated with the temporally partitioned
storage structure, which divides data between the current and the history store according to a split criterion.
This section discusses the update procedures for the temporally partitioned storage structure in each type of
databases with temporal support. The formal semantics of modification statements for TQuel has been
defined elsewhere {Snodgrass 1986].

According to the basic criterion of current data on the current store and history data on the history

store, deleted tuples ought be moved to the history store. This reduces the size of the current store, but it

becomes necessary to provide an access path to the version set which has no current version, lest the whole

75

history store be scanned to locate it. The path may be a separate index of deleted tuples, or a combined
index involving both the current and the history store, as will be discussed in Section 5.2.3. If the basic
criterion is relaxed so that the current store may hold some of history data, deleted tuples may be left in the

current store. In this case, there is no need to maintain a separate access path for deleted tuples.

Fér arollback database, append inserts a tuple with time attributes;

transactioh start ¢ the current time

transaction stop ¢ ‘-’
meaning that the tuple is effective from the current time on. Delete finds a tuple which satisfies the
where predicate and has a transaction stop value of ‘—’, then terminates it by changing the transaction stop
attribute to the current time. The deleted tuple has been in the current store, and may or may not be moved

to the history store depending on the split criteria. Deletion or correction of past tuples, whose transaction

stop attribute is not ‘', is not allowed in a rollback database.

Replace can be described as delete followed by append in any database. In this delete and
append scheme, the base tuple is first deleted (in the sense of nbn-snapshot databases) as described above,
then a copy of the base tuple with somé attributes cﬁanged according. to the replace statement is
appended. This scheme works wéll with conventional storage structures, and is used by the prototype to be
described in Chapter 6. But the delete and append scheme is not strictly applicable to a rollback database
with the temporally partitioned storage structure. The problem is that the base tuple still stays in its place,
while the newer version is put into a different location. An alternative is to append into the history store a
copy of the base tuple with its transaction stop attribute changed to the current time, then change the base
tuple according to the replace statement. This append and change scheme works well for a rollback
database with the temporally partitioned store, and is also better than the delete and append scheme for
concurrency control and error recovery in that it reduces the critical period while the base tuple is not

available.

For a historical database, append, delete, and replace statements have the valid clause

to specify the period while any of the modification statements will be in effect.

76

range of h is historical h

delete h
valid from t; to i,
where (h.id = 500)

Figure 5-1: A Delete Statement

The TQuel statement in Figure 5-1 can be regarded as having the update interval [t ;, t,), effective between
tyand #,. Ifno walid clause is specified for any modification statement, the default update interval is
[now, eo}, where ‘e’ stands for ‘forever’. Let’s call a tuple satisfying the wherxe predicate the base
tuple, and assume it has the base interval [tyr, £), effective, between ¢, and ?,,, where t,r and £, are the

values of attributes valid from and valid to. Since ¢,<t, and t<iy, there are six possible relationships

between the base interval and the update interval as shown in Figure 5-2.

base I-——~——-——l I———-—i i
update jp——— . |—~—-———| I i
result }—-—-—-—g |—---1 {none)

(1) @ (3)
bave | —— —
4 (5} 6

Figure 5-2: Base Interval vs. Update Interval for Delete

Delete needs to be handled differently for each case, except for cases (1) and (6) which require no

77

action,

*case (1) ty< 1y

The base interval and the update interval do not overlap, so nothing needs to be done.

.0353(2): tI <'tlngtvf < tZAt2<'tvt
The portion [1,, ¢,) gets deleted. The result is to change the valid from attribute of the base uple 0

t2. The base tuple still stays in its place, whether it is in the current or the history store.

*case (3): ty<tpAt, <ty
The base tuple is physically deleted. But the immediate predecessor version of the base tuple, if any,
needs to be recognized as the most recent version of the version set in order to maintain an access
path to history versions. If the base tuple is in the current store, and deleted tuples are kept in the
current store, then the immediate predecessor needs to be moved from the history .stdre to the current
store.

scase (4): ty <tiAty<ty,
The portion [t t,), which falls on the middle of the base interval, gets deleted. The result is to.
change the valid from attribute of the base tuple to 5, which stays in its place. Then a new tuple,
which is the same as the base tuple but with the valid to atiribute of ty, is inserted into the history
store.

*case (5). Ly <tjAt, <ty
The portion [¢y, #,,) gets deleted, which changes the valid to attribute of the base tople to ¢4, If the
base tuple is in the current store, it may be necessary to move it into the history store depending on
the split criteria.

scase (6): ¢, <!
The base interval and the update interval do not overlap, so nothing needs to be done.

Thus delete in a historical database is similar to replace in a snapshot database, except for the case

(4) which also involves an append, and for the cases (1) and (6) which requires no action. Note that

delete in a rollback database only deals with the case (5), where the time axis represents transaction

time.

78

Handling replace is more complicated in a historical database than in a rollback database,
especially with the temporally partitioned store. To perform replace in a historical database with the
temporally partitioned store, there are also six cases to be examined as shown in Figure 5-3, depending on
the relationship between the base interval and the update interval. However, handling replace is more
complicated than delete, because we need to determine the proper location of the current version and to
maintain 2 history chain, whether explicit or not, for each version set. Basically, we follow the append and

change scheme, but detailed steps vary significantly for each case,

base e e o

. o e
(h {2) 3)

base p———rif e N
4) 3) ©)

Figure 5-3: Base Interval vs. Update Interval for Replace

©case (1) 1y< 1y
The base interval and the update interval do not overlap, so nothing needs to be done.
tcase(2): ti<tphly <Al <,
The portion [f,;, £;) gets replaced. First, the new version changed by =zeplace is put inio the

history store. Its valid from attribute is set 0 to ¢,r, and its valid to attribute is set to £5. Then, the

79

base tuple gets its valid from attribute changed to ¢, but still stays in its place, whether it is in the

current or the history store.

‘0386(3): t1<t‘ff\tw <t2
The new version changed by replace is put into the place of the base wple. Its valid from

attribute is set to to ., and its valid to attribute is set to ¢,,.

®case (4). ty <ljAty< iy,
The portion [¢y, ¢3), which falls on the middle of the base interval, gets replaced. First, the new
version changed by replace is putinto the history store. Next, a copy of the base tuple is inserted
into the history store with the valid to attribute set to t1. Then, the base tuple gets its valid from

attribute changed to ¢,, but still stays in its place, whether it is in the current or the history store.

*case Sy fy <tiAt, <1,
The portic;n [¢1, 4,,) gets replaced. First, a copy of the base tuple is inserted into the history store
with the vglid to attribute set to #;. Then, &e new version changed by replace is put into the
place of the base tuple, whether it is in the current or the history store, with 1,, as the value of its
_ralid to attribute. This case is particularly troublesome to the delete and append scheme, bécause the
base tuple needs to be moved to the history store. Note that this corresponds to the case of the
default valid clause for a historical database. This case also corresponds to the only case fof a

rollback database, except that the time axis for the rollback database Tepresents transaction time,

*case (6): &, <1y

The base interval and the update interval do not overlap, so nothing needs o be done.

‘Though 2 temporal database supports transaction time in addition to valid time, modification
statements for a temporal database have the same format as those for a historical database. Since the as
of clause is not allowed in modification statements, transaction time does not participate in append,
delete, or replace, except that the transaction stop attribute of the base tuple to be deleted or
replaced should have the value of ‘~’. There are also six possible relationships between the base interval
and the update interval in terms of valid time, as shown in Figures 5-2 and 5-3. For each case, delete

- and replace for a temporal database are handled in a similar manner to those for a historical database,

80

but with two exceptions. First, a copy of the base tuple is inserted into the history store with the transaction
stop attribute set to the current time, before the base tuple is changed in any manner, This resu1t§ in adding
up to three versions for each replace, but provides the capability to capture the history of retroaciive
and proactive changes completely, as described in Section 3.4. Second, any tuple inserted in the process,
except for the copy of the base tuple mentioned above, has the attributes transaction start and transaction
stop set to the current time and ‘-, respectively. In addition, we need to maintain a chain of history
versions for each version set, which is further complicated by the fact that each replace in a temporal
database inserts at least two versions. We order versions affected in each update in reverse order of valid
from time, then in reverse order of transaction start time, This ordering allows us to retrieve recent

versions more quickly, especially for queries with the default clause as of "now®.

5.1.3. Retroactive or Proactive Changes

For a rollback database, each change is effective from the moment of the transaction, but not so for a
historical or a temporal database with the valid clause. In the delete statement in Figure 5-1 for a
historical or a temporal database, if ¢, is earlier than the current time, the change is retroactive from, and if
t, is earlier than the current time, the change is retroactive fo. If ¢, is later than the current time, the
change is proactive from, and if ¢, is not ‘e’ but later than the current time, the change is proactive to.

Thus a change may be retroactive from and proactive to at the same time.

Retroactive changes deal with both current and past versions, and can be handled by following the
steps outlined for each case of the delete and replace stateménts in the previous section. However,
proactive changes may involve future versions or versions to be expired which require special treatment for
the temporally partitioned store. For a proactive from change, the base tuple is still current for the
moment, but will expire in time. Proactive from append or replace introduces a future version
which will become current some time later. Proactive to replace introduces both a future version and a
version to be expired. A question is how to handle future versions and versions to be expired. It is possible
but expensive to maintain a separate index for future versions, and to monitor constantly which versions
are becoming current or expired. An alternative is to keep future versions and versions to be expired
together with current versions in the current store. When any of those versions is accessed in the course of

query processing, it is possible to determine if it has changed its status from fusure to current or from

81

current to expired, then move the expired version to the history store.

5.5.4. Key Changes

A key of a relation is a smallest set of attributes whose values uniquely identify a tuple, which
corresponds to an.entity in the entity set modeled by the relation. Formally, a key of a snapshot relation 7
over scherﬁe R is defined as a subset K of R such that for any distinct tuples ¢; and ¢, in r, ¢ (k) = £,(K),
and no proper subset of X has this property [Maier 1985]). Thus a relation in a conventional snapshot
database should not hold two ﬁpleﬁ that agree on all the attributes of the key. However, databases with
temporal support, which maintain a sequence of versions for each entity, can contain multiple tuples that
agree on all the attributes of the key. Hence, the definition of the key needs to be extended for databases
with temporal support.

A key of a relation r over scheme R in databases with temporal support is a subset X of R such that
for any distinct tuples ¢, and t, overlapping in time in r, t, (k) # t,(K), and no proper subset of K has this

property. Two tuples ¢, and ¢, overlap in time if:

* for a rollback relation
ty [transaction start] < t,[transaction stop} A

ty{transaction start] <t [transaction stop]

* for a historical relation
ty[valid from] <t,[valid t0) A

tylvalid from] <t (valid to]

* for a temporal relation
t[valid from] <t,[valid to] A
ty[valid from} <t [valid to] A
ty[transaction start] < t,[transaction stop] A
ty[transaction start] <t [transaction stop]
The data definition statement cxeate in both Quel and TQue! does not enforce the concept of the

key, in that it does not specify what attributes constitute a key for a relation. Though the formal semantics

for appena defined for TQuel prevents two tuples identical in all the explicit attributes from overlapping

82

in time [Snodgrass 1986], it is still up to discretion of users to observe the key constraint that any new key
value entered into a relation either through append or replace does not overlap with any existing
tuple with the same key value. If append or replace does not insert a new key value bverlapping
with any existing tuple with the same key value, update procedures for the temporally partitioned: store
described in Section 5.1.2 ensure that there is at most one active version for each key value at any moment,

and thus no two tuples with the same key value overlap in time.

Though the key value identifying an entity is not supposed to change, there are always_ excepﬁons,
which cavuse nasty problems in conventional databases when tracking the history of changed identities.
However the problem can be handled gracefully in the databases with temporal support, where a sequence
‘of versions for each entity is maintained through physical or virtual links. If the key value of a tuple

changes, a new version with the changed key becomes the current version, and the old version is kept as a

history version. Thus the history of key values is captured in the same way as the history of other attribute

values. But it may be necessary to rearrange the storage structure for the changed key value, if the storage

structure depends on the key attributes.

5.1.5. Performance

A query is called current or non-temporal if it involves only current data and does not concern
history data. A non-temporal query for a rollback database has the clause as of ™now". For a
hisiorical database, a non-temporal query has the clause when (¢, overlap .. ovarlap ;)
ovexrlap "now" for all the range variable #;. For a temporal database, a non-temporal query has the
clause when (f; overlap.. overlap) overlap "now" for all the range variable ¢, and the

clause as of "now™. Hence it is possible to determine at compile time if a query is non-temporal.

According to the split criteria discussed in Section 5.1.1, all non-temporal queries can be evaluated
by consulting oniy the current store without going through the history store. Therefore, maintaining history
versions for temporal support does not affect the performance of conventional non-temporal queries
conceming only current data. The only overhead is the extra space to hold implicit tme attributes and
possibly a physical link to history versions, which may increase the relation size and hence the cost to scan

the relation when necessary.

P,

—_—— A

83

For a temporal query, it may be necessary to retrieve history versions from the history. store. The
basic algorithm accesses the current version first through the primary acces.s path. If the temporal predicate
of the query does not contain a tuple variable, we can determine the interval which satisfies the predicate,
If the interval is found to be a subset of the interval denoted by the time attributes of the current version,
there is no need to access the history store, because members of a version set in the history store do not
overlap in time with the members of the version set in the current store. Otherwise, it is necessary to
follow the chain of history versions through physical or virtual links depending on the format of the history
store, However, many variations are conceivable for the structure of the history store, which greaty
affects the performance of temporal queries. We can organize fhe history store in such a way that the cost

of accessing the history store can be reduced significantly, as will be discussed next.

5.2, Structures of the History Store

The algorithms and the performance for accessing or updating relations with the temnporally
pértitioned store vary significantly depending on the format of the history store. This section investigates
various forms of the history store which can enhance the performance for various types of temporal
cjueries, and analyzes thefr characteristics. Relative advantages and disadvantages of the various formats
are evaluated to determine the cost of supporting temporal queries. In particular, a new method of hashing
called nonlinear hashing is proposed in Section 5.2.4.2. Note that some formats can be combined together,

though each format is discussed here individually.

5.2.1. Reverse Chaining

If history data are stored as a heap without any access mechanism, each request for a history version
must scan the whole store, which is often impractical. One solution is reverse chaining to link in reverse
order all history versions of each version set starting with the current version. Once the current version is

located in the current store, its predecessors can be retrieved without scanning the whole history store.

For this purpose, each tuple is augmented with an extra field nvp (next version pointer). When a
tuple is first inserted into a relation, it is put into the current store with the field nvp of aull. When a tuple is
replaced, the version existing in the current store is moved to some other place as described in Section

5.1.2, then a new version is put into its place with the field nvp pointing to the predecessor just moved.

84

This scheme maintains the chain from the most recent to the oldest, and does not change any of existing
versions in the history store, except for error cormrection i;z historical databases. Since the history store in
this scheme works in an append-only mode, it can use write-once media like optical disks. If it is possible
to identify atiributes which will remain unchanged, e.g. keys, those attributes may be excluded from history
versions to save space. But unexpected situations such as key changes can cause complications in that

case.

K, 81
K, 86 >

K, 83

K, 84

Figure 5-4: Reverse Chaining

Fora retrieve operation, the current version is located using any access mechanism available for
the current store. If the query is temporal, the field avp is examined. If the pointer is null or the query is
non-temporal, there is no need to go through the history store. OQtherwise, all its predecessors can be found

by following the chain of pointers, until 2 version with the nvp of null is reached.

If the interval represented by the temporal predicate can be evaluated as constant, then the
performance can be improved by exploiting the fact that all versions are ordered in the reverse order.
Instead of following the chain to the end, we can stop fraversing history versions when a history version is
retrieved whose interval denoted by its time aitributes exceeds the constant interval specified bjr the

" temporal predicate.

The lower bound for the number of block accesses to perform retrieve is %, when there are »

history versions to be retrieved and & is the blocking factor of the history store. This occurs when all

history versions are clustered together in the minimum number of blocks. The upper bound for the same

a 3
- A e e i

85

case is n, when no two versions are on the same block.

When a single version set with 7 history versions is retrieved, the average number of block accesses,

assuming uniform distribution, can be evaluated by the formula given by [Yao 1977A].

—b
n n~1 -b—i
1- —%[1-1'[f=-b-i]

g

where f is the number of records in the history store, and & is the number of records in a biock of the history

Average Block Accesses (n,f, b) =

]

store. Note that reverse chaining maintains an ordering among versions belonging to the same version set,

so there is no need to access a block more than once while scanning a chain of versions for a version set.

When several version sets are retrieved to process a query, the procedure to access a chain of

versions is repeated for each version set. In this case, a block which contains versions belonging to several

version sets may be accessed more than once. Hence the number of block accesses can exceed *bi, which

is the cost to scan the history store sequentially. Let’s assume that each version set has m versions, and that
v version sets are retrieved. From the formula (5-1) above, it is possible determine the breakeven point
when repeated traversal of history chams is still better than scanning the history store,

vxl [1 -1 &] L
Thus the number of version sets v’ to favor repeated traversal of history chains can be calculated

numerically for a given m, the number of versions for each version set.

The access path expression for this format is:

[FilePathy ; (P n (S 1) (P 1))]

where FilePath, is for the current store, and » is the number of history versions. This expression shows
that there is a single chain. The head of the chain is Iocated through a pointer, and the chain has n nodes.

Each of the node is of one record, and is connected to the predecessor by a pointer.

(5.1)

86

5.2.2. Accession Lists

If the length of the chain grows long in reverse chaining, it may be too slow to traverse the chain,
even when only a small portion of the history versions are of interest. An alternative is fo maintain

accession lists between the current store and the history store.

K, ss-ﬁ&

Figure 5-5: Accession List

A tuple is first entered into the current store, with an extra field alp (accession list pointer) of null,
When a new version replaces the current version, the new version is put into the current store with the field
alp pointing to an accession list, which is initialized to point to the history version just inserted into the
history store. If another version is added into the version set, an entry corresponding to the version is also

added into the accession list. Thus the accession list is a full index to history versions for each version set.

It is desirable to include some temporal information for each entry in accession lists, so that temporal
predicates can be evaluated without actually accessing history versions. Deciding on the amount of

temporal information to be included into accession lists is a question of space time tradeoff,

For a rollback relation, accession lists may contain both of the attributes transaction start and
transaction stop (full accession lists). Space can be saved by sioring only the transaction start attribute
{partial accession lists) without significant loss of performance, because most version sets are contiguous,
meaning tﬁat the value of the transaction stop attribuie is the same as the value of the transaction start
attribute of its successor. {Clifford & Warren defined a formal semantics of a historical database based on

the continuity assumption [Clifford & Warren 1983].) Similar arguments apply to a historical relation, with

87

the attributes valid from and valid to instead of the attributes transaction start and transaction stop.

For a temporal. relation, accession 1ists may contain up to four time .attributes, or some subset of the
four attributes, or only one of the four attributes for each version. If two time attributes are included, the
attributes valid from and transaction start are recommended for the reason of contiguity mentioned above,
If only one time attribute is included, the attribute valid from is fzivored over the attribute transaction start,
assuming that the selectivity of the when clause is smaller than that of the as of clause, which is often

the case.

For full accession lists, only those versions that satisfy tﬁe.given temporal constraints need to be
retrieved from the_ history store. For partial accession lists, it is not possible to evaluate the temporal
constraints completely. Hence, all versions which Ican satisfy the constraints based on the partial
information are retrieved from the history.store to resolve the missing information. Still, the ratio of false

hits can be significantly reduced compared with the case of no temporal information in accession lists.

Ordering of history versions in accession lists is less critical than reverse cﬁaining, but we still
recommend that they be kept in such an order that allows recent versions to be accessed. more easily.
Hence fér a rollback database, versions are maintained in reverse order of transaction start time. For a
rollback database, versions are maintained in reverse order of valid from time. For a .ternporal database,

versions are maintained in reverse order of valid from time, then in reverse order of transaction start time.

Including temporal information in accession lists is not an overhead, as it may appear to be. When
some time attributes are stored in accession lists as described above, it is not necessary to store the same
information in the history store. History versions do not need an extra field avp, as in reverse chéjning.
Accession lists are also useful to handle future versions resulting from proactive changes. The future
version may be put either in the current or the history store, pointed to by an entry with appropriate |
temporal info‘rmaﬁon in accession lists.

Since accession lists are accessed more frequently than history versions, and may be clustered or

reorganized for performance reasons, it is better to keep them on magnetic disks. History versions are

“append only, so they may be stored on optical disks.

88

The access path expression for this format is:

[FilePath, ; (P n (P 1})]

meaning that there are n chains. Each chain has one node, which in tum is of one record.

The upper bound for the number of block accesses to retrieve all # records is one bigger than that of
reverse chaining, owing to an extra disk access for accession lists. Since temporal predicates can be
evaluated without accessing the history store, the lower bound for the number of block accesses is just two
including a block access for an accession list. On the average, the number of history versions actually
retrieved will be much smaller than reverse chaining, thougﬁ its quantification is difficult due to the variety

of temporal predicates;

5.2.3. Indexing

For a snapshot relation, the index is a set of <value, pointers pairs where value is a key value and
pointer is the unique identifier or the address of a tuple containing value as.the key. For databases with
temporal support, the index can be extended to include pointers to history versions. Each eniry is of the
form <value, p;, py,, - p; >, where p, points to the current version, and Py, with 1 £ < n points to the

i-th history version,

The index entry can even include some temporal information to evaluate temporal predicates without
actually accessing data tuples. Then the issue of space time tradeoff on the amount of temporal
information discussed above for accession lists similarly apply to this scheme. For example, a temporal
relation may have an index with a pointer and four time attributes for each version, or an index with a
pointer and just one attribute, e.g. valid from, for each version. Figure 5-6 illustrates this écheme, which

can be regarded as a combination of conventional indexing and accession lists described above.

89

[X.|3513¢ |88

Figare 5-6: Indexing

Indexing is also useful to handle deleted tuples or future versions. Since history versions have an
independent access path without going through the current store, all deleted tuples can be put into the
history store. The future version may be put either in the current or the history store, pointed to by an

index entry.

Hts access path expression is:

[FilePathy ; [(8 1 (P 1)) 2, (8 n (P 1}) 1]

FilePath is for the index, which may take any appropriate storage format itself, and » is the number of

i i 1 - vpsmmmand e tlea bfosmac. sk To o mmaooo o T TS S S .
history versions. From the index entry, either the cumrent or the hist iy store is accessed. If ii is not

[=

successful, then the other store is accessed.

Instead of maintaining a pointer for each history version, space can be saved by storing only one
entry for the list of history versions. Then each entry is of the form <value, p,, p,>, where p, points to the
current version. p, may be the starting address of the chain of history versions, or the address of an

accession list for history versions.

A generalization of this scheme is to apply the temporally partitioned structure to the index itself,
maintaining two separate indices, one for the current store and the other for the history store. The benefits
of the temporally partitioned store considered for storing data similarly apply to this temporally partitioned

indexing. By separating current entries from the bulk of history entries, the current index becomes smaller

90

and mdre manageable, minimizing the overhead of maintaining history versions on non-temporal queries.
The history index can utilize any format developed for the history store to enhance the performance of
temporal queries. For example, the current index may be hashed, while the history index has the format of
accession lists. Then each entry in the current index is of the form <value, p,, p,>, as mentioned above.
In any case, history versions are append only for a rollback or a temporal relation, so they may be stored on
optical disks.

Performance characteristics of the indexing scheme is similar to that of accession lists. The upper
bound for the number of block accesses to retrieve all » records is », one less than that of accession lists,
without counting the cost to access the index itself. The lower bound for the number of block accesses is
just one, without counting the .cost to access the index itself. Since temporal predicates can be evaluated by
temporal information included in the index, the number of history versions actually retrieved will be much

smaller than reverse chaining, though its quantification is difficult due to the variety of temporal predicates.

One problem with indexing is that the format of the current store is tied to indexing, while other
schemes allow any format for the current store. Another problem is to handle a query which needs to
access records throug'h non-key attributes. It is necessary to maintain the same ordering for the index and

the current store, so that the current store can be scanned synchronously with the index.

5.24. Clustering

One problem with the schemes discussed thus far is that history versions belonging to a version set
are scatiered over several blocks. A solution is to cluster all versions of each version set into the minimum
number of blocks (See Figure 5-7). Clustering significantly reduces the number of disk accesses to retrieve
history versions, and thereby improve the performance of temporal queries. However, its update
mechanism is more complicated to maintain clustering while achieving a high degree of storage utilization,
Clustering can be combined with other schemes described earlier, such as reverse chaining, accession lists,

or indexing.

91

K, 8l

.o K B3

& o s "ol 71
K P g K
RN

Figure 5-7: Clustering

If we maintain a pointer from each of the current version to its clustered blocks, its access path

expression is:
{ FilePath, ; (P [%] (S) (P b))]
There are = blocks 0 be accessed to retrieve n history versions, where b is the number of records in a

b

block. Since this scheme requires splitting of blocks when overflow occurs, it is not strictly applicable to

optical disks. There are many variations for this scheme, as will be discussed next.

5.24.1. Variations

The simplest method is to assign a whole block to each version set with history versions, which
results in unacceptably low storage utilization in most cases. This is a special case of cellular chaining to

be described later, where a cell is a whole block.

A better method is to share the same block for history versions of several version sets. When an
overflow occurs, the block is split into two, moving all versions of some selected version sets to a new

block. If all versions in the overflowed block belong to one version set, a new block is added as a

successor and chained to the original block. In this scheme, % blocks need to be accessed to retrieve »

history versions, where b is the number of records in a block.

92

In the temporally partitioned storage structure, there needs to be a link between the current version
and its history versions .to avoid scanning the whole history store. The link may be either physical or
virtual. A physical link is a pointer physically stored as an implicit attribute of the current version. If some
history versions are moved to other location as a result of an overflow, physical pointers in the current store
pointing to those versions need to be adjusted accordingly. It is better to move the version set that has
caused the overflow in this case, because it is easier to identify the version in the current store which
corresponds to the versions being moved in the history store. If it is still necessary to move or compact
other versions remaining in the original block, history versions need to maintain back pointers to the

corresponding versions in the current store to adjust their pointers.

A virtual link is a conceptual link implied by some structural information. For example, 'history
versions can be hashed on the primary key so that all versions belonging to a version set are put into one
block or its overflow blocks. But the performance of conventional hashing with reasonable storage
utilization deteriorates rapidly, as will be discussed further in Chapter 6, if there are excessive key

collisions causing long overflow chains.

One way to resolve this problem is to introduce a scatter table between the current store and the
history store, which can serve as a combination of the physical link and the virtual link [Morris 1968]. A
scatter table may have the form of an index or a directory. Each entry in a scatter table corresponds to a
value hashed from the primary key of tuples in the current store, and holds a pointer to a block in the
history store. When an overflow occurs 0 a block in the hisiory store, the block is split into two according
to a hash function which generates a sequence of different values for each occurrence of overflows. Then 2
new entry pointing to the new block is added to a scatter table. A scatter table plays a similar role to
accession lists, but an entry in a scatter table is shared by several synonymous tuples through a hash

function, while an accession list is only for one tuple through a physical link.

Actual implementation of this scheme using a scatter table may adopt one of variable size hashing
methods based on an index or a directory which can accommodate dynamic growth of a file by splitting a
block upon overflow. Examples of such methods are dynamic hashing, extendible hashing, and grid files,

where an index or a directory can be regarded as a scatter table described above.

93

Dynamic hashing [Larson 1978] maintains an index on hashed keys, where each entry of the index is
a pointer to a disk block. Whenever an overflow occurs in a disk block, the block is split into two, and the
corresponding index entry is also split into two. The index entries form a forest of binary trees while

undergoing a sequence of overflows.

Extendible hashing [Fagin et al. 1979] maintains a directory of 2¢ entries on Hashed keys, where dis
the directory depth. Several directory entries may share the same disk block, but about half of those entries
are changed to point to a new block when an overflow occurs to the block and causes a split. The directory

is doubled when the number of overflows for a block exceeds the directory depth.

Grid files [Nievergelt et al. 1984] of one dixﬁension can aiso be vsed here by maintaihing a directory
on the hash values of keys. The directory consists of a linear scale and a grid array. Each element of the
grid array holds a pointer to a data block. When an overflows occurs to a block, the block is split by addmg
a new block If the overflowed block is shared by more than one gnd array elements, one of the elements
is changed to point to the new block. Otherwise, one of the intervals denoted by the linear scale i i Spht by
_ addmg a new entry, and all the elements of the grid array correspondmg to the split interval are also split to
accommodate the new block.

All three methods make it possible to retrieve a record at the cost of one block access by locating the
index or directory entry for a given key, assuming .that the index or the directory is small enough to reside
in the main memory. If the index or the directory does not fit into the main memory, cne additional disk

access is necessary.

There are other variable size hashing methods which éan accommodate dynamic growth of the file
without maintaining an index or a directory. They are virtual hashing, linear hashing, and modified
dynamic hashing. Virtual hashing [Litwin 1978] doubles the whole file when an overflow occurs, and
modifies the hash function for a block which had an overflow. It needs to maintain a bit map to indicate

whether each bucket had an overflow or not, and suffers from low storage utilization.

Linear hashing [Litwin 1980] splits a block when an overflow occurs. But the block being split is not
the one which had an overflow, but the one marked by the spiit pointer which increases one by one from
the initial value of 0. The record which caused an overflow to a block is put into an overflow block chained

1o the original block, until the split pointer reaches the original block and splits all records in the chain of

94

the original and the overflow blocks. Though linear hashing extends the file size by one block at a time
while maintaining only the split pointer, it still depends on overflow chains \;vhich degrade the overall

performance.

Linear hashing with partial expansions [Larson 1980} is similar to linear hashing, except that two or
more blocks are grouped together in adding a new block upon an overflow. It can improve storage
utilization while exhibiting comparable performance. Another way to improve storage utilization is to

defer splitting until a certain storage utilization is achieved (controlled split).

Modified dynamic hashing [Kawagoe 1985] attaches a logical address to each block in addition to a
physical address. When an overflow occurs to a block, the block is split into two, and the logical address
of the block is stored into a list. At the same time, all logical addresses equal to or smaller than that of the
split block are changed. This method can locate a block for a given key at the cost of one block access, but

needs to maintain a logical address for each block.

5.24.2. Nonlinear Hashing

As an improvement over these hashing methods; which achieve the effect of clustering for each
version set, a new method of hashing termed nonlinear hashing is proposed. TIts objective is to retrieve
records at the cost of exactly one block access, even when the file size grows or shrinks dynamically, It
maintains a list of overflow addresses, called overflow list. Since the overflow list stores an address only
when an overflow occurs, it is smaller than a directory or an index which maintains the addresses of all the
buckets, and is expected to fit into the main memory If the size of the overflow list grows too big, it is

possible to reduce its size by reorganization.

Nonlinear hashing is similar to linear hashing in that it need not maintain the addresses of all the

buckets. But itis better than linear hashing, because it splits an overflowed block, not a block selected in a

linear order (hence the name nonlinear hashing).

In nonlinear hashing, each record is hashed on the primary key through a hash function A, first,
whose range is {1, 2, ..., 5o} where n is the size of history blocks initially allocated. If a record needs to
be inserted into a block which does not have enough free space, an overflow occurs. When an overflow

occurs, a new block is appended to the end of the file. Then the overflowed block is split into two by

PR .

—— . dn

95

rehashing records in the block through a split function s;, i > 0, where i, termed the order of overflow for
the block, is the number of overflows that had occurred on the way to locate the block including the latest
one. The split function s5; has the range of {0, 1}, and determines whether a record stays in the originél
block or is moved to the new bloék. Hence, the hash function 4, and the split functions s; should satisfy
‘the constraints;

ho:K—{L2, ..n4}

5:K—{0,1} fori>0
where X is an arbitrary key, and n is the initial file size in blocks.

At this time, the address of the overflowed block is stored into a list, called the overflow list, which is
initially empty. The overflow list is simply a list of addresses where overflows oécutred, but it also
represents iﬁformation on the order of overflow for ﬁ block, and where a new block was added upon an
overflow. Such information maintained by the overflow list is in faqt sufficient to retrieve a record at the

cost of exactly one block access, given the key of the record.

To determine the address of the block for zi given key K, h,, is first applied to K. If 2y (K)=b,,
where 1<bg<n,, by is called the initial address. If b, is not an active member of the. overflow list, it
becomes the final address of the block for K. Otherwise, determine the position p o of b in the overflow
list, and temporarily deactivate b, from the list. Then depending on whether 5, (K} is 0 or 1, the next
intermediate address b becomes by or ny+p , respectively. Now if b, is not an active member in the
overflow list, it becomes the final address of the block for K. If b, is again an aclive. member of the
overflow list, then repeat the steps similar to those for the case of b, being a member of the overflow list,
except that each subscript of p g, b, 54, b is incremented by 1 respectively on each iteration. Note that the
subsﬁn‘pts are determined by the order of overflows for the block in question, which is the numﬁer of
overflows v%hich had occurred along the path to the block. The final address of the block for X is
determined when b; for some { is found not to be an active member of the overflow list. At that moment,
all inactive members of the overflow list are reactivated.

Once the final address of the block for X is determined, retrieving a record with such a key needs

only to search the corresponding block. Whether the search is successful or not, its cost is just one block

access, assuming that the overflow list can be kept in main memory. Thus the access path expression is

96

simply:

[FilePath, ; (B 1)]

To insert a record with a key K, the block at the final address for the key is checked if it has enough
free space to receive the record. If so, the record is simply put into the block. Otherwise, a new block is
appended to the end of the file, the original block is split into two, and the address of the original block is
added to the overflow list, as mentioned earlier. The cost of an insertion is one or two block accesses

depending on whether it involves an overflow.,

A series of insertions into a file, whose initial size n4 is 3, will fllusirate how nonlinear hashing
handles insertions. A sample hash function A, and the split functions s; to satisfy the constraints of

nonlinear hashing are:
ho(K)Y= K mod ny+1
K

5(K)= Wmadz foris 0

Some of the split functions for ny= 3 are:

5 K)y= —I-imodl

3
52(K)= 355 mod 2
K)= — d
83() 3)(22”20 2

Let’s assume that each block can hold up to three records, and call a record with » as the key simply
record n. If records 12, 29, 10, 30, 16, 25 are inserted in sequence, the file looks like Figure 5-8 (a). Thus

far, the overflow list is null.

97

| 2 3 | 2 3
10
12 12 25
16 29 29
30 25 30 1
4
10
Overflow List: 16 Overflow List:
<> <25
(a) after inserting 12, 29, 10, 30, 16, 25 (b} after inserting 19

Figure 5-8: Insertions in Nonlinear Hashing

To insert record 19 next, Ay (19)=19mod 3+ 1=2, Sincé block 2 is already full, an overflow
occurs. So a new block is apbended as-block 4, and records 10, 16, 25 are rehashed through s5,. Since
51(25)=0 and 5 (10) =5, (16) = 1, record 25 stays in the original block 2, and records 10 and 16 are
moved to the new block 4. The new record 19 is now put into block 2, since 51 (199=0. The file now
looks like Figure 5-8 (b), and the overflow list becomes <2>. Note that the line between block 2 and block

4 is only conceptual, and does not denote any physmal link.

For record 13, A (13)=2. But there is the address 2 at the position 1 of the overflow list, which is
now temporarily deactivated. Since s; (13) =0, its next intermediate address is still 2. There is no active
member with the address 2 in the overflow list, so the final address for record 13 is 1. The record is put

into block 2, and the member 2 of the overflow list is reactivated.

To insert record 28, h,(28)=2. Since block 2 is at the posiﬁon 1 of the overflow list, and
51.(28) =1, its next intermediate address is no+ po=3+1=4. There is no member with address 4 in the

overflow list, so the final address for record 28 is 4. Figure 5-9 (a) shows the current status of the file,

98

1 2 3 l 2 3
25
12 12 25
30 }g 29 30 13 29
4 4 5
10 10 "
Ll,g Overflow List: ég 31 | Overflow List:
<2> 2,2

(a) after inserting 13, 28 (b) after inserting 31

Figure 5-9: Insertions in Nonlinear Hashing

To insert record 31, (31} =2. But there is the addresS:Z-at the position 1 of the overflow list,
which is now temporarily deactivated. Since's, (31) =0, its next intermediate address is still 2. There is
no more active member with address 2 in the overflow list, sb the final address for record 31 is 2. But
block 2 is already full. Thus a new block is appended as block 5, and records 25, 19, 13 are rehashed
through 5,. Since 55 (25) =5, (13)=0and 5, (19) = 1, records 25 and 13 stay in the original block 2, and
record 19 is moved to the new block 5. The new record 31 is now put into block 5, since 5, (31)= 1. The

file now looks like Figure 5-9 (b), and the overflow list is <2, 2.

If we insert record 22 next, A, (22)=2. Since block 2 is at the position 1 of the overflow list, and
51 (28) = 1, its next intermediate address is ng+po=3+ 1=4. There is no member with address 4 in the
overflow list, so the final address for record 28 is 4, But block 4 is already full, so a new block is appended
as block 6, and records 10, 16, 28 are rehashed throngh s,. Since 55 (16) =5, (28)=0 and s, (10)=1,
records 16 and 28 stay in the original block, and record 10 is moved to the hew block. The new record 22
is put into block 6, since s, (22) = 1, and the overflow list now becomes <2, 2, 4>. Inserting records 22, 34

and 49 next results in Figure 5-10 (a).

s v
[P P TS

LA an

99

10

34 .

2 3

25
;g 13 29
49
4 5
16 19
28 31
Overflow List:
<2,2, 4>

(a) after inserting 22, 34,49

10
2
34

2 3
12 25
30 49 29
5 7"
i6 19 13
28 31 37
Overflow List:
<2,2,4,2>
(b} after inserting 37

Figure 5-10: Insertions in Nonlinear Hashing

To insert record 37 as a final example, 4, (37)=2. There is the address 2 at the position 1 of the

overflow list, which is now temporarily deactivated. Since s, (37)=0, the next intermediate address is 2.

But there is still the address 2 at the position 2 of the overflow list, which is also temporaﬁly deactivated.

Now 53 (37} =0, so the next intermediate address is still 2. Block 2 is no longer an active member of the

overflow list, so the final address becomes block 2. Since block 2 is already full, a new block is appended

as block 7, and records 25, 13, 49 are rehashed through s5. Since 55 (25) =5, (49) =0 and 54 (13)=1,

records 25 and 49 stay in the original block, and record 13 is moved to the new block. The new record 37

is put into the new block, since s4(37)=1. The result is Figure 5-10 (b), and the overflow list now

becomes <2, 2, 4, 2>

Now. we define some terminology for nonlinear hashing. When an overflow occurs to a block, and a

new block is added as a result, we call the original block the parent block, and call the new one the child

block. Children with the same parent are called siblings, and a block without a child is called a leaf.

100

Y

The order of overflow for a block is the number of overflows that had occurred along the path to
locate a record in the block. It is identical to the order of the split function to be used to determine the final
address of a record in the block. Now the order of a block can be defined as the number of blocks

corresponding to its ancestors, its older siblings, and its own children.

In Figure 5-10 (b), for example, block 2 is the parent of blocks 4, 5 and 7. The order of blocks 1 and
3is 0. Block 2 has 3 children, so its order is 3. Block 4 has one ancestor and one child, so its order is 2.
The order of block 5 and 6 is also 2, since the former has an ancestor and an older sibling, while the latter

has two ancestors. Block 7 has an ancestor and two older siblings, so its order is 3.

The children of a block can be found by locating all occutrences of the block number in the overflow
list. If the block number is found at a position p; of the overflow list, the address of the child block
corresponding to the position is n, + p;, where n is the initial file size, Block 2 in Figure 5-10 (b) occurs

at positions 1, 2 and 4 of the overflow list. Since r2¢= 3, the children of block 2 are blocks 4, 5 and 7.

The parent f; of a block b; can also be determined from the overflow list.

none ifb; < ny
fi=1 oL ;- ny] otherwise

where OL [£] denotes the k-th member of the overflow list. The parent of block 6 in Figure 5-10 (b) is

block 4, since OL [6 —r gl = 0L [3] =4.

It is also possible to delete a record, and merge two blocks into one if space permits. To delete a
record with a key K, the block at the final address is retrieved. If there is no such record, the request fails.
Otherwise, such a record is removed from the block. At this moment, we can check the possibility of

merging the block with its parent or its child.

If a block is both a leaf and the youngest sibling, and if space permits, then the block can be merged
easily into its parent block. This happens when a record is deleted from a parent block whose youngest
child is a leaf, or when a record is deleied from a block which is both the leaf and the youngest child. In
this case, the address of the parent block is removed from the overflow list, and the addresses of blocks

added after the child block are decremented by one each.

101

For example, deleting records 16 and 28 from Figure 5-10 (b) results in Figure 5-11 (a). Since block
6 is a leaf and the youngest (only) sibling of block 4, we can merge block 6 into block 4, as shown in

Figure 5-11 (b). Note that we do not merge block 4 with block 2, though they are also in a parent child

relationship,
1 2 3 1 2 3
12 25 12 25
30 49 2 30 49 2
4 5 7 4 5 6
19 13 ” 19 13
31 37 - 31 37
6
10 |
gﬁ Overflow List " Overflow List
<2,2,4,2> <2,2,2>
(a) after deleting 16, 28 : (b) after merging

Figure 5-11: Deletions in Nonlinear Hashing

Merging a block which is not the youngest child or not a leaf is more complex. For examble,
deleting records 10 and 34 from Figure 5-11 (b) resulis in Figure 5-12 (a). Block 4, which is not the
_youngest child, can be merged into block 2, moving record 22 to the parent block. But we can’t remove
the address 2 from' the position 1 of the overflow list, because it contains information on the orders of split
functions for its younger siblings. Thus we mark such an address by negating it. Note that we have used
the schemerin which the address counts from 1, not 0. Now the file and the overflow list look like Figure

f

5-12 (b).

102

1 2 3 1 2 3
25| 2l el |
4 5 6 4 5
2[5 8 o ||z
Overflow List Overflow List:
<2,2,2> <2, 2, 2>
(a) after deleting 10, 34 (b} after merging

Figure 5-12: Deletions in Nonlinear Hashing

Merging a block which is the youngest child but not a leaf follows the same procedures. A negative
member, e.g. -j, of the overflow list represents that there had been an overflow on block J. but the child
block, which is not both a leaf and the youngest child, was later merged back into block J» Such a member
participates in determining the order of overflows, but is not counted in determining the position of an
overflow. If block j is an initial or an intermediate address for a key, and the next intermediate address is
its child block, then j is the final address for the key. Note that record 22 in Figure 5-12 (b) should not be
rehashed to a new child block, even when another overflow occurs to block 2. Detailed algorithms to

retrieve, insert, and delete a record in nonlinear hashing are given in Appendix B.

The size of each entry is dependent on the the total size of a file. For a file with up to about 32,767
blocks, each entry takes 2 bytes. An entry of 4 bytes can handle up to about 2x10° blocks, which is about
8x10% = 8 Tex;a bytes for the block size of 4,096. But the size of the overflow list depends on the number _
of overflows, not the size of the whole file. Hence the overflow list is small enough to fit into the main
miemory for most applications. For example, the size of the overfiow list is only 32 K bytes for a file of
128 Mega bytes, assuming that a block holds 4 K bytes, the iniiial size was 16,000 blocks, and there were

16,000 overflows. With the overflow list of 256 K bytes, about 65,000 overflow blocks, or 256 Mega bytes

103

of overflow blocks, can be supported.

Nonlinear hashing needs to maintain two kinds of information. One is the address of each block
which had an overflow, and the other is the occurrence number for each overflow. The overflow list
represents such information compactly as a sequential fist. Scanning the list to determine the final address
of a key is not too expensive either, even when there were many 6vérﬂ0ws. If we assume that the average
order of overflows is d, and that there are m entries in the overflow list, the number of entries to be
examined appears to be O (d Xm). ﬁowever, the maximum number of entries to be examined is just m.
Since the overflow list is maintained in the order of overflow occurrences, and no child block gets
overflowed before its parent, no entry for a child block is ahead of the entry for its parent block in the

overflow list. Thus we need to scan the overflow list only once, no matter what the order of overflows is.

- The same information can be represented in the form of the overflow set, which is a set of [address,
pﬁsitian] pairs. The first element address is the address of a block which had an overflow. There are two
alternatives for the format of the second element position, First, position can be a list of numbers to
' represe’n; the positions of the address in the overflow list. Then the overflow set for Figure 5-10 (b) is {2,
.' (L, 2,4, [4, (3)]}. The second altemati?e is that p&sizion isa single- position number for the add.ress, and
there are as rﬁany entries for each address as there are overflows on the address. Then the overflow set for
Figure 5-10 (b) becomes {[2, 11, [2, 2], [2, 41, {4, 31}. Comparing the two alternatives, the first has to

maintain a variable length list for each address, while the second repeats some addresses multiple times.

In either case, the overflow set takes more space than the overflow list. But it is possible to store the
overflow set in a randomly accessible format. Hence the number of entries to be examined for determining
the final address of a key is reduced to @ (d). Various methods of hashing are obvious candidates for this
parpose, and nonlinear hashing itself cén be applied to maintain the overflow set using the address as the
key (termed nested nonlinear hashing). If the overflow ..set does not fit into the main memory, the overflow
set has to reside on the disk, but the overflow set of the overflow sét will be small enough to stay in the
main memory.

For example, an overflow list of 20 K bytes can support 10,000 overflow blocks, each of which has
5 12 enuiés, assuming that the second alternative above is used with the block size of 4 K bytes, Thus we

can support about 5x10° overflow blocks, or a file of 2x10'°=20 Giga bytes. In this case, the average

104

number of disk accesses to retrieve a record given a key is d + 1, where 4 is the average order of

overflows.

We can determine the average storage utilization for nonlinear hashing from the analysis result of the

extendible hashing [Fagin et al. 1979]. Assuming uniform distribution of keys, the average number of

blocks to store » records is ﬁlﬁ?’ when a block holds up to m records. Since the minimum number of

blocks to store n records is %, the average storage utilization is In 2 = 69.3%.

Now the average number of overflow blocks is — ng, where n, is the initial size of the file,

LA
mxin2

Then the average order of overflow is log, [—-n 0], assuming uniform distribution.

—n
mxn2

If the size of overflow list grows big enough to degrade the performance, it is possible to reduce or
even eliminate the overflow list through feorganizatian, using a new hash function 2, with a larger n,.

Nonlinear hashing combined with periodic reorganization can provide excellent performance

characteristics with high storage utilization,

As discussed thus far, nonlinear hashing handles dynamic srowth and shrinkage of a file through
splitting and merging of data blocks. Compared with other variable size hashing methods, it has the
advantage of retrieving a record at the cost of exactly one block access, whether successful or not, simply
by maintaining the overflow list in main memory.

One problem is the case when a split function fails to divide records of an overflowed block into two
groups, €.g. when all recprds have the same key. In that case, we need to maintain a chain of overflow
blocks. But accessing the chain of overflow blocks sequentially is not wasteful, because data records were

already clustered, and it is usually necessary to retrieve all records belonging to a version set anyhow,

It is conceivable o use time attributes as a part of a key, but there are serious problems with this
approach. A time attribute alone cannot be used as a key in most applications. Including time attributes in
a key resulis in a multi-atiribute key, which complicates the maintenance of the key. Even though time
.attributes are maintained as a part of a key, it is difficult to make a point query (exact match query), which

requires a single point in time to be specified as a predicate, especially when the resolution of time values is

105

fine. Hence, we should be able to support a range query on time attributes, which is not possible with some
access methods, e.g., hashing. Access methods such as grid files [Nievergelt et al. 1984] and K-D-B trees
[Robinson 1981] can support a multi-attribute key and range queries better, but there is an overhead to

maintain the necessary structures.

5.2.5. Stacking

Stacking is a two dimensional implementation of a conceptual cube where all the version sets have
an equal number of versions. This is useful when we are interested in the fixed number of most recent
versions, where updates are rather periodic and uniformly distributed. For example, Postgres stores history

data, but discards data older than a specified amount of time [Stonebraker 1986].

| When the first history version is put into the history store for a version set, space for 4 versions is
allocated, whel;e d is termed the depth of stacking, Subsequent versions are put into the remaining portion
i of the allocated space. After the predetermined limit d to the number of versions is reached, the next
versiont is put into the place of the oldest ve_rsion, which becomes lost as. if being pushed.through the

bottom of a stack.

k. 5]
2 —F - T

R, 4]
".:.,.__,..54.

Figure 5-13: Stacking (depth d = 3)

This scheme is not strictly applicable to optical disks, since it assumes rewriting of existing data. Its

access path expression is:

106

{ FilePath, ; (P d)]

where FilePath \ is for the current store, and d is the allocated depth of a stack.

Since the number of history versions o be maintained is predetermined, it is simple' to cluster all

versions belonging to a version set. Thus, the number of block accesses for retrieving » history versions is

just one. Storage utilization is % with the maximum of 100%, where is the update count. Increasing the

depth d enables a larger number of versions to be maintained, but storage utilization can be as low as %

The data being replaced by newer versions may not actually be lost, but can be archived to a lower level
storage. Another interesting possibility is to organize the current store as a shallow stack, a stack with a
small d, then store overflow data into the history store which may use any of the formats discussed in this

section,

5.2.6. Cellular Chaining

Cellular chaining is sMa to reverse chaining, but attempts to improve the performance by
collecting several versions into one cell. The current version initially has an extra field nvp (next version
pointer) of null. When the first version is inserted into the history store for a version set, a cell is allocated
with the size of ¢ 21 in the history store. The field #vp of the current version now points o the cell, and
subsequent versions will be put into the remaining space of the cell. If this space is filled up, another cell is

allocated and chained to the predecessor cell.

Its access path expression is:

[FilePath, ; (P {fl (8 ¢) (P o))

where » is the number of history versions, and ¢ is the cell size in records. Since the history store operates

in the append only mode, this scheme can use optical disks as well.

v 3
P - —am

o o -

197

e o W Gm ow mn e

Figure 5-14: Cellular Chaining (cell size ¢ = 3)

This can be regarded as a combination of reverse chaining and stacking, It also has the benefit of the

clustering scheme, in that the number of blocks to be accessed is reduced as many as ¢ times. The lower

Ed

b where b is the blocking factor

bound for the number of block accesses in retrieving » history versions is

of the history store. The upper bound for the same case is. -;1, where ¢ is the cell size of the history store,
Thus increasing the cell size ¢ improves the performance.

But a larger cell size tends to lower storage utilization. If the number of version sets are uniformly

distributed, expected storage gtilization can be calculated as:

E (Storage Ultilization) = (l+-2—+ +~':—)><l = «‘”—21 - £l
c ¢ c ¢ c 2¢

This shows that the average storage utilization is 100% for ¢ = 1, which is the same as reverse chaining,
ignoring the partially filled block at the end of the history store But the storage utilization falls to about
50% for a reasonably large c. It is possible to improve storage utilization by adjusting the cell size
dynamiéally. The size of the cell can be increased linearly, For example, the first cell of each version set
has the size of one, but each time a new cell is allocated for one version set, the cell size increases by one.

Or the cell size may be multiplied by some factor, whenever a new cell is allocated for one version set.

(

108

5.3. Secondary Indexing

Performance of queries retrieving records through non-key atiributes can he improved significantly
by secondary indexing. This section discusses the types and the structures of secondary indices for

databases with temporal support.

5.3.1. Types of Secondary Indices

For a snapshot relation, a secondary index is a set of <value, pointer> pairs, where value is a

- secondary key and pointer is the unique identifier or the address of the corresponding tuple. Since the
value is not expected to be unique, there may be several entries for a single value. There will be more
eniries for each value in a secondary index for a relation with temporal support, because it maintains
history versions in addition to current data. A typical query retrieves only a small subset of all the versions
for a given value, but temporal predicates to determine which versions satisfy the query can be evaluated
only after accessing the data themselves. The number of false hits can be reduced if some or all of
. temporal information is_ also maintained in a secondary index. Therefore, extension of the conventional

secondary index is desirable for each type of databases with temporal support.

For a rollback database, a secondary index itseif can be a rollback relation. augmented with attributes
transaction start and transaction stop. Then each index entry is a quadruple <value, pointer, transaction
start, transaction stop>. There is the overhead of 8 bytes for each entry, but the as of clause can be
evaluated from the information in the secondary index. Only the tuples satisfying the as of clause need
to be retrieved, significantly enhancing the performance. If the version sets are configuous or nearly
contiguous, storing only the transaction start attribute can save space without significant loss of
performance. The same argument applies to a historical database, when the valid clause is substituted
for the as of clause, and the attributes valid from and valid to are used instead of the attributes

transaction start and transaction stop.

For a temporal database, a secondary index may be a rollback relation, a historical relation, or 2
temporal relation itself. If the index is a rollback relation, the as of clause can be evalyated from the
information in the index. Then those versions that satisfy the as of clause are retrieved from the current

or the history store to resolve the valid predicate. If the index is a historical relation, those tuples that

S
_

—

109

fail the valid clause need not be accessed to resolve the as of predicate. If the index is itself a
temporal relation, each index entry is a sextuple <value, pointer, valid from, valid to,
trénsaction start, transaction stop>. There is the overhead of 16 bytes for each entry,
but temporal predicates of the valid and the as of clauses can be evaluated completely from the
information in the secondary index. It is also possible to store some subsets of the four time attributes, e.g.
valid from and transaction start, or only one of the two. Storing only a subset saves space, but the number

of false hits will increase.

Snapshot Rollback Historical Terporal
Snapshot Database v
Rollback Database ¥ ¥
Historical Database - ¥ v
Temporal Database v v v | R

Figure 5-15; Types of Secondary Indices for Edch Type of Databases

The type of secondary indices available for each type of databases is summarized in the Figure 5-15.
Deciding which type of seconcary index to use for a database with temporal support is a typical question of

space time tradeoff,

5.3.2. Structures of Secondary Indices

The size of databases with tecaporal support is monotonically increasing, and so is the size of
secondary indices for such databases. For a large rélation especially with temporal support, iis secondary
index becomes so large that it is important to design a suitable structure which can reduce the access cost
for the index. Any conventional storage structures such as heap, hashing, ISAM, etc. can be used, but care
should be taken for non-temporal queries so that the cost of using the index does not overwhelm the

savings achieved from the temporally partitioned store.

ii0

Instead of storing all index entries for all the versions into a single file, the index itself can be
maintained as a temporally pariitioned structure having the current index for current data and the Aistory
index for history data. The benefits of the temporally partitioned store considered for storing data similarly
apply to secondary indices with the temporally partitioned structure. By separating current entries from the
bulk of history eniries, the current index becomes smaller and more manageable, minimizing the overhead
of maintaining history versions on non-temporal queries. The history index can utilize any format
developed for the history store to enhance the performance of temporal queries. For example, the current
index may be hashed, while the history index is cellularly chained. Performance comparisons of various

structures for secondary indices will be given in Chapter 7.

5.4. Attribute Versioning

The discussion thus far has implicitly assumed tuple versioning which maintains multiple versions
for updated tuples. The other alternative is aitribute versioning to maintain versions for each attribute .

[Clifford & Tansel 1985, Gadia & Vaishnav 1985].

In tuple versioning, each tuple is augmented with time attribuies specifying the period while the tuple
is in effect. The number and kind of time attributes vary depending on the type of the relation, and whether
the relation models an interval or an event, For simplicity of presentation, we will denote the time
attributes as [time_from, time_to). When a tuple is first inserted, the fime_to component of the interval is
set to ‘e’, indicating that the wple is currently valid. A delete operation on an existing tuple changes
the time_to component of the tuple from ‘e’ to some ¢;. The value of ¢, is usually the current time, but it
can be specified explicitly by the delete statement for a historical database. Fora replace operation,
a new version of the tuple augmented with an appropriate interval is inserted after a virtual delete

operation is executed as above.,

For example, an Employee relation in a historical database may look like Figure 5-16, showing 4
versions for “‘John’” who received a series of promotions, and a version for ““Tom’’ who quit. An obvious
drawback with this approach is the high degree of redundancy owing to duplication of an entire tuple,

especially when the changed portion is relatively small compared with the unchanged portion.

111

Name | Title Salary || [4 om, time to
John | Programmer 25 [Jun 81, Sep 82) |
John Programmer 30 {Sep 82, Mar 83)
John Manager 30 [Mar 83, Dec 84)
John Manager 35 [Dec 84, oo}
Tom Programmer 27 [Sep 83, Jun 84)

Figure 5-16: A Relation in Tuple Versioning

In attribute versioning, an atiribute is either static or dynamic, depending on whether its value
changes over time. Static atiributes, e.g. Name in Figure 5-17, are constant and simple-valued. On the
other hand, each dynamic attributg of a tuple is a set of <value, interval> pairs, where handling of the
interval {time_from, time_to} is similar to tuple versioning except that the interval is associated with each
version of an attribute value. When a tuple is first appended, the time_to component of the interval for
each attribute value is set to ‘«’. A delete operation on an existing tuple changes the tfme_to
cbmponent for each of the current version of dynamic attributes in the tuple from ‘o’ to some ¢, as
descfibed for tuple versioning. Append and delete operate on the whole tuple, but the resolution of
feplace is the attribute. For a replace operation, new versions of the changed attributes are inserted
Qith the appropriate time attributes after the delete operation is executed on the affected attributes,
'Ehus a tuple iﬂ attribute versioning corresponds to a version set in tuple versioning. This reéults in a non
first normal form relation [Jaeschke & Schek 1982]. One restriction on attribute versioning is that the ti:he
interval associated with each attribute should be the same for all atf.ributes in a2 wple (homogeneity
requirement [Gadia & Vaishnav 1985]). The remainder of this section describes how to convert one form
to the other, compares storage requirements, and discusses how to support attribute versioning with the

temporally partitioned storage structure.

5.4.1. Conversion

Attribute versioning and tuple versioning are equivalent in terms of their information contents, which
can be proved by induction on the number of updates. Therefore, it is possible to derive one form from the
other. One can convert a relation in tuple versioning to one in attribute versioning by following the
description above for insert, delete and replace operations, Figure 5-17 is the result of

converting the relation in Figure 5-16 to attribute versioning.

112

Name Title Sal
John Programmer [Jun 81,Mar83) | 25 [Jun 81, Sep 82)
Manager [Mar 83, =) 30 [Sep 82, Dec 84)
35 [Dec 84, =)
Tom | Programmer [Sep83,Jun84) | 27 [Sep 83, Jun 84)

Figure 5-17: A Relation in Attribute Versioning

Conversion of a relation from attribute versioning to tuple versioning.can be formalized by two
operations, UNNEST and SY¥NCH, disregarding computational efficiency. The UNNEST operation was
first introduced by Jaeschke and Schek to transform a non first norma! form relation to a first normal form
reiation [Jaeschke & Schek 1982], and later adopted as the UNPACK operation for a historical relation
[Clifford & Tansel 1985, Ozsoyoglu et al. 1985]. Let r, (R) be a relation over scheme R in atiribute
versioning. Let P € R be a particular attribute, and Cp = R — {P} be the remaining attributes, Then the

UNNEST operation on the attribute P forr, is:

UNNESTp (r,)= i) (UNNEST, (roman {t })}

Ier,
where

{t} if P is static (simple-valued)
UNNEST» (=1 {1/ | ¢IP 1€ t [P IAL'ICp1 =1 [Cp]} otherwise

Note that the resuit of an UNNEST operation is a relation preserving the same relation scheme. Applying

the UNNEST operation to all attributes of a relation results in a relation in first normal form,

Name Title Salary |
John Programmer ~ [Jun 81, Mar83) | 25 [Jun 31, Sep 82)
3G [Sep 82, Dec 84)
) 35 [Dec 84,)
John Manager [Mar 83, o) 25 [Jun 81, Sep 82)
30 [Sep82,Dec 84)
35 [Dec 84, =)
Tom Programmer [Sep 83, «) 27 [Sep 83, ee)

Figure 5-18: Partial UNNEST’ing of A Relation with Atiribute Versions

For example, UNNEST y,,, (Employee) on the relation in Figure 5-17 returns the same relation, but

113

UNNEST 73, (UNNEST ,, (Employee)) results in the relation in Figure 5-18. Note that Figure 5-17

shows 2 tuples, one each for ‘“John’” and ‘“Tom’’, but Figure 5-18 shows 3 tuples, one more for ““John’’.

Repeating the UNNEST operation on each dynamic attribute of a relation results in a relation in first
normal form.- For example, UNNEST g, (UNNEST 53, (UNNEST .., (Employee))) obtains a fully

unnested relation as shown in Figure 5-19, which shows 7 tuples, four more for **John’’.

Name Title Salary

John Programmer {Jun 81, Mar83) | 25 T[Jun 21, Sep 82}
John Programmer [Jun81,Mar83) | 30 [Sep 82, Dec 84)
John Programmer [Jun81,Mar83) | 35 [Dec 84, =)

John Manager fMar 83, oo} 25 [Jun 81, Sep 82)
John Manager [Mar 83,) | 30 [Sep 82, Dec 84)
John Manager [Mar 83,) 35 [Dec 84, «)

Tom Programmer [Sep 83, Jun 84) 27 [Sep 83, Jun 84)

Figure 5-19: Full UNNEST’ing of the Relation in Figure 5-17

Another way to obtain a relation in first normal form is to apply, for each tuple, a series of cartesian
products of unary relations, each of which is an atribute of the tuple, Let £ € 74, A;jeR, a;=

{p | p=1t[A]}, 1<i<n, and n = Degree (R), then
UNNEST 4 (UNNEST,, -+ (UNNEST,_ (r,))..)

= J@1xa; - Xa,,)
ter

In order to obtain a relation in tuple versioning, the result of a series of UNNEST operations needs to
be processed by the SYNCH operation. The SYNéH operation on a tuple in the unnested form determines
the largest interval during which all the attribute values of the tuple are in effect. A tuple which gives the
null interval upon the SYNCH operation may be removed. Let ry be a relation unnested from r, in
attribute versioning, both over the same relation scheme R. Let further t€ 7y, A; € R, 1<i<nmn=
Degree (R), and t [A;] = <v;, [time_from time_to;)>. Then

[t _from,t_to) if t from<t_to
SYNCH (1) = { () : the null interval otherwise

where

1i4

t from =max (time_from;), 1<i <n

Lo =min(time_to;), 1<isn
Results of SYNCH operations on the first three rows in Figure 5-19 are [Jun 81, Sep 82), [Sep 82, Mar 83),
and the null interval (), respectively. By applying the SYNCH operation to each row of the unnested
relation, and removing tuples with null intervals, a relation in attribuie versioniﬁg can be transformed into

one in taple versioning as in Figure 5-16.

5.4.2, Storage Requirements

Though atiribute versioning avoids duplication of static data, there is additional overhead in
associating time information with each attribute and maintaining a list of versions for each atiribute. Given
L, : total size of static atributes
n4 : number of dynamic attributes
a, . average size of dynamic attributes
o, : size of overhead for each attribute version
or : size of overhead for each tuple version
¢ : average number of updates for each version set
o, : average number of attributes modified by an update operation
it is possible to calculate storage requirements for tuple versioning and attribute versioning, s and s,
respectively.
sp={t,+ng* az+or)* (c +1)
Sa=t+ng* (@y+o)+o*c* (a;+0,)
The number of updates for each version set to favor attribute versioning, ¢ *, is one to make s, smaller than
sr. Therefore,

nd* 04 — O

bst{ng—o)* ay+opr—-a* o,

Since each update modifies at least one atiribute (00> 1),

115

, ng* 0y ~op
I;‘*‘(ﬂd—l)* ﬂd+aT_0A

When or = 0,, which is often the case,

(ng-1)* o,
L g—1* ay

This result shows that ¢ * is proportional to o4, inversely proportional to a,, and relatively unaffected by

ny, which is somewhat surprising. If ¢ is O, or small compared with (n; — 1} * ay, ¢’ turns out to be

o
simply -c-;i. Note that o4 is fixed for a particular implementation, so the only variable is the average size
d

of dynamic attributes. In the special case of ny =1, ¢ * becomes 0, meaning that in this particular situation

attribute versioning always wins.

For example, if we have 1, = 12, a, = 8, and n, = 2, as in Figure 5-15, and assume 2 time attributes
of 4 bytes each with 2 bytes for linking overhead (04 = 10), then ¢ * > 0.5 updates per version set would

favor attribute versioning.

An advantage for databases in tuple versioning is that the relational theory developed for
conventional DBMS's can be utilized to some extent, as they are at least in first normal form. There has
been some effort to formalize the concepts and algebra for attribute versioning [Clifford & Tansel 1985,
Gadia & Vaishnav 1985, Gadia 1986, McKenzie 1986}, but further research is needed in various aspects of

query processing in such databases.

5.4.3. Temporally Partitioned Store

Now we look into the question of how to support attribute versioning in the temporally partitioned
storage structure to process TQuel queries efficiently. As shown in Figure 5-20, a relation in attribute
versioning can be conceptualized as a sparse matrix of nodes, each of which is an attribute version, There
are three types of links connecting nodes to one another:

t link : link between tuples

a link : link between attributes

v link : link between attribute versions.

116

Each of these links can be implemented either physically or virually. A physical link is a physical pointer
stored into a node. A virtual link is a conceptual link implied by physical contiguity, by physical
information such as lengths of tples and attributes, or even by a hash function. Note that the most current

tuple can be found by collecting the most current version from each atiribute,

aitr I attr 2 atir 3 attr 4

tuple 1

tuple 2

Figure 5-20: Attribute Versions

The formats of the history store discussed in Section 5.2 assumed tuple versioning, but most of them
are easily extendible to support atiribute versioning. Each tuple in the current store contains exactly one
current version for each member attribute. Thus, the ¢ link and the a link are virtual. Only the v link needs
to be maintained for each version of dynamic attributes in the history store. For reverse chaining, a field
nvp (next version pointer) is attached 1o each version of dynamic attributes, and a chain of versions is
maintained following similar procedures as described in Section 5.2.1 for tuple versioning. For clusiering,
versions for the same attribute, and then attributes for the same twple, are clustered together. For stacking,
space is reserved for a certain number of versions for each dynamic attributes, making the v link virtual,
For cellular chaining, each dynamic attribute maintains a chain of cells whose size is either fixed or
variable. For accession lists, however, each dynamic atiribuie in a tuple needs a separate list, which makes
management of those lists overly complicated, Indexing or secondary indexing on the history store is not

strictly applicable either, because indices need to be maintained for each version of an attribute, not for

117

each version of a tuple.

5.5, Summary
Section 5.2 investigated six structures for the history store, and Section 5.3 and 5.4 discussed related
issues such as secondary indexing and attribute versioning. Various characteristics of those six structures

for the history store are compared in Figure 5-21.

Structu Append- Attribute Block Accesses
e Only Versioning Lower Bound Upper Bound Average
Reverse Chaining v o % n See (1)
Accession Lists ¥ 2 n+l - See(2)
Indexing v I n See (2)
.. : n n n
Tuste L = 2z
Clustering | v b b b
Stacking + 1 1 1
' . .. n n
Cellular Chaining y v " = See (2)

Notes:
r : number of history verstons for the version set
b number of tuples in a block
¢ : number of tuples in a cell
(1) Given in Equation (5.1).
(2) Depending on the given temporal predicate.

Figure 5-21: Structures for the History Store

This table shows for éach format whether the format can be implemented as append only, and whether it
can support astribute versioning. The table also compares the lower bound, the upper bound, and the
average number of bloék accesses for each method, when there are n history versions for a versions set.
Reverse chaining was implemented to obtain performance dat.ﬁ for comparison with the analysis results, as

will be discussed in Chapter 7.

PART III

Benchmarks

A prototype tempofal database management system has been implemented by extending the snapshot
DBMS INGRES. Part three discusses the majbr features of the prototype and describes the results of the
benchmarks run on the prototype. In particular, Chapter 6 is on the prototype with conventional access
methods, and Chapter 7 is on the prototype with the new access methods discussed for the temporally

partitioned store in Chapter 5.

— e ——

Chapter 6

Prototype with Conventional Access Methods

A prototype temporal database management system was built by extending the snapshot DBMS
INGRES [Stonebraker et al. 1976]. It supports the temporal query language TQuel, described in Section
2.3, and handles all four types of databases: snapshot, rollback, historical and temporal. A set of queries
were run as a benchmark to study the performance of the prototype on the four types of databases using
conventional access methods, and to identify major factors affecting the performance of the prototype.

This chapter describes the major features of t_he prototype, and presents the results of the benchnﬁrk as

reported in {Ahn & Snodgrass 1986)..

6.1. Prototype

There are several approaches to implementing a database management system with temporal suppoft.‘
One initial stratégy would be to interpose a layer of code between the user and a conventional snaj)shot
database system. This layered approach has a significant advantage of not requiring any change to the
complex data structures and algorithms within the snapshot DBMS. However, the performance of such a
system will deteriorate rapidly not only for temporal queries but also for non-temporal queries, due to
peculiar charabterisﬁcs of databases with temporal support. There is also an overhead to translate, if
possible at all, a temporal query into an equivalent non-temporal quefy supported by the underlying
‘ snapshot DBMS.

An alternative is to integrate temporal éupport into the DBMS itself, developing new query
evaluation algorithms and access methods: to achie#e'reasonable. performance for a variety of temporal
queries, without penalizing conventional non-temporai queries. There are several issues tﬂat must be
addressed for tﬁis integrated approach, such as handling of ever-growing storage size, use of low cost high
capacity write-once storage, representation of temporal versions with little redundancy, and efficient access

methods for temporal and non-temporal queries [Ahn 1986]. This approach clearly involves substantial

122

research and implementation effort, yet holds promise for significant performance enhancement,

As an intermediate step towards a fully integrated system, a prototype temporal DBMS was built by
exiending the snapshot DBMS INGRES [Stonebraker et al. 1976]. Many routines in INGRES to parse,
decompose, and interpret queries were modified, and several routines were added for new temporal
constructs, but access methods available in INGRES were kept. Thus the performance of the prototype
was expected to be less than ideal, rapidly deteriorating for both temporal and non-temporal queries. But it
is still useful to identify problems with conventional access methods, and to suggest possible mechanisms
for addressing those problems. In addition, the prototype can serve as a comparison point for fully

integrated DBMS’s to be developed later.

The prototype supports all the augmented TQuel statements: retrieve, append, delete,
replace and create. Temporal clauses in TQuel, such as valid, when and as of, are fully

supported. The prototype also supports all four types of daiabases: snapshot, rollback, historical and

temporal.
Quel . text | parse_ . modified | Interpreter & | result
statements Monitor string Parser ree Decomposition parse tree | Access Methods ;

Figure 6-1: Intemal Structure of INGRES

Figure 6-1 shows the internal structure of INGRES, and also the structure of the prototype. To
handle temporal extensions in TQuel, the parser was modified so that it accepts TQuel statements and

generates an extended syntax tree with extra subtrees for temporal clauses valid and when.

retrieve (h.id, i.id)
valid from begin of (h overlap i) to end of (h extend i)
where h.id = 500 and i.amount = 73700
when h overlap i
as of "1981"

Fignre 6-2: A TQuel Query

123

For example, a sample query in Figure 6-2 inquires the state of a database as of 1981. Retrieved
tuples satisfy not only the where clause, but also the when clause specifying that the two tuples must
have coexisted at some moment. The valid clause specifies the values of the time attributes valid from

and valid to for result tuples,

The syntax tree for this query looks like Figure 6-3, where the left subtree denotes the target list, and
the right subtree represents the predicates when and where. However, the prototype does not supply

default values for the valid and when clauses if they are omitted in the retrieve statement.

(1o
(S (=
o .
' [iid | ' overlap “ [i 1id] °

][R]0 o [

Figure 6-3: A Syntax Tree

The retrieve statement uses the clause as of ¢, or as of t; through ¢, to specify
rollback operations for a rollback or a temporal database. The as of clause is not represented in the
syntax tree, but sets the external variables AsOf_start and AsOf_stop to the value of £,f and ¢,
respectively. The default value for AsOf_start is the current time, and the defauit for AsOf stopis
the value of AsOf start. These variables specify an interval on the axis of transaction time as
illustrated in Figure 3-2 and 3-6, and select tuples overlapping with the interval when a roilback or a

temporal relation is scanned to interpret the query.

124

As discussed in Section 5.1.2, data manipulation statements append, delete and replace
use the wvalid clause to specify the update interval. If the walid clause is omitted, the prototype
supplies the default valid f£rom "now" to "'f;:rever"., Though the formal semantics of the
append statement defined in [Snodgrass 1986] requires to check if there already exists a tuple identical in
the explicit atributes during the update interval, the prototype does not perform the integrity checking

presently.

For the delete or replace statement, there are six different cases depending on the relationship
between the base interval and the update interval (Figures 5-2 and 5-3). The prototype properly handies
the six different cases for the delete statement, using the function of snapshot replace to update time
atiributes appropriately for all types of relations. The replace statement is performed following the

delete and insert scheme, as described in Section 5.1.2.

TQuel does not use the as of ciause in modification statements such as append, delete, and
replace, but the prototype allowed the as of clause in those statements to specify values of the
transaction start and the transaction stop attributes in creating synthetic relations to be used for a

benchmark,

The cxreate statement in TQuel specifies the type of a relation, whether snapshot, rollback,
historical or temporal, and to distinguish between an interval and an event relation if the relation is
historical or temporal. This information on the temporal type of a relation can be represented in three bits.
The system relation was modified to store this information for each relation, and to perform appropriate

actions depending on the type of a relation in all phases of query processing.

A temporal variable in TQuel can be associated with an interval or an event relation. An interval
- relation contains two implicit time attributes valid from and valid to, while an event relation has only the
valid from attribute. To support temporal variables, the prototype added a new data type i_iime, which

consists of two time values for the attributes valid from and valid to. For an event variable, the value of the

valid to field is set to the value of the valid from field.

Time attributes, whether explicit or implicit, are assigned a distinct data type, TIME T. A time
value is represented internally as a 32 bit integer with the resolution of one second, but externally as 2

character siring. The prototype provides automatic conversion between the internal and the external

125

representations so that input and output operations can be performed in human readable form. For input,
the prototype accepts various formats of character strings commonly used to represent date and time, and
recognize values such a§ ‘now’, ‘forever’, and ‘oo’ (denoting ‘forever’). For output, it can express
time values with a resolution ranging from a second to a year, as selected by an option. The copy
statement was also modified to perform input aﬁd output operations in batch for relations having time

attributes, whether explicit or implicit, represented in various formats.

Some of the decomposition modules were changed. to handle the temporal constructs and implicit
time attributes. For example, it is necessary to include both time attributes valid from and valid to for a
historical or a temporal relation during one variable detachment operation [(Wong & Youssefi 1976],

though only one may be specified in the query itself.

TQuel has temporal operators begin of, end of, precede, overlap, and extend.
~ Functions to handle these operators were added in the one variable query processing ﬁortioh of the
sinterpreter. Temporal 6perators compose two types of temporal expressions, temporal con.érructor and the
' ‘temporal predicate. The range of the temporal constructor is an ihtervai of the 1 time typé, while the

range of the temporal predicate is a bdblean value. Instead of de_tennining whether a temporal expression
is of one type or the other, the prototype evaluates each expression for both cases, and uses the appropriate

value depending on the semantics of the expression.

INGRES provides access methods such as heap, hashing, ISAM, and indexing. In this chapter, the
prototype uses them without any modification. A new access method, reverse chaining discussed in

Chapter 3, was added to the prototype, as will be described in the next chapter.

One of the most important decisions was how to embed a four-dimensional temporal relation into a
two-dimensional snapshbt relation as supported by INGRES. There are at least five such embeddings
[Snddgrass 1986]. The prototype adopts the scheme of augmenting each tuple with two transaction time
attributes for a rollback and a temporal relation, and one or two valid fime attributes for a historical and 2

temporal relation depending on whether the relation models events or intervals.

For a rollback relation, an append operation inserts a tuple with the transaction start and the
transaction stop attributes set to the current time and ““forever’’ respectively. A delete operation on

a tuple simply changes the transaction stop attribute to the current time. A replace operation first

126

executes 2 delete operation, then inserts a new version with the transaction start attribute set to the
current time. A historical relation follows similar steps for append, deleteand replace operations
with the valid from and the valid to attributes as the counterparts of the transaction start and the transaction
stop attributes. Values of the valid from and the valid ic attributes are defaulted to the current time and

“forever’ respectively, but also can be specified by the walid clause.

For a temporal relation, an append operation inserts a tuple with the transaction start attribute of
the current time, and the transaction stop attribute of “‘forever’®. Attributes valid from and valid to are
set as specified by the valid clause, or defaulted if is is absent. A delete operation on a tuple sets the
ttansac&on stop attribute to the current time indicating that the tuple was virtually deleted from the relation.
Next a new version with the updated valid to atiribute is inserted indicating that the version has been valid
until that time. A replace operation first executes 2 delete operation as above, then appends a new
version marked with appropriate time attributes. Therefore, each xeplace operation in a temporal
relation inserts two new versions. This scheme has a high overhead in terms of space, but captures the
history of retroactive and proactive changes completely. In addition, all modification operations for
rollback and temporal relations in this scheme are append only, so write-once optical disks can be utilized.

A more detailed discussions of these operations can be found elsewhere [Snodgrass 1986].

The prototype was constructed in about 3 person-months over a period of a year; this figure does not -
include familiarization with the INGRES internals or with TQuel. About half the changes were
modifications, and the rest were additions. The source was increased by 2,900 lines, or about 4.9% of

INGRES version 7.10, which is approximately 58,800 lines long.

6.2. Benchmarking the Prototype

We define thé update count for .a tuple as the number of update operations on the tuple, and the
average update count for a relation as the average of the update counts over all tuples in the relation. We
hypothesized that, as the average update count increases, the performance of the prototype with
conventional access methods would deteriorate rapidly not only for temporal queries but also for non-
temporal ones. We postulated that major factors to affect the performance of a temporal DBMS were the

type of a database, the query type, the access methods, the loading factor, and the update count.

127

A benchmark was run to confirm these hypotheses in various situations, and to determine the rate of
performance degradation as the average updaté count increased. This section describes the details of the

benchmark, presents its results, and analyzes the performance data from the benchmark.

6.2.1. A Benchmark

We wanted to compare the performance of the four types of &atabases described in Chapter 3. For
each of the four types, we created two databases, one with a 100% loading factor and the other with a 50%
loading factor. As the sample commands for a temporal database in Figure 64 show, each database
contains. two relations, Type h and Type i, where Type is one of Snapshot, Rollback,

Historical, and Temporal,

create persistent interval Temporal_h
(id = 14, amount = i4, seg = i4, string = c96) _
modify Temporal h to hash on id where fillfactor = 100

create persistent interval Temporal i
(id = i4, amount = i4, seq = i4, string = c96)

modify Temporal i to isam on id where fillfactor = 100

Figure 6-4: Creating a Temporal Database

Type_h is stored in a hashed file, and Type_i is stored in an ISAM file. The loading factor of a file is

specified with the £illfactox parameter in a modify statement [Woodfill et al. 1981].

Each tuple has 108 bytes of data in four attributes: id, amount, seqand string. Id, a
four byte integer, is the key in both relations. The atributes Amount and string are randomly
generated as integers and strings respectively, and the éeq attribute is initialized as zero. In addition,
rollback and historical relations carry two time attributes, while temporal relations contain four time
attributes. The transaction .start and the valid from attributes are randomly initialized to values between
Jan. 1 and Feb. 15 in 1980, with the transaction stop and the valid to attributes set to ‘forever’

indicating that they are the current versions. The evolution of these relations will be described shortly.

Each relation is initialized to have 1024 tuples using a copy statement. The block size in the
prototype is 1024 bytes. With 100% loading, there are 9 tuples per block for snapshot relations, and 8

tuples per block for rollback,. historical, or temporal relations. Therefore, we need at least 114 blocks for

128

each snapshot relation, and 128 blocks for each of the others. The actual size depends on the database

type, the access method, the loading factor, and the average update count.

Q01
Q02

Q03
Q04

Q05

Q06

Qo7

Qo8

Q039

Qio

: retrieve (h.

range of h
range of i

retrieve (h.
retrieve (i.

retrieve (h.
retrieve (i.

is temporal h
is temporal i

id; h.seq)
id, i.seq)

id, h.seq)
id, i.seq)

id, h.seq)

where
where

as of
ag of

where

when h overlap "now"

/* hashed on id */
/* IsSaM on id */

500
500

h.id
i.id

"08:00 1/1/80"
"08:00 1/1/8¢0"

h.id = 500

retrieve (i.id, i.seq) where i.id = 500
when 1 overlap "now”
: retrieve (h.id, h.seq) where h.amount = §94G0
when h overlap "now®
retrieve (i.id, i.seq) where i.amount = 73700
when i owverlap "now"
: retrieve (h.id, i.id, i.amount) where h.id = i.amount
when h overxlap i and i overlap "now"
retrieve (i.id, h.id, h.amount) where i.id = h.amount

Qi1

Q12

Q13

014

Q15

Qle

: retrieve (h.

when - h overlap i and

h overlap "now"”

retrieve (h.id, h.seq, i.id, i.seq, i.amount)
valid from begin of h
wvhen begin of h precede i
as of "4:00 1/1i/80"
retrieve (h.id, h.seq, i.id, i.seq, i.amount)
valid from begin of (h overlap i) to end of (h extend i)
where h.id = 500 and

when h overlap i

as of

when

retrieve (h.

when

retrieve (h.

as of

retrieve (h.

when
as of

i'l'now“

id, h.seq) where
"1/1/82" precede
id, h.seq) where
"1/1/82" precede
id, h.seq) where
ll1/1/83”

id, h.seg) where

*1/1/82" precede

"1/1/83"

to end of 1

i.amount = 73700

h.id = 455
end of h
h.amount
end of h

10300

10300

It

h.amount

h.amount 10300

end of h

Figure 6-5: Benchmark Queries

129

Sixteen sample queries with varying characteristics comprise the benchmark as shown in Figuré 6-5.
These queries were chosen in an attempt to exercise the access methods available in INGRES, to isolate the
effects of various TQuel clauses, and to demonstrate the possibility of performance enhancement. .The
number of output tuples were kept constant regardless of the update count, except for queries Q01, Q02

and Q12.

QO1 retrieves all versions of a tuple (version scan) from a hashed file given akey. QO3 is érallback
‘query, applicable only to rollback and temporal databases, retrieving the state of a relation as of some
moment in the past. Q05 retrieves the most recent version from a hashed file given a key, while Q07
retrieves the most recent version from a hashed file through a non-key attribute, requiring a sequential
scanning of the whole file. Queries Q02, Q04, Q06 and Q08 are counterparts of Q01, Q03, Q05, and Q07
respectivély, where the even numbered queries access an ISAM file and the odd numbered access a hashed
file. Both Q09 and Q10 join current versions of two rélations; Q09 goes Lhrough the primary access path of

'a hashed file and Q10 goes through an ISAM file.

Queries QO0S through Q10 all refer to.onl'y the most recent versions. They are termed noﬁ-temporal
queries in the sénse that they retrieve the current state of a database as.if from a snapshdt data_Sase. Fora

. snapshot database, the when clause in these queries are neither necessary nor applicable. For a rollback
database, we use the as of clause instead of the when clause. Fpr example, when x overlap

"now™ will become as of "now".

Qllis a'query involving a temporal join, a join of two tuples based on temporal information. In this
query, the as of clause specifies the rollback operation shifting the reference point to a past mornent.
The when clause specifies a temporal relationship between two versions, where the value of the valid
from attribute in the version from Type_h relation is earlier than the corresponding value in the version
from Type_i relation. The walid clause specifies that the transaction start attribute of the result tuple be
set to the value of the transaction start atiribute in the vefsion from Type h relation, and that the
transaction stop attribute of the result tuple be set to the coneéponfling value in the version from. Type i
relation. Q12 contains all types of clauses in TQuel, inquiring the state of a database as of ‘now’ given
both temporal and non-temporal constrainté.' Obviously, Q11 and Q12 are relevant only for a temporal

database.

130

Queries Q13 through Q16 exercise various combinations of the when and the as of clauses.
Query Q13 retrieves tuples whose valid fo value is later than **1/1/82" through the hashed key. Query Q14
also retrieves tuples whose valid to value is later than *‘1/1/82”, but through a non-key attribute. Query
Q15 retrieves tuples from the Temporal_h relation as of **1/1/83" through a non-key attribute. Query

Q16 is similar to Q15, but also requires that the valid to value is later than *“1/1/82°.

These sixteen queries were run on each of eight test databases as described earlier; two databases,
with the loading factor of 100% and 50% respectively, for each of Snapshot, Rellback,
Historical, and Temporal. We focused solely on the number of disk accesses per query at a
granularity of a block, as this metric is highly correlated with both CPU time and response time. There are
a few pitfalls to be avoided with this metric. Disk accesses to system relations are relatively independent
of the database type or the characteristics of queries, but more dependent on how a particular DBMS
manages system relations. Also, the number of disk accesses varies greatly depending on the number of
internal buffers and the algorithm for buffer management, To eliminate such variables, which are outside
the scope of this research, we counted only disk accesses to user relations, and allocated only 1 buffer for
each user relation so that a block resides in main memory only until another block from the same relation is

brought in.

Once performance statistics were collected for ali the s#mpie queries, we simulated the uniformly
distributed evolution of each database by incrementing the value of seq attribute in each of the current
versions. The time attributes were appropriately changed for this replace operation using the default of
valid from "now" té "forever™ as described in Section 4. Thus a new version (two new
versions for temporal relations) of each tuple is inserted, and the average update count of the database is
incremented by one. Performance on the sample queries were measured after determining the size of each
relation appended with new versions. This process was repeated until the average update count reached 15,
which we believed high enough to show the relationship between the growth of I/O cost and the average

update count. The benchmark was run on a Vax 11/780, consuming approximately 20 hours of CPU time.

131

6.2.2. Performance Data

Space requirements for various databases were measured as the average update count ranged from 0
to 15. Figure 6-6 shows the data for the average update count of O and 14 along with the growth per
update. The table also shows the growth rate, obtained when dividing the growth per update by the size for

the update count of 0. These data were useful for analyzing the I/O costs measured in the benchmark.

Type Snapshot Rollback Historical Temporal
Loading 100% | 50% 100 % 50 % 100 % 50 % 100 % 56%
Relation H|T|H]|I H I H I H 1 H I H I H I

Size, UC=0 | 166{115{2571259 1291 129} 257 259 129} 129| 2571 259 1291 129 257; 259

Size, UC=14}| -| —| -] -{]1927| 1921|2048 2051 || 1927{ 1921| 2048] 2051 || 3717] 3713| 3830{ 3843
Gﬁ:ﬂé“ = =| -| ~{l1284|128.0/127.9(128.0 |[128.4|128.0(127.9(128.0 | |256.3{256.0|255.9]256.0
|- Growt - - -l -l i 1| os] os|l 1l il os| os| tes] 2 i
Rate
Notes :
Relation H is a hashed file, ‘UC’ denotes Update Count.
Relation I is an ISAM file, ‘—’ denotes not applicable.
Figure 6-6: Space Requirements (in Blocks)
From this table, we find that;

® The rollback and the historical databases have the same space requirements.

. The temporal database coﬁsumes the same amount of space as the rollback and the historical
databases for the update count of 0.

. The temporal database, following the embedding scheme described in Section 6.1, requires almost
twice the additional blocks as the.update count increases.

° The growth per update for a hashed file varies slightly due to key collisions in hashing,

Input costs for the sample queries on each database were measured as the average update count
increased from 0 to 15. Some queries also incurred output costs, which accounted for creating temporary

relations to store intermediate results. For example, queries Q09 and Q10 wrote out 56 blocks each, and

132

Q12 on the historical or the temporai database wrote 4 blocks. Output costs were constant for these queries
regardless of the update count, because the size of temporary relations were kept t.he same for the sample
queries. Since the output costs are negligible compared with the input costs, we concentrate on the analysis
of the input costs. Appendix C shows the measurement data from the benchmark for the rollback,
historical, and temporal databases, each with 100% and 50% loading. Figure 6-7 shows the input costs for

the temporal database with 100% loading.

Update | o1y b s | a5 | 6|7 8|olmwiul{n|n!ulis
Count
Qo1 | 3 sl 7 o 1| 13| 5| 17| 18| au| 23] 25| 29| 29|
Q2 || 2| 4 6 8| 10| 12| 14| 16| 18 20| 2 24| 26| 28 30| B

Qo3 129 387| 645| 9031 1153| 1411| 1669 1927 2177] 2435| 2693| 2951| 3201| 3459 3717] 3975
Qo4 128} 384| 640; 896 1152| 1408| 1664| 1920| 2175{ 2432| 2688| 2944] 3200| 3456| 3712] 3968
Q05 || L 3| S5 7 9 11 13} 13y 17} 190 21} 23, 251 271 29 31
Qo6 2 4 o 8 1wy 12| 14 16/ 18 20 22 24| 26 28 30 32
Qo7 129(387 645 903{ 1153 1411 1669| 1927| 2177| 2435] 2693{ 2051] 3201| 3459 3717 3975
Qo8 128(384 640; 896{ 1152| 1408| 1664 1920 2176] 2432 2688| 2944{ 3200(3456 3712} 3968
Q09 |1120013512|5816{8120}10386(12690|14994]17298}1956421868{24172(26476{28742(31046|33350{35654

Q11 385[1155(1925|2695| 3457| 4227(4997| 5767 6529 7299| 8060(8839| 9601[10371(11141(11911
Q12 131] 389{ 647| 905] 1163| 1421 1679 1937| 2195| 2453| 2711 2969| 3227{ 3485] 3743| 4001
Q13 i1 31 51 7 9 11 131 15 17} 19 21} 23| 251 27 29| 1
Qi4 129| 387 645| 9031 1153| 1411 1669] 1927 2177(2435 2693| 2951| 3201 3459 3717 3975
Q15 129; 387(645¢ 903| 1153] 1411| 1669 1927 2177{ 2435| 2693] 2951| 3201| 3459 3717 3975
Ql6 129} 387| 645} 903| 1153] 1411| 1669| 1927 2177| 2435| 2693| 2951| 3201} 3459| 3717| 3975

Figure 6-7: Input Costs for the Temporal Database with 100% Loading

Q10 [[2233{4539|6845{9151|11449{13755|16061{18367|20665][22971{25277|27583{29881(32187|34493|36799|

Similar tables, a total of 8, were obtained for each database of different types and loading factors.
We summarize the input costs for the sample queries on various databases with the average update count of

0 and 14 in Figure 6-8.

Figure 6-8 shows that the rollback and the historical databases exhibit similar performance, while the
temporal database is about twice more expensive than rollback and historical databases for the update
count of 14. If we draw a graph for the input costs shown in Figure 6-7, we get Figure 6-9 (a). Figure 6-9
{b) is a similar graph for the rollback database with 50% loading, showing jagged lines caused by the odd

numbered updates filling the space left over by the previous updates before adding overflow blocks.

o~

- e -

133

Historical

Type Snapshot Rollback Temporal
Loading 100% |50 % 10 % 50% 100 % 50% 100 % 50%
ucC juc ucC ucC uc uc Uc ucC
Query 0o | o 014]| 0] 14 0] 1410 14 0] 14| 0 14
Qo1 2 1 1l 150 1] s 1| 1s| 1f sl 1| 2 1 15
Qo2 2 3 2 16 3 10 2 16 3 10 2 30 3 17
Q03 - - 129 19274 257| 2048 - - - - 1291 3717| 257| 3839
Q04 - - 128 1920 256{ 2048 - - - - 128 3712} 256] 3840
Q05 2 1 1 15 H 8 1 15 1 8 1 29 1 15
Q06 2 3 2 16 3 10 2 16 3 16 2 30 3 17
Qo7 166 | 257 1291 1927 257} 2048 1291 1927| 257| 2048 129| 3717} 257| 3839
Qo8 114 | 256 128 1920(256| 2048 128} 1920(256) 2048 128| 3712| 256| 3840
Q09 1585 [1276 |[1141|17242{1271 10240 {1} 1197117298 1327]10296 || 1200{33350{1333119256
Q10 2214 3329 || 2177)18311{3329]12288 || 2233| 18367|3385| 12344 || 2233 (34493 |3385|21303
Q11 - - - - - - - - - - .| 38511141} 769|1151¢9
Q12 - |- -l -1~ - -l -1 -1~ 131] 3743] 259 3857
Q13 - | - - - 1= - 1l 15 1 8 1 29 1| 15
Ql4 - - - - - - 1291 1927| 257| 2048 129] 3717} 257| 3839
Q15 - - 1291 1927 257 2048 - - -~ - 129 3717 257| 3839
Ql6 - - - - - - - - - - 1291 3717| 257; 3839
Figure 6-8: Input Costs for Four Types of Databases
Input Input
Bl&:ks“ Q10 Blocks \
Qo
30000 15000
Qlo
20000 10000 Qs
Qit
10000 5000
Q03,47,8,12,14,15,16 Q34,7815
- JQOL25613 —’—".’_’/._’/_.qn,z,'s.s -
5 15 ve 5 15 uc

(2) Temporal Database with 100% Loading

(b) Rollback Database with 50% Loading

Figure 6-9: Graphs for Input Costs

134

6.2.3. Analysis of Performance Data

The graphs in Figure 6-9 show that input costs increase almost linearly with the update count, but
with varying slopes for different queries. A question is whether there are any particular relationships
independent of query types beiween the input cost and the average update count, and between the input
cost and the database type. To answer this question, we now analyze how each sample query is processed,

and identify the dominant operations which can characterize each query.

Though queries Q01 and QOS5 are functionally different from each other, one being the version
scanning and the other a non-temporal query, the prototype built with conventional access methods uses
the same mechanism to process them. Both queries are evaluated by accessing a hashed file given a key
(hashed access). Likewise, Q02 and QU6 requires the access to an ISAM file given a key (ISAM access).

Queries Q03, Q04, Q07 and QO8 ail need to scan a file, whether hashed or ISAM (sequential scanning).

Processing Q09 first scans an ISAM file sequentially doing selection and projection into a temporary
" relation (one variable detachment). It tl_:sen performs one hashed access for each of 1024 wples in the
temporary relation (tuple substitution). Here the dominant operation is the hashed access, repeated 1024
times. Q10 is similar to Q09 except that the roles of the hashed file and the ISAM file are reversed. Hence

the dominant operation for Q10 is the ISAM access.

Q11 is evaluated by sequentially scanning one file to find versions satisfying the as of clause. For
such a version, the other file is sequentially scanned for versions satisfying both the as of clanse and the
when clause. Here the dominant operation is the sequential scanning., Processing Qi2 requires a
sequential scanning and a hashed access to find versions satisfying the whexe clause, then joins them on
time attributes according to the when clause. Since the number of versions extracted for the join is small

enough to fit into one block each, the dominant operation is the sequential scanning.

Query Q13 is similar to queries Q01 and QOS5 in that it retrieves a record through the hashed key.
Queries Q14 through Q16 are similar to query Q07, which requires sequential scanning, though they have
different temporal predicates.

From this analysis, we can divide the input cost into the fixed cost and the variable cost. The fixed

cost is the portion which stays the same regardless of the update count. It accounts for traversing the

135

directory in the ISAM, or for creating and accessing a temporary relation whose size is independent of the
update count. On the other hand, the variable cost is the portion which increases with the update count. It
is the result of subtracting the fixed cost from the cost of a query on a database with no updaté. Operations
contributing to the variable cost will grow more expensive as the number of updates on the relation

increases.
Now we can define the growth rate of the input cost on a database with the update count of » as:

Cr— CO
(variable cost) X n

Growth Rate, =

where
C, = input cost for update count of n

Co = input cost for update count of 0

The growth rate is the key aspect of an implementation, characterizing the performance degradation as the

-update count increases. Clearly the ideal would be a growth rate close to 0.

Fixed costs, variable costs and growth rates for the sample queries on various 'types of databases
were calculated. The growth rate was relatively independent of the update count », as suggested by the
linearity df cost curves shown in Figure 6-9, Figure 6-10 shows fixed costs, variable costs, and growth
rates for the sample queries on the mllback and the tezﬁporal databases with the loading factor of 100% and
50% each. The historical database shows the same variable costs and the growth rates as the rollback
database, exéept for Q03, Q04, and Q15 which are not applicable to historical databases. But its fixed costs
are the same as the temporal database, except for Q03, Q04, Q11, Q12, Qi5, and Q16 which are not

applicable.

136

Type Rollback Temporal
Loading 100 % 50 % 10 % 50 %
Que Cost (in Blocks) |Growth| Cost (in Blocks) {Growth | | Cost (in Blocks) iGrowth| Cost (in Blocks) |Growth
Y |1 Fixed Variable | Rate |Fixed| Variable | Rate ||Fixed| Variable | Rate [Fixed| Variable | Rate
Qo1 0 1 1 o i 05 0 1 2 0 1 i
Q02 | 1 1 2 1 0.5 1 1 2 2 1 1
Q03 0 129 1 0 257 05 0 120 1.99 0 257 1
Q04 0 128 1 0 256 0.5 0 128 2] 256 i
Qo5 0 1 1 0 | 0.5 0 1 2] 1 1
Qo6 1 1 1 2 1) 1 1 p] 2 1 i
Q07 0 129 1 0 257 0.5 0 129 1.99 0 257 1
Qo8 0 128 1 0 256 0.5 0 128 | 2 0 256 1
Q09 0] 1141 1.01 0] 1271 0.5 56{ 1144 201 56| 1277 1
Q10 1024] 1153 1 20481 12381 0.5 10801 1153 2 2104{ 1281 1
Qi1 - - - - - - 0 385 2 0 769 1
Q12 - - - - - - 2 129 2 2 257 1
Q13 - - - - - - 0 i 2 0 1 1
Q14 - - - - - - 0 129 1.99 o 257 1
Q15 0 129 1 0 257 0.5 0 129 1.99 0 257 1
Qis - - - - - .- 0 129 1.99 0 257 1
Note :
! denotes rot applicable.

Figure 6-10: Fixed Costs, Variable Costs, and Growth Rates

Rather surprisingly, the growth rate turned out to be independent of the query type and the access
method as far as access methods of sequential scanning, hashing or ISAM are concerned. It was, however,
highly dependent on the database type and the loading factor. For example, the growth rates for operations
such as sequential scanning, haéhed access, and access of data blocks in ISAM are all 2.0 in case of the
temporal database with 100% loading. On the other hand, the growth rates for similar operations are

approximately 0.5 in case of the rollback or the historical database with 50% loading.

From these analyses, we can make several observations as far as access methods of sequential

scanning, hashing or ISAM are concerned.

. The fixed and the variable costs are dependent on the query type, the access method and the loading
factor, but relatively independent of the database type.

e The growth rate is approximately equal to the loading factor of relations for rollback or historical
databases,

@ The growth rate of input cost is approximately twice the loading factor of relations for temporal
databases.

137

. The growth rate is independent of the query type and the access method.

The fact that the growth rate can be determined given the database type and the lbading factor
without regard to the query type or the access method has a useful consequence. From the definition of the

growth rate, we can derive the following formula for the cost of a query when the update count is .

C, = Co+ (growth rate) X (variable costyx n
= (fixed cost)+ (variable cost)+ (growth rate) X (variable cdst) Xn

= (fixed cost) + (variable cost) x [1 + (growth rate}xn]

Therefore, when the cost of a query on a database with the update count of 0 is known and its fixed portion
is identified, it is possible to predict future performance of the query on the database when the update count
grows to n. Note that the fixed cost, and hence the variable cost, can even be counted automaticaily by the

system, except when the size of a temporary relation varies greatly depending on the update count.

6.2.4. Non-uniform Distribuation

Thus far, we have assumed uniform distribution of updates where each tuple will be tipdated an

‘equal number of times as the average update count increases. Since the assumption of uniform distribution
“may appear rather unrealistic, we also ran an experiment with a non-uniform distribution. To simulate a
maximum variance case, only 1 tuple was updated repeatedly to reach a certain average update count, We

measured performance of queries on the updated tuple and on any of remaining tuples, then averaged the

results weighted by the number of such tuples. Since it takes O (n2) block accesses to update a single

tuple for n times, owing to the overflow chain ever lengthening, we repeated the process only up to the

update count of 4, which was good enough to confirm our subsequent analysis,

Performance of a query is highly dependent upon whether the tuple participating in the query has an
overflow chain. We hypothesized that updatin.g tuples with a high variance would affect the growth rate
significantly, owing to the presence of long overflow chains for some tuples and the absence of such chains

for others. However, the growth rate averaged over all tuples turned out to remain the same as the uniform
distribution case. For example, if we update ore tuple in a temporal relation 1024 times, the average
update count becomes one, Fér a query like QO1, a hashed access to any tuple sharing the same block as

the changed tuple costs 257 block accesses, while a hashed access to any tuple residing on a block without

138

an overflow costs just one block access. Therefore, the average cost becomes three block accesses, the

same as the uniform distribution case.

We can extend this result to a more general case. If the number of primary blocks is x with 100%
loading, there will be approximately 2x overflow blocks for the average update count of one in a temporal
relation. Let y be the number of primary blocks which have overflow blocks, and z be the number of

primary blocks which do not have an overflow, then y + z =x. Since the average length of overflow

chains is % blocks, the average cost of a hashed access to such a relation will be:

yx(%+l)+z x1

Y Z Ytz _ 4
y+z x ¥ x
showing the same result as the more restricted case discussed above.

This reasoning can be generalized for other database types, access methods, loading factors, query
types, and update counts in a similar fashion. Now one more observation about the growth rate can be

added:
® The growth rate is independent of the distribution of updated tuples.

We conclude that the results from the benchmark we ran under the assumption of uniform distribution are

still valid for any other distribution.

6.3. Analysis from Models

The sample queries in Figure 6-5 were also analyzed using the four models discussed in Chapter 4.
Full description of the analysis results is given in Appendix D, and Figure 6-11 shows the summary of the

input costs for each type of databases with the update count of 0 and 14.

139

Type Snapshot : Rollback Historical Temporal
Loading 100 %| 50 % 100 % 50% 100 % 50% 100 % 50%
Quefy uciuc ucC ucC uc uc ucC uc
- 0 0 0 14 0 14 0 14 0 14 0 14 0 14
Q01 1 1 1 15 1 8 1 15 1 8 1 29 1 15
Qo2 2 3 2 16 3 10 2 i6 3 10 2 300 3 17
Q03 - - 1287 1920| 256| 2048 - - - - 128 3712| 256| 3840
Q04 - - 128| 19204 256 2048 - - - - 1281 3712| 2561 3840
Q05 1 1 1 15 1 8 1 15 1 8 1 29 1 15
Q08 2 3 2| 16 31 w0l 2| 16 3] 10 21 30 3/
Qo7 114 1 228 128} 1920| 256 2048 128] 1920] 256 2048 128| 3712| 256| 3840
QOB 114 | 228 128 1920 256] 2048 128} 1920| 256| 2048 128 3712 256| 3840
Q09 1194 {1308 [1152{17280(1280(10240 || 1208]|17336]1336{10296 || 120833464 1336] 19256
Qio0 2218 | 3356 |1 2176183043328 12288 || 2232118360(3384 | 12344 || 2232344383384 21304
Qi1 - - - - - - - - - - 384111136 768}11520
Q12 - - - - - - - - - [- 131 3743| 259| 3857
QI3 - - - - - - 1 15 1 8 1 29 1 15
Qi4 - - - - - - 128(1920] 256{ 2048 128} 3712| 256 3840
Q15 - - 128] 1920] 256| 2048 - - - - 128| 3712(256] 3840
Ql6 - |- - - -] = - - - - 1287 3712| 256] 3840
Notes :
‘UC* denotes Update Count. = denotes not applicable.

Figure 6-11: Analysis Results using Performance Models

To compare the analysis results (Figure 6-11) with the meésurement data from the benchmark

(Figure 6-8), we calculate the error rate as:

a—

Error Raie = bb X 100 %

where
= cost estimated from the analysis

b = cost measured from the benchmark

Figure 6-12 shows the emor rate for each data point. It shows that error rates are generally within
about 1% for the roilback, historical, and temporal databases. Interestingly, the biggest errors are found for
the snapshot database. The reason is that a snapshot relation with 100% loading can hold 9 tuples,
compared with 8 tuples for other types of relations, but the larger number of tuples per block caused extra
key collisions due to imperfect nature of the hash function used for hashing. For eiample, a snapshot

refation which can hold 9 tuples per block consumed 166 blocks for 1024 tuples, not 114 tuples as expected

140

for a perfect hashing [Sprugnoli 1977]. As a result, query Q07 costs 166 blocks accesses to scan a hashed
relation, and query QO1 costs two block accesses, not one as expected for hashing, to retrieve a tuple
through a hashed key. The unpredictability of key collisions is less visible for other types of relations,
which hold a smaller number of tuples per block to incorporate time attributes, but it still contributes to

discrepancies between the analysis results and the measurement data.

Type Snapshot Rollback Historical ' Temporal
Loading 100% | 50% 100 % 6% 100 % 50 % 100 % 50%
Query uc {UC ucC ucC UcC uc uc ucC
0 0 0|14 0 [14 O [14) 014 0|14 01414
Qo1 -50 0 60|l o0ojo0]oO gl 0] oto ¢y 0501 0
Q02 o 0 61 0] 010 001 0}0 0]l o0oj o] o0
Q03 - - 4] 0. -0.]0 -l -f~-1|- -} -0.] -0.] +0.
Q04 - - ofojolo -1 -1-1- ol ool o
Q05 =50 0 0|0} G0 ol 0] 01io0 0| 0] 0| 0
Q06] 0 6loejofo0 ol 0j0}o0 0| 0| 0| 0
Q07 -31. | -1 -1.p 0. -0.] © -1.] 0.{-0.| 0 -1 -0 -0, +0.
Qo8 0 -11. 0] 0] 00 0|l o0joO0jfoO 0] 0] 0} 0
Q9 -25, +3. +L|40.]+] O +1 140, | +1.| O +L | +0. [+0.] ©
Q10 -0, +1. 0.1 0] -0{0 0.1 -0.]-0.10 0.1 -0.| -0.] +0
Ql1 - - - | =] ~-1-= -l -1-1- A -0.{-0.]+0
Q12 - - -l -] -1- - =-1-1- ¢l 0fj0] 0
Q13 - - -t =-|-1- ol o0y ojo0 61 06} 0} 0
Qi4 - - - =-1-1- -1.j 0.1 -0.1 0 -1} 0. 0. +0
Q15 - - -] -6 0.1 0 -l -1 =1]- -l <00 00| +0.
Qls - - -1 -1-1- -]1-1-1- - 0. -0.] +0.
Notes :

‘UC" denotes Update Count. = denotes not applicable.

0’ denotes the true zero, ‘+0. denotes a small positive fraction.

0. denotes a small negative fraciion.

Figure 6-12: Error Rates in the Analysis Results

We also measured the elapsed time to process the sample querieé on the prototype. Figure 6-13
compares the measurement data with the time e.stimated from the analysis described in Appendix D. This
table shows that the differences between the measurement and the estimation is mostly 10 to 20%. There
are many factors to affect the elapsed time to process a query, other than input and output costs. Examples
are the CPU speed, machine load, scheduling policy, buffer management algorithms, etc. Though we

analyzed only input and output costs in this research, we could still estimate the elapsed time rather closely.

141

Update Count = 0 Update Count == 14

Query Measured Estimated Measured Estimated
Qo 448 1 36.5 1277 1001
Q10 61.2 68.5 _ 1187 1031
Q11 7.8 7.1 140 205
Q12 4.0 2.5 62 69.2

Figure 6-13: Elapsed Time (in sec)

6.4. Summary

A prototype of a temporal database management system was built by extending the snapshot DBMS
INGRES. It supports the temporal query language TQuel, a superset of Quel, and handles all four types of
databases: snapshot, rollback, historical and temporal, A benchmark with sixteen sample queries was run
to study the performance of the prototype on the four types of databases with two Ioading.factors. We
analyzed the resuits of the benchmark, determined the fixed cost and the variable cost for each query; and
identified major factors that have the greatest impact on the performance of the system. We also found that
thé ‘growth rate can be determined by the database type and the loading factor, regardless of the query type,
the access method, or even the distribution of updated tuples, as far as the access methods of sequential
scanning, hashing or ISAM are concerned. A formula was obtained to estimate the cost of a query on a
database with multiple temporal versions, when the cost of a query on the database with a single version is

known and its fixed portion is identified.

Input and output costs of the sample queries were also analyzed using the four models discussed in
Chapter 4. Estimated costs from the analysis were compared with the measurement data from the
benchmark, which showed that the cost of a query in terms of block accesses can be estimated quite
accurately (generally within about 1 %) using the four models. The elapsed time to process' a query,

estimated using the models, was within about 10 to 20% of the measurement data,

Chapter 7

Temporally Partitioned Store

As the results of the benchmark discussed in Chapter 6 indicate, sequential scanning is expensive.
Access methods such as hashing and ISAM also suffer from rapid performance degradation due te ever-
growing overflow chains. Reorganization does not help to shorten overflow chains, because all versions of

a version set share the same key,

A lower loading factor results in a lower growth rate, by reducing the number of overflow blocks in
hashing and ISAM. Hence better performance is achieved with a lower loading factor when the update
count is high. But there is an overhead for maintaining a lower loading factor both in space and
performance wheﬁ the update count is low. A lower loading factor requires more space for primary blocks.
Scanning such a file sequentially (e.g. for query Q07 or Q08 in Chapter 6) is more expensive than scanning
a file with a higher loading factor. For ISAM, a lower loading factor requires more directory blocks, which
may increase the height of the directory. As shown in Figuie 6-8 of the previoﬁs chapter, for example,
quety Q10 on the temporal database with the update count of 0 reads in 3385 blocks for 50% loading,
significantly higher than 2233 blocks for 100% loading.

We conclude that access methods such as sequential scanning, hashing, or ISAM are not suitable for
a database with temporal support. There are other access methods that adapt to dynamic growth better
such as B-trees [Bayer & McCreight 1972], virtual hashing [Litwin 1978], linear hashing [Litwin 1980],
dynanﬁc hashing [Larson 1978], extendible hashing [Fagin et al. 1979], K-D-B trees [Robinson 1981], or
gridr files [Nievergelt et al. 1984], but they also have various problems as indicated in Section 1.2.2.
Therefore, new access methods tailored to the particular characteristics of database management systems
with temporal support need to be developed to provide fast response for a wide range of temporal queries

without penalizing conventional non-temporal queries.

Our solution is the temporally partitioned storage structure discussed in Chapter 5, with various

formats for the history store, such as reverse chaining, accession lists, indexing, clustering, stacking, and

144

cellular chaining. This chapter describes how the temporally partitioned storage structure was
implemented into the prototype, and discusses the performance improvement achieved for the prototype by

using the various methods developed in Chapter 5. Issues on secondary indexing will also be discussed.

7.1. Implementation of the Temporally Partitioned Store

The prototype described in Section 6.1 supported TQuel and all four types of databases, yet used the
conventional access methods available in INGRES. To improve its performance, reverse chaining, among

the temporally partitioned storage structures, was subsequently added to the prototype.

The default storage format of a relation in INGRES, and hence in the prototype, is a heap. The
modify statément in Quel converts the storage structure of a relation from one format to another. Major

storage options available in INGRES are:

heap : for a sequential file
hash : for a hashed file
isam : for an ISAM file

For example, 2 statement in Figure 6-4

modify Temporal h to hash on id where fillfactoxr = 100

converted the Temporal_h relation to a hashed file with the loading factor of 100%.

New options were added to the modify statement to specify the format of the history store for the

temporally partitioned storage structuse. They are;

chain : for reverse chaining
accessionlist : for accession lists
index : for indexing
cluster : for clustering
stack | : for stacking
cellular : for cellular chaining

For example, the statement

145

modify Temporal h to chain on id

changeé the Temporal h relation to the temporally partitioned store, if it is not already in such a
structure, The history store uses reverse chaining with the id attribute as the key, while the current store |

maintains the previous format,

Though the f£illfactox parameter is not relevant for the history store considered here, some
formats require additional parameters. Accession lists and indexing have the parameter time to. specify
the amount of temporal information to be maintained in accession lists or index entries. Allowed values for
the time parameter are all to maintain information on all the time attributes, or a list of time attributes
. such as valid from, valid to, transaction start, and transaction stop. For
- example, we use the following statement to change the history store to the format of accession lists with all

the time attributes:

modify Temporal h to accessionlist on id where time = {(all)

Stacking and cellular chaining have the parameter cellsize to specify the stacking depth or the size of
a cell. To change the history store to the format of cellular chaining with up to four tuples in each cell, we

use the statement:

modify Temporal h to cellular on id where cellsize = 4

Issuing another modify statement with one of the options heap, hash, or isam will change
the format of the current store accordingly, but the history store will be unaffected. The option single
was also added to bonvert a relation from the temporally partitioned structure to the single file structure.
Therefore, we can specify that the stricture of a relation be changed from a single file to another single file
structure, from a single file structure to a temporally partitioned store, from a temporally partitioned store
to another temporally partitioned store, or from a temporally partitioned to a single file structure. In this
process, we can change the formats of the current and the history store independently of each other.

Complete syntax of the extended modify statement is given in Appendix A,

146

The system relation was modified to maintain information on the structure of each relation: whether
a relation is of the temporally partitioned structure, and if so, what format is used for the history store, A
mlaﬁon with the temporally partitioned storage structure consists of two physical files, when indices, if
any, are not counted: one for the current store and the other for the history store. Opening or closing a
relation opens or closes both files together. When a relation is accessed, it is necessary to track the current

position for each file.

We can determine at compile time if a query is non-temporal. For a rollback database, a query is
non-temporal if it has the clause as of "now". For a historical database, a query is non-temporal if it
has the clause when (7, overlap.. overlap) overlap "now" for all the range variables r;.
For a temporal database, a query is non-temporal if it has the clause when (f; overlap.. overlap
;) ovarlap "now" for ail the range variables t,f; and the clause as of "now™. For a non-temporal
or current query, the query is evaluated by consulting only the current store without going through the

history store, using the conventional access methods provided by INGRES.

For the delete or the replace statement on a rollback database, there is only one case to be
examined for the relﬁtionship between the base interval and the uﬁdate interval. For the delete or the
replace statement on a historical or a temporal database, there are four cases to be examined, ignoring
two null cases, for the relationships between the base interval and the update interval as discussed in
Section 5.1.2. In the prototype described in Section 6.1, the replace operation was performed by

following the delete and append scheme, because this scheme was simple to implement for all cases.

However, the delete and append scheme was found to be inapplicable to the temporally partitioned
store, because the base tuple remains in its place, while the newer version is put into a different location,
Thus, the system was changed to follow the append and change scheme as discussed in Section 5.1.2. We
had to examine each case of the relationships between the base interval and the update interval carefully to
determine the proper location of the current version, and to maintain a history chain, whether explicit or
not, for each version set. Maintaining a chain of history versions for each version set is more complicated
for a temporal database, since each replace inserts at least two versions. We ordered versions affected
in each update in reverse order of valid from time, then in reverse order of transaction start time. Thus, we

can retrieve recent versions more quickly, especially for queries with the default clause as of "now™.

147

Accessing a relation with the single file structure involves two steps: one for the main block and the
other for overflow blocks. Accessing a relation with the temporally partitioned structure involves another
step: following the history chain, whether explicit or implicit. Hence we need to maintain global
information on which store provides the tuple being processed now and the tuple to be retrieved next.
Algorithms to handle the delete and the replace statements on different types of relations are given
in Appendix E.

For simplicity, the split criterion adopted in imﬁlem.enting the temporally partitioned store was:

s The current store contains current versions, while the history store holds history versions.

® Deleted tuples are kept in the current store.

® Versions to be expired, discussed in Section 5.1.3, are kept in the current store until a new version is
inserted.

. Future versions are stored in the current store.

At present, the structure of reverse chaining has been actually implemented. The prototype’s parser accepts

the full BNF syntax, but the remaining components do not support the other options.

7.2. Performance Analysis

This section discusses performance improvement achieved for the prototype by using the various
access methods developed in Chapter 5. Performance figures were obtained through performance analysis,
as described in Appendix F using the models in Chapter 4. The figures for reverse chaining were also

compared with the measurement data from the actual implementation to check its validity.

We studied the performance of the access methods on both rollback and temporal databases. We
assume_that accession lists and indexing maintain complete temporal information, both transaction time
and valid time as appropriate, separate from history data. The index itself is assumed to be a hashed file,
but note that indexing restricts the format of the current store to indexing, as discussed in Section 5.2.3.

We also assume that the depth for stacking is four, and the cell size for cellular chaining is four,

As for clustering, we use the method of nonlinear hashing, The average storage utilization for
nonlinear hashing is 69.3 %, as discussed in Section 5.2.4.2. However, databases considered in this

analysis have high update counts, so each version set consists of more versions than a block can hold.

148

When a block gets full with versions belonging to a single version set, we need to maintain a chain of

overflow blocks. As a result, storage utilization becomes 100% ignoring the Iast block of each chain.

7.2.1. Performance on a Rollback Database

Space requirements when the update count is 0 or 14 are shown in Figure 7-1 for the Rollback h
relation in hashing with 100% loading, and for the same relation with various formats of the temporally
partitioned structure. Space requirements for the Rollback_i relation are similar to the Rollback h
relation except that the ISAM file requires additional space for direciories. The table also shows the

growth rate, which is obtained when the growth per update is divided by the size for the update count of 0.

Hashing {| Reverse | Accession . . . Cellplar

Type (100%) || Chaining | Lists Indexing | Clustering | Stacking Chaining

Size, UC=0 129 129 129 133 126 129 129

Size, UC=14 1927 1921 1922 1982 1921 (641) 2177
Growth per |

Update 1284 128 128.1 128 128 (36.6) 146.3

Growth
Rate 1.0 1.0 10 i.0 1.0 (0.28) 1.13
Notes :

‘UC" denotes Update Count.
‘(ny’ denotes that only a partial history is stored.

Figure 7-1: Space Requirements for the Rollback_h Relation

From this table, we can make the following observations on the storage requirements of a iollback

 relation with the temporally partitioned storage structure:

. The temporally partitioned storage structures have the same space requirements as the single file
structure when the update count is 0.

® When the update count is not 0, space requirements for reverse chaining, accession lists, indexing,
and clustering are about the same.

149

. When the update count is not 0, space requirements for cellular chaining is larger than the other
- formats due to unfilled cells.

d When the update count is not 0, storage size for stacking remains the same, but older versions are
lost due to stack overflows.

Figure 7-2 shows the input costs for the benchmark queries of Figure 6.5 on the rollback database
with 100 % loading. Two columns under the label Conventional show the queries costs for the updaie
count of 0 and 14. Then there are six columns to show the costs of queries for the update count of 14 for
each format of the history store: reverse chaining, accession lists, indéxing. clustering, stacking, and
cellular chaining. When the update count is 0, the cost for any of the temporally partitioned structures is

the same as the cost for the conventional case.

Conventional - Temporally Partitioned Store for Update Count = 14
Query || Update Count Reverse | Accession . . . Cellular

0 14 || Chaining | Lists | Indexing | Clustering | Stacking | oy inin,
Qo1 1 15 15 16 16 3 (VA 5
Q02 2 16 16 17 16 4 3 | 6
Qo3 129 1927 129 334 280 129 X 129
Qo4 128 1920 128 333 280 128 "X 128
Q05 1 15 1 1 2 . 1 1 1
Qo6 2 16 2 2 2 2 2 2
Qo7 129 . 1927 129 129 129 129 129 129
Q08 128 1920 128 128 128 128 128 128
Q09 .|[1141 17242 1141 1141 - 2162 | 1141 1141 1141
Q10 {2177 18311 2177 2177 2162 2177 2177 2177
Q15 129 3717 129 129 129 129 X 129

X denotes not applicable.
‘(n)’ denotes that only a partial answer is retrieved.

Figure 7-2: The Rollback Database with 100% Loading

The advantage of the temporally partitioned store is evident in processing cutrent queries such as
Q05 through Q10. No matter what format is used for the history store, the cost remains constant for any
update count. For e#ample, Q10 on the rollback database costs 2177 blocks instead of 18311 blocks when
the update count is 14, Query QOS5 for indexing costs two block accesses, one more than the other formats,
because the current store is also restricted to indexing, while the other formats allow hashing for the current

store,

150

The. performance of temporal queries like Q01 and Q02 can be improved by clustering, which
collects history versions of each version set into a minimum number of blocks. Since there are 14 history

versions for the update count of 14, and each block holds up to 8 tuples according to the assumption in

Chapter 6, scanning all history versions for a version set costs two block accesses. Counting the cost to-

locate the current version in the current store, Q01 costs three block accesses, and QU2 cosis four block

accesses.

Cellular chaining also provides the benefit of clustering to a certain degree. It takes four cells to
hold 14 history versions with the cell size of four according to the assumption. Hence, QO1 costs five block

accesses, and Q02 costs six block accesses.

By stacking, we can retrieve history versions for each version set at the cost of one block access, but
only a limited number of the most recent versions are maintained. Thus, Q01 costs two block accesses, and
Q02 costs three block accesses, but those figures are put in parentheses io dgnote that the answers are only
partial. Note that stacking cannot answer queries Q03 and Q04 inquiring the old status of the database,

because older versions of history data were discarded due to stack overflow.

Accession lists or indexing with temporal information in each accession list or an index entty can
facilitate temporal queries Q03 and Q04 by evaluating the temporal predicate without accessing history
data. If we assume that accession lists maintain compiete temporal information for the time attributes
transaction start and fransaction stop, each entry consumes 12 bytes for two time atiributes and a pointer to
a history version, thus 72 entries are contained in each block of 1024 bytes allowing for some overhead.
Since there are 14 history versions times 1024 version sets for the update count of 14, the size of the entire
accession lists is 200 blocks. Scanning the current store and the accession lists for the Temporal_h
relation, entries satisfying the as of clause are extracted. If we assume that the number of such entries
is five, the total cost for Q03 is 334 block accesses (= 129 + 200 + 5). Likewise, the cost for Q04 is 333

block accesses (= 128 + 200 + 5).

Similar improvement is also achieved by indexing, where each index entry maintains complete
temporal information for transaction time. Since each entry with two time attributes plus 2 key and a
pointer takes 16 bytes, and there are 15 versions times 1024 version sets for the npdate count of 14, the size

of the entire index is 275 blocks. We need not scan the current store in indexing, so entries séﬁsfying the

151

as of clause are extracted while canning the index for the Temporal_h relation. Under similar
a#sumptions to the case of accession lists above, the total cost for Q03 or Q04 is 280 block accesses (= 275
+35).

The same arguments apply to the historical database with 100% loading, except that queries Q03 and
Q04 are not applicable to a lﬂsmﬁcal database. The costs for queries Q09 and Q10 are higher by 56 block
accesses each on the historical database than on the rollback database, because one varigble detachment
operation is performed to evaluate the when clause for the queries Q09 and Q10, apparently without any

benefit.

7.2.2. Performance on a Temporal Database

Space requirements when the update count is 0 or 14 are shown in Figure 7-3 for the Temporal h
relation in hashing with 100% lloading, and for the same relation with various formats of the temporally
partitioned structure.” Space requirements for the Temporal i relation are similar to the Temporal h
relation except that the ISAM file requires additional space for directories. The table also shows the

growth rate, which is obtained when the growth per update is divided by the size for the update count of 0.

From Figure 7-3, we can make the following observations on the storage requirements of a temporal

relation with the temporally partitioned storage structure:

. The temporally partitioned storage structures consume slightly more space than the single file
structure when the update count is 0, due to extra space for a physical link to the history chain.

. The temporally partitioned storage structures consume more space than the single file structure when
the update count is not 0, due to extra space for maintenance of chaining, indexing or accession lists.

e When the update count is not 0, space requirements for reverse chaining, accession lists, indexing,
and clustering are about the same,

. When the update count is not 0, space requirements for cellular chaining can be larger than the other
' formats if there are unfilled cells. :

. When the update count is not 0, storage size for stacking remains the same, but older versions are
lost due to stack overflows.

152

Hashing || Reverse | Accession . . . Cellular

Type (100%) || Chaining | Lists | 0dexing | Clustering | Stacking | o~ o0

Size, UC=0 129 147 147 141 147 147 147

Size, UC=14 3717 4243 3957 4082 4243 (733) 4243

Growth per 256.3 292.6 272.1 281.5 292.6 (41.9) 292.6
Update

Growth
Rate 1.99 1.99 1.85 2.0 1.99 (0.28) 1.99
Notes :
‘UC* denotes Update Count.

G(H)’

denotes that only a partial history is stored.

Figure 7-3: Space Requirements for the Temporal h Relation

Compared with the table in Figure 7-1, we find that:

s When the update count is 0 with the temporally partitioned storage structure, a temporal relation can
consume more space than a corresponding rollback relation due to additional time attributes.

® When the update count is not O with the temporally partitioned storage structure, a temporal relation
consumes about twice the space of a corresponding rollback relation, because each replace

operation inserts two new versions.

Figure 7-4 shows the input costs for the temporal database with 100% loading, We make the same

assumptions as those for the rollback database in Figure 7-2, except that accession lists and indexing also

maintains information on valid time as well as tfransaction time. The discussion concerning queries Q01

through Q10 on the rollback database with 100% loading similarly applies to those queries on the temporal

database with 100% loading.

Performance improvement with the temporally partitioned storage structure is even striking for the

temporal database. For queries QO5 through Q10 on any temporafly partitioned structure other than

indexing, the cost remains constant regardless of the update count. For example, Q10 on the temporal

database costs 2251 blocks instead of 34493 blocks when the update count is 14. Note, however, that the

costs of queries QO7 through Q10 on a temporally partitioned structure are slightly higher than the

corresponding costs on a conventional structure with the update count of 0, because the size of the current

153

store is bigger than the conventional structure with the update count of 0. As for query Q09 or Q10 on the
temporal database with indexing, we need to scan the index and the current store of the Temporal i
relation, then repeatedly access the Temporal h relation through the index. The resulting cost is

significantly higher than other formats, but is still lower than the conventional case.

Conventional Temporally Partitioned Store for Update Count = 14
Query Update Count Reverse | Accession . . . Cellular
0 14 Chaining | Lists Indexing | Clustering | Stacking Chaining
Qo1 1 29 29 30 . 30 5 2) 8
Q02 2 - 30 30 31 30 6 3) 9
Qo3 129 3717 4243 776 787 4243 X 4243
Qo4 128 3712 4243 776 787 4243 X 4243
Qo5 1 29 1 1 2 1 1 1
Qo6 2 30 2 2 2 2 2 2
Q07 129 3717 147 147 141 147 147 147
Qo8 128 3712 147 147 141 147 147 147
Q09 |]1200 33350 1227 1227 2218 1227 1227 1227
Q10112233 344903 2251 2251 2218 2251 2251 2251
Qi1 385 11141 12729 2317 2350 12729 X 12729
Q12 131 3743 4274 3989 4114 4250 (737) 4253
Q13 1 29 29 8 8 5 X 8
Ql4 129 3717 4243 3557 - 4082 4243 X 4243
Q15 || 129 3717 4243 3957 4082 4243 X 4243
Q16 }| 129 3717 4243 3957 4082 4243 X 4243
Notes :

‘X denotes not applicable.
‘(n)’ denotes that only a partial answer is retrieved.

Figure 7-4: The Temporal Database with 100% Loading

As for query Q11 which requires a joirn operation on time attributes, the performance can be
improved by accession lists, where each accession list maintains complete temporal information for the
time attributes transaction start, transaction stop, valid from, and valid to. Since each entry with four time
attributes and a pointer to a history version consumes 20 bytes, and there are 28 history versions times 1024
version sets for the update count of 14, the size of the entire accession lists is 624 blocks. Scanning the
current store and the entries in the accession lists for the Temporal_h relation, the entries satisfying the
as of clause are extracted. If we assume that the number of such entries is two, and that tuple
substitution is used to perform a join, then the current store and the accession lists for the Tempora 1i

relation are scanned twice to find entries satisfying the as of and the when clauses. Thus we end up

154

with scanning the current store and the accession lists three times: once for the Temporal_h relation and
twice for the Temporal i relation. If we assume that two entries in the accession lists for the
Temporal i relation satisfy the as of and the when clause, then four history versions are actually
retrieved from the history store: two from the Temporal_h relation and two from the Temporal i
relation. So the total cost is 2317 block accesses (= (147 + 624) x 3 + 4), which is a marked improvement
from 11141 of the conventional method, The improvement resulted from performing a temporal join on

the accession lists, whose size is much smaller than the history data.

Similar improvement is also achieved by indexing, where each index entry maintains complete
temporal information for the four time attributes. Since each entry with four time attributes plus a key and
a pointer takes 24 bytes, and there are 29 versions times 1024 version sets for the update count of 14, the
size of the entire index is 782 blocks. Scanning the index for the Temporal h relation, the index entries
satisfying the as of clause are extracted. Under similar assumptions to the case of accession lists above,
the index for the Temporal i relation is. scanned twice to find the entries satisfying the as of and the

when clauses. Then the total cost is 2350 block accesses (= 782 x 3 + 4).

Query Q12 is facilitated by clustering or cellular chaining for the portion of scanniné a version set,
as discussed for queries Q01 and QO2, but the overall performance is dominated by scanning the
Temporal i relation sequentially. Query Q12 will be further discussed in the next section for secondary
indexing. Note that stacking canniot answer query Q11, and provides only a partial answer to query Q12.

Query Q13 is similar to QO1, but Q13 can be improved by accession lists or indexing. The when
clause can be evaluated without accessing history data, then only the tuples satisfying the temporal
predicate are retrieved. If we assume there are seven such tuples, the cost is eight block accesses, where

one extra block accounts for accessing an accession list or an index entry.

Queries Q14 through Q16 retrieve tuples through a non-key attribute, which requires sequential
scanning of the entire relation. Maintaining a secondary index can improve the costs of these queries, as

will be discussed in the next section.

155

;}:;;Z Conventional CR::;;; Aclc‘fi::son Indexing
Query Cost (in Blocks) (Growth || Cost (in Blocks) |Growth | Cost (in Blocks) |Growth| Cost (in Blocks) |Growth
Fixed| Variable | Rate [|Fixed| Variable | Rate | Fixed] Variable | Rate |Fixed| Variable { Rate
Qo1 0 1 2 0 | 2 1 1 2 1 1 2
Q02 1 1 2 1 1 2 2 1 2 1 1 2
Q03 0 129 1.9% 0| 1463 | 2 129 223 2 5 27 2
Qo4 0 128 2 0 1463 | 2 129 223 2 5 27 2
Q05] 1 |2 0 i 0 0 1 0 1 1 0
Q06 1 1 2 1 1 0 1 1 0 1 1 0
Qo7 0 129 1.99 01 1463 | 0 0| 1463 0 0| 1407 0
Qo8 0 128 2 0f 1463 | O 0| 1463 0 0| 140.7 0
Qo9 56| 1144 2,01 56 11703 | 0 56 | 11703 0 56] 2162 0
Q10 || 1080} 1153 2 1080 11703 { O 1080 | 1024 0 56| 2162 0
Q11 0 385 2 0f 4389 | 2 376 66.9 2 4 81 2
Q12 2 129 2 2 1473 | 2 13| 137.0 2 3| 1417 2
QI3 0 1 2 0 1 2 1 0245 2 1 0241 2
Ql4 0 129 1.99 0} 1463 | 2 0| 1463 2 0F 1463 2
Q15 0 129 199 0| 1463 | 2 0| 1463 2 0| 1463 2
Ql6 0 129 1.99 0] 1463 | 2 0 1463 2 0] 146.3 2
ﬁ:::: Conventional Clustering Stacking gl:::ii:rg
Qu Cost (in Blocks) [Growth | | Cost (in Blocks) |Growth | Cost (in Blocks) [Growth] Cost (in Blocks) [Growth
Y ||Fixed| Variable | Rate ||Fixed| Variable | Rate | Fixed| Variable | Rate |Fixed| Varisble | Rate
Q01) 1 2 0 I 0.29 (0} (1) (0.07) 0] 1 05
Qo2 1 1 {2 1 1 029 1 (1) (0.07) 1 1 0.5
Q03 ol 129 1,99 0] 1463 | 2 X X X 0] 1463 2
Q4 0 128 2 0] 1463 | 2 X X X 0 1463 2
Q05 0 1 2 0 1 0 0 1 0 0 1 o
Qo6 1 1 2 1 1 0 1 1 0 1 1 0
Q07 0 129 1.99 0 1463 | O 0] 1463 0 0} 1463 0
Q08 o 128 2 0] 1463 | 0 01 1463 0 0] 1463 0
Qoo 561 1144 201 56 11703 | 0 56 | 1170.3 0 56| 11703 0
Q10 ({10B0| 1153 2 1080 11703 | O 1080 | 11703 (H 1080] 1170.3 1]
Q11 0 385 2 01 4389 | 2 X X X 0f 4339 2
Qi2 2 129 2 2] 14653 | 2) @53) | @ 2| 146.6 2
Qi3 0 1 2 0 1 0.29 X X X 0 1 0.3
Qil4 0 129 1.99 0] 1463 | 2 0| 1463 2 0 1463 2
Qi5 0 129 1.99 0 1463 | 2 0| 1463 2 0} 1463 2
Qlé o 129 1.99 0] 1463 | 2 0] 1463 2 0 1463 2
Note :

.‘X’ denotes not applicable,

Figure 7-5: Fixed Costs, Variable Costs, and Growth Rates

In section 6.2.3, we divided the cost of a query into the fixed portion and the variable portion, then

calculated the growth rate of the query cost. Following the same procedure, we obtained Figure 7-5 which

shows the fixed costs, variable costs, and growth rates for each query on the temporal database with

156

different formats of the history store. The table shows that;

& For non-temporal queries such as QOS5 through Q10, the growth rate can be reduced to 0 by using
any of the temporally partitioned storage structures,

b For version scanning, e.g. queries Q01 and Q02, clustering and cellular chaining reduce the growth
rate, improving the performance.

i For rollback queries such as Q03, Q04, and Q11, accession lists and indexing reduce the variable
cost, improving the performance as the update count increases.

® For queries which require sequential scanning, e.g. queries Q03, Q04, Q11, and Q12, reverse
chaining, clustering, or cellular chaining exhibits a slightly inferior performance, due to the
overhead of storing temporal information,

In conclusion, the temporally partitioned storage structure improve the retrieval performance of databases

with temporal support by reducing either the growth rate or the variable cost.

7.3. Secondary Indexing

Queries retrieving records through non-key attributes can be facilitated by secondary indexing. For
example, we can create a secondary index, Temp h inx, on the amount attribute of the

Temporal_h relation using the index staiement in Quel:

index on Temporal h is Temp_h inx (amount)

Maintaining a secondary index on the atiribute amount can improve the performance of queries such as
Q07, Q08, Q12, and Q14 through Q16.

As discussed in Section 5.3, there are several types of secondary indices, especially for a temporal
relation. A secondary index for a temporal relation may be any of srapshot, rollback, historical, ot
temporal. To specify the type of a secondary index, we extend the index statement with the as fype
clause, where type can be any of snapshot, rollback, historical, and temporal. For

example, a statement:

index on Temporal_ h is Temp h_inx {(amount) as temporal

creates a secondary index as a temporal relation.

157

The &fault storage structure for a secondary index is a heap, but like any regular relation, its
structure can be changed to other format using the modify statement. An index may be stored into a
single file for all the versions (single file}, or may itself be maintained as a remporally partitioned structure
having a current index for current data and a kistory index for lﬁsto?y data. In each case, we may choose
any access methods such as a heap, hashing, ISAM, etc. At present, our prototype supports only the

secondary indices as snapshots. The other options were not implemented into the prototype.

Space requirements for various types of secondary indices on the Temporal_h relation are shown in
Figure 7-6, when the update count is 0 or 14. The table also shows the growth rate, which is obtained
when the growth per update is divided by the size for the update count of 0. Compared with the table in

Figure 7-3, a secondary index consumes from 8% to 21% of the space required by the relation itself,

Type as Snapshot as Rollback as Historical as Temporal
Size, UC=0 1 19 19 27
Size, UC=14 295 531 531 782
Growth per

ndats 203 36.6 36.6 53.9
Growth
i 1.85 1.93 1.93 2.0

Note :
‘UC’ denotes Update Count.

Figure 7-6: Space Requirements for a Secondary Index

For the snapshot index, each entry needs eight bytes, four for the secondary key and four for a
pointer. Since a block of 1024 bytes can store. 101 entries, 11 blocks are needed for 1024 tuples.when the
update count is 0. When the update count is 14, there are 29 versions multiplied by 1024 tuples; hence 295

blocks are needed for the single file index.

For the rollback or the historical index, each entry needs 16 byfes, four for the secondary key, four

for a pointer, and eight for two attributes of ransaction time or valid time. So a block of 1024 bytes can .

158

store 56 entries, and there are 29 versions multiplied by 1024 tuples when the update count is 14: hence

531 blocks are needed for the single file index.

For the temporal index, each entry needs 24 bytes, four for the secondary key, four for a pointer,
eight for two attributes of valid time, and eight for two attributes of transaction time. So a block of 1024
bytes can store 38 entries, and there are 29 versions multipiied by 1024 tuples when the update count is 14;

hence 782 blocks are needed for the single file index.

Figure 7-7 compares the snapshot index with the rollback index in terms of the costs of sample
queries on the temporal database with the update count of 14. Performance figures in this table were
derived analytically; as an example, the cost of query Q16 is analyzed in 'Appendix F. Note that the
existence or the structure of secondary indices do not affect the performance of other queries which do not

involve the secondary access path.

Conventional Indexed as Snapshot Indexed as Roliback
Query || Update Count as Single as Partitioned as Single as Partitioned
0 14 as Heap as Hash | as Heap as Hash |[as Heap as Hash | as Heap as Hash
QU7 {129 37117 || 324 30 12 2 || 560 30 20 2
Q08 [|128 3712 324 30) 2 560 30 20 2

Qi2 {[131 3743 355 61 355 62 591 61 591 62
Q14 [(129 3717 324 30 324 K} 560 30 560 31
Q15 [|126 3717 324 30 324 k)| 543 i3 543 14
Qi6 ji120 3717 324 30 324 31 543 13 543 14

Note :
All values are for a temporal database with a 100% loading and the update count of 14.

Figure 7-7: Secondary Indexing as Snapshot or Rollback

If the index is stored as a heap, queries Q07 and Q08 cost 324 block accesses each, 295 index blocks
plus 29 data blocks. This is in fact more expensive than the simple temporally partitioned store without
any index, though better than the conventional structure. Hence, we musi take care that the cost of using
an index does not overwhelm the saving obtained from using the temporally partitioned store. If the index

is hashed, the cost is reduced to 30 block accesses with 1 index block and 29 daia blocks.

If we foilow the temporally partitioned scheme maintaining a separate index for current data, there

are only 1024 entries in the current index, requiring 11 index blocks. Each of Q07 and Q08 costs 12 blocks

159

with a heap index, while it costs only 2 blocks with hashing. Note the difference between 3717 blocks and

2 blocks for processing the same query.

Query Q12 can also benefit from secondary indexing, since it is no longer necessary to scan the
Temporal i relation sequentially. If the index is stored as a single heap, Q12 costs 355 block accesses,
where 295 block accesses are needed to scan the index. If the index is stored as a single hash, the cost is

reduced to 61 block accesses.

Queries Q14 through Q16 are similar to queries Q07 and Q08 in that they are one relation queries
and their costs can be reduced significantly with secondary indexing. However, queries Q14 through Q16,
like Q12, are temporal queries, and need to access history data regardless of the storage structure. Thus the
temporally partitioned index is not better than the single file index for queries Q12 and Q14 through Q16,
In fact, the index as a temporally partitioned hash costs one more block access than the index as a single

hash, because each index needs to be hashed separately.

The rollback index is effective for processing queries with the as of clause, such as Q15 and Q16.
The as of predicate can be evaluated with information from index entries, and only the tuples that

satisfy the predicate need to be retrieved,

If the index is stored as a single hash, query Q15 costs 13 block accesses, assuming that there are 12
tuples satisfying the as of clause among 29 candidates. Storing the index as a temporally partitioned
hash, query Q15 costs 14 block accesses, one block access more than as a single hash, since each index
needs to be hashed separately. However, storing the rollback index as a heap increases the query costs

over the snapshot index, due to the bigger size of the rollback index.

Figure 7-8 corﬁpares the historical index with the temporal index in terms of the costs of sample
queries on the temporal database with the update count of 14. The discussion on the rollback index
similarly applies to the historical index, except that the historical index maintains two attributes of valid
time instead of trénsaction time, and that the historical index is effective for processing: queries with the
when clause like Q14 and Q16. If the index is stored as a single hash, Q14 or Q16 costs 8 block accesses,

assuming that there are 7 tuples satisfying the when clause among 29 candidates.

150

Conventional Indexed as Historical Indexed as Temporal
Query || Update Count as Single as Pariidoned as Single as Partitioned
0 14 as Heap as Hash | as Heap as Hash |[as Heap as Hash | as Heap as Hash
Q07 |]129 3717 532 2 20 2 783 2 28 2
Q08 |{128 3712 532 2 20 2 783 2 28 2
Q12 [|131 3743 563 61 563 62 814 61 814 62
Q14 1129 37117 538 8 538 9 789 8 789 9
Q15 jj129 3717 560 30 560 31 794 13 794 14
Q16 |{120 3717 538 8 538 9 786 5 786 6

Note ;

All values are for a temporal database with a 100% loading and the update count of 14.

Figure 7-8: Secondary Indexing as Historical or Temporal

The temporal index combines the benefits of the rollback index and the historical index, effective for

processing queries withthe as of or when clause. The temporal predicate can be evaluated completely

with information from index entries, and only the tuples that satisfy the predicate need to be retrieved.

If the index is stored as a single hash, Q16 costs only 5 block accesses, assuming that there are 4

tuples satisfying both the when and the as of clauses among 29 candidates. However, storing the

temporal index as a heap increases the cost of queries over any other types of indices, due to the bigger size

of the temporal index,

Now we can make the following observations on the types of secondary indices, based on the

analysis of query costs as shown in Figures 7-7 and 7-8.

L

The temporally partitioned index is good for non-temporal queries.

For temporal queries, the cost of a query for the temporally partitioned heap index is equal to the cost
of the query for the single heap index.

For temporal queries, the cost of a query for the temporally partitioned hash index is more expensive
by one block access than the cost of the query for the single hash index.

The rollback secondary index is good for queries with the as of clause.
The historical secondary index is good for queries with the when clause.

The temporal secondary index is good for queries with either or both of the when and the as of
clauses.

iel

* It is desirable to provide a secondary index with the random access mechanism such as hashing,

. If there is no random access mechanism for a secondary index, storing a large amount of temporal
information in index entries degrades the performance due to the bigger size,

PART 1V

Conclusions

Thus far, various issues on database management systems with temporal support have been
examined with emphasis on the implementation aspects. Chapter 8 presents the summary and conclusions

of this dissertation and discusses the future work to be pursued in the area.

Chapter 8

Conclusions and Future Work

8.1. Conclusions

The thesis of this research is that new access methods can be developed to provide temporal support
in database management systems without penalizing conventional non-temporal queries and the

performance of such systems can be analyzed by a set of models.

To demonstrate this thesis, we have developed a set of models to charécterize the various phases of
query processing in database management systems with temporal support. We have investigated various
formats of the remporally partitfoned storage structures, and ahalyzed their performance using the
performance models. We also implemented a prototype temporal database system incorf:orating one of the
temporally partitioned structures, and ran a benchmark to measu_ré the peffonnance of sample queries on’
the prototype.

The measurement data and the analysis results indicate that the tempdrally partitioned store can
improve the performance of various temporai queries, while eliminating a performance penalty on
conventional non-temporal queﬁes. Query costs estiméted from the analysis were compared with the
measurement data in Section 6.3, which showed that the performance of database systems with temporal

support can be analyzed quite accurately using the four models.
Major contributions of this research achieved in this process are:-
. A taxonomy of time to cIassify database types in terms of temporal support was developed.

* Three distinct kinds of time with orthogonal semantics in database management Systems were
identified. They are transaction time, valid time, and user-defined time.

* Depending on the capability to support either or both of transaction time and valid time,
databases were classified into four types: snapshot, rollback, historical, and temporal.

166

Four models forming a hierarchy were developed to characterize query processing in database
systems with temporal support. .

*

The algebraic expression was defined to describe procedurally the process of evaluating
TQuel queries.

The file primitive expression was defined to characterize the input and output operations.

The model of algebraic expressions was developed to map the algebraic expression to the file
primitive expression.

The model of détabaselrelatians was developed to represent the characteristics of a database
and relations.

The access path expression was defined to characterize a path taken through a storage
structure to satisfy an access request.

The model of access paths was developed to map the file primitive expression to the access
path expression.

The model of storage devices was developed to represent the characteristics of storage devices,
and to map the access path expression to the access path cost.

The temporally partitioned storage structure was investigated to imptove the performance of
temporal queries without penalizing conventional non-temporal queries.

*

Various issues on the temporally partitioned structure were examined.
Update procedures for delete and replace were developed and analyzed.

Six formats of the history store were developed, analyzed, and compared with one another.
They are reverse chaining, accession lists, indexing, clustering, stacking, and cellular
chaining.

A new form of hashing, termed nonlinear hashing, was developed.

Tuple versioning and attribute versioning were compared with each other, and the conversion
process from one form to the other was formalized.

Issues on secondary indexing for databases with temporal support were examined,

As a test-bed to evaluate the access methods and the models, a prototype of a temporal DBMS was
built by modifying a snapshot DBMS INGRES.

*

*

A benchmark was run on the prototype to identify problems with conventional access methods.

The benchmark also provided performance data to be compared with analysis results from the
performance modeis.

167

* Among the temporally partitioned storage structures, reverse chaining was incorporated in the
prototype to enhance its performance.

* The feasibility of providing temporal support for database management systems without penalizing
conventional non-temporal queries was demonstrated.

8.2. Future Work

This research has addressed some of r.he major issues on prov1dmg temporal support for database

management systems, yet many issues still remain to be investigated.

The first area of further work is to implement various formats of the history store developed in
Section 5.2. We have implemented reverse chaining as described in Chapter 7. The other structures can

be added incrementally to the system,

We need to analyze the cost to update temporally partitioned storage structures. A preliminary study
indicates that the output cost for such an Operation is slightly higher due to the overhead for maintaining a
specific structure, but its mput cost can be lower than conventional structures. 'I‘he acmai cost will be
‘heavily dependent on the number of buffers and buffenng algcnthms The CPU cost involved in

mamtammg the temporally partitioned storage structures also needs to be considered.

This research has dealt with only the core of TQuel. It will be interesting to investigate
"iinplementau'on issues on temporal aggregates [Snodgrass & Gomez 1986), implement them, and analyze

their performance.

Throughout this research, we assumed that all temporal information is complete and accurate, which
is not true in many cases. Some work has been done to classify information as determinant or
indeterminant, and to define the before predicate using three-valued logic [Snodgrass 1982]. We still need
to study issues on how to handle different semantics of null, unknown, or uncertain, and on how to support

incomplete temporal information.

Though this research has studied new access methods to improve the performance of temporal
queries, further work is needed to develop new query processing algorithms for optimization of temporal
queries, For example, our prototype database system performs the temporal. Join operation using the
method of tuple substitution, as INGRES computes the conventional joiﬁ. New methods tailored to the

particular characteristics of temporal join may be developed to improve the performance.

168

We described the Performance Analyzer for TQuel Queries (PATQ) in Section 4.2.2, which utilizes
the four models developed to characterize the various phases of temporal query processing. We analyzed
the performance of sample queries manualily in Chapters 6 and 7. However, this analysis could be
automated by implementing the PATQ. In addition, the PATQ could be extended to be an 6pﬁ.mization

fool as discussed in Section 4.2.2,

Nonlinear hashing was developed in this research to cluster tuples belonging to the same version set,
but it can be used for other applications to retrieve a record at the cost of one disk access. Further work is
needed to analyze characteristics of split functions, study its performance in a highly dynamic environment,

and extend it to nested nonlinear hashing briefly described in Section 5.2.4.2.

Supporting time in database management systems not only adds to the functionality for various
applications, but also can benefit internal DBMS operations, Though this research has not addressed issues
on concurrency conirol, recovery, or synchronization of disttibuted databases, such issues need to be

studied to utilize the temporal information inherent in databases with temporal support.

As discussed in Section 1.1.2, database management systems with temporal support expand the area
of database applications, bringing a wide range of benefits. However, many interesting issues remain to be
investigated, some of which were listed in this section. It is a challenge to pursue these issues for realizing

the full potential of such systems.

Bibliography

[Aghili & Severance 1982] Aghili, J. and D. Severance. A Pratical Guide to the Design of Differential
Files for Recovery of On-Line Databases. ACM Transactions on Database Systems, 7, No. 4, Dec.
1982, pp. 540-565.

[Ahn 1986] Ahn, 1. Towards an Implementation of Database Management System& with Temporal Support,
in Second International Conference on Data Engineering, IREE. Feb. 1986, pp. 374-381.

[Ahn & Snodgrass 1986] Ahn, 1. and R. Snodgrass. Performance Evaluation of a Temporal Database
Management System, in Proceedings of ACM SIGMOD International Conference on Management
of Data, Washington, DC: May 1986, pp. 96-107.

[Ammon et al. 1985] Ammon, G., J. Calabria and D. Thomas. A High-Speed, Large-Capacity, Jukebox
Optical Disk System. IEEE Computer, 18, No. 7, July 1985, pp. 36-46. o .

[Anderson 1982] Anderson, T.L. Modeling Time at the Conceptual Level, in Improving Database Usability
and Responsiveness, Ed. P. Scheuermann. Jerusalem, Israel: Academic Press, 1982, pp. 273-297.

[Andler 1979] Andler, S. A. Predicate Path Expressions: A High-level Sjnchronization Mechanism. PhD,
Diss, Computer Science Department, Carnegie-Mellon University, Aug. 1979.

[Ariav & Morgan 1981] Ariav, G. and H.L. Morgan. MDM: Handling the time dimension in generalized
DBMS. Working Paper. The Wharton School, University of Pennsylvania. May 1931,

[Ariav & Morgan 1982] Ariav, G. and H.L. Morgan, MDM: Embedding the Time Dimension in
Information Systems. TR 82-03-01. Department of Decision Sciences, The Wharton School,
University of Pennsylvania, 1982. :

[Ariav 1984] Ariav, G. Preserving the Time Dimension in Information Systems. PhD. Diss. The Wharton
School, University of Pennsylvania, Apr. 1984, '

[Batory 1981] Batory, D. B+ Trees and Indexed Sequential Files: A Performance Comparison, in
Proceedings of ACM SIGMOD International Conference on Management of Data, May 1981, pp.
30-39.

[Batory & Gotlieb 1982} Batory, D. and C. Gotlieb. A Unifying Model of Physical Databases. ACM
Transactions on Database Systems, 7, No. 4, Dec. 1982, pp. 509-539.

[Batory 1985] Batory, D. Modeling The Storage Architecture Of Commercial Database Systems. ACM
Transactions on Database Systems, 10, No. 4, Dec. 1985, pp. 463-528. _

[Bayer & McCreight 1972] Bayer, R. and E. McCreight. Organization and Maintenance of Large Ordered
Indexes. Acta Informatica, 1, No. 3 (1972), pp. 173-189.

[Bayer & Unterauer 1977] Bayer, R. and K. Unterauer. Prefix B-Trees. ACM Transactions on Database
Systems, 2, No. 1, Mar, 1977, pp. 11-26.

[Ben-Zvi 1982] Ben-Zvi, J. The Time Relational Model. PhD. Diss. UCLA, 1982,

170

[Bernstein & Goodman 19801 Bemstein, P. and N. Goodman. Timestamp-Based Algorithms for
Concurrency Control in Distributed Database Systems, in Proceedings of the Conference on Very
Large Databases, Qct. 1980,

{Bloom 1970] Bloom, B. Space/Time Trade-offs in Hash Coding with Allowable Errors. Communications
of the Association of Computing Machinery, 13, No. 7, July 1970, pp. 422-426.

[(Bolour et al. 1982] Bolour, A., T.L. Anderson, L.J. Debeyser and HK.T. Wong. The Role of Time in
Information Processing: A Survey. SigArt Newsletter, 80, Apr. 1982, pp. 28-48.

[Breutmann et al. 1979] Breutmann, B., E. F. Falkenberg and R. Maer. CSL: A language of defining
conceptual schemas, in Data Base Architecture. Amsterdam: North Holland, Inc., 1979,

[Bubenko 1977] Bubenko, I.A., Jr. The Temporal Dimension in Information Modeling, in Architecture and
Models in Data Base Management Systems. North-Holland Pub. Co., 1977. ‘

[Cardenas 1973] Cardenas, A. Evaluation and Selection of File Organization - A Model and System.
Communications of the Association of Computing Machinery, 16, No. 9, Sep. 1973, pp. 540-548.

[Cardenas 19751 Cardenas, A. Analysis and Performance of Inverted Data Base Structures.
Communications of the Association of Computing Machinery, 18, No. 5, May 1975, pp. 253-263.

[Ceri & Pelagatti 1984] Ceri, S. and G. Pelagatti. Distributed Databases Principles & Systems. NY:
McGraw-Hill, 1984. ‘

[Chen & Vitter 1984] Chen, W. and J. Vitter. Analysis of New Variants of Coalesced Hashing. ACM
Transactions on Database Systems, 9, No. 4, Dec. 1984, pp. 616-645.

[Cheung 1982] Cheung, T. Estimating Block Accesses and Number of Records in File Management.
Communications of the Association of Computing Machinery, 25, No. 7, July 1982, pp. 484-487.

[Christodoulakis 1983] Christodoulakis, S. Estimating Block Transfers and Join Sizes, in Proceedings of
ACM SIGMOD international Conference on Management of Data, May 1983, pp. 40-54.

[Christodoulakis 1984] Christodoulakis, S. Implications of Certain Assumptions in Database Performance
Evaluation. ACM Transactions on Database Systems, 9, No. 2, June 1984, pp. 163-186.

[Cichelli 1980] Cichelli R. Minimal perfect hash functions made simple. Communications of the
Association of Computing Machinery, 23, No. 1, Jan, 1980, pp. 17-19.

[Clifford & Tansel 1985] Clifford, J. and A. Tansel. On An Algebra For Historical Relational Databases:
Two Views, in Proceedings of ACM SIGMOD International Conference on Management of Data,
1985, pp. 247-265.

[Clifford & Warren 1983] Clifford, J.A. and D.S. Warren. Formal Semantics for Time in Databases. ACM
Transactions on Database Systems, 8, No. 2, June 1983, pp. 214-254.

[Codd 1979] Codd, E.F. Extending the Database Relational Model to Capture More Meaning. ACM
Transactions on Database Systems, 4, No, 4, Dec. 1979, pp. 397-434,

[Coffman & Eve 1970] Coffman, E. and I. Eve. File Structures Using Hashing Functions. Communications
of the Association of Computing Machinery, 13, No. 7, July 1970, pp. 427-432.

{Comer 1979] Comert, D. The Ubiquitous B-tree. Computing Surveys, 11, No. 2 (1979), pp. 121-138.

[Copeland 1982] Copeland, G. What If Mass Storage Were Free?. IEEE Computer, 15, No. 7, July 1982,
pp. 27-35.

171

[Copeland & Maier 1984] Copeland, G. and D. Maier. Mdking Smalitalk a Database System, in -
Proceedings of ACM SIGMOD International Conference on Management of Data, Ed. B.
Yormark. Association for Computing Machinery. Boston, MA: June 1984, pp. 316-325.

[Fagin et al. 1579] Fagin, R., I. Nievergelt, N. Pippenger and H. Strong. Extendible Hashing - A Fast
Access Method for Dynamic Files. ACM Transactions on Database Systems, 4, No. 3, Sep. 1979,
pp. 315-344, ' :

[Findler & Chen 1971] Findler, N. and D, Chen. On the prab!em.é of time retrieval, temporal relations,
causality, and coexistence, in Proceedings of the International Joint Conference on Artificial
Intelligence, Imperial College: Sep. 1971. - '

[Fujitani 1984] Fujitani, L. Laser Optical Disk: The Coming Revolution in On-Line Storage.
Communications of the Association of Computing Machinery, 27, No. 6, June 1984, pp. 546-554.

[Gadia & Vaishnav 1985] Gadia, S. and J. Vaishnav. A Query Language For A Homogeneous Temporal
Database, in Proceedings of the ACM Symposium on Principles of Database Systems, Apr. 1985.

[Gadia 1986] Gadiﬁ, S. Toward a Multihomogeneous Model For a Temporal Database, in Second
International Conference on Data Engineering, IEEE. Feb, 1986, pp. 390-397.

[Goldberg & Robson 1983] Goldberg, A. and D. Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, 1983.

[Gremillion 1982] Gremillion, L. Designing a Bloom Filter for Differential File Access. Communications
of the Association of Computing Machinery, 25, No. 9, Sep. 1982, pp. 600-604.

[Hammer & McLeod 198 1} Hammer, M. and D. McLeod. Database 'Descriptio'n with SDM: A Semantic
: Database Model. ACM Transactions on Database Systems, 6, No. 3, Sep. 1981, pp. 351-386. '

[Hawthorn & Stonebraker 1979] Hawthorn, P. and M. Stonebraker. Performance Analysis of a Relational
Data Base Management System, in Proceedings of ACM SIGMOD International Conference on
Management of Data, 1979, pp. 1-12, '

[Held 1978] Held, G. and M. Stonebraker. B-irees Re-examined. Communications of the Association of
Computing Machinery, 21, No. 2, Feb, 1978, pp. 139-143.

fHeld et al. 1975] Held, G.D., M. Sfonebtaker and E. Wong. INGRES--A relational data base management
system. Proceedings of the 1975 National Computer Conference, 44 (1975), pp. 409416,

[Hoagland 1985] Hoagland, A. Information Storage Technology: A Look at the Future. IEEE Computer,
18, No. 7, July 1985, pp. 60-67.

[Hsiao & Harary 1970] Hsiao, D. and F. Harary. A Formal System for Information Retrieval from Files.
Communications of the Association of Computing Machinery, 13, No. 2, Feb. 1970, pp. 67-73.

[IBM 1981] IBM SQL/Data-System, Cancepts and Facilities. Technical Report GH24-5013-0. IBM. Jan.
1981.

Daeschke & Schek 1982] Jaeschke, G. and H. Schek. Remarks on the Algebra of Non First Normal Form
Relations, in Proceedings of the ACM Symposium on Principles of Database Systems, 1982, pp.
124-137.

{Jones et al. 19'79] Jones, S., P. Mason and R. Stamper. LEGOL 2.0: a relational specification language for
complex rules. Information Systems, 4, No, 4, Nov. 1979, pp. 293-305.

[Jones & Mason 1980] Jones, S. and PJ. Mason. Handling the Time Dimension in a Data Base, in

172

Proceedings of the International Conference on Data Bases, Ed. S. M. Deen and P. Hammersley.
British Computer Society. University of Aberdeen: Heyden, July 1980, pp. 65-83.

[Katz & Lehman 1984] Katz, RH. and T. Lehman, Database Support for Versions and Alternatives of
Large Design Files. IEEE Transactions on Software Engineering, SE-10, No. 2, Mar. 1984, pp.
191-200.

[Kawagoe 1985] Kawagoe, K. Modified Dynamic Hashing, in Proceedings of ACM SIGMOD International
Conference on Managemeni of Data, May 1985, pp. 201-213. _

[Klopprogge 1981} Klopprogge, M.R. TERM: An approach to include the time dimension in the entity-
relationship model, in Proceedings of the Second International Conference on the Entity
Relationship Approach, Oct. 1981,

[Larson 1978] Larson, P. Dynamic Hashing. BIT, 18 (1978), pp. 184-201.

(Larson 1980] Larson, P. Linear Hashing with Partial Expansions, in Proceedings of the Conference on
Very Large Databases, 1980, pp. 224-232.

[Larson 1981] Larson, P. Analysis of Index-Sequential Files with Overflow Chaining. ACM Transactions on
Database Systems, 6, No. 4, Dec. 1981, pp. 671-680.

[Larson 1982] Larson, P. Performance Analysis of Linear Hashing with Partial Expansions. ACM
Transactions on Database Sysiems, T, No. 4, Dec. 1982, pp. 566-587.

[Larson & Ramakrishna 1985] Larson, P. and M. Ramakrishna. External Perfect Hashing, in Proceedings
* of ACM SIGMOD International Conference on Management of Data, May 1985, pp. 190-199,

[Litwin 1978} Litwin, W. Virtual Hashing: A Dynamically Changing Hashing, in Proceedings of the
Conference on Very Large Databases, 1978, pp. 517-523.

[Litwin 1980] Litwin, W, Linear Hashing: A New Tool For File And Table Addressing, in Proceedings of
the Conference on Very Large Databases, 1980, pp. 212-223.

[Luk 19831 Luk, W. On Estimating Block Accesses In Database Organizations. Communications of the
Association of Computing Machinery, 26, No. 11, Nov. 1983, pp. 945-947.

[Lum et al. 1971] Lum, V., P. Yuen and M. Dodd. Key-to-Address Transform Techniques: A Fundamental
Study on Large Existing Formatted Files. Communications of the Association of Computing
Machinery, 14, No. 4, Apr. 1971, pp. 228-239,

[Lum et al. 1984] Lum, V., P. Dadam, R. Erbe, J. Guenauer, P, Pistor, G. Walch, H. Wemer and J.
Woodtill. Designing DBMS Support for the Temporal Dimension, in Proceedings of ACM
SIGMOD International Conference on Management of Data, Ed. B Yormark. Association for
Computing Machinery. Boston, MA: June 1984, pp. 115-130.

[Maier 1985] Maier, D. The Theory of Relational Databases. Computer Science Press, 1985.

[March & Severance 1977] March, D. and D. Severance. The Determination of Efficient Record
Segmentations and Blocking Factors for Shared Files. ACM Transactions on Database Systems, 2,
No. 3, Sep. 1977, pp. 279-296.

[MCKENZIE 1986] McKenzie, E. Bibliography: Temporal Databases. 1986. (Unpublished paper.)

[McKenzie 1986] McKenzie, L.E. and R. Snodgrass. An Incremental Temporal Relational Algebra. 1986.
(In preparation.)

P TP PSR e

173

[Mendelson 1980]. Mendelson, H. A New Approach to the Analysis of Linear Probing Schemes. Journal of
the Association of Computing Machinery, 27, No. 2, July 1980, pp, 474-483.

[Mendelson 1982] Mendelson, H.. Analysis of Extensible Hashing. IEEE Transactions on Software
Engineering, 8, No. 6, Nov. 1982, pp. 611-619,

[Morris 1968] Morris, R. Scatter Storage Techniques. Communications of the Association of Computing
Machinery, 11, No. 1, Jan. 1968, pp. 38-43.

[Nestor et al. 1982] Nestor, J., W. Wulf and D. Lamb. IDL - Interface Description Language. Technical _
Report. Computer Science Department, Carnegie-Mellon University. June 1982. -

[Nievergelt et al. 1984] Nievergelt, J., H. Hinterberger and K. C. Sevcik. The Grid File: An Adaptable,
Symmetric Multikey File Structure. ACM Transactions on Database Systems, 9, No. 1, Mar, 1984,
pp. 38-71.

[Ozsoyoglu et al. 1985] Ozsoyoglu, G., Z. Ozsoyoglu and F. Mata. A Language and a Physical
Organization Technique for Summary Tables; in Proceedings of ACM SIGMOD International
Conference on Management of Data, 1985, pp. 3-16.

[Ramamohanarao - & Sacks-Davis 1984] Ramamohanarao, K. and R. Sacks-Davis. Recursive Linear
Hashing. ACM Transactions on Database Systems, 9, No. 3, Sep. 1984, Pp- 369-391,

[Richard 1980] Richard, P. Evaluation of the Size of a Query Expressed in Relational Algebra, in
Proceedings of ACM SIGMOD International Conference on Management of Data, May 1980, pp.
155-163. ' . o : ' ' '

[Robins'on 19817 Robinson, J. The K-D-B Tree: A Search Structure Jor Large Multidimensional Dynamic
Indexes, in Proceedings of ACM SIGMOD International Conference on Management of Data,
May 1981, pp. 10-18, - '

(Satyanarayanan 1983] Satyanarayanan, M. A Methodology for Modelling Storage .Systems and its
- Application to a Network File System. PhD. Diss. Computer Science Department, Camnegie-
Mellon University, Mar. 1983, .

[Schevermann 1977} Schevermann, P. Concepts of a data base simulation language, in Proceedings of
ACM SIGMOD International Conference on Management of Data, Aug. 1977, pp. 145-155.

[Schueler 1977] Schueler, B. Update Reconsidered, in Architecture and Models in Data Base Management
Systems. Ed. G. M. Nijssen. North Holland Publishing Co., 1977.

[Semadas 1980] Sernadas, A. Temporal Aspects of Logical Procedure Definition. Information Systems, S,
No. 3 (1980), pp. 167-187. '

[Severance 1975] Severance, D. A Parametric Model of Alternative File Structures. Information Systems,
1, No. 2 (1975), pp. 51-58. : ‘

[Severance 1976] Severance, D. Diﬂ'erén'tial Files: Their Application to the Maintenance of Large
Databases. ACM Transactions on Database Systems, 1, No. 3, Sep. 1976, Pp- 256-267.

[Siler 1976] Siler, K. A Stochastic Evaluation Mode! Jor Database Organizations in Data Retrieval
Systems. Communications of the Association of Computing Machinery, 19, No. 2, Feb. 1976, pp-
84-95. .

[Snodgrass 1982} Snodgrass, R. Monitoring Distributed Systems: A Relational Approach. PhD. Diss.
Computer Science Department, Carnegie-Mellon University, Dec. 1982,

174

[Snodgrass & Ahn 1985] Snodgrass, R. and 1. Ahn. A Taxonomy of Time in Databases, in Proceedings of
ACM SIGMOD International Conference on Management of Data, Ed. S. Navathe. Association
for Computing Machinery. Austin, TX: May 1985, pp. 236-246.

[Snodgrass 1986) Snodgrass, R. The Temporal Query Language TQuel. ACM Transactions on Database
Systems (to appear), (1986).

[Snodgrass & Ahn 1986] Snodgrass, R. and L Ahn. Temporal Databases. IEEE Computer, 19, No. 9, Sep.
1986.

[Snodgrass & Gomez 1986] Snodgrass, R. and S. Gomez. Aggregates in the Temporal Query Language
TQuel. Technical Report TR86-009. Computer Science Department, University of North Carolina
at Chapel Hiil. Mar. 1986.

[Sprugnoli 1977] Sprugnoli, R. Perfect hash functions: A single probe retrieving method for static sets.
Comimunications of the Association of Computing Machinery, 20, No. 11, Nov. 1977, pp. 841-850.

[Stonebraker et al. 1976] Stonebraker, M., E. Wong, P. Kreps and G. Held. The Design and
Implementation of INGRES. ACM Transactions on Database Systems, 1, No. 3, Sep. 1976, Pp-
180-222,

[Stonebraker 1981] Stonebraker, M. Operating System Support for Database Management,
Communications of the Association of Computing Machinery, 24, No. 7, July 1981, pp. 412-418.

[Stonebraker 1986] Stonebraker, M. Inclusion of New Types in Relational Data Base Systems, in
Proceedings of the International Conference on Data Engineering,, TEEE Computer Society. Los
Angeles, CA: IEEE Computer Society Press, Feb. 1986, pp. 262-269.

[Svobodova 1981] Svobodova, L. A reliabie object-oriented data depository for a distributed computer, in
Proceedings of the ACM Symposium on Operating System Principles, Dec. 1981, pp. 47-58.

[Teorey & Das 1976] Teorey, T. and K. Das. Application of an analytical model to evaluate storage
structures, in Proceedings of ACM SIGMOD International Conference on Management of Data,
June 1976, pp. 9-19.

[Teorey & Fry 1980] Teorey, T. and J. Fry. The Logical Record Access Approach to Database Design.
ACM Computing Surveys, 12, No. 2, June 1980, pp. 179-211,

[Teorey & Fry 1982] Teorey, T. and I. Fry. Design of Database Structures. Prentice-Hall, Inc., 1982.

[Whang et al. 1983] Whang, K. Estimating Block Accesses in Database Organizations: A Closed
Noniterative Formula. Communications of the Association of Computing Machinery, 26, No. 11,
Nov. 1983, pp. 940-944.

[Wiederhold 1981] Wiederhold, G. Databases for Health Care. New York, NY: Springer-Verlag, 1981.

[Wiederhold 1984] Wiederhold, G. Databases. IEEE Computer, 17, No. 10, Oct. 1984, pp. 211-223.

[Wong & Youssefi 1976] Wong, E. and K. Youssefi. Decomposition - A Strategy for Query Processing.
ACM Transactions on Database Systems, 1, No. 3, Sep. 1976, pp. 223-240.

[Woodfill et al. 1981] Woodfill, J., P. Siegal, J. Ranstrom, M. Meyer and E. Allman. Ingres Reference
Manual. Version 7 ed, 1981,

[Yao & Merten 1975] Yao, S. and A. Merten. Selection Of File Organization Using An Analytic Model, in
Proceedings of the Conference on Very Large Daiabases, Sep. 1975, pp. 255-267.

175

[Yao 1977A] Yao, S. Approximating Block Accesses in Database Organizations. Communications of the
Association of Computing Machinery, 20, No. 4, Apr. 1977, pp. 260-261.

fYao 1977B] Yao, S. An Attribute Baséd Model for Database Access Cost Analysis. ACM Transactions on
Database Systems, 2, No. 1, Mar. 1977, pp. 45-67.

[Yao & DeJong 1978] Yao, S. and D. Dejong. Evaluation of Database Access Paths, in Proceedings of
ACM SIGMOD International Conference on Management of Data, 1978, pp. 66-77.

[Yao 1979] Yao, S. Optimizatian. of Query Evaluation Algorithms. ACM Transactions on Database
Systems, 4, No. 2, June 1979, pp. 133-155.

[Yu et al. 1978] Yu, C., W. Luk and M. Siu. On the Estimation of the Nu}nber of Desired Records with
Respect to a Given Query. ACM Transactions on Database Systems, 3, No. 1, Mar. 1978, pp. 41-
56,

Appendix A

TQuel Syntax in BNF

TQuel is a superset of Quel, so a legal Quel statement is also a legal TQuel statement. TQuel

augments five Quel statements: retrieve, append, delete, replace, and create. The

syntax for these statements are shown below, as defined in the appendix of [Snodgrass 86].

In addition, two Quel statements, modify and indesx, have been extended in Chapter 7 to

accomodate the temporally partitioned storage structure and secondary indexing for databases with

temporal sepport. We note that the prototype currently supports a very limited subset of the allowed

options.

<TQuel>

<create stmt>
<persistent>
<history>
<retrieve stmt>
- <retrieve head>
<retrieve tail>

<into>»

<target list>
<t_list>
<t_elem>
<is>

<append stmt>

o

st

<retrieve stmt>

<append stmt>

<delete stmt>

<replace stmt>

<create stmt>

create <persistent> <history> <attribute spec>
€ | persistent

g | interval | event

<retrieve head> <retrieve tail>

retrieve <into> <target list> <valid clause>

<where clause> <when clause> <as of clause>

€ | unique | <relation>
into <relation> | %o <relation>

€ | (<tuple variable>.all) | (<t_list>)
<t_elem> | <t_list> , <t _elem>

<attribute> <is> <expression>

is | = .1 by

append <to> <target list> <mod tail>

178

<to>] <relation> | +o <relation>

it

<delete stmt>

0e
o

delete <tuple variable> <mod tail>

<replace stmt> replace <tuple variable> <target list> <mod tail>

<mod tail> Cr= <valid clause> <where clause> <when clause>
<valid clause> $i= <valid> <from clause> <to clause>
{ <valid> <at clause>
<valid> = g [walid
<from clause>- 1= e | from <event expr>
<to clause> 1= € | ¢to <event expr>
<at clause> = at <event expr>
<where clause> L £ | where <boolean expr>
<when clause> o= € | when <temporal pred>
<as of clause> 1= € | as of <event expr> <through clause>
<through clause> ::= € | through <event expr>

ti= <event elem>

! begin of <either expr>
i " end of <either expr>
| { <event expr>)

o
!

<event expr>

<interval expr> ::= <interval elem>
| <either expr> ovexlap <either expr>
i <either expr> extend <either expr>
i { <interval expr>)

<either expr> 1= <event expr» | <interval expr>
<event elem> Pr= <tuple variable> associated with an event relation

1= <tuple variable> associated with an interval relation
i <temporal const>

<interval elem>

+a
|

il

<temporal const> ::=. <string>

<interval elem>
<event elem>

<temporal pred> ::

{ <temporal pred>)
not <temporal pred>

I

i <either expr> precede <either expr>

I <either expr> overlap <either expr>

| <either expr> equal <either expr>

| <temporal pred> and <temporal pred>
| <temporal pred> ox <temporal pred>
I

I

<modify stmt> HEES modify <relation> to <store spec>

<store spec>

<on attr>

<key list>

<key order>
<order>
<ascend>
<descend>
<parameters>

<parm list>

<parm>

<time list>

<time attr>

<index stmt>

<attr list>

<index type>

<temporal type>

ae

e

—— — —— — e

179

<on attr> <parameters>
jsam | ecisam | hash | chash
heap | cheap | heapsort | cheapsort
truncated
chain | index | accessionlist
cluster | stack | cellular
£ | on <key list>

<key order>

<key list> , <key order>

<attribute> <order>

€ | : <ascend> | <descend>
a | ascending

a | descending

€ | where <parm list>
<parm>

<parm list> , <parm>
fillfactor = <integer>
minpages = <integer>
maxpages = <integer>
cellsize = <integer>

time = (<time list>)

<time attr>
<time list> , <time attr>
all

valid from |
transaction start |

valid to
transaction stop

index on <relation> is <index name>
{ <attr list>) <index type>

<attribute>

<attr list> , <attribute>»

€ | as <temporal type>

snapshot | xollback | historical |

In this description, the following non-terminals, which are identical to their Quel counterparts, were

used:

<relation>

the name of a refation

<tuple variable> the name of a tuple variable

temporal

<attribute>

the name of an atiribute

-

<attribute spec> alistof names and types for the user specified attributes

<string>
<booclean expr>

<expression>

a siring constant
returns a value of type boolean

returns a value of type integer, string, floating point, or temporal

180

Appendix B

Nonlinear Hashing

Algorithms for nonlinear hashing to insert, delete, and retrieve a record given its key K are presented
in this appendix. Procedures described here are in bold fonts. The algorithms have been implemented and

tested in the C language.

There are two parameters for nonlinear hashing: n , and min'Loading. n g is the initial size of the
file, and minLoading is the minimum loading factor for a block, below which a merge operation is
triggered on deleting a record from the block. Procedure compute has the parameter order which is

treated as a call-by-referénce or a call-by-result parameter.

Retrieve a record with key K.
parameters _
K : key of the record
return value
record K: when successful
* ERROR : when failed
*)
function retrieve (K):

* % % A ¥

begin
b; « compute (K);
getBlock (by); (* read block b; *)
if (record K in block b;) then
return (record K):
else
return (ERROR) ;
end:;
{(* Insert a record with key XK.
* parameters :
* K : key of the record
* return value
* address : final address of the inserted block
*)
function insert (K):
begin

by ¢ compute (K, order);
getBlock ({by): {* read block by *)

if (block b; is full) then
final « split (b, K, order);

end;

* % ok A A o

*)

else {* enter record K into block b; *)

" begin

ﬁnaI &~ bl;
enterRec (K, b);
end;
return (final) ;

Delete a record with key K.

rarameters
K : key of the record
return value
0K : when successful
ERROR : when failed

function delete (K):

begin

end;

E o

*
*})

b; « compute (XK, order);
getBlock (by): {* read block b; *)

if (K in block b{) then (* remove record K from block b, *)
remove (K, b,);

else
return (ERROR};

if (loading of b; < minLoading) then

try merge (b,);
return (QK) ;

Determine the address for key K.

parameters '

K : key of the record

order : variable parameter for order of overflow
return value

b ¢ final address for key K

function compute (K, VAR order):

begin

b; « hashFn (X);

. count « 1; (* Lo count the order of overflow *)

marker «— 0; (* to mark a position in OverflowList *)

wvhile (TRUE)} do
begin
member « (first b; or -b, after the position
pointed to by marker in QverflowList):
if (no such member) then
break;
else
begin
Py +— (position of member in OverflowList
without counting negative entries):
marker « py;
end;

182

183

(* by had an overflow *)
if (aplitFn (XK, count) = 0) then
; (* original block *)

r

else
begin {(* child block *)
if (member < 0) then (* merged back *)
break; :
else
bl < child (blf Pl),’
end; '

count « count + 1;
end;

order < count;
return (b;);

end;
(* Hash function.
* parameters
® K : key
* return value
* hashed address : { 1 .. ng }
*)
function hashFn (K):
begin :
return (K mod ng+1);
(* Addresses start from 1 :
* so that they can be negated for merging *)
end;
(* Split functions.
* parameters
* K : key
* ord : order of overflow
* return value
* split value : { 0, 1 }
*)
function splitFn (K, ord):
begin .
K
return {(~———— mod 2) ;
noxzord—l
end;
{(* Split block b; into two.
* parameters
* b, : address of the block to be split
* K; : key of the record to be inserted
* order : order of overflow
* return value
* address : final address for record K;
*)
function split (b, K;, order):
begin

append b; to OverflowList;

*)

append a new block b, at the end;

for each record K, in block b; do

begin
if (split¥n (K., order) = 0) then
enterRec (K,; by}
else
enterRec (K,, b,);
end;

if (splitFn (K;, order) = 0) then

begin
enterRec (K;, b;);
return (b;);

end;

else

begin
enterRec (K;, b,)s
return (by);

end;

Try merging block b, with its parent or child.

parameters

b, : address of the block
return value

OK : when successful

ERROR : when failed

function try merge (b;):

begin

young <« TRUE;
if (leaf (b,))
begin
if (parxent (b;) = ERROR) then
return (ERROR); /* one of initial blocks */

if {b; is not the youngest child) then
young < FALSE;

return (merge (b;, parent (b;), young)):
end

{* by i3 not a leaf *)
children « (a list of all child of b, in reverse order):;

(* youngest child is at the head of the list *#*)
for each child ch; in children do
begin
if (mexge (ch,, b, young) = OK) then
return (OK);
young < FRALSE;
end;

return (ERROR};

184

185

end;
(* Merge block b; into block b,.
* parameters
* by : address of block by
* by : address of block by
* young : TRUE if b; is the youngest child
* return value '
* OK : when successful
* ERROR : when failed
*)
function merge (b, b,, young):
begin
if {(block b; has room for all records in block b;) then
begin
move all records of block b; to by;
discard block b;;
adjust addresses for blocks whose address is higher than b,
if (young = TRUE) then
remove b, from OverflowList:
else
negate b,; in OverflowList;
return (0K);
end;
else return (ERRQR);
end;
(* Find the the child of block b;.
* parameters '
* b, : address of the bleck
* P : position of b; in OverflowlList
* return value .
* address of the child block
*)
function child {(b;, py):
begin
return (p;+ng);
end;
{* Find the the parent of block by.
* parameters
* by : address of the block
* return value
* address of the parent block
* ERROR : when there is none
*}
function parent (b;):
begin
if (b;<ny) then return (ERROR);
else return (OverflowList [b;—ngl):
end;

(* Check if block b; is a leaf.
* parameters
* by : address of the block

® return value
* TRUE : when b, is a leaf
* FALSE : when b; is not a leaf

*)
function leaf (bg):
begin
if (there is b, in OverflowList) then
return (FALSE);
else
return (TRUE};
end;

186

Appendix C

Benchmark Results

. This appendix presents the measurement data from the benchmark discussed in Chapter 6. .

Update Count
Query 0 1 2 3 4 5 6 7
In [Out| In [Outf In [Outf In {Out| In {Out| In |Out] In [Outl In |Out
Qo1 11 0 21 0 310 4| 0 51 0 6] 0 710 8 0
Qo2 2[0 3] 0 4 0 510 6l 7|0 - 8|0 91 0
Q03 129] © 258| 0 387/ 0| 516/ 0| 645 0| 774 0| 903| 0 | 1024] O
Qo4 128/ 0 | 256] 0 384/ 0} 512(0] 640/ O | 768{ O { 896{ O | 1024| 0
Q05 11 0 21 0 30 4 0 51 0 6/ 0 7] 0 8/ 0
Qo6 2101 3|0 4 0] 50 6i 0 7] 0 Bl 0 9 0
Q07 1291 0| 258{ 0 387/ 0| 516/ 0| 645 0] 774, 0§ 903| 0 | 1024] O
Qo8 128 0| 256f 0| 384, 0 512/ 0| 640/ 0| 768/ 0| 896 0| 1024 0
Qoo 11411 O | 2304| 0| 3456| O | 4608] O | 5760} 0 | 6912| 0 | 8064 0 | 9178] 0
Q10 2177) 0 | 3330{ O | 4483} 0 | 5636/ 0 | 6789(O | 7942} 0 | 9095{ O |10240| O
Q15 129/ 0 | 258[0 | 387/ 0| 516/ 0| 645/ 01 774 0| 903| 0 | 1024{ 0
Update Count '
Query 3 9 10 11 12 13 14 15
In |Out| In |Out| In {Out| In [OQut] In [Outf In [Out| In [Out| Im |Out
Qo1 9] 0 10! 0 111 0 12(0 13 0 14; 0 151 0 16 O
Qo2 10(0 111 © 12/ 0 131 0 i4(0 15[0 16§ 0 17 0
Q03 1153) O | 1282| 0 | 1411 O } 1540{ 0 | 1669 0 | 1798| 0 | 1927] 0 | 2048| 0
Qo4 1152; O | 12801 O | 1408 O | 1536| 0 | 1664| 0 | 1792} 0 | 1920| 0 | 2048{ 0
Q05 9| 0 10| O 11, 0 12 0 13] 0 14 0 15| 0 16{ 0
Q06 10! 0 111 0 i2i 0 13(0 14{ 0 15! 0 161 0 17 0
Qo7 1153| 0 | 1282) O | 1411| O | 1540{ 0 | 1669] 0 | 1798| 0 | 1927| 0 | 2048! 0
Q08 1152 O | 12801 O | 1408| O | 1536] 0 | 1664| 0 | 1792| 0 | 1920| 0 | 2048(©
Q09 ||10330| 0 [11482| 0 |12634] 0 |13786] 0 [14938| 0 16090 O |17242{ 0 [18356] O
Q10 || 11393} 0 |12546f O |13699| 0 [14852| O [16005[0 {17158} 0 [18311| O |19456| 0
Qis 1153[0 | 1282] 0 | 1411] O | 1540{ 0 | 1669 0 | 1798] 0 | 1927| 0 | 2048 0
Figure C-1: /O Cost for the Rollback DBMS with 100% Loading
Update Count

01121345617 8§ 1910111213]14] 15
Rollback h [[129]258{387] 516| 645| 774| 903]1024{1153|1282|1411|1540|1660(1793]1527|2048
Rollback i |} 129[257(385] 513{ 641| 769{ 897[1025]1153|12811409{1537{1665{1793{1921|2049
sum 258(515177211029{12861543 | 1800{2049]2306{2563(2820{3077|3334(|3501|3848 (4007

Figure C-2: Space for the Rollback DBMS with 100% Loading

188

Update Count
Query 0 1 2 3 4 5 6 7
In [Out| In |Out| In {Out| In [Out| In {Out| Im |[Out] In [Out]| Inm [Out
Qo1 . 110 1] 0 2] 0 -21 0 31 0 310 41 0 4(0
Q02 3t 0 31 0 4| 0 41 0 5/ 0 510 6] 0 6{ 0
Q03 2571 G | 2571 0 ; 514 O | 514| O 7671 0 7711 0 | 1024| 0§ 1024| O
Q4 256 0| 256| O} 5121 0 | 512| O 7681 0 768 0 | 1024] 0 | 1024| ©
Q05 il 0 i1 0 21 0 21 0 310 3|0 4 0 4| 0
Qo6 il o 310 41 ¢ 41 0 5| 0 5| 0 61 0 6] 0
Qo7 2571 01 2571 O | 514 QO | 514]| © 767| O 7711 ¢ | 1024 0 | 1024} 0
Q08 256) 0| 256] O | 5121 0 | 512 O 768 0] -768| 0 | 1024| O | 1024 O
Q0o 1271] 0 [1271] O }2560| 0 12560 O | 3840] 0 } 3840| 0 | 5120| O | 5120(©
Q10 33291 0 |3329| O {4610{ O |4610] O | 5887] 0 | 5851} 0 | 7168| O | 7168| O
Q15 2571 0 § 2571 0| 5141 0 | 514 O 7671 0 F71] O | 10241 O | 10241 ©
: Update Couni
Query 8 9 10 11 12 13 i4 15
In |Out! In |Out|{ In {Out| In [Out| In {Out| In {OQut] In [Out] In TOut

Qo1 510 510 6| 0 8] 0 71 0 71 © 31 0 8l 0
Q02 71 6 71 0 8l 0 gl ¢ 9] 0 91 0 10{ 0 10 O
Q03 1281 O [1281] O |1i538] O |1538] 0 | 1791| O | 1795| O | 2048 O | 2048| 0
Q04 12801 O |1280} O |1536f O [1536] 0 | 1792} O | 1792| 0 | 2048] 0 | 2048] O
Q05 5t 0 51 0 6] 0 6 0 71 0 | 71 O 8 0 81 ©
Q06 71 0 71 0 8| 0 8 0 9] 0 9] 0 i0| 0 10| O
Qo7 1281] O {1281 O [1538; O 1538] 0 | 1791f 0 | 1795{ 0 | 2048] 0 | 2048{ ©

. Qo8 12807 O |1280]| O (1536 O [1536] O | 1792| 0 | 1792]| O | 2048} 0 | 2048]| o
Q09 6400| 0 |6400| O (7680 O |7680] © | 8960| 0 | 8960| © |10240| O |10240| ©
Q10 84491 0 [8449) 0 |9730{ 0 |9730{ 0 |11007] O [11011] O |12288| 0 |12288! ©
Qis 12817 O 1281 O {1538| O [1538| G | 1791{ O | 1795] O | 2048 0 | 2048| 0

Figure C-3: VO Cost for the Rollback DBMS with 50% Loading

Update Count
cl1i{213|4]5]6]7[8]cJ1o]11T12T13[14]15

Rollback_h |257{257| 514} 514} 767| 771{1024{1024{1281|1281]1538]1538[1791}1795{2048]2048
Rollback i {1259|259| 515 515| 771 771]1027[1027{1283}1283]1539(1539(1795|1795|2051{2051

sum 516]516{1029(1029{15381542[2051[2051|2564{2564{3077]|3077]|3586]3590[4009|4099

Figure C-4: Space for the Rollback DBMS with 50% Loading

189.

Update Count
Query 0 1 2 3 4 5 6 7
' In -|Out] In |Out] In {Out} In |Out| In [Outf In [Out]| T [Out] In [Out
Qo1 1} 0 2] O 3l 0 4 0 51 0 6/ 0 7t 0 81 0
Q02 2l O 30 4 0 51 0 6{ 0 1 0 8l 0 ol 0
Q05 1 0 21 0 3] O 4 0 5| 0 6 O 71 0 8l 0
Q06 21 0 31 O 41 .0 510 6 0 71 04 8 0 91 0
Q07 120 O] 258 0] 3871 0| 516] 0o 645 0| 774] 0| 903] 0| 1024] 0
Qo8 128) Of 256 O 384; 0! 512| 0! 640 0] 768] 0| 896! o] 1024| ¢
Q0% 1197] 56 | 2360) 56 } 3512] 56 | 4664| 56 | 5816| 56 | 6968 56 | 8120/ 56 | 9234/ 56
Q10 2233]| 56 | 3386[56 | 4539] 56 | 5692]| 56 | 6845! 56 | 7998} 56 9151) 56 [10296| 56
Q13 1 0 21 0 3l 0 4 0| 5[0 6] 0 7] O 8l 0
Q14 129 0| 258{ 0| 387| 0| 516{ 0i 645 0| 7741 0] 903| 0| 1024| o
' Update Count
Query g 9 10 11 12 13 14 15
In [Out| In [Out| In [Out| In [Out| In [Out| In [Out| In |Out] In |Out
Qo1 9 0 10 O 11| 0 12] 0 13(0 14| 0 151 0 16] 01
Q02 10| O 11§ -0 12/ 0 13 0 14; 0 15{ 0 16| 0 17{ 0
Qo5 .9 0 10 0 11{ 0 12| 0 131 0O 4] 0 15 0 16f 0
Qo6 161 O i1l] © 121 0 13} 0 14 0 15| 0 16| 0 17 ©
Q07 1153 O 1282; 0| 1411] O 1540{ 0| 1669f 0] 1798[0| 1927 o[2048] o
Q08 1152) 0] 1280 0| 1408 0 1536 0] 1664 0| 1792 ol 1920| 0] 2048] 0
Q09 110386} 56 | 11538 56 {12690 56 |13842| 56 |14994] 56 |16146| 56 |17298| 56 {18412] 56
Q10 || 11449 56 [12602| 56 [13755| 56 [14908| 56 |16061| 56 [17214] 56 |18367| 56 | 19512| 56
Q13 9] 0§ 10} 0 117 0 12{ 0 13] 0 141 0 15/ 0 16| 0
" Q14 1153) 0] 1282] 0] 1411 0] 1540 0] 1669 0| 1798 0/l 1927| 0! 2048] o
Figure C-5: 1/O Cost for the Historical DBMS with 100% Loading
Update Count
: Of1|12]1 3] 4] 5 6| 7| 8 Si10] 11 [12]13]147T 15
Historical_h |} 129{258{387] 516] 645| 774 903[1024(1153{1282|1411|1540|1669(1798|1927|2048
Historical i [|129[257(385| 513| 641| 769| 897|1025]115311281]/1409{1537|1665/1793|1921{2049
sum 2581515(772]1029{1286{1543[1800{2049|2306|2563[2820(3077 |3334[359113848|4097

Figure C-6: Space for the Historical DBMS with 100% Loading

190

Update Count
Query 0 1 2 3 4 5 6 7
In |Out{ In {Outy In [Out{ In [Out{ In |Out| In |[Out| In [Out| In [Out
Q01 il o [0 21 0 2] 0 i3I © 31 0 4 0 4 0
Qo2 31 O 3l 0 41 0 41 9 5| € 51 0 6] 0f 6| O
Qo5 1{ 0 1] 0 21 0 2] 0O il 0 3| 0 4 0 4] ¢
Qo6 3l @ 3 0 4] 0 4 0 51 0 51 0 6 O 6| 0
Qo7 257) 0 257| 0| 514|- 0| 514 0| 767 O 771| O 1024 0} 1024| 0O
Qo8 236 0 256 O] 512} O] 512} 0] 768| O 768| O 1024 0| 1024 o
Q09 1327| 56 [1327] 56 [2616| 56 {2616| 56 | 3896| 56 | 3896| 56 | 5176| 56 | 5176| 56
Q10 3385) 56 |3385(56 (4666 56 |4666| 56 | 5943| 56 | 5047) 56 | 7224 56 | 7224/| 56
Q13 1} 0 1] 0 2; 0 21 0 3l o] 310 4t 0 4 0
Q14 257] O] 257] O] 514| 0| 514 O] 7671 O 771] O} 1024 0} 1024 0
Update Count
Query 8 9 10 11 12 13 14 15
In |Out|{ In [Out| In [Out{ In {Out] In [Out| In [Out] In [Out] In [Out
Qo1 51 0 510 6 0 6/ 0 7| 0 7 0 3 0 8] 0
Qo2 71 O 71 0 g8l O 8] 0O 9 0 9 0 10 0 10] 0
Q05 5[0 51 0 6] 0 6] 0 1 0 710 8l 0O 8 O
Q06 71 0 71 0 8 0 g 0 9l 0y 910 10 0] 10| Q
Qo7 1281 O1281| 01538 O (1538| O 1791} O | 1795| 0 2048] O 2048{ 0
Qo8 1280] -0 11280 0 {1536] 0]1536| 0| 1792} 0 1792 0 2048 o 2048| 0
Q09 6456; 56 |6456] 56 | 7736 56 | 77361 56 | 9016{ 56 | -9016| 56 | 10296/ 56 {10296(56
Qio 8505| 56 (8505| 56 |9786| 56 |9786| 56 | 11063| 56 | 11067 56 | 12344 56 | 12344 | 56
Q13 51 0 5] 0 6] 0 6, 0 71 © 7] 0 gl O 8| o
Q14 1281| 0 {1281 0[1538] 0 |1538| 0| 1791] O 1795 0| 2048| o/ 2048{ o0
Figure C-7: /O Cost for the Historical DBMS with 50% Loading
Update Count
6l112[3]4]s5]6(7{8JTofJwofTunu]12]13[147]1s
Historical_h {|257|257| 514] 514] 767 771{1024]1024|1281[1281[1538]1538]{1791{1795]2048 {2043
Historical i [|259{259| 5151 515{ 771| 771|1027{1027)1283(1283}{1539{1539|1795|1795(2051|2051
sum 516/516{1029|1029(|1538|1542{2051]2051 (2564 |2564|3077]3077|3586(3590[4099[4099] -

Figure C-8: Space for the Historical DBMS with 50% Loading

191

Update Count

Query 0 1 2 3 4 5 6 7
' In {Cutj In |Out|{ In |Out| In [Qut] In [Out| In [Out| In |Out] In |Cut
Qo1 S1) 310 5[0 70 9l 0 114 0 131 © 151 0
Q2 21 0 4 0 6/ 0 8l O 10 0 12| 0 14} 0 16/ 0
Qo3 129| O 387) 0| 645 O} 903} 0] 1153] 0| 1411] 0} 1669] 0| 1927| 0
Qo4 128/ O| 384 Of 640! O| 896 0| 1152| 0 1408] 0/ 1664 o[1920] 0
Q05 1] 0 3l 0 5| ¢ 71 0 9 0 11§ 0O 13] 0 151 ©
QU6 21 O 4 07 - 6§ 0 8l O 100 0 121 0) 14 0 16| 0
Q07 1291 O 387, O] 645| O 903] 0 1153 Of 1411} O} 1669| 0] 1927 o
Qo3 128| .01 "384] 0| 640 O| 896] 0! 1152| 0/ 1408| 0] 1664 0 1920] ©
Qo9 12001 56 | 3512 56 | 5816{ 56 | 8120{ 56 |10386| 56 | 12690| 56 [14904| 56 | 17208 56
Q10 [2233/ 56 | 4539] 56 | 6845| 56 | 9151| 56 |11449] 56] 13755] 56 {16061 | 56 {18367 56
Q11 385| 0f 1155 O 1925] 0| 2695| 0| 3457| 0| 4227| ol 4997 O] 5767{ 0
Qi2 131) 4| 389f 4| 647) 4| 905{ 4| 1163] 4| 1421 4| 1679] 4 1937 4
Q13 i| O 3 O 510 71 0 9] 0 I 0 13, 0 15{ 0
Qi4 1291 O 387] O| 645{ 0! 903] 0 1153] 0} 1411} O 1669 0] 1927] 0
Q15 1291 01 387] O.645[O| 903| 0] 1153| of 1411| o/ 1669] 0 1927| o
Q16 129] 0] 387) O] 645 0] 903] 0 1153] 0| 1411f o 16691 0| 19271 ©

Update Count - .

Query 8 9 10 11 12 i3 14 15
In |Outj In |Out| In |Out| In [Out] In [Out] In [Out] In]Out| In Out
Qo1 171 0 19f 0 21 0 231 0 251.0 271 O 29} 0 31| 0
Q02 i8] 0 201 0 221 0| 24| 0 26 0 28] 0 30| 0 320
Q03 2177 0| 24350 0 2693| 0] 2951 0| 3201] O} 3459 of 3717 o 3975/ 0
| Q04 2176| Oy 2432| 0| 2688 0| 2944 0] 3200 0] 3456 0] 3712] 0| 3968| ©
1. Q05 171 0 19] 0 211 0 23] 0 25{ 0 271 0] 29| o 3if ©
Q06 181 0 200 0 2 0 24| 0 26(- 0 281 0 301 0 321 0
Q07 2177 0[:2435{ O 2693 0| 2951} 0§ 3201| O] 3459| o] 3717| o/ 3975| 0
Qo8 2176! 0| 2432 O 2688[0} 2944| 0| 3200{ 0} 3456 0 3712| o] 3968] 0
Q09 1119564| 56 121868| 56 |24172| 56 |26476| 56 {28742 56 |31046| 56 |33350| 56 {35654 56
Q10 [[20665] 56 |22971| 56 [25277| 56 {27583 56 |29881| 56 {32187] 56 [34493| 56 36799| 56
Qi1 | 6529 0 7299| 0| 8069 0O 8839 0| 9601{- 0}10371{ ©|11141] 011911 0
Q12 2195\ 4| 2453] 4| 2711{ 4| 2969| 4] 3227] 4| 3485| 4| 3743] 4| 4001| 4
Q13 171 0 191 04 21} 0 23 0 251 0 271 0] 29(o 31 O
Q14 2177 O 2435| 0 2693 0| 2951 0 3201 0] 3459] 0| 3717| 0{ 3975! o
Q15 2177} Of 24351 0 2693 0| 2951 0| 3201| 0] 3459] 0] 3717] 0| 3975] ©
Q16 2177] O] 2435| 0] 2693 0 2951] 0| 3201 of 3459 o| 37117| 0| 3975 ©

Figure C-9: I/O Cost for the Temporal DBMS with 100% Loading
Update Count

01112 1314567 [8To9Ti0[1iT12] 13114115
Temporal_h |[1297387] 645 903(1153(1411]1669]1927]2177 2435|2603 29513201] 345937173975
Temporal i |[129)385| 641] 897|1153/1409|1665|1921(2177(2433|2689{2945(3201|345713713]3040
sum - |1258{772[1286|1800/2306]|2820]3334|3848|4354|486815382]5896]640216916 (74307944

Figure C-10: Space for the Temporal DBMS with 100% Loading

192

Updaie Count

Query 0 1 2 3 4 5 6 7
In |Outf In |Out} In [Out{ In |Out{ In {Out| In [Out| In {Out] In [Out
Qo1 1 0 2{ 0 31 O 4. 0 51 0 6 0 71 O gl o
Qo2 3| 0 4 0 5{ 0 61 0 71 0 8l 0 9] 0 10 O
“Q03 2570 0| 514} 0| 767] O 1024| O 1281 Of 1538| 0} 1791] 0 2048| ©
Qo4 2561 0] 5120 0 768| O] 1024] O 1280] O] 1536f O 1792 0] 2048| ©
Qos 1l 0 21 0 3 0 4 0 51 ¢ 6| © 7l O g 0
Q06 310 4 0 50 6i 0 71 0 g 0 91 0 10t 0
Qo7 257| 0§ 514) 0| 767| O} 1024{ O 1281| O 1538] O 1791 0] 2048| ©
Qo8 256| 0| 512f Of 768 O 1024] O| 1280} 0 1536] O] 1792| 0| 2048| 0
Q09 13331 56 | 2616] 56 | 3896{ 56 | 5176} 56 | 6456(56 | 7736] 56 | 9016| 56 {10296/ 56
Q10 3385| 56| 4666| 56 | 5943| 56 | 7224| 56 | 8505| 56 | 9786| 56 |11063| 56 |12344] 56
Q11 769 O 1538 0] 2303} 0] 3072| 01 3841] O 4610| 0| 5375 0| 6144] ©
Qi2 2591 4| 516y 4 773| 4| 1030 4| 1287 4| 1544] 4| 1801} 4| 2058| 4
Q13 1 0 21 0 3| 0 4 0 51 0 61 0 71 O 8 0
Q14 257 O| 514 O| 767| O 1024| O] 1281 O 1538| 0O 1791 0 2048| 0
Q15 257| O 514 0| 767| O 1024| O 1281] O 1538| O 1791] 0| 2048 ©
Q16 2571 0| 514 O] 767] 0| 1024 O 1281] Of 1538] 0] 1791| O] 2048| ©

. Update Count .

Query 8 9 10 i1 12 . 13 14 15
In |Out| In [OQutj In [Out{ In |Outf In {Out] In [Out| In [Out| In [Out
Q01 9t 0 106{ 0 11y 0 121 0 i3 0 141 0 15{ ¢ 16{ 0
Qo2 11} 0 12t 0 13 0 141 0 15| 0 16} 0 17] 0 18] 0
Q03 2305 0 2562| O 2815 O} 3072 O] 3329 0] 3586 O 3839 0] 4096| ©
QG4 2304 O| 2560| 0| 2816 O 3072| O 3328] 0| 3584| 0| 3840 0| 4096 O
QoS 91 0 101 0 11} 0 12| 0 13| © 141 O 15 0 16{ 0
Q06 114 0 120 0} 137 0 14} 0 151 0 i6] 0 17| O 18] ¢
Qo7 23051 O] 2562; O] 2815{ 0] 3072} O 3329| 0 3586 O 3839| 0| 4096] 0
Qo8 2304| 0} 2560 O 2816 O 3072| 0| 3328 O 3584] 0 3840/ 0| 4096| 0
Q09 || 11576] 56 [12856 56 |14136| 56 |15416(56 |16696| 56 | 17976} 56 | 19256/ 56 [20536! 56
Q10 || 13625] 56 [14906| 56 |16183| 56 {17464 | 56 |18745{ 56 |20026| 56 [21303] 56 |22584| 56
Q11 6913 O 7682) 0O} 8447 0 9216| 0] 9985 0]10754| 011519 0 |12288] 0O
Q12 23151 4 2572 4 2829| 4] 3086] 4| 3343| 4| 3600{ 4| 3857| 4| 4114| 4
Qi3 9l 0 0] 0 11 0 i2{ 0 31 0 4] ¢ 15 0 16f ©
Ql4 2305| Of 2562| 0| 2815| O 3072| O 3329] 0| 3586| O 3839 0| 4006 ©
Qis 2305y O 2562 O 2815(0| 3072) O 3329 0] 3586| 0| 3839| O 4096] O
Q16 2305) O} 2562} O | 2815 0| 3072] O 3329 0| 3586 0] 3839| 0| 4096| 0

Figure C-11: 1/O Cost for the Temporal DBMS with 50% Loading
Update Count

011)2 |34 (567|899 |w0|un]j2][13714715
Temporal _h {1257 514 767]1024[1281{1538(1791/2048{2305{2562(2815{3072/3329{3586(3839(4096
Temporal i ||259] 515] 771(1027]1283]1539/1795|2051|2307|25632819|3075(3331|3587|3843]4099
sum 5161029{1538;2051|2564(3077/3586|4099|4612|5125{5634|6147|6660|7173|7682[8195

Figure C-12: Space for the Temporal DBMS with 50% Loading

Appendix D

Performance Analysis (1)

Cost of each query in Figure 6.5 is analyzed using the four models discussed in Chapter 4. We

assume that the queries are executed on the teniporal database with 100% loading, as described in Section

6.2.1. The database can be described as follows in IDL’s ASCII external representation [Nestor et al,

1982] according to the model of databaselrelations, where uc denotes the update count, either 0 or 14.

database
[name "Temporal 100";
relations
{
relation -
[name "Temporal_h"; |
temporalType temporallnterval;
attributes .
< Al: attribute
f name. "IdT;
type typelnteger;
length 4;
selectivity Té—-;
volatility 0;
|
A2: attribute
i name "amount™;
type typelInteger;
length 4;1
selectivity 004 ¢
volatility 0;
]
A3: attribute
[name - "Seq";
type typeInteger;
length 4;
selectivity 1:
volatility 1:
]
A4: attribute
[name "String”;
type typeString:
length 96;
selectivity 0;
volatility 0

1

194

>:
tupleSize 108;
tupleCount 1024;
updateCount uc;
storageType Hash;
keys -
< key
{ name "hash key™;
attributes < Al~; >
]
>3
loadingFactor 1;
blockSize 1024;
]
relation
[name "Temporal i"; _
temporalType temporalInterval;
attributes
< Al: attribute
[name "Idn;
type typelnteger;
length 4q
selectivity 024’
volatility O:
]
A2: attribute _
[name "Amount”;
type typelnteger;
length 4%
selectivity 1004 °
volatility 0;
]
A3: attribute
[name "Seq”;
type typelnteger;
length 4;
selectivity 1;
volatility 1:
]
Ad: attribute
[name "String”;-
type typeString;
length 96;
selectivity 0;
volatility 0:
]
>;
tuplesize 108;
tupleCount 1024;
updateCount uc;
storageType Isam;
keys
< key

[name

"isam key”;

195

attributes < Al":; >
]

>}
loadingFactor 1;
blockSize 1024;

The cost to process a query can be analyzed using the four models developed in Section 4.1. A
TQuel query is represented by an algebraic expression, which is mapped .to the file primitive expression
according to the model of algebraic expressions and the model of da;‘abaselrelations. Then the model of
access paths maps the file primitive expression into the access path expression, which is converted to the
elapsed time according to the model of storage devices. The analysis here was performed manually, and

subscripis i and o, as in APE; and APE,, denote input and output, respectively.

§ Qo1 _
retrieve (h.id, h.seq) where h.id = 500
* Algebraic Expreésion
{[L1: Select (h, h.id-= 500);
Projec_:t' (L1, h.id, h.seq) 1}
*if uc=10
* File Primitive Expression
Read (Hash, 0)
* Access Path Expression
’ APE{ H
(H 1)
* Access Path Cost
APC; =C(APE)=C({#H 1))
= 1 random access = 31.3 msec
®if uc=14
* File Primitive Expression
Read (Hash, 28}
* Access Path Expression
APE" : :
(H1l (P 28 (81) (P 1)))
* Access Path Cost
APC; =CAPE}=C{(H1®28(S1)(P 1))}

= 29 random accesses ~ 908 msec

196

§ QO2:
retrieve (i.id, i.seq) where i.id = 500
* Algebraic Expression
{{ L1: Select (i, i.id = 500},
Project (L1, i.id, i.seq) i}
eif uc= 0
¥ ~ File Primitive Expression
Read (Isam, 0)
Access Path Expression
APE" H
(1L (P 1))
* Access Path Cost
APC; = C (APE;) = 2 random accesses = 62.6 msec
¢if uc=14
* File Primitive Expression
Read (Isam, 28}
* Access Path Expression
APE" :
(P 29 (P 1))
* - Access Path Cost
APC; = C (APE;) = 30 random accesses = 939 msec
§ Q03:
retrieve (h.id, h.seq) as of *08:00 1/1/80"
* Algebraic Expression
{[L1: AsOf {(h, “08:00 1/1/80™, *08:00 1/1/80");
Project (L1, h.id, h.seq) 11
eif uc=10
* File Primitive Expression
Read (Heap, 128)
* Access Path Expression
APE" H
(U 128)
* Access Path Cost
APC; = (APE;)
= 1 random access + 127 sequential accesses = 2,370 msec
*if uc=14

* " File Primitive Expression
Read (Heap, 3712)

197

* Access Path Expression
AP E" :
(U 3712)
* Access Path Cost
APC; = C (APE;)

= 1 random access + 3,711 sequential accesses = 68,300 msec

§ Qo4: :
retrxieve (i.id, i.seq) as of "08:00 1/1/80"
* Algebraic Expression
{[L1: AsOf = (i, "08:00 1/1/80", "08:00 1/1/80");
Project {(Li, i.id, i.seq) 1}

® the rest is the same as Q03.

§ QO3:
retrieve (h.id, h.seq) where h.id = 500
when h overlap "now"
* Algebraic Expression
{{ L1: Select (h, h.id = 500);
Lz :When (L1, h overlap "now™):;
Project (L2, h.id, h.seq) 1}

the rest is the same as Q01.

§ QU86:;
retriave (i.id, i.seq) where i.id = 500
when i overlap "now"
* Algebraic Expression
{[L1: Select (i, id = 500);
L2: When {L1l, L1 ovexlap "now"):
Project (L2, L2.id, L2.seq) 1}

@ the rest is the same as Q02.

§ QO7: .
retrieve {(h.id, h.seq) where h.amount = 68400
when h overlap "now"™
* Algebraic Expression
{[L1: Select (h, h.amount = 69400);
L2: when (L1, h overlap ™now");
' Project (L2, h.id, h.seg) 1}

* the rest is the same as QO03.

§ QO8:

198

retrieve (i.id, i.seq) where i.amount = 73700
when i overlap "now"
* Algebraic Expression
{[L1: Select (i, i.amount = 69400);
L2: When (L1, i overlap "now");
Project (L2, i.id, i.seq) 11

* the rest is the same as QOA.

§ Q09
retrieve (h.id, i.id, i.amount)
where h.id = i.amount
when h overlap 1 and i overlap "now"
* Algebraic Expression
{{L1l: When {i, i overlap "now");
L2: Project (L1, i.id, i.amount,
i.valid from, i -valid te)];
L3: Temporary (L2):
[L4: Join (h, L3, TS, h.id = i.amount & h overlap i);
Project (L4, h.id, i.id, i.amount) 11
®if uc= 0
* File Primitive Expression
Read (Heap, 128) +
{ Read (Heap, 19) * 2 - 1 +
Write (Heap, 19) * 3 - 1) +
Read (Heap, 19) +
Read (Hash, 0) * 1024)
* Access Path Expression
APE,' :
(U0 128) +
{19y * 2 - 1 +
{ 19) +
(H 1} * 1024
APE, :
(T19)*3-1
* Access Path Cost
APC; =CUI2B)+C(U19)*2- 1)+ C((U19)) + C((H 1)) * 1024
= 1,028 random accesses + 180 sequential accesses = 35,500 msec
APC, =CHT1N*3-1)
= 3 random accesses + 53 sequential accesses =~ 1,070 msec
sif uc=14

File Primitive Expression
Read (Heap, 3712}
(Read (Heap, 19) * 2 - 1
Write (Heap, 19) #*# 3 - 1)
Read (Heap, 19)

+ + + +

199

Read (Hash, 28) * 1024

* Access Path Expression
APE" :
(O 3712) +
(U19) *2 -1 +
(U 19) +
(H1 (P 28 (8 1) (P 1))) * 1024
APE, :
(U19)*3-1
* Access Path Cost .
APC,; =CU3IN2Y)+C{(U19Y*2-1)+ C (U 19)

+C({(H1(P28(S1)(P 1)))) * 1024
= 29,700 random accesses + 3,764 sequential accesses ~ 999,000 msec
APC, =C{Ui9*3-1)
= 3 random accesses + 53 sequential accesses = 1,000 msec

$ QIOI:

retrieve (i.id, h.id, h.amount) where i.id = h.amount
when h overlap i and H overlap "now"
* Algebraic Expression .
{[L1: When " {h, h overlap "now");
L2: Project (L1, h.id, h.amount, .
' ' h.valid from, h.valid to)];
L3: Temporary (L2}; :
[L4d: Join (i, L3, TS, i.id = h.amount & h overlap i);
Project (L4, i.id, h.id, h.amount) 11
*if uc=10
* File Primitive Expression
Read (Heap, 128) +
(Read (Heap, 19) * 2 - 1 +
Write (Heap, 19) * 3 - 1) +
Read (Heap, 19) +
Read (Isam, 0) * 1024)
* Access Path Expression
APEi :
(U 128) +
Uig * 2 -1 +
{U 19) +
(P 1 (P 1)) * 1024
APE, :
wi9)*3-1
* Access Path Cost
APC; = C(APE})
= 2,052 random accesses + 180 sequential accesses = 67,500 msec
APC, =C{(U19*3-1) '

= 3 random accesses + 53 sequential accesses = 1,070 msec

*if uc=14

200

¥ File Primitive Expression
Read (Heap, 3712) +
(Read (Heap, 19) * 2 -~ 1 +
Write (Heap, 19} * 3 - 1) +
Read (Heap, 19) +
Read (Isam, 28) * 1024
* Access Path Expression
APE,‘ H
(U 3712) +
(U 19) » 2 -1 +
(U 19) +
(P 29 (P 1)) * 1024
APE, :
(Ui19)*3-1
* Access Path Cost _
APC; = C (APE))
= 30,724 random accesses + 3,764 sequential accesses = 1,030,000 msec
APC, =C{U1IN*3-1)

= 3 random accesses + 53 sequential accesses = 1,070 msec

§ Qil:
retrieve (h.id, h.seq, i.id, i.seq, i.amocunt)
valid from begin of h to end of i
when begin of h precede i
as of "4:00 1/1/80"
* - Algebraic Expression .
{ L1: AsOf (h, "4:00 1/1/80", ™4:00 1/1/80™);
[L2: Join (LY, 1, TS, beignOf (h) precede i);
{ Project (L2, h.id, h.seq, i.id, i.seq, i.amount),
Valid {L2, From, beginOf (h)},
. Valid {L2, To, endof (i))
31 }
°if uc=0
* File Primitive Expression
Read (Heap, 128) +
Read (Heap, 128) * 2
* Access Path Expression
APE" H
(T 128) +
(U 128) * 2
* Access Path Cost
APC; = (APE})
= 3 random accesses + 381 sequential accesses =~ 7,100 msec
o if uc=14

* File Primitive Expression
Read (Heap, 3712) +

201

Read (Heap, 3712) * 2

* Access Path Expression
APE; H
(U 3712) +
(U 3712) * 2
* Access Path Cost
APC" = C (APEl‘)

= 3 random accesses + 11,133 sequential accesses = 205,000 msec

§ Q12:
retrieve (h.id, h.seq, i.id, i.seq, i.amount)
valid from begin of (h overlap i) to end of (h extend i)
whera h.id = 500 and i.amount = 73700
when h overlap i
as of "now"
* Algebraic Expression
{(([1Ll: Select (h, h.id = 500);
L2: Project (L1, h.id, h.seq) 1;
L3: Temporary (L2}
}e
{([L4: Selact (i, i.amount = 73700);
L5: Project (L4, i.id, i.amount, i.seq) 1
Lé: Temporary (L5)
Yy:
[L7: Join (L3, L6, TS, h overlap i):
(Project (L7, h.id, h.seq, i.id, i.seq, i.amount),
Valid (L7, From, beginOf (overlap (h, i)}),
Valid (L7, To, endOf (extend (h, 1)))
)1 }
oif uc= 0
* File Primitive Expression
Read (Hash, 0) +
{ Read (Heap, 1) * 2 - 1 +
Write (Heap, 1) * 3 - 1) +
Read (Heap, 128) +
{ Read (Heap, 1) * 2 =1 +
Write (Heap, 1) * 3 - 1) +
Read (Heap, 1) * 0 +
Read ‘(Heap, 1) * 0
* Access Path Expression
APE“ H
(H 1) +
(Ul) 2 -1 +
(U 128) +
(U1l 2 -1 +
(U1l) *0 +
(Ul =90
APE :

UD*3-1) +

202

@n*3-n
* Access Path Cost
APC; = C (APE;)
= 4 random accesses + 127 sequential accesses = 2,460 msec
APC, =C(APE,)
= 2 random accesses + 2 sequential accesses = 99.4 msec
©if uc=14
* File Primitive Expression
Read (Hash, 28) +
{ Read ({Heap, 1) * 2 - 1 +
Write (Heap, 1) * 3 - 1) +
Read (Heap, 3712) +
{ Read (Heap, 1) * 2 - 1 +
Write (Heap, 1) * 3 - 1) +
Read (Heap, 1} * 0 +
Read (Heap, 1) #*# 0
* Access Path Expression
APE!' H
(H1 {238 (1) (P 1})) +
(U 1) *2 -1 +
{U 3712) +
(U 1) # 2 -1 +
(1) *0 +
(Ul *0
APE, : :
wi)*3-1) +
@n*3-1)
* Access Path Cost
APC; =L (APE;)
= 32 random accesses + 3,711 sequential accesses = 69,300 msec
- APC, =C (APE,)
= 2 random accesses + 2. sequential accesses = 99.4 msec
§Q13:
retrieve (h.id, h.seq) wherea h.id = 455
when *1/1/82" precede end of h
® Algebraic Expression
{[L1: Select (h, h.id = 455);
L2: When (L1, *1/1/82" precede end0f (h)):
Project (L1, h.id, h.seq) 1}

e the rest is the same as QO1.

§ Qi4:

retrieve (h.id, h.seq) where h.amount = 10300
when ®1/1/82" precede end of h

* Algebraic Expression

203

{[L11: Select {h, h.amount = 10300);
L2: When (L1, "1/1/82"™ precede endOf (h)):;
Project (L2, h.id, h.seq) 11

* the rest is the same as Q07.

§ Q15:

retrieve (h.id, h.seq) where h.amount = 10300
as of "1/1/83"

* Algebraic Expression
{[L1: Select (h, h.amount = 10300);
L2: AsOf (L1, "1/1/83", "1/1/83");
Project (L2, h.id, h.seqg) 11

the rest is the same as Q07.

§ Qle:
retrieve (h.id, h.seq) where h.amount = 10300
when "1/1/82™ precede end of h
as of *1/1/83"

* Algebraic Expression
{{ L1: Select (h, h.amount = 10300);
L2: When (L1, "1/1/82" precede endOf (h));
L3: AsOf {L2, "1/1/83", "1/1/83");
Project (L3, h.id, h.seq) -1}

* the rest is the same as Q07.

Appendix E

Update Algorithms

This appendix shows the algorithms to handle delete and replace on rollback, historical, or

temporal relations using the temporally partioned store, as discussed in Section 5.1.2.

(* Update a relation with a temporally partitioned store.
* rarameters

* mode : mdDELETE or mdREPLACE

* rel : relation to be updated

* baseTup : base tuple (to be updated)

* baseTid : tuple-id of the base tuple

* updateTup : new tuple to replace the base tuple
* return value :

* OK : when successful

* ERROR : when failed

* } :

function update_; (mode, rel, baseTup, baseTid, updateTup}) :
begin . .

case (mode) of
ndREPLACE :
begin
saveTid < baseTid;
cc < delete t (rel, baseTid, baseTup,
updateTup, mdREPLACE) ;
baseTid « saveTid;

case (cc) of

NoRep: {* no overlaping interval for replace *)
P (* no action needed *)
BaseTup:

cc « replace (rel, baseTid, baseTup, TRUE};
OK: .
cc & replace (rel, baseTid, updateTup, TRUE):
ERROR:
return (cc});
end;
end;

mdDELETE :
cc ¢ delete t (rel, baseTid, baseTup, updateTup, mdDELETE) ;
end;
return (cc);
end;

(* Delete a tuple from a temporally partitioned store.

206

* parameters

* rel : relation to be updated

* baseTup : base tuple (to be updated)

* baseTid : tuple-id of the base tuple

* updateTup : new tuple to replace the base tuple
® mode : mdDELETE or mdREPLACE

* return value

* OK : when successful

* ERRCR : when failed

*)
function delete t {rel, baseTup, baseTid, updateTup, mode):
begin
(* determine the temporal type *)
if (rel->temporalType = S HISTORICAL)} then
begin
if (rel->temporalType = § PERSISTENT) then (* temporal =)
return (delete_temporal
(rel, baseTid; baseTup, updateTup, mode));
else {* historical #)
return (delete historical
(rel, baseTid, baseTup, updateTup, mode)};
end;

else if (rel->temporalType = § PERSISTENT) then (* rollback #*)
return (delete rollback
(rel, baseTid, baseTup, updateTup, mode)};
else {* snapshot relation *)
return (ERROR);

Delete a tuple from a historical ralation.

parameters
rel ¢ relation to be updated
baseTup : base tuple (tc be updated)

baseTid : tuple-id of the base tuple

updateTup : new tuple to replace the base tuple
mode : mdDELETE or mdREPLACE

return value
QK : when successful
NoRep : when no need to replace
BaseTup : when baseTup is to be replaced
ERROR : when failed

— (]

o % W % ok N N % % * % =1
- [+
~

function delete historical (rel, baseTup, baseTid, updateTup, mode):
begin

base_validFrom ¢ (valid from value of the base tuple);
base_walidTo ¢ (valid to value of the base . tuple):;
update validFrom ¢ (valid from value of the update tuple):;
update_validTo « (valid to value of the update tuple):;

cec « OK;
if (update_validFrom £ base_validFrom) then
begin
update validFrom < base_ validFrom;
if (update validTo € base_validFrom) then (* case (1} #*)
cc ¢ NoRep;

end;

else if (update validTo < base_validTo) then

- 207

{(* case (2} *)

begin (* base_validFrom < update validTo < base_wvalidTo =*)

base validFrom ¢ update validTo;

if (mode = mdDELETE) then
begin
ins_rep ¢« replace;
tmptup ¢« baseTup:;
end;
else {* mdREPLACE *)
begin
ins_rep ¢ insert history:
tmptup ¢ updateTup;
end;

cc ¢ ins_rep (rel, baseTid, tmptu?, TRUE) ;

if (mode = mdREPLACE) then
begin
cc ¢ BaseTup;

if {(rel->storeSpec = ReverseChaining) then

set_nva (rel, baseTup, baseTid):;

end;
end;
else : (* base validTo < uﬁdateﬁvalidTo *)
begin (* case (3) *)

- update_validTo ¢« base_validTo;

if (mode = mdDELETE) then . cc & delete (rel, baseTid);

end;

else if (update validFrom < base validTo) then
begin (* case (4) or (5) *)

(* base_validFrom < update validFrom < base_validTo *)
if (mode = mdDELETE A base_validTo < update_validTo) then

ins rep ¢« replace;
else (* mdREPLACE or (4) of mdDELETE *)
begin

ins_rep < insert_history;

tmp_tid ¢ baseTid;
end;

tmp_t ¢« base validTo;
base_validTo « update validFrom;

cc ¢ ins_rep (rel, baseTid, baseTup, TRUE);
base_validTo ¢ tmp t;

if (update_validTo < base validTo) then
begin
base validFrom <« update validTo;

if (mode = mdDELETE} then
begin
ins_rep « replace;
tmptup < baseTup;

{* case (4) *)

if (rel->storeSpec = ReverseChaining) then

set_nva (rel, baseTup, baseTid);

end;

else .

baseTid « tmp tid;
end;
else (* mdREPLACE *)
begin
ins_rep ¢ insert_history;
tmptup < updateTup;
if (rel->storeSpec = ReverseChaining) then
set _nva (rel, updateTup, baseTid};
end;

¢cc ¢ ins _rep (rel, baseTid, tmptup, TRUE);
if {(mode = mdREPLACE) then
begin
cc ¢ BaseTup;
if (rel->storeSpec = ReverseChaining) then
set nva (rel, baseTup, baseTid):
end;
end;

else if (mode = mdREPLACE) then

208

begin {* base_validTo £ update v : case (5) *)

update_validTo ¢« base validTo;
if (rel->storeSpec = ReverseChaining) then
set_nva (rel, updateTup, baseTid):
end; '

cc & NoRep:;

return (ecc):

end;

(

L B - T N I

»*

*)

begin

Delete a tuple from a temporal relation.

(* base_validTo < update validFrom : case (6) *)

parameters
rel : relation to be updated
baseTup : base tuple (to be updated)
baseTid : tuple=-id of the base tuple
updateTup : new tuple to replace the base tuple
mode : mdDELETE or mdREPLACE

return value
OK : when successful
NoRep : when no need to replace
BaseTup : when baseTup is to be replaced
ERRCR : when failed

base _validFrom ¢« (valid from value of the base
base_wvalidTo « (valid to value of the base
base transStart « (transaction start value of the base
base_transStop ¢ (transaction stop value of the base
update validFrom <« (valid from value of the update
update wvalidTo & (valid to value of the update
update_transStart ¢« (transaction start value of the update
update_transStop ¢~ (transaction stop value of the update

function delete temporal (rel, baseTup, baseTid, updateTup, mode):

tuple) ;
tuple) ;
tuple) ;
tuple};

tuple) ;
tuple) :
tuple};
tuple);

209

cc « OK;
if (update_validFrom £ base _validFrom) then
begin
update validFrom ¢« base_validFrom;
if (update_validTo < base validFrom) then {* case (1) *)
cc ¢ NoRep:

else if (update_validTo < base _validTo) then (* case (2) *)
begin (* base_validFrom < update validTo < base _validTo *)
base_transStop ¢ update_ transStart;
tmp_tid « baseTid;
cc ¢« insert history (rel, baseTid, baseTup, TRUE);
base_validFrom ¢- update validTo;
base | _transStart <« update transStart;
base_transstop « TIME MAX;

if {mode = mdDELETE) then
begin
ins_rep ¢ replace;
if (rel->storeSpec = ReverseChaining) then
set_nva {rel, baseTup, baseTid):;
tmptup ¢ baseTup;
baseTid ¢ tmp tid;
end;
else (* mdREPLACE *}
begin
ins_rep ¢ insert history;
if (rel->storeSpec = ReverseChalnlng) then
set_nva (rel, updateTup, baseTid);
tmptup < updateTup;
end;

cc ¢« ins rep (rel, baseTid, tmptup, TRUE);
if (mode = mdREPLACE) then
begin
cc ¢ BaseTup;
if (rel->storeSpec = ReverseChaining) then
set_nva (rel, baseTup, baseTid);
end;
end;

else (* base_validTc < update_validTo *)
begin (* case (3) *)
update_validTo ¢« base validTo;
base_transStop ¢ update transStart;

if (mode = mADELETE) then ins_rep « replace;
else ins_rep ¢« insert hlstory, ~ (* mdREPLACE *)

¢c ¢ ins_rep (rel, baseTid, baseTup, TRUE);
if (mode = mdREPLACE A rel->storeSpec = ReverseChaining) then
set _nva (rel, updateTup, baseTid);
end;
end;
else if (update validFrom < base validTc) then
begin {* case (4) or (5) *)
(* base_validFrom < update_validFrom < base validTo *)

'

base transStop ¢ update transStart:;
tmp_tid < baseTid;
¢¢ ¢ insert history (rel, baseTid, baseTup, TRUE):

base_transStart ¢« update transStart;
base_transStop ¢« TIME MAX;
if (mode = mdDELETE A base_validTo £ update validTo) then
begin
ins_rep ¢« replace;
if (rel->storeSpec = ReverseChaining) then
set_nva (rel, baseTup, baseTid);:
baseTid ¢« tmp_tid;
end;
else {* mdREPLACE *)
begin
ins _rep ¢- insert history;
if (rel->storeSpec = ReverseChaining) then
set_nva (rel, baseTup, baseTid);
end;

tmp_t & base_validTo;

base validTo « update validFrom;

cc ¢ ins_rep (rel, baseTid, baseTup, TRUE};
base validTo ¢ tmp_t;

if (update validTo < base validTo) then (* case (4)
begin
base validFrom ¢« update_validTo;
if {mode = mdDELETE) then
begin
ins_rep ¢« replace;
if (rel->storeSpec = ReverseChaining) then
set nva (rel, baseTup, baseTid):;
baseTid « tmp_tid;
tmptup < baseTup;
end;
else {* mdREPLACE #)
begin
ins rep ¢ insert_history:
if (rel->storeSpec = ReverseChaining) then
set nva {(rel, updateTup, baseTid);
tmptup ¢« updateTup:;
end;

cc ¢ ins rep (rel, baseTid, tmptup, TRUE):;
if (mode = mdREPLACE) then
begin
cc ¢« BaseTup;
if (rel->storeSpec = ReverseChaining) then
set_nva (rel, baseTup, baseTid):
end;
end;

210

*)

else {* base validTo £ update validTo : case (5) *}

begin
update validTeo < base_validTo;
if (rel->storeSpec = ReverseChaining) then

21

set_nva (rel, updateTup, baseTid);
end;
end;

else (* base_validTo < update validFrom : case (6) *)
¢c ¢ NoRep;
return (cc);

end;

{* Delete a tuple from a rollback relation.

* parameters

* rel : relation to be updated

® baseTup : base tuple (te be updated)
* baseTid : tuple~id of the base tuple
* updateTup : new tuple to replace the base tuple
* mode : mdDELETE or mdREPLACE

* return value

* OK : when successful

* ERROR : when failed

*)
function delete_rollback (rel, baseTup, baseTid, updateTup, mode):
begin

base transStart <« (transaction start value of the base tuple):
base transStop - ¢ (transaction stop value of the base tuple) ;
update_transStart ¢« ({transaction start value of the update tuple);
update transStop ¢« (transaction stop value of the update tuple);

(* in a rollback relation, base_;ransstart.s update_transStart *)
base_transStop ¢ update transStart;

if (mode = mdDELETE) then ins_rep ¢ replace;
else ins_rep < insert_history; (* mdREPLACE *)

cc ¢ ins rep (rel, baseTid, baseTup) ;

if (mode = mdREPLACE A rel->storeSpec = ReverseChaining) then
set_nva (rel, updateTup, baseTid):;

return (cc);

end;
(* Insert a tuple into the history store, if partitioned.
* parameters Ce
* rel : relation to be updated
* tuple : tuple to be inserted
* tid : tuple-id to be set on insertion
* return value
* CK : when successful
* ERROR : -when failed
*)
function insext_history (rel, tid, tuple):
begin _
if (rel->storeSpec = ReverseChaining) then
begin

insert tuple into the history store;
set tid to the tuple-id of the inserted tuple;
end;
else

212

begin
insert tuple into the single store:;
set tid to the tuple-=id of the inserted tuple:
end;
end;
if (successful) then return (OK):
else return (ERROR);

end;
{* Set the field nva (next version address).
* parameters
* rel : relation to be updated
* tuple : tuple whose nva field is to be set
* tid : value of the nva field
*)
procedure set nva (rel, tuple, tid):
begin

set the nva field of tuple to tid;
end;

213

Appendix F

Performance Analysis (2)

Costs of some sample queries on the temporal database with the update count of 14 are analyzed
using the four models discussed in Chapter 4. We analyze the query costs for various formats of the
history store, as discussed in Chapter 7, assuming that the database uses the temporally partitioned storage
structure. Analysis of query costs for the temporal database with the conventional structure was given in
Appendix D.

§ Q01
retrieve (h.id, h.seq) where h.id = 500
* Algebraic Expression
{[L1: Select (h, h.id = 500);
Project {L1l, h.id, h.seq) 1}

* for Reverse Chaining

* File Primitive Expression
Read (Hash, 0) +
Read ' (Chain, 28)

* Access Path Expression
APE" .
[(HO) ; (P28 (81) (2 1))]
* Access Path Cost _
APC; = C (APE;) = 29 random accesses = 908 msec

* for Accession Lists

* File Primitive Expressioh
Read (Hash, 0) +
Read (Accessicnlist, 28)

* Access Path Expression
APE‘- b
[(RQ) ; (P 28 (P 1))]
* Access Path Cost
: APC; = C (APE;) = 30 random accesses = 939 msec

* for Indexing

* File Primitive Expression
Read (Hash, 0) +
Read (Index, 29)

* Access Path Expression
APE; :
[(HO) 7 [(S1 (P 1)) 2, (S28 (P 1)) 1]

214

* - Access Path Cost
APC; = C (APE;) = 30 random accesses = 939 msec

e for Clustering
® File Primitive Expression

Read (Hash, 0) +
Read (Cluster, 28, 8}

* Access Path Expression

AP E" :

2
[®0) ; (P [?8] (S 8) (8))]

* Access Path Cost

APC; = C (APE;) = 5 random accesses = 157 msec

* for Stacking

* File Primitive Expression

Read (Hash, 0) +
Read (Stack, 28, 4)

* Access Path Expression
AP E" H
[(HO) ; (P 4)]
* Access Path Cost .
APC; = C (APE;) =2 random accesses = 62.6 msec
* for Cellular Chaining
* File Primitive Expression

Read (Hash, 0) +
Read (Cellular, 28, 4)

* Access Path Expression
APE" H
[(HO) : (P [%8“’-‘ (8 4) (P 4))1
* Access Pach Cost
APC; = C (APE,) = 8 random accesses = 250 msec
§ QO03:
retrieve (h.id, h.s2q) as of *08:00 1/1/80"
* Algebraic Expression
{[L1: AsOf (h, "08:00 1/1/80", "08:00 1/1/80");
Preject (L1, h.id, h.seq) 11

* for Reverse Chaining, Clustering, or Cellular Chaining

* File Primitive Expression

215

Read (Heap, 147) +
Read (Heap, 40956)
* Access Path Expression
APEi .
(U 147) : +
(U 4096)
* . Access Path Cost
APC,' = C(APEI)

= 2 random access + 4,241 sequential access = 718,100 msec

* for Accession Lists

* File Primitive Expression
Read (Heap, 147) +
Read (Heap, 624} o+
Read (Accessionlist, 5)
* Access Path Expression
A.PE" H
(U 147) o+
(U 624) +
(8 5 (P 1))
* Access Path Cost
APC, = C(APE;)

=7 random access + 769 sequential access ~ 14,400 msec
s for Indexing

* File Primitive Expression

Read (Heap, 782) +
Read (Index, 5}
* Access Path Expression
APE,' .
(U 782) +
(85 (P 1))
*® Access Path Cost
APC; = C(APE;)

= 6 random access + 181 sequential access = 14,600 msec

§ Q09
retrieve (h.id, i.id, i.amount)
where h.id = i.amount
when h overlap i and i overlap "now®
* Algebraic Expression
{[Ll: When {i, i overlap "now");
L2: Project {(Li, i.id, i.amount,

i.valid from, i.valid to)l:

L3: Temporary (L2)}:;
[L4: Join (h, L3, TS, h.id=i.amount & h overlap i);

216

Project (L4, h.id, i.id, i.amount) 1}

© for Reverse Chaining, Accession Lists, Clustering, Stacking, or Cellular Chaining

* File Primitive Expression
Read (Heap, 147) +
(Read (Heap, 19) * 2 - 1 +
Weite (Heap, 19) * 3 - 1) +
Read (Heap, 19) +
Read (Hash, 0) * 1024)
* Access Path Expression
APE" H
(U 147) +
(U 19) * 2 =1 +
(U 19) +
(H 1) * 1024
APE, :
Uig*3-1i
Access Path Cost
APC; =CUN+C(UIN*2-+C (U119 +C(H 1)) * 1024
= 1,028 random accesses + 199 sequential accesses = 35,800 msec
APC, =C(Ui9*3-1)
=3 random accesses + 53 sequential accesses = 1,070 msec
¢ for Indexing
File Primitive Expression
Read (Heap, 114) +
(Read (Heap, 19) * 2 - 1 +
Write (Heap, 19) * 3 - 1) +
Read (Heap, 19) +
Read (Index, 1) * 1024)
* Access Path Expression
APER' H
(U 114) +
(U 19) * 2 - 1 +
(U 19} +
(B 1 (P 1))
APE :
(U19)*3-1
Access Path Cost
APC; = C (APE,)
= 2,052 random accesses + 166 sequential accesses = 43,000 msec
APC, =C({(U19*3-1)
=3 randpm accesses + 53 sequential accesses ~ 1,070 msec
§ Q11:

retrieve (h.id, h.seq, i.id, i.seq, i.amount)
valid £rom begin of h to end of i
when begin of h precede i

217

as of "4:00 1/1/80"

* Algebraic Expression
{ L1: AsOf (h, "4:00 1/1/80", ™4:00 1/1/80"™);
[L2: Join (L1, i, TS, beignOf (h) precede i);

{ Project (L2, h.id, h.seq, i.id, i.seq, i.amount),
valid (L2, From, beginOf (h)),
Valid {L2, To, endOf (i)}

)] } :

* for Reverse Chaining, Clustering, or Cellular Chaining

* File Primitive Expression
Read (Heap, 147) +
Read (Heap, 4096) +
(Read (Heap, 147) +
Read (Heap, 4096)) * 2

* Access Path Expression
APE" .
(U 147) +
(U 4096) +
{ (U 147) +
(U 4096)) * 2
* Access Path Cost .
APC; = C(APE;)

= 6 random accesses + 12,723 sequential accesses = 234,000 msec
“® for Accession Lists

* File Primitive Expression
Read (Heap, 147)
Read (Heap, 624)
{ Read (Heap, 147)
Read (Heap, 624)) * 2
Read (Accessionlist, 4)

+ + + +

Access Path Expression
APEE s
(U0 147) +
(U 624) +
((U 147} +
(U 624)) * 2 +
(8 4 (P 1))
* Access Path Cost-
APC; = C(APE))

= 10 random accesses + 2,307 sequential accesses = 42,800 msec
* for Indexing
* File Primitive Expression

Read (Heap, 782) +
Read (Heap, 782) * 2 +

218

Read (Index, 4)

* Access Path Expression
APEi s
(T 782) +
(v 782)) * 2 +
(s 4 (P 1))
* Access Path Cost
APC; = C (APE))

=T random accesses + 2,343 sequential accesses = 43,300 msec

§ Qie6:
retrieve {(h.id, h.seq) where h.amount = 10300
when "1/1/82" precede end of h
as of »1/1/83"
* Algebraic Expression
{[Ll: Select (h, h.amount = 10300);
L2: When (L1, *1/1/82" precede endCf (h)):
L3: AsOf (L2, »*1/1/83", *1/1/83");
Projact {L3, h.id, h.seq) 1}

®with a Secondary Index, on the Amount Attribute, as a Snapshot Single Heap

* File Primitive Expression
Read (Heap, 295) +
Read (Index, 29)
* Access Path Expression
APE,' :
(U 295) +
(8 29 (P 1})
* Access Path Cost
APC; = (APE;)

= 30 random accesses + 294 sequential accesses = 6,330 msec
¢ with a Secondary Index, on the Amount Attribute, as a Snapshot Single Hash
* File Primitive Expression

Read (Hash, 0) +
Read (Index, 29)

* Access Path Expression
APE" :
(B 0) +
(8§ 29 (P 1))
* Access Path Cost
APC; =C(APE)) = 30 random accesses = 939 msec

© with a Secondary Index, on the Amount Attribute, as 2 Temporal Partitioned Heap

219

File Primitive Expression
Read (Heap, 27) +
Read (Heap, 755) +
Read (Index, 4)
Access Path Expression
APEI- H .
(U 27) +
(U 755) +
(8 4 (p 1))
Access Path Cost
APC; =C (APE;)

= 6 random accesses + 780 sequential accesses = 15,500 msec

® with a Secondéry Index, on the Amount Attribute, as a Temporal Partitioned Hash

*

File Primitive Expression
Read (Hash, 0) +
Read (Hash, 0) +
Read (Index, 4)

Access Path Expression

APEI' :
(H Q) +
(H 0) +
(§ 4 (P 1))

Access Path Cost

APC; = C (APE;) = 6 random accesses = 188 msec

